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ABSTRACT 

Laser Ablation ICP-MS of Actinide Oxides as Simulated Used Nuclear 

Fuel 

By 

Keri Rachel Campbell 

Dr. Ken Czerwinski, Examination Committee Chair 
Professor of Radiochemistry 

University of Nevada, Las Vegas 
 
 

 The ability to examine elemental and isotopic ratios of fuels, waste forms, 

and other solids by direct analysis using laser ablation techniques can greatly 

reduce analysis costs and time. This is particularly true for actinide elements, as 

they contain useful information of the fuel cycle and nuclear forensics. Current 

methods to evaluate the composition of used fuel include a lengthy process of 

digestion, separations and often require multiple techniques and sample 

preparations to determine the elemental and isotopic composition. Furthermore 

all spatial information is lost during the digestion process, eliminating potentially 

useful data for detailed analysis. The goal of this project is to develop and 

optimize laser ablation inductively coupled mass spectrometry (LA-ICP-MS) for 

the analysis of fuel, used fuel and waste forms. This work focuses on uranium 

oxide simulated used nuclear fuels starting with binary systems of (U,Pu)O2, 

(U,Np)O2, (U,Ce)O2 and (U,Zr)O2. Methodology was successful in observing 

linearity of 0.995 and greater for these systems. This was achieved by 
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minimizing the particle size distribution of the aerosol and in turn decreases the 

time-dependent fractionation often observed in LA-ICP-MS.   

The project is composed of four tasks. The first task is to prepare and 

characterize actinide matrices and standards. The characterization includes 

physical, thermodynamic, and chemical properties of the materials prepared. The 

second task is to develop methods for the analysis of actinide oxide materials 

using LA-ICP-MS evaluating the technique for: limit of detection, accuracy, and 

precision. The third task is to examine the ablation zone for any chemical or 

physical changes in the material to determine how destructive the technique is to 

the material. The final task is to develop a model to correlate the ablation 

behavior of the elements tested with physical and thermodynamic properties of 

the materials. The heat capacity of the materials was measured to determine 

trends with thermodynamic properties of the desired elements. The model will be 

a useful tool in determining laser power densities of the materials of interest. 
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Chapter 1 – Introduction 

1.1 Purpose 

 

The ability to directly examine elemental and isotopic concentrations in 

nuclear fuels without dissolution of material is of interest to nuclear safeguards, 

nuclear forensics, the nuclear fuel cycle, and nuclear repository science. Nuclear 

safeguards, the emphasis of this work, are directed towards detecting the 

diversion of special nuclear materials, specifically the fissile isotopes 233U, 235U 

and 239Pu. This work will explore the use of laser ablation mass spectrometry as 

a tool for evaluating element and isotopic ratios in actinide containing matrices. 

The International Atomic Energy Agency (IAEA) is an independent 

intergovernmental science and technology based organization that serves as the 

global focal point for nuclear cooperation. The IAEA’s overall mission is to verify 

through inspections that comply with non-proliferation agreements to only use 

nuclear material and facilities for peaceful purposes. The IAEA safeguards 

program has two objectives. The first is to ensure no significant quantities of 

nuclear material are diverted from peaceful nuclear activities to manufacture 

weapons. The second is to detect any undeclared nuclear materials and activities 

of a country (1). The IAEA defines non-destructive assay (NDA) techniques as 

systems to verify, check and monitor nuclear materials without changing their 

physical or chemical properties (2). Non-destructive assay techniques that are 
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fast and reliable are important to determine the nature of the source material 

and provide decision makers with the necessary information to protect and serve 

the community at risk. Some of the IAEA approved NDA techniques are 

described in section 1.2. 

The application of Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICP-MS) for isotope ratio measurements is a rapid technique 

for direct solid sampling in analytical chemistry. The advantages of this technique 

include reduced risk of contamination by direct sample analysis, no chemical 

dissolution, and determination of spatial distributions of elemental compositions 

(3).  Using LA-ICP-MS as a safeguard technique would minimize the number of 

steps in the handling process, maximizing throughput and turn-around time than 

current non-destructive assay techniques with the ability to determine isotopic 

and concentrations in a multitude of matrices. With the advancements since 

inception, such as type of laser and geometry of ablation cell, laser ablation has 

grown from a semi-qualitative technique to a semi-quantitative technique for 

bulk or local analysis with high spatial resolution of trace and isotopic analysis. 

This work explores the advantages and limitations of LA-ICP-MS to determine 

elemental and isotope ratios on matrices of interest to nuclear safeguards. 
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1.2 Current Safeguard Techniques 

 

 The IAEA uses more than 100 different NDA techniques, which range in 

size and implementation (2). The most widely used instrumentation is stand-off 

techniques detecting either γ or neutrons. The K-edge densitometer (KEDG) is 

the most accurate gamma detector that requires the plutonium concentration in 

the sample of interest above 50 g/L (2).  Neutrons produced either by  particle 

interaction with light elements, spontaneous fission, or induced fission can 

provide signatures. The neutron detectors can have error in accuracy up to 1% 

for determining plutonium concentrations in fresh fuel. The neutron and gamma 

measurements do not require sample processing but often have significant data 

analysis to identify and quantify isotopes of interest. An additional downside with 

these detectors is not all of the isotopes of interest emit γ or neutrons. Often the 

systems are detecting daughter products emissions which are not direct 

measurements. All of these detectors vary in accuracy and precision. 

Modern safeguards require destructive assay on a multitude of samples 

for quality control of analyte concentration and isotopics during fabrication and 

analysis of used nuclear fuel. Radioanalytical techniques for long-lived - and β- 

emitting nuclides have time consuming digestion and separation procedures (4). 

Figure 1 displays a common flow sheet for destructive analysis. Alpha 

spectroscopy is the most common quantification technique to determine 

plutonium isotopes. Unfortunately, -spectroscopy cannot routinely resolve 
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isotopes with similar decay energies, such as the pairs 239Pu and 240Pu and 238Pu 

and 241Am.  These are isotopes of interest for mixed oxide fuel fabrication and 

recycling in used fuel and would need to be quantified (5).  

 

 

Figure 1: A common flow sheet for destructive analysis of used nuclear fuel (39) 
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1.3 Fresh and Used Fuel Composition 

 

The most commonly used reactor is the light water moderated reactors 

(LWR) which use a uranium dioxide fuel (UO2) enriched to 3-5% 235U. Uranium 

oxide is a refractory material that is non-reactive with water (6). The light water 

moderated reactors can also burn mixed oxide (MOX) fuel which is a uranium 

oxide fuel with up to 5% plutonium oxide. The MOX fuel can only be 40% of the 

overall reactor core (7). The concentration of plutonium in MOX fuel needs to be 

quantified prior to use as well as the enrichment of 235U in the uranium oxide 

fuel, and both values can be obtained using LA-ICP-MS. Uranium dioxide is 

known to form an extensive oxygen excess non-stoichiometric phase UO2+x 

where x ranges from 0≤x≤0.05 (8). The value of x greatly influences the 

thermodynamic properties and heat capacity of the material.          

There are three main objectives for used fuel recycling: recover uranium 

and plutonium for re-use as fuel, remove fission products and reactor poisons, 

and convert the waste into a stable chemical form which is safe for long term 

storage (6). In these objectives, LA-ICP-MS can be used to quantify elements of 

interest prior to dissolving and separating the used fuel for the final composition 

of the waste form. In addition to providing the isotopic and elemental 

concentrations of the fuel, LA-ICP-MS can also provide spatial information for the 

elements of interest. The spatial information is of importance to fuel performance 

evaluations to determine if the accumulation of fission products is due to high 
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fission density areas or thermal gradient migration (51). Figure 2 shows the 

depth profile of uranium and plutonium at the outer pellet zone collected using x-

ray microanalysis. The spatial information from this analysis is the accumulation 

of plutonium at the outer pellet zone indicative of a high fission density area. 

This analysis was performed using X-ray microanalysis techniques. The spatial 

information is of importance to fuel performance evaluations to determine if the 

accumulation of fission products is due to high fission density areas or thermal 

gradient migration (51). 

 

 
Figure 2: Uranium and plutonium concentrations in the surface region of a high burn- 

up oxide fuel pellet (51) 
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In LWR’s only 3% of the uranium is fissioned before the fuel is removed 

from the core. The need to remove the fuel from the core is due to the loss of 

reactivity from increasing fission products, most notably the neutron absorbers or 

poisons which impact the thermal utilization factor (51). Neutron absorbers such 

as 135Xe have a high neutron capture cross section and will impede the chain 

reaction needed for efficiency. The exact composition of the used fuel depends 

on the total burn-up, generally 95% of the used fuel is uranium dioxide and the 

remaining ~5% are fission products (6). The actinides from neptunium to 

einsteinium concentration range from 0.52 % to 1.48 % in burn-up rates from 

13 MWd/kg to 65 MWd/kg. About 20% of the fission products are the noble 

gases krypton and xenon (9).These noble gases form closed intragranular and 

intergranular bubbles within the fuel.   With increased burn-up, pores and grain 

boundaries are preferred sinks and form fission gas bubbles (10). These bubbles 

cause swelling and creep of the pellet resulting in possible fuel-cladding 

interactions which are undesirable for fuel performance.  

Three main phases of the solid are found in the used fuel are listed in 

Table 1 (11). The main oxide matrix is considered as a solid solution where the 

fluorite structure is the most stable (12). The actinides, lanthanides, and 

zirconium in the main oxide phase are isomorphic substitutions in the fluorite 

structure. The secondary oxide, phase also known as the “grey phase”, is formed 

because of miscibility limits within the main oxide phase (10). The miscibility 

limits are attributed mostly to barium, which only a small fraction of the barium 
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oxide forms a solid solution with the main oxide phase. The majority of barium is 

precipitated as a multi-component oxide called the grey phase. Zirconium dioxide 

has limited solubility in uranium dioxide which is dependent on temperature and 

extended by the presence of rare earth oxides in the main oxide phase (10).  

The metallic segregation phase, or Ɛ phase, is dependent on the oxygen 

potential of the fuel. The ruthenium, rhodium, palladium, molybdenum, and 

technetium form metallic precipitates in the grain boundaries and are the best 

indicators of burn-up rates since they have the highest linear correlation of 

concentration with burn-up (13).  

 

 

Phase Phase Composition 

Main Oxide  Actinides, Lanthanides, Zr 

Secondary Oxide (Ba,Sr)ZrO3 

Metallic Segregations Mo, Tc, Ru, Rh, Pd 

 Table 1: Three main phases found in LWR used fuel (10) 

 

 

The concentrations of fission products depend on the type of reactor, fuel, 

and burn-up. Figure 3 relates elemental concentration of fission products with 

fuel burn-up rates of LWR UO2 fuel. The fission product concentrations increase 

linearly as a function of burn-up, with Zr having the highest concentration of ~9 

g/kg. The gold standard for determining burn-up is the 148Nd reference method 

ASTM E321-69. This method is destructive analysis following the flow chart 
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shown in Figure 1. This isotope 148Nd has ideal properties that classify it as a 

burn-up indicator: it is non-volatile and has no volatile precursors, it is non-

radioactive and requires no decay corrections, it has good emission 

characteristics for mass analysis, its fission yields are nearly the same for 235U 

and 239Pu and is nearly independent of neutron energy (14). 
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Figure 3: Elemental concentrations of fission products as a function of Fuel burn-up 
for LWR UO2 fuel (15) 
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Used fuel analysis is of importance to nuclear safeguards because the 

analysis of the burn-up rates indicates whether the reactor is producing weapon 

grade plutonium. Figure 4 shows the calculation of plutonium isotope ratios as a 

function of irradiation time at a power level of 37.5 MWt/t in a BWR fueled with 

uranium enriched to 3.2% in 235U. Nominally the 240Pu/239Pu ratio is between 

0.05 and 0.07 for weapon production (15). If the reactor is being used for 

peaceful means, such as energy, the plutonium isotopic ratio is not ideal for 

weapon production and the total burn-up tends to be above 40 MWd/kg.  

 

 

 

Figure 4: ORIGEN2 calculation of the indicated Pu isotope ratios as a function of 
irradiation time, at a power level of 37.5 MWt/t in a BWR fueled with U enriched to 

3.2% in 235U (15). 
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1.4 Goals and Objectives 

 

The goal of this project is to develop and optimize laser ablation inductively 

coupled mass spectroscopy techniques for the analysis of elemental and isotopic 

ratios in nuclear fuel, used nuclear fuel, and nuclear waste forms. In order to 

reach this goal, the oxide materials and standards will be prepared and 

characterized. Routes and techniques used in the material preparation will be 

provided. The characterization will include physical, thermodynamic, and 

chemical properties of the materials prepared. The methods developed for the 

LA-ICP-MS analysis will be evaluated for limit of detection, accuracy, and 

precision. The ablation zone will then be examined for any chemical or physical 

changes in the material to determine how destructive the technique is to the 

material. Lastly, a model will be developed to correlate the ablation behavior of 

the elements tested with physical and thermodynamic properties of the 

materials.  

The first task will be to prepare actinide oxide materials as standards for LA-

ICP-MS. These materials will be binary oxides consisting of bulk uranium with 

trace amounts of zirconium, cerium, neptunium and plutonium to provide 

fundamental information and best model used nuclear fuel. More complex 

materials such as a ternary oxide matrix of bulk uranium with zirconium and 

cerium will also be evaluated to determine if multiple elements with different 

ablation behaviors can be measured simultaneously. The physical properties of 
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the materials characterized include percent theoretical density and grain sizes. 

The materials heat capacity will be measured for characterization of 

thermodynamic properties. Lastly, the phase compositions of the materials will 

be characterized.  

The second task is determining the limit of detection (LOD), accuracy, and 

precision for the LA-ICP-MS methods developed as well as any limitations of this 

technique. These parameters are important to understand in order to implement 

this method in nuclear safeguards, forensics, or the fuel cycle. Each area has 

different limitations and criteria for LOD, accuracy, and precision and different 

criteria for destructive and non-destructive assay.  

The third task is to examine the ablation zone for any chemical or physical 

changes in the material to determine perturbations due to measurement. This 

study will classify the destructive level of the technique and determine where it 

could be best implemented as an analysis method. If the technique is minimally 

non-destructive, it could be used to determine the plutonium concentration in 

MOX fuel before irradiation. On the other hand, if it is destructive, then the 

technique would be better applied to safeguards to assist in determining used 

fuel burn-up rates, which can be indicative of weapons production.  

The final task is to develop a model to correlate the ablation behavior of the 

elements tested with physical and thermodynamic properties of the materials. 

The heat capacity of the materials will be measured to determine trends with 

thermodynamic properties of the desired elements. If trends are established, 
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then the model will be a useful tool in determining laser power densities of the 

materials of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

14 
 

Chapter 2 – Instrumentation and Methods 

2.1 Synthesis of Materials 

 

 The pellets were prepared by dissolving the nitrate salts of the metals of 

interest: uranium, plutonium, neptunium, cerium, and zirconium in de-ionized 

water. All chemicals used are reagent grade obtained from Sigma-Aldrich except 

the actinides. The plutonium was obtained from Eckert and Ziegler Isotope 

Products. The neptunium was donated from Pacific Northwest National 

Laboratory in the form of a mixed metal and oxide. The uranium was purchased 

from J.T. Baker Laboratories as uranyl nitrate.  

The metal ions are precipitated in a 50 mL centrifuge tube as oxy-

hydroxides using concentrated ammonium hydroxide saturated in oxalate. The 

uranium is precipitated as ammonium diuranate ((NH4)2U2O7) under these 

conditions. The sample is vortexed for two minutes to ensure all the metals are 

in contact with the ammonium hydroxide solution, then centrifuged for five 

minutes. The supernatant is decanted from the precipitate. The process is then 

repeated with the supernatant to ensure all metals are precipitated. The 

precipitate was dried overnight at 100 °C or freeze-dried depending on the 

matrices.  

The dried precipitate is then transferred in to a ceramic crucible and 

calcined at 600 °C for 12 hours. During the calcination process the oxy-

hydroxides are converted to oxides. With these furnace conditions under air 
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atmosphere uranium forms U3O8.  After calcination the precipitate was ball milled 

at 450 rpm for 5 minutes to obtain fine powders. The powders were reduced to 

MO2 at 600 °C with Ar/5% H2 gas in a clamshell furnace. The powder was mixed 

with 1% by weight zinc stearate binder and pressed using a Carver manual 

press. The pellets were cold pressed in a 6 mm steal die for 2 minutes with a 

load of about 350 MPa. The pellets were sintered at 1700 °C for 5 hours under 

reducing atmosphere (Ar/5% H2) in a sealed corundum tube. The ramp rates 

were designated by the furnace manufacturer as 4.5 °C/min and held at 500 °C 

for 2 hours to burn off the zinc stearate binder. The 4.5 °C/min rate continued 

up to 1600 °C. From 1600-1700 °C the ramp rate was 2 °C/min. The cool down 

temperatures mirrored the ramping temperatures except for the hold at 500 °C. 

 

2.2 Instrumentation 

2.2.1 Powder X-ray Diffractometer 

 

 The chemical homogeneity of the material was characterized using a 

Bruker D8 Advance powder x-ray diffractometer (powder XRD). The powder XRD 

has been shown to identify crystalline phases present within a sample. The 

lattice parameters will determine whether the crystalline structures within the 

samples are in thermodynamic equilibrium. Two methods were used to prepare 

sintered pellets for measurement.  To avoid grinding, the (U,Pu)O2 and (U,Np)O2 

pellets were measured in entirety by mounting the pellet on clay in a depressed 
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sample holder. The remaining matrices were ground to a powder and spread in a 

thin layer over a low-background single crystal silicon wafer sample holder using 

acetone. Patterns were taken using 40 mV and 40 mA from 10 to 120 °2θ with a 

step size of either 0.008 or 0.01 °2θ depending on the peak shapes of the 

pattern. Bruker TOPAS 4.2 was then used to perform the Rietveld structure 

refinement. Inorganic Crystal Structure Database was used to input the structure 

parameters.  Instrument parameters are listed in Table 2. 

 

 

Parameter Value 

Primary radius 435 mm 

Secondary radius 217.5 mm 

Linear PSD 2Th angular range 3° 

FDS angle 1° 

Axial Convolution Full 

Filament length 12 mm 

Sample length 5 mm 

Receiving slit length 12 mm 

Primary Sollers 2.3° 

Secondary sollers 2.5° 
Table 2: Powder XRD parameters 

 

 

2.2.2 Laser Ablation Inductively Couple Mass Spectrometry 

 

A Nd:YAG ultraviolet laser system at 266 nm (LSX-500, CETAC, Omaha, 

NE) was used to generate pulses of < 6 nsec duration. The laser radiation was 

focused onto the surface of the pellet positioned inside a cylindrical ablation cell 
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with a volume of 110 cm3. Aerosols were transported under argon atmosphere 

and their composition measured with a quadrupole ICP-MS (ELAN DRC II, Perkin-

Elmer, Waltham, MT).  

Prior to analysis the ICP-MS parameters were optimized by measuring a 

NIST 610 glass standard until the 208Pb:206Pb ratio is 2.167 ± 0.0018 (16). The 

laser ablation parameters were optimized by varying the spot size, scan rate, 

laser power and pulse repetition rate until the signal profile was plateau shaped 

with deviations of the signal spikes less than 1000 counts. The nebulizer flow 

rate was then varied until the tailing of the signal was minimized. The signal was 

then integrated and normalized for time of integration. The parameters used in 

each study will be discussed in detail in subsequent chapters. The mechanics of 

LA-ICP-MS is discussed in section 3.1. The optimization of the system will be 

discussed in Chapter 4. 

  

2.2.3 Scanning Electron Microscope (SEM) and Optical Microscopy 

 

 In order for bulk analysis using LA-ICP-MS to be successful the material of 

interest needs to be physically and chemically homogeneous on the tens of 

microns level (17). The grain size distribution and surface defects were measured 

using a Leica DM 2500P microscope to the 1 micron scale. The pellet is mounted 

onto a microscope slide using clay.  
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A JEOL-5610 scanning electron microscope (SEM) equipped with a 

secondary electron and backscatter electron detectors is also used to measure 

surface defects and post ablation features of the pellets. The SEM uses an 

electron beam to image the surface microstructure with magnification of 40 to 

5000 times. The pellets are mounted onto the sample stage using double sided 

carbon tape. After mounting the sample is sputter coated using a Denton 

Vacuum DV-502A carbon coater to avoid charging on the surface. Non-

conductive materials, such as uranium oxide, need to be carbon coated so the 

electron beam interacts with the carbon rather than the non-conductive surface. 

The SEM also has the capability to measure elemental analysis through energy-

dispersive x-ray emission spectroscopy (EDS) using INCA mapping software. 

INCA is a measurement, calibration and diagnostic software published by 

Engineering Tools, Application and Services. The accelerating voltage used is 15 

kV with a working distance of 20 mm. For the EDS analysis, x-ray energies of 0-

10 keV were detected for elemental mapping. Surface images were collected in 

both secondary electron imaging and back scatter imaging modes. 

 

2.2.4 Physical Property Measurement System (PPMS) 

 

A quantum design model 6000 PPMS was used to determine the heat 

capacity of the materials. Heat capacity is defined as the amount of heat 

required to change a substance temperature one degree in the units J °C-1. This 
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system measures the heat capacity (Cp) of the material at constant pressure, the 

general equation shown below where Cp is a path function of heat energy 

transferred (dQ) to an object and the increase of temperature of the object (dT). 

 

   (
  

  
)
 
 

Equation 1: Heat Capacity at constant pressure 

 

 

 The PPMS Cryopump High-Vacuum pumps helium gas from a dewar to 

the PPMS sample chamber. The system is able to achieve thermal isolation for 

measurement when the base pressure is near 0.1 mTorr. Using a heat capacity 

puck (shown in Figure 5), the sample is mounted using cryogenic grease on a 

microcalorimeter platform. The platform is suspended by eight thin wires that 

serve as electrical leads for a thermometer and an embedded heater. The 

sample platform temperature is monitored throughout the heating and cooling 

process providing the raw data for the heat capacity measurements.   
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Figure 5: Image of heat capacity sample puck 

 

 

The sintered pellets are broken into small pieces using a mortar and 

pestle. The sample size for the PPMS ranges from 10-50 mg and needs a flat 

side to have complete contact with the thermal grease to ensure proper heating. 

An addenda is first collected with just the cryogenic grease and then another 

addenda is collected with the grease and sample of interest. The system is 

calibrated using a sapphire standard (Al2O3) weighing 18.6 mg. The heat 

capacity is measured from 2 K to 300 K.  

The software uses two mathematical models to convert raw data to heat 

capacity in J mol-1K-1 depending on the thermal contact of the sample with the 

sample platform. The simple model assumes the platform and sample are in 

good thermal contact and are the same temperature during the measurement. 
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The temperature (T) of the platform as a function of time (t) adheres to the 

following equation: 

      
  

  
    (    )   ( ) 

Equation 2: Heat capacity equation for simple model 

 

Ctotal is the total heat capacity of the sample and sample platform. The term Kw is 

the thermal conductance of the supporting wires. The term Tb is the temperature 

of the puck frame, and P(t) is the power applied by the heater. The heater 

power P(t) is equal to P0 during the heating portion of the measurement and 

equal to zero during the cooling portion. The system uses a nonlinear least 

square fitting algorithm comparing the solution to Equation 2 to the actual 

measurement. The fit deviation is then used to determine the standard errors of 

the measurement.  

The software uses a more complex two tau statistical model if the thermal 

contact between the sample and sample platform is poor. This model simulates 

the effect of heat flowing between the sample platform and sample, and 

between the sample platform and puck. 
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Equation 3: Heat capacity equations for two tau model 
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Cplatform is the heat capacity of the sample platform, Csample is the heat capacity of 

the sample, and Kg is the thermal conductance between the two due to the 

grease. The respective temperatures of the platform and sample are given by 

Tp(t) and Ts(t). If the fit of the two tau method does not converge, then the 

simple model is used to determine heat capacity.  

 

2.2.5 Liquid Scintillation Counting (LSC)  

 

A Packard TriCarb 2700 TR liquid scintillation counter was used to 

determine the concentration of plutonium and neptunium in solution. A 10 µL 

sample is mixed with 10 mL of Ultima Gold AB scintillation cocktail and counted 

for 5 minutes. Background was subtracted manually by a blank sample.  

The LSC detection method requires specific cocktails to absorb the energy 

emitted from radioactive decay into detectable light pulses. The scintillation 

cocktail contains a scintillator, an emulsifier, and a wave shifter (15).  An 

emulsifier or surfactant is added to the scintillation cocktail to ensure sample 

homogeneity. The scintillator transfers the ionizing radiation’s excitation energy 

to the solvent, and then transferred to the scintillation molecules. This 

mechanism allows each alpha or beta emission to result in a pulse of light. Since 

the photomultiplier tubes used for detection are more sensitive to longer 

wavelengths, the wave shifter is an organic compound that absorbs the primary 

scintillator’s photons and then re-emits the photon at a longer wavelength. 
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2.2.6 Utraviolet-visible Spectroscopy 

 

A Cary 6000i ultraviolet-visible (UV-vis) spectrophotometer was used to 

determine the oxidation state of neptunium in solution. A molecule containing Π-

electrons or non-bonding electrons absorbs the light and excites the electrons to 

higher anti-bonding molecular orbital. The spectrum provides valuable 

information about speciation through the band structure (24). Ultraviolet 

radiation interacts with the outer electronic levels, promoting electrons to higher 

energy levels, so this region of the spectrum will yield information on the 

bonding of the atoms into molecules, and their oxidation state. Changes in 

oxidation states of species have large effects of the absorption spectra. Table 3 

lists the absorption wavelengths of neptunium oxidation states in perchloric and 

nitric acid. Regardless of the acid media, the absorption band for Np(VI) does 

not change, Np(IV) and Np(V) absorption bands are strongly dependent on the 

solution. 

 

Oxidation State Solution Wavelength (nm) Intensity 

Np(III) 2 M HClO4 500-700  weak 

Np(IV) 2 M HClO4 ~700, 950 strong 

Np(V) 2 M HClO4 950 strong 

Np(VI) 2 M HClO4 below 400 strong 

Np(IV) 1-6 M HNO3 715 strong 

Np(V) 1-6 M HNO3 617 weak 

Np(VI) 1-6 M HNO3 below 400 strong 
Table 3: Absorption bands for different oxidation states of Np in HClO4 and HNO3 

solutions (59,18) 
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UV-vis spectrophotometer measures the intensity of light passing through 

a sample (I), and compares it to the intensity of light before it passes through 

the sample (I0). The ratio I/I0 is called the transmittance and is usually expressed 

as a percentage (%T). The absorbance (A) is based on the transmittance in 

Equation 4 (24). The instrument provides the transmittance value. The 

instrument collects the spectrum from 300 nm to 1100 nm with a scan rate of 

600 nm/min. 

       (
  

    
) 

Equation 4: Relationship between Absorbance and Transmittance of light. 
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Chapter 3 – LA-ICP-MS Background 

3.1 System Overview 

 

Laser ablation as a sample introductory system for ICP-MS was first 

reported in 1985 (19). The system used a J.K. Type 2000 ruby laser with results 

demonstrating uniform sensitivity for mass range 7-238 m/z and saturation of 

the detection system. Since 1985 great achievements have been made in laser 

technology including high quality optical materials. The laser most commonly 

used in LA-ICP-MS is a neodymium-doped yttrium aluminum garnet (Nd:YAG) 

solid state laser with a fundamental frequency of 1064 nm quadrupled to 266 

nm. Ablation cell design and the transport process were also investigated in the 

1990s to improve the dispersion of the particulate plume in order to enhance 

sensitivity (20).  

During laser sampling the surface is subjected to extremely high 

temperatures and pressures resulting in heating, melting and vaporization of the 

surface. Many mechanisms are used to describe mass removal of solids using 

laser ablation. Depending on the irradiance of the laser desorption, thermal 

vaporization, phase explosion and other mechanisms are proposed. If the 

irradiance is below 3 x 108 W/cm2 desorption and thermal vaporization are the 

dominant processes (3). Desorption involves the material absorbing the laser 

light and in turn the upper layer of the material is vaporized and ionized. 

Thermal vaporization involves a high temperature plasma initiation above the 
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sample surface in which mass is removed from the surface as a particulate 

plume. The particulate plume consists of atoms, molecules, large particulates, 

and vapor. Some of the particles are swept to the ICP-MS by the carrier gas. The 

larger particulates (>2µm) in the plume then condense and fall to the surface of 

the material. Phase explosion is a process where the sample is heated beyond its 

boiling point and becomes a meta-stable liquid near its critical state. Phase 

explosion is identified as a significant increase in the ablated volume resulting in 

a larger void in the material referred to as a crater (21).  

Parameters such as laser energy, pulse duration, wavelength and carrier 

gas flow significantly influence the sensitivity and precision of the measurement. 

Laser ablation is applicable to all types of materials whether they are conducting, 

non-conducting, pressed powder, metallic, ceramic or organic. The laser 

parameters used significantly change depending on the type of material (22). 

Certain physical and chemical properties of the examined matrix influence 

ablation such as sublimation point, density and thermal expansion coefficient, 

thermal conductivity, specific heat of vaporization and heat capacity (23). 

Once the sample is ablated the particles travel through a transport tube 

by carrier gas flow to the ICP-MS torch (Figure 6). The torch consists of 

concentric quartz tubes surrounded by a water-cooled radio-frequency induction 

coil. A spark from a Tesla coil initiates ionization of the argon gas in the central 

tube, these ions and electrons then interact with fluctuating magnetic field 

produced by the induction coil. The outer tube gas flow is tangential which cools 
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the walls of the center tube and centers the plasma radially (24). A vacuum is 

applied to the system to inhibit interactions of the gas molecules before reaching 

the detector. Further atomization and excitation of the sample vapor occurs in 

the argon plasma, which is then transmitted through a water cooled nickel 

sampling cone with a small orifice. After the sampling cone the hot plasma gas is 

expanded and cooled and a small fraction is pumped through the skimmer cone. 

Once the gas passed through the skimmer cone, a negative voltage is applied 

which separates the positive ions from the electrons and molecular species. The 

positive ions are then accelerated, focused by a magnetic ion lens, and 

introduced into the quadrupole. 
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Figure 6: General LA-ICP-MS set-up (25) 

 

The most common type of mass spectrometer used is the quadrupole 

mass analyzer shown in Figure 7. Four parallel cylindrical rods serve as 

electrodes. One pair is connected to a positive dc source while the other pair is a 

negative dc current. All rods are also in contact with an ac voltage 180° out of 

phase of each pair (24). The ions are then accelerated by a potential into the 

space between the rods. Two simple principles describe the trajectory and mass 

to charge (m/z) discrimination of the ions. The first is electrostatic interaction 

which is the attraction of the ion to the rod of opposing charge. The second 

principle uses the relation between kinetic energy and momentum, where the 

momentum of ions of equal kinetic energy is directly proportional to the square 



  

29 
 

root of mass of the ion. With these properties it is found that ions are either 

attracted or repelled while the current alternates in the rods and the ability for 

the ion to change trajectory depends on the mass of the ion. Once the ion 

interacts with a rod it is then neutralized and can no longer be detected. The 

positive rods attract the m/z less than the desired and the negative rods attract 

the m/z larger than the desired m/z. The remaining ion beam is then detected 

and the signal is collected.  

 

 

 

 Figure 7: A quadrupole mass spectrometer (24) 

 

 



  

30 
 

3.2 Technical Issues with LA-ICP-MS 

 

As in any analytical technique there are undesirable effects that must be 

understood and overcome in order to improve accuracy and precision of the 

measurement. With LA-ICP-MS such effects occur in the ablation, transport and 

detection processes. A major limitation is elemental fractionation which is the 

non-sample related variation of the analyte response during the ablation process 

(3). Preferential vaporization of elements from the sample and the possibility of 

the composition altering during transport can lead to deviations in analysis 

results with actual composition (3).  

Particles of various sizes are generated during the ablation process which 

decrease the transport efficiency of the analytes and alter their signals. If a 

particle on the order of 1-1.5 µm enters the ICP its vaporization and excitation 

may be incomplete, resulting in a lower signal for the constituents still present as 

a particulate. Fractionation mainly occurs at the points of vaporization and 

ionization, ablation site and plasma torch, resulting in partial recondensation onto 

the sample surface or filtering of larger particles in the ion optics of the ICP-MS 

(22). The fractionation index is a measure of this time-dependent variation of 

elemental ratios during an ablation shown in Figure 8.  
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Figure 8: Fractionation indices calculated (26) 

 

 

The fractionation index is derived by dividing the transient signal into two 

equal time segments and comparing the element intensity ratios normalized to 

an internal standard (calcium in Figure 8). Uranium is known to have a large 

time-dependent fractionation index of ~1.5 I (20-40s)/I (0-20s), where zirconium 

index is the lowest around 1 I (20-40s)/I (0-20s). Care must be taken when 

optimizing parameters for a matrix with two distinctly different analytes. It is 

important to verify if the variations in the signal intensity of the element is due to 

inhomogeneity of the sample or time-dependent fractionation.  

Time-dependent fractionation results in preferential volatilization between 

elements within a large particle.  In this case the more refractory element 

remains within the particle and is filtered in the ion beam. It is critical that the 

particle size distribution is reduced as much as possible. Previous groups have 

achieved this by glass wool placed or filter in the transport tube and helium as 
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the carrier gas (26,27). Mank et. al. (28) report for glass medium if the depth to 

diameter ratio is greater than 6 there is significant fractionation. Helium as the 

carrier gas significantly reduces large deposits surrounding ablation craters and 

the depth of penetration is 20-30% greater (25). Limiting the particle size 

distribution will be addressed in detail in Chapter 4. 

It is difficult to calibrate the LA-ICP-MS in solid samples. Inductively 

Coupled Plasma-Mass Spectrometry is highly matrix-dependent and requires 

matrix-matched standards. Three general strategies are used for calibrating solid 

samples (21). The first is external calibration to a solid reference standard in 

combination with internal standardization (3). Most publications use an internal 

standard as it compensates for signal variations of the analyte of interest (25). 

The internal standard chosen must behave as the analyte during ablation, for 

this reason care must be taken in choosing the most suitable internal standard 

for the analyte of interest. This calibration method requires a known amount of a 

representative element in the sample. There are two strategies used to add an 

internal standard to a sample of unknown origins (29). First is micro-pipetting a 

known quantity of an internal standard onto the sample surface. Second is 

grinding and mixing an internal standard into the matrix. The second approach is 

undesirable for used nuclear fuel as it would increase sample handling. 

The second strategy is calibration using solutions (29). One solution 

calibration approach is coupling an ultrasonic nebulizer to the laser ablation 

chamber where the desolvated standard solution is mixed with the ablated 
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sample and then introduced to the ICP torch. The second approach is having a y- 

junction attached to the tube where the solution is transported separately then 

introduced to the ICP. Another more direct system is using external solution 

calibration. The solution calibration is generally unsuccessful, due to the 

difference in solid and liquid mater laser beam absorption. Solids tend to have 

higher laser beam absorption than liquids. This can be explained by the effects of 

having a wet versus dry plasma introduction into the ICP source. A dry plasma 

improves atomization and reduces some matrix effects (29). 

The third strategy is external calibration using solid reference standards 

which will be used in this research as it will take into account fractionation and 

ablation efficiencies. These matrix-matched standards are laboratory prepared 

and characterized to ensure homogeneity. This strategy ensures that the 

standards would behave in the same way as the samples of interest during the 

ablation process. 

Spectroscopic interferences can occur in mass spectra within four 

categories: isobaric ions, refractory oxide ions, polyatomic ions, and doubly 

charged ions (24). Isobaric interferences for a quadrupole include isotopes that 

differ in mass by less than 1 mass unit. Polyatomic species form from interaction 

between species in the plasma, matrix and environment. These interferences are 

usually found below m/z of 82 and include 14N2
+, 40ArO+, and 40Ar2

+.  Oxides, 

hydroxides and hydrides are also known to form from the matrix components, 

analyte, or plasma gases. These interferences can be reduced by optimizing the 
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injector flow rate or nebulizer flow rate, radio frequency power, polished sample 

cone surface, and others. Matrix effects are also known to affect the analyte 

signal. If the concentration of one analyte is significantly larger than another a 

reduction or enhancement of a signal can be observed. Most of the isotopes of 

interest for safeguards and nuclear forensics in used nuclear fuel have m/z 

values above 82. For these isotopes, the spectroscopic interferences affecting 

quantitative analysis are the formation of oxides, hydroxides and hydrides as well 

as the concentration differences if analyzing multiple analytes at a time.  

 

3.3 LA-ICP-MS with Nuclear Material 

3.3.1 LA-ICP-MS in the Nuclear Fuel Cycle 

 

Scientists have applied laser ablation sampling to a variety of materials 

relevant to the nuclear fuel cycle, such as alloys, ceramics, glass and minerals 

(30). The uranium content in the minerals for prospective mining sites can be 

quantified using LA-ICP-MS and has been studied extensively for the purpose of 

uranium-lead dating (22, 31, 32, 33). Using solution calibration procedures, 

Becker et. al. were successful in determining uranium and thorium concentration 

in basalt, andesite and zeolite geological samples (34). Laser ablation-ICP-MS 

was able to determine sub µg g-1 impurities in uranium fuel alloys prior to 

irradiation (35).   
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Used nuclear fuel can be dissolved for recycling, fabricated into its final 

waste form, or directly disposed. While theoretical modeling is able to evaluate 

fission product concentrations with acceptable uncertainty, used fuel aged over 

20 years is expected to require further analysis (6). This is prominently valid for 

the United States as many used fuel assemblies have been stored at the plants 

for over 30 years. In France and Germany the content of about 60 radionuclides 

must be specified and limits are set for each nuclide per waste package with 

detection limits in the ng g-1 concentration range (4). Gastel et. al. tested the 

detection limits of 99Tc, 129I, 232Th, 233U, 235U, 237Np, and 238U and found LA-ICP-

MS meet the requirements for all nuclides except 129I and 233U in concrete 

matrices. This study was able to determine uranium and thorium concentrations 

with reproducibility of ± 20% RSD using calcium as an internal standard for the 

measurements. Becker et. al. were also successful in determining uranium and 

thorium isotope ratios in concrete and graphite matrices with precision of 1.2% 

RSD and accuracy of 0.43% for uranium (33).  

Palmer et. al. (36) report LA-ICP-MS was superior to ICP-AES in 

quantifying the amount of palladium, rhodium, and ruthenium in used fuel slurry 

batches. This is due to the secondary lines of iron, thorium, uranium and other 

heavy elements coinciding with the major emission lines of the noble metals. The 

slurry batch samples were prepared in two ways: a dried powder and a lithium 

metaborate fusion which produces a nonhygroscopic glass matrix. It was found 

that the ruthenium selectively volatilized during the production of the glass while 
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the dried powder results were consistent with other waste analysis performed. 

Alexander et. al. performed LA-ICP-MS analysis on vitrified glass samples and 

tank waste stimulants from the Hanford Nuclear Waste site (37). After correcting 

the data for ablation efficiency using particle size distribution data, the percent 

deviation from known concentration of elements tested ranged from 5-20% for 

m/z range of 7-153. 

 

3.3.1.1 LA-ICP-MS Sampling of Used Nuclear Fuel 

 

   Used fuel analysis and provide information related to operational 

performance and safety. Ha et. al. (38) performed a study on the compositional 

change of the used nuclear fuel along the diameter of the pellet to determine 

fuel performance at higher burn-up rates using LA-ICP-MS. Three samples were 

taken from two used fuel rods that had cooled for three years prior to analysis. 

Axial slices of 3 mm height were cut from the fuel rods along the cross-section of 

a pellet which including the fuel and cladding. The samples were then embedded 

in epoxy resin and polished. Ha et. al. found that the 236U/235U ratio remained 

constant across the pellet while the Pu isotopes to 235U ratios significantly 

increase at the pellets rim. This can be explained by epi-thermal neutron capture 

of 238U also known as the rim effect. These measurements precision ranged from 

7-14% relative standard deviation. Ha et. al. also determined the distribution of 

the minor actinides 237Np, 243Am, and 244Cm across the pellets and resulted in the 
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same build-up at the pellet periphery as the plutonium isotopes with precision 

ranging from 3.93-18.82% relative standard deviation. The lower precision in the 

minor actinide measurements can be explained by the low concentrations of 

these isotopes within the samples.  

Ha et. al. performed a separate study determining 100Mo/235U ratios in 

used fuel using the same sample preparation (39). They found the same rim 

effect at high burn-up rates with molybdenum as the other isotopes in the 

previous study, with low precision ranging from 8.6 to 24% relative standard 

deviation. A section of each sample was dissolved and analyzed for average 

burn-up using thermal ionization mass spectrometer for comparison referred to 

as the Nd-148 method. Ha et. al. then used ORIGEN2 code to evaluate the 

relationship between the measured isotope ratios and burn-up rates shown in 

Table 4. The group found that burn-up profiles obtained by local isotopic ratios 

can be useful burn-up monitors. 

 

 

Method 
Average specimen burn-up 

(GWd/tU) 
239Pu/235U distribution 32.4 42.6 56.8 
237Np/235U distribution 31.3 41 57.3 
243Am/235U distribution 27.3 40.1 58.9 
244Cm/235U distribution 27.4 41.1 60 

Nd-148 method 33.3 41 57.6 
Table 4: Average specimen burn-up calculated by the burn-up profile from the 

measured isotopic ratios and ORIGEN2 code (38) 
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 Horvath et. al. measured the xenon concentration in fission gas bubbles of 

used nuclear fuel using LA-ICP-MS (40) for fuel performance evaluation. Fission 

gasses are known to accumulate as closed intragranular and intergranular 

bubbles within the fuel. When burn-up increases grain boundaries and pores are 

preferred sinks for the fission gas bubbles (10). If fission gasses are released 

into the free volume of the fuel rod they induce over pressurization and cladding 

failure (41). At high burn up rates the peripheral of the fuel pellets are known to 

accumulate fission gasses (10). Horvath et. al. studied two different calibration 

methods and found direct injection of a calibration gas of xenon while completely 

filtering the solid masses ablated results were in the same range as calculated 

models reported. The calibration was linear over 2.5 orders of magnitude with 

precision reported in the range of 5-10% relative standard deviation. 

 

3.3.2 LA-ICP-MS for Forensic Purposes 

 

 The technical means by which nuclear materials, whether intercepted 

intact, or retrieved from post‐explosion debris, are characterized and interpreted 

to determine the provenance, industrial history, and implications for nuclear 

device design is the definition of nuclear forensics (42).  Hot particles or 

contamination in environmental matrices such as soil originating from releases 

from nuclear facilities or nuclear weapon tests characterization is of high 

importance to agencies such as the IAEA, the U.S. Department of Energy and the 
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Environmental Protection Agency. Varga analyzed depleted, natural, low and 

highly enriched uranium oxide particles (10-30 µm) for isotopic ratios using a 

laser ablation coupled with a sector field mass spectrometer and compared the 

solid sampling results with liquid sampling using the same spectrometer (43). 

The powder was transferred to a double sided tape and analyzed directly. Varga 

found the laser ablation method is able to determine isotope ratios of a 10 

micron particle with precision of 0.9-5.1 % relative standard deviation. The 

method also leaves 80% of the particle intact. 

 Plutonium’s isotopic composition varies according to its mode of 

production. Figure 9 illustrates how its isotopic ratios can be used to determine 

its source history. By measuring the 240Pu/239Pu and 238Pu/240+239Pu atom ratios, 

the reactor type and pre- or post-detonation nature of the Pu can be evaluated.    

Small changes in the global fallout ratios can be explained by different regions of 

the hemispheres (44). Cagno et. al. were able to distinguish between weapons 

grade, civilian grade and global fallout plutonium sources. Bottom sediments 

were collected from several reservoirs around the Mayak Production Association 

in the Urals, Russia. Two areas were tested, the first being the Asanov swamp 

and the areas down-stream of Mayak. This facility was the first weapons grade 

plutonium production site for the Soviet Union as well as later reprocessing civil 

nuclear waste. These samples were digested, radiochemical separations 

performed and electrodeposited on steel planchets prior to analysis on LA-ICP-

MS. This study reports a limit of detection for 240Pu to be 0.1 pg mm-2. Although 
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the precision reported is significantly high 41.6-66.7% relative standard 

deviation, the accuracy of the measurements for 240Pu/239Pu was consistent with 

Accelerator Mass Spectrometry measurements.  

 

 

 

Figure 9: 
240Pu/239Pu atom ratio vs. 238Pu/240+239Pu activity ratio of known sources 

(45) 

 
 

 

 Cizdziel et. al. examined plutonium isotopics to determine source history 

on soils collected in the western United States (44). The samples ablated were 

electrodeposited steel planchets that had undergone complete separations prior 

to analysis. This study found the LA-ICP-MS results were in agreement with the 



  

41 
 

alpha spectroscopy measurements previously studied, but do not report precision 

as replicates were not measured.   
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Chapter 4 – Minimizing Fractionation Effects of LA-ICP-MS 

4.1 Abstract 

 

Laser ablation-inductively coupled plasma mass spectrometry is desirable 

for measuring oxides due to the difficulties in dissolving the materials. An issue 

with laser ablation of oxides is the formation of aerosols with a range of particle 

sizes. This study uses centrifugal force and gravity within the transport tube to 

filter the larger particles and in turn minimize time-dependent fractionation. This 

is achieved by forming loops in the transport tube to permit settling of larger 

particles. Increasing the amount of loops in the transport tube considerably 

improved the accuracy of the measurements, from a linear correlation value of 

0.9756 to 0.9997. The change in precision within the measurements using the 

loops as a filtration system was not as noticeable, with only a few percent gained 

with the average relative standard deviations. Standard materials were prepared 

to simulate used nuclear fuels rather than fresh fuels with pits and voids on the 

surface. Measurements were taken without polishing the surface of the 

materials.  
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4.2 Introduction 

 

As in any analytical technique there are undesirable effects that must be 

understood and overcome in order to improve accuracy and precision of the 

measurement. With LA-ICP-MS such effects occur in the ablation, transport and 

detection processes. Laser ablation-inductively coupled plasma mass 

spectrometry has several limitations that can inhibit the utilization of this 

technique for many sample matrices and materials. A major limitation is 

elemental fractionation which is the non-sample related variation of the analyte 

response during the ablation process (28). Preferential vaporization of elements 

from the sample and the possibility of the composition altering during transport 

can lead to deviations in analysis results from actual composition (21).  Particles 

of various sizes are generated during the ablation process which decrease the 

transport efficiency of the analytes and alter their signals. If a particle greater 

than 1 µm enters the ICP its vaporization and excitation may be incomplete, 

resulting in a lower signal for the constituents still present as a particulate as the 

particle is removed from sampling (26). Time-dependent fractionation results in 

preferential volatilization between elements within a large particle, favoring those 

species with a higher volatility.  In this case, the more refractory element 

remains within the particle and is filtered in the beam. For this reason it is crucial 

that the particle size distribution is reduced as much as possible. Previous studies 

have limited time-dependent fractionation by placing glass wool or filter in the 
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transport tube and helium as the carrier gas (26, 27) or use cyclone-type spray 

chambers and other sample introduction devices (46, 47).   

The purpose of this study is to demonstrate the ability of LA-ICP-MS to 

quantitatively determine the concentration of trace elements in a ceramic 

material with a rough surface without the need to polish or have a complex 

sample introduction system. The materials prepared and measured in this study 

are consistent with used nuclear fuel morphology and are directly ablated 

without any sample preparation. By forming large loops in the center of the 

transport tube, particle size distribution is minimized resulting in a stable, 

reproducible measurement.  

 

4.3 Experimental 

 

The instrumentation and optimization of LA-ICP-MS parameters are 

described in section 2.2.2. Table 5 lists the LA-ICP-MS parameters used to 

determine trace cerium in a uranium oxide matrix. The m/z value for 140Ce 

measured was 139.905. The pellets were ablated for 30 seconds 3 times in 

different areas with the total signal collection time of 90 seconds. The average 

power density used for detection of cerium is 85.955 Wcm2.  
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Laser Ablation 

Spot size  100 µm 

Time per scan 30 sec 

Scan rate 5 µmsec-1 

Gas blank 20 sec 

Average Power Density 85.944 Wcm2 

Pulse Rep Rate 5 Hz 

ICP-MS 

RF Power  1050 W 

Lens Voltage (V) 5.5 V 

Analog Stage Voltage (V) -1700 V 

Pulse Stage Voltage (V) 825 V 

Sweeps 10 

Readings 800 

Dwell Time 8 ms 

Nebulizer flow (Ar) 0.8 L/min 
Table 5: LA-ICP-MS Parameters for (U,Ce)O2 pellets 

 

 

TYGON transport tubing used in this study with an inner diameter of 

0.3175 cm and outer diameter of 0.635 cm. The length of the tube was held 

constant at 96.52 cm with the distance of the laser ablation port to the ICP-MS 

torch of 33 cm. The diameter of the loops formed in the transport tube was 8.25 

cm. A simple glass ball-joint adapter was used to couple the laser ablation to the 

ICP-MS torch instead of the standard spray chamber. The configuration of the 

transport tube is pictured in Figure 13.  

Uranium-cerium oxide pellets composing of 1, 2, 5, and 10 mole % cerium 

were prepared with the final chemical form of (U,Ce)O2 consistent with used 

nuclear fuel. The pellets were prepared by as described in section 2.1. The 

densities were measured using digital calipers and balance. A powder XRD was 
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used to confirm chemical homogeneity as described in section 2.2.1. Surface 

morphology was measured using a Leica DM 2500P microscope. 

 

4.4 Results 

4.1 Pellet Characterization 

 

High burn-up used uranium oxide fuel analysis has shown three stable 

phases (11).The material in this study is a simplified version of the main oxide 

matrix that includes the actinide, lanthanides, and zirconium. Cerium is major 

fission product and forms solid solutions in the main oxide matrix (48). Cerium is 

also used as a surrogate for plutonium in ceramic materials as it has similar 

chemical and thermodynamic behavior (11). Cerium and plutonium have similar 

phase relationships, oxygen potentials and diffusion behavior in uranium oxide 

matrices (49). For these reasons (U,Ce)O2 materials have been extensively 

studied and characterized in the literature and in turn chosen as a material of 

interest in this study. 

Fresh, sintered, commercial light water reactor nuclear fuel is normally 

around 95‐97 % of theoretical density (50). After irradiation and in-growth of 

fission products the theoretical density decreases between 1 % and 6 %, 

depending on length of irradiation and achieved burn-up (51). Table 6 lists the 

measured and theoretical densities obtained for the (U,Ce)O2 pellet series. The 

theoretical densities range from 70.6 to 93.6% within the series. The 1-5 mole 
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percent cerium theoretical densities fall within those desired for simulated used 

nuclear fuel (10). The 10 mole percent cerium shows obvious swelling and 

bubbling within the pellet, with vertical swelling and bubbling evident on the top 

surface. The width of the 10 mole percent cerium pellets is 5.05 mm while the 

average of the other pellets is 4.94 ± 0.03 mm.  It is common in used nuclear 

fuel for the material to experience swelling and creep (53), which are the main 

reason for plastic deformation but not at the scale observed for the 10 mole 

percent cerium. Although percent theoretical densities of used nuclear fuel are 

not expected to be observed below 90, the 10 mole percent cerium theoretical 

density of 70.6 ± 1.2 gives this study a range of porous material to observe the 

effects of laser-solid sampling.  

 

 

Pellet (mol % Ce) 

Measured ρ 

 [g cm-3] 

Theoretical ρ 

 [g cm-3] 
% Theoretical ρ 

1  10.232 ± 0.213 10.937 93.6 ± 1.9 

2  10.001 ± 0.177 10.904 91.7 ± 1.6 

5  10.083 ± 0.196 10.804 93.3 ± 1.8 

10  7.512 ± 0.126 10.638 70.6 ± 1.2 

Table 6:  Measured densities of (U,Ce)O2 pellets 

 

 

 

Porosity of ceramic material has adverse impacts on mechanical and 

thermophysical properties by lowering the theoretical density under 100 %. 
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Porosity is directly tied to thermal conductivity and microstructural pores do act 

as sinks for the accumulation of fission gas bubbles (10). Figure 10 displays the 

microstructure of the rough and untreated surface of the pellets analyzed in this 

study. The surface morphology is consistent with used nuclear fuel, which is not 

often thought as ideal for laser ablation analysis. The crater diameters averaged 

59.4 ± 19.4 µm. Also shown in the 10 mol % cerium pellet are cracks and an 

uneven surface. The pits, cracks and voids on the surface of the material are the 

main physical feature of these ceramics that will impact and eventually 

complicate laser ablation analysis.  

 

 

(

  
Figure 10: Microscope images of surface porosity of (U,Ce)O2 pellets, top left 1 mol 

%, top right 2 mol %, bottom left 5 mol % and bottom right 10 mol % Ce. 

Measurements are the diameter of the pits observed on the surface. 
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The particle size distribution of the aerosol is increased significantly when 

the laser comes in contact with the edge of a crack or pit in the material (52). 

When the particle size distribution increases the probability of time-dependent 

fractionation also increases. Historically, laser ablation is successful with polished 

and uniform surfaces (53).  However, for post irradiation analysis the surface is 

likely to be porous and rough, similar to the synthesized pellet. Furthermore, 

polishing the highly radioactive surface for analysis and create airborne particles 

and is therefore undesirable. For this reason the samples were not polished or 

treated prior to analysis by LA-ICP-MS.  

A total of 30 mg of the pellets were ground using a mortar and pestle and 

analyze for homogeneity of phases using powder XRD (Table 7). The analysis 

was performed as described in section 2.2.1. The weighted profile factor, Rwp, is 

an indication of the agreement between the observed pattern and calculated 

diffraction pattern. A value less than 10 is indicative of an acceptable fit. All of 

the pellets consisted of a main face centered cubic (FCC) uranium dioxide pure 

phase in equilibrium with a (U0.746Ce0.244)O2 solid solution FCC phase with varying 

relative composition. Even though the pellets are not perfectly single phase, 

these results indicate that the pellets are homogeneous within the ablation area 

of 0.015 mm2 since the grain sizes measured are in the micron range.  
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Pellet (mol % Ce) UO2 phase % (U,Ce)O2 phase % Rwp 

1 97.5 2.5 5.76 

2  96.8  3.2  7.11 

5  92.79 7.21   7.17 

10 95.74 4.26 5.64 
Table 7: Phase analysis of pellets in the UO2-CeO2 system by Rietveld structure 

refinement  

 

 

Figure 11 and Figure 12 show the powder x-ray diffraction patterns for the 

10 mol% cerium sample. The experimental measured pattern is in blue with a 

red overlay which is the fit. The grey line at the bottom is the difference between 

measured and fit. The middle blue pattern in Figure 11 is the known uranium 

dioxide FCC pattern and the middle black pattern in Figure 12 is the known FCC 

for (U0.746, Ce0.244)O2 solid solution. The solid solution pattern appears as a 

shoulder on the main uranium dioxide pattern becoming more defined at higher 

2 theta. 

 



  

51 
 

 

Figure 11: Powder XRD pattern of 10 mol% Ce in (U,Ce)O2 sample with UO2 phase 
highlighted in blue 
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Figure 12: Powder XRD pattern of 10 mol% Ce in (U,Ce)O2 sample with (U,Ce)O2 
phase highlighted in black 

 

 

4.2 LA-ICP-MS Loop Study Results 

 

To reduce large deviations in particle size of the aerosol during analysis, a 

comparative study was performed. Using the same length transport tube 0, 1, 

and 2 loops of 8.25 cm diameter were formed with the transport tube to mitigate 

the larger particles from reaching the ICP-MS shown in Figure 13. Previous work 

has shown that in order to acquire bulk analysis ratios for trace concentrations, 

the element with the highest concentration can come close saturating the 

detector in order to collect a stable signal for the trace elements. For this study 
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140Ce signals were collected leaving 238U to be filtered out of the ion beam in the 

ICP-MS. The large mass difference provided suitable separation to attain 238U 

filtering. This technique was successful in achieving sufficient intensities of the 

trace elements thereby improving their limit of quantification. 

 

 

 

Figure 13: Photo of the transport tube configured with two loops 

 

 

The traditional way to quantify concentration of an isotope using ICP-MS 

includes the analysis of a series of standards to establish a relationship between 

intensity of signal and concentration, which produces a calibration curve. The 

calibration curve should be linear within the range of interest in order to quantify 

the concentration of an unknown. Figure 14 shows the calibration curve with no 
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loops in the transport tube, providing a baseline for this study. The linear 

correlation is found to be 0.9756 with relative standard deviation ranging from 

8.4 % to 33.6 % with an average of 17.3%.  
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Figure 14: Calibration curve for the series using a straight transport tube 
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Figure 15 shows the calibration curve using one loop in the transport 

tube. The linear correlation is 0.9818 with relative standard deviation ranging 

from 2.9 % to 27.2 % with an average of 14.3 %. Comparing Figure 14 and 

Figure 15, there is an increase in the linear correlation factor and a decrease in 

the percent relative standard deviation. The centrifugal force the larger particles 

observe within the loop of the transport tube successfully hinders them from 

reaching the ICP-MS torch. 

The two 8.25 cm loop results are presented in Figure 16. The linear 

correlation is 0.9997 with relative standard deviation ranging from 12.4 % to 

20.8% with an average of 15.9%. When comparing 0, 1 and 2 loops, it is found 

that two loops have the highest linear correlation factor and the lowest percent 

standard deviation for the 10 mole percent cerium pellet. Having two loops in the 

transport tube increases the accuracy of the measurements significantly but the 

precision between the one and two loops has only slightly improved when 

compared to the zero loop measurements.  
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Figure 15: Calibration curve using 1 loop in the transport tube 
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Figure 16: Calibration curve for 2 loops in the transport tube 

 

 

Further studies were performed and found that having three loops in the 

transport tube suppressed the cerium signal and the linear correlation fell below 

0.8 (Figure 17). The relative standard deviation ranged from 2.6 % to 21.1 % 

with an average of 12.9 %. The suppression of the cerium signal can be clearly 

seen when comparing the counts obtained for the 10 mole % cerium pellet. With 
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3 loops in the transport tube the 10 mole % cerium counts are 3.7E05, the 

counts with 2 loops are 1.2E06, almost an order of magnitude higher. 
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Figure 17: Calibration curve for 3 loops in the transport tube 
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4.5 Conclusion 

 

Having loops in the transport tube successfully filtered the larger particles 

ablated from the untreated (U,Ce)O2 surface.  The smaller ablated particles that 

reach the plasma of the ICP-MS for detection limit element fractionation. By 

increasing the amount of loops in the transport tube the accuracy of the 

measurements considerably improved from a linear correlation value of 0.9756 to 

0.9997. The change in precision within the measurements using the loops as a 

filtration system was not as noticeable with only a few percent gained with the 

average relative standard deviations within the series. The 10 mole percent 

cerium pellet’s higher standard deviation can be attributed to its low theoretical 

density and higher porosity than the other pellets measured. These physical 

features of the materials may be a limiting factor to achieve relative standard 

deviations less than 10%.  
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Chapter 5 – Limiting Spectroscopic Interferences of 239Pu 

and 237Np in a 238UO2 matrix 

5.1 Abstract 

 

Spectral overlap is a common event that occurs in ICP-MS detection. 

Whether it is peak tailing in neighboring channels of interest or hydride formation 

which interferes +1 amu quantification. Two saturation studies with a uranium 

source were completed to understand spectroscopic interferences using two LA-

ICP-MS systems. The first study used an ELAN DRC II ICP-MS coupled with a 

CETAC LSX-500 laser ablation system. The laser power density was varied from 

57.296 Wcm-2 to 157.563 Wcm-2 effectively saturating the m/z=238 channel 

while measuring the m/z=239 and m/z= 237 channels. It was found the 

m/z=239 channel remained at background regardless of the intensity of counts 

in the m/z=238 channel. The ratio of 239Pu/238U counts range from 6.88E-06 to 

6.45E-05. The overlap of the uranium signal into the 237 channel is dependent 

on the laser power density applied to the material. The ratio of 237Np/238U counts 

ranges from 8.46E-05 to 1.47E-05. The second study used an iCAP-q-ICP-MS 

coupled with a NWR-213 laser ablation system. It was found using He as the 

carrier gas 239Pu/238U ranged from 8.53E-05 to 1.27E-04. The significantly higher 

239Pu/238U ratio in this study is not peak tailing but a 238UH+ formation confirmed 

by a mass scan survey with the hydrogen source coming from the He carrier gas. 

KED mode successfully lowered the 239Pu/238U ratio ranging from 2.77E-05 to 
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2.85E-05, also lowering the 238U signal to 1.6E06. The mass scan survey also 

showed a second peak forming at the m/z 239.052 which suggests a hydride is 

still reaching the detector. Argon was used as the carrier gas where the 

239Pu/238U ratio ranged from 6.46E-05 to 8.77E-05. These results are closer to 

the carry over observed in the first study with the 237Np/238U ratio.  

Laser Ablation Inductively Couple Plasma Mass Spectrometry successfully 

measured plutonium in a uranium oxide matrix with a linear correlation factor of 

0.9992 and the relative standard deviation for three runs varied from 3.7 to 

9.6% for the calibration series. No signal overlap was observed from the bulk 

uranium in the 239 channel. The LA-ICP-MS parameters were successful in 

obtaining a linear correlation value of 0.995 and low percent relative standard 

deviations ranging from 3.9-8.9% for neptunium in a uranium oxide matrix. 

Although overlap in the 237 channel was observed, during analysis laser power 

density was kept below this feature to ensure no corrections needed. Each series 

was measured and analyzed within an hour which suggests a more rapid 

analytical technique than current methods in nuclear safeguards used to quantify 

plutonium and neptunium in a uranium matrix. The LA-ICP-MS also minimizes 

the handling of potentially hazardous material and reduces waste generation by 

directly ablating the solid.  
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5.2 Introduction 

 

The limiting factor for using ICP-MS with liquid introductory system to 

analyze trace plutonium (m/z = 239) in a uranium matrix is the formation of 

uranium hydride (UH+) which shows isobaric interference with 239Pu. The UH+ 

formation within the ICP-MS plasma has been extensively studied for liquid 

introductory systems (54, 55). Often corrections are needed for the hydride 

formation, separation of uranium from plutonium prior to analysis, or the use of 

a dynamic reaction cell to move one analyte to a higher m/z ratio (54). Directly 

ablating the material using LA-ICP-MS eliminates the main source of the hydrides 

within the system, nitric acid, offering a solution to the isobaric interference from 

the formation of hydrides.  

Studies have been performed using LA-ICP-MS to determine radial 

distribution of plutonium isotopics in used nuclear fuel (56, 38). Leopold-Gunther 

et. al. found plutonium isotopics were in good agreement with the analysis by 

SIMS and EPMA but concluded that the lack of internal standard and reference 

material were the limiting factor for precise and accurate quantitative analysis. 

Ha et. al. measured the radial distribution of the isotopic ratios of 239Pu, 237Np, 

243Am in relation to 235U, then compared the results to the ORIGEN2 code in 

order to determine burn-up of the fuel. These studies showed the ability to 

measure isotopic ratios of 239Pu, but did not attempt to quantify the 

concentration of plutonium in the used fuel. To date none have successfully 
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quantified elemental concentrations within the samples, but quantified relative 

relationships of elements for spatial determination. 

The purpose of this study is to demonstrate the ability of LA-ICP-MS to 

quantitatively determine plutonium and neptunium in a uranium oxide matrix 

with high precision and accuracy without an internal standard. The implications 

are that with a relatively inexpensive instrument and no sample preparation 

needed, LA-ICP-MS is a fast and reliable analytical tool for directly examining 

elemental and isotopic concentrations in a range of nuclear fuels without 

dissolution of material. Since standard reference materials are not readily 

available, the materials tested in this study were prepared and characterized for 

phase identification and density prior to LA-ICP-MS analysis. During the synthesis 

of the (U,Pu)O2 pellets a kinetic study was performed to see how much 

ammonium hydroxide saturated in oxalate is needed to precipitate uranium and 

plutonium. A laser power study was performed on a 100% 238UO2 pellet to show 

that the direct analysis of the solid in argon atmosphere eliminates hydride 

formation of 238U. Following these results a stable reproducible signal of 239Pu 

and 237Np that is quantifiable was achieved for (U,Pu)O2 and (U,Np)O2 samples.   

 

5.3 Experimental 

  

The pellets were prepared as described in section 2.1. Prior to preparing the 

neptunium pellets, the neptunium dioxide source was converted to neptunium 
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nitrate using an autoclave synthesis route. Details and results of these syntheses 

are shown in section 5.4.1. Before precipitation of the (U,Pu)O2 samples a kinetic 

study was performed to determine the amount of concentrated ammonium 

hydroxide saturated in oxalate in needed to precipitate uranium and plutonium 

nitrate from the de-ionized water. A 10 µL aliquot of the dissolved metal nitrates 

in water was prepared and counted using a Packard TriCarb 2700 TR liquid LSC. 

This sample was considered the baseline for the kinetic study. A 2 mL sample of 

concentrated ammonium hydroxide saturated with oxalate aliquot was then 

added to the bulk solution. The solution was then vortexed for 2 minutes and 

centrifuged for 5 minutes at 450 rpm. Another 10 µL aliquot of the supernatant 

was removed at 10 minutes of contact time and counted on the LSC. The 

solution and precipitate were placed on a shaker table overnight. After 24 hours 

of contact time, the material was then centrifuged for 5 minutes and another 10 

L aliquot was counted using LSC. Under these conditions uranium is 

precipitated as ammonium diuranate ((NH4)2U2O7). The vial was then centrifuged 

at 450 rpm for five minutes and then the supernatant was decanted from the 

precipitate. The precipitates were freeze-dried for 48 hours. 

Table 8 shows the concentration of plutonium in used LWR fuel at different 

burn-ups. Using the g/kg reported, if it is assumed 0.5 g total material for each 

burn-up rate, the amount of plutonium and uranium used to produce 0.5g of 

each matrix is listed in Table 9. 
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Fuel Burnup (MWd/kg) 13 26 34 39 

[Pu] (g/kg) 5.01 8 8.8 10.1 

Table 8: Plutonium formation in 4% 235U enriched LWR fuel as a function of burn-up 

(51). 

 

 

Fuel Burn-up (MWd/kg) 13 26 34 39 

[Pu] (g) 0.0025 0.004 0.0044 0.0051 

[U] (g) 0.4975 0.496 0.4956 0.4949 

wt% Pu 0.5 0.8 0.88 1.02 

Table 9: Amount of material used to produce 0.5 g of each matrix 

 

 

Table 10 shows the laser ablation and ICP-MS parameters used in the limit of 

detection analysis of 239Pu in a uranium oxide matrix. Table 11 lists the LA-ICP-

MS parameters used in the limit of detection analysis of 237Np in a uranium oxide 

matrix. In both studies, the laser power density was varied from 57.296 Wcm-2 

to 157.563 Wcm-2 in order to saturate the 238U channel using a 238UO2 pellet. The 

sampling area of the pellet was a 225 µm line that had a width of 100 µm. The 

237Np (m/z = 237.048), 239Pu (m/z = 239.052) and 238U (m/z = 238.05) signals 

were collected in the ICP-MS detector.  
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Laser Ablation 
Spot size  100 m 
Time per scan 45 sec 
Scan rate 5 m/sec 
Gas blank 30 sec 
Energy Level varied 
Pulse Rep Rate 5 Hz 

ICP-MS 
RF Power  1100 W 
Lens Voltage (V) 5.5V 
Analog Stage Voltage (V) -1700 V 
Pulse Stage Voltage (V) 825 V 
Sweeps 10 
Readings 800 
Dwell Time 8 ms 
Nebulizer flow (Ar) 0.5 L/min 

Table 10: LA-ICP-MS parameters for the 239Pu signal in a 238UO2 pellet using an Elan 

DRC II ICP-MS 

 

 

Laser Ablation 
Spot size  100 µm 
Time per scan 30 sec 
Scan rate 5 µm/sec 
Gas blank 30 sec 
Energy Level varied 
Pulse Rep Rate 5 Hz 

ICP-MS 
RF Power  1050 W 
Lens Voltage (V) 5.5V 
Analog Stage Voltage (V) -1700 
Pulse Stage Voltage (V) 825 V 
Sweeps 10 
Readings 800 
Dwell Time 8 ms 
Neb flow (Ar) 0.4 L/min 

Table 11: LA-ICP-MS parameters for the 237Np signal in a 238UO2 pellet using an Elan 

DRC II ICP-MS 
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 A second set of saturation studies were performed at Los Alamos National 

Laboratory using a NWR-213 New Wave Research laser ablation system coupled 

with a Thermo Scientific iCAP Q ICP-MS. These studies used the NIST 610 glass 

standard as the uranium source sample. Although the laser wavelength and 

sample are different than the first saturation studies since this is an observation 

of detector response, it does not conflict with the final results. The parameters of 

this study are listed in Table 12.  

 

 

Laser Ablation 
Spot size  80 µm 
Time per scan 45 sec 
Scan rate 5 µmsec-1 
Gas blank 20 sec 
Average Power Density varied 
Pulse Rep Rate 10 Hz 

ICP-MS 
RF Power  1050 W 
Lens Voltage (V) 6 V 
Analog Stage Voltage (V) -1700 V 
Pulse Stage Voltage (V) 825 V 
Sweeps 10 
Readings 800 
Dwell Time 10 ms 
Nebulizer flow (Ar and He) varied  

Table 12: LA-ICP-MS parameters 237Np and 239Pu signals in a NIST 610 glass standard 
using an iCAP Q ICP-MS 

 

 

Table 13 and Table 14 lists the optimal LA-ICP-MS parameters used to 

determine trace plutonium and neptunium in a uranium oxide matrix 

consecutively. Only the 237Np and 239Pu signals (m/z = 237.048 and 239.052 
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respectively) in each study are collected in the ICP-MS detector. The pellets were 

each ablated for 30 seconds and three times in different areas with a total signal 

collection time of 90 seconds. The signal was then integrated and normalized for 

time of integration. All of the data collected in this study used peak-hopping 

mode for the ICP-MS. The optimized average laser power density for the 

plutonium analysis was found to be 38.197 Wcm-2 and 31.821 Wcm-2 for the 

neptunium analysis.  

 

 

Laser Ablation 
Spot size  150 µm 
Time per scan 30 sec 
Scan rate 5 µmsec-1 
Gas blank 20 sec 
Average Power Density 38.197 Wcm-2 
Pulse Rep Rate 5 Hz 

ICP-MS 
RF Power  1100 W 
Lens Voltage (V) 5.5V 
Analog Stage Voltage (V) -1700 V 
Pulse Stage Voltage (V) 825 V 
Sweeps 10 
Readings 800 
Dwell Time 10 ms 
Nebulizer flow (Ar) 0.8 L/min 

Table 13: LA-ICP-MS parameters for Pu analysis in (U,Pu)O2 pellets 
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Laser Ablation 
Spot size 150 µm 
Time per scan 30 sec 
Scan rate 5 µmsec-1 
Gas blank 20 sec 
Avg Laser Power Density 31.821 Wcm-2 
Pulse Rep Rate 5 Hz 
ICP-MS 
RF Power 1100 W 
Lens Voltage (V) 5.5V 
Analog Stage Voltage (V) -1700 
Pulse Stage Voltage (V) 825 V 
Sweeps 10 
Readings 800 
Dwell Time 10 ms 
Neb flow (Ar) 0.8 L/min 

Table 14: LA-ICP-MS parameters for Np analysis in (U,Np)O2 pellets 

 

 

5.4 Results 

5.4.1 Synthesis 

 

In order to determine the amount of oxalate saturated concentrated 

ammonium hydroxide needed to sufficiently precipitate the plutonium from the 

water/nitrate solution a study was performed using the conditions listed for the 

0.5 weight percent plutonium sample (Table 9). The results for the precipitation 

kinetic study are listed in Table 15. 
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Sample Counts (cpm) % Activity  

Before 

precipitation 

241648.2 100 

10 minute contact 368.8 0.15 

24 hours contact 143.2 0.06 

Table 15: LSC results for precipitation kinetics 

 

 

After 10 minutes of contact time with oxalate saturated concentrated 

ammonium hydroxide, 0.15% of total activity remained in the supernatant. Only 

0.06% of the activity remained in solution after 24 hours. Using these results, 10 

minute contact time was found to be sufficient for precipitating the remaining 

matrices. A 0.09% loss in overall activity is acceptable when taking into account 

of 24 hours are needed to recover a small amount of material.  

A sample of 237Np(VI) nitrate was prepared by first converting the neptunium 

mixed metal oxide to neptunium dioxide via flowing oxygen at 700 ºC for 12 

hours. The solid changes to a red at 700 ºC indicating Np2O5 had formed. At 400 

ºC a green solid is present Figure 18 (57). In an oxygen atmosphere at 

temperatures ranging from 700 K to 950 K, Np2O5 is unstable and decomposes to 

neptunium dioxide (58). The decomposition reaction is described in Equation 5. 

 

                
 

 
   

Equation 5: Decomposition of Np2O5  
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Figure 18: (A) A sample of NpOx (x = 0-2) load in quartz boat at room temperature. 
(B) Red solid at 700 ºC after 12hrs. (C) Green-solid after cooling to 400 ºC. (D) 

Green-brown solid NpO2 at room temperature. 

  

 

 The powder XRD pattern of the green-brown product indicated full conversion 

to neptunium dioxide (Figure 19). The decomposition reaction was successful in 

preparing a crystalline face-centered cubic neptunium dioxide powder. This 

powder will then be the starting material for the conversion to Np(VI) nitrate.  

C D

BA
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 Figure 19: Powder XRD results of the NpO2 powder 

  

 

 A 70 mg sample of the resulting neptunium dioxide solid was placed in 4 

dram borosilicate glass vial of original dimensions 2.1 x 7.0 cm, inner diameter 

1.8 cm, custom-cut to 3.5cm in height.  A 5 mL aliquot of 8M HNO3 was added to 

the vial and loaded in a 23 mL Teflon autoclave (Parr Instruments 4749, Figure 

20) sealed and digested at 200 ºC for 72 hours.   

 A 100 µL of the dark green solution, seen in Figure 20, was diluted in 3 mL of 

8M nitric acid and placed in a cuvette for UV-Vis spectroscopy analysis (Figure 

21). The large band below 400 nm indicates a NpO2
2+species identified as 

neptunium (VI) nitrate (59). Dukes and Shuler report sharp absorption bands at 

715 nm for Np(IV) and at 617 nm for NpO2
+. Neptunium (VI) nitrate also 

displays weak absorption bands 700 to 950 nm as seen in the spectrum 

measured for the dark green solution. The nitric acid concentration did not affect 
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the absorption spectrum for NpO2
+ and NpO2

2+ but found slight shifts in the 

Np(IV) absorption bands. 

 

 

 

Figure 20: Neptunium dioxide and 8M HNO3 loaded in a 23 mL Teflon autoclave, 

Resulting dark green solution after 72 hours digestion at 200 ºC. 
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Figure 21: UV-Vis spectroscopy results of dark green solution from autoclave 
synthesis. 

 

 

 The Np(VI) nitrate solution concentration was then quantified by LSC shown 

in Table 16. Correcting for the in-growth of 233Pa and its daughter 233U, the final 

concentration of neptunium is 0.052 M 237Np(VI) nitrate, where all of the 

neptunium was digested.     
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Original 
mg 

Original V 
(mL) Sample 

cpm 
10µL 

M 
(mol/L) 

237Np 
(mg) 

0 0 Blank 50.8   

70 5 Autoclave 480282 0.129 153.48 
Table 16: LSC results from Np(VI) nitrate synthesis 

 

 

5.4.2 Density Measurements 

 

The (U,Pu)O2 pellet densities range from 8.818 ± 0.153 to 10.254 ± 0.255 

gcm-3 (Table 17). The lower densities of the 1.02 wt% plutonium pellet y and the 

0.88 wt% plutonium pellet x can be explained by a lateral crack observed for 

these pellets.  The remaining pellets have theoretical densities exceeding 85%, 

with the highest at 93.5%. 

 

 

Pellet  
(Pu wt%) 

Theoretical ρ 
[g cm-3] 

Measured ρ  
[g cm-3] %Theoretical ρ 

0.5 PX 10.973 10.254 ± 0.255 93.5 ± 2.5 

0.5 PY 10.973 10.130 ± 0.241 92.3 ± 2.4 

0.8 PX 10.974 9.588 ± 0.253 87.4 ± 2.6 

0.8 PY 10.974 9.534 ± 0.228 86.9 ± 2.4 

0.88 PX 10.975 9.049 ± 0.210 82.5 ± 2.3 

0.88 PY 10.975 9.606 ± 0.196 87.5 ± 2.0 

1.02 PX 10.975 9.861 ± 0.269 89.9 ± 2.7 

1.02 PY 10.975 8.818 ± 0.153 80.4 ± 1.7 

Table 17: Percent theoretical densities measured for (U,Pu)O2 pellets 
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Fresh, sintered, commercial light water reactor nuclear fuel is normally 

around 95‐97 % of theoretical density (50). After irradiation and in-growth of 

fission products the theoretical density decreases between 1 % and 6 %, 

depending on length of irradiation and achieved burn-up (51). While the pellets 

synthesized are not within the fresh nuclear fuel densities, they fall within the 

range of higher burn-up used nuclear fuel with the exception of the defected 

pellets. 

 The neptunium pellet densities are listed in Table 18. The percent 

theoretical densities range from 84.96 ± 2.73 to 91.44 ± 2.71. No physical 

defects were observed for these pellets and were pressed under the same 

conditions as the plutonium pellets. The pellets percent theoretical densities 

below 90 have larger diameters suggesting not as much shrinking and 

compacting in the sintering phase as the pellets’ above 90. The average 

theoretical density is 88.33 ± 2.16%. The synthesis was successful in producing 

desirable densities with only one pellet below 85%.  
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mol % Np 
Measured 
 ρ [g cm-3] 

Theoretical  
ρ [g cm-3] % Theoretical ρ 

0.25 PX 9.658 ± 0.230 10.970 88.04 ± 2.38 

0.25 PY 9.450 ± 0.285 10.970 86.14 ± 3.02 

0.5 PX 9.967 ± 0.260 10.971 90.85 ± 2.60 

0.5 PY 9.320 ± 0.254 10.971 84.96 ± 2.73 

0.75 PX 9.603 ± 0.238 10.971 87.53 ± 2.48 

0.75 PY 9.589 ± 0.256 10.971 87.40 ± 2.67 

1.0 PX 9.589 ± 0.229 10.971 87.40 ± 2.39 

1.0 PY 9.716 ± 0.279 10.971 88.55 ± 2.87 

1.25 PX 9.985 ± 0.275 10.972 91.01 ± 2.75 

1.25 PY 10.033 ± 0.272 10.972 91.44 ± 2.71 
Table 18: Percent theoretical densities measured for (U,Np)O2 pellets 

 

 

5.4.3 Powder XRD Results 

 

To determine homogeneity and crystallinity powder XRD was performed 

using a Bruker D8 Advance. The pellets were mounted using clay for direct 

measurement as described in section 2.2.1. Figure 22 and Figure 23 display the 

powder XRD patterns for the 0.88 and 1.02 wt % plutonium in (U,Pu)O2 pellets, 

respectively. It was found that all matrices were a single phase, face centered 

cubic, and had no impurities. Plutonium undergoes isomorphic substitution within 

the uranium dioxide matrices (60). The narrow peaks with large relative 

intensities in the XRD pattern indicate high crystallinity and uniform equiaxed 
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grains within the pellets (61).The sintering time and temperature profile use in 

the synthesis was successful in ensuring homogeneity within the pellets.     

 

 

 

Figure 22 : Powder XRD pattern for 0.88 wt% Pu (U,Pu)O2  

 

   

 
Figure 23: Powder XRD pattern for 1.02 wt % Pu (U,Pu)O2  
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Examples of the (U,Np)O2 powder XRD pattern are shown in Figure 24 

and Figure 25 with the two phases highlighted. The main UO2 is highlighted in 

blue in Figure 24 and the (U,Np)O2 solid solution phase is highlighted in black in 

Figure 25. The solid solution phase appears as a shoulder on the main UO2 phase 

with more definition at higher two theta. This shift signifies a lower d-spacing 

within the crystal lattice of the solid solution phase compared to the UO2 phase. 

 

 

 

Figure 24: Powder XRD pattern for (U,Np)O2 1.25 mol% pellet with UO2 phase 

highlighted 
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Figure 25: Powder XRD pattern for (U,Np)O2 1.25 mol% pellet with (U,Np)O2 phase 
highlighted 

 

 

The relative phase concentrations for the (U,Np)O2 series are provided 

below (Table 19). All pellets contained two fcc phases, a pure UO2 phase and a 

(U,Np)O2 solid solution. Normally the desired Rwp is less than 10, but for most of 

these patterns small differences in intensities were observed between the 

experimental and measured peaks due to slight peak deformities of the 

measured peaks from a Gaussian shape. A single solid solution may be obtained 

by increasing the sintering time at 1700 °C and annealing at a lower 

temperature.  
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Pellet (mol % Np) UO2 phase % (U,Np)O2 phase % Rwp 

0.25 92.97 7.03 10.24 

0.5 94.07 5.93 10.46 

0.75 87.49 12.51 12.83 

1.0 92.67 7.33 8.64 

1.25 89.27 10.73 15.27 
Table 19: Phase analysis of pellets in the UO2-NpO2 system by Rietveld structure 

refinement 

 

5.4.4 Saturation Study 

 

Signal overlap due to peak tailing from saturating the detector is 

commonly observed in ICP-MS measurements. In order to quantify any signal 

overlap of 238U (M/z=238.05) into 239Pu (m/z=239.052) channel a laser power 

study was performed with a 100% 238UO2 pellet (Figure 26) using instrument 

parameters listed in Table 10. The laser power density was varied from 57.296 

Wcm-2 to 157.563 Wcm-2, effectively saturating the m/z=238 channel at 130 

Wcm-2 while measuring the m/z=239 channel. It was found the m/z=239 

channel remained at background regardless of the intensity of counts in the 

m/z=238 channel. 
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Figure 26: Laser Power Study of 239Pu using 100% 238UO2 Pellet 

  

 

In order to clearly see the 239Pu signal trends, the 239Pu signal is graphed 

separate from the 238U signal in Figure 27. Small fluctuations in the average 

signal intensity are apparent ranging from 23.456 counts to 26.04 counts with 

relative standard deviation 1.28 to 8.97 % indicating low background in the 239 
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channel with no observable overlap of the uranium signal. The ratio of 239Pu/238U 

counts range from 6.88E-06 to 6.45E-05. This ratio is significantly less than 

previous reported values of 9.1E-04 (4). 
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Figure 27: 239Pu signal in Laser Power Study using 100% 238UO2 Pellet 
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The same saturation study was performed with a 100% 238UO2 pellet in 

order to quantify any signal overlap of 238U (M/z=238.05) into the 237Np 

(m/z=237.048) channel (Figure 28) with instrument parameters listed in Table 

11. The laser power density was varied from 57.296 Wcm-2 to 157.563 Wcm-2 

effectively saturating the m/z=238 channel while measuring the m/z=237 

channel. It was found the m/z=237 channel increases significantly as the laser 

power density increases by a factor of 2. 
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Figure 28: Laser Power Study of 237Np using 100% 238UO2 Pellet 
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The 237Np signal from Figure 28 is graphed separately in Figure 29 to 

show the features clearly. It was found the counts in the 237 channel increased 

from 73.49 ± 7.81 to 149.17 ± 6.34. The overlap of the uranium signal into the 

237 channel is dependent on the laser power density applied to the material. The 

ratio of 237Np/238U counts ranges from 8.46E-05 to 1.47E-05.  
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Figure 29: 237Np signal in Laser Power Study using 100% 238UO2 Pellet 
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A second laser power study was performed using a NIST 610 glass 

standard as the 238U source and an iCAP-Q ICP-MS with a New Wave NWR-213 

laser ablation system. This system has the capability of simultaneously 

measuring in peak hopping mode and mass scan survey. The results for the 

239Pu and 237Np are shown in Figure 30 using helium as the carrier gas. Although 

the average power densities in this study are higher than previous studies in this 

work (Figure 27 and Figure 28), the resulting 239Pu/238U ranged from 8.53E-05 to 

1.27E-04. The uranium counts in this study were 2.2E07 which are in the same 

order of magnitude as the uranium oxide pellet measured with ELAN DRC II ICP-

MS. The significantly higher 239Pu/238U ratio in this study can be explained in 

Figure 31. The signal at m/z 239.052 is not peak tailing but a 238UH+ formation.  
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Figure 30: 239Pu and 237Np signals using NIST 610 glass standard iCAP-Q ICP-MS with 

He as carrier gas 
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Figure 31: Mass scan survey in second laser power density study using He as carrier 

gas 

 

 

The iCAP-Q-ICP-MS also has the ability to analyze in KED mode. The KED 

mode is a kinetic energy discrimination collision cell using helium as a 

pressurized gas. This cell breaks molecular bonds formed in the plasma. Figure 

32 shows the resulting 239Pu and 237Np signals using helium carrier gas and 

activated KED mode.  
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Figure 32: 239Pu and 237Np signals in second Laser Power Study using He as carrier 

gas and KED mode 

  

 

The KED mode successfully lowered the 239Pu/238U ratio ranging from 

2.77E-05 to 2.85E-05 from the helium mode on the same instrument (Table 20). 

The KED collision cell also lowered the 238U signal to 1.6E06 from 2.2E07. The 

mass scan survey also showed a second peak forming at the m/z 239.052 which 

suggests a hydride is still reaching the detector. 
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Instrument Carrier gas 237Np/238U  239Pu/238U 

Elan DRC II Ar 8.46E-05 - 1.47E-05 6.88E-06 - 6.45E-05 

iCAP Q  He 8.42E-07 - 2.98E-07 8.53E-05 - 1.27E-04 

iCAP Q  He KED mode 7.36E-07 - 1.65E-07 2.77E-05 - 2.85E-05 

iCAP Q  Ar ND - 2.2E-06 6.46E-05 - 8.77E-05 
Table 20: Comparison of the 237Np/238U and 239Pu/238U ratios with ICP-MS 

instruments and carrier gases 

 

 

To limit the hydride formation assuming the hydrogen source is from the 

He carrier gas, argon was used as the carrier gas (Figure 33). The 239Pu/238U 

ratio ranged from 6.46E-05 to 8.77E-05. These results are closer to the carry 

over observed in the ELAN DRC II measurements with the 237Np/238U ratio using 

argon as the carrier gas (Table 20).  
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Figure 33: 239Pu and 237Np signals in second Laser Power Study using Ar as carrier gas 

  

 

The difference in carry-over of the tails can be explained in the graphical 

representation of signal intensity for different AMU (Figure 34) showing the 

different point of analysis of each ICP-MS tested along with the theoretical point 

of analysis. As shown in Figure 34, the top left would be the ideal point of 

analysis for the quadrupole detector where the point is at the peak maximum 

and the tails end at ± 1 amu. The top right is what is observed for the iCAP-Q-

ICP-MS where the right tail would overlap into the m/z 239.052 resulting in 

higher background counts regardless of hydride formation. The bottom left is 
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what is observed for the Perkin Elmer ELAN DRC II used for analysis. With the 

analysis shifted to the right the left tail would then overlap into the m/z 237.048. 

While machines have been mass calibrated prior to analysis, it appears small 

tailing is inevitable with quadrupole detectors. The relationship increases with 

increasing laser power density due to the relationship with power density and 

signal intensity. As signal intensity increases the broadening increases. 

 

 

 

 

Figure 34: Graphical representation of a 238U ICP-MS signal. Top left is the theoretical 
point of analysis, Top right is the analysis point for the iCAP-Q-ICP-MS and the 

bottom left is the analysis point for the Perkin Elmer ELAN DRC II ICP-MS 
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5.4.5 Quantification of 237Np and 239Pu in UO2 matrix 

 

Figure 35 shows the quantitative results of 239Pu concentrations ranging from 

0.5 to 1.02 wt% in a uranium oxide matrix with instrument parameters listed in 

Table 13. Linearity was achieved with a correlation factor of 0.9992 and the 

relative standard deviation for three runs varied from 3.7 to 9.6%. The 

concentration of plutonium in these samples directly correlates with burn-up 

rates between 13 and 39 MWdkg-1 which are of interest to nuclear safeguards. 

The average power density used in this study was lower than the laser power 

study (Figure 26) of 38.197 Wcm-2, indicating no overlap from the uranium signal 

and no correction needed. The overall area sampled per run was 0.0225 mm2, 

which suggests that the method is minimally destructive for determining 

plutonium concentration within the samples.  
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Figure 35: LA-ICP-MS Results for Analysis of 239Pu in (U,Pu)O2 pellets 

 

 

Figure 36 shows the calibration curve obtained for the (U,Np)O2 series 

with LA-ICP-MS conditions listed in Table 14. The linear correlation value 

obtained was 0.995. The pellets were measured in 4 replicates with relative 

standard deviation ranging from 3.9-8.9%. The 0.75 wt % neptunium has the 

highest %RSD. The laser power density used in this study was 31.821 Wcm-2 

ensuring conditions with no tail overlap; therefore no correction factor is needed. 
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Figure 36: LA-ICP-MS Results for Analysis of 237Np in (U,Np)O2 pellets 

 

 

5.5 Conclusion 

 

The co-precipitation of uranium and plutonium using 2 mL of ammonium 

hydroxide saturated with oxalate precipitated 99.4% of the metal ions in solution 

with contact time of 10 minutes. The pellets prepared were highly crystalline, 
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single face centered cubic phase of (U,Pu)O2, verifying the sintering profile of 5 

hours at 1700°C was sufficient. The theoretical densities of the (U,Pu)O2 pellets 

exceed 85% with the highest measured at 93.5%. Two pellets had lateral cracks 

most likely from the pressing stage of preparation. 

The autoclave synthesis of neptunium dioxide in 8M nitric acid effectively 

converted all the material to Np(VI) confirmed by UV-Vis spectroscopy and LSC. 

The pellet preparation produced high theoretical densities. The average 

theoretical density was found to be 88.33 ± 2.16%. All the pellets contained two 

face centered cubic phases. In order to obtain a single solid solution the sintering 

parameters would need to be optimized by increasing the sintering time in order 

for the neptunium to diffuse throughout the pellet.  

Two saturation studies with a uranium source were completed to 

understand spectroscopic interferences. It was found using helium as the carrier 

gas the 239Pu/238U count ratio ranged from 8.53E-05 to 1.27E-04. The 

significantly higher 239Pu/238U ratio in this study is not peak tailing but a 238UH+ 

formation confirmed by a mass scan survey. The KED mode successfully lowered 

the 239Pu/238U ratio ranging from 2.77E-05 to 2.85E-05, also lowering the 238U 

signal to 1.6E06. The mass scan survey also showed a second peak forming at 

the m/z 239.052 which suggests a hydride is still reaching the detector. To limit 

the hydride formation, assuming the hydrogen source is from the helium carrier 

gas. With argon as the carrier gas the 239Pu/238U ratio ranged from 6.46E-05 to 

8.77E-05. These results are closer to the carry over observed with the ELAN DRC 
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II ICP-MS with the 237Np/238U ratio. The difference in carry over can be explained 

by the location the quadrupole in assigning the channel for measurement. If the 

channel is to the left of the peak maximum the carry over counts will be +1 amu. 

If the channel is to the right of the peak maximum, the carry over counts will be 

-1 amu. The relationship increases with increasing laser power density due to the 

relationship with power density and signal intensity. As signal intensity increases 

the broadening increases. 

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry successfully 

measured plutonium in a uranium oxide matrix with a linear correlation factor of 

0.9992 and the relative standard deviation for three runs varied from 3.7 to 

9.6%. No signal overlap was observed from the bulk uranium. The LA-ICP-MS 

parameters were successful in obtaining a linear correlation value of 0.995 and 

low percent relative standard deviations ranging from 3.9-8.9% for neptunium in 

a uranium oxide matrix. Although overlap in the 237 channel was observed, 

during analysis laser power density was kept below this feature to ensure no 

corrections needed. Each series was measured and analyzed within an hour, 

which suggests a more rapid analytical technique than current methods used to 

quantify plutonium and neptunium in a uranium matrix. Laser Ablation-

Inductively Couple Plasma-Mass Spectrometry also minimizes the handling of 

potentially hazardous material and reduces waste generation by directly ablating 

the solid. This technique could be applied to fresh or used fuel to quantify 

plutonium and neptunium for safeguards or forensic purposes. 



  

98 
 

Chapter 6 – Synthesis, characterization and measurement of 

(U,Zr)O2 and (U,Zr,Ce)O2 

6.1 Abstract 

 

Dissolution procedures for uranium and zirconium oxides are often tedious 

and require lengthy periods of time for complete dissolution. This can be 

problematic when determining the zirconium concentration in a sample. This 

study developed a quantitative technique for measuring zirconium in a uranium 

dioxide matrix without the need to dissolve the material. The linear correlation 

value for zirconium in a uranium dioxide matrix was found to be 0.9963 with 

relative standard deviation ranges from 8.0 to 14.0 %. The concentration range 

of zirconium from 2.4 to 23.6 mole percent is the widest tested that resulted in 

an acceptable linear correlation value. A second set of materials with cerium 

oxide is also analyzed to determine limitations on accuracy and precision of LA-

ICP-MS while simultaneously measuring two analytes. The (U,Zr,Ce)O2 pellets 

model the main oxide phase of used nuclear fuel. The zirconium results for the 

simultaneous analysis of zirconium and cerium in (U,Zr,Ce)O2 pellets were found 

to be linear correlation of 0.9795 with relative standard deviation ranging from 

6.8 % to 20.9 %. The cerium linear correlation is 0.985 with relative standard 

deviation ranging from 5.2 % to 22.9 %. The zirconium concentration in the 

(U,Zr,Ce)O2 varied from 2.82 to 12.84 mole %. The cerium concentration ranged 
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from 2.4 to 11.2 mole %. When optimizing laser conditions for two different 

elements, loss of accuracy in the linear correlation value is observed.  

 

6.2 Introduction 

 

There has been extensive amount of research on the (U,Zr)O2 matrices 

(62, 63, 64, 65, 66, 67, 68). Zirconium is one of the major fission products as 

well as a main component in zircaloy cladding. Zirconium dioxide is also studied 

as a component for a mixed oxide fuel inert matrix. Based on these 

considerations relevant concentrations of zirconium in (U,Zr)O2 range from 0.1 to 

95 weight percent. 

Fuel-cladding interaction is important in determining reactor and fuel 

performance evaluations. Fission products depositing on the surface of the 

cladding causing stress corrosion cracking is suspected as one of the mechanism 

for cladding failure (51). The majority of nuclear fuel used today consists of a 

uranium dioxide pellets contained in a sealed tube of zirconium alloy to make a 

fuel rod with variations on how the rods are assembled in the reactor. The two 

common zirconium alloys are Zircaloy, which is a zirconium-tin alloy with about 

1.5% tin (62), and E110 and E635 which are alloys of zirconium with about 1% 

niobium (63). Studies of fuel-cladding interaction are often diffusion experiments 

(64, 65). The concentration of zirconium diffusing into the uranium dioxide 
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matrices in these studies around 10 weight percent and is highly dependent on 

oxygen concentration. 

Previous studies examined the addition of an inert zirconium oxide to 

enhance the chemical stability and radiation resistance of nuclear fuel (66).The 

addition of zirconia into mixed oxide and thorium-uranium fuels has been shown 

to increase the durability of the fuel and the bonding between the phases (67). 

These fuels tend to have uranium concentrations from 5 to 20 weight percent 

(68) with the remaining material as zirconia with other additives.   

The purpose of this study is to develop a quantitative technique for 

measuring zirconium in a uranium dioxide matrix without the need to dissolve 

the material. Nuclear fuels must be assayed, whether destructive or non-

destructive, for safeguard purposes to ensure accountability and correct 

compound composition. This is an issue in regards to zirconium dioxide which 

necessitates the use of potentially hazardous reagents such as hydrofluoric acid 

for dissolution in destructive assay (69). A second set of materials including 

cerium oxide is also analyzed to determine limitations on accuracy and precision 

of LA-ICP-MS while simultaneously measuring two analytes. The (U,Zr,Ce)O2 

pellets model the main oxide phase of used nuclear fuel (51). 

 

 

 

 



  

101 
 

6.3 Experimental 

 

 The (U,Zr)O2 and (U,Zr,Ce)O2 were prepared as described in section 2.1. 

The concentration of cerium, zirconium and uranium for these matrices are listed 

in Table 21. The concentration of the zirconium in (U,Zr)O2 are in the range of 

used nuclear fuel as well as fuel-cladding interaction experiments. The 

concentration of zirconium and cerium in the ternary oxide pellets are consistent 

with what is found in used nuclear fuel with burn up rates up to 65 MWd/kg 

(51). 

 

 

mol% U mol% Zr 

  97.60 2.40 

95.20 4.80 

88.70 11.30 

93.80 6.20 

 76.40 23.60 

  

mol% U mol% Ce mol% Zr 

94.8 2.4 2.8 

89.4 5.0 5.7 

83.1 7.9 9.0 

76.0 11.2 12.8 

 

Table 21: Concentration of (U,Zr)O2 pellets (left), Concentration of (U,Zr,Ce)O2 pellets 

(right) 

 

 

 

 Prior to laser ablation analysis the pellets densities and phase composition 

were characterized. The densities were measured using a digital balance and 

calipers and compared to the theoretical densities. The phase composition was 
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determined using powder XRD with the preparation and parameters described in 

section 2.2.1. 

Table 22 lists the optimal LA-ICP-MS parameters used to determine 

zirconium in a uranium oxide matrix. Only the 90Zr (m/z = 89.9043) is collected 

in the ICP-MS detector. The pellets were each ablated for 40 seconds with 

replicates of four in different areas on the pellet surface. Each ablation including 

blank collection is a total collection time of 90 seconds. The signal was then 

integrated and normalized for time of integration. All of the data collected in this 

study used peak-hopping mode for the ICP-MS. The optimized average laser 

power density for the zirconium analysis was found to be 114.592 Wcm-2 which 

is the highest of all power densities tested. 

 

 

Laser Ablation 

Spot size  100 µm 

Time per scan 40 sec 

Scan rate 5 µmsec-1 

Gas blank 30 sec 

Avg Power Density 114.592 Wcm-2 

Pulse Rep Rate 5 Hz 

ICP-MS 

RF Power  1050 W 

Lens Voltage 5.5 V 

Analog Stage Voltage -1700 V 

Pulse Stage Voltage 825 V 

Sweeps 10 

Readings 600 

Dwell Time 8 ms 

Neb flow (Ar) 0.8 Lmin-1 

Table 22: LA-ICP-MS parameters for (U,Zr)O2 measurements 
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Table 23 shows the relevant parameters used to measure the (U,Zr,Ce)O2 

pellets. The optimized average laser power density was 100.268 Wcm-2. This 

laser power density falls between those used for the optimized analysis of each 

element separately. The cerium analysis is listed in Table 5 with power density 

85.944 Wcm-2 and the zirconium analysis listed in Table 22 with 114.592 Wcm-2. 

The m/z measured in this study was 89.9043 for zirconium and 139.905 for 

cerium leaving the uranium to be filtered within the ion beam. The pellets were 

each ablated for 40 seconds and three times in different areas with the signal 

collection time of 90 seconds. The signal was then integrated and normalized for 

time of integration. 

 

 

Laser Ablation 

Spot size  100 µm 

Time per scan 40 sec 

Scan rate 5 µmsec-1 

Gas blank 20 sec 

Avg Power Density 100.268 Wcm-2 

Pulse Rep Rate 5 Hz 

ICP-MS 

RF Power  1100 W 

Lens Voltage 5.5 V 

Analog Stage Voltage -1700 V 

Pulse Stage Voltage 825 V 

Sweeps 10 

Readings 600 

Dwell Time 8 ms 

Neb flow (Ar) 0.95 Lmin-1 

Table 23: LA-ICP-MS parameters for (U,Zr,Ce)O2 measurements 
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6.4 Results 

6.4.1 Density Measurements 

 

The density measurements for the (U,Zr)O2 pellets are listed in Table 24. 

The theoretical densities range from 71.27 ± 1.99% to 88.60 ± 2.72% with an 

average of 82.67 ± 6.69%. The 4.8 mol% zirconium is an outlier with the lowest 

theoretical density.  

 

 

mol% Zr 
Measured ρ 
[g cm-3] 

Theoretical ρ 
[g cm-3] %Theoretical ρ 

2.4 9.247 ± 0.237 10.843 85.28 ± 2.56 

4.8 7.638 ± 0.152 10.716 71.27 ± 1.99 

6.2 9.429 ± 0.256 10.642 88.60 ± 2.72 

11.3 8.853 ± 0.219 10.372 85.36 ± 2.47 

23.6 8.052 ± 0.193 9.722 82.83 ± 2.40 
Table 24: Density measurements for (U,Zr)O2 pellets 

 

 

After sintering the 4.8 mol % (U,Zr)O2 pellet expanded and cracked on 

one side shown in Figure 37. These cracks do not cross the entire pellet, leaving 

the pellet intact but deformed, resulting in a low theoretical density. These 

physical defects would seem to be a manufacturing malfunction instead of a 

chemical reaction within the pellet. When excess pressure is applied to the green 
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pellet during ejection from the pressing die lateral weakness in the structure is 

expected (70).  

 

 

 

Figure 37: Image of side cracks 4.8 mol% Zr (U,Zr)O2 pellet using Leica DM 2500P 
Microscope 

 

 

 The density measurements for the (U,Zr,Ce)O2 pellets are listed in Table 

25. The theoretical densities range from 73.20 ± 3.56% to 81.69 ± 3.12% with 

an average of 76.84 ± 3.55%. This is by far the lowest average theoretical 

density for an entire series. These pellets are more porous than other matrices 

with an average pore size of 66.2 ± 21.3 µm. 
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mol% U 
Measured ρ 
 [g cm-3] 

Theoretical ρ  
[g cm-3] %Theoretical ρ 

94.8 8.157 ± 0.196 10.843 75.93 ± 2.40 

89.3 7.688 ± 0.274 10.716 73.20 ± 3.56 

83.1 7.829 ± 0.228 10.642 76.52 ± 2.91 

76.0 8.105 ± 0.253 10.372 81.69 ± 3.12 
Table 25: Density measurements for (U,Zr,Ce)O2 pellets 

 

 

6.4.2 Powder XRD Results 

 

 The chemical homogeneity and phase composition of the synthesized 

pellets are characterized using powder XRD. This determination is important to 

understand if the pellets are homogenous within the sampling area of the laser 

ablation. The goal is to have a single phase solid solution to ensure the micron 

sampling area is representative of the bulk of the sample. 

An example of the (U,Zr)O2 powder XRD pattern is shown in Figure 38. 

The blue line is the measured pattern, the red is the calculated pattern and the 

grey is the difference between measured and calculated. There are two face 

centered cubic phases observed for these matrices. The uranium rich (U,Zr)O2 

phase is the main peak in the pattern. The zirconium rich (U,Zr)O2 phase 

appears as a shoulder on the main peak at low 2 theta °, below 60 ° and is 

separated and more defined from the main peak at 2 theta ° above 75 °. This is 

due to the difference in ionic radius of uranium and zirconium. Since zirconium 
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has a smaller ionic radius, the d-spacing of the zirconium rich phase is smaller 

resulting in a smaller lattice parameter.  

 

 

 

Figure 38: Powder XRD pattern for 11.3 mol% Zr (U,Zr)O2 pellet 

 

 

 

The breakdown of the phase composition for the uranium rich and 

zirconium rich solid solutions are listed in Table 26. All of the pellets have two 

phases except for the 6.2 mol% zirconium which is a single solid solution. The 

synthesis procedure, sintering time, and temperature were the same throughout 

the series. It is unclear why the 6.2 mol% zirconium is the only matrix that is a 

single solid solution. Schleifer et. al. found that annealing period of 200 hours at 

1670 K with a reducing atmosphere is needed to obtain a pure (U,Zr)O2 solid 
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solution in a zirconia rich sample (11). This annealing period is excessive and not 

needed for laser ablation sampling since the zirconium is distributed throughout 

the pellet.  

 

 

mol% Zr 
(U,Zr)O2 U Rich 
(phase %) 

(U,Zr)O2 Zr Rich 
(phase %) Rwp 

2.4 77.3 22.7 4.81 

4.8 74.56 25.44 5.24 

6.2 100 0 5.59 

11.3 64.29 35.71 5.43 

23.6 23.02 76.98 7.44 
Table 26: Phase analysis of pellets in the (U,Zr)O2 system by Rietveld structure 

refinement 

 

 

An example of the ternary oxide powder XRD pattern is shown in Figure 

39 with the phases of the two face centered cubic phases identified listed in 

Table 27. The major (U,Zr,Ce)O2 phase contains more uranium than zirconium 

and cerium. The minor (U,Zr,Ce)O2 phase contains more zirconium and cerium 

than the major phase. The pellets are more than 90% the major phase with the 

exception of the 83.1 mol% uranium pellet. The minor phase appears as a 

shoulder in the XRD pattern and is in small quantities throughout the series. A 

longer sintering time should diffuse the remaining minor phase resulting in a 

single solid solution. 
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Figure 39: Powder XRD pattern for 76.0 mol% U (U,Zr,Ce)O2 pellet 

 

 

  

mol% U Major (U,Zr,Ce)O2 phase % Minor (U,Zr,Ce)O2 phase % 

94.8 93.74 6.26 

89.3 95.15 4.85 

83.1 84.85 15.15 

76.0 95.75 4.25 
Table 27: Phase analysis of pellets in the (U,Zr,Ce)O2 system by Rietveld structure 

refinement 
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6.4.3 LA-ICP-MS Analysis 

 

 The calibration curve for zirconium in (U,Zr)O2 matrix is displayed in 

Figure 40. The linear correlation value was found to be 0.9963 with relative 

standard deviation ranges from 8.0 to 14.0 %. The average relative standard 

deviation is 11.9 ± 2.5%. The concentration range of zirconium from 2.4 to 23.6 

mole percent is the widest range tested that resulted in an acceptable linear 

correlation value above 0.99.  
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Figure 40: LA-ICP-MS results for (U,Zr)O2 series 

 

 

The zirconium results for the simultaneous analysis of zirconium and 

cerium in (U,Zr,Ce)O2 pellets are shown in Figure 41. The linear correlation is 

0.9795 with relative standard deviation ranging from 6.8 % to 20.9 %. The 

zirconium concentration varied from 2.82 to 12.84 mole %. The average laser 
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power density in this study of 100.268 Wcm-2 is lower than optimization of 

zirconium at 114.592 Wcm-2. 
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Figure 41: LA-ICP-MS results for trace Zr in (U,Zr,Ce)O2 pellets 

 

 

The cerium results for the simultaneous analysis of zirconium and cerium 

in (U,Zr,Ce)O2 pellets are shown in Figure 42. The linear correlation was found to 

be 0.985 with relative standard deviation ranging from 5.2 % to 22.9 %. The 

linear correlation value is higher for cerium than zirconium. The cerium 
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concentration ranged from 2.4 to 11.2 mole %. The average laser power density 

of 100.268 Wcm-2 in this study is significantly higher than the average laser 

power density for cerium at 85.944 Wcm-2. 
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Figure 42: LA-ICP-MS results for trace Ce in (U,Zr,Ce)O2 pellets 
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6.5 Conclusion 

 

 The co-precipitation method for synthesizing (U,Zr)O2 and (U,Zr,Ce)O2 

was successful in producing solid solutions of each matrices. Longer sintering 

times would produce a single solid solution for each matrices than the two solid 

solutions measured for both (U,Zr)O2 and (U,Zr,Ce)O2 pellets. The theoretical 

densities of the (U,Zr)O2 pellets ranged from 71.27 ± 1.99% to 88.60 ± 2.72% 

with an average of 82.67 ± 6.69%. The theoretical densities of the (U,Zr,Ce)O2 

ranged from 73.20 ± 3.56% to 81.69 ± 3.12% with an average of 76.84 ± 

3.55%. This is by far the lowest average percent theoretical density made for an 

entire series. The low theoretical densities result in larger pits and voids in the 

pellets correlating with large relative standard deviations. The pellets with 

zirconium doped are more porous and had physical defects in the materials such 

as lateral cracks observed.  

The linear correlation value for zirconium in a uranium oxide matrix was 

found to be 0.9963 with relative standard deviation ranges from 8.0 to 14.0 %. 

The concentration range of zirconium from 2.4 to 23.6 mole % is the widest 

range tested that resulted in an acceptable linear correlation value. The average 

power density needed to ablate zirconium is higher than the other elements in 

this work, suggesting zirconium oxide needs more energy to vaporize than 

cerium, uranium, neptunium or plutonium 
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The zirconium results for the simultaneous analysis of zirconium and 

cerium in (U,Zr,Ce)O2 pellets were found to be linear correlation of 0.9795 with 

relative standard deviation ranging from 6.8 % to 20.9 %. The cerium linear 

correlation is 0.985 with relative standard deviation ranging from 5.2 % to 22.9 

%. The zirconium concentration varied from 2.82 to 12.84 mole percent. The 

cerium concentration ranged from 2.4 to 11.2 mole percent. The porosity of the 

material affects the precision of the laser ablation measurements resulting in 

high relative standard deviation for this series. 

The average laser power density in the (U,Zr,Ce)O2 pellets of 100.268 

Wcm-2 is lower than just the optimization of zirconium in previous work of 

114.592 Wcm-2 and higher than the average laser power density of just 

optimizing for cerium in previous studies of 85.944 Wcm-2. The average laser 

power density for the analysis of both elements fell between the optimization 

values for either element, but skewed to the higher value in order to ablate 

zirconium successfully. When optimizing laser conditions for two different 

elements, loss of accuracy in the linear correlation value is observed.  
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Chapter 7 – Effects of Laser Ablation on Uranium Oxides 

7.1 Abstract 

 

The ablation zone is examined for any chemical or physical changes in the 

material to determine the effects of LA-ICP-MS. This study will classify the 

technique as destructive or non-destructive and determine where it could be best 

implemented as an analysis method. Destructive assay utilize techniques that 

result in destruction of the sample, often dissolving, separating and then 

analysis. Non-destructive techniques do not produce any chemical or physical 

changes to the sample. Two studies analyzed chemical changes in the ablation 

zone using powder XRD. These studies were inadequate since the penetration of 

the laser ablation was found to be only a few microns and is too small for 

powder XRD analysis. Ablation zone evaluation using SEM determined changes in 

the surface morphology including intergranular fractures within the grain 

boundaries of the ablated region. The volume of ablated material was estimated 

to be 4.5E-05 ± 2.25E-05 mm3. Lastly chemical and thermodynamic properties of 

the materials were investigated to establish trends in laser power density needed 

to ablate elements of interest. This included measuring the heat capacity of 

(U,Zr)O2, (U,Ce)O2, (U,Pu)O2, and (U,Np)O2 prepared.  
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7.2 Introduction 

 

The physical processes during the absorbance of laser light by a solid 

target are complex and not entirely understood (28). These processes are 

dependent on the laser properties as well as those of the solid. The sample is 

heated, melted, and evaporated at extremely high temperatures and pressures 

(3). The mass is then removed from the target in a mixture of molecules, atoms, 

vapor or large particulates. Incomplete vaporization of large particles results in 

elemental fractionation where the more refractory element is not completely 

vaporized in the plasma and is filtered in the mass spectrometer. For this reason 

it is crucial to determine the quantity of ablated mass and size distribution of 

particles in optimizing laser parameters for samples of interest. 

Many mechanisms are used to describe mass removal of solids using laser 

ablation. Depending on the irradiance of the laser desorption, thermal 

vaporization, phase explosion and other mechanisms are proposed. If the 

irradiance is below 3 x 108 W/cm2, desorption and thermal vaporization is the 

dominant processes (3). Laser desorption involves the absorbing of laser light 

with the upper layer of the material is vaporized and ionized. For the uranium 

oxides with plutonium, neptunium, cerium and zirconium materials examined in 

this work the laser power density varied from 31.821 to 114.592 Wcm-2. This 

range suggests laser desorption mechanism. The removal of mass is dependent 
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on the melting point, boiling point, ionization potential, heat capacity, thermal 

conductivity, volatility, and reflectivity of the material (3, 21, 23, 28).  

The purpose of this study is to classify LA-ICP-MS as either destructive or 

non-destructive and determine where it could be best implemented as an 

analysis method. Destructive assay result in dissolving the sample for 

quantitative analysis and are used at fuel fabrication plants as well as spent fuel 

recycling plants prior to separations (2). Non-destructive assay techniques do not 

produce any significant physical or chemical changes in the sample. These 

include gamma spectrometry and neutron counting as discussed in section 1.2 

and are employed throughout the fuel cycle from enrichment plants to recycling 

plants (2). If the technique is non-destructive, then it could be used to determine 

the plutonium concentration in MOX fuel before irradiation at fuel fabrication 

plants. On the other hand, if it is destructive, then the technique would be better 

applied to safeguards to assist in determining used fuel burn-up rates, which can 

be indicative of weapons production.  

Lastly chemical and thermodynamic properties of the materials were 

investigated to establish trends in laser power density needed to ablate elements 

of interest. This included measuring the heat capacity of the materials prepared. 

This will be a useful tool in determining laser power densities of the materials of 

interest.  
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7.3 Experimental 

 

An important portion of this work is to quantify whether the method of 

analysis is destructive to the material. Physical changes in the material have 

been measured in previous work (23, 25, 28) but no chemical changes are 

reported. To address this variety of methods were examined to analyze any 

chemical changes in the material. Two methods with the same ablation 

conditions were examined to quantify chemical changes using 100% 238UO2 and 

analyzed with powder XRD. The first method pressed a pellet with thickness less 

than 2 mm and sintered at 1700 °C under reducing atmosphere. The entire 

surface was then ablated at a rate of 100 µm sec-1 and pulse energy of 20 Hz. 

The average grain size was measured before and after ablation.  

The second method ablated the surface of a green pellet. The top and 

bottom of the pellet was ablated then analyzed by powder XRD. The pellet was 

then ground and pressed again and ablated under the same conditions. This 

procedure was repeated for a total of three times.  

The (U,Zr)O2 pellets were used to measure the physical effects of the 

ablation process. After laser ablation sampling the pellets were carbon coated 

and analyzed on the SEM/EDS as described in section 2.2.3. This study examined 

the ablated area for physical defects in the material. Also an attempt to quantify 

the amount of material ablated during a line scan analysis was performed. 
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 A quantum design model 6000 Physical Property Measurement System 

(PPMS) was used to determine the heat capacity of the materials. The data 

analysis is discussed in section 2.2.4. The sample mass required for analysis 

ranges from 20 to 50 mg. For each matrices tested the pellet was broken into 

small pieces with a mortar and pestle. The piece chosen for analysis needed to 

fall within the mass range as well as have a flat side to ensure proper contact 

between the sample and micro-calorimeter platform. If the sample coupling 

between the sample surface and micro-calorimeter platform fell below 90% the 

data was rejected and another set collected.  

 

7.4 Results 

7.4.1 Chemical changes due to ablation 

 

 The first method to determine chemical changes of the material using a 

thin sintered pellet ablated at a rate of 100 µm sec-1 and pulse energy of 20 Hz 

showed a reduction of grain size of material listed in Table 28, along with 

cylindrical formation on the surface (Figure 43). The powder XRD results showed 

no change in phases of the material due to ablation. However the x-rays 

penetrate farther into the sample than the ablated area and are not indicative of 

lack of surface chemical change.  
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Ablation Average Grain Size (µm) 
Before 10.34 ± 0.84 
After 3.74 ± 0.21 

Table 28: Average grain size of 100% UO2 pellet before and after ablation measured 

using Leica DM 2500P Microscope 

 

 

 

Figure 43: Effects of Laser on 100% UO2 sintered pellet method 1 

 

 

The second method ablated the surface of a green pellet. The top and 

bottom of the pellet was ablated then analyzed by powder XRD. The pellet was 

then ground and pressed again and ablated under the same conditions. This 

procedure was repeated for a total of three times resulting in some measurable 

differences in phases shown in Figure 44 and Figure 45. The measurable 

differences in phases cannot be deciphered as chemical changes at this time. 
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Since the geometry of the surface of the pellet and distance in mounting on clay 

changes between XRD analysis, this cannot be distinguished from chemical shifts 

in the pattern. The material is composed of two phases, Uraninite and UO(2+x). 

The reduction of the lattice parameter value indicates oxidation of the phase 

where the pattern shifts to the right. An increase of the lattice parameter value 

indicates a reduction of the phase and the pattern shifts to the left. These values 

are reported in Figure 45.  

 

 

 

Figure 44: Comparison of XRD results of green pellet ablation study 
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Figure 45: Lattice parameter changes with number of laser pulses with green pellet 

 

 

The shifts shown in Figure 44 can be explained by geometry effects of the 

pellet and the detector. The geometry of the initial material was different than 

the ablated samples and is not a fair value to compare the ablated results to in 

Figure 45. There is a small shift at the lower 2 Theta that is not consistent 

throughout the scan (Figure 44). This is due to a change in geometry of the 

sample. The data suggests no change in material. We find the material is a 

mixture of UO2+x and Uraninite where the x may be slightly changing. This would 

need to be verified using small angle grazing powder XRD.  
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7.4.2 Physical Changes 

 

 Analyzing the surface of the material after ablation lends insight into the 

amount of material ablated, surface morphology after ablation and efficiency of 

the vaporization process. Figure 46 is a back scatter image of the line scan 

sampling on a (U,Ce)O2 pellet. The grain boundaries within the ablated area 

(highlighted by the red circle) are cracked and separated compared to the non-

ablated area (highlighted by the yellow circle). This is evidence of intergranular 

fracture in the ablated area. Intergranular fractures could affect fuel performance 

if ablation is performed on fresh fuel, although the area affected is only 0.0225 

mm2 which would suggest minimum effect of fuel performance. 

 

 

 

Figure 46: 1200x magnification back scatter image of the line scan 
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 Figure 47 is the same image as Figure 46 in secondary electron mode on 

the SEM. This image clearly shows the depth of material ablated from the 

surface. It is estimated to be only a few microns. Using a depth estimate of 2 ± 

1 µm, the overall volume of sample ablated is 4.5E-05 ± 2.25E-05 mm3. These 

results show laser desorption as the mechanism for the ablation process since 

only a few micron layer of the material is vaporized and ionized (3). 

 

 

 

Figure 47: 1200x magnification secondary electron image of the line scan 
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 Figure 48 is a back scatter image of the ablation zone of a (U,Ce)O2 pellet. 

The ablation zone is highlighted with a blue square and is attributed to the shock 

wave of the laser as it interacts with the solid (28). The fracturing in this zone 

may be related to recrystallization of thin molten layers or stress during cooling 

(28). Outside of the ablation zone small spherical fragments of the ablated 

material have re-deposited onto the sample surface. This is indicative of the 

particles cooling before transport to the ICP-MS. These larger particles are clearly 

visible in the secondary electron image and highlighted with green circles (Figure 

49). 

 

 

 

Figure 48: 1000x magnification back scatter image of the ablation zone 
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Figure 49: 1000x magnification secondary electron image of the ablation zone 

  

 

7.4.3 Heat capacity measurements 

 

Each matrix measured for heat capacity are compared to uranium dioxide 

measurements. The uranium dioxide values are in agreement with literature 

values reported at the temperatures evaluated (72, 74). Figure 50 shows the 

heat capacity results for 1, 5 and 10 mole % cerium in (U,Ce)O2 matrices 

compared to uranium dioxide. The heat capacity value increases with decreasing 

cerium content. From 250-325 K 10 mole % cerium has heat capacity values 

below uranium dioxide and converges with uranium dioxide at 350 K. After 350 K 

the 10 mole % cerium heat capacity is slightly above uranium dioxide. The 1 
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mole % cerium has an average difference of 3.75 ± 0.44 Jmol-1K-1 above 

uranium dioxide across the temperatures measured. The 5 mole % cerium has 

an average difference of 2.77 ± 0.88 Jmol-1K-1 above uranium dioxide. This 

decrease in heat capacity with increasing cerium content was also observed by 

Krishnan et. al. (71). This is due to the fact that the heat capacity of uranium 

dioxide is higher than that of cerium dioxide. 
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Figure 50: Heat capacity results for the (U,Ce)O2 series compared to 100% UO2 
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The 2.4 and 23.6 mole % zirconium heat capacity measurements 

compared to uranium dioxide are displayed in Figure 51. The difference between 

2.4 mole % zirconium and uranium dioxide is 2.19 ± 0.41 Jmol-1K-1. The 

difference between 23.6 mole % zirconium and uranium dioxide is 4.89 ± 0.26 

Jmol-1K-1. As the amount of zirconium in the sample increases the heat capacity 

value increases. Zirconium dioxide has the opposite effect of cerium dioxide in a 

uranium oxide matrix. Pure zirconium oxide heat capacity value at 298.15 K is 

found to be 56.5 Jmol-1K-1 which is less than the (U,Zr)O2 matrices measured as 

well as the UO2 sample (72).  
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Figure 51: Heat capacity results for the (U,Zr)O2 series compared to 100 % UO2 

 

 

 

Heat capacity results for the 0.5 and 1 mole % plutonium in (U,Pu)O2 are  

shown in Figure 52. The 0.5 mole % plutonium heat capacity values are 

consistently below those of uranium dioxide with an average difference of -3.48 

± 0.20 Jmol-1K-1. The 1 mole % plutonium heat capacity values are continually 

above the uranium dioxide values with an average difference of 4.52 ± 0.53 

Jmol-1K-1. Increasing the concentration of plutonium in (U,Pu)O2 from 0.5 to 1.0 

mole percent the heat capacity increases by an average 5.12 ± 0.77 Jmol-1K-1. 
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Figure 52: Heat capacity results for the (U,Pu)O2 series compared to 100 % UO2 

 

 

The heat capacity for 0.25 and 1.25 mole % neptunium in a (U,Np)O2 

matrices compared to uranium dioxide are shown in Figure 53. The 0.25 mole % 

neptunium heat capacity values are within the error of the uranium dioxide 

values. This amount of neptunium has no effect on the heat capacity value. The 

1.25 mole % neptunium heat capacity values increase compared to the uranium 

dioxide values with an average difference of 2.79 ± 0.23 Jmol-1K-1.  
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Figure 53: Heat capacity results for the (U,Np)O2 series compared to 100 % UO2 

 

 

The laser temperature was calculated using the Stefan Boltzmann Law 

(Equation 6), which describes the power radiated from a black body in terms of 

temperature. Temperature (T) is raised to the 4th power, the power (P) is the 

average power density applied to the surface in watts, the area ablated (A) is in 

cm2. The emissivity (Ɛ) describes a body that does not absorb all incident 

radiation and emits less total energy than a black body. For simplicity the 
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emissivity value is equal to 1 for this calculation. The Stefan-Boltzmann constant 

(σ) or the constant of proportionality equals 5.67E-12 Wcm-2K-4.  

 

 

    
 

   
 

Equation 6: Stefan Boltzmann Law 

 

 

The results of the Stefan Boltzmann law using the average power 

densities used for analysis are listed in Table 29. The temperature of the laser at 

the sample surface ranges from 1538 K to 2120 K. Unfortunately the PPMS 

cannot measure heat capacity above 400 K and extrapolation does not effectively 

predict actual heat capacity values. Heat capacity is dependent on phase 

relationships and lattice structures where a phase change is possible between 

400 K and 2120 K for these materials. Figure 54 shows the heat capacity values 

for pure UO2 from 250 K to 2900 K. Changes in the slope of the values indicate 

phase changes of the materials. Some groups have tried fitting with polynomial 

functions with success (71,72,74) but often need data points close to the phase 

transitions to account for steep slopes in heat capacity values. A study performed 

by Lucuta et. al. found that hyperstoichiometric UO2 heat capacity values vary 

with oxygen potentials. As the oxygen potential increases the heat capacity 

values increase (73). 
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Matrices Avg. Power Density [Wcm-2] Temperature [K] 

(U,Np)O2 31.821 1538 

(U,Pu)O2 38.197 1610 

(U,Ce)O2 85.944 1973 

(U,Zr)O2 114.592 2120 
Table 29: Calculated temperatures of the laser at sample surface using Stefan 

Boltzmann Law 

 

 

 

 

 

Figure 54: Heat capacity values for UO2 from 250 K to 2900 K (74) 
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7.4.4 Thermodynamic model 

 

The removal of mass during the laser ablation process is dependent on 

the melting point, boiling point, ionization potential, heat capacity, thermal 

conductivity, heat of vaporization, volativity, and reflectivity of the material (3, 

21, 23, 28). Durant developed an equation to determine the time required for a 

sample to be raised to its vaporization temperature: 

 

 

        (     )
      

Equation 7: Time required for vaporization (75) 

 

 

Where K is the thermal conductivity, ρ is the sample mass density, C is the heat 

capacity, T0 the initial temperature, Tv the sample vaporization temperature and 

P is the laser power density. Using this equation Durant concluded that different 

elements will vaporize at different rates. This has been visual verified in Figure 

55. Cerium vaporizes and reaches the ICP-MS detector faster than zirconium in 

the (U,Zr,Ce)O2 analysis seen in the difference in response time. The response 

times of three ablations per analyte are averaged in Table 30. The visual 

verification of zirconium and cerium differences in response, as well as the other 

analytes tested is confirmed. Although the rate of vaporization varies, the 

variation is not significant enough to pose a problem in the oxide matrices tested 
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as long as the integration is performed separately for each analyte and the 

counts are normalized by time of integration. The time corrections are applied to 

the quantitative analysis in this work, as described in section 2.2.2. 

 

Element 90Zr 238U 237Np 239Pu 140Ce 

Response Time 

(s) 

11.264 ± 

0.064 

12.914 ± 

0.127 

10.861 ± 

0.277 

11.187 ± 

0.131 

11.091 ± 

0.119 

Table 30: Response time of elements tested 

 

 

 

  

Figure 55: Response time of 140Ce and 90Zr laser ablation signals 
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Heat capacity and thermal conductivity are functions of temperature. In 

order to use these terms to determine a thermodynamic model, computer 

modeling would need to be used to ensure the laser temperature, heat capacity 

and thermal conductivity values converge and are optimized. To avoid this 

circular logic to determine a thermodynamic model, this section will look at 

trends within the known values of chemical or thermodynamic properties of 

cerium dioxide, zirconium dioxide, neptunium dioxide and plutonium dioxide 

shown in Table 31. 

 

 

Matrices 1st Ionization Potential [eV] Melting Point [K] Boiling Point [K] 

NpO2 6.33 ± 0.18  2873  unknown 

PuO2 7.03 ± 0.12  2673  3073  

CeO2 9.7 ± 0.5  2873  3773  

ZrO2 9.4 ± 0.2  2125  4650 

Table 31: Chemical and thermodynamic properties of materials (60, 76, 77, 78, 79, 

80, 81) 

 

 

The melting points of the examined oxides value from 2125-2873 K, no 

trends could be observed between the melting point and ablation laser 

temperature. All of the boiling points for the oxides are known except for 

neptunium. The remaining three boiling points are correlated with Stefan 

Boltzmann equation with a linear correlation value of 0.9101 (Figure 56). Cerium 

dioxide falls below the trend with a laser temperature of 1973 K and boiling point 

temperature of 3773 K. In order for a complete trend to be established, further 
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studies are needed with known boiling point values and optimization of LA-ICP-

MS of the element of interest. 
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Figure 56: Boiling point of oxides versus laser temperature 

 

 

 The first ionization potentials for the examined oxides have been 

measured in the literature and are plotted against laser temperature using the 

Stefan Boltzmann equation (Figure 57). The linear correlation value for this 

relationship is 0.9155. The cerium oxide ionization potential is high compared 
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and the zirconium oxide ionization potential is low compared to the optimized 

laser temperature. Although the trend is not entirely linear, this could be used as 

a starting reference point for future oxides of interest. For instance, if the 1st 

ionization potential for the oxide of interest is 8 eV, the user would use a laser 

temperature of 1800 K as a starting point with further optimization. 
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Figure 57: 1st ionization potential of oxides versus laser temperature 
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7.5 Conclusion 

 

The first method to determine chemical changes of the material using a 

thin sintered pellet ablated at a rate of 100 µm sec-1 and pulse energy of 20 Hz 

showed a reduction of grain size of material, along with cylindrical formation on 

the surface. The powder XRD results showed no change in phases of the 

material due to ablation. However this is x-rays penetrating farther into the 

sample than the ablated area and not indicative of lack of chemical change due 

to sampling. The second method ablated the surface of a green pellet. The top 

and bottom of the pellet was ablated then analyzed by powder XRD. The pellet 

was then ground and pressed again and ablated under the same conditions. This 

procedure was repeated for a total of three times resulting in some measurable 

differences in phases. The measurable differences in phases cannot be 

deciphered as chemical changes at this time. Since the geometry of the surface 

of the pellet and distance in mounting on clay changes between XRD analysis, 

this cannot be distinguished from chemical shifts in the pattern.  

The powder XRD results showed no change in phases of the material due 

to ablation. However this method has x-rays penetrating farther into the sample 

than the ablated area and the results are not indicative of lack of chemical 

change due to sampling. Further studies are needed to quantify the change in x 

for the UO2+x species. A suitable method would be small angle grazing to 

emphasize surface changes. 



 

141 
 

Analyzing the surface of the material after ablation lends insight into the 

amount of material ablated, surface morphology after ablation and efficiency of 

the vaporization process. The grain boundaries within the ablated area are 

cracked and separated compared to the non-ablated area. This is evidence of 

intergranular fracture in the ablated area. Intergranular fractures could affect 

fuel performance if ablation is performed on fresh fuel, although the area 

affected is only 0.0225 mm2. The depth of material ablated from the surface is 

estimated to be only a few microns. Using a depth estimate of 2 ± 1 µm, the 

overall volume of sample ablated is 4.5E-05 ± 2.25E-05 mm3. Since the area 

ablated is insignificant compared to the bulk material, this technique could be 

used at a fuel fabrication facility to measure plutonium concentrations in MOX 

fuel. 

The fracturing in the ablated zone may be related to recrystallization of 

thin molten layers or stress during cooling. Outside of the ablation zone small 

spherical fragments of the ablated material have re-deposited onto the sample 

surface. This is indicative of the larger particles cooling before transport to the 

ICP-MS. The size and shape of the fragments indicate soft ablation that is ideal 

for quantitative analysis. 

 Heat capacity measurements were successfully measured using a PPMS 

Quantum Design model 6000. The temperature measured ranged from 250 K to 

400 K. The heat capacity value for (U,Ce)O2 decreased with increasing cerium 

content from 1 to 10 mole % cerium. The heat capacity value for (U,Zr)O2 



 

142 
 

increases as the amount of zirconium in the sample increases. The difference 

between 23.6 mole % zirconium and UO2 is 4.89 ± 0.26 Jmol-1K-1. For the 

(U,Pu)O2 series, the 0.5 mole % plutonium heat capacity values are consistently 

below the uranium dioxide values with an average difference of -3.48 ± 0.20 

Jmol-1K-1. The 1 mole % plutonium heat capacity values are continually above 

the uranium dioxide values with an average difference of 4.52 ± 0.53 Jmol-1K-1. 

By increasing the concentration of plutonium in (U,Pu)O2 from 0.5 to 1.0 mole % 

the heat capacity values increases by an average 5.12 ± 0.77 Jmol-1K-1. The 0.25 

mole % neptunium heat capacity values are within the error of the uranium 

dioxide measurements. The 1.25 mole % neptunium heat capacity values 

increase compared to the uranium dioxide values with an average difference of 

2.79 ± 0.23 Jmol-1K-1. Using the Stefan Boltzmann Law and solving for the 

temperature of the laser at the sample surface ranges from 1538 K to 2120 K. 

Unfortunately the PPMS cannot measure heat capacity above 400 K and 

extrapolation does not effectively predict actual heat capacity values. Heat 

capacity is dependent on phase relationships and lattice structures where a 

phase change is possible between 400 K and 2120 K for these materials. 

 Trends were established between laser temperature and boiling point and 

first ionization potentials of the evaluated materials. These trends cannot be 

translated to generalized matrices since LA-ICP-MS is a matrix dependent 

technique. The trends could be used as starting point for optimization of laser 
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parameters in a uranium oxide matrix. Further studies of oxides would be 

needed to establish linearity greater than 0.91 correlations.  
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Chapter 8 – Conclusions and Recommendations 

 

The goal of this project was to develop and optimize LA-ICP-MS 

techniques for the analysis of fuel, used fuel, and waste forms. Actinide oxide 

materials and standards were prepared and characterized. The characterization 

included physical, thermodynamic, and chemical properties. The methods 

developed for the LA-ICP-MS analysis were evaluated for limit of detection, 

accuracy, and precision. The ablation zone was examined for chemical or 

physical changes in the material. Lastly, trends correlating the ablation behavior 

of the elements evaluated with physical and thermodynamic properties of the 

materials were assessed.    

 

8.1 Preparation of materials 

 

The first task was to prepare actinide oxide materials as standards for LA-

ICP-MS. These materials were binary oxides consisting of bulk uranium with 

zirconium, cerium, neptunium and plutonium to best model used nuclear fuel. 

More complex materials such as a ternary oxide matrix of bulk uranium with 

zirconium and cerium were also prepared. The physical properties of the 

materials characterized include theoretical density and average grain sizes. 

Lastly, the phase composition of the materials was characterized.  
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The autoclave synthesis of NpO2 in 8 M nitric acid effectively converted all 

the material to Np(VI) as confirmed by UV-Vis spectroscopy and LSC. The co-

precipitation of uranium and plutonium using 2 mL of ammonium hydroxide 

saturated with oxalate precipitated 99.4 % of the metals in solution with contact 

time of 10 minutes. The co-precipitation method for synthesizing the binary and 

ternary oxides was successful in producing solid solutions of each matrix. The 

(U,Pu)O2 pellets prepared were highly crystalline, single face centered cubic 

phase verifying the sintering profile of 5 hours at 1700 °C was sufficient. Longer 

sintering times or an added annealing step after sintering would produce a single 

solid solution for each matrices than the two solid solutions measured for both 

(U,Zr)O2 and (U,Zr,Ce)O2 pellets. The (U,Np)O2 and (U,Ce)O2 contained a solid 

solution phase and a uraninite phase, these matrices would also need longer 

sintering times or annealing in order for the cerium and neptunium to diffuse 

throughout the material producing one solid solution phase. 

The average theoretical densities for the materials are listed in Table 32. 

The highest theoretical densities were the (U,Np)O2 and (U,Pu)O2. These 

matrices were freeze dried after precipitation rather than oven dried at 100 °C 

and ball milled. The freeze drying method produced particle sizes that were ideal 

for sintering. The lowest theoretical densities contained zirconium and were the 

(U,Zr)O2 and (U,Zr,Ce)O2. This could be due the small ionic radius of zirconium 

(72 pm) compare to the other elements in the matrices (83). The pellets with 

zirconium are more porous and had physical defects in the materials such as 
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lateral cracks observed. The lateral cracks most likely occurred during the pellet 

pressing stage. 

 

 

Matrices Avg % Theoretical ρ 

(U,Ce)O2 87.30 ± 9.67 

(U,Zr)O2 82.67 ± 6.69 

(U,Zr,Ce)O2 76.84 ± 3.55 

(U,Np)O2 88.33 ± 2.16 

(U,Pu)O2 87.55 ± 4.48 
Table 32: Average % Theoretical Densities for all matrices 

 

 

8.2 LA-ICP-MS methods 

 

The second task was to determine the LOD, accuracy, and precision for 

the LA-ICP-MS methods developed as well as any limitations of this technique. 

The system was optimized using loops in the transport tube to limit elemental 

fractionation. Having loops in the transport tube successfully filtered the larger 

ablated particles from the untreated (U,Ce)O2 surface.  The smaller ablated 

particles reached the plasma of the ICP-MS for detection. By increasing the 

amount of loops in the transport tube the accuracy of the measurements 

considerably improved from a linear correlation value of 0.9756 to 0.9997.  

All of the studies optimizing one element produced linear correlation 

values above 0.99 (Table 33) when using two loops in the transport tube. The 
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concentration range of zirconium from 2.4 to 23.6 mole percent is the widest 

tested that resulted in an acceptable linear correlation value. The average power 

density needed to ablate zirconium is higher than the other elements in this 

work, suggesting zirconium oxide needs more energy to vaporize than cerium, 

uranium, neptunium or plutonium oxides. When optimizing laser conditions for 

two different elements, loss of accuracy in the linear correlation value is 

observed. This is due to the laser power density difference needed to ablate 

cerium and zirconium. The average laser power density for the analysis of both 

elements fell between the optimization values for either element, but skewed to 

the higher value in order to ablate zirconium successfully.  

 

 

Matrices Linear Correlation %RSD 

(U,Ce)O2 0.9997 12.4-20.8 

(U,Zr)O2 0.9963 8.0-14.0 

(U,Np)O2 0.995 3.9-8.9 

(U,Pu)O2 0.9992 3.7-9.6 

(U,Zr,Ce)O2 Zr 0.9795 6.8-20.9 

(U,Zr,Ce)O2 Ce 0.985 5.2-22.9 
Table 33: Linear correlation values and %RSD for all the matrices 

 

 

The change in precision within the measurements using the loops as a 

filtration system was not as noticeable with only a few percent gained with the 

average relative standard deviations within the series. The porosity of the 

material affects the precision of the laser ablation measurements resulting in 
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high relative standard deviation for this series. These physical features of the 

materials may be a limiting factor to achieve relative standard deviations less 

than 10%.  

Two saturation studies with a uranium source were completed to 

understand spectroscopic interferences. It was found using helium as the carrier 

gas the 239Pu/238U ratio ranged from 8.53E-05 to 1.27E-04. The significantly 

higher 239Pu/238U ratio using helium as the carrier gas is not peak tailing but 

238UH+ formations confirmed by a mass scan survey. The KED mode successfully 

lowered the 239Pu/238U ratio to the range of 2.77E-05 to 2.85E-05, also lowering 

the 238U signal to 1.6E06. The mass scan survey showed a second peak forming 

at the m/z 239.052 which suggests a hydride is still reaching the detector. To 

limit the hydride formation assuming the hydrogen source is from the He carrier 

gas, argon was used where the 239Pu/238U ratio ranged from 6.46E-05 to 8.77E-

05. These results are closer to the carry over observed with the 237Np/238U ratio 

on the ELAN DRC II system.  

The difference in carry over can be explained by where the quadrupole in 

assigning the channel for measurement. If the channel is to the left of the peak 

maximum the carry over counts will be +1 amu. If the channel is to the right of 

the peak maximum, the carry over counts will be -1 amu. The relationship 

increases with increasing laser power density due to the relationship with power 

density and signal intensity. As signal intensity increases the broadening 

increases. 



 

149 
 

Each series was measured and analyzed under an hour, which suggests a 

rapid analytical technique compared to current methods used to quantify 

plutonium and neptunium in a uranium matrix. Laser Ablation-Inductively Couple 

Plasma-Mass Spectrometry also minimizes the handling of potentially hazardous 

material and reduces waste generation by directly ablating the solid. This 

technique could be applied to fresh or used fuel to quantify plutonium and 

neptunium for safeguards or forensic purposes.  

 

8.3 Ablation Zone  

 

The third task was to examine the ablation zone for any chemical or 

physical changes. Overall the methods failed to show significant chemical 

changes in the material. The thin sintered pellet ablated indicated small changes 

in the lattice parameters due to a change in geometry of the sample. The data 

suggests no change in material. It is found the material is a mixture of UO2+x and 

Uraninite. Further studies are needed to quantify the change in x for UO2+x. 

Small angle XRD would be ideal for studies on the material. This type of analysis 

is needed as the effects of the laser ablation only appear to be on the surface of 

the material. 

Analyzing the surface of the material after ablation lends insight into the 

amount of material ablated, changes in surface morphology and efficiency of the 

vaporization process. The grain boundaries within the ablated area are cracked 
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and separated compared to the non-ablated area. This is evidence of 

intergranular fracture in the ablated area. Intergranular fractures could affect 

fuel performance if ablation is performed on fresh fuel, although the area 

affected is only 0.0225 mm2. Since the area ablated is insignificant compared to 

the bulk material, this technique could be used at a fuel fabrication facility to 

measure plutonium concentrations in MOX fuel. 

The depth of material ablated from the surface is estimated to be only a 

few microns. Using a depth estimate of 2 ± 1 µm, the overall volume of sample 

ablated is 4.5E-05 ± 2.25E-05 mm3. The fracturing in the ablated zone may be 

related to recrystallization of thin molten layers or stress during cooling. Outside 

of the ablation zone small spherical fragments of the ablated material have re-

deposited onto the sample surface. This is indicative of the larger particles 

cooling before transport to the ICP-MS. The size and shape of the fragments 

indicate soft ablation that is ideal for quantitative analysis. 

Since the damage to the surface is minimal the technique could be 

classified as semi destructive. Further studies are needed to determine if the 

intergranular fractures disrupt fuel performance. Irradiation of the ablated 

material would verify if the technique could be used to determine the plutonium 

concentration in MOX fuel before irradiation. This technique could also be applied 

to safeguards to assist in determining used fuel burn-up rates, which can be 

indicative of weapons production.  
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8.4 Thermodynamic model 

 

The final task was to develop a model to correlate the ablation behavior of 

the elements tested with physical and thermodynamic properties of the 

materials. Trends were established between laser temperature and boiling point 

of the oxides as well as first ionization potential of the oxide of interest in a 

uranium dioxide matrix. These trends cannot be translated to any matrices other 

than uranium dioxide since LA-ICP-MS is a matrix dependent technique. The 

trends could be used as starting point for optimization of laser parameters in a 

uranium oxide matrix. Further studies of oxides would be needed to establish 

linearity greater than 0.91 correlations. 

The next element of interest is neodymium in a uranium dioxide matrix. 

Neodymium has a +3 oxidation state in uranium dioxide and is a burn up 

indicator as described in section 1.3. Comparing the direct solid state analysis of 

neodymium using LA-ICP-MS with the Nd-148 method is of great interest. The 

challenge would be that the 148 m/z channel has interferences with 132Ba16O and 

148Sm. This can be overcome by comparing the 148Nd with the 145Nd m/z channel 

which has no mass interferences (82).  
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