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ABSTRACT 
 

Anti-Germinants As A New Strategy To Prevent  
Clostridium Difficile Infection 

 
by 
 

Amber Janece Howerton 
 

Dr. Ernesto Abel-Santos, Examination Committee Chair 
Professor of Chemistry 

University of Nevada, Las Vegas 
 

 Clostridium difficile infections (CDI) have emerged as a leading cause of 

hospital-associated complications. CDI is the major cause of antibiotic-related 

cases of diarrhea and nearly all cases of pseudomembranous colitis. The 

infective form of C. difficile is the spore, a dormant and hardy structure that forms 

under stress. Germination of C. difficile spores into toxin producing bacteria in 

the GI tract of susceptible patients is the first step in CDI establishment. Patient 

susceptibility occurs with a disruption of the natural gut microbiota by broad-

spectrum antibiotics. Antibiotic treatments usually resolve CDI but refractory 

cases are on the rise. Of great concern is the high incidence of recurrence due to 

persistence of spores in the gut following antibiotic treatment and/or spore re-

ingestion. Besides surface decontamination there are currently no protocols for 

prevention of CDI. 

 C. difficile spores must germinate to cause disease. Therefore, a logical 

approach to preventing CDI is to prevent spore germination. Unlike other Bacillus 

and Clostridia, the genome of C. difficile does not encode for any known 

germination binding site(s). Small molecules are typically required to activate 

spore germination in Bacillus and Clostridia. C. difficile germinates in the 
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presence of taurocholate, a natural bile salt, and glycine, an amino acid. The 

natural bile salt, chenodeoxycholate, has been shown to inhibit spore 

germination in vitro. We used structure activity analysis to define the 

microenvironment of the putative C. difficile germination binding site(s). Amino 

acids and amino acid analogs were analyzed for activation or inhibition of C. 

difficile spore germination.  

To determine which functional groups of bile salts are necessary and 

sufficient to activate or inhibit spore germination, we prepared bile salt analogs of 

taurocholate and chenodeoxycholate. This analysis elucidated specific functional 

groups recognized by C. difficile spores. Furthermore, many bile salt analogs are 

able to bind but are not recognized by the putative C. difficile germination binding 

site(s).  During this structure analysis, we discovered that a meta-benzene 

sulfonic acid derivative of taurocholate (CamSA) was a strong inhibitor of spore 

germination in vitro. CamSA is stable and non-toxic based on pharmacokinetic in 

vitro studies. CamSA showed no acute toxicity at the highest concentrations 

tested. More importantly, a single dose of CamSA prevents CDI in mice. Ingested 

C. difficile spores were quantitatively recovered from feces and intestines of 

CamSA-protected mice. Using CamSA as a probe, we were able to establish 

when onset of disease occurs in mice after infection with C. difficile spores. The 

results presented in this dissertation project support a mechanism whereby the 

anti-germination effect of CamSA is responsible for preventing CDI signs. 
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CHAPTER 1 

INTRODUCTION 

1.1. Clostridium difficile Background and Significance 

Clostridium difficile is a pathogenic bacterium from the Phylum Firmicutes 

of the Kingdom Eubacteria in the Domain Bacteria (Fig. 1.1). This phylum 

contains two major Classes: Bacilli and Clostridia (1, 2). The Class Clostridia 

consists only of organisms that are obligate anaerobes, Gram-positive and 

endospore-forming bacteria (3). Microorganisms, that like C. difficile are obligate 

anaerobes, are intolerant of molecular oxygen and use other molecules such as 

nitrate as a final electron acceptor for cellular respiration (4, 5). For example, 

vegetative C. difficile cells die in the presence of oxygen but flourish in the 

anaerobic, high nutrient environment of the mammalian colon (6, 7). Like others 

in the Class Clostridia, C. difficile is Gram-positive due to a thick cell wall made 

up of peptidoglycan, which absorbs the primary stain, crystal violet, and appears 

purple by light microscopy (Fig. 1.2) (8). In contrast, Gram-negative bacteria 

have cell walls made up mostly of lipopolysaccharides that do not retain the 

primary stain but absorb the counter stain, safranin, and appear red under 

microscopy (Fig. 1.2) (9). The Gram-staining technique was developed by Hans 

Christian Gram to separate bacteria into two large groups based on physical 

properties of cell wall constituents (9). Also like other bacteria in its Class, C. 

difficile produces and releases dormant spores under stressful conditions as a 

survival mechanism (10). The spores survive in aerobic conditions where the 
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mother vegetative cells cannot, thereby providing a survival strategy outside of 

the host (10).  

Further classification of C. difficile in the Order Clostridiales, Family 

Clostridiaceae is due to the usage of glucose as a source of carbon (Fig. 1.1) 

(11). The Genus Clostridium contains approximately 150 species found in 

diverse anaerobic environments such as soils, aquatic sediments, and intestinal 

tracts of mammals (12). C. difficile is an opportunistic pathogen of the 

mammalian gastrointestinal (GI) tract. C. difficile is the etiological agent of C. 

difficile infection (CDI), which is the leading cause of antibiotic-associated 

diarrhea in the healthcare setting in the United States and Canada (10, 13, 14). 

C. difficile was first identified in 1935 during an examination of indigenous 

colonic flora of healthy newborn infants and was originally named Bacillus 

Figure 1.1. Classification of Clostridium difficile.  

Figure 1.2. Representation of Gram staining. Comparison of C. difficile a 
Gram-positive bacterium (shown as purple) and E. coli a Gram-negative 
bacterium (shown as pink/red).  
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difficilis due to its difficulty to grow in culture (6). The origin of C. difficile in 

neonates is due to hospital contamination and it is poorly understood how 

newborns carry the bacterium asymptomatically (6, 15). Neonates are not the 

only symptomless carriers of C. difficile. One study found that nearly 20% of 

hospitalized patients were asymptomatic carriers of C. difficile (16). Although it 

would be reasonable to expect that C. difficile carriers would have a higher risk of 

developing disease after antibiotic therapy, studies have shown humans that 

carry C. difficile asymptomatically are actually at decreased risk of developing 

CDI (17-20). This phenomenon is not understood, but speculation exists that the 

host immune system is responsible. Studies have suggested that an increase of 

immunoglobulin G (IgG) antibodies or an overall antibody response to C. difficile 

is responsible for symptom-less carriers remaining symptom-less (21, 22). 

C. difficile colonization and infection is also a concern in domestic and 

food animals. Outbreaks of CDI in piglets have been reported for more than 

twenty-five years and the mortality rate during outbreak is reported to be as high 

as 16% (23-25). C. difficile has been found to colonize and infect feedlot cattle, 

veal calves, and farm-raised deer (26-30). Since infection of humans with C. 

difficile is by the oral route, contamination of food animals and processing plants 

is an important concern. 

C. difficile has been isolated from the feces of domesticated cats and 

dogs. Environmental cross infection of C. difficile from domestic animals to 

humans has been a growing concern in the last five years. Recent reports show 

that dogs used as pet therapy in hospitals can acquire and shed C. difficile 
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spores after contact with contaminated patients (31, 32). C. difficile has been 

isolated from cats and dogs presenting signs of diarrhea although the extent of 

disease in these animals is still unclear (33, 34).  

CDI primarily affects the cecum and the colon of mammalian hosts. CDI 

presentation in patients can range from mild to severe diarrhea, 

pseudomembranous colitis and fulminant colitis (35). Pseudomembranous colitis, 

the characteristic symptom of CDI, was first described in 1893, however; it was 

not until 1978 that this symptom was associated with C. difficile (36, 37). 

Purportedly early CDI symptoms are persistent mild to moderate diarrhea with or 

without abdominal pain and can begin within the first 48 hours of C. difficile 

infection (20, 35). The progression to severe disease typically includes profuse 

diarrhea, abdominal distention and in some cases, occult colonic bleeding 

occurs. In up to 4% of severe cases, fulminant colitis leads to toxic megacolon 

(colonic dilation), bowel perforation, sepsis, shock and death (10, 12).  

Since the late 1970s, the rate of CDI progression to severe symptoms and 

death has been increasing annually (38, 39). In the past decade, a highly virulent 

epidemic C. difficile strain has emerged, BI/NAP1/027 (13, 39, 40). The 

BI/NAP1/027 strain has been associated with increased disease severity, more 

deaths, higher incidences of recurrence and a wider range of antibiotic resistance 

than other strains of C. difficile (13). Indeed, approximately 500,000 patients are 

reported to have CDI annually in the United States and 20,000 succumb to this 

disease (41). A recent study reported CDI responsible for 25% more nosocomial 

infections than methicillin-resistant Staphylococcus aureus (MRSA) (42).  
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 CDI is a significant burden on the health care system with hospital costs 

estimated at greater than $3.2 billion in the United States annually (35, 43, 44). 

The economic burden is due in part to increased hospital stay of up to two weeks 

per patient (44, 45) and the high incidence of recurrence in patients with CDI. 

Recurrence of CDI has been defined as either a relapse of infection by the 

original strain of C. difficile or re-infection of susceptible patients exposed to new 

strains (35). Recurrences happen at an alarming frequency of up to 55% (46, 

47). Furthermore, the risk of recurrence increases with each episode and is 

greater than 60% with more than two CDI episodes (48-50). Extreme cases have 

reported more than 10 CDI recurrences per patient (51). 

1.2. Clostridium difficile Infections 

CDI is primarily a nosocomial infection with the elderly and 

immunocompromised patients being at the highest risk (52). High incidences of 

CDI are reported in cancer patients with severe neutropenia, transplant patients, 

and AIDS patients (53-56). Susceptibility to CDI has been observed in patients 

administered broad-spectrum antibiotics (57). However in the last few years, 

community-acquired CDI in patients previously considered at low risk have been 

reported and are a growing concern (58-61). 

In the 1990s an estimated 30 cases of hospital-acquired CDI was reported 

per 100,000 patients per year and less than seven cases of community-acquired 

CDI per 100,000 patients per year (62). An overlapping and broadening study 

that ended in 2005 found that the rates for each type of acquired CDI had 

increased. This report found that there were more than 40 cases of hospital-
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acquired CDI and approximately 15 cases of community-acquired CDI per 

100,000 patients per year (61). This study did not find common risk factors in 

patients; such as antibiotic exposure or recent hospital admittance (61). It is 

important to note that standardized surveillance and reporting of CDI cases and 

risk factors has been a problem (63). The study found that C. difficile strains 

endemic to the hospital were responsible for hospital-acquired CDI and that 

different strains were common in community-acquired cases (61). These findings 

suggest that patients with community-acquired CDI were not infected by patients 

with hospital-acquired CDI spreading spores at home or in the community. The 

source of community-acquired CDI remains a mystery. These findings make 

identification of the community exposure to C. difficile spores an important issue. 

As discussed previously, food animals and domestic animals can be affected by 

C. difficile and can transmit spores (26, 29, 32). One group reported that many 

strains found in animals were not the same as human strains of C. difficile (64). 

However, they also found that epidemiologically important strains were becoming 

more common in animals, particularly the hypervirulent strain BI/NAP1/027 (64). 

Although classification of C. difficile as a zoonotic infection is still unclear, these 

studies suggest the potential risks. 

Since C. difficile has been isolated from food animals, another potential 

reservoir for spore transmission is contaminated food products and drinking 

water. C. difficile spores have been recovered from up to 20% of retailmeat in the 

United States and Canada. In these cases, C. difficile was approximately 5% of 

the total isolated microorganisms (64, 65). These incidences of contaminated 
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food suggest that community-acquired CDI could be a food borne illness. 

Community-acquired CDI is still poorly understood but it is possible that multiple 

factors may be involved. It has been suggested that genetically-determined 

differences in the immune system, differences in the normal gut flora of some 

individuals, and administration of medications (other than antibiotics) that affect 

the colonization resistance of the natural flora are possible situations that could 

allow the development of CDI in unlikely patients (59).   

The mode of transmission is the highly infective C. difficile spore. The 

environment, hospital personnel and patients are potential reservoirs for 

transmission of spores and infection (66-69). C. difficile spores are ingested from 

contaminated matter and will either germinate and cause disease or will be 

retained in asymptomatic carriers.  Spores and/or cells are excreted in the feces 

of infected patients and transferred person to person via the fecal oral route (Fig. 

1.3) (63, 70). Contamination of surfaces and transmission between patients is a 

cycle that can lead to outbreaks of CDI and is of serious concern to healthcare 

settings. Patients are intermittently exposed to C. difficile spores during hospital 

stays and the length of stay has been correlated to increased risk of CDI (16). 
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C. difficile spores are metabolically dormant structures that are highly 

resistant to chemicals, temperature, desiccation and can persist in aerobic 

environments (71). Spores can persist on hospital surfaces for extended periods 

of time and can be reservoirs for disease transmission (35, 72). To colonize and 

cause disease in susceptible patients, C. difficile spores are ingested and evade 

the host’s immune system allowing spores to germinate into vegetative bacteria 

and colonize the gut (Fig. 1.3) (35). In a healthy individual, indigenous intestinal 

bacteria resist C. difficile colonization (73). Patients undergoing aggressive 

antibiotic treatment become susceptible to C. difficile due to the disruption of the 

normal microflora resulting in a loss of colonization resistance (74). Most broad-

spectrum antibiotics can predispose a patient for C. difficile infection (35). The 

key factors that lead to outgrowth of C. difficile and onset of disease are ingestion 

of C. difficile spores, susceptibility due to antibiotic use, and loss of natural 

protection.   

Figure 1.3. Representation of the Clostridium difficile infection cycle. Mammalian hosts ingest 
spores (black circles) that survive the GI tract to germinate in the lower intestine (black ovals) and 
cause disease. As a survival mechanism vegetative cells produce spores that are released in the 
feces. The same or different mammal ingests excreted spores thereby continuing the cycle. 
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As C. difficile spores germinate and multiply, toxins are released that 

cause characteristic pathology of CDI. C. difficile cells release low levels of toxins 

steadily during exponential phase (up to six hours). However, during late 

exponential phase (eight hours) into stationary phase (24 – 48 hours) the amount 

of toxin quadruples in production (75-77). Most C. difficile strains produce toxin A 

(TcdA) and toxin B (TcdB) and some produce a third binary toxin, CDT. Non-

toxigenic strains exist naturally and have not been shown to cause disease (20). 

The two large Clostridial toxins, TcdA and TcdB, are widely accepted as the main 

virulence factors of C. difficile. Specialized assays for detection of these toxins 

are used in the diagnosis of CDI (35). 

The major toxins, TcdA and TcdB, are among the largest (>270 kDa) 

bacterial toxins and are related to the Clostridium sordellii lethal and hemorrhagic 

toxins and to the Clostridium novyi alpha toxin (78). The toxins have 49% amino 

acid similarity and are both highly expressed during stationary phase growth (79). 

Genes for both toxins are located on the pathogenicity region of the C. difficile 

chromosome (78). TcdA and TcdB are internalized into host epithelial cells after 

binding to an unknown surface binding site(s) (78). After internalization, toxins 

modify intestinal epithelial cell actin cytoskeleton using UDP glucose-dependent 

glycosylation of Rho family proteins (80). TcdA and TcdB disrupt the tight 

junctions between epithelial cells and recruit neutrophils to the site of infection 

resulting in diarrhea and characteristic colitis (78). The roles and necessity for 

both toxins during CDI has been under investigation. However, using a recently 
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designed C. difficile genetic manipulation system a recent report provides 

evidence for the importance of both toxins in a hamster model of CDI (81, 82). 

TcdA is an enterotoxin capable of triggering host cell fluid secretion, 

severe inflammation, and inducing epithelial damage, which are the 

characteristics of pseudomembranous colitis (83). Until a C. difficile strain was 

engineered in a recent study, there have been no reports of naturally occurring 

TcdA+B- strains (82). 

TcdB is a very potent cytotoxin capable of mucosal necrosis, reduction of 

epithelial integrity, and triggering apoptosis (84, 85). Although most C. difficile 

strains clinically isolated are TcdA+B+ or TcdA-B+ the role of TcdB is not well 

characterized (86). Furthermore, strains that do not produce TcdA still cause 

severe pseudomembranous colitis and death in patients (87). 

The third toxin is called binary toxin CDT and it was first described in 1988 

(88). Binary toxin CDT is in the same family as Clostridium botulinum C2 toxin, 

Clostridium perfringens iota toxin and Clostridium spiroforme iota-like toxin (89, 

90). Binary toxin CDT is capable of modifying the cellular actin cytoskeleton by 

ADP-ribosyltransferase activity (91). Unlike TcdA and TcdB, the binary toxin is 

composed of two different proteins, a binding component and a catalytic 

component. Both components are necessary for toxicity (89, 92, 93). Not all C. 

difficile strains encode for binary toxin (94) and some strains that encode for it 

have mutated genes (95). The epidemic strain BI/NAP1/027 produces a fully 

active binary toxin (96). The hypervirulence of this strain may be due in part to 

the addition of this toxin to its virulence repertoire. Evidence of increased 
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virulence of strains in humans due to binary toxin production is unclear. Some 

reports have shown that binary toxin is found in less than 10% of clinical isolates 

where as other reports show that binary toxin is present in 65% of isolates of C. 

difficile (86, 88, 91, 97). The presence of the toxin in clinical isolates does not 

define whether binary toxin itself is responsible for increased C. difficile virulence 

or disease severity. Using the hamster model of CDI, a recent study, found that a 

strain that produced only binary toxin was able to colonize the gut of animals but 

was unable to cause diarrhea or death (98). Although the C. difficile binary toxin 

is unable to cause disease when produced alone, it is possible that a synergistic 

effect may occur in the presence of TcdA and/or TcdB (98). Another possibility is 

that binary toxin may target a specific protein or immune response that is only 

present in the human GI tract. More research is needed to fully understand the 

role of binary toxin CDT in C. difficile strains. 

Once CDI is diagnosed, treatment options become paramount. The first 

step is to discontinue antibiotic therapy that the patient is undergoing (35). 

Vancomycin and metronidazole are the most commonly used treatments for 

initial episodes of CDI (35). An expensive new antibiotic was recently approved 

by the FDA for treatment of CDI; Fidaxomicin (Dificid) can be administered if 

vancomycin and metronidazole fail to treat CDI (99). Other antibiotics are under 

investigation as potential treatment options but the cure rates are variable (100). 

Currently, treatment of CDI has a failure rate of up to 38% with first line 

antibiotics (46). Antibiotics are only effective against metabolically active, toxin-

producing bacterium and not on dormant spores (101). Therefore, current 
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treatment regimens may not completely eradicate the organism from the gut 

allowing for recurrence due to persistence of spores (101). Some researchers 

have proposed treatment with immunoglobulin G (IgG) antibodies due to the 

observation that asymptomatic patients have increased IgG titers (21, 22). Other 

studies have shown that deliberately colonizing animals with non-toxigenic C. 

difficile strains can partially prevent CDI (102, 103).  

There is a high incidence of recurrence of CDI due to relapse and/or re-

infection (35). Typical treatment of recurrent CDI is re-administration of the first 

line of antibiotics (35). However there is great concern about long-term usage of 

metronidazole and vancomycin because of metronidazole-induced neuropathy 

and increased drug resistance of other pathogens to vancomycin (100, 104). The 

newly approved antibiotic, fidaxomicin, is ineffective against recurrent CDI (105). 

Furthermore by using antibiotics to treat CDI and recurrent CDI, the normal gut 

flora is not allowed to recover and a vicious circle ensues.  

Alternative treatments have been described for recurrent CDI but have 

variable results. In severe cases of CDI, radical procedures are sometimes 

necessary to combat the disease (35, 106). Fecal transplantation has been 

termed the ‘ultimate probiotic’ and has been used in patients with CDI that have 

exhausted all other treatment options (107). Stool samples from donors closely 

associated with the patient are obtained, diluted with saline, homogenized with a 

blender and filtered before being instilled into the recipient via enema or 

nasogastric tube (106-108). Colectomy is also used as a last resort to combat 

CDI and/or recurrent CDI. Removing part of or the entire colon can remove the 
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diseased tissue as well as massive amounts of the infection. Up to 8% of severe 

CDI patients require this type of aggressive treatment (109). However, surgery as 

an aggressive treatment for CDI is complicated by the compromised immune 

system of the patient. Patients with CDI as a complication to other illnesses, such 

as cancer, are rarely treated with surgery due to the high risk of not surviving the 

colectomy (109). Furthermore, total colectomy may not completely remove C. 

difficile from the GI tract. In rare instances, CDI returned to the small bowel of 

patients that underwent total colectomies, presenting comparable symptoms as 

seen in the colon (110-112). Small bowel CDI is not well understood however; 

others and we have found that although C. difficile is prominent in the cecum and 

colon, spores and cells are also found in the upper GI tract of animals (113, 114). 

It is likely that C. difficile spores can persist in the small intestine and begin 

outgrowth after surgery resulting in small bowel CDI.    

Careful use of antibiotics, early and reliable C. difficile testing, isolation of 

CDI patients, and proper decontamination of hospital surfaces are the current 

preventative measures for outbreaks of C. difficile (35). A recent study from a 

hospital following CDI prevention guidelines showed the persistence of C. difficile 

spores in stools, on skin and in the environment of CDI patients up to six weeks 

after diarrhea was resolved (115). Glove use during contact with all patients is 

not enforced in health care settings and could potentially lead to the transmission 

of spores (35). Spores are not affected by typical disinfectants; therefore specific 

C. difficile sporicidal-labeled cleaning agents are required for cleaning 

contaminated surfaces (35). Unfortunately patients may not begin to show signs 
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of CDI until after discharge from the hospital by which time a new patient may 

inhabit the contaminated room (63). This persistence of spores provides potential 

reservoirs for transmission and recurrence in patients and hospital outbreaks 

(115). As described, prevention of CDI in the healthcare setting is a serious 

problem. In even the strictest settings, outbreaks can still occur. As the number 

of cases increases yearly, researchers are trying to understand C. difficile and 

find proper ways to eradicate it from hospitals.   

1.3. Sporulation and Germination 

Endospore-forming bacteria produce spores during stressful conditions 

like nutrient deprivation (10). Cells respond to signals from the external and 

internal environments and initiate sporulation processes. Sporulation initiator and 

regulator proteins are activated and subsequently activate a cascade of 

sporulation proteins and sigma (σ) factors (116). The mother bacterial cell 

produces a septum that separates the cellular material from a portion of the cell 

pole (Fig. 1.4). The prespore is then engulfed inside the mother cell for 

application of the synthesized spore cortex and spore coat (Fig. 1.4). After spore 

maturation, the mother cell is lysed resulting in the release of the free spore (Fig. 

1.4) (116).  Sporulation has been well studied in Bacillus subtilis but not as 

thoroughly for C. difficile. Analyses have shown that many but not all sporulation 

genes are conserved between B. subtilis and C. difficile (116). An interesting 

difference is that B. subtilis requires up to 3 hours to transition from initiation of 

sporulation to forespore formation whereas C. difficile can take 8-20 hours for the 

same transition (116). This wide and variable range of time for C. difficile 
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sporulation may explain the variation seen in the amount of spores produced by 

different strains in vitro (117, 118). 

 

 

 The newly formed C. difficile spore is covered by a loosely associated 

exosporium that may be important to surface attachment by thin proteinaceous 

structures (119, 120). Adhesion to animal cells by pathogens is an important step 

in colonization and infection. After the normal gut flora is disturbed by antibiotic 

therapy, it is likely that C. difficile spores make contact with and adhere to 

previously occupied niches in the intestinal cell lining (119). Using the 

exosporium proteinaceous projections, C. difficile spores attach to cells allowing 

the spore to anchor itself to the intestinal wall (119).  

The exosporium covers a complex, dense polypeptide component called 

the spore coat (Fig. 1.5). Unlike other Bacillus and Clostridia, the genome of C. 

difficile only encodes 18 of the 70 conserved spore coat proteins (121, 122). It 

has been postulated that like B. subtilis, the spore coat in C. difficile has surface 

proteins rich in cysteine residues that form a rigid lattice around the inner spore 

Figure 1.4. Representation of the sporulation cycle of Clostridium difficile. After sporulation has been 
triggered, vegetative bacterial cells produce a septum at one pole of the mother cell. This section 
separated by the septum is then engulfed creating the prespore. In stages, the cortex and then the 
spore coat are produced on the spore. The mature spore is released after lysis of the mother cell. 
When the free spore is triggered to germinate, the spore outgrows into the vegetative bacteria. 
Adapted from Paredes et al 2005 (116) 
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(121). These cysteine residues form disulfide bonds under aerobic (oxidative 

conditions) and this mesh is weakened in the anaerobic (reducing) environment 

of the host gut (121). The identity of these proteins is currently unknown but they 

have likely diverged from the common ancestor of Bacillus and Clostridia. The 

spore coat likely plays a part in the passage of small molecules (germinants) to 

the inner layers of the spore (123). The spore coat is also responsible for 

protection of the inner spore layers against harsh chemicals and lysozyme (124).  

The spore cortex is separated from the coat by an outer membrane. The 

cortex is comprised of highly cross-linked peptidoglycan layers forming a cage-

like structure around the spore’s inner membrane and spore core (Fig. 1.5) (125). 

The spore cortex plays an important role during germination of spores. As the 

spore core becomes hydrated (during germination), hydrolytic enzymes are 

released to degrade the cortex. This step is essential for proper spore 

germination so that the spore core can become fully hydrated without the 

physical barrier of the cortex (116, 123). 

The inner membrane is a very rigid lipid bilayer and is the location of 

germination receptors (Ger) that are found in almost all Clostridia and Bacillus 

species, except C. difficile (95). Although C. difficile lacks known germination 

proteins, it is expected that receptors, unique to C. difficile, are also located on 

the inner membrane of the spore (126, 127). The inner membrane’s rigidity is 

suspected to be due to immobile polycrystalline structures (Fig. 1.5) (128). The 

inner membrane has very low permeability to protect DNA in the core. Even 

water is prevented from crossing the membrane in a dormant spore (129, 130). 
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The inner spore core is the location of dehydrated RNA, DNA, and 

metabolic enzymes required for degradation of the spore layers and for 

outgrowth (Fig. 1.5). The spore core is anhydrous and filled with a calcium-

dipicolinic acid complex that confers heat resistance (131). Acid-soluble proteins 

(SASP) are associated with spore DNA to resist ultraviolet light radiation and 

SASPs make up 10-20% of the total protein in the spore core (131). Due to their 

unique structure and durability, C. difficile spores are metabolically dormant 

structures that are highly resistant to harsh chemicals, temperature, desiccation 

and can persist in aerobic environments (71).  

 

 

Like other Bacilli and Clostridia, when C. difficile spores encounter 

favorable nutrient-rich environments they undergo a series of events termed 

germination that lead to metabolically active vegetative bacteria (125, 132). Small 

molecules and combinations of molecules trigger the irreversible first step in the 

commitment to germinate (128). In fact Bacillus and Clostridia recognize a 

number of different small molecules including but not limited to: amino acids, 

carbohydrates, nucleosides, salts, and bile acids (125, 133-136). In most Bacillus 

and Clostridia, it is believed that these molecules traverse the outer layers of the 

Figure 1.5. Generalized C. difficile spore structure. 
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spore to bind to proteinaceous germination (Ger) receptors located on the inner 

membrane (126). The germinant activates the receptors and water is transported 

to the spore core to partially rehydrate the molecules inside. Upon water entry, 

the spore’s large store of Ca2+-dipicolinic acid (DPA) complex is released. The 

small acid-soluble proteins associated with DNA are hydrolyzed and the amino 

acids released are used for outgrowth (131).  Lytic enzymes disintegrate the 

spore coat and cortex resulting in total hydration of the spore core contents (126, 

131). During the spore germination process, spore-specific characteristics such 

as refractility, resistance and dormancy are lost (125). The cell escapes from the 

spore coats, becomes metabolically active, resumes vegetative growth and 

multiplies (126, 131). In stressful conditions or as a survival strategy, vegetative 

cells can renew the sporulation process as described before.  

The Ger proteins are highly conserved in all sequenced Bacillus and 

Clostridia spp. when using Basic Local Alignment Search Tools (BLAST). 

Surprisingly, C. difficile genes encode analogs for most spore-specific proteins 

except for Ger receptors and most spore coat proteins (95). C. difficile must 

germinate to cause disease, therefore the C. difficile germination binding site(s) 

may be very divergent from other species or they use a different set of proteins to 

detect germinants (95). The lack of known germination receptor analogs in C. 

difficile has impeded the use of genetic tools to design mutants. Recently a 

mariner-based transposon system has been designed for mutagenesis in C. 

difficile. However, preliminary phenotypic screening of the mutant library has 

yielded a single clone that is defective in sporulation and/or germination (137). 



 

19 

Genetic manipulation of C. difficile is still in the infancy of general use and 

research in C. difficile germination will take time. An alternative approach to study 

C. difficile spore germination is kinetic methods and chemical probes (127, 134). 

1.4. Clostridium difficile Spore Germination 

Since early cultivation of C. difficile, researchers have found that bile salts 

(bile acids) are required for optimal growth in vitro (138, 139). A recent article 

revealed that C. difficile spores recognize glycine, an amino acid, and 

taurocholate, a natural primary bile salt, as germinants (140). Furthermore, 

chenodeoxycholate another natural primary bile salt, has been shown to inhibit 

C. difficile spore germination in vitro (141). Deoxycholate, a secondary bile salt, 

has been shown to inhibit the growth and multiplication of vegetative C. difficile 

cells (134, 140). The dynamics between the chemistry of the GI tract and 

indigenous bacteria play a crucial role in establishment of C. difficile. 

Unfortunately, many details are not well understood (7, 142). 

Primary bile salts are synthesized in the liver of mammals from cholesterol 

and secreted into the duodenum via bile ducts (Fig. 1.6) (143). The basic bile salt 

structure has three six-membered rings and one five-membered ring with 

hydroxyl groups and methyl groups at specific locations. Before secretion into the 

GI tract, bile salts are conjugated to glycine or taurine thereby increasing their 

solubility and decreasing passive absorption (Fig. 1.7) (143, 144). High amounts 

of conjugated bile salts in the intestinal lumen increases the removal of 

cholesterol and other lipids and aids in the digestion of fats for absorption. 
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Indigenous bacteria in the GI tract alter bile salts by deconjugation and 

dehydroxylation generating secondary bile salts (Fig. 1.6) (143, 144).  

 

The majority of bile acids are reabsorbed and recycled to the liver from the 

distal ileum however; approximately 400-800 mg of bile passes to the cecum 

(145, 146). The concentration of primary bile salts in the upper GI tract is 

estimated at 10 mM and 2 mM in the lower GI tract (147). In the lower intestine 

the indigenous bacterial flora transform primary bile acids into secondary bile 

acids. Glycocholate is also deconjugated, resulting in an increase of free glycine 

(144, 148).  Researchers have hypothesized that in a healthy person, ingested 

Figure 1.6. Conversion of cholesterol to bile acids.  
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spores encounter high levels of primary bile salts in the upper GI tract but may be 

inhibited from outgrowth due to the aerobic environment and the presence of 

chenodeoxycholate (140, 141). In the lower intestine where normal flora 

transform primary bile salts into secondary bile salts, specifically deoxycholate, 

growth is inhibited and cells are excreted (140). Chenodeoxycholate has a 

reabsorption rate ten times greater than taurocholate in the anaerobic colon 

where C. difficile spores likely germinate (149). Although chenodeoxycholate is 

more readily absorbed, taurocholate is deconjugated by normal flora thus 

decreasing the concentration of taurocholate in a healthy gut (149).  

 

 

Figure 1.7. Synthesis of conjugated bile acids.  
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Following antibiotic treatment, the indigenous flora is disrupted. Previous 

reports show that after antibiotic treatment, the amount of secondary bile salts is 

reduced and primary bile salts increase in animals (7, 140). The authors 

postulate that bile salt shift could allow for outgrowth and colonization by C. 

difficile (7).  Because chenodeoxycholate is more readily absorbed, the 

concentration of chenodeoxycholate is likely too low to prevent germination in 

response to the high level of taurocholate. In fact, a recent study has shown that 

C. difficile spores germinate more efficiently in GI tract extracts, high in primary 

bile salts, taken from antibiotic treated animals than from GI extracts from 

untreated animals which contained a mixture of primary and secondary bile salts 

(7). Although the concentrations of specific bile salts are unknown in antibiotic 

treated mammals, it is clear that disruption of the indigenous microflora result in 

susceptibility to C. difficile. 

Neither glycine nor taurocholate has been previously described to activate 

spore germination in Bacillus and Clostridium species, suggesting a novel mode 

of germinant recognition in C. difficile spores. C. difficile spores have adapted for 

survival in a variety of conditions but will germinate in the presence of specific 

molecular signals found in the appropriate environment, the intestinal tract (126, 

131). Highly conserved Bacillus and Clostridium germination receptors have not 

been identified in C. difficile. However, recent in vitro analyses provide evidence 

of receptor-like germination binding site(s) (127). Taurocholate is used by the 

mammalian body to emulsify fatty acids and therefore could activate C. difficile 

spore germination by non-specific disruption of spore membranes. However, our 
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lab has previously shown that C. difficile spores do not germinate in the presence 

of highly concentrated surfactants such as sodium dodecyl sulfate or Triton X-

100 (127). Kinetic analysis of C. difficile spore germination in the presence of 

taurocholate and glycine shows that spores bind taurocholate and glycine in a 

complex cooperative mechanism (127). This study shows that the binding of one 

germinant increases the affinity for the second. Similar cooperativity, with 

different germinants, has been shown with Bacillus cereus and Clostridium 

sordellii (133, 136). The presence of germination receptors is also evidenced by 

the ability of germinants to saturate the binding site(s) (127). Furthermore, 

chenodeoxycholate, another fat emulsifier, is a competitive inhibitor of 

taurocholate and is recognized specifically by the same binding site(s) (127, 

141). Competitive inhibitors of C. difficile spore germination are important for 

potential CDI prophylaxis treatments, especially those with a strong affinity for 

the binding site even when present at low concentrations. Anti-germinants as 

drugs would bind to C. difficile spores, preventing germination, and allowing the 

spore to be excreted harmlessly. These reports provide evidence that C. difficile 

likely encodes unknown receptor proteins to bind germinants and that other 

molecules compete for these binding sites, inhibiting spore germination (127).  

1.5. Aims of This Study 

The initial aim of this study was to perform a structure-activity analysis of 

C. difficile spores and analogs of glycine, taurocholate, and chenodeoxycholate. 

This type of analysis provides evidence of functional group requirements for 

recognition by the putative germination binding site(s) in C. difficile spores. Due 
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to the scarcity of genetic tools, many of the metabolic capabilities encoded by C. 

difficile remain poorly understood (150). This has precluded the use of molecular 

microbiology to identify putative germination binding site(s) encoded by C. 

difficile. As an alternative to genetic manipulation, molecular probes can be used 

to study the mechanism of Bacillus and Clostridium spore germination (127, 133, 

151). This provides mechanistic information, even when the identity of the 

germination binding site(s) is unknown (136).  

While mapping the interactions between C. difficile spores and germinants 

we discovered a bile salt analog, CamSA, capable of strongly inhibiting spore 

germination in vitro (Fig. 1.8). As a secondary, we hypothesized that by 

screening CamSA analogs we could determine the functional groups essential 

for CamSA’s potency. Furthermore, during this second structure activity analysis 

we hoped to discover compounds more potent than CamSA at inhibiting C. 

difficile spore germination in vitro.  

Based on in vitro structure activity analyses, CamSA was chosen as a 

lead compound for further study. The third aim was to characterize CamSA in 

vitro for stability, oral bioavailability and cytotoxicity. The final aim was to 

challenge animals with C. difficile spores or vegetative cells and treat these 

animals with CamSA. We hypothesized that CamSA could prevent signs of CDI 

in mice by preventing C. difficile spore germination into toxin-producing bacteria.   

Figure 1.8. Structure of CamSA.  
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CHAPTER 2 

MAPPING INTERACTIONS BETWEEN GERMINANTS AND CLOSTRIDIUM 

DIFFICILE SPORES 

2.1. Introduction 

Germination of C. difficile spores is the first required step in establishing 

CDI (152, 153). Taurocholate, a bile salt, and glycine, an amino acid, have been 

shown to be important germinants of C. difficile spores (Fig. 2.1) (140). The 

question that has remained unanswered is how glycine and taurocholate interact 

with the putative binding sites. Structure-activity relationship analysis of 

germinant analogs allows a better understanding of the microenvironment of the 

C. difficile germination binding site(s) (127, 133, 151). This approach provides 

mechanistic information, even when the identity of the germination binding site(s) 

is unknown by identifying essential functional groups for recognition (136). In the 

current work, 30 amino acid analogs and 22 taurocholate analogs were tested as 

activators or inhibitors of C. difficile spore germination. Activators of the 

germination pathway identify functional groups essential for binding and 

activation of the C. difficile germination binding site(s). On the other hand, 

inhibiting agents provide structural details about functional groups that allow only 

binding. Inhibition assays serve as an indirect method to map physiochemical 

configurations in the receptor binding site(s). Competitive inhibitors most likely 

bind to the same site as the cognate germinant. Strong competitive inhibitors 

complement the germinant binding site shape, size, hydrophobicity, and 
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hydrogen bonding pattern. Inactive compounds yield information on functional 

group changes that interfere with germinant binding (151).  

 

As expected, changing glycine and taurocholate functional groups affected 

the germination of C. difficile spores. Structure-activity relationship analysis 

allowed the determination of which taurocholate and amino acid functional 

groups are necessary and sufficient to bind to and/or activate C. difficile spores. 

The data suggests either the presence of multiple amino acid germination 

binding site(s) or that the putative glycine binding site(s) recognizes structurally 

diverse amino acids. Furthermore, the putative taurocholate germination binding 

site(s) recognizes its cognate germinant through multiple molecular interactions. 

In fact, one interesting molecule was discovered that is four times more active 

than the natural inhibitor, chenodeoxycholate, at inhibiting C. difficile spore 

germination. 

 

2.2. Materials and Methods 

2.2.1. General Comments 

Taurocholate and amino analogs were purchased from Sigma Aldrich 

Corporation (St. Louis, MO), Steraloids (Newport, RI) or were synthesized in the 

Figure 2.1. The structure of taurocholate (left) and glycine (right). The four rings of 
the cholate backbone are labeled A-D.  
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Abel-Santos laboratory. Reagents for synthesis were purchased from Sigma 

Alrdrich Corporation (St. Louis, MO) or Alfa Aesar (Ward Hill, MA). Thin layer 

chromatography silica gel 60 F254 was purchased from EMD Chemicals 

(Gibbstown, NJ). Silica gel for column chromatography was purchased from 

Fisher Scientific (Pittsburg, PA).  

2.2.2. Synthesis of Methoxylated Taurocholate Analogs 

Two methoxylated taurocholate analogs, 3-methoxy-7,12-

dihydroxytaurocholate [T09] and 3,7-dimethoxy-12-hydroxytaurocholate [T10], 

were prepared following published procedures (154) (Scheme 2.1). To a solution 

of taurocholate (1 equivalent – 1mM) in dry 1,4-dioxane, methyl iodide (50 eq.) 

and sodium hydride (4 eq.) was added under nitrogen. The reaction mixture was 

heated to 40 °C for 48 h with stirring. After the initial 48 h, sodium hydride (4 eq.) 

was added daily to the reaction mixture for four additional days. The reaction 

mixture was then diluted with dichloromethane and washed once with 1 M HCl 

and twice with water. The organic layer was dried over anhydrous sodium 

sulfate, and the solvent was removed under reduced pressure. The resulting 

residue was purified by silica gel column chromatography eluted with a step 

gradient from 100% dichloromethane (DCM) to 60% dichloromethane/acetone. 

Two different compounds were obtained. Final yield for each compound was less 

than 10%. 1H nuclear magnetic resonance (NMR) and mass spectrometry 

showed that one compound had a single methoxy group and the second 

compound had two methoxy groups and were greater than 95% pure. The 

compounds were tentatively identified 3-methoxy-7,12-dihydroxytaurocholate 
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[T09] and 3,7-dimethoxy-12-hydroxytaurocholate [T10], as expected from 

published OH reactivity (155, 156).  

 

2.2.3. Synthesis of T11 to T16 and T18 to T21 

The taurocholate analogs were prepared following published procedures 

(157, 158). Cholic acid (1 eq. - 1mM) was activated with 1.4 eq. of N-

ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and 1.3 eq. of N-

methylmorpholine (NMO) in dimethylformamide (DMF) (Scheme 2.2). After the 

mixture was stirred for 5 min, 1.2 eq. of the appropriate amino sulfonic acid or 

amino acid was added. The reaction mixture was heated to 90 °C for 40 min and 

then cooled to room temperature. The solution was poured into 100 ml of ice-cold 

diethyl ether, resulting in a precipitate. The ether suspension was kept at 4 °C 

overnight. The ether layer was decanted and the resinous residue was dissolved 

in 25 ml 0.2 N NaOH-MeOH and poured into 100 ml cold diethyl ether. The ether 

solution was kept at 4 °C for at least 2 h and the resulting precipitate was filtered 

and washed with diethyl ether. If necessary, the product was recrystallized by 

Scheme 2.1. Synthesis of methoxylated taurocholate analogs.  
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dissolving in hot ethanol to saturation, followed by the addition of ethyl acetate 

until a precipitate appeared. The solution was kept at -20 °C for 2 h to allow 

complete precipitation and then filtered to retrieve the product. The precipitated 

residue was further purified by silica gel column chromatography eluted with a 

step gradient from 100% DCM to 100% ethanol (EtOH). Two compounds 

CA2APA [T19] and CA2ABA [T21] were obtained as side products of the 

synthesis of CAAPA [T18] and CAABA [T20], respectively. Percent yields were 

typically 30 – 80%. Compound structures were verified by 1H-NMR, Fourier 

transform infrared spectroscopy (FTIR), and mass spectrometry. Synthesized 

compounds were determined to be >95% pure based on HPLC-MS and NMR 

analysis. Representative verification data for CamSA [T15] includes 1H NMR, FT-

IR, and MS (Fig. 2.2 and 2.3). 1H NMR (400 MHz, methanol-d4, ppm) δ = 7.93 (s, 

1H), 7.78 (d, 1H, J = 12.00 Hz ), 7.53 (d, 1H, J = 8 Hz), 7.34 (t, 1H, J = 16.00 

Hz), 3.96 (s, 1H), 3.80 (s, 1H), 3.34 (m, 3H), 2.41 (m, 1H), 2.27 (m, 3H), 1.88 (m, 

5H), 1.76 (m, 2H), 1.50 (m, 12H), 1.06 (m, 4H), 0.98 (m, 1H) 0.91 (s, 3H), 0.72 

(s, 3H).  MS m/z 562.42 [M-H]-. 

 

 

Scheme 2.2. Synthesis taurocholate analogs.  
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H2O 
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Figure 2.2. 1H NMR spectrum of CamSA [T15]. Water and residual solvent peaks are from CD3OD.  

Figure 2.3. FT-IR spectra of CamSA [T15].  
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2.2.4. Synthesis of CaHESA [T22] 

Conjugation of cholate to the sulfonic acid alkyl linker by an ester was 

prepared following established protocols for Fischer esterification (159-161). To a 

solution of cholate (1 eq. - 1mM) and hydroxyl ethane sulfonic acid (4 eq.) 

concentrated sulfuric acid was added dropwise and refluxed for 1 h (Scheme 

2.3). The reaction mixture was poured into cold diethyl ether, and a precipitate 

formed immediately. The diethyl ether suspension was left overnight at 4°C. The 

precipitate was filtered, dissolved in 0.2 N NaOH-MeOH, precipitated a second 

time in diethyl ether and kept at 4°C for at least 2 h. The crude precipitate was 

filtered and purified by silica gel column chromatography eluted by step gradient 

from 100% DCM to 30% DCM/EtOH. The final yield was 20%. The compound 

structure was verified and determined > 95% pure by 1H-NMR, FTIR, and mass 

spectrometry. 

 

 

2.2.5. Bacterial Strains and Spore Preparation 

Clostridium difficile strain 630 was obtained from American Tissue Culture 

Collection (ATCC) (BAA-1382). C. difficile strain 630 is an epidemic strain 

clinically isolated from a patient with pseudomembranous colitis in Zurich, 

Switzerland in the early 1980s and is highly virulent and transmissible (122). C. 

Scheme 2.3. Synthesis of taurocholate analog, compound T22.  



 

32 

difficile cells were plated on BHIS (brain heart infusion salt) agar supplemented 

with 1% yeast extract, 0.1% L-cysteine-HCl and 0.05% sodium taurocholate to 

yield single-cell colonies. Single C. difficile colonies were grown in BHIS broth 

until exponential phase (approximately four hours) and spread plated onto agar 

to obtain bacterial lawns. The plates were incubated for five days at 37 °C in an 

anaerobic environment (5% CO2, 10% H2, and 80% N2). The resulting bacterial 

lawns were collected by flooding the plates with ice-cold deionized water. Spores 

were pelleted by centrifugation at 8,800 x g for five minutes and resuspended in 

fresh deionized water. After two washing steps the spores were separated from 

vegetative and partially sporulated forms by centrifugation through a 20% to 50% 

HistoDenz gradient at 18,200 x g for 30 minutes with no brake. The spore pellet 

was washed five times with water, resuspended in sodium thioglycolate (0.5 g/L) 

and stored at 4 °C. 

Immediately before in vitro germination and inhibition assays, spores were 

transferred to fresh tubes, centrifuged and washed with deionized water five 

times to remove storage buffer. Purified spores were heat activated at 68 °C for 

30 minutes and washed another five times with water. Spores were diluted in 

germination buffer (100 mM sodium phosphate buffer at pH 6.0 containing 5 

mg/ml sodium bicarbonate) to an optical density at 580 nm (OD580) of 1.0. The 

spore strongly refracts light at 580 nm. With the loss of the spore coat and 

hydration of the spore core (during germination), there is concomitant loss of 

refractility, resulting in a decrease in optical density (162, 163). 

2.2.6. Endospore Staining Method 
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To determine spore purity, a sample was removed and stained using the 

Shaeffer-Fulton staining method (122, 164). The Schaeffer-Fulton method of 

endospore staining consists of two stains; a primary stain (malachite green) and 

a counter stain (safranin). Slides smeared with spore/cell sample are heat fixed. 

Then slides are flooded with malachite green and heated over an open flame for 

five minutes. The slide is rinsed and a generous amount of safranin is added and 

kept at room temperature (RT) for 1 minute before rinsing. The slide is then 

viewed by light microscopy. The malachite green stain irreversibly binds to the 

spore coat resulting in visualized green spores whereas the malachite green is 

washed from vegetative cell walls. Safranin, a red stain, is then used to stain the 

vegetative cells resulting in a contrast of green spores and red vegetative cells 

(Fig. 2.4). Spore preparations were generally >95% pure after HistoDenz 

gradient.  

 

2.2.7. Activation of C. difficile Spore Germination 

To test for taurocholate activators of spore germination, spore 

suspensions at OD580 of 1.0 were individually supplemented with 6 mM of a 

taurocholate analog and 12 mM glycine (127). To test for amino acid activators of 

Figure 2.4.C. difficile stained using the Schaeffer-Fulton endospore staining method.  
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spore germination, spore suspensions were supplemented with 12 mM of an 

amino acid analog and 6 mM taurocholate. As control, spores were treated with 

taurocholate at 6 mM and glycine at 12 mM. Spore germination was evaluated 

based on the decrease in OD580. The OD580 was measured each minute for 90 

min at 30 °C and was repeated in triplicate. A 90% decrease in optical density 

was determined for spores treated with taurocholate and glycine (control). This 

was considered maximum germination and was set at 100%. The time point for 

maximum germination was set as a reference point to compare analogs. The 

percent germination at this reference time point for all analogs was calculated 

and compared to spores germinated with taurocholate and glycine. As expected, 

a decrease in optical density similar to taurocholate/glycine was observed in the 

presence of active germinants (Fig. 2.5A). The resulting data were fitted using 

the four-parameter logistic function of SigmaPlot v.9 to obtain the half maximal 

effective concentration (EC50) (165, 166). The EC50 value is a relative number 

used to compare analogs.  
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2.2.8. Inhibition of C. difficile Spore Germination 

To test for inhibitors of spore germination, spore aliquots OD580 of 1.0 

were individually supplemented with various concentrations of a taurocholate 

analog or an amino acid analog. Spore suspensions were incubated for 15 min at 

room temperature while the OD580 was monitored. If no germination was 

detected, taurocholate and glycine were added to 6 and 12 mM final 

concentrations, respectively. Relative OD580 values were obtained every minute 

for 90 min after germinant addition. As before, a 90% decrease in OD580 was 

determined for spores treated with taurocholate and glycine only and set as a 

reference point for comparisons. As expected, there was less change in OD580 

over time in the presence of active germination inhibitors at increasing 

concentration (Fig. 2.5B). The resulting data were fitted using the four-parameter 

logistic function of SigmaPlot v.9 to obtain the half maximal inhibitory 
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Figure 2.5. Germination kinetic graph examples showing germinant and inhibitor behavior of molecules 
with C. difficile spores. A) Activation of germination. C. difficile spores were treated with a fixed 
concentration of taurocholate (6 mM) and glycine was added at 0 mM (ο), 8 mM (), 10 mM (☐), 12 mM 
(), and 14 mM () final concentrations. For clarity, the data are shown at five minute intervals and for 
only five glycine concentrations. B) Inhibition of germination. C. difficile spores were incubated with 0 mM 
(ο), 0.0005 mM (), 0.001 mM (☐), 0.075 mM (), and 7.5 mM () concentrations of CamSA [T15] and 
supplemented with taurocholate (6 mM) and glycine (12 mM). For clarity, the data are shown at five 
minute intervals and for only five CamSA [T15] concentrations. Although data were collected for 90 
minutes, only 75 minutes are shown in both graphs for clarity. The error bars indicate standard 
deviations, n = 3. C) Calculation of EC50 for compound T11. D) Calculation of IC50 for compound T15, 
CamSA. For both C and D graphs the percent germination was determined as described and plotted 
versus concentration. The data was fitted using a four-parameter logistic function to obtain values for 
EC50 and IC50. 
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concentration (IC50) values (165, 166). The IC50 value is a relative number used 

to compare analogs. 

 

2.2.9. C. difficile Spore Germination in BHIS Medium 

To test for germination in complex media, spores were resuspended in 

BHIS alone and with combinations of taurocholate, chenodeoxycholate, 

glycocholate, glycine, L-arginine, and L-phenylalanine. Bile salts were added to a 

final concentration of 6 mM and amino acids were added at a final concentration 

of 12 mM. Relative OD580 values were obtained every minute for 90 min after 

germinant addition. 

2.3. Results and Discussion 

2.3.1. Effects of Amino Acids and Analogs with C. difficile Spores 

Glycine [A01] has a methylene bridge that separates the carboxylic and 

amino groups and is the simplest of the 20 common amino acids (Fig. 2.7). To 

find determinants required for glycine recognition, taurocholate-treated spores 

were individually supplemented with 30 different glycine analogs. Each of the 

glycine analogs differs from the parent compound by a single modification in 

Figure 2.6. Flow chart used to identify germinants or inhibitors of C. difficile spore germination. 
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either the length of the alkyl chain, substitutions to the amino group, changes in 

the carboxylate group or changes in the side chain. β-Alanine [A02] and γ-

aminobutyric acid [A03] have an ethylene and a propylene bridge between the 

amino and carboxylate group, respectively (Fig. 2.7). These changes 

progressively increase the distance between the amino and carboxylate groups. 

β-Alanine and γ-aminobutyric acid are effective as glycine as co-germinants of C. 

difficile spores (Fig. 2.13). Thus, lengthening the chain between the amino and 

carboxylate functional groups does not interfere with recognition by the putative 

glycine germination binding site(s). 

 

 

 

  

Aminomethylphosphonic acid [A04] is a glycine analog in which the 

carboxylate has been changed to a phosphonic acid (Fig. 2.8). This substitution 

exchanges a carbon atom for phosphorus while retaining the negative charge. 

A04 significantly decreased C. difficile spore germination (Fig. 2.13). 

Furthermore, methylation of the carboxylate in glycine methyl ester [A05] (Fig. 

2.8) resulted in less than 10% germination compared to glycine-triggered 

germination (Fig. 2.13). A05 was previously shown to be unable to trigger 

germination in C. difficile spores and this finding supports that claim (127). Any 

other modification of the carboxylate (glycine ethyl ester [A06], glycinamide 

[A07], and glycine hydroxamate [A08]) (Fig. 2.8) resulted in compounds that were 

Figure 2.7. Amino acids and alkyl chain length. Glycine 
(A01) and analogs A02 – A03.  

A01 A02 A03 
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unable to activate or inhibit C. difficile spore germination. The sum of these data 

suggests that there is a specific requirement for a carboxylate functional group 

for recognition by the glycine germination binding site(s) to activate germination. 

The distance between the amino and carboxylate of diglycine [A09] is 

similar to that of γ-aminobutyric acid [A03] (Fig. 2.8). However, whereas γ-

aminobutyric acid is a good activator of C. difficile spore germination, diglycine 

has no effect. Thus, the addition of an internal amide must interfere with 

compound binding. Possibly there is a requirement for a more hydrophobic linker 

between the two functional-group ends. Glycine anhydride [A10] is the result of 

the dehydration of diglycine, forming a cyclic diamide (Fig. 2.8). Without a free 

amine or carboxylate, this compound is unable to activate or inhibit C. difficile 

spore germination. The rigidity and bulkiness of the analog may prevent 

interaction with the glycine binding site. 

 

 

A01 A04 A05 A06 

A07 A08 A09 

A10 

Figure 2.8. Amino acids with modifications to carboxyl group. Glycine (A01) 
and analogs A04 - A10.  
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 Alkylation (sarcosine [A11], N,N-dimethylglycine [A12], and betaine [A13]), 

acetylation (N-acetylglycine [A14]), or other modification (nitrilotriacetic acid 

[A15]) to the amino group of glycine resulted in compounds that can neither 

activate nor inhibit C. difficile spore germination (Fig. 2.9). This suggests that 

activation of C. difficile spores by glycine has a requirement for a free primary 

amino group regardless of the presence of an unmodified carboxylate group.  

 

To test the effect of side chain substitution in amino acid recognition by 

the C. difficile germination binding site(s), we exposed taurocholate-treated C. 

difficile spores to other amino acid analogs (Fig. 2.10). L-Alanine [A16] has been 

shown to act as a germinant and/or co-germinant in other sporulating bacteria 

(133, 167). The stereoisomer, D-alanine [A17], has been shown to inhibit 

alanine-mediated germination in Bacillus (168). In C. difficile, L-alanine was as 

efficient at triggering germination as glycine [A01] (Fig. 2.13). Interestingly, D-

alanine was unable to inhibit the germination of spores treated with L-alanine and 

taurocholate. D-Alanine was also inactive as an activator of C. difficile spore 

Figure 2.9. Amino acids with modifications to the 
amino group. Glycine (A01) and analogs A11-A15.  

A01 A11 A12 

A13 A14 

A15 
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germination. This implies that stereochemistry is important for recognition and 

binding of amino acids.  

 

 To determine whether amino acid analogs with longer linear alkyl side 

chains were able to activate C. difficile spore germination, taurocholate-treated 

spores were exposed to L-2-aminobutyric acid [A18] and L-norvaline [A19] (Fig. 

2.11). Both of these amino acid analogs were able to activate germination to 

levels similar to those with glycine [A01] (Fig. 2.13). L-valine [A20] is a branched 

isomer of L-norvaline and has similar chemical and physical properties (Fig. 

2.11). However, this slight difference in structure reduced C. difficile spore 

germination by more than 90% compared to that of L-norvaline. Similarly, L-

isoleucine [A21] and L-leucine [A22] are poor germinants of C. difficile spores 

compared to L-norvaline (Fig. 2.13). The data suggest that branched alkyl side 

chains are unable to be recognized by the putative amino acid germination 

binding site(s) in C. difficile. 

 

A01 

A16 A17 

Figure 2.10. Alanine amino acids. Glycine (A01), L-
alanine (A16) and D-alanine (A17).  
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 L-Cysteine [A23] is an amino acid with a methanethiol side chain (Fig. 

2.12). L-Serine [A24], on the other hand, is an L-cysteine analog in which the 

thiol group is substituted for a hydroxyl group. Interestingly, whereas L-cysteine 

is a good germinant of C. difficile spores, the more polar L-serine is almost 

inactive (Fig. 2.13). The germination activity of L-cysteine is not due solely to 

hydrophobicity, since the more hydrophobic L-methionine [A25] is a poor 

germinant compared to L-cysteine (Fig. 2.13). This suggests that C. difficile 

recognize the thiol group specifically as a determinant for germination. 

A01 A18 A19 

A20 A21 A22 

Figure 2.11. Amino acid with linear alkyl side chains. 
Glycine (A01) and analogs A18 - A22.  
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 Surprisingly, L-phenylalanine [A26], with a bulky aromatic side chain, is as 

effective as glycine as a germinant of C. difficile spores (Fig. 2.12 and 2.13). A 

reasonable expectation is that since branched amino acids are inactive, the 

bulkier side chain of L-phenylalanine would also be restricted from the binding 

site. The possibility that the putative glycine binding site(s) is able to 

accommodate phenyl but not branched alkyl side chains cannot be completely 

ruled out. However, that possibility is unlikely due to their sizes relative to glycine. 

Hence, we postulate that aromatic amino acids are recognized by a separate 

binding site in C. difficile spores. Indeed, other Bacillus and Clostridium strains 

are able to recognize structurally different germinants by encoding multiple 

binding site(s) (125, 126, 136, 151). 

  L-Arginine [A27] is also a strong co-germinant for C. difficile spores. 

Although L-arginine has a linear alkyl chain, it also contains a positively charged, 

branched guanidinium group (Fig. 2.12). Similarly, L-lysine [A28] is linear with a 

Figure 2.12. Amino acids with modified alkyl side chains. Glycine (A01) and amino acids 
A23 - A30.  

A01 A23 A24 A25 A26 

A27 A28 A29 A30 
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positively charged amino aside chain, yet L-lysine is a weak germinant compared 

to L-arginine (Fig. 2.13). L-Histidine [A29] contains an aromatic side chain, like L-

phenylalanine [A26], but it is positively charged (at physiological pH), like the L-

arginine side chain (Fig. 2.12). However, unlike L-phenylalanine or L-arginine, L-

histidine could not efficiently activate C. difficile spore germination. L-Aspartic 

acid [A30] has a short acidic side chain and was similarly unable to affect C. 

difficile spore germination. Since L-arginine has physicochemical properties that 

are very different from those of the other amino acids that are able to activate C. 

difficile spore germination, it suggests there is a specific recognition site for L-

arginine binding. 

 

 All glycine analogs and amino acids were further tested for the ability to 

inhibit C. difficile spore germination. Spores were treated with each analog or 

amino acid in the presence of taurocholate and glycine. However, no individual 

amino acid analog inhibited C. difficile spore germination.  

Figure 2.13. Comparison of amino acids as activators of C. difficile spore germination. Spores were 
treated with taurocholate (6 mM) and amino acid analogs at 12 mM. Germination was determined by the 
decrease in the OD580 for 90 min at 30 °C. The percent germination for each analog was calculated 
based on glycine/taurocholate germination set as 100%. The error bars indicate standard deviations,    
n = 3. Significant difference (p < 0.01) observed between glycine and each analog showing less than 
85% germination (A04, A05, A20, A21, A23, A24, A25, A28, and A29). 
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 In conclusion, multiple amino acid analogs are able to activate germination 

and the data suggests that there may be separate binding sites for phenylalanine 

and arginine. Furthermore, no amino acids were able to inhibit C. difficile spore 

germination. 

2.3.2. Effects of Amino Acid Combinations on C. difficile Spore Germination 

 Earlier studies (140) reported that only glycine was able to trigger C. 

difficile spore germination in the presence of taurocholate. This study reportedly 

used three combinations of defined media to narrow down active germination 

stimulators. Although glycine was supplemented with only seven amino acids, 

phenylalanine and arginine were in a mixture supplemented with 15 other amino 

acids. The presence of multiple weak germinants in the defined media containing 

phenylalanine and arginine could mask their ability to stimulate germination. 

Furthermore, in those experiments, L-phenylalanine and L-arginine were 

supplemented at concentrations (1.21 mM and 1.15 mM, respectively) lower than 

those used for the current experiments (12 mM) (140). 

 Glycine, L-arginine, and L-phenylalanine individually or in pairs do not 

trigger C. difficile spore germination in the absence of taurocholate. However, a 

cocktail of L-phenylalanine, L-arginine, and glycine (all at 12 mM) was able to 

effectively trigger C. difficile spore germination in the absence of taurocholate. 

Chenodeoxycholate (6 mM) is not able to inhibit the germination of C. difficile 

spores treated with amino acids only. Other Clostridia have been shown to use 

amino acids alone as germination signals (136). 



 

45 

 In conclusion, the data indicate that C. difficile spores can be triggered to 

germinate in the presence of glycine, phenylalanine and arginine. This amino 

acid cocktail does not require taurocholate for activation nor is it inhibited by 

chenodeoxycholate. 

2.3.3. Effects of BHIS Medium on C. difficile Spore Germination 

When C. difficile spores are resuspended in BHIS medium, germination is 

very slow, even though BHIS contains a complex amino acid mixture that 

includes glycine, L-arginine, and L-phenylalanine (Fig. 2.14). It is possible that 

BHIS contains amino acids that are weak germinants and that compete with 

glycine, L-phenylalanine, and L-arginine for binding. Binding of these alternative 

substrates causes a fraction of the spore population to germinate. Similar 

behavior has been observed in the Abel-Santos lab in the germination of C. 

sordellii spores (136). Interestingly, supplementing BHIS with taurocholate [T01] 

augmented C. difficile spore germination (Fig. 2.14). The taurocholate-enhanced 

spore germination in BHIS was inhibited by chenodeoxycholate. Thus, in 

conclusion, amino-acid-only C. difficile spore germination occurs in vitro only 

when a limited number of amino acids are present and is disfavored with 

complex amino acid mixtures. 
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2.3.4. Effect of 

Taurocholate Hydroxyl Groups on C. difficile Spore  

Germination and Inhibition  

Taurocholate [T01] is a natural bile salt that has hydroxyl groups at 

positions 3, 7 and 12 of the cholate backbone (Fig. 2.15). All three hydroxyl 

groups are in the alpha configuration. Taurocholate also has a side chain 

consisting of taurine attached to the cholate backbone by an amide bond. 

Taurocholate activates C. difficile spore germination with a 50% effective 

concentration (EC50) of 15.9 mM (127). Taurocholate analogs were tested for the 

ability to activate germination in the presence of glycine and for the ability to 

inhibit germination in the presence of taurocholate and glycine. 

To understand the importance of hydroxyl groups on the cholate backbone 

of taurocholate, analogs T02 to T08 were tested as activatorss of C. difficile 

spore germination. These analogs differ from taurocholate [T01] in the number, 

placement, or stereochemistry of the hydroxyl groups (Fig. 2.15). 

Taurodeoxycholate [T02] lacks only the hydroxyl group at the 7 position. This 

change was sufficient to reduce germination by more than 70% (Table 2.1). 

Figure 2.14. Germination kinetic graph showing behavior of C. difficile spores and germinants in buffer and 
complex media.  A) C. difficile spores were resuspended in germination buffer and treated with L-Phe, L-
Arg, and Gly (each at 12 mM) (ο) or L-Phe, L-Arg, Gly (each at 12 mM) and chenodeoxycholate (6 mM) 
(). Purified spores were also suspended in BHIS medium (☐), BHIS supplemented with 12 mM 
taurocholate (), BHIS supplemented with 12 mM taurocholate and 12 mM chenodeoxycholate (). For 
clarity, data are shown at 5-min intervals and only for 75 min. B) Same as A except all time points are 
shown up to 20 minutes. For both graphs the error bars indicate standard deviations, n = 3.  

A B 
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Meanwhile, taurochenodeoxycholate [T03] is only missing the hydroxyl at 

position 12 and was able to induce germination only to 10% of the level of 

taurocholate. Tauroursodeoxycholate [T04] is an isomer of 

taurochenodeoxycholate in which the 7-hydroxyl is in the beta configuration. 

Alteration of the stereochemistry of this one hydroxyl group further decreased 

germination activity from 10% for taurochenodeoxycholate to 3% for 

tauroursodeoxycholate (Table 2.1). 

As expected, taurolithocholate [T05] and taurocholanate [T06], which lack 

hydroxyls at positions 7 and 12 and 3,7 and 12, respectively are unable to 

activate germination (Fig. 2.15). Taurohyocholate [T07] and 

taurohyodeoxycholate [T08] are isomers of taurocholate [T01] and 

taurodeoxycholate [T02], respectively, in which the 12-hydroxyl groups are 

moved to the 6 position (Fig. 2.15). Neither of these compounds is able to 

significantly activate germination of C. difficile spores (Table 2.1). The sum of 

these data suggests that both the 7 and 12 α-hydroxyls of taurocholate are 

important determinants for binding and activation of C. difficile spores.  

The 3-hydroxyl position of the cholate molecule is more nucleophilic than 

the other two hydroxyls. Similarly, the 7-hydroxyl is more reactive than the 12-

hydroxyl (155, 156). Thus, methylation of taurocholate yielded two compounds 

that we putatively identified as 3-methoxy-7,12-dihydroxytaurocholate [T09] and 

3,7-dimethoxy-12-hydroxytaurocholate [T10] (Fig. 2.15). Interestingly, 3-methoxy-

7,12-dihydroxytaurocholate neither induces nor inhibits C. difficile spore 

germination (Table 2.1). As expected, 3,7-dimethoxy-12-hydroxytaurocholate 
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was also inactive. This suggests that the ability to donate a 3-hydroxyl hydrogen 

bond is essential for recognition of taurocholate as a germinant for C. difficile 

spores. 

To determine if analogs differing in the number, location, or 

stereochemistry of the hydroxyl groups can inhibit taurocholate-mediated 

germination, C. difficile spores were treated with taurocholate [T01], glycine 

[A01], and compounds T02 to T10 (Fig. 2.15). Only taurochenodeoxycholate 

[T03], tauroursodeoxycholate [T04] and taurohyodeoxycholate [T08] showed 

germination-inhibitory properties (Table 2.1). All three inhibitors have the 

common feature of lacking the 12-hydroxyl group. Since the 12-hydroxyl group 

was necessary for triggering spore germination, these results suggest that this 

hydroxyl is necessary for activation of germination but not for binding of 

taurocholate to the putative C. difficile germination binding site(s). The inhibitory 

compounds also have hydroxyl groups at either the 6 or 7 position (but not both), 

indicating that having one (but not two) hydroxyls in the B ring is important for 

inhibition of taurocholate-mediated germination of C. difficile spores. 

In conclusion, bile salt analogs with hydroxyl groups at positions 3 and 12 

promoted C. difficile spore germination activation, whereas the hydroxyl group at 

position 7 is optimal for binding. 
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T01 

T02 T03 T04 

T05 T06 T07 

T08 T09 T10 

Figure 2.15. Taurocholate analogs with hydroxyl group modifications. Taurocholate (T01) and taurocholate 
analogs T02 - T10.  
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2.3.5. Effect of Taurocholate Side Chain on C. difficile Spore  

Germination and Inhibition  

To determine the taurine side chain functional groups responsible for 

recognition by the C. difficile germination binding site(s), analogs T11 to T22 

were tested for the ability to induce spore germination in the presence of glycine 

(Fig. 2.16). All of these compounds differ from taurocholate in the structure of the 

side chain and retain the cholate backbone with hydroxyl groups at the 3, 7, and 

12 positions. 

Table 2.1. Effect of taurocholate hydroxyl groups on C. difficile spore germination.  

   a C. difficile spores were individually treated with 6 mM glycine and 12 mM taurocholate analogs 
T01 to T10. The percent germination was calculated based on taurocholate/glycine germination 
set as 100%. Standard deviations are shown in parentheses. 
   b C. difficile spores were incubated with various concentrations of taurocholate analogs for 15 
min prior to the addition of 6 mM taurocholate and 12 mM glycine. The IC50 was calculated by 
plotting the extent of germination versus the logarithm of analog T02 to T10 concentrations. 
Standard deviations are shown in parentheses. 
   c NA, no change in absorbance after 90 minutes under the conditions tested thus no statistics 
could be performed. 
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Compound T11 is a taurocholate analog in which the alkyl linker between 

the sulfonate and the amide was shortened by one methylene (Fig. 2.16). 

Compound T12, on the other hand, is a taurocholate analog in which the linker 

was lengthened by one methylene. The results show that spores treated with 

compound T11 germinate to levels comparable with those spores treated with 

taurocholate [T01] (Table 2.2). In contrast, the longer alkyl chain, compound T12, 

does not activate germination. To further analyze the necessity for the alkyl linker 

in germination, three analogs containing a benzene ring in place of the ethylene 

Figure 2.16. Taurocholate analogs with modified side chains. Taurocholate (T01) and 
analogs T11 - T15.  

T01 T11 

T12 T13 

T14 T15 
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linker of taurine were synthesized. These analogs differed in the position of the 

sulfonate, para [T13], ortho [T14], or meta (CamSA) [T15], with respect to the 

amino group in the benzene ring (Fig. 2.16). These three taurocholate analogs 

were unable to activate C. difficile spore germination (Table 2.2). This suggests 

that C. difficile spores are activated by taurocholate analogs with shorter, but not 

longer or bulkier, linkers. 

Hypotaurocholate [T16] differs from taurocholate by a substitution of a 

sulfonate for a sulfinate (Fig. 2.17). This analog was unable to activate C. difficile 

spore germination (Table 2.2). Interestingly, glycocholate [T17] is a compound 

T11 analog in which a sulfonate has been substituted for a carboxylate (Fig. 

2.17). In our hands, glycocholate like compound T11, is able to significantly 

activate C. difficile spore germination in buffer (Table 2.2). A previous report had 

determined that glycocholate is not a germinant for C. difficile spores in BHIS 

medium (140). Indeed, when we tested glycocholate in BHIS medium, the C. 

difficile spore percent germination dropped almost 10-fold. However, addition of 

glycine to BHIS medium partially restored glycocholate-mediated germination. 

Hence, compound mixtures in BHIS medium seem to intrinsically inhibit C. 

difficile spore germination. 

Compound T18 is a carboxylated analog of taurocholate [T01] (Fig. 2.17). 

Interestingly, whereas taurocholate, compound T11, and glycocholate [T17] are 

able to activate C. difficile spore germination, compound T18 is inactive. 

Similarly, compound T19, compound T20, and compound T21, with longer side 

chains, are also inactive (Table 2.2). These results suggest that carboxylate is 
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able to partially substitute for sulfonate, but is not optimal for activation of C. 

difficile germination. 

 

T01 

T16 T17 

T18 T19 

T20 T21 

Figure 2.17. Taurocholate analogs with modified linear side 
chains. Taurocholate (T01) and analogs T16 - T21.  
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Compound T22 is a taurocholate analog in which an amide group is 

substituted for an ester (Fig. 2.18). Compound T22 was unable to trigger 

germination in C. difficile spores (Table 2.2). This suggests that the ability of the 

amide group to form hydrogen bonds is necessary for C. difficile spore 

germination. 

 

 

To determine whether taurocholate analogs with modified side chains [T11 

to T22] can inhibit C. difficile spore germination, the effects of these analogs on 

C. difficile spores treated with taurocholate [T01] and glycine [A01] were 

analyzed. Taurocholate analogs with one less carbon [T11] or one more carbon 

[T12] in the taurine side chain were unable to inhibit germination. Interestingly, 

while the addition of a benzene ring in the linker with the sulfonate in the para 

[T13] or the ortho [T14] position does not inhibit spore germination. CAmSA [T15] 

has an IC50 of 58.3 μM is the strongest inhibitor of C. difficile spore germination 

reported so far (Table 2.2). The conversion of the sulfonate functional group to a 

sulfinate [T16] resulted in a compound with slight inhibitory activity at an IC50 of 

640 μM (Table 2.2). Interestingly, compounds with longer alkyl linkers followed by 

T01 T22 

Figure 2.18. Taurocholate analog with an ester side chain linkage. Taurocholate 
(T01) and analog T22.  
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a carboxylate [T20 and T21] are able to inhibit C. difficile spore germination, 

whereas shorter carboxylate end groups [T17 to T19] are inactive. Compound 

T20 has an IC50 of 762 μM, whereas the longer side chain, Compound T21, 

containing two amide groups has an IC50 of approximately 3,000 μM (Table 2.2). 

Replacement of the amide group of taurocholate with an ester [T22] results in a 

compound with slight inhibitory activity (IC50 of 1,322 μM). 

In conclusion, recognition and activation of C. difficile spore germination 

by compounds containing the taurine side chain is optimal however a shorter 

side chain is also capable of activating germination. Longer and bulkier side 

chains are not able to activate C. difficile spore germination, but several were 

able to inhibit germination in vitro. Furthermore, compound T15 is a potent 

inhibitor of C. difficile spore germination. 
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2.4. Conclusions  

In this study, taurocholate and glycine analogs were used to better 

understand how the C. difficile germination binding site(s) recognizes its 

germinants. Chemical probes can reveal the chemical, physical, and spatial 

requirements of the germination binding site(s). The present study has shown 

that the C. difficile germination binding site(s) recognizes a number of amino acid 

side chains and that the putative glycine binding site(s) requires both a free 

Table 2.2. Effect of taurocholate side chain (R) on C. difficile spore germination.  

   a C. difficile spores were individually treated with 6 mM glycine and 12 mM taurocholate analogs 
T11 to T22. The percent germination was calculated based on taurocholate/glycine germination 
set as 100%. Standard deviations are shown in parentheses. 
   b C. difficile spores were incubated with various concentrations of taurocholate analogs for 15 
min prior to the addition of 6 mM taurocholate and 12 mM glycine. The IC50 was calculated by 
plotting the extent of germination versus the logarithm of analog T11 to T22 concentrations. 
Standard deviations are shown in parentheses. 
   c NA, no change in absorbance after 90 minutes under the conditions tested thus no statistics 
could be performed. 
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carboxylate and a free amino group to recognize glycine, but the binding site is 

flexible enough to accommodate longer separations between the two functional 

groups. Linear alkyl amino acid side chains are recognized but their branched 

isomers are not. The Abel-Santos lab has observed and reported similar 

branched-chain restriction in the recognition of inosine analogs of B. cereus 

spores (169). These size and polarity restrictions also suggest the existence of 

separate binding sites for L-phenylalanine, L-arginine, and possibly L-cysteine. 

It is reasonable to hypothesize that the binding region for L-alanine in C. 

difficile is divergent enough from the L-alanine binding site in Bacillus to impede 

the binding and inhibition by D-alanine. Because none of the amino acid analogs 

were able to compete with glycine to inhibit C. difficile spore germination, the 

functional groups in the amino acid moieties are needed for both binding and 

activation of the putative amino acid germination binding site(s). 

Few bile salt analogs were able to activate C. difficile spore germination. 

Hydroxyl groups at positions 3 and 12 seem to be required for both binding and 

activation of C. difficile spore germination. In contrast, hydroxyl groups in the B 

ring appear to be important only for binding. Hence, the data imply that there is a 

requirement for hydrogen bonding with hydroxyls at specific locations and 

configurations in the C. difficile germination binding pocket. 

Recognition of the taurine side chain seems to be even more restricted. 

Even small changes in the linker length and rigidity, amide bond, or oxidation 

state of the sulfonate group had a large effect on C. difficile spore germination. 

Although the sulfonate group is optimal for spore germination activation, it can be 



 

58 

partially substituted with a carboxylate as long as the alkyl chain is short. These 

data suggest that the binding site for taurocholate recognizes the taurine side 

chain for optimal germination. 

In contrast to germinant specificity, the putative taurocholate binding 

site(s) was more flexible in regard to inhibitor binding. The meta-sulfonic benzene 

derivative CamSA [T15] is active at concentrations approximately 275-fold lower 

than taurocholate and is almost 4 times more active than the natural inhibitor 

chenodeoxycholate (127, 141). The benzene ring is a rigid functional group with 

little free rotation. We speculate that the sulfonate in the meta position is able to 

fit tightly into the sulfonate binding pocket but the overall binding site(s) does not 

recognize the benzene ring to trigger germination. This is further confirmed by 

the inactivity of the ortho and para isomers that would spatially place the 

sulfonate in different locations. The rigidity and positioning of the m-sulfonate 

probably provides an entropic advantage over alkyl sulfonates. It is possible that 

longer alkyl side chains are too flexible to allow the sulfonate moiety to bind 

efficiently to the putative taurocholate binding site(s). The discovery of CamSA 

and its strong inhibitor effect has revealed a new path to designing compounds 

for CDI prophylaxis.  

The putative taurocholate and glycine binding site(s) in C. difficile 

recognizes multiple functional groups in their respective germinants. Hence, even 

subtle changes in the germinant structure can be detrimental to the binding ability 

of the germination binding site(s) of C. difficile spores. In conclusion, a structure 

activity relationship analysis of C. difficile spores and analogs of glycine and 
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taurocholate can reveal necessary moieties in the germinant structure. This 

analysis can also elucidate the physical and chemical spatial characteristics in 

the microenvironment of the binding sites.    
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CHAPTER 3 

MAPPING INTERACTIONS BETWEEN INHIBITORS AND CLOSTRIDIUM 

DIFFICILE SPORES 

3.1. Introduction 

The microenvironments of the putative taurocholate and glycine binding 

sites in C. difficile spores limit the functional groups allowed to bind and/or 

activate spore germination. Besides physical requirements, chemical 

requirements are also essential for binding. For the C. difficile putative glycine 

binding site(s), both the amino and carboxylate group must be unmodified for 

interactions with the binding site(s). Interestingly, it seems there may be separate 

binding sites for the amino acids L-phenylalanine, L-arginine, and possibly L-

cysteine. Of the 30 amino acids analyzed in structure activity analyses, none 

were able to inhibit C. difficile spore germination.  

The C. difficile putative taurocholate germination binding site(s) can be 

efficiently activated by specific functional groups. However, the germination 

binding site(s) is able to bind to a broader range of compounds that are unable to 

activate germination. In fact the meta-benzene sulfonic acid derivative of 

taurocholate, CamSA [T15], is able to competitively inhibit taurocholate-mediated 

C. difficile spore germination at low concentrations (134). We suggest that the 

rigidity of the benzene ring in CamSA allows the compound to fit the sulfonic acid 

directly in its binding pocket. Because the benzene ring has different 

physiochemical properties than an alkyl chain, it may not be recognized to 

activate germination. This prediction is supported by the fact that the C. difficile 
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germination binding site(s) does not recognize the para and the ortho analogs of 

CamSA (134). 

Based on the structure activity relationship defined for germinants and C. 

difficile spores, a new series of analogs were synthesized and assessed for 

ability to inhibit germination (134). Bile salt analogs that inhibited spore 

germination in the previous study were used as a basis for designing new 

analogs for testing. By manipulating bile salt structures that showed activity in the 

previous study, we hypothesized that a pattern would emerge that could be used 

to chemically define the bile salt binding region in C. difficile spores. 

Taurocholate analogs with long linear side chains containing a carboxylate 

moiety [T20 – T22] were found to inhibit C. difficile spore germination (Table 2.2). 

For this study, a series of linear side chains with longer alkyl groups and/or 

different functional groups were produced and analyzed for activation of C. 

difficile spore germination or inhibition of germination.   

CamSA [T15] does not have a linear side chain but instead has a benzene 

ring with a sulfonic acid group in the meta position. CamSA is a potent inhibitor of 

C. difficile spore germination (134). This discovery was interesting since the side 

chain structure of CamSA is quite different from taurocholate, the germinant (Fig. 

3.1A). Furthermore, the para and ortho analogs of CamSA had no effect on C. 

difficile spore germination. To better understand the interactions between 

CamSA and C. difficile spores, a series of CamSA analogs were synthesized and 

assessed for germinant and anti-germinant activity.  
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The natural bile salt, chenodeoxycholate, has been reported to act as a 

competitive inhibitor of taurocholate-mediated C. difficile spore germination (127, 

141). Taurocholate is a conjugated natural bile salt that consists of cholate 

(cholic acid) linked to a taurine side chain by an amide bond (Fig. 3.1A). The 

structure of chenodeoxycholate is similar to taurocholate except that 

chenodeoxycholate is not linked to a taurine side chain (Fig. 3.1B). Taurocholate 

also has three hydroxyl groups on the cholate backbone and all are in the alpha 

configuration. Chenodeoxycholate has two hydroxyl groups at position 3 and 

position 7 also in the alpha configuration but not at position 12. To better 

understand how chenodeoxycholate interacts with C. difficile spores, cholate and 

chenodeoxycholate analogs were tested for activation and inhibition of spores in 

vitro. We hypothesized that the placement and configuration of the hydroxyl 

groups are essential for recognition. Furthermore, cholate and 

chenodeoxycholate are not linked to a side chain but each has a free carboxylic 

acid. A series of analogs with modifications to the carboxylic acid were also 

assessed for activity with C. difficile spores. 

 

 

Taurochenodeoxycholate is an analog of taurocholate that is missing the 

hydroxyl group at position 12. As described in the previous study, 

Figure 3.1. Natural bile salts. A) taurocholate, B) chenodeoxycholate 

A. B. 
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taurochenodeoxycholate [T03] is able to inhibit C. difficile spore germination but 

is not as potent as chenodeoxycholate. This data would suggest that the hydroxyl 

group at position 12 may not be essential for binding but may be necessary for 

activation of germination. Using chenodeoxycholate as a backbone, a variety of 

bile salt analogs with different alkyl linkers were synthesized. These 

taurochenodeoxycholate analogs were synthesized based on whether 

taurocholate analogs were found to have activity with C. difficile in vitro. For 

example the meta-benzene sulfonic side chain was found to have activity when 

linked to the cholate backbone, CamSA. So for this study, an analog of CamSA 

was prepared using the chenodeoxycholate backbone. These analogs were 

synthesized and tested to potentially discover more potent inhibitors of C. difficile 

spore germination in vitro than CamSA.  

Cholesterol analogs are found in many different plants and vary in 

function. Some plant-derived cholesterol analogs are potent toxins that are fatal 

to those who ingest them and some are use medically (176, 177, 181). Others 

serve as growth hormones and are essential to plant metabolic activity making 

them useful agriculturally (172, 173). Epibrassinolide is in a class of steroid plant 

hormones called brassinosteroids originally isolated from Brassica napus, 

rapeseed (170). Epibrassinolide stimulates various physiological plant cell 

processes to bulk up foliage, is effective in fighting pathogens and prevents 

fungal infections in plants (171, 172). Ursolic acid, found in high concentrations in 

apple peels, has been found to inhibit muscular atrophy-associated gene 

expression in humans and in mice (173, 174). In mice, ursolic acid prevents 
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muscle weakening during fasting and also helps grow muscle in normal-diet mice 

(174). Since epibrassinolide has shown antimicrobial effects in plants and ursolic 

acid has positive effects in mammals and both are analogs of bile salts, they 

were analyzed for the ability to activate and/or inhibit C. difficile spore 

germination. They are not close analogs of taurocholate and chenodeoxycholate 

like the other bile salt analogs analyzed in this study. However, the focus of this 

project is to understand the microenvironment of the C. difficile germination 

binding site(s) and to discover potent inhibitors of C. difficile spore germination. 

By studying the effects of related analogs, we can determine if the compounds 

screened should be broadened to include other cholesterol derivatives.  

Some steroids found in plants have important impacts on biological 

systems. Digoxigenin, ouabain, and digitoxin are three such steroids. Digitoxin is 

found in the foxglove plant from the genus Digitalis and has been used since 

1785 to treat heart arrhythmia and congestive heart failure regardless of its toxic 

side effects (175, 176). Digoxigenin (DIG) is found in the Digitalis plants and is 

used widely in molecular biology as a probe for non-radioactive immunoassays 

(177). Ouabain is found in the seeds of plants from the genus Strophanthus and 

Acokanthera (178, 179). Ouabain is a toxic cardiac glycoside and affects cell-to-

cell cooperation by targeting the sodium pump (180). These toxins are similar in 

structure to bile salts and contain an α,β-unsaturated lactone. This type of 

lactone can form an irreversible adduct by Michael addition to cysteine residues 

(181-184). Since the amino acid sequence of the germination receptor for C. 

difficile is unknown (95), we hypothesized that bile salt analogs containing an 
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α,β-unsaturated lactone can be used as chemical probes to crosslink with the 

amino acids that participate in binding. However, analogs containing the α,β-

unsaturated lactone must first be recognized by the C. difficile germination 

binding site(s). Purification of the germination binding site(s) is out of scope of 

this project but finding compounds active with C. difficile spores is the focus of 

this dissertation. Therefore, the effect these three toxins have on C. difficile spore 

germination was assessed in vitro. 

Screening bile salt analogs for in vitro activity with C. difficile spores 

provides data that can be used to elucidate the mechanistic activity of small 

molecules and the putative C. difficile germination binding site(s). More 

importantly, there is the potential use of anti-germinants in CDI prevention. 

Thorough characterization of the germination binding site(s) in vitro will help to 

design binding site(s) specific molecules to prevent C. difficile germination.  

3.2. Materials and Methods 

3.2.1 General Comments 

Taurocholate and bile salt analogs were obtained as described in Chapter 

2 as well as thin layer chromatography silica gel and silica gel for column 

chromatography. Bacterial growth medium was obtained from BD (Franklin 

Lakes, NJ). 

3.2.2. General Synthesis of Side-Chain Modifications 

Unless otherwise stated, all the taurocholate and taurochenodeoxycholate 

analogs were prepared following published procedures and resulted in up to 65% 

yield (157, 158). Cholic acid (1 eq. - 1mM) or chenodeoxycholic acid (1 eq. - 
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1mM) was activated with 1.4 eq. of N-ethoxycarbonyl-2-ethoxy-1,2-

dihydroquinoline (EEDQ) and 1.3 eq. of N-methylmorpholine (NMO) in 

dimethylformamide (DMF) (Scheme 3.1, as an example). After the mixture was 

stirred for 5 min, 1.2 eq. of the appropriate side chain reagent was added. The 

reaction mixture was heated to 90 °C for 40 min and then cooled to room 

temperature.  

 

For polar compounds, the solution was poured into 100 ml of ice-cold 

diethyl ether, resulting in a precipitate. The ether suspension was kept at 4 °C 

overnight. The ether layer was decanted and the resinous residue was dissolved 

in 25 ml 0.2 N NaOH-MeOH and poured into 100 ml cold diethyl ether. The ether 

solution was kept at 4 °C for at least 2 h and the resulting precipitate was filtered 

and washed with diethyl ether. If necessary, the product was recrystallized by 

dissolving to saturation in hot ethanol, followed by the addition of ethyl acetate 

until a precipitate appeared. The solution was kept at -20 °C for 2 h to allow 

complete precipitation and then filtered to retrieve the product. For nonpolar 

compounds, the reaction mixture was diluted with ethyl acetate and washed 

three times with water. The organic layer was dried over anhydrous sodium 

sulfate and evaporated under reduced pressure. The resulting residues for both 

Scheme 3.1. Coupling reaction of chenodeoxycholate and meta-aminobenzene sulfonic acid 
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polar and nonpolar compounds were further purified by silica gel column 

chromatography eluted with a step gradient from 100% ethyl acetate to 100% 

methanol (MeOH). Percent yields were typically 30 – 80%. Compound structures 

were verified and determined to be >95% pure by 1H-NMR, Fourier transform 

infrared spectroscopy (FT-IR), and mass spectrometry. 

3.2.3. Synthesis of the Phosphonic Acid Derivative of CamSA [T37] 

 To synthesize a phosphonic acid analog of CamSA [T37], the published 

procedure for dehydrating phosphoric acid with an alcohol was first followed 

(185). A solution of 3-aminophenol (1 eq. - 1mM), phosphoric acid (1 eq.), 1-

butylimidazole (0.1 eq.), tributyl amine (1 eq.), and DMF/nitroethane (50/50 v/v) 

was refluxed under azeotropic conditions at 155 °C for six hours (Scheme 3.2, 

step 1).  

 

Dowex 50WX2-200 cation exchange resin was directly added to the crude 

mixture and stirred at room temperature for one hour. The resin was removed by 

filtration and the solvent was not removed. The filtrate contained the crude 

product. The production of 3-aminophenylphosphoric acid was verified by TLC 

Scheme 3.2. Synthesis of a phosphonic acid analog [T37] of CamSA  

Step 1

 
Step 2

 



 

68 

(mobile phase 100% ethyl acetate). The 3-aminophenylphosphoric acid (filtrate in 

DMF) was conjugated to cholate using the coupling procedures described above 

(157, 158) (Scheme 3.1, step 2). The product was purified by silica gel column 

chromatography eluted as before. The final yield was 15%. The structure was 

verified and determined to be >95% pure by 1H-NMR, FT-IR, and mass 

spectrometry. 

3.2.4. Preparation of Hyodeoxycholic acid [T95] 

To a solution of hyodeoxycholic acid methyl ester [T96] in 15 mls 1,4-

dioxane, 5 mls of 0.2 M NaOH/MeOH was added and stirred at 45 °C for two 

hours under nitrogen (Scheme 3.3). The de-protected hyodeoxycholic acid [T95] 

was purified (85% yield) by silica gel chromatography in 90% dichloromethane/10 

% MeOH. T96 was verified and found to be >95% pure by 1H-NMR, FT-IR, and 

mass spectrometry. 

 

3.2.5. Preparation of Tri-methoxy Cholic Acid [T89] 

Tri-methoxy cholic acid [T89] was prepared following published 

procedures (154). A similar procedure was used to prepare methoxylated 

taurocholate analogs [T09 and T10] in Chapter 2 (section 2.2.2). The previous 

procedure used taurocholate as the starting reagent whereas; this procedure 

Scheme 3.3. Preparation of hyodeoxycholic acid [T96] 
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uses methyl cholate and requires a deprotection step. To a solution of methyl 

cholate (1 eq. - 1mM) in dry 1,4-dioxane, methyl iodide (50 eq.) and sodium 

hydride (4 eq.) were added under nitrogen. The reaction mixture was heated to 

40 °C for 48 h with stirring (Scheme 3.4). After the initial 48 h, sodium hydride (4 

eq.) was added daily to the reaction mixture for four days. The reaction mixture 

was diluted with dichloromethane and washed with 1 M HCl and twice with water. 

The organic layer was dried over anhydrous sodium sulfate, and the solvent was 

removed under reduced pressure. The crude product was dissolved in 15 mls 

1,4-dioxane and 5 mls of 0.2 M NaOH/MeOH was added. The mixture was 

heated to 45 °C under nitrogen for two hours. After heating the 1,4-dioxane was 

removed under reduced pressure and the sample was worked up a nonpolar 

compound as described before. The crude residue was purified by silica gel 

column chromatography eluted with 90% chloroform and 10% MeOH. The 

purified compound (10% yield) was verified and found to be >95% pure by 1H 

NMR, mass spectrometry and FT-IR spectroscopy.  

   
Scheme 3.4. Reaction scheme for the synthesis of compound T89 
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3.2.6. Preparation of C. difficile Spores 

Clostridium difficile strain 630 was obtained from American Tissue Culture 

Collection (ATCC) (BAA-1382). C. difficile cells were plated on BHIS (brain heart 

infusion salt broth) agar supplemented with 1% yeast extract, 0.1% L-cysteine-

HCl and 0.05% sodium taurocholate to yield single-cell colonies. Single C. 

difficile colonies were grown in BHIS broth until exponential phase 

(approximately four hours) and spread plated onto agar to obtain bacterial lawns. 

The plates were incubated for five days at 37 °C in an anaerobic environment 

(5% CO2, 10% H2, and 80% N2). The resulting bacterial lawns were collected by 

flooding the plates with ice-cold deionized water. Spores were pelleted by 

centrifugation at 8,800 x g for five minutes and resuspended in fresh deionized 

water. After two washing steps the spores were separated from vegetative and 

partially sporulated forms by centrifugation through a 20% to 50% HistoDenz 

gradient at 18,200 x g for 30 minutes with no brake. The spore pellet was 

washed five times with water, resuspended in sodium thioglycolate (0.5 g/L) and 

stored at 4 °C. Immediately before in vitro germination activation or inhibition 

assays, spores were transferred to fresh tubes, centrifuged, and washed with 

deionized water five times to remove storage buffer. 

The methods for endospore staining and the activation or inhibition of C. 

difficile spore germination were described in Chapter 2 (please refer to the 

Methods section 2.2.6 – 2.2.8).  
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3.3. Results and Discussion 

3.3.1. Taurocholate Analogs with Linear Side Chains 

Based on preliminary structure activity analyses of taurocholate analogs 

and their interactions with C. difficile spores, new analogs were designed and 

tested for their ability to act as activators or inhibitors of C. difficile spore 

germination. C. difficile strain 630 used previously (Chapter 2) was also used for 

these studies.  

The analysis of linear side chains discussed in chapter 2 revealed that 

shorter [T11] but not longer [T12] alkyl side chains of taurocholate analogs could 

activate spore germination (Table 2.2). Some longer alkyl side chains that 

contain a carboxylic acid were able to inhibit C. difficile spore germination [T20 

and T21] (Table 2.2 and Fig. 3.2). To further characterize the recognition of long 

alkyl side chains by the C. difficile germination binding site(s), taurocholate 

analogs T23-T29 were synthesized and tested in vitro. Compounds T23 and T25 

differ by one carbon in the alkyl chain and both have carboxylic acids at the end 

of the alkyl side chain (Fig. 3.2). T23 and T25 have longer alkyl side chains than 

previously tested analogs [T17, T18, and T20] (Fig. 3.2). Neither T23 nor T25 

were able to activate C. difficile spore germination. T23 did inhibit spore 

germination but with an IC50 of 5.3 mM. The analog tested previously [T20], 

which has one less carbon in the alkyl chain, has an IC50 of 0.76 mM, seven fold 

more potent than T23 (Fig. 3.2). Interestingly, T25 with one more carbon in the 

alkyl chain than T23 inhibited C. difficile spore germination with an IC50 of 2.3 

mM. These data suggest that an even number of carbons in the alkyl chain [T17 
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= 2C, T20 = 4C, and T25 = 6C] is able to bind more efficiently than their odd 

numbered counterparts [T18 = 3C and T23 = 5C].  

 

Similar to the synthesis of compounds T18 and T20, side products [T24 

and T26] were produced during the synthesis of compounds T23 and T25. These 

Figure 3.2. Taurocholate analogs with linear side chains. Taurocholate [T01], taurocholate analog from 
Chapter 2 [T20] and taurocholate analogs [T23 – T26]. The corresponding IC50 value is listed below each 
compound with the standard deviation in parentheses. Those without a listed value had no activity under 
the conditions tested.  

T01 

T23 T24 

T25 T26 

T20  

IC50 0.76 mM (0.11) 

IC50 5.3 mM (0.24) 

IC50 2.3 mM (0.075) 



 

73 

compounds were also analyzed for the ability to activate and/or inhibit C. difficile 

spore germination.  Although compound T21, the side product from T20, was 

able to inhibit spore germination as described previously (Table 2.2), compounds 

T24 and T26 were unable to activate nor inhibit spore germination (Fig. 3.2). The 

alkyl chains in compounds T21, T24 and T26 have an total even number of 

carbons connected by two amide bonds. The total chain length for T21 has 8 

carbons, T24 has 10 carbons and T26 has 12 carbons. The sum of these data 

suggests that shorter alkyl side chains containing a carboxylic acid with an even 

number of carbons in the chain are able to bind but not activate C. difficile spore 

germination.  

Compound T27 is similar to taurocholate [T01] except the sulfonic acid is 

replaced with a sulfate group resulting in an organosulfate (Fig. 3.3). This 

rendered compound T27 unable to bind to C. difficile spores. Compound T27 

neither activated nor inhibited spore germination, suggesting three but not four 

oxygen atoms in the alkyl functional group are recognized by the C. difficile 

germination binding site(s). Alternatively, the thioether linkage of compound T27 

could by hydrolyzed. Compound T28 is a taurocholate analog containing a 

thioester bond (Fig. 3.3). Compound T28 is also an analog of the ester 

compound [T22] described in chapter 2. Unlike taurocholate, T28 is unable to 

activate C. difficile spore germination. Compound T28 is also unable to inhibit 

spore germination whereas the analog T22 inhibits spore germination. It is 

possible that the reason the thioester bond is not recognized is likely due to the 
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limited ability of the sulfur ester to participate in electron delocalization. This 

makes the thioester bond less stable and likely to be hydrolyzed to the free thiol.  

Compound T29 is a taurocholate analog with one less carbon in the alkyl 

chain. It is a close analog of T11, an activator of C. difficile spore germination 

(Table 2.2). Compound T29 differs from both taurocholate and T11 in the 

functional group in the alkyl side chain. Instead of a sulfonic acid, T29 has a 

phosphonic acid moiety (Fig. 3.3). Unlike taurocholate and T11, T29 neither 

activated nor inhibited C. difficile spore germination. Phosphoric acids have a 

pKa of 2 whereas sulfonic acids have a pKa of -10. Therefore, phosphoric acids 

are weaker acids than sulfonic acids. The putative C. difficile taurocholate 

germination binding site(s) seems to prefer the stronger acid for recognition.  

In conclusion, these data indicate that the taurine side chain connected by 

an amide bond is optimal for C. difficile spore germination.  

  

Figure 3.3. Taurocholate analogs with linear side chains and modified functional groups. Taurocholate 
[T01] and taurocholate analogs [T27 – T29]. No IC50 value is listed because these analogs had no activity 
under the conditions tested.  

T01 T27 

T28 T29 
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3.3.2. CamSA Analogs with Unsubstituted Aromatic Side Chains 

 CamSA, the potent inhibitor discovered and described in chapter 2 has an 

aromatic ring in the side chain with a sulfonic acid in the meta-position. To 

determine if the aromaticity of CamSA is responsible for CamSA’s strong effects, 

compounds T30 and T31 were synthesized. Compound T30 is similar to CamSA, 

but lacks the sulfonic acid on the benzene ring. Compound T30 inhibits C. difficile 

spore germination with an IC50 of 0.27 mM, five fold higher than CamSA (Fig. 

3.4). Thus, it appears that the aromatic ring does have some effect on binding 

and inhibition of spore germination. However, this suggests that the sulfonic acid 

makes the inhibitor more potent.  

Compound T31 has a pyridine substituent with the aromatic nitrogen at 

position-3 in the aromatic ring. Compound T31 is unable to activate or inhibit C. 

difficile spore germination (Fig. 3.4). The aromatic nitrogen in T31 causes the 

molecule to be electron deficient as opposed to the electron rich benzene. 

Although, the electron deficiency may explain the difference between T30 and 

T31, the sulfonic acid moiety of CamSA creates an electron deficient aromatic 

ring. CamSA and compound T31 cannot be compared directly since the sulfonic 

acid is a substituent on the aromatic ring and compound T31 has aromatic 

nitrogen. In conclusion, these data indicate that if no substituent is present on an 

aromatic ring bound to the cholate backbone, then the C. difficile binding site(s) 

is able to recognize to the aromatic ring but not a pyridine.  
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3.3.3. CamSA Analogs with Mono-substituted Aromatic Side Chains 

 Sulfonic acids are highly polar and very strong acids. In fact, sulfonic acids 

are stronger acids than their carboxylic analogs. When the sulfonic acid was 

substituted for a carboxylic acid in the alkyl side chain analog of taurocholate 

[T17, T18, and T20], we found that the sulfonic acid is optimal for activation of C. 

difficile spore germination. The sulfonic acid can be substituted for a carboxylate 

as long as the alkyl chain is short, two carbons [T17]. Longer alkyl chains with 

carboxylic acids, described previously, were not able to activate C. difficile spore 

germination but were able to bind and inhibit spore germination. To determine 

the effect of carboxylic acid substituted aromatic rings on C. difficile spore 

germination, compounds T32-T37 were synthesized and tested for the ability to 

activate or inhibit C. difficile spore germination.    

Figure 3.4. CamSA analogs with unsubstituted aromatic side chains. CamSA [T15] and CamSA 
analogs [T30 – T31]. The corresponding IC50 value is listed below each compound with the standard 
deviation in parentheses. Those without a listed value had no activity under the conditions tested. 

T15 

T30 T31 

IC50 0.27 mM (0.070) 

IC50 0.058 mM (0.035) 
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 Compound T32 is an analog of CamSA with a carboxylic acid in the meta 

position on the aromatic ring (Fig. 3.5). Compound T32 is unable to activate 

spore germination but was did inhibit C. difficile spore germination with an IC50 of 

3.1 mM (Fig. 3.5). CamSA is approximately 50 fold more potent than T32 at 

inhibiting spore germination. The data suggests that the sulfonic acid is optimal 

for binding and preventing C. difficile spores from germinating. This is likely due 

to the stronger acidity of the sulfonic acid group and their stronger electron 

withdrawing properties as substituents on aromatic rings. It should be noted that 

aromatic rings have a very modest effect on acidity. 

Compound T33 is the ortho analog of T32 and the carboxylic analog of 

compound T14 (Chapter 2). As expected, compound T33 was not recognized by 

C. difficile spores and was unable to affect spore germination (Fig. 3.5). 

Compound T34 is the para analog of T32 and the carboxylic acid analog of T13. 

Interestingly, compound T34 is able to bind and inactivate C. difficile spores with 

an IC50 of 1.4 mM, which is 2-fold lower than the meta analog [T32] (Fig. 3.5). 

This finding is surprising since the para analog of CamSA [T13] was unable to 

bind to C. difficile spores. CamSA is more potent an inhibitor of C. difficile spore 

germination since it is more active at concentrations 25-fold lower than T34.  

Compound T35 is a non-aromatic analog of compound T32. Compound 

35 has a cyclohexane group side chain with a carboxylic acid substituent on the 

third carbon from the amide bond (equivalent to the meta position of an aromatic 

compound).  Compound T35 is seven fold more potent as an inhibitor (IC50 0.47 

mM) of C. difficile spore germination than compound T32. We expected that the 
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aromaticity of the substituent was partially responsible for activity. However, it 

seems that as long as there is an electronegative group on a ring structure then 

the ring does not need to be aromatic. This does not fully explain why an 

unsubstituted aromatic ring [T30] was able to inhibit C. difficile spore germination. 

The unsubstituted aromatic ring is about 2-fold more potent than compound T35 

suggesting that either the presence of an aromatic ring or the carboxylic acid is 

sufficient for binding (Fig. 3.5). However, in the presence of both an aromatic ring 

and carboxylic acid [T32 and T34] the activity decreases. In comparison to 

CamSA, the sulfonic acid on an aromatic ring is optimal for binding and inhibition 

of C. difficile spore germination. 

 Compound T36 is an analog of compound T32 except that the carboxylic 

acid has been converted to an ester (Fig. 3.5). Carboxylic acids are weak acids 

that can act as hydrogen bond acceptors and donors whereas esters are less 

polar and can only act as hydrogen bond acceptors. The change from a 

carboxylic acid to an ester for compound T36 resulted in complete loss of binding 

to C. difficile spores (Fig. 3.5). Ester groups are unstable and undergo hydrolysis. 

If the ester group in compound T36 is hydrolyzed, the resulting compound is a 

carboxylic acid [T32]. It is expected that the product of the hydrolysis would 

inhibit C. difficile spore germination (similar to T32). Since compound T36 did not 

inhibit spore germination, it is possible the ester group was not hydrolyzed. 

Therefore, compound T36 was not recognized by C. difficile spores. The data 

suggests that the presence of a carbonyl, but loss of hydrogen bond donating 

ability results in complete loss of C. difficile binding. 
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 The sum of these data suggests that the aromatic ring of CamSA can be 

partially substituted with carboxylic acid analogs and in the presence of a 

carboxylic acid the ring does not have to be aromatic. The sulfonic acid 

substituent on an aromatic compound remains optimal for C. difficile binding.  

  To determine if the C. difficile germination binding site(s) recognizes 

substituents other than carboxylic or sulfonic acids, compounds T37 - T44 were 

synthesized. Phosphoric acids (pKa = ~2) like carboxylic acids (pKa = 1.5 – 4.0) 

are weaker acids than sulfonic acids (pKa = -10). Compound T37 contains a 

T33 

 

T34 

T15 

IC50 0.058 mM (0.035) 

T32 

IC50 3.1 mM (0.78) 

IC50 1.4 mM (0.11) 

T33 

T36 

Figure 3.5. CamSA analogs with mono-substituted aromatic side chains. CamSA [T15] and CamSA 
analogs [T32 – T36]. The corresponding IC50 value is listed below each compound with the standard 
deviation in parentheses. Those without a listed value had no activity under the conditions tested. 

IC50 0.47 mM (0.067) 
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phosphoric acid in the meta position on the benzene ring (Fig. 3.6). Whereas the 

carboxylic acid derivative [T32] of CamSA was able to inhibit C. difficile spore 

germination, T37 is unable to bind to C. difficile spores. Based on acidity, we 

would expect compound T37 to be comparable to the carboxylic acid analog 

[T32]. It is possible that compound T37 inhibits at concentrations higher than the 

concentration tested in these experiments. A more likely explanation is that the 

binding region in C. difficile spores for bile salts is a specialized region that 

simply does not recognize the phosphoric acid moiety.  

Compounds T38 and T39 have hydroxyl groups in the meta or ortho 

position, respectively (Fig. 3.6). Neither compound was able to bind to C. difficile 

spores. Oxygen atoms in the alkyl substituents of analogs have been shown to 

be optimal for C. difficile spore recognition. However, since hydroxyl groups are 

unable to bind, it is possible that an sp2 hybridized oxygen group is recognized 

specifically. Another explanation is the electron donating effect (through 

resonance) hydroxyl groups have on aromatic rings. As described previously, 

electron withdrawing groups are predicted to be optimal for spore recognition. 

The finding that compounds with hydroxyl groups do not affect C. difficile spore 

germination supports that hypothesis. 

Taurocholate and CamSA have a sulfonic acid group in the alkyl chain. To 

determine if sulfur alone is sufficient for C. difficile spore recognition, compounds 

T40 and T41 were synthesized and assessed for activation or inhibition of spore 

germination. Both compounds [T40 and T41] have a sulfhydryl group in either the 

meta or para position, respectively. Neither T40 nor T41 was able to activate or 
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inhibit spore germination (Fig. 3.6). It is likely that the acidic characteristics of the 

sulfonic acid make it an optimal germinant for C. difficile.  As expected, 

compound T42, containing a thiol ether, was also unable to be recognized by the 

putative C. difficile bile salt germination binding site(s). The sulfhydryl and thiol 

ether provide electron donating effects to the aromatic ring. These data support 

the need for an electron withdrawing group on the aromatic ring and an acidic 

substituent for optimal recognition by C. difficile spores.  

 The data suggests that electronegative compounds are favored by the C. 

difficile germination binding site(s). Compound T43 has an amine group at the 

meta position on the benzene ring. Unlike carboxylic and sulfonic acids, amine 

groups are basic and much less electronegative.  Amine group substituents of an 

aromatic ring are less basic and increase the reactivity of the ring due to the 

amine’s electron donating property by resonance. As expected, compound T43 

did not activate C. difficile spore germination. Surprisingly, T43 inhibited spore 

germination with an IC50 of 0.53 mM (Fig. 3.6). It is possible that the increased 

reactivity of the aromatic ring [T30] outweighed the basic nature of the amine. 

However, this is unlikely since hydroxyl groups and sulfahydryl groups were 

unable to bind to C. difficile spores. Albeit a weak inhibitor, it is unclear at this 

time why compound T43 is able to affect C. difficile spore germination. More in 

vitro studies with amine substituted aromatic rings will need to be performed for a 

better understanding of this finding.   

Compound T44 contains an aromatic ring with a methyl substituent in the 

meta position. The methyl substituent has an electron donating effect by 
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induction. As expected, compound T44 did not affect C. difficile spore 

germination (Fig. 3.6). This data supports our earlier prediction that optimal 

analogs for recognition by C. difficile spores will have electron withdrawing 

substituents on the aromatic ring.  

In conclusion, the combined data from CamSA analogs with mono-

substituted aromatic rings supports that the meta-benzene sulfonic acid analog 

produces optimal inhibition of C. difficile spore germination. There are limited 

instances when other functional groups are able to bind to the putative binding 

site(s). None of CamSA analogs with mono-substituted aromatic rings were able 

to activate C. difficile spore germination in vitro. Except for compound T43, the 

data suggests that an electronegative substituent with electron withdrawing 

properties is able to be bind but not activate C. difficile spore germination. 

Furthermore, the aromaticity of the analog may play a role in recognition and the 

presence of an sp2 hybridized oxygen in the substituent is almost always 

required. More acidic substituents are also favored over weaker acid 

substituents. These data provide some insight to the chemical requirements of 

the putative taurocholate germination binding site(s) in C. difficile. However, 

these findings also show that binding and recognition of bile salts is quite 

complicated and multiple factors exist to determine if a compound is able to bind 

or not.  
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 3.3.4. CamSA Analogs with Di-substituted Monocyclic Aromatic Rings 

 CamSA and the CamSA analogs discussed above have single 

substitutions in the aromatic ring.  To determine if aromatic rings with di-

substitutions are able to activate or inhibit C. difficile spore germination, 

compounds T45 to T48 were synthesized. Each of these analogs has an 

Figure 3.6. CamSA analogs [T37 – T44] with mono-substituted aromatic side chains. The corresponding 
IC50 value is listed below the compound with the standard deviation in parentheses. Those without a 
listed value had no activity under the conditions tested.  

T37 T38 

T39 T40 

T41 T42 

T43 T44 

IC50 0.53 mM (0.022) 
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aromatic ring with a meta-sulfonic acid or meta-carboxylic acid substituent and a 

second substituent. Compounds T45 and T46 have a sulfonic acid in the meta 

position. Compound T45 is di-substituted with a methyl group in the ortho 

position (from the amide bond) (Fig. 3.7). Unlike CamSA, compound T45 was 

unable to unable to activate and unable to inhibit C. difficile spore germination. 

Compound T46 is di-substituted with a methoxy group at the ortho position. 

Interestingly, compound T46 activates spore germination with an EC50 of 4.6 mM 

and does not inhibit germination (Fig. 3.7). This finding was not expected since 

the methoxy group in T46 would affect the aromatic ring as an electron donating 

group due to resonance. In previous experiments, almost all compounds that are 

active with C. difficile spores have electron withdrawing groups. Compound T46 

does have the sulfonic acid moiety at the meta position which is electron 

withdrawing. The recognition is not strong as reflected by the high EC50 but there 

does seem to be some interaction that will need further defining in future 

experiments. 

Compounds T47 and T48 have a carboxylic acid in the meta position on 

the aromatic ring. Compound T47 is the analog of T45 and has a methyl group in 

the ortho position. Compound T47 is a very weak activator of C. difficile spore 

germination with an EC50 of 16 mM (Fig. 3.7). Compound T45 was not tested at 

concentrations higher than 12 mM so it is possible that it has very weak activity 

like T47. Compound T48 has a methyl group in the para position. Compound T48 

inhibited spore germination with an IC50 11 mM (Fig. 3.7). Both compounds [T47 

and T48] are recognized by C. difficile but their activity is extremely weak.   
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3.3.5. CamSA Analogs with Tri-substituted Monocyclic Aromatic Rings 

CamSA analogs with di-substituted aromatic rings provided evidence that 

the C. difficile germination binding site(s) could recognize more than one 

aromatic substitution. To determine if tri-substituted aromatic rings could affect 

spore germination compounds T49-T50 were synthesized. Both tri-substitute 

analogs have a sulfonic acid in the meta position from the nitrogen in the amide 

bond. Compound T49 has two methyl group substitutions, ortho and para to the 

amino group, whereas compound T50 has two methyl groups, meta and para 

(Fig. 3.8). Both compounds were able to bind to the putative C. difficile 

Figure 3.7. CamSA analogs with di-substituted monocyclic aromatic rings. CamSA [T15] and CamSA 
analogs [T45 – T48]. The corresponding EC50 or IC50 value is below each compound with the standard 
deviation in parentheses. Those without a listed value had no activity under the conditions tested.  
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germination binding site(s) and inhibit spore germination. Compound T49 

inhibited C. difficile spore germination with an IC50 of 5.6 mM and compound T50 

inhibited spore germination with an IC50 of 1.1 mM (Fig. 3.8). Neither compounds 

activated spore germination in vitro. In conclusion these data show that two [T49 

and T50] but not one methyl group [T45] is recognized by the C. difficile spore 

germination binding site(s). Methyl groups are electron donating groups to the 

aromatic ring. Two methyl group substituents will increase the electron donating 

effect therefore adding stability to the ring. Although the data suggests some 

interaction does occur, the recognition by C. difficile spores is weak. 

 

 

 

 

 

Figure 3.8. CamSA analogs with tri-substituted monocyclic aromatic rings. CamSA [T15] and CamSA 
analogs [T49 – T50]. The corresponding IC50 value is listed below each compound with the standard 
deviation in parentheses.  
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3.3.6. CamSA Analog with Methylated Amidate Group 

Conjugated bile salts have the cholate backbone attached to taurine or 

glycine by an amide bond. Bile salt hydrolases produced by enteric bacteria 

hydrolyze the amide bond in bile salts thereby releasing free taurine or glycine 

(186-188). This deconjugation aids in the enterohepatic circulation of bile salts in 

the gut. In a previous report, the alkylation of the nitrogen in the amido group of a 

conjugated bile salt produced an analog resistant to deconjugation (188). In 

CamSA [T15], the cholate backbone is attached to a meta-benzene sulfonic acid 

by an amide bond. Since CamSA is a potent inhibitor of C. difficile spore 

germination in vitro, CamSA is a good candidate for in vivo studies. To have 

optimal efficiency in the mammalian gut, CamSA will have to remain a 

conjugated bile salt to be effective in preventing C. difficile spore germination.  

However, modifying the structure of CamSA may reduce its inhibitory activity. A 

CamSA analog with an alkylation of the nitrogen in the amide group [T51] was 

synthesized for in vitro testing. After modification to the amine group in CamSA, 

compound T51 was no longer able to inhibit C. difficile spore germination. 

Unexpectedly, compound T51 activated spore germination with an EC50 of 5.8 

mM (Fig. 3.9). Compound T51 is not a strong germinant but is able trigger 

germination. In conclusion, the data indicates that compounds with a free amine 

are adequate for binding but not necessary for activation. Although the 

mechanism used by compound T51 to activate C. difficile spore germination is 

unclear, compound T51 cannot be used as a preventative of CDI even if it can 

resist bile salt hydrolase.   
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 Since deconjugation of bile salts by bile salt hydrolases results in the 

release of the deconjugated alkyl group, compounds T52 and T53 were tested 

for effect on C. difficile spore germination (Fig. 3.9). Neither T52 nor T53 was 

able to bind to the putative germination binding site(s). This data suggests the 

cholate backbone is essential to the activity of CamSA and compound T51 in 

recognition by C. difficile spores. 

 

3.3.7. Bile Salt Analogs with Polycyclic Aromatic Hydrocarbons 

 To determine if polycyclic aromatic hydrocarbons in the alkyl chain with 

and without substituents are able to bind to C. difficile spores, compounds T54-

T65 were synthesized and tested in vitro. Naphthalene is the simplest polycyclic 

aromatic hydrocarbon made up of two fused benzene rings. Two analogs were 

synthesized using 1-aminonaphthalene and 2-aminonaphthalene coupled with 

cholic acid by an amide bond [T54 and T55] (Fig. 3.10). Neither compound T54 

Figure 3.9. CamSA analog with methylated amidate group. CamSA [T15], CamSA analog [T51] and 
starting reagents [T52 and T53]. The corresponding EC50 value is below each compound with standard 
deviation in parentheses. Those without a listed value had no activity under the conditions tested. 
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nor T55 was recognized by the C. difficile germination binding site(s). Compound 

T56 is cholic acid conjugated to 2-aminoanthracene. Like compounds T54 and 

T55, compound T56 was unable to bind to C. difficile spores (Fig. 3.10). Pyrene 

is a fluorescent polycyclic aromatic hydrocarbon. Compound T57 is a cholate 

backbone conjugated by an amide bond to 1-aminopyrene. Unfortunately, 

compound T57 was neither able to activate nor inhibit C. difficile spore 

germination (Fig. 3.10). Polycyclic aromatic hydrocarbons are very rigid and flat 

structures. The fact that they are unable to bind to C. difficile spores is not 

surprising since the spatial requirements for bile salts is likely limited in size and 

shape. Therefore, rigid, bulky polycyclic aromatic hydrocarbons without 

substituents are unable to bind to the C. difficile bile salt germination binding 

site(s). 

 

Figure 3.10. Bile salt analogs with unsubstituted polycyclic aromatic hydrocarbons. Bile salt analogs 
[T54 – T57]. Those without a listed value had no activity under the conditions tested.  

T54 T55 

T56 T57 
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Compounds T58-T61 contain naphthalene with one substituent on the 

rings. Compound T58 has a hydroxyl bonded to the carbon at position 2 from the 

amino group (Fig. 3.11). Compound T58 was unable to activate or inhibit C. 

difficile spore germination. This was expected since neither T54 nor T55 was 

able to bind to C. difficile spores. Furthermore, aromatic rings with hydroxyl 

groups in previous experiments [T38 and T39] did not affect C. difficile spore 

germination. Likely, compound T58 is unable to bind due to the rigidity of the 

naphthalene ring and the presence of a hydroxyl substituent. Compound T59 

contains a sulfonic acid at position 1 from the amino group. Compound T59 was 

not recognized by the germination binding site(s) (Fig. 3.11). Although compound 

T59 has a sulfonic acid that has been shown to be optimal for C. difficile 

germination binding, the functional group is on the carbon next to the amide bond 

(equivalent to the ortho position in a monocyclic aromatic ring). Steric hindrance 

and rigidity of the side chain are likely why compound T59 is not recognized. 

Compounds T60 and T61 both have a carboxylic acid substituent on the 

naphthalene side chain. In compound T60, the carboxylic acid is on the first 

carbon from the amino group and is an analog to T59. Compound T60 neither 

activated nor inhibited C. difficile spore germination similar to compound T59 

(Fig. 3.11). Steric hindrance resulting from the carboxylic acid so near the amide 

bond and the rigidity of the polycyclic aromatic hydrocarbon are likely responsible 

for this inactivity. In compound T61, the naphthalene side group has a carboxylic 

acid on the fourth carbon from the amino group. Interestingly, compound T61 

was able to bind to C. difficile spores and trigger germination with an EC50 of 1.3 
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mM (Fig. 3.11). Compound T61 is unable to prevent spore germination. It is 

unclear how this rigid structure is able to activate C. difficile spore germination. 

We predict that the polycyclic aromatic hydrocarbon is not directly responsible for 

the effect but may act to position the carboxylic acid in a binding region capable 

of recognizing it and activating germination. Glycocholate [T17] is also an analog 

of taurocholate that has a carboxylic acid substituent in the side chain and is able 

to effectively activate spore germination. Furthermore, compound T47 has a di-

substituted aromatic side chain with a carboxylic acid and weakly activates C. 

difficile spore germination. Although the sulfonic acid is optimal for binding, 

carboxylic acids have been shown to also bind to the putative taurocholate 

binding site(s). Compound T61 probably interacts with the germination binding 

site(s) in a similar way to these compounds.  

  

Figure 3.11. Bile salt analogs with monosubstituted polycyclic aromatic hydrocarbons. Bile salt analogs 
[T58 – T61]. The corresponding EC50 value is listed below each compound with the standard deviation 
in parentheses. Those without a listed value had no activity under the conditions tested. 

T58 T59 

T60 T61 
EC50 1.3 mM (0.19) 
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Compounds T62-T64 each contain naphthalene and two functional group 

substituents. Compound T62 has a hydroxyl on the carbon at position 2 from the 

amino group and a sulfonic acid at position 4. Compound T62 was neither able to 

active nor inhibit C. difficile spore germination (Fig. 3.12). Hydroxyl groups in the 

side chains seem to interfere with binding since none of the analogs discussed 

that have hydroxyl moieties are able to affect C. difficile spore germination. 

Compound T63 has two sulfonic acids, one at the first position and one at 

position 5 from the amino in the amide bond. Compound T63 was not recognized 

by C. difficile germination binding site(s) (Fig. 3.12). Since compound T59 and 

T60 discussed above were unable to affect C. difficile spore germination, it is not 

surprising that T63 was also ineffective. The steric effects caused by the 

functional group so near the amide bond in the alkyl chain is most likely 

responsible for the inability to bind to spores.   

Compound T64 also has two sulfonic acids on the naphthalene side group 

but at position 2 and 5 from the amino. Compound T64 was unable to inhibit 

taurocholate-mediated spore germination. Interestingly, compound T64 triggered 

germination with an EC50 of 5.7 mM (Fig. 3.12). Similar to compound T61, 

compound T64 has an electronegative group at the position-5 on the second 

aromatic ring. Both of these compounds were able to activate spore germination 

in vitro. It is likely that the bulkiness and rigidity of these fused rings with the 

electronegative group at position-5 is able to come into contact with a specific 

region of the binding pocket that triggers germination. This effect is very 

interesting and will require future experiments to explain the interaction between 
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these polycyclic aromatic hydrocarbons and C. difficile spores. To rule out non-

specific effects caused by the polycyclic aromatic hydrocarbon, compound T65 

was also tested for germinant and inhibitor activity with C. difficile spores. The 

unconjugated di-substituted naphthalene ring was unable to bind to C. difficile 

spores. Compounds not bound to cholate [T52, 53, and T65] were unable to 

affect binding. Therefore, the cholate backbone is necessary for recognition by 

the putative taurocholate binding site(s) in C. difficile spores. 

In conclusion, polycyclic aromatic hydrocarbons without substituents are 

unable to bind to the putative taurocholate binding site(s) in C. difficile spores. 

Substituted naphthalene produced variable results and the interactions of these 

compounds with potential binding sites are not clearly understood. 

Figure 3.12. Bile salt analogs with di-substituted polycyclic aromatic hydrocarbons. Bile salt analogs [T62 
– T64] with di-substituted naphthalene side chains and unconjugated starting compound [T65]. The 
corresponding EC50 value is listed below each compound with the standard deviation in parentheses.  
Those without a listed value had no activity under the conditions tested.  

T62 T63 

T64 T65 

EC50 5.7 mM 
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3.3.8. Taurochenodeoxycholic Acid Derivatives 

 Chenodeoxycholate has been shown to inhibit C. difficile spore 

germination in vitro (127, 141). Chenodeoxycholate is a natural bile salt that 

resembles cholic acid except that chenodeoxycholate does not have a hydroxyl 

group at position-12 on the cholate backbone. Taurochenodeoxycholate [T03] is 

the conjugated derivative of chenodeoxycholate and inhibits C. difficile spore 

germination with an IC50 of 0.51 mM (Fig. 3.13). Using the chenodeoxycholate 

backbone, a series of analogs were synthesized. These compounds are also 

analogs of taurocholate and CamSA derivatives discussed previously. In fact, 

analogs using the chenodeoxycholate backbone were not synthesized unless 

taurocholate and CamSA analogs were active with C. difficile spores. 

 In the previous study, a taurocholate analog that had one less carbon in 

the alkyl chain [T11] was able to activate C. difficile spore germination as 

effectively as taurocholate. The effect of this same alkyl chain coupled to 

chenodeoxycholate [T66] was assessed for activation or inhibition of C. difficile 

spore germination. Compound T66 activated C. difficile spore germination with 

an EC50 of 0.31 mM (Fig. 3.13). Compound T66 is approximately 50 fold more 

active than taurocholate. Although this compound is an analog of the inhibitor, 

taurochenodeoxycholate [T03], compound T66 is an germinant like its cholate 

analog compound T11. In fact, compound T66 is active at concentrations more 

than two-fold lower than T11 (Fig. 3.13). No hydroxyl group at position-12 of the 

cholate backbone does not prevent the molecule from activating germination as 

long as the side chain is short. As the alkyl chain is lengthened as in 
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taurochenodeoxycholate, the hydroxyl is required to activate spore germination. 

However, the longer alkyl side chains are recognized and able to bind but their 

activation properties are lost. 

 Compound T67 is the taurochenodeoxycholate derivative of compound 

T16. Compound T67 has a sulfinic acid instead of a sulfonic acid as a substituent 

of the alkyl chain. Similar to compound T16, compound T67 did not activate 

spore germination but inhibited with an IC50 of 5.3 mM (Fig. 3.13). Compound 

T67 is a weak inhibitor compared to T16, which is active at concentrations eight-

fold lower.  

 Compound T68 has two carbons in the alkyl chain like 

taurochenodeoxycholate but instead of a sulfonic acid, T68 has a carboxylic acid 

group.  Like taurochenodeoxycholate, T68 inhibited C. difficile spore germination 

but was more than seven-fold less effective, with an IC50 of 3.9 mM (Fig. 3.13). 

Furthermore, the taurocholate derivative [T17] activated spore germination albeit 

less effective than taurocholate. This data suggests that the carboxylic acid is not 

optimal for binding. Furthermore, this data suggests that if the alkyl chain is 

longer and contains a carboxylic acid [T17] then a hydroxyl at position-12 is 

necessary for activation of C. difficile spore germination. Based on the data to 

this point, it seems that there is a direct correlation between acidic functional 

group, linear chain length and the hydroxyl at position-12 on the cholate 

backbone. Very simple modifications to the structure result in an analog capable 

of binding and activating C. difficile spore germination and a compound simply 

able to bind.  
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 Taurocholate analogs with longer alkyl side chains and a carboxylic acid 

functional group [T20, T21, and T23] inhibited C. difficile spore germination. To 

determine if the hydroxyl group at position-12 on the cholate backbone is 

essential for this inhibition, compounds T69 – T72 were synthesized. Compound 

T69 inhibited C. difficile spore germination with an IC50 of 0.64 mM comparable to 

its analog compound T20, which has an IC50 of 0.76 mM (Fig. 3.14). Compound 

T70 is the side product formed during synthesis of T69 and is an analog of 

compound T21. Like compound T21, compound T69 (IC50 1.9 mM) is a weak 

inhibitor of spore germination (Fig. 3.14). Compounds T71 and T72 are analogs 

of compounds T23 and T24. Compound T71 inhibited spore germination with an 

IC50 of 1.1 mM and compound T72 inhibited with an IC50 of 8.6 mM (Fig. 3.14). 

Compound T71 is a more effective inhibitor of C. difficile spore germination than 

its analog T23. Compound T24 had no activity with spores but compound T72 is 

Figure 3.13. Taurochenodeoxycholic acid derivatives. Taurochenodeoxycholate [T03] and analogs [T66 – 
T68]. The corresponding EC50 and IC50 value is listed below each compound with the standard deviation in 
parentheses.  Those without a listed value had no activity under the conditions tested.  
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a weak inhibitor of C. difficile spore germination. Taurochenodeoxycholate 

analogs with linear side chains [T69 – T72] were unable to activate spore 

germination. Like discussed previously, even number of carbons in the alkyl 

chain result in more effective binding. This finding was supported by the 

taurochenodeoxycholate analogs discussed here. The data also supports the 

earlier observation that no hydroxyl group at position 12 results in no interference 

with the binding of the bile salt to the putative germination binding site(s). 

Furthermore, the earlier hypothesis is supported that longer alkyl side chains 

containing a carboxylic acid are unable to activate C. difficile spore germination.  
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Figure 3.14. Taurochenodeoxycholic acid derivatives with long side chains. Taurochenodeoxycholate 
analogs [T69 – T72]. The corresponding IC50 value is listed below each compound with the standard 
deviation in parentheses 
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 CamSA consists of a cholate backbone linked to meta-benzene sulfonic 

acid by amide bond. Since chenodeoxycholate and taurochenodeoxycholate 

inhibit C. difficile spore germination, we predicted that a CamSA analog with the 

chenodeoxycholate backbone would provide a more active inhibitor. Based on 

the activity of CamSA analogs described previously, CamSA analogs using 

chenodeoxycholate backbone were prepared and tested for activity with C. 

difficile spores in vitro. 

 Compound T73 is a CamSA analog that does not have the hydroxyl group 

at position-12 on the cholate backbone. Like CamSA, compound T73 did not 

activate spore germination. Unlike CamSA, compound T73 is a weak inhibitor of 

C. difficile spore germination with an IC50 of 6.5 mM (Fig. 3.15). CamSA is 100 

fold more active than compound T73. No hydroxyl group at position-12 resulted 

in a significant decrease of potency in this CamSA analog. These data suggest 

that the hydroxyl group at position-12 is optimal (compared to other analogs 

tested) for binding when the side chain contains an aromatic ring and sulfonic 

acid. 

 

 

Figure 3.15. CamSA [T15] and CamSA analog T73. The corresponding IC50 value is listed below 
each compound with the standard deviation in parentheses.  

T15 T73 

IC50 0.058 mM (0.035) IC50 6.5 mM (0.20)
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 Compound T74 is an analog of compound T30 and contains an 

unsubstituted aromatic ring. As previously discussed compound T30 was able to 

inhibit C. difficile spore germination. Compound T74 was not recognized by C. 

difficile spores therefore was neither able to activate nor inhibit spore germination 

(Fig. 3.16). This data suggests that the hydroxyl is necessary for binding when an 

unsubstituted aromatic ring is part of the analog. 

Compound T75 is the analog of compound T32 and has a carboxylic acid 

at the meta position on the aromatic ring. Compound T32 was a weak inhibitor of 

C. difficile spore germination (Fig. 3.16). Compound T75 is a more potent 

inhibitor of C. difficile spore germination than T32 and is active at concentrations 

three fold lower (IC50 0.93 mM). Interestingly, the analog missing the hydroxyl is 

more potent than with the hydroxyl in this instance. In previous analogs the 

hydroxyl group seemed to be helpful for binding and analogs missing the 

hydroxyl group were less active. Compound T76 is the analog of compound T34 

with the carboxylic acid in the para position on the benzene ring. Compound T76 

was not recognized by C. difficile spores (Fig. 3.16). This data suggests that an 

analog without a hydroxyl at position-12 that has an aromatic ring substituted 

with a carboxylic acid at the meta position only is able to be recognized by the C. 

difficile germination binding site(s). Analogs that do not have a carboxylic acid at 

the meta position require the hydroxyl group at position-12 for optimal binding. 

 During analysis of CamSA analogs in previous studies, it was observed 

that the analog of compound T32 with a non-aromatic cyclic substituent [T35] 

inhibited spore germination. To determine if the loss of the hydroxyl group on the 
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cholate backbone would interfere with this binding, compound T77 was 

synthesized. Compound T77 did not inhibit C. difficile spore germination however 

it did activate spore germination with an EC50 of 7.4 mM (Fig. 3.16). This is a 

weak germinant and is active at concentrations 16 fold lower than T32 and 8 fold 

lower than its aromatic analog T75. This data contradicts earlier observations 

that the hydroxyl at position-12 seemed to be necessary for activation of C. 

difficile germination. Therefore although a hydroxyl at position-12 is optimal, it is 

not essential for weak germination activation. On the other hand, there may be 

other factors that affect the activity of compound T77 that are unclear at this time.  

Compound T43 was found to inhibit C. difficile spore germination although 

it does not have an electron withdrawing group on the aromatic ring. To 

determine if the hydroxyl group at position-12 interferes with the ability of the 

compound to bind, compound T78 was prepared. Compound T78 is an analog of 

compound T43 that has an aromatic ring with an amine substituent at the meta 

position. Unlike compound T43, compound T78 neither activated nor inhibited 

spore germination (Fig. 3.16). As discussed earlier, the ability of T43 to bind is 

currently unclear. This data suggests that the hydroxyl group at position-12 is 

necessary for the analog to be recognized. As postulated earlier, the mechanism 

by which compound T43 binds to C. difficile spores may be different than other 

analogs. More studies with similar compounds are necessary to understand this 

mechanism better. 
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 Bile salt analogs with multiple substituents on the aromatic ring and 

polycyclic aromatic hydrocarbons with specific substituents were found 

previously to either activate or inhibit C. difficile spore germination. Analogs of 

these active compounds were synthesized using the chenodeoxycholate 

backbone and tested for activity in vitro with C. difficile spores. Compound T79 is 

an analog of compound T48 and has a carboxylic acid group at the meta-position 

and a methyl group at the para-position of the aromatic ring. Compound T79 

does not activate C. difficile spore germination (Fig. 3.17). Like the compound 

T48, compound T79 prevents C. difficile spore germination. Interestingly, 

Figure 3.16. Bile salt analogs [T74-T78]. The corresponding EC50 and IC50 value is listed below each 
compound with the standard deviation in parentheses.  Those without a listed value had no activity under 
the conditions tested.   
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compound T79 is a potent inhibitor with an IC50 of 0.092 mM (Fig. 3.17). 

Compound T79 is active at concentrations 120 fold lower than its analog 

compound T48, which differs only by the hydroxyl at position-12. Furthermore, 

T79 is the only inhibitor discovered thus far that can compare to CamSA activity 

in vitro. We would expect that potent inhibitors would require the stronger sulfonic 

acid. However, these data suggest that as long as there is not a hydroxyl at 

position-12, the side aromatic group can have a carboxylic acid at the meta 

position and a methyl at the para position and be active with C. difficile spores. 

 Compounds T80 and T81 are analogs of compounds T49 and T50 that 

consist of tri-substituted aromatic side chains with sulfonic acids in the meta 

position. Compound T80 has two methyl groups at the ortho and para position on 

the aromatic ring. This analog inhibited spore germination with an IC50 of 0.92 

mM, six fold more potent than its analog T49 (Fig. 3.17). In contrast to the 

significant difference between the potency of compound T80 and T49, compound 

T81 and compound T50 have very similar IC50s, 0.75 mM and 1.1 mM 

respectively (Fig. 3.17). Neither T80 nor T81 was able to activate spore 

germination. In some cases the hydroxyl group seems to be nonessential for 

binding to the C. difficile germination binding site(s) but in some cases as just 

described analogs without the hydroxyl group are bind more efficiently. The 

chemical properties of the side alkyl group seem to play a part in whether the 

hydroxyl group is necessary or not. However, with the limited number of 

compounds used for these studies, a direct correlation cannot be drawn at this 

time. 
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 The CamSA analog containing naphthalene [T64], was shown to activate 

C. difficile spore germination. Although this compound is not a potent activator, 

the fact that it is able to activate spore germination is an interesting discovery. To 

determine the effect the hydroxyl group has on activation, compound T82 was 

synthesized and analyzed in C. difficile spore germination assays. Unlike 

compound T64, compound T82 was unable to activate spore germination. In 

contrast, T82 inhibited spore germination with an IC50 of 12 mM (Fig. 3.17). 

Similar to compound T64, T84 is weakly recognized. As previously observed, the 

hydroxyl at position-12 seems to be optimal for activation of germination. 

Furthermore, the surprising finding that compound T64 was recognized 

regardless of its bulkiness is supported by the recognition of compound T82 by 

the C. difficile spore germination binding site(s). In conclusion, none of the 

CamSA analogs were superior to CamSA as an inhibitor of C. difficile spore 

germination  

Figure 3.17. Bile salt analogs [T79-T82]. The corresponding IC50 value is listed below each compound 
with the standard deviation in parentheses  

T79 T80 

T81 T82 

IC50 0.092 mM (0.014) IC50 0.92 mM (0.16)

IC50 0.75 mM (0.077) IC50 12 mM (0.48)
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3.3.9. Cholic Acid Derivatives 

To further characterize the differences between germination and inhibition 

of simple bile salts, we tested a series of cholic acid derivatives. These analogs 

differ in the cholic acid alkyl chain length, position of the hydroxyl groups, 

configuration of hydroxyl groups, methylation of the hydroxyl groups and 

alterations to the carboxylic acid functional group. The analogs differ from cholic 

acid or chenodeoxycholate (Fig. 3.18) in up to three functional group changes. 

 

 

 Cholic acid has an alkyl side chain bonded to a carbon at position-17 of 

the D ring. This alkyl chain is branched and has a carboxylic acid at position-24 

(Fig. 3.18). To determine if a shorter alkyl chain affects C. difficile spore 

germination, compound T83 was tested for activation and inhibition of C. difficile 

spores (Fig. 3.19). Interestingly, unlike cholic acid compound T83 did not induce 

C. difficile spore germination however, it did inhibit spore germination with an IC50 

of 6.3 mM (Fig. 3.19). This suggests that the longer alkyl chain length is 

necessary for activation of germination but the shorter chain does not prevent 

binding by C. difficile spores. 

 

Figure 3.18. Cholic acid (left) and chenodeoxycholate (right) 
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The alkyl side chain in cholic acid has a carboxylic acid group. To 

determine if the carboxylic acid is required for binding to C. difficile spores, two 

analogs were tested for activation and inhibition of C. difficile spore germination. 

In compound T84, the carboxylic acid has been reduced to an alcohol. In 

compound T85, the carboxylic acid has been esterified to form the ester 

derivative.  Neither compound T84 nor T85 was able to induce C. difficile spore 

germination but both inhibited germination (Fig. 3.20). Compound T84 was able 

to inhibit germination with an IC50 of 0.33 mM and compound T85 had an IC50 of 

0.059 mM (Fig. 3.20). Compound T85 is a potent inhibitor of spore germination 

and is active at almost the same concentration as CamSA. This data suggests 

that the carbonyl group is necessary for activation of C. difficile spore 

germination. Either the carbonyl group or the hydroxyl group is sufficient for 

binding and inhibiting C. difficile spore germination. A free carboxylic acid seems 

to be necessary for activation. Carboxylic acids are able to participate in 

hydrogen bonding and form salt bridges, which may be essential for activation.  

Since compound T85 is a very strong inhibitor, analogs of compound T85 

with shorter alkyl chain lengths were assessed for inhibition or activation of C. 

Figure 3.19. Cholic acid analog T83. The corresponding IC50 value is listed below each compound with 
the standard deviation in parentheses.   

T83 
IC50 6.3 mM (0.0070)
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difficile spore. Compound T86 has one less carbon in the alkyl chain and T87 

has two fewer carbons in the alkyl chain. Neither compound T86 nor T87 

activated C. difficile spore germination. However, both bile salts inhibited spore 

germination. Compound T86 inhibited C. difficile spore germination with an IC50 

of 0.154 mM and compound T87 has an IC50 of 0.660 mM (Fig. 3.20). Compound 

T85 discussed above is more potent than compounds T86 and T87 however; the 

ester functional group in these compounds is recognized for binding. These data 

support the earlier observation that the carbonyl group may be the functional 

group recognized by C. difficile spores and that the loss of hydrogen bonding 

prevents activation of germination.  Furthermore the data suggests optimal 

binding to C. difficile spores requires a longer not shorter alkyl side chain. 

 To determine if a longer alkyl ether linkage interferes with binding, 

Compound T88 was tested. Compound T88 has an ester with an ethoxy group. 

Surprisingly, compound T88 is a very strong inhibitor of C. difficile spore 

germination. The IC50 for compound T88 is 0.0082 mM (Fig. 3.20). In fact, T88 is 

seven-fold more potent than CamSA. Compound T88 is the most potent inhibitor 

of C. difficile spore germination discovered in this dissertation project. Evidently 

the C. difficile germination binding site(s) recognizes the ester functional group 

but without the ability to hydrogen bond, the bile salt does not activate spore 

germination.  
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Cholic acid has three hydroxyl groups at positions 3, 7 and 12. To assess 

whether the specific recognition of these hydroxyl is important for C. difficile 

spore germination, compound T89 was prepared. In compound T89, all three 

hydroxyls have been converted to methoxy groups. Compound T89 was neither 

able to activate nor inhibit spore germination (Fig. 3.21). Since compound T89 

was unable to bind to C. difficile spores, the data suggests that hydrogen 

bonding ability of hydroxyl groups is essential for recognition. This is supported 

by previous data showing that the loss of hydrogen bonding ability in 

taurocholate analogs [T09 and T10] resulted in loss of recognition.  

Figure 3.20. Cholic acid analogs [T84 – T88]. The corresponding IC50 value is listed below each 
compound with the standard deviation in parentheses.  Those without a listed value had no activity 
under the conditions tested.    

Cholic acid IC50 0.33 mM (0.0072)

    
 

   
   
   

    
   
    

  
    
   

   
   

    
    

  
 

IC50 0.0.59 mM (0.0079)

 
   

 
   

   
    

    
    

   
     
    

   
  

    
     

  

IC50 0.15 mM (0.063)

    
 

   
   
   

    
   
    

  
    
   

   
   

    
    

  
 

IC50 0.66 mM (0.10)

    
 

   
   
   

    
   
    

  
    
   

   
   

    
    

  
 

IC50 0.0082 mM (0.0005)

 
   

  
    
    

     
    

   
     
    

   
  

     
    

  

T85 T84 

T86 T87 T88 

T89 

Figure 3.21. Cholic acid analog [T89]. 

Cholic acid 
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 To determine the effects of modification to multiple functional groups have 

on C. difficile recognition, a series of bile salt analogs were obtained and 

analyzed in vitro for activity. Compounds T90 – T94 have hydroxyl groups at 

position 3 and 12 but not at position 7. Furthermore, these compounds differ in 

stereochemistry of the hydroxyl groups and two compounds have methyl esters 

instead of carboxylic acids. Compound T90 differs from cholic acid only in the 

loss of a hydroxyl group at position-7. Compound T90 inhibited C. difficile spore 

germination with an IC50 of 0.19 mM (Fig. 3.22). The hydroxyl group at position-

12 in compound T91 is in the beta configuration. Compound T91 neither 

activated nor inhibited C. difficile spore germination. The hydroxyl group at 

position-3 in compound T92 is in the beta configuration. Compound T92 inhibited 

spore germination with an IC50 of 0.095 mM (Fig. 3.22). Compound T92 is a 

potent inhibitor of C. difficile spore germination and CamSA is active at 

concentrations only 1.5-fold lower. Compounds T90 – T92 were unable to trigger 

spore germination. These data suggest that no hydroxyl group at position-7 

results in loss of ability to activate C. difficile spore germination but not the ability 

to bind. The configuration of the hydroxyl at position-12 is important for 

recognition but the configuration of the hydroxyl at position-3 is not important for 

recognition. However, the optimal configuration for the hydroxyl at position-3 is 

the alpha configuration. These statements represent the data when there is no 

hydroxyl at position-7 in cholic acid.  

 Compound T93 is an analog of compound T90 that contains a methyl 

ester instead of a carboxylic acid. Similar to compound T90, compound T93 was 
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unable to activate germination but inhibited C. difficile spore germination with an 

IC50 of 0.097 mM (Fig. 3.22). Compound T93 is a potent inhibitor of C. difficile 

spore germination and is two fold more active than compound T90. This finding 

supports earlier data showing that ester derivatives are more potent inhibitors of 

C. difficile spore germination. Furthermore, the data supports that the hydroxyl 

group at position 7 is not important for recognition but is important for activation.  

Compound T94 is an analog of compound T91 but with a methyl ester and 

the hydroxyl at position-12 is in the beta configuration. Compound T91 was 

unable to activate C. difficile spore germination. However, compound T94 

inhibited germination with an IC50 of 0.095 mM (Fig. 3.22). Like compound T93, 

compound T94 is a potent inhibitor of C. difficile spore germination. These 

findings are interesting since the analog of compound T94 with a free carboxylic 

acid and a hydroxyl at position-12 in the beta configuration [T91] was unable to 

bind to C. difficile spores. Based on results discussed above, the alpha 

configuration of the hydroxyl at position-12 seemed to be essential for binding. 

These results show that as long as there is an ester group the configuration of 

the hydroxyl is not important for binding. Furthermore, the activity of methyl 

esters is supported by these findings. The strong interaction between the ester 

and the binding region in C. difficile spores overcomes suboptimal configuration 

of the hydroxyl group. 
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Compounds T95 and T96 both lack a hydroxyl group at position 12 and 

position 7. However, they both have two hydroxyls in the alpha configuration at 

position-3 and position-6. Compound T95 inhibited C. difficile spore germination 

with an IC50 of 1.2 mM (Fig. 3.23).  Compound T96 is the methyl ester analog of 

compound T95. Compound T96 inhibited spore germination with an IC50 0.037 

mM, more than 33 times lower concentration than T95 (Fig. 3.23). Furthermore, 

T96 is approximately 1.5-fold more potent than CamSA. Neither compound T95 

nor T96 was able to activate spore germination. This data suggests that the 

hydroxyl at position 12 is not necessary for binding. The hydroxyl at position-7 is 

also not essential as long as there is a hydroxyl at position-6. Furthermore, a 

hydroxyl at position-6 does not interfere with binding to the C. difficile germination 

binding site(s). Ester functional groups increase the activity of a compound 

significantly as observed in this data set.  

 

Figure 3.22. Cholic acid analogs [T90 – T94]. The corresponding IC50 value is listed below each 
compound with the standard deviation in parentheses.  Those without a listed value had no activity 
under the conditions tested. 
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Compounds T97 – T99 have only one hydroxyl group and no carboxylic 

acid. Compound T97 has an alpha hydroxyl group at position-3 and the 

carboxylic acid is reduced to an alcohol. Compound T97 was neither able to 

activate nor inhibit C. difficile spore germination (Fig. 3.24). Since compound T84 

was able to bind to C. difficile spores with an alcohol alkyl chain, it is unlikely that 

the alcohol is solely responsible for the loss of binding. Optimal binding in C. 

difficile spores is a multi-faceted approach. Only one hydroxyl group paired with 

an alcohol functional group in the alkyl chain is probably does not have enough 

optimal functional groups for binding.  Compound T98 has a hydroxyl group in 

the alpha configuration at position-12 and a methyl ester. Compound T98 was 

unable to activate spore germination however inhibited with an IC50 of 0.37 mM 

(Fig. 3.24). As discussed previously, the methyl ester compound is strongly 

recognized by the C. difficile germination binding site(s) therefore, the presence 

of this functional group outweighs the less optimal conditions of few hydroxyls on 

the cholic acid backbone. Hydroxyl groups at positions-3 and -7 are not 

necessary for binding as long as there is a methyl ester present on the 

compound. Compound T99 has a hydroxyl at position-3 but it is in the beta 

Figure 3.23. Cholic acid analogs [T95 and T96]. The corresponding IC50 value is listed below each 
compound with the standard deviation in parentheses.   
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configuration. Compound T99 also has a methyl ester functional group in the 

alkyl chain. As expected, compound T99 did not trigger germination but was able 

to inhibit C. difficile spore germination with an IC50 of 1.3 mM (Fig. 3.24). This 

data suggests that a hydroxyl at position 3 also requires an ester group for 

efficient binding. Hydroxyls at positions-7 and -12 are not necessary as long as 

there is a methyl ester functional group. Furthermore, the IC50 for compound T99 

is higher than other methyl esters. It is probable that the methyl ester activity is 

able to overcome the suboptimal binding ability resulting from less hydroxyl 

groups on the cholate backbone. However, since the hydroxyl at position-3 is in 

the beta configuration and not in the optimal alpha configuration, the recognition 

is not as sensitive as other analogs. In conclusion, the data shows that as long 

as there is an ester in the side chain of the compound, the requirements for 

hydroxyl groups at specific positions and configurations are not essential. 

 

Figure 3.24. Cholic acid analogs [T97 – T99]. The corresponding IC50 value is listed below each 
compound with the standard deviation in parentheses.  Those without a listed value had no activity 
under the conditions tested.  

T97 

T98 T99 

Cholic acid 

IC50 0.37 mM (0.051) IC50 1.3 mM (0.54)
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Compound 
No. 

Modifications to taurocholate side 
chain 

EC50
a 

(stdev) mM 
IC50

b  
(stdev) mM 

T23 NH(CH2)4COOH NA 5.3 (0.24) 
T24 NH(CH2)4CONH(CH2)4COOH NA NA 
T25 NH(CH2)5COOH NA 2.3 (0.075) 
T26 NH(CH2)5CONH(CH2)5COOH NA NA 
T27 NH(CH2)2OSO3H NA NA 
T28 S(CH2)2SO3H NA NA 
T29 NHCH2PO3H NA NA 
T30 NHC6H5 NA 0.27 

(0.070) 
T31 NHC5H4N NA NA 
T32 NH(m-(C6H4))COOH NA 3.1 (0.78) 
T33 NH(o-(C6H4))COOH NA NA 
T34 NH(p-(C6H4))COOH NA 1.4 (0.11) 
T35 NH(m-(C6H8))COOH NA 0.47 

(0.069) 
T36 NH(m-(C6H4))COOCH3 NA NA 
T37 NH(m-(C6H4))OPO3H2 NA NA 
T38 NH(m-(C6H4))OH NA NA 
T39 NH(o-(C6H4))OH NA NA 
T40 NH(m-(C6H4))SH NA NA 
T41 NH(p-(C6H4))SH NA NA 
T42 NH(m-(C6H4))SCH3 NA NA 
T43 NH(m-(C6H4))NH2 NA 0.53 

(0.022) 
T44 NH(m-(C6H4))CH3 NA NA 
T45 NH(o-CH3-m-(C6H4)SO3H NA NA 
T46 NH(o-OCH3-m-(C6H4)SO3H 4.6 (0.34) NA 
T47 NH(o-CH3-m-(C6H4)COOH 16 (0.90) NA 
T48 NH(p-CH3-m-(C6H4)COOH NA 11 (0.025) 
T49 NH(o,p-(CH3)2-m-(C6H4)SO3H NA 5.6 (0.042) 
T50 NH(p,m-(CH3)2-m-(C6H4)SO3H NA 1.1 (0.098) 
T51 NCH3(m-(C6H4)SO3H 5.4 (0.10) NA 
T52 NH2(m-(C6H4)SO3H NA NA 
T53 NHCH3(m-(C6H4)SO3H NA NA 
T54 NH(1-C10H8) NA NA 
T55 NH(2-C10H8) NA NA 
T56 NH(C14H10) NA NA 
T57 NH(C16H10) NA NA 
T58 NH(C10H8)-3-OH NA NA 
T59 NH(C10H8)-1-SO3H NA NA 
T60 NH(C10H8)-1-CO2H NA NA 

Table 3.1. Effect of bile salt analogs on C. difficile spore germination.  



 

114 

T61 NH(C10H8)-5-CO2H 1.3 (0.19) NA 
T62 NH(C10H8)-3-OH-5-SO3H NA NA 
T63 NH(C10H8)-1,6-SO3H NA NA 
T64 NH(C10H8)-2,6-SO3H 5.7 (0.26) NA 
T65 NH2(C10H8)-1,5-SO3H NA NA 

 
Compound 

No. 
Modifications to 

taurochenodeoxycholate side chain 
EC50 

(stdev) mM 
IC50  

(stdev) mM 
T66 NHCH2SO3H 0.31 

(0.023) 
NA 

T67 NH(CH2)2SO2H NA 5.3 (0.20) 
T68 NH(CH2)2COOH NA 3.9 (0.80) 
T69 NH(CH2)4COOH NA 0.64 (0.19) 
T70 NH(CH2)4CONH(CH2)4COOH NA 1.9 (0.78) 
T71 NH(CH2)5COOH NA 1.1 (0.23) 
T72 NH(CH2)5CONH(CH2)5COOH NA 8.6 (0.38) 
T73 NH(m-(C6H4))SO3H NA 6.5 (0.20) 
T74 NHC6H5 NA NA 
T75 NH(m-(C6H4))COOH NA 0.93 (0.12) 
T76 NH(p-(C6H4))COOH NA NA 
T77 NH(m-(C6H8))COOH 7.4 (0.65) NA 
T78 NH(m-(C6H4))NH2 NA NA 
T79 NH(p-CH3-m-(C6H4)COOH NA 0.092 

(0.014) 
T80 NH(o,p-(CH3)2-m-(C6H4)SO3H NA 0.92 (0.16) 
T81 NH(p,m-(CH3)2-m-(C6H4)SO3H NA 0.75 

(0.077) 
T82 NH(C10H8)-2,6-SO3H NA 12 (0.48) 

 
Compound 

No. 
Modifications to cholic acid EC50 

(stdev) mM 
IC50  

(stdev) mM 
T83 Shorter alkyl chain NA 6.3 

(0.0070) 
T84 Alcohol side chain NA 0.33 

(0.0072) 
T85 Methyl ester side chain NA 0.059 

(0.0079) 
T86 Methyl ester side chain - shorter alkyl 

chain by 1 carbon 
NA 0.15 

(0.063) 
T87 Methyl ester side chain - shorter alkyl 

chain by 2 carbon 
NA 0.66 (0.10) 

T88 Ethyl ester side chain  NA 0.0082 
(0.00050) 

T89 Methoxylated hydroxyl groups NA NA 
T90 Hydroxyls at 3 (α) and 12 (α) NA 0.19 
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(0.025) 
T91 Hydroxyls at 3 (α) and 12 (β)  NA NA 
T92 Hydroxyls at 3 (β) and 12 (α)  NA 0.78 

(0.073) 
T93 Methyl ester with hydroxyls at 3 (α) and 

12(α)  
NA 0.097 

(0.068) 
T94 Methyl ester with hydroxyls at 3 (α)  

and 12 (β)  
NA 0.095 

(0.0012) 
T95 Hydroxyls at 3 (α) and 6 (α) NA 1.24 (0.11) 
T96 Methyl ester with hydroxyls at 3 (α) and 

6 (α)   
NA 0.037 

(0.021) 
T97 Alcohol with hydroxyl at 3 (α) NA NA 
T98 Methyl ester with hydroxyl at 12 (α)  NA 0.37 

(0.051) 
T99 Methyl ester with hydroxyl at 3 (β)   NA 1.3 (0.54) 

 

 

 

 

3.3.10.  Plant-Derived Cholesterol Analogs 

Bile salts found in mammals are essentially cholesterol analogs that are 

synthesized from cholesterol in the liver (143). Cholesterol analogs are also 

found in plants and vary in function. Some plant-derived cholesterol analogs are 

potent toxins and fatal when ingested and some are used medically. Others 

serve as growth hormones and are essential to plant metabolic activity making 

them useful agriculturally. During bile salt analog screening for C. difficile spore 

binding, several cholesterol analogs derived from plants were available for 

purchase. Although they differ from bile salts structurally, there are similarities in 

ring orientation or alkyl side chains. The focus of this project is to map the 

interactions between bile salt analogs and C. difficile spores therefore, all data is 

helpful to better understand the putative germination binding site(s).  

   a C. difficile spores were individually treated with 6 mM glycine and bile salt analogs. Standard 
deviations are shown in parentheses. 
   b C. difficile spores were incubated with bile salt analogs for 15 min prior to the addition of 6 mM 
taurocholate and 12 mM glycine. Standard deviations are shown in parentheses. 
   c NA, no change in absorbance after 90 minutes under the conditions tested thus no statistics 
could be performed. 
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Epibrassinolide is in a class of steroid plant hormones called 

brassinosteroids that stimulate various physiological plant cell processes and 

prevent infection (171, 172). When tested for activation or inhibition of C. difficile 

spore germination, epibrassinolide was unable to trigger germination. However, 

epibrassinolide inhibited C. difficile spore germination with an IC50 of 0.076 mM 

(Fig. 3.25). Epibrassinolide is a slightly less potent inhibitor of C. difficile 

germination than CamSA. It is unclear at this time how epibrassinolide is able to 

bind to the putative germination site(s). Although previous studies have shown 

that the C. difficile germination binding site(s) is very sensitive to methyl and ethyl 

esters, no cyclic esters were studied. It is possible that this sensitivity toward 

esters allows the germination binding site(s) to overcome the other differences in 

the structure of epibrasssinolide.  

Ursolic acid, found in high concentrations in apple peels, has been found 

to inhibit muscular atrophy-associated gene expression in humans and in mice 

(173, 174). Ursolic acid was unable to bind C. difficile spores (Fig. 3.25). It is 

likely that the lack of hydroxyls and the bulkiness of the uppermost rings prevent 

proper C. difficile binding. 



 

117 

 

Some steroids found in plants have important impacts on biological 

systems. Digoxigenin, ouabain, and digitoxin are three such steroids (175-180). 

These toxins contain the four cholesterol rings and an α,β–unsaturated lactone. 

An α-methylene-γ-lactone is an electrophilic functional group capable of 

participating in Michael additions with biological nucleophiles such as sulfhydryl 

groups of cysteine residues forming an irreversible adduct (181-184). These 

compounds may be used as molecular probes to irreversibly bind the binding 

site(s) for characterization. Unfortunately, neither digoxigenin nor digitoxin was 

able to bind to C. difficile spores. Although ouabain did not trigger C. difficile 

spore germination, it did inhibit with an IC50 of 7.3 mM (Fig. 3.26). Ouabain has 

multiple functional groups on the cholate backbone and a side chain of L-

rhamnose sugar. Besides the cholate backbone the structure of ouabain is quite 

different than taurocholate and other bile salt analogs tested. The mechanism by 

which ouabain binds to C. difficile spores is unclear. However, ouabain could 

potentially be used as a probe to determine the binding site(s) residues in C. 

difficile.  

Figure 3.25. Plant-derived cholesterol analogs. Epibrassinolide (left) and ursolic acid (right). The 
corresponding IC50 value is listed below each compound with the standard deviation in parentheses. 
Those without a listed value had no activity under the conditions tested. 

IC50 0.076 mM (0.0015)
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3.3.11.  Fluorinated Cholic Acid Derivative 

The cholic acid derivative containing 17 fluorines was synthesized for a 

different project. However, since the C. difficile germination binding site(s) are 

unknown, all data generated from in vitro kinetic studies will help characterize the 

binding region for bile salts. The fluorinated compound was unable to activate C. 

difficile spore germination and was also unable to inhibit germination (Fig. 3.27). 

The large concentration of fluorine in the alkyl chain will increase the overall 

negativity of the compound. This strong negative charge and the bulky side 

group likely affected this compound from being able to bind to C. difficile spores. 

 

Figure 3.27. Fluorinated cholic acid derivative. This compound 
had no activity under the conditions tested. 

Figure 3.26. Plant-derived steroids. Digoxigenin (left), digitoxin (middle) and ouabain (right). The 
corresponding IC50 value is listed below each compound with the standard deviation in parentheses. Those 
without a listed value had no activity under the conditions tested. 

IC50 7.3 mM (0.050)
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3.4. Conclusions 

 The putative taurocholate binding site(s) in C. difficile spores is a very 

complicated structure. The microenvironment is quite complex with respect to 

functional groups that are recognized for binding and activating germination and 

binding but inhibiting germination. Unfortunately, the data and results generated 

from this project were not able to completely describe the requirements for C. 

difficile bile salt recognition by the putative bile salt binding site(s). Although we 

hoped to find obvious patterns in functional groups and spatial arrangements 

necessary for binding, only a few final conclusions can be drawn. Many 

compounds will require further screening to understand how they interact with the 

germination binding site(s). On the other hand, until this project very little was 

known about the microenvironment of the C. difficile taurocholate germination 

binding site(s). The fact that some correlations between binding and recognition 

were observed during this study is a stepping-stone in C. difficile spore 

germination research.  

 Taurocholate, the natural bile salt activator of C. difficile spore 

germination, has a linear (taurine) side chain bound to cholate by an amide bond. 

The number of carbons in the taurine side chains is two carbons. Our results 

suggest that inhibitors with an even number of carbons in the alkyl side chain are 

more active than their odd numbered counterparts. Furthermore, the activity 

diminishes with increased chain length. Although some odd numbered alkyl chain 

analogs were able to interact with C. difficile spores, their activity required much 

higher concentrations.  
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 In chapter 2, the meta-benzene sulfonic acid analog (CamSA, [T15]) was 

found to be a potent inhibitor of taurocholate-mediated germination. In this study, 

CamSA analogs were produced and assessed for activity with C. difficile spores 

in attempt to understand why CamSA is an effective inhibitor. The aromatic ring 

in CamSA is partially responsible for activity since an analog with no sulfonic acid 

substituent was able to inhibit spore germination. However, the sulfonic acid 

moiety is optimal for binding. Phenolic groups negatively affected the ability of 

the analog to bind to the C. difficile germination binding site(s). In general, the 

putative germination binding site(s) requires electronegative functional groups 

that cause an electron withdrawing effect on aromatic rings. Strong acid 

functional groups, specifically sulfonic acids, are preferred over weak acid 

functional groups. Oxygen atoms in the functional group (except hydroxyl) on 

aromatic rings are necessary for recognition. In contrast, sulfur is not essential 

since carboxylic acids are recognized by the C. difficile germination binding 

site(s).  

Since CamSA could be used as a preventative for CDI in animal studies, it 

will come into contact with bile salt hydrolases in the gut of animals. To make 

CamSA more stable, the amide linkage was methylated (188). However, this 

modified analog was no longer able to inhibit spore germination but activated 

germination. Although it is unclear how compound T51 activates germination, the 

fact that it no longer inhibits spore germination renders it impractical for animal 

studies or bile salt hydrolase studies.  
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Polycyclic aromatic hydrocarbons (PAH) consist of two or more fused 

benzene rings that are flat and very rigid molecules. When cholate was coupled 

with PAHs with two to four fused aromatic rings, the analog was weakly 

recognized or not at all by C. difficile spores. Interestingly, two bile salt analogs 

containing naphthalene and a carboxylic acid or a sulfonic acid at position 4 and 

5 were recognized and activated C. difficile spore germination, albeit weakly. 

Acid moieties at other positions (of naphthalene) had no effect on C. difficile 

spore germination. Clearly, there is an interaction that can be made with the C. 

difficile binding pocket when the molecule has the acid in this specific placement 

on naphthalene. It is unclear at this time how this interaction occurs. We expect 

that the C. difficile binding region for bile salts is dynamic in structure allowing 

functional groups to bind that have certain size, shape, and chemical properties. 

Taurochenodeoxycholate is a natural bile salt that inhibits C. difficile spore 

germination in vitro and differs from taurocholate in the lack of a hydroxyl group 

at position-12 in the cholate backbone. Taurochenodeoxycholate analogs with 

linear side chains have similar activity on C. difficile spore germination. The 

hydroxyl at position-12 is not necessary for binding and activating germination as 

long as the chain is short. Longer alkyl side chains with carboxylic acid functional 

groups are unable to activate spore germination but are able to bind to the C. 

difficile germination binding site(s). Similar to the linear chain taurocholate 

analogs, taurochenodeoxycholate linear analogs were more effective when the 

carbons in the alkyl chain were an even number.  
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Most compounds that were able to bind as the cholate (backbone) 

analogs were also able to bind as the chenodeoxycholate analogs. In some 

cases, no hydroxyl group at position-12 resulted in increased activity. A 

compound was discovered in this study that is only about 1.5-fold less potent 

than CamSA. More studies will be needed to determine if this compound is a 

candidate for pharmacokinetics and animal studies. 

The hydroxyl group at position-12 is necessary for activation of 

germination. Except one analog, all other analogs that activated spore 

germination as the cholate analog were unable to activate germination without 

the hydroxyl group. Correlations between hydroxyl groups and side chains are 

difficult to make conclusively with the data provided. More analogs will need to be 

tested for activity in C. difficile spore germination to define patterns and explain 

inconsistencies.  

Cholic acid is an unconjugated bile salt with a carboxylic acid moiety. The 

side chain length is important for activation of C. difficile spore germination. The 

carboxylic acid moiety and the length of the alkyl chain are optimal for activation 

of germination by cholic acid. Modifications to the side chain did not prevent 

recognition by C. difficile spores. As long as an oxygen atom was present, the 

bile salt was able to bind and inhibit spore germination. In fact, an ester 

functional group in place of the carboxylic acid resulted in potent inhibition of C. 

difficile spore germination. An ester with an ethoxy group inhibited spore 

germination at concentrations eight fold lower than CamSA. This is the most 

potent inhibitor discovered to in this project. The sum of these data suggest that 
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carboxylic acids on unconjugated bile salts are optimal for activation of C. difficile 

spore germination, longer not shorter alkyl chains are optimal for recognition and 

ester groups with ethoxy groups are potent inhibitors of C. difficile spore 

germination.  

The results from these studies suggest that the hydroxyl group at position-

12 is not essential for C. difficile spore recognition. The hydroxyl group at 

position-7 is essential for activation of C. difficile spore germination when there 

are hydroxyls at position-3 and -12 or at position-3 and -6 as well as a free 

carboxylic acid moiety on the alkyl chain. However, the hydroxyl group at 

position-7 is not essential for binding unless the hydroxyl at position-12 is in the 

beta configuration. The alpha configuration of the hydroxyl at position-12 is 

optimal for binding when there is a carboxylic acid and no hydroxyl at position-7. 

This requirement is void however if the carboxylic acid functional group is 

replaced with an ester group. The strong recognition of the ester overcomes the 

unrecognized configuration of the hydroxyl at position-12. The hydroxyl at 

position-3 can be in either configuration for recognition by C. difficile spores but 

the alpha configuration is preferred. As long as there is an ester in the alkyl chain 

there can be one hydroxyl at either position-3 or position-12 and the bile salt can 

be recognized. The results from these studies provide strong evidence that the 

C. difficile germination binding site(s) is quite sensitive to ester functional groups.  

Although many of the cholic acid analogs were able to bind to C. difficile 

spores, none were able to activate spore germination. The requirements for 

activation by cholic acid are very specific. There must be three hydroxyl groups 
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all in the alpha configuration and located on position-3, -7, and -12. A carboxylic 

acid functional group must be present on the alkyl chain. Any changes to these 

requirements result in loss of activation but not binding, suggesting a combined 

role for these germinant functional groups. In conclusion, the functional groups 

and arrangements of functional groups are not flexible for activation of C. difficile 

spore germination. Ester containing compounds are highly active at binding to C. 

difficile spores, suggesting a specific binding region that this functional group is 

able to occupy. 

This project analyzed many bile salt analogs in attempt to map the 

interactions between bile salts and C. difficile spores. Some correlations between 

functional groups and activity were discovered however many interactions are 

still uncharacterized. Another focus of this study was to identify compounds that 

can inhibit C. difficile spore germination in vitro. Many inhibitors were discovered 

however only a few are as good as or better than CamSA. Unfortunately, the bile 

salts and analogs that were superior to CamSA are also very expensive 

commercially and difficult to produce. Based on cost and activity, CamSA is the 

best current candidate for pharmacokinetic characterization and animal studies of 

CDI.  
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CHAPTER 4 

IN VITRO CHARACTERIZATION OF CAMSA 

4.1. Introduction 

The meta-benzene sulfonic acid derivative of taurocholate, CamSA, is a 

potent inhibitor of C. difficile spore germination in vitro. In fact, CamSA is active 

at concentrations 250-fold lower than taurocholate, the natural germinant. 

Furthermore, CamSA is 4-fold lower than chenodeoxycholate, the natural 

inhibitor. CamSA was also chosen as the lead compound for in vitro 

characterization due to the high yields obtained and the relative ease of 

purification. The procedure of coupling cholic acid to meta-aminobenzene 

sulfonic acid yields >80% of pure CamSA. The sodium salt of CamSA has high 

solubility in water and DMSO compared to other analogs. The ethyl and methyl 

esters of cholate derivatives [T85, T88, and T96] have very low IC50s in vitro. 

However, these compounds are highly insoluble in water and are expensive 

comparatively to produce. Based on these criteria CamSA is the most practical 

choice for characterization in vitro for potential CDI chemotherapeutic use. 

Pharmacokinetic analysis of anti-germinants is a necessary step in 

determining potential novel therapeutic agents for CDI. The fate of a drug 

depends upon its absorption, distribution, metabolism, and excretion (ADME). In 

vitro characterization can predict the ADME parameters prior to in vivo testing 

(189). Furthermore, guidelines describe that potential drugs must be safe, 

delivered to the target site, manufactured at minimal cost, and stable (190, 191). 

The bioavailability of any drug must be determined to ensure proper distribution 
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and dosage to target tissues/organs and limited distribution outside of the target 

areas (189, 192). Oral medications must also be stable to the changing 

environments of the gastro-intestinal tract (193). Because, C. difficile spores 

germinate in the GI tract and the resulting infection is localized to the intestine, 

proper treatment should target the intestinal tract and have low absorption into 

the blood and other tissues (35). 

Mammalian cell culture has been used extensively to predict the 

cytotoxicity of potential drugs on different tissues (194-196). Comparison of basal 

cell parameters to varying drug concentration allows researchers to predict 

whether organ-specific toxin events may occur. Assessing the cytotoxicity of 

drugs for CDI on epithelial cells and immune cells provides information about 

toxicity to cells in direct contact with the bacterium and the drug.   

C. difficile toxins cause severe damage to the epithelial cells in the 

intestinal tract resulting in characteristic symptoms of CDI (78). Due to the drastic 

difference in in vitro growth conditions between cultured mammalian cells and C. 

difficile, toxins secreted during bacterial growth are often used to assess the 

effects on cultured cells (197, 198). This is an indirect way to measure whether 

C. difficile spores have germinated into toxin-producing cells and whether toxin 

production is sufficient to affect the viability of cultured mammalian cells. 

Based on the criteria described above, CamSA was assessed for several 

pharmacokinetic parameters in vitro prior to animal studies. The effect of CamSA 

on bacterial proliferation was observed using common enteric bacteria. CamSA 

stability in simulated gut microenvironments was determined. The apparent 
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permeability of CamSA through mammalian intestinal lining was predicted. 

Finally using cell culture, CamSA was assessed for cytotoxicity and for the ability 

to prevent toxin-induced cell death. The purpose of this project was to determine 

if CamSA is a good candidate for animal studies. 

4.2. Materials and Methods 

4.2.1. General comments 

 Bile salts and amino analogs were purchased from Sigma Aldrich 

Corporation (St. Louis, MO). CamSA was synthesized in the Abel-Santos 

laboratory as described previously. Thin layer chromatography silica gel 60 F254 

was purchased from EMD Chemicals (Gibbstown, NJ). Bacterial cultures, tissue 

cultures, and media were purchased from the ATCC (Manassas, VA). CellTiter-

Glo luminescent cell viability assay was purchased from Promega (Madison, WI). 

4.2.2. Effect of CamSA on Bacterial Growth 

 Laboratory strains of Bacillus cereus, E. coli, Bifidobacterium longum, 

Lactobacillus gasseri, Clostridium difficile strains 630, and C. difficile strain VPI 

10463 were inoculated from freezer stock onto appropriate agar medium as 

directed by ATCC. Plates were incubated overnight at 37 °C either aerobically (L. 

gasseri, B. cereus, and E. coli) or anaerobically (C. difficile and B. longum). 

Single cell clones were carefully selected and used to inoculate 5 mL of liquid 

medium. Inoculated broth was shaken at 37 °C for approximately four hours until 

optical density at 580 nm reached 0.8 representing exponential phase of growth 

(199). Bacteria were sub-cultured (1:100) into fresh media supplemented with 0 

or 10 mM CamSA, taurocholate, or chenodeoxycholate. Optical density was 
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recorded at time 0 and then at 1, 2, 3, 4, 6, 8, and 24 hours post inoculation. 

Growth to stationary phase was determined when optical density reached OD580 

>1.5. Bacterial growth was monitored on a ThermoElectron Biomate 5 

spectrophotometer at 580 nM. Cultures supplemented with bile salts were 

compared to the control cultures grown under normal conditions. 

4.2.3. Stability of CamSA in Artificial Gastric and Intestinal Juice 

CamSA was analyzed for stability in simulated gastric and intestinal juices 

as published (193). Artificial gastric juice (no pepsin) is a 0.05 M sodium chloride 

solution adjusted to pH 1.5 with HCl. Artificial intestinal juice (no pancreatin) is a 

0.05 M sodium dihydrogen phosphate buffer at pH 6.8 (193). CamSA (100 mg) 

was added to 1 ml of either artificial intestinal or artificial gastric juice and 

incubated at 37 °C for 24 hours. Aliquots were taken at 4, 8, 12, and 24 hours. 

Samples (1 μl) were spotted on silica thin layer chromatography (TLC) plates and 

allowed to dry. Plates were developed with 75% ethyl acetate/methanol. TLC 

plates were visualized by spraying with 10% wt/vol phosphomolybdic acid 

(PMA)/ethanol solution followed by heating at 100 °C for 2 minutes. 

Quantification of CamSA was determined using a GE Healthcare Typhoon 9410 

Variable Mode Imager and analyzed using ImageQuant TL 5.2 software. 

4.2.4.Stability of CamSA with Bile Salt Hydrolase-Producing Bacteria 

Bifidobacterium longum, Lactobacillus gasseri, and Escherichia coli DH5-α 

were obtained from ATCC. B. longum was streaked for single colonies on tryptic 

soy agar (TSA) supplemented with 5% defibrinated sheep blood and incubated 

overnight anaerobically at 37 °C. L. gasseri was streaked for single colonies on 
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Difco Lactobacillus MRS (de Man, Rogosa, Sharpe) agar. E. coli was streaked 

for single colonies on Luria-Bertani (LB) agar. Both L. gasseri and E. coli were 

incubated overnight aerobically at 37 °C. Individual colonies were chosen to 

inoculate appropriate media and adjusted to an OD580 of 1.0 with fresh media 

supplemented with 6 mM CamSA. As control, bacterial cultures were separately 

incubated with taurocholate, cholic acid, taurodeoxycholate, and 

chenodeoxycholate. Bacterial cultures/bile salt mixtures were incubated at 37 °C 

for 24 hours. Samples were taken at 4, 8, 12, and 24 hours for analysis. Bile salt 

stability was monitored by TLC and quantified as above. Percent conjugated bile 

salts were derived by comparing the intensity of cholic acid TLC spots obtained 

following incubation to the intensity of the TLC spot for cholic acid obtained at the 

beginning of incubation. A known concentration of cholic acid spotted on TLC 

was set at 100%. 

4.2.5. In vitro Caco-2 Permeability Assays 

Caco-2 permeability assays of CamSA were performed by Apredica, LLC 

(Watertown, MA). Briefly, CamSA was dissolved in DMSO and added to Caco-2 

cell cultures to 10 μM final concentration. CamSA was analyzed for both apical to 

basolateral permeability and basolateral to apical permeability across a Caco-2 

cell monolayer. After a 2 hour incubation, CamSA concentrations in the apical 

and basolateral sides of the Caco-2 monolayers was determined by HPLC-MS. 

4.2.6. Cytotoxicity of CamSA 

 Vero, Caco-2, and J774A.1 cell lines stored in growth medium 

supplemented with 5% (v/v) DMSO were thawed rapidly from liquid nitrogen 
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storage. Cell lines were grown in minimum essential medium (MEM) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

(complete medium) at 37 °C in a humid incubator containing air at 95% and CO2 

at 5% (200). To remove cells from tissue culture flasks, 1X trypsin-EDTA (1mM 

EDTA) was added and incubated with cells for 5 minutes. Complete medium was 

added and using a cell scraper, monolayers were gently removed. Cells were 

recovered by 800 x g for 5 minutes at room temperature and the cell pellet was 

resuspended in fresh media. A sample of cell suspension was treated with trypan 

blue to determine basal cell viability (201). Trypan blue is a dye exclusion method 

that selectively stains dead or dying cells that do not have an intact (viable) cell 

membrane (201). Trypan blue treated cells were inserted into a hemocytometer 

and viewed by light microscopy for enumeration of live cells (usually >90% live 

cells). Culture cells were plated in 12-well or 96-well tissue culture treated plates 

at a density of 105 cells/ml and allowed to attach overnight. Spent media was 

removed and fresh media supplemented with CamSA in DMSO at a final 

concentration of 50 or 200 μM was added to the wells. As negative control, cells 

were supplemented with media containing DMSO. As positive control cells were 

treated with 10% EtOH. Plates were incubated overnight as described above.  

 The 12-well plates containing cell cultures were used as a qualitative 

method to visualize cytotoxicity by cell rounding and trypan blue. Following 

overnight treatment with 0, 50 or 200 μM CamSA or 10% EtOH, media was 

removed from wells and PBS containing 0.4% trypan blue was added. After 5 

minutes, cells were visualized using a light microscope and observed for blue 
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stained cells. The number of blue cells in CamSA-treated wells was compared to 

the number of blue cells in the negative and positive control wells. Morphological 

change (rounding) was also determined by comparing CamSA-treated to positive 

and negative control cells.   

 The 96-well plates cultured with mammalian cells were used as a 

quantitative method using the CellTiter Glo Luminescent cell viability assay. This 

assay quantitates the concentration of ATP, which indicates metabolically active 

cells (202). After overnight treatment, the 96-well plates were equilibrated to 

room temperature for 30 minutes before addition of the CellTiter-Glo reagent. 

Luminescence was read with an integration time of 1 second per well using a 

Tecan Infinite 200 plate reader and iControl software.  All experiments were done 

in triplicate. 

4.2.7. C. difficile Toxin-Induced Cell Death 

 C. difficile spores were washed five times with nanopure water, heat 

activated at 68 °C for 30 minutes and washed five more times with water. Spore 

pellets were resuspended in 0.1 M sodium phosphate buffer at pH 6.0 

supplemented with 0.5% sodium bicarbonate (germination buffer) to an OD580 of 

1.0. Spores were diluted five-fold in BHI broth containing 6 mM taurocholate/12 

mM glycine (germinants), germinants supplemented with CamSA at 50 μM 

(CamSA 50) or 200 μM (CamSA 200), or germinants supplemented with 

chenodeoxycholate at 200 μM (CDCA 200). The resulting mixtures were 

incubated at 37 °C anaerobically overnight. The following day, the cells/spores 
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were removed by centrifugation and the supernatants were filtered through 0.2 

μm sterile filter (Fig. 4.1).  

In parallel, cell lines were cultured in 96-well plates as described above. 

Fresh media containing no bacterial supernatant or bacterial supernatant at 

varying concentrations (percent v/v) were added to the cultured vero and Caco-2 

cells (Fig. 4.1). Cells were also treated with BHI as an added control. After 

overnight incubation, the plates were treated as before for the CellTiter Glo 

viability assay and luminescence was obtained using a plate reader and software 

as described. 

 

4.2.8. Statistical Analysis 

Standard deviations represent at least three independent measures, unless 

otherwise stated. Analysis of data by 1-Way ANOVA for nonparametric analysis 

had a statistical significance set at a p value of < 0.05. Student’s paired t-test was 

Figure 4.1. Representation of the method for treating culture cells with supernatants derived from C. 
difficile spores. C. difficile spores in BHI were supplemented with taurocholate and glycine (test tube A 
above), taurocholate, glycine and CamSA (test tube B above), and taurocholate, glycine, and 
chenodeoxycholate (test tube C above). After overnight incubation of C. difficile spores with supplements, 
the supernatants were recovered by centrifugation and sterile filtered. Supernatants were titrated into wells 
containing mammalian cells in growth medium. 
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used to determine the significance of difference of means and the p value was 

set at < 0.05. 

4.3. Results and Discussion 

4.3.1. Effect of CamSA on Bacterial Growth 

Three of the bacterial strains (B. longum, L. gasseri and E. coli) chosen for 

this study are indigenous human intestinal bacteria and two strains cause 

disease in humans (B. cereus and C. difficile). Indigenous bacteria resist 

colonization of C. difficile and these same bacteria are compromised during 

antibiotic treatment (74, 142, 203). Since the natural flora is imperative to the 

resistance of infection by C. difficile, therapies to counteract or prevent CDI 

should not damage this natural barrier (142, 204). B. longum and L. gasseri are 

both Gram-positive bacterium that harmlessly populate the human intestinal tract 

and aid in bile salt degradation (205, 206).  E. coli is a Gram-negative bacterium 

common to the human intestine (207). Most E. coli strains are non-pathogenic 

(like the strain used in this study) although some strains are associated with 

infection and disease (208). E. coli, B. longum, and L. gasseri are exposed to bile 

salts regularly (144, 209). In fact, B. longum, and L. gasseri with other indigenous 

bacteria aid in important bile salt modifications in the gut. Modifications include 

epimerization, deconjugation by bile salt hydrolases, oxidation, reduction, 

hydroxylation and dehydroxylation (144, 210).  Modified bile salts aid in digestion 

and the removal of cholesterol from enterohepatic circulation (144, 210). 

Associations between E. coli and bile are not well understood but E. coli is bile 

salt resistant (144). E. coli, B. longum, and L. gasseri were each assessed for 
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growth in the presence of taurocholate, chenodeoxycholate or CamSA. As 

expected, these three normal gut bacteria were unaffected by bile salts 

supplemented in the growth medium (Table 4.1). These results indicate that 

although CamSA is a bile salt analog, it retains essential bile salt characteristics 

that allow it to be tolerated by enteric bacteria tested in this study. Furthermore, 

CamSA was tolerated by both Gram-positive and Gram-negative bacteria. 

The Gram-positive bacterium, B. cereus, is an important bacterium that 

produces toxins associated with food spoilage and subsequent food-borne illness 

(211, 212). It is postulated that B. cereus is a transitory species in the natural gut 

flora (213). Bacillus cereus is widely distributed in the environment and toxins 

ingested from spoiled food cause severe vomiting and diarrhea (211, 212, 214). 

Since B. cereus has been found in the feces of humans, cells and/or spores likely 

encounter bile salts during transit through the GI tract (211, 213, 215). Previous 

reports have shown that B. cereus is unable to grow in the presence of bile salts 

(216, 217). B. cereus vegetative cells added to control media resulted in normal 

growth with OD580 saturation at 24 hours. However, B. cereus did not grow in 

media supplemented with taurocholate, chenodeoxycholate or CamSA (Table 

4.1). This suggests that CamSA is similar to taurocholate and 

chenodeoxycholate in preventing the growth of B. cereus (216, 217).  

In vitro kinetic data suggests that CamSA prevents C. difficile spore 

germination but other bile salts have been shown to inhibit vegetative growth 

(140, 141). Recovery of C. difficile in growth medium is enhanced by the addition 

of the bile salt, taurocholate (138, 218, 219). Other bile salts such as 
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chenodeoxycholate prevent the vegetative growth of C. difficile in culture (140, 

220). CamSA prevents C. difficile spore germination in vitro however the effect 

on vegetative growth was not studied. Since C. difficile is the focus of this project, 

effect of CamSA on vegetative growth was determined. Two strains of C. difficile 

were observed for growth in the presence of taurocholate, chenodeoxycholate or 

CamSA. C. difficile strain 630 and VPI 10463 grew to saturation in the presence 

of taurocholate. However, neither grew in the presence of chenodeoxycholate as 

expected (140, 220). CamSA supplemented in C. difficile growth medium did not 

affect either C. difficile strain tested and each grew normally (Table 4.1). These 

data support previous reports of taurocholate and chenodeoxycholate effects on 

C. difficile growth. Although CamSA inhibits spore germination in vitro, CamSA 

does not affect the vegetative growth of C. difficile. In conclusion, this data 

supports the proposed mechanism that CamSA inhibits spore germination and 

has no affect as an antibacterial agent. 

Table 4.1. Effect of Bile Salts on Bacterial 
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4.3.2. Stability of CamSA in Simulated Gut Microenvironments 

 CamSA is a taurocholate analog with an amide bond linking cholic acid to 

meta-benzene sulfonic acid. To be effective CamSA must survive the changing 

environments of the GI tract. If CamSA is going to be administered orally, it must 

be stable to the extremely low pH of gastric juices located in the stomach. 

CamSA was incubated with simulated gastric juice at pH 1.5. Degradation of 

CamSA was not observed after 24 hours in gastric juice. CDI is localized to the 

intestinal tract (12), therefore effective treatment must be stable in intestinal 

juices. CamSA was incubated with simulated intestinal juice and no degradation 

of CamSA was evident even after 24 hours. Hence, CamSA is stable in 

simulated gastric and intestinal juices at the pH likely encountered during the oral 

route of drug delivery to the intestinal tract. 

 

A. B.

 

C.

 

D. 

Figure 4.2. Bile salts used for bile salt hydrolase deconjugation studies. A) taurocholate, B) 
CamSA, C) taurochenodeoxycholate, and D) chenodeoxycholate 
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 Bacterial bile salt hydrolases (BSHs) can hydrolyze conjugated bile salts 

(144, 187). Bifidobacterium longum and Lactobacillus gasseri are two intestinal 

bacteria commonly used as test strains for BSH production (187, 205, 221). 

CamSA is a conjugated bile salt similar to the natural bile salt that activates C. 

difficile spore germination, taurocholate (Fig. 4.2). Taurochenodeoxycholate is 

the conjugated derivative of chenodeoxycholate (Fig. 4.2). After four hours 

incubation with a culture of B. longum, approximately 25% of CamSA is 

hydrolyzed to cholic acid (Scheme 4.1 and Fig. 4.3A). Taurocholate is degraded 

quickly in the first four hours resulting in almost 60% degradation (Fig. 4.3A, [] 

p < 0.005). Taurochenodeoxycholate is hydrolyzed faster than CamSA but slower 

than taurocholate; within four hours 36% was hydrolyzed (Fig. 4.3A, [*] p < 

0.005). After 24 hours incubation with B. longum, 79% of CamSA and 83% of 

taurocholate are hydrolyzed to cholic acid. There was no significant difference 

determined between CamSA and taurocholate degradation after 24 hours (Fig. 

4.3A [**]). Taurchenodeoxycholate is hydrolyzed at a slower rate than either 

CamSA or taurocholate by B. longum as only 55% had been hydrolyzed after 24 

hours (Fig 4.3A [★] p < 0.01). In the first four hours following incubation with L. 

gasseri, 1% of CamSA, 7% of taurocholate, and 14% of taurochenodeoxycholate 

was hydrolyzed to cholic acid (Fig. 4.3B). This degradation by L. gasseri in the 

first four hours for CamSA and taurocholate was significantly different than the 

degradation by B. longum in the first four hours (Fig. 4.3A and B [] p < 0.05) 

CamSA and taurocholate are less sensitive to degradation in the presence of L. 

gasseri than to B. longum after 24 hours (Fig. 4.3A and B [+] p < 0.03). Less than 
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30% of CamSA was hydrolyzed to cholic acid after 24 hours by L. gasseri (Fig. 

4.3B [i] p < 0.05).  In contrast, 64% of taurochenodeoxycholate had been 

hydrolyzed after 24 hours (Fig. 4.3B [iii] p < 0.05). Taurocheneodeoxycholate is 

more sensitive to degradation by L. gasseri than it is to B. longum (p <0.05). 

Chenodeoxycholate is not a conjugated bile salt and showed no degradation 

when incubated with either B. longum or L. gasseri. E. coli does not produce 

BSH and bile salts were stable after 24 hour incubation with E. coli cultures.  

 

 Bile salt hydrolases produced by enteric bacteria will degrade CamSA 

when present. However, indigenous bacteria are severely compromised due to 

antibiotic exposure allowing the outgrowth of C. difficile (142). Based on these 

data, we predict that CamSA would only minimally be degraded following 

antibiotic therapy. Once therapy ceases and the normal flora replenish the 

Scheme 4.1. Schematic representation of the hydrolysis of CamSA by bile salt hydrolase. 

A. B. 

Figure 4.3 Incubation of CamSA with bile salt hydrolase-producing bacteria. A) Incubation of bile salts with 
B. longum. B) Incubation of bile salts with L. gasseri. Data indicates percent of conjugated bile salt 
remaining after incubation. Incubation times are represented by black bars (4 hours), hatched bars (8 
hours), white bars (12 hours), and dotted bars (24 hours). Statistical analysis of bile salt degradation at 
different time points was compared using 1-way ANOVA. Analysis of bile salts at 24 hours was compared 
using the student’s paired t test. For both analyses, the p was set at < 0.05. B. longum comparisons: 
degradation of taurocholate within the four hours () p < 0.005, each bile salt after four hours (*) p< 0.005, 
CamSA and taurocholate after 24 hours (**), each bile salt after four hours (�) p < 0.01. Degradation by B. 
longum and L. gasseri comparisons: CamSA after four hours and taurocholate after four hours () p < 0.05, 
CamSA after 24 hours and taurocholate after 24 hours (+), CamSA at four and 24 hours (i.) p < 0.05, 
taurocholate at four and 24 hours (ii.) no significant difference, and taurochenodeoxycholate at four and 24 
hours (iii.) p < 0.05. 
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intestinal lumen, CamSA will be hydrolyzed and excreted. Further metabolic in 

vivo data will be needed to support this hypothesis.  

4.3.3. CamSA Predicted Oral Bioavailability 

 To prevent C. difficile spores from germinating, CamSA needs to be 

retained in the intestinal lumen. Furthermore, there is less chance of toxic side 

effects to non-targeted organs if the anti-germinant therapeutic drug has a low 

oral bioavailability (192). Caco-2 permeability serves as an in vitro surrogate 

assay for intestinal permeability (222). Potential drugs are added to the apical 

side and the amount of permeation is determined on the basolateral side (Fig. 

4.4). The permeation from apical to basolateral suggests the absorption of the 

drug across the gut wall and the rate of transport can be calculated. The opposite 

is used to determine basolateral to apical permeation. The permeability 

coefficient (Papp) is obtained by dividing the rate of permeation by the initial drug 

concentration and the area of the monolayer. The permeability ranking for Papp 

less than 0.5 is low permeability, moderate permeability is 0.5 to 5 and high 

permeability is greater than 5. The basolateral to apical permeability suggests 

whether the drug will undergo active efflux. The receiver side buffer is removed 

for analysis.  
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Natural bile salts are regulated in the GI tract by active and passive 

transport for reabsorption in enterohepatic circulation (143). Cholic acid, 

chenodeoxycholate, taurocholate and other bile salts have high permeability in 

simulated gut wall experiments (143, 223, 224). Furthermore, natural bile salts 

enhance the permeability of certain molecules across cell monolayers due to 

their ability to form micelles at high concentrations (223). The critical micelle 

concentration is currently not known for CamSA. In a Caco-2 permeability assay, 

CamSA displayed an apical to basolateral permeability coefficient (Papp) of 0.00 x 

10-6 cm/s. The Papp of CamSA was compared to ranitidine which has a Papp of 0.3 

x 10-6 cm/s and warfarin which has a Papp of 42.9 x 10-6  cm/s. Based on the 

permeability scale, CamSA has low to no permeability from Caco-2 cells’ apical 

to basolateral side.  

Bile salts can enhance permeability of molecules across the intestinal cell 

lining by forming micelles (143, 223, 224). The concentration of CamSA used for 

these experiments was significantly lower (10 μM) than the critical micelle 

concentration (CMC) of other bile salts. The CMCs for taurocholate and 

chenodeoxycholate are estimated to be 7 mM and 8 -12 mM, respectively (225, 

Figure 4.4. Caco-2 permeability assay  
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226). These data show that at low concentrations, CamSA does not traverse the 

intestinal lining. However, at higher concentrations CamSA may form micelles 

like other bile salts. The CMC of CamSA will need to be determined in future 

studies.  

CamSA displayed a basolateral to apical Papp of 10.9 x 10-6 cm/s. The 

basolateral to apical Papp was also compared to ranitidine which has a Papp of 1.8 

x 10-6 cm/s and warfarin which has a Papp of 16.0 x 10-6 cm/s. Based on the 

permeability scale described above, CamSA has high permeability from the 

basolateral cell side to the apical side. It is likely that CamSA is actively 

transported to the apical surface of the Caco-2 monolayers. In the Caco-2 

permeability assay, CamSA at 10 μM is not absorbed by the apical surface of the 

monolayer and is effluxed from the basolateral.  

From both data sets the efflux ratio (RE) can be calculated by dividing the 

basolateral Papp by the apical Papp. An RE of greater than 2 indicates a significant 

efflux activity and indicates a candidate substrate for active transporters such as 

P-glycoprotein (227). Ranitidine has a RE of 6, warfarin has a RE of 0.4 and 

CamSA has a RE of 11. The sum of this data suggests that CamSA has low 

bioavailability and will remain in the lumen of the gut. 

An in vitro ADME-Tox test was also conducted to estimate the percent 

recovery of CamSA from either the apical to basolateral permeability or 

basolateral to apical permeability. In both assays CamSA was recovered at 

100% indicating low binding to and low accumulation inside Caco-2 cells. The 

recovery of CamSA at 100% also indicates low metabolism by Caco-2 cells (228, 
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229). The ADME-Tox test further supports that CamSA will be stable and remain 

in the intestinal lumen. 

4.3.4. Cytotoxicity of CamSA 

 Cell culture can be a useful tool to predict toxicity of therapeutic agents to 

particular tissues or to immune cells (194-196). There are many ways to 

determine cell viability and/or cell death using in vitro assays all with limitations 

(230). To minimize variability, we utilized visual observation of rounded cells, 

trypan blue exclusion, and ATP production to determine cell viability. Rounding of 

mammalian cells in culture upon exposure to C. difficile toxin is used as a visual 

determination of sensitivity of cells due to the destruction of the actin 

cytoskeleton (87, 92, 231, 232). It is a rapid method to determine the dose of 

toxin necessary to induce cell rounding (231). The affect CamSA has on the 

morphology of mammalian cells was determined. Trypan blue is a dye exclusion 

method that selectively stains dead or dying cells that do not have an intact 

(viable) cell membrane (201). ATP concentration assays provide evidence of cell 

viability due to its presence in all metabolically active cells. When cell are dying 

the amount of ATP decreases allowing for distinction between viable and non-

viable cells (202). 

Vero and Caco-2 epithelial cell lines were chosen for cytotoxicity studies 

because they are the commonly used cell lines used to test for C. difficile toxin 

production and toxin damage (92, 197, 198). Vero cells are an immortalized cell 

lineage from kidney epithelial cells originating from the African green monkey. 

Caco-2 carcinoma cells are human colon epithelial cells. Murine macrophages 
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(J774.1) are immune cells that are used extensively in the Abel-Santos 

laboratory to study spore phagocytosis (135, 233). Recent studies have analyzed 

macrophage responses to C. difficile spores and to C. difficile cellular proteins 

(234, 235). Therefore for potential future studies, the cytotoxicity of CamSA was 

determined for a murine macrophage cell line. 

Cultures of macrophages, vero cells and Caco-2 cells were treated with 

DMSO as a negative control or 10% ethanol as a positive control for non-viable 

cell experiments. All cell lines treated with DMSO appeared healthy (non-

rounded) and very few were stained blue by trypan blue exclusion (Fig. 4.5A). In 

contrast, cells treated with ethanol appeared rounded and stained blue by trypan 

blue (Fig. 4.5B). CamSA was added to cells at either 50 μM or 200 μM. CamSA 

treated cells were undistinguishable from DMSO-treated cells (Fig. 4.5C). In 

conclusion, based on the lack of cell rounding and trypan blue staining 

experiments, CamSA did not induce cell death at the concentrations tested. 

 

Figure 4.5. Trypan blue 
exclusion dye staining. 
Macrophages treated with A) 
DMSO vehicle (5% v/v), B) 10% 
ethanol, or C) CamSA (shown at 
200 μM) and stained with trypan 
blue exclusion dye. 

A. B. 

C. 
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Vero and Caco-2 cells were treated as above and assayed for cell viability 

due to ATP concentration. Wild type cells and those treated with DMSO resulted 

in high basal concentrations of ATP, whereas cells treated with ethanol resulted 

in very low amounts of ATP (Fig. 4.6). As described above, CamSA treated cells 

were similar to the DMSO treated cells with high levels of ATP (Fig. 4.6). In 

conclusion, these combined in vitro experimental results indicate that CamSA at 

50 μM and 200 μM is not cytotoxic to vero cells, Caco-2 cells or murine 

macrophages.  

 

4.3.5. CamSA protection of Caco-2 and Vero Cells 

 Cell culture is an indirect method to determine protection from C. difficile 

induced cell death (78). C. difficile does not tolerate aerobic conditions that are 

required for the culturing of tissue cells and tissue cells will not tolerate the 

anaerobic conditions necessary for C. difficile growth. Therefore, tissue culture 

experiments rely on the production of C. difficile toxin secreted into medium 

Figure 4.6. Cytotoxicity cell viability assay. Luminescence due to ATP in vero cells (white 
bars) and Caco-2 cells (black bars) after treatment with DMSO, 10% EtOH, or CamSA at 
50 μM and 200 μM. Significant differences are observed between 10% ethanol treated 
cells and cells treated with DMSO or CamSA (both cell lines) p < 0.005. No significant 
difference is observed between DMSO treated and CamSA at either concentration for 
both cells lines. 
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during C. difficile vegetative growth (197, 198, 236). Toxin production and 

secretion increases when bacteria are in stationary growth phase and is 

controlled by an optimum temperature of 37 °C (77, 237, 238). Since toxin is only 

secreted by metabolically growing and dividing C. difficile cells, halting 

germination should result in less toxin production (78).  

C. difficile spores were grown in medium supplemented with taurocholate 

and glycine (germinants) to induce spore germination. Because vegetative C. 

difficile produces toxins, spores treated with germinants serve as a positive 

control for toxin production. Spores were also grown in medium supplemented 

with germinants and 50 μM (CamSA 50) or 200 μM (CamSA 200) of CamSA or 

chenodeoxycholate. Spores treated with germinants grew normally whereas only 

slight growth was observed for CamSA treated spores. Chenodeoxycholate 

inhibits spore germination and also prevents C. difficile cell growth and indeed no 

growth was observed (140, 141).  

Supernatants were recovered from C. difficile supplemented as described 

and titrated into vero and Caco-2 cell medium. The supernatant from C. difficile 

spores treated with germinants affected vero and Caco-2 cells in a dose-

dependent manner. As the concentration of germinant supernatant increased, 

luminescence due to the presence of ATP decreased (Fig. 4.7A and B). The 

decrease in ATP corresponds to fewer viable cells (202). In both cell types, 

addition of 5% (v/v) C. difficile germinant supernatant resulted in greater than 

95% decrease in viable cells (Fig. 4.7A and B). This data is supported by 
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previous reports indicating toxin production during vegetative C. difficile cell 

growth and toxin-induced cell death of vero and Caco-2 cells (197, 198, 236). 

CamSA inhibits C. difficile spore germination in vitro with an IC50 of 58 μM. 

Therefore, toxin concentration should be less in supernatants from C. difficile 

spores treated with CamSA. CamSA 50 supernatants were titrated into 

mammalian cell cultures at 0.5%, 1% and 5% (v/v). As the amount of CamSA 50 

supernatants increased, a decrease in cell viability was observed in both cell 

lines (Fig. 4.7A and B [i.a, and i.b] p < 0.01). A significant difference was 

observed between germinant supernatants and CamSA 50 supernatants at 1% 

and 5% (Fig. 4.7A and B [1%, *], [5%, **] p < 0.05). The data suggests that a 

fraction of C. difficile spores germinated when supplemented with CamSA 50 

supernatants and CamSA at 50 μM was able to partially protect mammalian cells 

from toxin-induced cell death. 

Vero cells treated with CamSA 200 supernatants were better protected 

from toxin-induced cell death at 1% than CamSA 50 supernatants (p < 0.05)  

(Fig. 4.7A []). Caco cells treated with 1% CamSA 200 or 5% CamSA 200 

supernatants were better protected than those treated with CamSA 50 (Fig. 4.7B 

[1%, +], [5%, ++] p < 0.05). Interestingly, Caco-2 cells seem to be more sensitive 

to toxin than Vero cells. More vero cells (60%) than Caco-2 cells (28%) remained 

viable after treatment with 5% CamSA 200 supernatants (Fig. 4.7A and B). Caco-

2 sensitivity to C. difficile toxin has been previously reported (197). In conclusion, 

the sum of these data show that vero and Caco-2 cells treated with CamSA 

supernatants are better protected from toxin-induced cell death than when 



 

147 

treated with germinant supernatants. Vero and Caco-2 cells treated with 

supernatant containing chenodeoxycholate did not differ from untreated cultured 

cells. This is likely due to the inability of C. difficile to grow in the presence of 

chenodeoxycholate. 

 

 

4.4. Conclusions 

Since the first step in the establishment of CDI is the germination of C. 

difficile spores in the microflora-depleted gut of hospitalized patients, anti-

germination compounds could be used in combination therapies to supplement 

antibiotic treatments in immunocompromised patients. Once the antibiotic regime 

is completed, re-establishment of the normal gut flora will prevent C. difficile 

spore germination and anti-germination therapy can also be discontinued. 

 CamSA is stable to all tested GI tract microenvironments tested except 

incubation with bile salt hydrolase-producing bacteria. Lactobacilli and 

Bifidobacterium are two main human enteric bacteria that produce bile salt 

hydrolases (187, 205, 221). Antibiotics disrupt the normal microflora dynamics of 

the gut allowing for outgrowth of C. difficile (74, 142). A recent study in mice 

Figure 4.7. Toxin-induced cell viability assay. Luminescence due to ATP in A) vero cells and B) Caco-2 
cells. Percent luminescence compared to untreated control cells. Cells were treated with titrated 
amounts of supernatant from C. difficile growth medium with or without CamSA. Statistical analysis of 
ATP reduction per treatment was compared using 1-way ANOVA. Analysis of ATP reduction due to 
concentration was compared using the student’s paired t test. For both analyses, the p was set at < 0.05. 
Comparison of CamSA 50 supernatant percent ATP for vero cells (i.a p < 0.01) and Caco-2 cells (i.b. p < 
0.01). Comparison of CamSA 50 supernatants and germinant supernatants at 1% (*) and 5% (**) for 
both cell lines. Comparison of vero cells treated with CamSA 50 and CamSA 200 at 1% () p < 0.05. 
Comparison of Caco-2 cells treated with CamSA 50 and CamSA 200 at 1% (+) and 5% (++) p < 0.05. 
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shows that shifts occur in the bacterial population during antibiotic treatment and 

that different antibiotics can individually affect the resulting population shift (142). 

The indigenous bacteria in humans and mice differ significantly, for example 

Bifidobacterium is commonly found in humans. However, this bacterium was not 

found to colonize mice (142, 209). Although there is difference in the natural flora 

between mice and humans, the study suggests that the overall dynamics of the 

gut can be changed during and after antibiotic treatment. These changes may 

play an important role in CDI and CDI recurrence. CamSA is degraded by bile 

salt hydrolase-producing bacteria, which populate the normal gut. CamSA is 

more sensitive to Bifidobacterium degradation than to Lactobacilli degradation. In 

fact, a recent paper reported there are actually four related bile salt hydrolases 

produced by enteric bacteria (239). Each hydrolase has activity with all the bile 

salts tested however certain enzymes are more effective with specific substrates 

(239). This could explain the differences we observed with L. gasseri and B. 

longum. Antibiotic treatment disrupts the normal flora thus allowing CamSA to 

remain stable in the gut of antibiotic treated mammals. We hypothesize that after 

antibiotic treatment is terminated Lactobacilli and Bifidobacterium will be able to 

re-colonize the intestines in the presence of CamSA and degrade any remaining 

CamSA. This is further supported by the inability of CamSA to affect normal 

growth of Lactobacilli and Bifidobacterium in vitro. Future studies will address this 

hypothesis. 

Orally-administered drugs typically need to penetrate the epithelial 

membrane of the GI tract to be systemically circulated. Low bioavailability usually 
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leads to increased time in the GI tract (189). Furthermore, oral drugs must be 

stable to changing GI tract microenvironments. In contrast to systemic infections, 

CDI is a localized intestinal infection. Thus, CDI-targeting drugs require low 

permeability and high GI tract stability for maximum efficacy. In vitro assays 

indicate that CamSA does not traverse cells in a permeability assay, suggesting 

that CamSA will be retained in the intestinal tract of mammals. The poor 

bioavailability of CamSA will also reduce toxic effects to other organs since 

CamSA is unlikely to circulate outside of the intestinal lumen. The results of the 

ADME-tox test indicate that CamSA (recovered at 100%) does not adhere to or 

accumulate in Caco-2 cells. Since CamSA does not appear to physically interact 

with Caco-2 cells, the concentration of CamSA in the lumen of the gut will not be 

affected.  Furthermore, Caco-2 cells do not metabolize CamSA. The stability of 

CamSA to gut tissue will prevent toxicity due to metabolites and the effective 

concentration will not be altered. Collectively, these data show that CamSA will 

have low toxicity and high stability in the mammalian GI tract. 

CamSA has been shown to inhibit C. difficile spore germination in vitro 

and these studies support that mechanism of action. CamSA has no effect on the 

growth of vegetative C. difficile cells so the mode of action of CamSA is not as an 

antibacterial agent. This is further supported by the cell culture studies involving 

C. difficile toxin produced when spores germinate into metabolically active cells. 

Increasing concentrations of CamSA resulted in less spore germination therefore 

led to less toxin production. Cell cultures treated with CamSA were protected 

from C. difficile toxin-induced cell death. CamSA, up to 200 μM, was not 
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observed to be cytotoxic. The in vitro data supports further characterization of 

CamSA in animal models of CDI. 
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CHAPTER 5 

A NEW STRATEGY FOR THE PREVENTION OF CLOSTRIDIUM DIFFICILE 

INFECTION 

5.1. Introduction 

Clostridium difficile infection (CDI) is the major identifiable cause of 

antibiotic-associated diarrhea in hospitals (13, 14). In the US alone, CDI 

develops in over 500,000 patients with up to 20,000 deaths per year (41). The 

yearly health care burden has been estimated to be greater than $3 billion in the 

United States (43, 44). A recent study reported that CDI is responsible for 25% 

more nosocomial infections than methicillin-resistant Staphylococcus aureus 

(MRSA) (240). The rate of CDI progression to severe symptoms and death has 

been increasing annually since the 1970s (38, 39).  

The use of animal models to study the pathophysiology of CDI is a 

necessary step in understanding the disease. In vitro data is helpful to predict 

certain spore-host interactions such as pharmacokinetic analysis described 

previously. Mammalian studies are essential to elucidate specific host-pathogen 

relationships in CDI (241-243). Until recently, there has been a lack of 

information regarding C. difficile environmental adaptation in vivo.  In fact, a 

recent study shows that previously uncharacterized genes and cellular pathways 

are only identified in vivo (244). The host-pathogen relationship is very dynamic 

and cannot fully be understood by in vitro studies alone. Therefore, several 

animal models for CDI have been designed to study the in vivo effects of the 

infection and the disease. 
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Historically, Syrian hamsters have been the chosen animal model to study 

CDI in vivo (242, 245, 246). Hamsters are highly susceptible to infection with C. 

difficile after antibiotic exposure and also present signs of recurrence (51, 242, 

245, 246). The hamster model is the classical model to study the effects that 

antibiotic exposure has on developing CDI signs and also the effects antibiotics 

have on treating the established disease (51, 242, 245, 247, 248).  Unfortunately, 

because hamsters are extremely responsive to CDI, the disease progresses from 

severe to lethal very rapidly, usually within 48 hours (51, 204, 249). This intense 

presentation is uncharacteristic of human disease since human CDI can range 

from asymptomatic to severe (70). Therefore, the hamster model has limitations 

for studies that focus on human clinical and pathological conditions. The hamster 

model is the current established model to study CDI recurrence in animals (51, 

204, 250). Due to their high susceptibility to C. difficile, hamsters that get mild 

CDI (or respond to treatment for CDI) and recover typically show signs of 

recurrence 10-15 days post infection (51, 250). 

A new model for studying CDI has recently been reported utilizing 

gnotobiotic piglets(251). The basis for this model is the high frequency of C. 

difficile infections that occur on swine farms and affect newborn piglets (23, 24). 

The progression of the disease and disease presentation in pigs has been 

compared to human disease (24, 251). Severity of disease varies between 

piglets infected with C. difficile spores, which is similar to the symptoms 

described in humans (251). The authors report a flexible model that can be 

tailored according to specific research needs (251).  Gnotobiotic piglets are 
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considered germ-free and lack indigenous gut bacteria. This model is adequate 

for studying disease characteristics however, due to the lack of natural gut flora 

the model is inappropriate when studying colonization resistance. In humans, the 

gut becomes susceptible to CDI only after antibiotic exposure and destruction of 

the natural gut bacteria (12, 41). The natural bacteria resist colonization by C. 

difficile (74). Therefore when studying the dynamics of natural bacteria, C. 

difficile, and prevention of CDI and CDI recurrence, the current gnotobiotic piglet 

model is inadequate. The authors postulate that conventional pigs could be used 

however, there are no current models describing conventional pigs in CDI-gut 

dynamics studies.  Other drawbacks to using this model are the expense of 

acquiring gnotobiotic pigs (from cesarean section), appropriate housing (space 

limitations) and maintenance (rearing) (251, 252). 

In recent years, mouse models have been more extensively used for 

animal studies of CDI due to the relative ease of handling and low expense 

compared to hamsters. Mice are not as sensitive to infection with C. difficile and 

although disease signs can become severe and animals reach a clinical 

endpoint, lethality is less common (142, 241). Unlike in hamsters, disease 

severity in the mouse can be varied with bacterial inoculum size (241). The 

flexibility of controlling disease in mice allows researchers to characterize the 

host-pathogen interaction, specifically the fate of the C. difficile spore inside the 

mammalian GI tract. One drawback to using the murine model in CDI research is 

that CDI recurrence has not been established in mice. A recent study reported an 

induced CDI relapse model in mice (253). The report more appropriately 
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describes a re-infection model since the authors re-challenge mice with C. 

difficile after they recover from the initial bout of disease (253).  As described 

before, human recurrence has been defined as relapse of the same strain due to 

persistence in the gut or re-infection by the same or different strain due to 

susceptibility (35). To our knowledge there have been no reports of relapse in 

mice due to persistence of C. difficile spores in the gut. The lack of a recurrence 

model is a slight drawback when choosing the murine model of CDI however; the 

potential ability to study the fate of C. difficile spores using anti-germination 

therapy outweighs the caveats. 

In the current study, CamSA was administered to mice to determine if the 

compound has acute toxicity at high doses. Following toxicity studies, animals 

were treated with anti-germinants and C. difficile spores and observed for signs 

of disease. Disease progression and severity was monitored by visual 

observation of signs of disease and the ratio of spores and cells in the GI tract 

and feces compared to untreated (healthy) animals. 

5.2. Materials and Methods 

5.2.1. Animals 

The Institutional Animal Care and Use Committee at the University of 

Nevada, Las Vegas, reviewed and approved all animal protocols used in this 

study. All experiments were performed according to the National Institutes of 

Health guidelines in the Guide for Care and Use of Laboratory Animals. Based 

on previous CDI murine studies, C57BL/6N mice are susceptible to C. difficile 

(241, 253). Weaned Female C57BL/6N mice were purchased from Harlan 
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Laboratories (Indianapolis, IN). Animals were housed in groups of five mice per 

cage in the UNLV animal care facility. All water, food, bedding and cages were 

autoclaved prior to contact with animals. Upon arrival, mice were allowed to 

acclimate for one week prior to experimentation. Animal manipulations were 

performed in a biosafety level 2 laminar flow hood. 

5.2.2. Toxicity of CamSA in Mice 

CamSA and chenodeoxycholate were dissolved in DMSO to a 

concentration of 100 mg/ml. Groups of five mice were treated by oral gavage for 

thee consecutive days with 50 mg/kg body weight (b.w.) of CamSA or 

chenodeoxycholate. A control group was administered DMSO. Weight changes 

were recorded twice daily and mice were observed for adverse reactions such as 

vomiting, diarrhea, hair loss, weight loss, difficulty breathing, and lethargy. Other 

groups of mice were treated with 300 mg/kg CamSA or chenodeoxycholate and 

observed as above. 

5.2.3. Preparation of C. difficile for Infection 

5.2.3.1. Purified Spores by Abel-Santos Laboratory Method 

C. difficile strain 630 and VPI 10463 were obtained from ATCC. Each 

strain was plated onto BHI agar supplemented with 1% yeast extract, 0.1% L-

cysteine HCl, and 0.05% sodium taurocholate to yield single cell clones. 

Individual C. difficile colonies were grown in BHI broth until turbid and re-plated to 

obtain bacterial lawns. Plates were incubated for seven days at 37 °C in an 

anaerobic environment (5% CO2, 10% H2 and 85% N2). Spores were harvested 

by washing and gentle scraping of the bacterial lawns from plates with ice-cold 
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nanopure water. The cells and spores were centrifuged at 8,800 x g for five 

minutes at 4 °C. Pellets were washed three times with nanopure water. To 

separate spores from bacterial cells, bacterial pellets were centrifuged through a 

20% to 50% HistoDenz gradient at 18,200 x g for 30 minutes at 4 °C with no 

brake. The resulting purified spores were washed five times with nanopure water.  

To determine spore purity, selected samples were stained using the 

Shaeffer-Fulton staining method (122, 164). Spore preparations were generally 

>95% pure after HistoDenz gradient. Before infection, purified spores were heat 

activated at 68 °C for 30 minutes and washed another five times with water. 

Purified C. difficile spores were resuspended in water to obtain an OD580 of 1.0. A 

spore aliquot was serially diluted onto BHI agar supplemented with cysteine and 

taurocholate to determine colony-forming units (CFU). 

5.2.3.2. C. difficile Preparation based on Chen et al 2008 (241) 

 A sample of C. difficile 630 and VPI 10463 were purified by published 

procedure (241). Difco cooked meat medium was inoculated with frozen culture 

of 630 or VPI 10463 and incubated anaerobically at 37 °C for 36 hours. Mixtures 

of spores and cells were harvested by centrifugation at 8,800 x g for 5 min at 4 

°C and washed three times with nanopure water. No further purification or heat 

activation was performed. CFUs were enumerated as described above. This 

preparation of C. difficile is hereto referred to as Chen et al. 

 To determine if 36 hours is an impractical time for VPI 10463 to sporulate, 

a separate culture was grown as above and allowed to incubate for 13 days. 
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After this extended period of time, a very low percentage (<10%) of spores were 

present by endospore staining. 

5.2.3.3. Spore Preparation based on Douce et al 2010 (254) 

C. difficile spores were prepared based on previous procedures designed 

for the hamster model of CDI (254). Strain VPI 10463 was plated onto BHI agar 

supplemented with 1% yeast extract, 0.1% L-cysteine HCl, and 0.05% sodium 

taurocholate to yield single cell clones. Individual C. difficile colonies were grown 

in BHI broth until turbid and re-plated to obtain bacterial lawns. Plates were 

incubated for seven days at 37 °C in an anaerobic environment (5% CO2, 10% 

H2 and 85% N2). Prior to spore harvest, plates with bacterial lawns were 

incubated at room temperature in a BSL-2 laminar flow hood overnight in air to 

maximize sporulation. Spores were harvested by the addition of 100% ethanol 

and gentle scraping the bacterial lawns from plates. Plates were washed once 

more with 1 X PBS and spores and cells were harvested by centrifugation at 

8,800 x g for 5 min at 4 °C. The resulting pellet was washed three times with 

nanopure water. This preparation yielded approximately 25% of VPI 10463 

spores. No further purification or heat activation was performed. CFUs were 

enumerated as above. This preparation is hereto referred to as Douce et al. 

5.2.4. Optimization of C. difficile Inoculum in Mice 

C. difficile 630 and VPI 10463 strains prepared above were used to infect 

mice as published (241). The murine CDI induction model was based on 

published procedures (241). An antibiotic cocktail containing kanamycin (0.4 

mg/ml), gentamycin (0.035 mg/ml), colistin (850 U/ml), metronidazole (0.215 
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mg/ml), and vancomycin (0.045 mg/ml) was prepared in autoclaved water and 

sterile filtered (241). For three consecutive days, mice were allowed to drink the 

antibiotic cocktail ad libitum (Scheme 5.1). The antibiotic water was refreshed 

daily. After three days of antibiotic water, all mice received autoclaved water for 

the remainder of the experiment. A single dose of clindamycin (10 mg/kg) was 

administered by intraperitoneal (IP) injection on the fourth day (24 hours before 

C. difficile infection). Mice, in groups of five, were challenged by oral gavage with 

either 105 or 108 CFUs of water suspensions of C. difficile strain 630 spores or 

VPI 10463 spores, preparation by Chen et al. 2008 (241) or preparation by 

Douce et al. 2010 (254). A control group of five mice received water by oral 

gavage.  

 

All animals were observed daily for signs of CDI: decreased weight, 

hunched posture, wet tail, lethargy, anal redness, and increased soiling of cages. 

Disease signs were scored using a scoring rubric (Table 5.1). Animals scoring 2 

or less were considered non-diseased animals scoring 3-4 were considered to 

have mild CDI. Animals scoring 5-6 were considered to have moderate CDI. 

Scheme 5.1. Representation of induction of CDI in mice 
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Animals scoring >6 were considered to have severe CDI and were immediately 

sacrificed.  

 

5.2.5. Preliminary Testing of Anti-Germinants for CDI Prevention 

Antibiotic-treated mice (five per group) were administered CamSA at 300 

mg/kg, taurocholate 300 mg/kg, chenodeoxycholate at 50 mg/kg or compound 

T88 at 300 mg/kg in DMSO as vehicle one day prior to spore challenge, the day 

of spore challenge, and one day following spore challenge for a total of three 

consecutive doses (Scheme 5.2). Control animals received neat DMSO. Bile 

salts and DMSO were administered to mice by oral gavage. C. difficile strain 630 

and VPI 10463 was administered at 108 CFUs by oral gavage. Animals were 

observed twice daily for signs of infection and scored appropriately. Animals that 

reached clinical endpoint were sacrificed. Cages and water sources were 

changed daily. 

 

 

Table 5.1. Scoring rubric for CDI in mice 
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5.2.6. Minimum Effective Dose (MED) of CamSA 

Twenty-four hours prior to spore challenge, groups of five antibiotic-

treated mice received 0 mg/kg (neat DMSO), 5 mg/kg, 25 mg/kg, or 50 mg/kg 

CamSA by oral gavage. The day of infection, animals received 108 CFUs of C. 

difficile strain 630 spores by oral gavage. One hour post infection, animals 

received a second dose of the corresponding bile salt or DMSO (Scheme 5.3). A 

third dose of bile salt or DMSO was administered 24 hours post-infection. 

Animals were observed twice daily for signs of infection and scored 

appropriately. Cages were changed and feces were collected once daily 

throughout the experiment. The contents were stored at 4 °C. Aliquots of feces 

were heated to 68 °C for 30 minutes.  Heated and unheated feces were diluted 

as necessary in water and plated on Clostridium difficile selective agar (CDSA). 

Plates were incubated anaerobically for 48 hours and colonies were counted to 

enumerate CFUs. CFUs obtained from unheated samples represent the sum of 

C. difficile vegetative cells and spores. CFUs obtained from heated samples 

represent the number of C. difficile spores only. The presence of C. difficile 

colonies was verified by PRO disk. Surviving animals were allowed to recover for 

Scheme 5.2. Representation of induction of CDI in mice and preliminary test with bile salts  
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14 days followed by a second course of antibiotics. Surviving mice were injected 

with three consecutive doses of clindamycin. Animals were monitored for another 

14 days to observe for signs of CDI relapse. 

 

5.2.7. CamSA Dosage Regime 

Antibiotic regimen was repeated with two groups of mice (5 per group). A 

single 50 mg/kg dose of CamSA was administered by oral gavage to one group 

of mice 24 hours (T-24) before challenge with 108 CFUs of C. difficile 630 spores. 

The second group received a single 50 mg/kg dose of CamSA at 10 minutes (T0) 

following spore challenge (Scheme 5.4). Animals were observed for CDI signs as 

before. Animals that reached clinical endpoint were sacrificed. Cages and water 

sources were changed daily to minimize re-ingestion of excreted C. difficile. 

 

 

Scheme 5.3. Representation of induction of CDI in mice and MED of CamSA  
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5.2.8. Onset of CDI Signs in Mice 

Antibiotic treated mice were challenged by oral gavage with 108 CFUs of 

C. difficile strain 630 spores. Individual groups of five mice were treated with a 

300 mg/kg dose of CamSA at the time of infection (T+0) or post-infection. 

Animals administered CamSA post-challenge were dosed at 6 hours (T+6), 9 

hours (T+9), and 12 hours (T+12) (Scheme 5.5). A second 300 mg/kg dose of 

CamSA was administered 24 hours after the first dose. Mice were observed for 

signs of CDI twice daily and scored accordingly. Animals that reached clinical 

endpoint were sacrificed. Cages and water sources were changed daily to 

prevent re-ingestion of excreted C. difficile. 

Scheme 5.4. Representation of the induction of CDI in mice and CamSA administered as a 
single dose 

Scheme 5.5. Representation of the induction of CDI in mice and CamSA administered 
at different time points  
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5.2.9. Fate of C. difficile in the Murine GI Tract 

 Seven groups of mice with four mice per group, one group with three mice 

and one group of one mouse were treated with antibiotics as described before.  

All animals except group 1 were challenged by oral gavage with 108 CFUs of C. 

difficile strain 630 spores (Table 5.2). Group 1 was sacrificed on Day 0. Groups 2 

- 5 were sacrificed 2, 4, 24, or 48 hours post-challenge with C. difficile spores. 

Groups 6 – 9 were treated with a 50 mg/kg dose of CamSA for one day prior to 

infection and at the time infection for at total of two doses. Animals administered 

CamSA were sacrificed 24, 48, 72 or 96 hours post-challenge with C. difficile 

spores. Cages were changed every two hours and feces were collected. The 

contents were stored at 4 °C. GI tracts of sacrificed animals were observed for 

signs of disease. Gastrointestinal tracts were removed in blocks and GI tract 

contents were flushed with autoclaved water and stored at 4 °C. Heated and 

unheated feces and GI tract contents were diluted as necessary in water and 

plated on Clostridium difficile selective agar (CDSA). Plates were incubated 

anaerobically for 48 hours and colonies were counted to enumerate CFUs (Fig. 

5.1). CFUs obtained from unheated samples represent the sum of C. difficile 

vegetative cells and spores. CFUs obtained from heated samples represent the 

number of C. difficile spores only. The presence of C. difficile was verified by 

PRO disk (Fig. 5.1). 
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5.2.10. Effect of CamSA on Mice Challenged with Vegetative C. difficile 

BHI broth was inoculated with a freezer stock of C. difficile 630 and 

allowed to grow overnight in an anaerobic chamber at 37 °C. The overnight 

culture was diluted 10-fold into fresh BHI broth and incubated for four hours at 

Table 5.2. Groups of animals used to determine the fate of spores in the GI tract 
of mice treated with CamSA. 

Figure 5.1. CDSA and PRO disk. Photograph of C. difficile growth on a CDSA plate (left) and 
verification of the presence of C. difficile by PRO disk (right upper). Right lower PRO disk is a 
sample negative for C. difficile. 
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37°C to reach exponential growth phase (75, 255). The presence of vegetative 

bacterial cells and absence of spores was verified by microscopic observation of 

Shaeffer-Fulton stained samples (122, 164). The bacterial culture was harvested 

by centrifugation at 13,700 x g for 1 min. The resulting pellet was resuspended in 

1 ml sterile water and serially diluted onto BHI agar containing cysteine and 

taurocholate to determine CFUs. To prevent oxygen induced cellular death, the 

remaining bacterial culture was capped inside the anaerobic chamber prior to 

overnight storage at 4 °C. Antibiotic treated mice received three consecutive 50 

mg/kg doses of CamSA and were challenged with 108 CFU C. difficile 630 

vegetative cells, as above (Scheme 5.6). Animals were observed for CDI signs 

as previously described. Animals that reached clinical endpoint were sacrificed. 

Cages and water sources were changed daily to minimize re-ingestion of 

excreted C. difficile. 

 

5.2.11. Statistical Analysis 

Mice survival (n=5) was analyzed by Kaplan-Meier survival analysis. 

Statistical comparison to untreated infected controls was calculated using log-

Scheme 5.6. Representation of induction of CDI in mice using vegetative cells or spores and 
administration of CamSA  
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rank test. Signs of severity were analyzed as box-whisker plots. Data was 

expressed as mean ± standard deviation in box-whisker plots. Analysis of 

severity data by 1-Way ANOVA for nonparametric analysis had a statistical 

significance set at a p value of <0.01. Standard deviations represent at least 

three independent measures, unless otherwise stated. Recovered CFU and 

recovered spores represent mean values from a pool of five animals. Student’s 

unpaired t-test was used to determine the significance of difference of means. 

5.3. Results and Discussion 

5.3.1. CamSA Toxicity in Mice 

To determine acute toxicity of CamSA, we used the fixed dose procedure 

in mice (256). The fixed dose procedure allows researchers to define acute 

toxicity of a potential drug at pre-set doses and uses a minimal number of 

animals (256). Instead of dosing animals with a gradual increased concentration 

of compound, researchers determine a high limit and that concentration is 

administered to assess acute toxicity (256). If the compound results in acute 

toxicity at the high limit, a lower dose (usually a log lower) is assessed for toxicity 

and so forth. CamSA was administered to mice at the high limit of 300 mg/kg 

body weight (b.w.) for three consecutive days with no physical adverse effects. A 

higher dose of CamSA was not administered. A 300 mg/kg dose of 

chenodeoxycholate caused immediate death, probably due to observed 

precipitation of chenodeoxycholate upon interaction with mouse saliva and 

gastric juice. Chenodeoxycholate at 50 mg/kg did not cause any observable side 

effects.  
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5.3.2. Optimization of C. difficile Inoculum for Infection 

C. difficile strain 630 is a highly virulent and transmissible epidemic strain 

clinically isolated from a patient with pseudomembraneous colitis in Zurich, 

Switzerland in early 1982 (122). Reference strain VPI 10463 is a toxigenic strain 

isolated from an abdominal wound and first described in 1982 (257, 258). These 

strains were chosen for the animal studies in this project. Various C. difficile 

growth, sporulation, and harvesting procedures exist for preparation of C. difficile 

for infection of animals (142, 241, 254). To determine the optimal preparatory 

procedure for infection of mice, three different procedures were followed to obtain 

C. difficile for infecting animals. The first procedure is the defined Abel-Santos 

preparation of purified C. difficile spores (127, 134).  Both 630 and VPI 10463 

strains produced spores and purified spores (>95% pure) were recovered using 

this procedure.  When mice were challenged with 105 CFU of C. difficile strain 

630 or VPI 10463 purified spores, mild CDI signs developed (score of 3-4) within 

48 hours (Fig. 5.2). At 108 CFU, both C. difficile 630 and VPI 10463 purified 

spores caused severe CDI signs in the mouse (score > 6) and animals reached 

clinical endpoint within 48 hours (Fig 5.2). These data support previous reports 

showing increased severity of disease in mice with increased inoculation of C. 

difficile (241, 259). Both strains produced spores with this method however the 

yield of spores obtained from harvesting strain 630 was substantially higher than 

VPI 10463 (>75%). This finding is supported by previous sporulation studies that 

have found C. difficile strain VPI 10463 to produce fewer spores than 630 and 
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other C. difficile strains (117, 118, 260). In this study, both C. difficile strains 

caused disease in mice with a similar dose-dependent response. 

C. difficile strain VPI 10463 was also grown as described in Chen et al. 

(241). This published procedure is the guideline for inducing CDI in mice. In our 

hands, this preparation yielded non-viable vegetative bacteria and did not cause 

CDI signs at either 105 or 108 CFU inoculums (Fig 5.2). The procedure describes 

that cultures were grown for only 36 hours (241). After 36 hours, medium 

inoculated with strain 630 contained mostly spores however, VPI 10463 

inoculated broth contained almost entirely vegetative cells. Others and we have 

found that C. difficile typically requires nearly seven days for maximum 

sporulation (127, 134, 253, 259). To determine if the amount of time was 

insufficient, VPI 10463 was grown for 13 days in conditions described by Chen et 

al (241) however no spores were observed. Interestingly, C. difficile strain 630 

was able to efficiently sporulate under the same conditions and within 36 hours. 

This data further supports that C. difficile strain 630 yields more spores than VPI 

10463. Due to limited number of animals available, strain 630 spores prepared 

from this procedure were not used to infect mice. 

The third method described in Douce et al. (254) was used to prepare C. 

difficile strain VPI 10463 for infection of animals. This procedure differs from the 

Abel-Santos procedure only slightly. C. difficile is grown the same but the harvest 

procedure is slightly different using ethanol for the removal of bacterial lawns as 

opposed to water. Also, this procedure does not define a purification step for 

separating spores from cells after harvest. C. difficile VPI 10463 produced spores 
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although not in high yield. It is interesting to note that VPI 10463 did not produce 

spores when grown in liquid media based on Chen et al. (241) however, the 

same strain produced spores when grown on solid media based on Douce et al. 

(254) and the Abel-Santos method (127, 134). Animals treated with either 105 or 

108 CFU inoculums of C. difficile VPI 10463 prepared from this protocol induced 

similar dose response severity seen with purified spores described before (Fig 

5.2). At the lower dose of C. difficile, animals developed mild CDI signs and 

recovered. At the higher dose animals developed severe symptoms and reached 

clinical endpoint within 48 hours (Fig 5.2). C. difficile strain VPI 10463 prepared 

from this method yielded viable and lethal cells and/or spores.  

 

C. difficile strain 630 consistently yielded larger amounts of infectious 

spores than C. difficile strain VPI 10463. Hence, C. difficile strain 630 was used 

in nearly all subsequent experiments. The preparation described by Douce et al.  

(254) does not provide a method for separating spores from cells. No histodenz 

Figure 5.2. Comparison of CDI severity in mice after 48 hours by C. difficile 
preparations. White bars represent the severity in mice inoculated with C. difficile at 
105 CFUs and black bars represent the severity in mice inoculated with C. difficile at 
108 CFUs. VPI 10463 and 630 are C. difficile strains. Five mice per group. (127, 134, 
241, 254) 
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gradient was used to separate spores from cells therefore the final pellet was a 

mixture of spores and cells. Although it is expected that harvesting C. difficile 

with ethanol will kill vegetative cells (261) it is not a guarantee. Also ethanol may 

not affect toxins remaining in the spore/cell pellet. Furthermore without heat 

activation prior to infection, it is possible that persistent vegetative cells or toxins 

will induce disease in mice (142, 249). This variability is unacceptable when 

studying anti-germinants and their ability to prevent disease by preventing spore 

germination in vivo. Therefore, the Abel-Santos method of spore purification was 

used for further experiments. The large (108 CFUs) inoculum of spores ensures 

homogeneous CDI onset, fast CDI sign progression and allows testing the limits 

of anti-germination therapy. 

5.3.3. Preliminary Testing of Bile Salts for CDI Prevention 

 As a preliminary test of bile salt effects on CDI progression and severity, 

groups of mice were administered antibiotics and three consecutive days of bile 

salts. All but one group of animals (control) were infected with purified C. difficile 

spores and observed for signs of disease. A second control group was 

challenged with spores but received only DMSO (untreated). Mice that were not 

challenged with C. difficile spores did not develop signs of CDI. All infected mice 

that were not treated with bile salts developed severe signs of CDI by 48 hours 

post challenge and were sacrificed (Fig. 5.3).  

Taurocholate has been shown activate C. difficile spore germination in 

vitro (127, 140). To determine effects of taurocholate in vivo, a group of mice 

were administered taurocholate at 300 mg/kg. Mice that received taurocholate 
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developed CDI similar to control infected animals. All but one mouse reached 

clinical endpoint by 48 hours. That mouse developed slightly delayed signs and 

reached clinical endpoint at 72 hours post challenge (Fig. 5.3). Despite this one 

mouse in the taurocholate group, the mice were comparable to untreated mice. 

Disease severity was equally severe and onset of disease was similar. Therefore 

the data suggests that an excess of germinant in the gut of animals challenged 

with C. difficile spores does not affect disease severity or progression. Another 

possible explanation is that the inoculum (108 CFU) used in this study to induce 

CDI in mice was excessive. This overloading of C. difficile could hide any subtle 

differences the addition of germinants may have on disease progression and 

severity. 

 Chenodeoxycholate is a natural bile salt and a known inhibitor of C. 

difficile spore germination in vitro (127, 141). In toxicity experiments discussed 

previously, chenodeoxycholate was lethal at 300 mg/kg b.w but not at 50 mg/kg. 

Infected animals treated with chenodeoxycholate at 50 mg/kg showed a delay in 

onset of disease by 24 hours. By 72 hours post challenge, 80% of 

chenodeoxycholate-treated animals had reached clinical endpoint (Fig. 5.3). One 

animal developed moderate signs of disease and eventually recovered. Due to 

the insoluble nature of chenodeoxycholate described previously, it is possible 

that concentrated bile salt did not reach the GI tract consistently and remain 

soluble to interact with C. difficile spores. Furthermore, chenodeoxycholate has 

been shown to be absorbed at a high rate from the colon and recycled to the liver 

for enterohepatic circulation (149). It is possible that soluble chenodeoxycholate 
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was absorbed before interaction with C. difficile spores. CamSA and compound 

T88 are bile salt analogs that are potent inhibitors of C. difficile spore germination 

in vitro (134). To determine if CamSA and compound T88 can prevent CDI in the 

murine model, each was administered at 300 mg/kg to mice challenged with 

purified C. difficile spores. All mice treated with CamSA remained healthy and did 

not present signs of CDI (Fig. 5.3). Mice treated with CamSA closely compared 

to non-challenged mice. Since there was a 24 hour delay in CDI for mice treated 

with chenodeoxycholate, CamSA treated mice were observed for 10 days 

following spore challenge. Even after 10 days CamSA treated mice remained 

healthy and showed no signs of CDI. Interestingly, even though compound T88 is 

a strong inhibitor of C. difficile spore germination in vitro, T88 treated mice 

developed severe signs of CDI similar to untreated and taurocholate treated 

mice. Unlike chenodeoxycholate, compound T88 treated mice did not display a 

delayed onset of CDI but reached clinical endpoint by 48 hours post-infection 

(Fig. 5.3). These preliminary results show that CamSA, but not compound T88, is 

able to prevent CDI signs in mice challenged with spores from C. difficile strain 

630. This experiment was repeated with C. difficile strain VPI 10463 and yielded 

similar results. 



 

173 

 

5.3.4. Minimum Effective Dose of CamSA 

To determine the minimum effective dose (MED) of CamSA required to 

prevent CDI in the murine model, groups of animals were administered 

increasing doses of CamSA. Within 48 hours following spore challenge, all 

untreated mice (0 mg/kg CamSA) developed severe CDI signs and reached the 

clinical endpoint (Fig. 5.4). Mice treated with 5 mg/kg CamSA developed 

moderate to severe CDI, although signs onset was delayed by approximately 24 

hours (Fig. 5.4). Animals presenting moderate CDI signs eventually recovered. 

Mice treated with 25 mg/kg CamSA developed mild CDI signs with delayed signs 

onset (Fig. 5.4). All animals recovered before reaching the clinical endpoint. In 

contrast, all animals treated with 50 mg/kg CamSA showed no sign of CDI and 

were undistinguishable from non-infected controls (Fig. 5.4). All surviving 

CamSA-treated animals were treated with a second course of antibiotics, but no 

relapse signs were observed even after 14 days.  

Figure 5.3. Preliminary study for the prevention of CDI in mice. Comparison of CDI severity after 
48 hours (white bars) and 72 hours (black bars) of animals administered C. difficile and treated 
as indicated. Animals in the challenged and T88 groups reached clinical endpoint after 48 hours. 
TC = taurocholate, CDCA = chenodeoxycholate. Five mice per group. No significant difference 
was observed between not challenged and CamSA-treated animals. Other groups were 
statistically significant compared to not challenged or CamSA-treated animals, p < 0.001. 
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Mice treated with 50 mg/kg chenodeoxycholate, a naturally occurring C. 

difficile spore germination inhibitor, developed moderate to severe CDI signs. In 

fact, animals treated with 50 mg/kg chenodeoxycholate show the same pattern of 

CDI signs as animals treated with 5 mg/kg CamSA. The data shows that mice 

treated with 50 mg/kg are completely prevented from developing CDI. In fact 

there is a dose dependent correlation between CamSA and disease severity. 

 

Feces were collected from the cages of untreated and CamSA-treated 

animals every two hours up to 10 hours and then 24 hours post-challenge with C. 

difficile spores. Untreated animals (0 mg/kg CamSA) presenting signs of CDI 

started to excrete large amounts of vegetative cells at two hours post-challenge 

reaching a maximum between 8 and 10 hours (Fig. 5.5A). Diseased animals 

continued to excrete lower amounts of vegetative cells up to the clinical endpoint. 

Although some C. difficile spores were excreted in diseased animals, the 

amounts were negligible compared to excreted vegetative cells.  

Figure 5.4. Kaplan-Meier survival plot for C. difficile infected mice treated with increasing 
doses of CamSA. Groups of five mice were treated with three doses of 0 (Ο), 5 (☐), 25 (◊) or 
50 (Δ) mg/kg CamSA. A separate group was treated with 50 mg/kg chenodeoxycholate (●). 
Log-rank test p=0.0027 
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Mice treated with 5 mg/kg CamSA excreted mostly vegetative cells and 

developed CDI similar to untreated animals. Interestingly, the maximum amount 

of shed bacteria was delayed compared to untreated animals (Fig. 5.5B). This 

delay correlated with the delay in signs onset (Fig. 5.4). With a dose of 25 mg/kg 

CamSA, the proportion of excreted C. difficile spores increased and disease 

signs were milder (Fig. 5.4 and 5.5B). These mice displayed maximum shedding 

72 hours following infection. The feces of animals treated with 50 mg/kg CamSA 

contained almost exclusively spores (Fig. 5.5A and B) and these mice did not 

develop CDI (Fig. 5.4). In these animals, C. difficile spore excretion started 2 

hours following infection and continued for 96 hours, peaking 72 hours following 

challenge (Fig. 5.5A). In fact, 120 hours post-infection, the sum of excreted C. 

difficile spores was quantitatively identical to the number of spores given.  

 

Figure 5.5. Spore excretion from mice. Feces were collected from cages housing five mice 
challenged with C. difficile spores and treated with 0 and 50 mg/kg CamSA. A) White bars 
represent C. difficile vegetative cells excreted by untreated animals. The amount of C. difficile 
spores present in untreated animals was negligible. Black bars represent C. difficile spores 
released from CamSA treated animals. The amount of C. difficile vegetative cells in CamSA 
treated animals was negligible. B) Feces were collected from cages containing groups of five 
mice infected with C. difficile spores and treated with 0, 5, 25, and 50 mg/kg doses of CamSA. 
White bars represent C. difficile vegetative cells and black bars represent C. difficile spores. 
Both graphs represent CFU per mg feces. Feces were collected per cage housing five animals. 
Therefore, no standard deviations could be obtained. 
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5.3.5. Refining CamSA Dosage Regime 

Since CamSA prevented CDI in mice at 50 mg/kg when given in three 

consecutive doses, the next practical step was to determine if CamSA is able to 

prevent CDI with one dose. The fecal data from diseased mice, described above, 

suggests that at approximately 8 – 10 hours post infection there is an explosion 

of C. difficile growth. We hypothesize that this correlates with spore germination. 

Therefore, if a single dose of CamSA is to be effective it must be administered 

before 8 hours. Animals were administered 50 mg/kg CamSA 24 hours before C. 

difficile spore challenge (T-24) and 10 minutes after spore challenge (T=0). 

CamSA completely protected animals from CDI with a single 50 mg/kg dose 

when administered at time of infection (Fig. 5.6). These mice remained free of 

signs even after repeated antibiotic treatments (Fig. 5.7B). Hence, this single 

dose of CamSA was sufficient to prevent CDI signs without any signs of relapse.  

However, when the single 50 mg/kg CamSA dose was administered 24 

hours prior to challenge with C. difficile spores, animals developed moderate to 

severe CDI with delayed illness onset. Three animals reached clinical endpoint 

48 to 72 hours days post-challenge (Fig. 5.6). Disease severity was more 

variable in mice treated with a single dose of CamSA 24 hours before infection 

(Fig. 5.7A). All animals remained healthy 24 hours post infection. Two animals 

displayed severe signs 48 hours following spore challenge whereas three 

presented only mild signs (Fig. 5.7A). Of these, two mice began to recover 72 

hours following infection and one mouse worsened to reach the clinical endpoint 

(Fig. 5.7A). Animals that did not reach clinical endpoint eventually recovered. 
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Since CamSA was administered in only one dose 24 hours before infection, it is 

likely that CamSA had been degraded or excreted at the time of C. difficile spore 

challenge. Permeability data (discussed in chapter 4) suggests that CamSA will 

remain in the intestinal lumen and will not be absorbed. This supports the 

likelihood of excretion or degradation. A potential explanation for the variability in 

severity is that not all CamSA was excreted by 24 hours, resulting in a varied 

concentration in the mouse gut. This is further supported by the dose dependent 

response in mice. CamSA is able to prevent CDI in mice with three consecutive 

doses or with one single dose as long as it is administered at the time of C. 

difficile challenge. 

 

 

 

 

 

 

Figure 5.6. Kaplan-Meier survival plot for C. difficile infected mice treated with single doses 
of CamSA. Groups of five mice were treated with DMSO (Ο), a single 50 mg/kg dose of 
CamSA 24 hours prior to C. difficile spore challenge (Δ), or a single dose of CamSA at the 
time of infection (☐). Log-rank test p=0.0495. 
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5.3.6. Timing of CDI Onset Using CamSA 

          To determine the onset of CDI in mice, animals were challenged with C. 

difficile spores and treated with CamSA at the time of infection (T=0), at 6 hours 

(T+6), 9 hours (T+9), or 12 hours (T+12) post-infection. All animals treated with 

CamSA at T=0 and T+6 were fully protected from CDI and presented no signs of 

disease (Fig. 5.8). In contrast, all animals treated with CamSA at T+9 and T+12 

developed severe CDI undistinguishable from untreated mice and reached the 

clinical endpoint 48 hours post infection (Fig. 5.8). This data correlates with the 

fecal data discussed previously. In untreated mice there is a spike in C. difficile 

excreted at the 8 and 10 hour time points (Fig. 5.8). Since mice were completely 

protected up to six hours post challenge, it is likely that C. difficile spore 

germination or the commitment to germinate is between 6 and 9 hours in the 

mouse gut. Mice treated with CamSA after this time had no effect on disease 

progression and based on in vitro data CamSA does not affect vegetative growth. 

Figure 5.7. CDI severity graphs. Animals challenged with C. difficile spores and treated with 
a single 50 mg/kg dose of CamSA A) 24 hours prior to C. difficile spore challenge (Δ), or B) 
at the time of infection (☐). Severity of CDI signs was scored using the Rubicon scale 
discussed above. Analysis of data by 1-way ANOVA analysis p<0.01 compared to untreated 
mice. 



 

179 

These data suggest that the mechanism by which CamSA protects mice from 

CDI is by inhibition of C. difficile spore germination in vivo.  

 

5.3.7. Fate of C. difficile in GI Tract of Mice Treated with CamSA 

The GI tracts of diseased and CamSA treated animals were removed in 

blocks and observed for signs of disease. The contents of the GI tracts were 

analyzed for the presence of C. difficile spores and cells. As previously reported, 

GI contents from animals with CDI signs contained almost exclusively (>98%) C. 

difficile vegetative cells unevenly distributed throughout the intestinal tract (262). 

Furthermore, the cecum and colon of these animals looked inflamed and swollen 

(Fig. 5.9). Intestinal content was watery and purulent. The small number of C. 

difficile spores recovered from diseased animals was localized to the cecum and 

colon (97%) of diseased animals. Approximately 3% of C. difficile spores were 

recovered from other gastrointestinal organs (stomach, duodenum, ileum, and 

jejunum).  

Figure 5.8. Graph showing the number of surviving animals 48 hours post challenge with C. 
difficile spores. Groups of five mice were treated with CamSA at the time of challenge (T=0) or 6 
hours (T+6), 9 hours (T+9), or 12 hours (T+12) following spore challenge. Five mice per group. 
All animals either survived or all animals reached clinical endpoint at the times indicated 
therefore no error bars are shown.  
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Similar to the hamster CDI model (262), ingested C. difficile spores 

accumulated in the lumen of the cecum and the colon of CamSA-treated mice. 

The combined upper GI blocks contained less than 0.5% of total spores 

recovered in CamSA-treated mice (Fig. 5.10). Indeed, in animals treated with 50 

mg/kg CamSA, the GI contents contained almost exclusively C. difficile spores 

(Fig. 5.11). These spores narrowly localized to the cecum and colon at every 

time point tested. The cecum and colon of these animals looked healthy and 

were undistinguishable from non-infected animals (Fig. 5.9 lower). C. difficile 

spores remained in the cecum and colon for 72 hours after spore challenge. By 

96 hours, the amount of spores recovered from the cecum and colon of CamSA 

treated animals decreased considerably (Fig. 5.11). 
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Figure 5.9. Necropsy photos. Disease mouse during necropsy (top) showing the swollen and 
gas filled cecum. Cecum from diseased mouse (bottom left) and from CamSA treated mouse 
(bottom right). 

Figure 5.10. Distribution of C. difficile spores in the GI tract of CamSA-treated animals. 
Significant amount of spores were found in the cecum (Ce) and colon (Co). The stomach (St), 
duodenum (Du), jejunum (Je), and ileum (Il) showed negligible amounts of spores. No 
vegetative C. difficile cells were found in any of the GI tract structures.  
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5.3.8. CDI from Vegetative C. difficile Cells 

Murine models can develop CDI signs when infected with vegetative C. 

difficile cells (142). Vegetative cells were prepared and used to challenge groups 

of five mice treated with three consecutive doses of 50 mg/kg CamSA. While 

CamSA prevents CDI in spore-challenged mice, the same dose was unable to 

prevent CDI in vegetative cell-challenged mice. Three animals became moribund 

between 48 and 72 hours after challenge (Fig. 5.12). Two other animals 

developed moderate CDI signs and eventually recovered. This data further 

supports the hypothesis that CamSA is able to prevent CDI in mice due to anti-

germination activity. 

 

 

 

 

 

 

Figure 5.11. Amount of C. difficile spores recovered at different time points following spore 
challenge. White bars represent the cecum and black bars represent the colon of mice treated 
with 50 mg/kg CamSA. 
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5.4. Conclusions 

CamSA was able to “prophylactically” prevent murine CDI caused by two 

different C. difficile strains and ameliorate CDI signs in a dose dependent 

manner. Furthermore, a single dose of CamSA was sufficient to prevent CDI 

signs without any signs of relapse. No signs of inflammation or damage to the GI 

tract were seen in CamSA-treated mice. It is noteworthy that CamSA gave 

complete protection from CDI against unnaturally massive C. difficile spore 

inoculums. A 75 kg human will have to ingest hundreds of grams of infected 

feces to reach the same level of inoculum. And yet, even in these extreme 

conditions CamSA was able to completely prevent CDI.  

CamSA prevented CDI in mice at concentrations that were more than six 

times lower than the dose administered that showed no toxicity. Under the same 

conditions, chenodeoxycholate was not able to prevent CDI. In fact, animals 

treated with 50 mg/kg chenodeoxycholate show the same symptom patterns as 

animals treated with 5 mg/kg CamSA. At higher concentrations, 

Figure 5.12. Mice treated with C. difficile spores or vegetative cells. Kaplan-Meier survival plot 
for animals treated with 50 mg/kg CamSA and challenged with (Ο) C. difficile spores or (●) or 
C. difficile vegetative cells.  
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chenodeoxycholate showed acute toxicity, likely due to low solubility in biological 

fluids. Another compound, compound T88, that showed potent inhibitory activity 

in vitro was unable to prevent CDI in mice. In fact, compound T88-treated 

animals resembled untreated animals in regards to disease onset and severity. 

Taurocholate is the natural bile salt germinant for C. difficile spores (138, 140). 

Animals treated with C. difficile spores and taurocholate did not present signs of 

disease more severe than untreated animals. Furthermore, the onset of disease 

in taurocholate treated animals was no different than untreated mice. It is 

possible that disease caused by the high inoculum of C. difficile spores hid any 

minor affect taurocholate had on germination and disease progression. Future 

studies will need to be performed to determine if taurocholate has an effect on 

murine CDI with lower concentrations of C. difficile spores. 

When CamSA was given at sub-optimal concentrations, CDI onset was 

delayed and signs were less severe than in untreated mice. Similar results were 

obtained when an optimal CamSA dose was administered 24 hours prior to 

infection. In both cases, late CDI onset and reduced symptom severity could be 

attributed to the partial inhibition of C. difficile spore germination by lowered 

intestinal CamSA concentrations. These data suggest that CDI severity is linked 

to the number of C. difficile spores able to germinate in the GI tract of mice. This 

argument is supported by the ratio of C. difficile vegetative cell to spores in 

intestine and feces, which correlated with CDI symptom severity. Thus, CamSA 

treatment can prevent CDI and ameliorate signs in a concentration dependent 

manner. Vegetative C. difficile cells are not believed to be involved in human CDI 



 

185 

transmission but can infect mice (67, 263-265). CamSA was able to prevent 

infections from dormant C. difficile spores, but not from actively dividing C. 

difficile cells. Although not clinically relevant, infection of mice with vegetative C. 

difficile cells bypasses spore germination requirements and suggests that 

CamSA prevents CDI by inhibiting C. difficile spore germination and not by 

targeting metabolic processes in the vegetative bacterium.  

In our hands, C. difficile preparations from published procedures for 

mouse model of CDI (241) produced no detectable spores and did not result in 

infection. It is possible that in this case, most C. difficile cells died due to air 

exposure or that post stationary phase vegetative cells will not cause disease. In 

contrast, when we prepare C. difficile vegetative cells for infection, the cells are 

manipulated only in an anaerobic environment and were administered to animals 

immediately to minimize oxygen exposure.  

Since CamSA blocks C. difficile spore germination in vivo, the fate of 

ingested C. difficile spores can be followed without interference from germination 

and/or re-sporulation. CamSA-treated mice excreted C. difficile vegetative cells 

and/or spores in a dose dependent manner. Ingested C. difficile spores were 

quantitatively recovered from feces, cecum, and colon contents of mice treated 

with 50 mg/kg CamSA, further supporting the role of CamSA anti-germination 

activity in CDI prevention. Thus, CamSA treated mice are able to shed almost all 

of the ingested spores before they can be activated for germination. Interestingly, 

ingested C. difficile spores rapidly transit through the stomach and small 

intestine, but remain in the colon and cecum for up to four days. The mechanism 
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of dormant C. difficile spore accumulation in the lower intestine is not understood, 

but suggests that ingested C. difficile spores can form a transitory reservoir that 

is slowly released from the lower intestine. Although the amount of unattached 

spores in the intestines is small, it is tempting to speculate that these spore 

reservoirs serve as a focal point for CDI relapse.  

CamSA dosage was effective in preventing CDI when administered up to 

six hours following spore challenge, but ineffective when administered nine hours 

post-challenge. The observation of this narrow three-hour window correlates C. 

difficile spore germination with maximum C. difficile shedding in symptomatic 

mice. These data suggest that some germinated C. difficile cells are excreted 

soon after germination, while the remaining C. difficile vegetative cells lead to 

CDI onset. 

CamSA has strong prophylactic properties against CDI, but can also be 

used as a probe to address mechanistic details on CDI initiation. The sum of this 

data suggests that ingested spores rapidly transit through the GI tract and 

accumulate in the lower intestine. Six to nine hours after ingestion C. difficile 

spores germinate and the newly germinated cells establish infection. C. difficile 

vegetative cells start shedding almost immediately after germination and 

continue throughout the infection. In contrast, non-germinated C. difficile spores 

are slowly shed over a four day period. The timing of C. difficile spore 

germination and persistence of ungerminated spores in the lower intestine will 

have profound implication in the prophylactic treatment of CDI. 
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It is clear that if C. difficile spores germinate in the gut of a patient, CamSA 

will be ineffective against CDI. In these experiments, CamSA only failed when we 

purposely pushed the limits of effectiveness to test the mechanism of C. difficile 

spore germination in vivo. In these cases, CamSA was not optimized as a CDI 

prophylactic. Instead, by giving single CamSA doses at different time points after 

spore challenge, we were able to determine when and where C. difficile spores 

germinated in the mouse gut. Subtly changing the experimental setup allows 

CamSA to play two separate roles: as a prophylactic agent against CDI and as a 

chemical probe for C. difficile spore germination. 

Because CDI onset roughly coincides with antibiotic dosage, one can 

determine a priori when a patient will be at risk for CDI. In a clinical setting, one 

would not rely on a single CamSA dose. CamSA treatment will be started before 

the first antibiotic dose. Our data suggests that one CamSA dose every six hours 

will be sufficient to provide continuous protection from CDI. A six-hour interval 

between overlapping CamSA doses could indefinitely prevent C. difficile spore 

germination and thus compensate for the narrow efficacy window of CamSA. 

Since CamSA does not affect bacterial growth, anti-germination treatment can be 

continued until the intestinal microbiota has recovered. A multi-dose CamSA 

regime is further supported by the low toxicity exhibited by CamSA. Four 

therapeutic doses a day is not uncommon in hospitals and can certainly be 

improved with better CamSA formulations (e.g. controlled and/or delayed release 

capsules). 
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In conclusion, there are multiple lines of evidence to support that CamSA 

prevents CDI by inhibiting C. difficile spore germination in vivo, thus allowing 

ingested spores to be shed before they can establish infection. To our 

knowledge, CamSA is the first reported C. difficile spore anti-germinant that also 

protects mice from CDI. Furthermore, this is also the first study defining the 

temporal and spatial distribution of ingested C. difficile spores using a chemical 

probe. This approach represents a new paradigm that could be further developed 

and used in CDI management. Instead of further compromising the microbiota of 

CDI patients with strong antibiotics, anti-germination therapy could serve as a 

microbiota surrogate to curtail C. difficile colonization of antibiotic-treated 

patients. 
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CHAPTER 6 

Conclusions and Future Directions 

 Spore germination mechanisms have been studied and described for 

Bacillus (131, 266, 267). The activation of spore germination typically requires 

the detection of small molecules called germinants (126, 131). These germinants 

are recognized and bind to a very sensitive proteinaceous biosensor located on 

the inner membrane of the spore (167, 268). These germination (Ger) binding 

site(s) are highly conserved in Bacillus and Clostridium and all sequenced 

sporulating bacteria have analogs of these Ger binding site(s) (by Basic Local 

Alignment Search Tool – BLAST) (95). The exception is Clostridium difficile. C. 

difficile encodes for all spore-specific proteins except Ger binding site(s) and 

spore coat proteins (95). It is possible that the germination binding site(s) in C. 

difficile have diverged from other sporulating bacteria or a different set of proteins 

is used as germination binding site(s). In any case, the identity of the germination 

binding site(s) for Clostridium difficile is currently unknown (95).  

 C. difficile spores must germinate to cause disease and a recent article 

identifies glycine (amino acid) and taurocholate (bile salt) as germinants (140). 

Furthermore, the bile salt, chenodeoxycholate, has been shown to inhibit C. 

difficile germination in vitro (141). Neither glycine nor taurocholate has been 

reported to activate germination in Bacillus and Clostridium, suggesting a novel 

mode of germination recognition in C. difficile spores. Kinetic analysis using 

taurocholate and glycine reveals that C. difficile spores bind germinants by a 

complex cooperative mechanism. The affinity of the spore for one germinant is 
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affected by the binding of the other germinant (127). Furthermore, 

chenodeoxycholate is a competitive inhibitor of taurocholate-mediated spore 

germination (127). Similar cooperativity of germinants is described for Bacillus 

cereus and Clostridium sordellii spores (133, 136). Thus, C. difficile likely 

encodes unknown germination binding site(s) proteins to bind to these 

germinants (127). 

Due to the scarcity of genetic tools to understand C. difficile spore 

germination, an alternative approach is to use chemical probes to study the 

mechanism of spore germination (127, 133, 136, 151). The current dissertation 

project has described chemical probes to elucidate necessary epitopes of amino 

acids and bile salts capable of being recognized by the putative C. difficile 

germination binding site(s). To characterize the amino acid germination binding 

site(s), 30 amino acids and amino acid analogs were analyzed for germinant or 

inhibitor behavior with C. difficile spores. The results suggest that the binding 

region for amino acids has very little flexibility for the size of the molecule and 

functional groups allowed. There is also evidence for multiple binding site(s) that 

recognize specific amino acids. Besides glycine, L-phenylalanine, L-argnine and 

L-cysteine are able to activate C. difficile spore germination, probably by binding 

to separate binding sites (134). The limited number of functional groups on 

glycine, the optimal amino acid for germination, restricts the number of practical 

analogs that can be tested. Furthermore, none of the amino acids tested were 

able to inhibit C. difficile spore germination. As potential anti-germination therapy, 

amino acids are unlikely candidates. 
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Taurocholate is the natural bile salt that activates C. difficile spore 

germination (140). Taurocholate has multiple functional groups available for 

characterization. In this study, more than 100 bile salt analogs were analyzed for 

germinant and inhibitor behavior with C. difficile spores. The bile salt binding 

site(s) is quite complicated and is able to bind to multiple epitopes. The functional 

groups recognized for activation of spore germination are more specific than the 

functional groups that are simply able to bind (inhibition). Many functional groups 

and combinations are able to bind but not activate the C. difficile germination 

binding site(s). During this study, correlations were found between molecules that 

can activate and inhibit spore germination. Full characterization of the binding 

region for bile salts is far from completion. Based on this study, specific functional 

groups and interactions warrant further analysis.  

Activity-based protein profiling using compounds to crosslink to 

germination binding site(s) can be used to determine the amino acid sequence of 

the binding region (270). This is an important technique that could be used to 

determine the bile salt binding region in C. difficile spores since the germination 

binding site(s) are currently unknown (95). The plant cholesterol derivative, 

Ouabain, contains an α-methylene-γ-lactone group which is an electrophilic 

functional group capable of participating in Michael additions with biological 

nucleophiles such as the sulfhydryl groups of cysteine residues forming an 

irreversible adduct (181-184). Ouabain was able to bind to C. difficile spores and 

inhibit germination. Ouabain could potentially be used as a probe to determine 

the binding site(s) binding residues in C. difficile. 
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In general, a number of inhibitors of C. difficile spore germination were 

discovered during this project. In the big picture, compounds able to inhibit C. 

difficile spore germination could potentially be used as anti-germinant therapy in 

high risk patients. The lack of prophylactic treatment for CDI is an important 

problem and current medications only combat the established disease (35, 269). 

Therefore, the best inhibitors were assessed to determine the most practical 

approach for further characterization. CamSA was chosen for pharmacokinetic 

characterization and in vivo studies due its potency as an inhibitor of C. difficile 

spore germination and inexpensive synthesis. 

A patient becomes susceptible to C. difficile infection when taking 

antibiotic therapy and certain groups of people are at high risk for disease, such 

as the elderly and immunocompromised patients (41). This susceptibility is due 

to the disruption of indigenous bacteria that aid in the resistance to pathogen 

colonization (74, 142). An optimal anti-germination therapeutic should not further 

damage the natural flora in GI tract. CamSA does not have antibacterial effects 

on the enteric Gram-negative and Gram-positive bacteria tested in this study. 

Specifically, CamSA does not affect the vegetative growth of C. difficile. The 

proposed mechanism of CamSA is anti-germination activity with C. difficile 

spores. The results support this hypothesis since CamSA is unable to prevent 

proliferation of vegetative C. difficile cells. Future studies should include the 

effects CamSA has on other bacteria known to be important in colonization 

resistance (203, 271). For example, Lactobacillus delbrueckii ssp. bulgaricus has 

been shown to reduce cytotoxicity of C. difficile toxin in vitro (272). A more 
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detailed screen of CamSA with enteric bacteria in vitro will provide a better 

understanding of the effect CamSA will have on the indigenous gut populations. 

CamSA is stable to the microenvironments of the gut that it will likely 

encounter during transit. Simulated gastric and intestinal fluids can be used to 

determine the stability of compounds to the changing pH of the GI tract (193). 

CamSA is stable to these simulated GI tract fluids. The experiments performed in 

this project did not determine the effect of common GI tract proteases (besides 

hydrolases describe below) on CamSA degradation. In the future, the effect 

proteases have on the stability of CamSA should be assessed. Bacteria in the GI 

tract secrete bile salt hydrolases that degrade bile salts (186, 187).  CamSA is 

especially sensitive to degradation to the bile salt hydrolases produced by B. 

longum. Antibiotic therapy compromises and/or destroys the natural flora of the 

GI tract (142, 273). CamSA administered as a prophylactic alongside antibiotics 

will likely remain stable in the gut. After the cessation of antibiotics and CamSA, 

the natural bacterial flora can repopulate the gut and degrade any remaining 

CamSA. The direct effects of antibiotic agents on the stability of CamSA were not 

tested during this project. However, subsequent animal studies suggest that 

antibiotic medications have no affect on the activity of CamSA. 

CamSA was analyzed in an in vitro gut permeability assay. This assay 

predicted that CamSA is impermeable from the gut lumen into cells. Also, the 

assay predicted that CamSA is actively transported into the lumen. These studies 

were performed with a very low concentration of CamSA. Bile salts can form 

micelles at high concentrations and readily traverse cellular membranes (223-
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225). This critical micelle concentration (CMC) has been used to enhance the 

permeability of some molecules (225, 226). The critical micelle concentration of 

CamSA will need to be determined to be able to directly compare CamSA with 

previously studied bile salts. At the concentrations tested CamSA has low 

bioavailability, which is beneficial for treating a disease that is localized to the 

intestinal tract. CamSA was recovered at 100% in these permeability assays. 

This suggests that the human intestinal cells used in the study do not degrade 

CamSA and that CamSA does not adhere to these cells. As predicted earlier, this 

data further supports that CamSA will remain stable in the lumen of the gut. 

Mammalian cell cultures were used to determine the cytotoxicity of 

CamSA in vitro. CamSA did not adversely affect the viability of two types of 

epithelial cells or an immune cell line. The epithelial cell lines were also used to 

determine toxicity due to vegetative growth of C. difficile. This is an indirect 

method to study toxin effect on cell morphology and viability. Based on previous 

studies, we hypothesized that C. difficile releases toxins after spore germination 

and that CamSA could reduce the toxins produced by preventing spore 

germination. Although assays were not performed to detect toxins secretion, 

epithelial cells treated with C. difficile germination medium caused morphology 

changes and cell death comparable to published results (87, 92, 198). CamSA 

reduced C. difficile toxin-induced cell death in a dose dependent manner. In 

future experiments, the concentration of toxin A and toxin B can be determined 

by enzyme-linked immunosorbent assay (ELISA) or Western blot. The direct 

effect CamSA has on toxin production can then be assessed. We predict that the 
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total concentration of toxins secreted will decrease with increasing CamSA 

concentration. 

Taurocholate is the natural bile salt germinant of C. difficile spores (138, 

140). We predicted that inoculating mice with C. difficile spores and administering 

taurocholate would result in increased disease severity or a faster onset of 

disease signs. Unfortunately, we did not see a difference between taurocholate-

treated mice and untreated mice. Both presented signs of CDI within 24 hours 

and were moribund within 48 hours. The most probable explanation for these 

observations is that the C. difficile inoculum was too high to identify affects 

taurocholate had on spore germination in vivo. To test this hypothesis, future 

studies will have to be performed varying the inoculum of C. difficile spores 

administered to animals and the concentration of taurocholate administered. This 

will provide evidence that either exogenous taurocholate has effect or no effect 

on C. difficile spore germination in vivo. To our knowledge this type of in vivo 

study of taurocholate and C. difficile spores has not been reported.  

CamSA has low bioavailability based on in vitro permeability assays, 

which reduces the risk of toxic effects on non-target organs (192). When CamSA 

was administered to mice in high concentrations, there were no observable toxic 

effects such as respiratory distress, tremors, salivation, coma, or death (256).  

Toxicity of CamSA to internal organs is a necessary next step to determining 

CamSA’s safety. The major organs need to be assessed for size, morphology 

changes, and signs of toxicity (256). If metabolized, CamSA will likely be 

degraded to the cholate backbone and the meta-aminobenzenesulfonic acid 
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substituent. Cholate is a natural bile salt and the effects of increased 

concentration of cholate in the system will have to be determined. The 

substituent is not a natural substance and currently the oral, inhalational, and 

dermal toxicity and lethal dose has not been determined. The internal toxicity to 

major organs and blood vessels will need to be determined. Although CamSA is 

expected to remain in the intestine, the metabolites may not. The concentration 

of CamSA breakdown products in the blood, liver, and heart will provide a clearer 

picture of the fate of CamSA in the mammalian body (192). 

A recent study shows that the biodiversity of the murine gut changes with 

the administration of different antibiotics and after infection with C. difficile (142). 

The natural flora of the gut resists colonization of C. difficile and certain bacterial 

populations are more resistant to infection (74, 142, 271). It is possible that this 

change in population dynamics of the natural flora after CDI provides a 

susceptible environment for CDI recurrence. Therefore for optimal protection, 

CamSA should not alter the natural flora either during or after treatment. In future 

murine studies, the population dynamics of the gut flora in mice treated with 

CamSA alone and CamSA during infection with C. difficile should be compared 

to untreated animals. We do not expect that CamSA alone will affect the 

indigenous bacterial populations. We do predict that the natural gut flora of 

untreated animals repopulates animals that have been treated with CamSA and 

infected with C. difficile. In other words, we expect to see the bacterial 

populations in the gut revert to the natural microbial community. The proposed 

study will provide a clearer understanding of the interactions between CamSA 
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and the microbiota of the gut. If the hypothesis is supported, it is likely that 

CamSA will also be able to prevent CDI recurrence.  

To determine if CamSA is active in vivo, CamSA was administered to mice 

challenged with C. difficile spores. CamSA prevents CDI in these mice in a dose 

dependent manner. Furthermore, CamSA can prevent CDI in mice with a single 

dose when administered at the time of infection. C. difficile spores used to 

challenge mice did not germinate in the gut of mice treated with CamSA. This 

provides evidence of the anti-germinant ability of CamSA. Using CamSA as a 

chemical probe, the onset of CDI was determined to be between 6 and 9 hours 

post-challenge in the murine model. There are currently no prophylactic 

treatments for CDI making the discovery of CamSA as an in vivo anti-germinant 

an important step toward preventing the disease. Furthermore, to our knowledge 

no other studies have reported the timing of C. difficile spore germination in the 

murine gut before this study.  

The risk of CDI recurrence increases with each episode and is greater 

than 60% in patients with more than two CDI episodes (48-50). Currently no 

prophylactic protocols exist for CDI and CDI recurrence (35). Recurrence has 

been defined as a relapse of CDI with the same strain as the initial episode or re-

infection with a new strain (35). Recurrence of CDI is possibly due to the 

persistence of C. difficile spores in the gut following treatment and/or re-infection 

due to susceptible patients coming into contact with spores in the environment 

(101, 274-276). The mechanism of recurrence is poorly understood and 

represents a gap in C. difficile research. Mouse and Syrian hamsters have both 
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been successful animal models for CDI research (37, 241, 277). Relapse models 

in animals are more difficult to induce and to study. One study of relapse in the 

mouse has been reported; however, upon close inspection of the article, a model 

for reinfection is described (253). The authors induced CDI in mice and after they 

recovered, the mice were re-challenged with either the initial strain of C. difficile 

spores or a different strain (253). Admittedly, re-infection is one possible cause 

for recurrent CDI, due to suppressed patient immune systems and accessibility to 

contaminated surfaces (35). However, it is also likely that spores persist in the 

gut following CDI episodes and the spores begin outgrowth when therapy has 

ceased, causing relapse. CDI relapse has traditionally been studied in hamsters 

because the relapse induced in the hamster model mimics human disease more 

closely than the mouse (51, 250, 269, 278). A future direction from his current 

study will be to determine if CamSA can prevent CDI in the hamster model of 

disease and whether CamSA can prevent recurrence in hamsters. CamSA is 

able to prevent CDI in mice in a dose dependent manner and I hypothesize that 

CamSA will prevent CDI in hamster in a similar way. Furthermore based on the 

finding that CamSA-treated mice excrete C. difficile spores quantitatively, I 

hypothesize that CamSA will prevent recurrence in the hamster model. Any 

persistent spores remaining in the gut following antibiotic treatment will be 

prevented from germination and will be excreted. This project has provided 

evidence that anti-germination therapeutic compounds can prevent CDI in mice. 

The continuation of this project will lead the way for the re-defined management 

and prevention of C. difficile infection.  
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