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ABSTRACT 

Because language provides the framework through which knowledge is constructed, it is 

crucial to consider the ways in which students with limited English proficiencies are able to 

express their understanding. English language learners (ELLs) make up a significant portion of 

the student body in the education system and represent many ethnic and racial minorities in 

STEM (Science, Technology, Engineering & Mathematics) fields (Burke & Mattis, 2007). 

Despite the national push to build a more diversified, STEM-ready workforce, there is little 

research that considers the way ELLs are assessed in STEM courses at the postsecondary level. 

Literature reports that science tests that assess the knowledge of students who are still in the 

process of learning language skills are inadequate and threaten the validity of assessments. The 

way students interpret and respond to test items are mediated by linguistic and cultural factors, 

such as home language and prior educational experiences in the country of origin. Therefore, 

language and cultural factors must be taken into consideration in order to improve the validity of 

classroom assessments in science courses.  

Students’ experiences in introductory science courses, such as biology and general 

chemistry, are critical in their choice of staying in or switching out of STEM majors (Astin & 

Astin, 1992). Of these, general chemistry is one of the most feared science courses for 

undergraduate students (Carter & Brickhouse, 1989), and it is a required course for many STEM-

bound career paths. Most students struggle with understanding chemistry and many do not 

succeed on chemistry assessments (Woldeamanuel et al., 2014). Research suggests that scientific 

language literacy has a significant influence on all students’ success in chemistry assessments, 

including that of both ELLs and Native English Speakers (NES) (Woldeamanuel et al., 2014). 

Therefore, one way to support the success of all students—and particularly of ELLs—on 
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chemistry assessments is to address the linguistic complexity inherent in chemistry assessment 

questions.  

One way to ease the burden of linguistic complexity during testing is to apply the Equity 

Framework of Classroom Assessments (EFCA) (Siegel, 2008) to written test items. This 

framework aims to make test items more accessible without simplifying the content. In general 

chemistry, the EFCA can be implemented to make commonly-used items more accessible to all 

students using modifications such as division of prompt into smaller parts, reduction of non-

essential information, adding representation, and simplifying sentence structure. 

This study investigated the perceptions of ELL and NES students about general chemistry 

assessment items that were modified according to the EFCA. ELL students reported to 

experience difficulties understanding items that included complex linguistic features such as 

complex sentence structures and vocabulary. The results show that ELLs perceived language-

independent features of items to be the most helpful on assessment items. These features 

included the formatting of items and the visual representations embedded in items. Although 

NES students also found the visual features of items to be helpful, they used language-dependent 

features to understand and set up the problems.  

The results suggest that ELL students particularly benefited from scaffolding-related 

features in assessment items. Features that provided content support and guidance for identifying 

key information and setting up the problems were more helpful for ELL than NES students.   

Both groups of students found features that provided contextualization in the form of 

storylines and/or background information which were not directly related to solving the 

assessment items to be irrelevant, challenging, and/or confusing.  
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Both groups of students reported that they preferred the revised versions—which 

included the modifications recommended by the EFCA—over the original versions of the 

assessment items presented to them. The findings suggest that most of the modifications 

employed in the EFCA are effective in mitigating linguistically complex elements of written 

assessments items about limiting reactant and percent yield in general chemistry and support the 

assessment of both ELL and NES students.  
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CHAPTER 1 INTRODUCTION  

Project Rationale 

 Test scores are more than just numbers. They can determine the trajectory of students’ 

lives. For immigrant students, test scores could mean living up to family aspirations in the new 

country of residence. For those who dream of being the first in their family to get into college, 

they could mean changing the legacy for future generations. For those who dream of becoming 

scientists, test scores mean early admissions, waiting another year, or reconsidering the hope of 

graduate school altogether. For me, test scores have meant all these things at various stages of 

life. 

 My family and I moved from India to the USA in 1992. Like most immigrant families, 

my parents were in pursuit of a better life; but we did not fully anticipate how difficult the 

transition would be. I had no formal educational experience in English, which meant that I was 

placed in ESL (English as Second Langauge) courses through the beginning of high school. 

Navigating the cultural and language barriers in school was a constant battle, especially in 

classes that did not recognize the issue of English language fluency. I found myself struggling to 

keep up with verbal instruction and became reluctant to participate in class. The frustration came 

from knowing that I had the ability to learn the material, but lacked the customary method of 

communicating my ideas. As a first-generation immigrant student, failing in school was not an 

option, as my family depended on me to be their delegate and set a positive example for our 

community.  

As an English language learner, my relationship with assessments has generally been 

exasperating. I remember feeling a fascination with the microscopic world at an early age. I have 

been a curious student of science since then and have held a deep appreciation of all science-
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related matters. I recall grasping the concept of photosynthesis clearly in grade school, being able 

to explain it to my peers, and feeling optimistic about the upcoming exam. Unfortunately, I 

struggled with deciphering what test questions about photosynthesis were asking of me in my 

school classes, and my test scores often reflected it.  

My struggle during testing became such a frequent pattern in my chemistry classes that it 

made me feel insecure about my ability to understand or succeed in science. During my 

introductory chemistry classes at the university, many of my peers (who were both ELLs and 

Native English Speakers [NES]) had either decided to consider non-science fields, or to study 

superficially for course exams by rote memorization, learning test-taking techniques (and 

foregoing the pursuit of a deep understanding of the concepts) and/or relying on computational 

problems. I call the latter strategy “hiding behind the numbers” because as long as we, as 

students, knew the mathematical operations of a given problem, we could rely on those 

operations without having to interpret the science content embedded in the questions.  

As I progressed through my undergraduate program, I found that these superficial tactics 

for approaching learning no longer allowed me to succeed. For those of us who persisted to 

upper division coursework and were ready to enter graduate school, we found that courses were 

focused on our abilities to critically think and demonstrate our understanding in various ways, 

including writing reports, reading research articles, and presenting in class, etc. These tasks 

required using the academic language of science to reason and problem solve. Although the 

learning in these courses was difficult, my scientific reasoning and language skills developed, 

which positively impacted my understanding and appreciation of biochemistry.   

It was not until I began teaching undergraduate students in biology and chemistry in 

graduate school that I realized many younger students were experiencing a similar struggle with 
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language skills in their science courses. I was overwhelmed by how many students struggled 

with understanding the general discourse used in the textbooks and exams, difficulties that the 

ELL students generally refrained from sharing with their instructors. Most incoming ELL 

students in college are conditioned to not ask questions and to keep their challenging in language 

proficiencies hidden. Because I empathized with the challenges that I observed in my students, I 

shared the challenges I had faced with reading convoluted laboratory protocols as an ELL. I 

assured my students that I was a safe person to come to for asking any questions that they did not 

feel comfortable asking in front of the class. I believe that this allowed them to be more open 

with me about their challenges, which I appreciated. For example, on one occasion, a young, 

Hispanic female student asked me “What does this question mean by tarnish?” during an exam. I 

asked her to tell me what she thought it meant. She replied, “like… maybe it got trashed 

somehow.” Unfortunately, this definition was not helping her answer the question because this 

was not the intended meaning used in the chemistry test question, which was asking about 

tarnishing as a chemical reaction of Ag (silver) reacting with S (sulfur) containing substances in 

the air. My response was: “Can you think of it as a process – like something happening to Ag if 

you leave it outside in the air?” She immediately smiled and nodded. I should mention that this 

incident occurred when I was proctoring a chemistry exam for an instructor in a lecture course 

for 200+ students, and questions during exams were explicitly discouraged. Unfortunately, this 

type of environment is typical in many introductory undergraduate science courses and is not 

conducive to equitably facilitating students from diverse backgrounds (Bajak, 2014).  

 After countless interactions with students involving language confusion—including not 

understanding what is being asked of them on questions and/or problems following written 

instructions in lab—it became obvious to me that ELLs’ challenges with language in their 



 

4 

 

chemistry courses should be examined systematically. Using my experiences with students in 

general chemistry as a guide, I designed a preliminary study that surveyed undergraduate ELL 

students in general chemistry about their experiences in their course. More specifically, I asked 

them to report on how their language fluency affected their learning in lecture, in the laboratory, 

and on course exams. I surveyed 27 ELL students using a quantitative survey and a qualitative 

questionnaire. My preliminary study confirmed that most ELL students struggle with interpreting 

exam questions in general chemistry. Accordingly, I decided to focus my research on examining 

general chemistry students’ understandings of assessment questions. Instead of focusing 

exclusively on ELLs’ interpretations, I chose to focus on how both ELLs and NESs understand 

chemistry assessment questions. If tests are intended to be reliable tools for assessing knowledge, 

then all students should be given an equal opportunity to demonstrate their understanding.  

Research Questions 

 The impetus for my research came from my personal background as well as the 

experiences I have had with undergraduate students while teaching general chemistry. I firmly 

believe that assessments should be conducted in a way that gives all students a fair chance to 

demonstrate their learning because tests can shape lives. An important goal of this research was 

to understand how ELL and NES students comprehend general chemistry questions. I was 

specifically interested in having the students identify features of the questions that they find 

either helpful or difficult in aiding their interpretations of the questions. The Equity Framework 

for Classroom Assessment (EFCA) designates specific types of modifications that can make 

assessment items more accessible for all students. The current study examines whether the 

modifications suggested by the EFCA are useful for decreasing the linguistic complexity of 



 

5 

 

university-level chemistry assessment questions. The following research questions will be 

investigated in this study:  

1. What are English language learners’ (ELLs) and native English speakers’ (NES) perceptions 

of typical general chemistry exam questions as compared with chemistry exam questions that 

have been modified according to the equity framework for classroom assessments (EFCA)? 

a. Which features of the questions do ELL and NES students perceive to be helpful?  

b. Which features of the questions do ELL and NES students perceive to be challenging? 

2. What (additional) modifications do ELL and NES students believe would make chemistry 

exam questions easier to comprehend?  

  



 

6 

 

CHAPTER 2 LITERATURE REVIEW 

Overview 

 In this chapter, I review the existing research literature on assessing ELLs in chemistry. 

Figure 1 depicts the most relevant topics of discussion represented in the overlapping areas of the 

diagram. Because there is a limited amount of literature focused exclusively on assessing ELLs 

in chemistry, this literature review will focus on more foundational areas, including literature 

related to (1) ELLs in general, (2) the assessments of ELLs, and (3) assessments in chemistry. 

The intersection of these three bodies of literature represents the main area of focus of this study, 

which is indicated by the star symbol in the center of the diagram in Figure 1: studies that focus 

on the assessment of ELLs in general chemistry. Each of these sections is further divided in 

subcategories that are represented in corresponding flow charts. Given the limited amount of 

literature focused on the assessment of ELLs in university-level general chemistry courses, these 

sections have been expanded to cover ELLs in science and the assessment of ELLs in science. 

This review underscores the gap in literature about the assessment practices of ELLs in 

chemistry. My study addresses this gap. 

 

 

Figure 1. An overview of the bodies of literature included in this study. 
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English Language Learners 

 In this section, I begin with a brief discussion of how ELL populations have been defined 

historically. Then I review literature regarding how ELLs are defined in postsecondary 

education, which precedes a discussion of prevalent language acquisition models in the field. 

This section also includes research on the academic language in science and how it pertains to 

undergraduate ELL students. Figure 2 represents the organization of this section.  

 

Figure 2. An overview of subcategories under the “ELLs” section. 

 

The English Language Learner Population 

Historically, it has been challenging to identify this population of students because of the 

population’s inherent heterogeneity and linguistic diversity. ELLs represent various different 

language backgrounds as well as different socioeconomic statuses, academic experiences and 

immigration histories. Consequently, there are many terms used to identify ELLs, including the 
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following common terms: ESL (English as Second Language), CLD (culturally and linguistically 

diverse), LEP (limited English proficient), EFL (English as a foreign language), NELB (non-

English language background) (American Institutes for Research, 2012). For the purposes for my 

study, I use the term English Language Learners (ELLs) as it encompasses the target population 

for my study.  

No matter the definition employed, the U.S. educational system has seen considerable 

growth in the ELL population over the past decade. In the 2012-13 year, 9.2% or 4.4 million 

students were identified as English language learners in U.S. public schools. An ELL student is 

defined as a student “whose primary language is not English and whose English proficiency is 

below the average proficiency of peers whose primary language is English” (Education 

Commission of the States [ECS], 2014). Using this definition, Nevada has one of the largest ELL 

student populations in the country (National Center for Education Statistics [NCES], 2012). 

Additionally, the ELL student population in Nevada increased at a rate of 35% between 2002 and 

2012, more than three times the rate growth of the ELL student population in the country as a 

whole (Mokhtar, 2012). At the local level, Clark County has experienced a 19.6% increase over 

the same time. As of 2012, there were approximately 84,125 ELL students enrolled in the Clark 

County School District (ECS, 2014).  

Postsecondary Achievement of ELLs 

The challenging process of identifying ELL student populations has made it problematic 

to gain information about students’ achievement across school districts and institutions. 

Generally, there is a shortage of information available about academic performance and 

classroom instruction because the criteria for ELLs’ academic progress are different across 

schools and because certain types of ELLs are exempt from school assessments (Lee & Fradd, 
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1998). Studies that track ELL students’ achievement across grade levels and into college are also 

rare but necessary in order to understand issues of postsecondary access and achievement.  

Kanno and Cromley’s (2013) study followed a representative sample of 10,300 eighth 

graders from 1,052 randomly selected schools across the country for 12 years, with the goal of 

learning about the cohort’s postsecondary attainment and access. The cohort was divided into 

three categories: English-monolingual students (EMs), English-proficient linguistic-minority 

students (EPs), and ELLs. EMs were students who were native English speakers, EPs were 

previous ELL students who were now considered fluent in the English language, and ELLs were 

students whose English language proficiency was still developing. The dependent variables used 

were access to and attainment in postsecondary education. Access was operationally defined as 

students’ first college-level institution (bachelor’s level, vocational program/community college 

and/or none). Attainment was operationally defined as students’ highest degree earned. Their 

findings showed that only one in 8 ELLs earned a bachelor’s degree, compared to one in four 

EPs and one in 3 EMs. Additionally, one in five ELLs dropped out of high school.  

The results of Kanno and Cromley’s (2013) study indicate that there is an achievement 

gap between ELLs and English proficient students that persists throughout postsecondary 

education. The results of this study also corroborate government data that show that, compared to 

English proficient students, ELLs have lower levels of academic achievement and higher rates of 

poverty, mobility, and high school non-completion (NCES, 2004). On a broader scale, these 

findings imply that many ELLs are at risk of unemployment because most jobs now require at 

least some level of postsecondary education (Kanno & Cromley, 2013). Findings such as these 

encourage a deeper examination of how language acquisition impacts the ability to learn. The 
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topics of language acquisition and its role in learning for ELLs are discussed in the next 

subsections.  

Language Acquisition  

The process of language acquisition sheds light on ELLs’ capacities to perceive written 

and verbal instruction. In this section, I discuss two concepts related to language acquisition: the 

types of language proficiencies and the continuum of language proficiency. A major contribution 

in the field came from Jim Cummins (1981), whose work suggests that students whose first 

language (L1) is not English and who have had two to three years of schooling in their L1 need 

an additional five to eight years in a U.S. school to match their peers’ level of English 

proficiency.  

Cummins’ later work (2000) explained that there are two types of language proficiencies.  

BICS (basic interpersonal communicative skills), typically acquired through everyday social 

interactions, become conversational and informal communication skills. CALP (cognitive 

academic language proficiency) is more difficult to develop as it takes place in formal, academic 

settings and involves a higher cognitive load than BICS. Collier (2008) defines academic 

language as terms not used in everyday conversation, words that tend to have one meaning in 

everyday talk but mean something else in the classroom, technical terms and higher level 

concepts.  

Cummins (1980) emphasized that BICS refers only to some fundamental, rapidly 

developed features of communicative proficiency, which are relatively superficial aspects (e.g., 

accent). Unfortunately, educators may build their judgements of students’ proficiency based on 

BICS alone. For example, a teacher may assume that an ELL student should be able to 

comprehend written instructions in the same way as NES students because she/he seems to be 
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able to converse with peers in social interactions in the English language. However, CALP could 

only be developed within a formal academic learning setting. Developing CALP includes 

listening, speaking, reading, and writing about a given content area. Academic language is much 

more involved than understanding vocabulary of the content area; it requires higher order skills. 

For example, comparing, classifying, synthesizing, evaluating and inferring are skills that require 

a more developed CALP. For immigrant students without prior schooling or support in L1 

development, CALP development takes seven to ten years (Collier, 1995). 

To conceptualize language proficiency in a way that the developmental interrelationships 

between academic performance and language proficiency can be illustrated, Cummins (1984) 

proposed a model (Figure 3) that outlines language proficiency along two continua.  The 

horizontal continuum is based on the range of contextual support available for constructing 

meaning, described as “context-embedded” versus “context-reduced” communication. In 

context-embedded learning, students are able to negotiate meaning and language using the wide 

range of situational cues and feedback available. For example, engaging in discussions, 

participating in group work, writing a personal letter, or reading an article would be context-

embedded communications and would be located on the left side on the continuum. In context-

reduced learning, students must primarily rely on the meaning of the words themselves and may 

need to disregard their “real world” knowledge in order to interpret the logic of the 

communication adequately. For example, textbook reading, classroom lecture, and specialized 

vocabulary would be considered as context-reduced communications and would be located on 

the right side of the continuum (Cummins, 1984). 
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Figure 3. Cummins’ (1984) continuum of language proficiency (Cummins, 1984, p. 31).  

 

The vertical continuum describes tasks that require little cognitive load (top) and tasks 

that require a higher cognitive load (bottom). Cognitively undemanding communicative tasks 

occur when linguistic tools have become essentially mastered. At this level, little active cognitive 

involvement is needed to perform appropriately. For example, a conversation at a coffee shop or 

simple yes/no question in the classroom requires a low level of mental effort. On the other hand, 

cognitively demanding communicative tasks require active cognitive involvement to perform 

appropriately because language proficiency has not become automatized. For example, analyzing 

and synthesizing information quickly in a chemistry lesson or a multiple-choice test, or writing 

this literature review would require a higher level of language proficiency (Cummins, 1984). 

Cummins’ works suggest that to aide ELLs in the development of CALP, higher cognitive load 

tasks can be supplemented with contextual cues in the content. For example, adding illustrations 

to a multi-step chemistry problem could ease the burden of decoding technical language and 

translating English.  
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The Importance & Challenge of Academic Language. Cummins (1980, 1981, 1984) 

emphasized that the extended timeframe for acquiring proficiency in academic language should 

not be confused with a disability to learn. Educators may attribute poor test scores of ELLs who 

may sound fluent because of well-developed BICS to laziness or lack of aptitude, failing to 

recognize the cognitive load of learning in commonly context-reduced areas such as science or 

math, where there is a higher frequency of technical vocabulary and few descriptive cues. “The 

most important thing [teachers] can do is to understand what academic language is and how they 

can teach [ELLs] this type of discourse” (Collier, 2008, p.10).  

Generally, science teachers are not well-prepared to help their students understand the 

complexity of academic language. Bruna et al.’s (2007) study examined how a 9th grade 

teacher’s own conceptualization of academic language influenced her teaching in a science 

classroom, which included many ELL students. Their observations suggested that the teacher’s 

instruction on the rock cycle mainly focused on discrete vocabulary, not other linguistic 

resources such as grammar, lexical items and semantic relations in the process of rock formation. 

This type of instruction “takes, as we see it, the ‘motion’ out of meaning making” (Bruna et al., 

2007, p. 46). The findings highlight that a simple focus on discrete vocabulary is not sufficient 

when trying to help students understand academic language (Bruna et al., 2007).  

Unfortunately, teaching only the meaning of key words without explaining the use of 

other general-purpose academic words that students do not know could impede student 

understanding (Snow, 2010). This is especially the case for ELLs who do not recognize that 

these terms are being used in technical ways with different meanings from those of everyday life 

(Snow, 2010). For example, the definition of torque is “the product of the magnitude of the force 

and the lever arm of the force” (Snow, 2010, p. 452), but many students are also unfamiliar with 
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the terms within the definition such as  “force,” “arm” and even “product,” which often puts 

them at a disadvantage when it comes to following classroom instruction clearly.  

Scientific literacy. Research suggests that academic language makes acquiring scientific 

literacy challenging, especially for those who are still in the process of learning the basic rules of 

the English language (Bruna et al., 2007; Collier, 2008; Cummins, 1980, 1981, 1984; Lemke, 

1990; Snow, 2010). Those who are scientifically literate have the knowledge of scientific 

concepts and processes needed to make informed decisions, participate in society, and contribute 

to economic productivity. According to the American Association for the Advancement of 

Science (AAAS), science learning involves a two-part process “to acquire both scientific 

knowledge of the world and the scientific habits of the mind at the same time” (AAAS, 1989, p. 

190). Scientific knowledge development consists of knowing, doing, and talking science (Lee & 

Fradd, 1998). In this section, I will discuss the prevalent work of Lee and Fradd (1998), which 

underscores the significance and challenges of developing scientific literacy for students of non-

English-language backgrounds.  

For ELLs, knowing, doing, and talking science each impose unique difficulties that are 

often not recognized in the classroom and that hinder ELLs from achieving academic literacy in 

science. Lee and Fradd (1998) review each of these aspects of learning science from the 

perspective of ELLs. Knowing science is developing scientific understanding, which requires 

building new knowledge on the foundation of prior knowledge, using science vocabulary, and 

understanding concepts and relationships. Because the knowledge that each student brings to the 

classroom differs, teachers should help students connect their prior knowledge with newer 

concepts they are expected to know. This can be particularly useful for ELL students, who may 

have learned a concept differently than the way it is taught in the U.S. For example, most 
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students from non-English-language background could be more familiar with the metric system 

of measurements than with the U.S. system of measurement. In a science classroom, the ELLs’ 

prior knowledge about the metric system could be leveraged to help the students develop an 

understanding of the U.S. system of measurement.  

Learning vocabulary is another important aspect of knowing science that is not as 

straight-forward as memorizing a list of terms. Words of one language cannot always be directly 

translated to another language; hence, meanings of words must be understood within contexts. 

For example, the word logic is not directly translatable in Chinese and Hindi (Lee & Fradd, 

1998). ELLs struggle with using the vocabulary words in the same frequency and manner used in 

the context of science; this is often manifested as students saying too much or too little, giving 

the impression that they do not understand the content when the issue is most likely that they 

lack the language or communication patterns to express precise meanings expected in the science 

classroom. For example, a student with limited verbal proficiency in English might use extra 

filler words such as “stuff” or “things” to substitute for accurate scientific words of which they 

may not be aware (Lee & Fradd, 1998). 

 Doing science is thought of as scientific inquiry, or engaging in inquiry and solving real-

world problems (Lee & Fradd, 1998). The Next Generation Science Standards emphasize asking 

questions and defining problems as one of the most important practices of science (Next 

Generation Science Standards, 2014). Students engage in inquiry by making observations, 

proposing explanations, interpreting and verifying evidence, synthesizing ideas to make sense of 

the natural world, and manipulating materials. Many aspects of inquiry are difficult for all 

students because they require language functions, such as reflecting, predicting, inferencing, and 

hypothesizing. For ELLs, there is an added challenge of having different oral traditions at home 
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and/or cultures of prior education systems where asking questions or devising plans for 

investigation on their own may not have been encouraged. This is particularly the case for 

students from cultures that are taught to respect authority; they have been taught to listen to 

teachers and to let teachers direct them, rather than to inquire, explore, and seek alternative ways 

(Lee & Fradd, 1998).  

  Talking science is central in scientific discourse, which provides the structure for 

participating in social and academic discourse, using multiple representational formats, and 

appropriating the discourse of science (Lee & Fradd, 1998). Talking science means to 

communicate in the language of science and act as a member of the scientific community 

(Lemke, 1990). For ELLs, communication patterns at school are different from those at home. 

Because of this, they have different interpretations of verbal communication and expression. For 

example, many ELLs rely on the use of gestures to supplement and replace words more than 

monolingual English-speaking students (Michaels & O’Conner, 1990). When asked to describe 

the concept of “balance” in class, a Haitian female student, who understood the concept, was 

unable to express it using the discourse pattern of “why-because” and could not make her mental 

operations explicit in her verbal explanation. Instead, she used hand gestures to aid her 

description. Consequently, her responses were sometimes seen as less intelligible than those of 

other students (Michaels & O’Conner, 1990).   

 Overall, ELL students face unique challenges as they attempt to develop scientific 

literacy. These challenges potentially put ELLs at a learning disadvantage compared with their 

NES counterparts. However, according to research, there are steps that teachers can take to help 

their ELL students overcome some of these challenges. For example, teachers can make 

academic content more accessible by providing contextual cues during instruction and activities. 
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This includes applying content to students’ everyday lives, as well as providing applicable 

examples of concepts where possible. Teachers can also provide hands-on, interactive learning 

activities and/or use illustrations in their teaching (Lee & Fradd, 1998). Although these steps do 

not address all of the challenges faced by ELL students in science classrooms, they can at least 

reduce the gap between the performances of ELL and NES students.  

English Language Learners in Science Classrooms  

In order to further explore the issues associated with knowing, doing, and talking science 

from the perspectives of ELLs, the following section focuses on the limited number of studies in 

the literature that discuss ELLs and their perceptions of the science classroom. As a reminder, 

because of the lack of research about ELLs in chemistry, this category has been expanded to 

discuss ELLs in science classrooms. Literature suggests that ELL students tend to carry lower 

confidence in their abilities to succeed in class compared to NES students and often feel isolated 

in the classroom (LeClair et al., 2009; Ryu, 2015). Additionally, newcomer ELLs, those who 

arrived in the U.S. less than a year ago, are less likely to feel confident about verbally 

participating in class, which not only negatively impacts their participation in class, but also their 

abilities to branch out and make connections with NES students in the class (Ryu, 2015).  

LeClair et al.’s (2009) study examined how ELLs view themselves and their peers in the 

classroom. The study included 257 elementary school (3rd through 5th grades) students’ 

perceptions about classroom relationships (teacher-student, peer, and home-school) and self-

regulation (self-efficacy, self-determination, and self-control). It compared perceptions of ELL 

and NES students using a quantitative class maps survey with subscales for classroom 

relationships and self-regulation. The results showed that ELL students rated themselves as 

having lower academic self-efficacy and rated their NES peers as having higher levels of self-
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control in the classroom. ELL students also rated their class as more orderly and their NES 

classmates as more regularly following rules (LeClair et al., 2009). The findings suggest that 

ELLs may be aware of their own academic performances in the classroom compared to their 

NES classmates and that they may not be confident about their ability to perform equally well. 

ELLs may also be less familiar with the classroom culture and, therefore, think of themselves as 

less likely to follow the rules of the class. 

 Similarly, Ryu’s (2015) study suggests that unfamiliarity of the school culture influences 

how ELLs position themselves in the classroom. This ethnographic study examined how 

newcomer Korean students positioned themselves, participated and learned in two Advanced 

Placement (AP) biology classes. The research questions focused on how the students evaluated, 

perceived, and positioned each other in the class in terms of Biology achievement and verbal 

participation. “Good” students in the class were considered to be those who adopted pieces of 

biological knowledge presented by the teacher and performed well on class exams. Top students 

were called out for receiving top scores. Accordingly, students who did not perform well were 

positioned at a lower status in the social structure of the class. Class achievement shaped group 

positioning in the class such that higher achievers often formed groups with students who 

achieved similar or higher scores than them. This resulted in most newcomer Koreans forming 

separate groups from other students of racially and linguistically dominant groups (Ryu, 2015).  

 Verbal participation also seemed to be an important factor that influenced students’ 

positions in the classes. The teacher believed that adopting “biology language” was an important 

part of learning biology and encouraged her Korean students to translate biology content into 

Korean and help each other “talk biology.” However, many of her newcomer Korean students 

remained reluctant to verbally participate. Students stated the following when asked about their 
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participation, “I could do [participate] better if I spoke English better” or “It’s embarrassing [to 

ask questions in class] because I ask when I don’t understand English (p. 359).” Because of 

newcomer Korean students’ infrequent verbal participation in whole class settings and their 

speech patterns being perceived as foreign, they were often positioned at a lower level than 

native English speaking students by peers in their classes (Ryu, 2015). 

This study highlighted the fact that the Korean students’ status as newcomers in the U.S., 

combined with their limited ability to verbally participate in the class contributed to their feeling 

of benig unsuccessful and disempowered in their biology class. These findings brought to light 

how the expression of knowing and talking science can often be narrowly defined in the science 

classroom. Many students perceived a pressure to provide one correct answer on exams and to 

the teachers, instead of demonstrating their unique understanding of scientific phenomenon in 

alternate ways. Students also perceived that they would be thought of as unintelligent or 

disregarded if they were not able to ask and answer questions in class using the type of 

discursive patterns (or academic language) accepted in science (e.g., factual information with a 

heavy use of technical vocabulary) (Ryu, 2015).  

Summary. Reports in literature contend that the ELL student population is on the rise in 

the public school system. However, ELL students are less likely to earn bachelor’s degrees and 

are more likely to drop out of high school than their NES counterparts. Research in the area of 

language acquisition suggests that ELL students who sound fluent may still be struggling with 

grasping the academic language of a discipline, especially in the case of science. In turn, 

according to the literature, underdeveloped academic language proficiency can be a barrier to 

scientific literacy. It should be noted that most research on ELLs has been exclusively focused on 
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the language acquisition of school age ELL children. It is not yet clear whether the results of this 

research apply to adult ELLs.  

Assessing English Language Learners 

Because an important goal of the current study was to examine how students, including 

ELLs, respond to general chemistry assessments, it was critical to review the literature involving 

the assessment of ELLs. Because of the lack of research specifically about the assessment of 

ELLs in chemistry, I decided to utilize the following two bodies of research to inform the design 

of the project: (1) assessing ELLs and (2) chemistry assessments, which are discussed in the next 

two sections. The discussion of the assessment of ELLs includes research related to the 

following topics: (1) the obstacles in assessing ELLs’ content knowledge, (2) measurement error 

as related to the assessment of ELLs, and (3) developing equitable assessments. Figure 4 shows 

the organization of these three sub-categories in this section.  
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Figure 4. An overview of the “Assessing ELLs” section. 

 

Obstacles in assessing ELLs’ content knowledge 

The assessment of ELLs is a necessary but challenging endeavor. In this section, I discuss 

the main barriers in assessing the content knowledge of ELLs. Arguments about effective ways 

of assessing ELLs’ content knowledge center on the relationship between language proficiency 

and test performance. How well an ELL student can read in English is an important factor in 

determining how she can be assessed. “Because language plays an integral role in most, if not 

all, academic learning, any test of academic achievement is also, to some degree, a test of 

language ability” (Kieffer et al., 2009, p. 1170). Key obstacles, as identified in literature, in the 

assessment of ELLs fall under three main topics: (1) the relationship between language 

acquisition and content knowledge, (2) academic language in content-based assessments, and (3) 
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the role of culture in assessment (de Schonewise & Klingner, 2012; Teaching English to 

Speakers of Other Languages [TESOL], 2008). 

 

 
 

Figure 5. An overview of the subcategories under the “Obstacles” section. 

 

Relationship between language proficiency and content knowledge. Research 

indicates that because of the interplay between language proficiency and content understanding, 

ELLs encounter different and additional challenges when they attempt to make sense of math 

and chemistry test items. These challenges are outlined below:  

 Because English is often their second language, ELLs’ math knowledge needs to be 

filtered through English, which means math operates as their “third” language. On 

exams, ELL students have to try to navigate highly demanding cognitive tasks and 
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interpret abstract and complex ideas across language platforms in a timed setting 

(Chamot & O’Malley, 1994).  

 Similar to math, sciences such as chemistry are also comprehensive in nature, and 

learning is accrued. For example, students must have knowledge of the periodic table 

of elements before they can understand how elements bond with each other (Chamot 

& O’Malley, 1994). Similarly, if ELL students develop incorrect understandings 

about words or phrases used early during the semester, they may develop incorrect 

understandings of concepts presented later in the semester. For example, not 

understanding what “stability” means would impact the way they understand the 

rationale for drawing energy diagrams based on electron stability.  

 Some of the terms used in math and chemistry are words that are not used in everyday 

talk or that can have different meanings than they have in everyday talk. Additionally, 

vocabulary tends to be technical, specialized and decontextualized on test items in 

math and chemistry. For example, words such as stoichiometry, quotient, and product 

can be unfamiliar and can have different meanings in the context of chemistry. ELLs 

are more likely to get word problems wrong that contain large amounts of technical 

vocabulary (Abedi & Lord, 2011). 

 The syntax on math and chemistry items does not always resemble basic language 

structures used in everyday talk and can, thus, be cumbersome and confusing. For 

example, passive voice (e.g., X was reduced by Y), comparatives (e.g., lower than, 

greater than), and unknown variables (e.g., X is the product of Y less than 2) can be 

perplexing to ELL students (Chamot & O’Malley, 1994).  
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 Without sufficient contextual cues built in, readily interpreting chemical expressions 

embedded in math can also be extremely perplexing for students, including ELLs 

(Chamot & O’Malley, 1994). 

The focus of the current study is on students’ interpretations of chemistry assessment 

items. While this is a challenging task for all students, it is potentially more complex for ELLs 

than for NES students. Figure 6 shows a comparison of potential steps taken by NES and ELLs 

when solving chemistry word problems. (Note: This diagram has been included for the purposes 

of visual clarity, and is not intended to imply that problem solving processes are linear in nature.)  

 

  

Figure 6. An outline of processes students take to solve chemistry problems involving 

computations. Left: Steps that all students go through when interpreting chemistry test questions. 

Right: Additional steps that ELLs must take in order to interpret chemistry test questions 

(highlighted in red). 
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All students must read the question first; then identify the most relevant pieces in the 

question; then perform numerical computations to get a numerical output; and, lastly, express 

this number in terms of the context of the chemical problem. ELL students must take a few 

additional steps to solve the same problem: After reading the problem, they must attempt to 

translate parts of it to their L1, and then form interpretations of what the question may be asking. 

After connecting the numerical answer to the context of the chemistry problem, they must 

transfer that answer into the English language and express their final answer in English. 

According to the literature, word problems embedded in science content, such as in chemistry, 

are especially taxing for ELLs, and the added steps ELLs must take to solve chemistry problems 

often result in the ELLs getting these problems wrong on assessment tasks (Abedi & Lord, 

2011).   

Content-based assessments of ELLs. Several studies have examined the role of 

language proficiency on standardized, content-based assessments (such as science and math 

tests) and found that the tests may inadvertently function as English language proficiency exams 

for ELLs (Abedi, 2002; Brown, 2005). Abedi’s (2002) study examined the impact of students’ 

language background on the outcome of achievement tests, using data collected from four 

different K-12 schools across the U.S. The analyses were focused on comparing the levels of 

performance of ELL and NES students by multiple-group factor analysis of test items. The 

results indicated that the overall means for ELLs’ test scores were significantly lower than those 

of NES students in content areas with higher language demands. The performance gap between 

ELLs and NES students tended to be smaller in lower grades (e.g., Grade 2) and larger in higher 

grades (e.g., Grade 9). The results suggested that language background adds a compounding 
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factor, referred to as the “language factor,” to the assessment of ELLs, which may be a source of 

measurement error (Abedi, 2002).  

The issue of the “language factor” is of particular concern in evaluating students’ math 

skills. Although there is a growing emphasis on the need for all students to develop strong math 

skills in school, the way math skills are evaluated using standardized assessments combine ELLs 

with all other students to be evaluated in the same manner, which could put ELLs at a 

disadvantage. Math-based tests that require students to read complex, multiple-part questions and 

read and/or provide written responses describing their explanation and problem-solving process 

are considered particularly unfit and problematic for evaluating a student population still 

acquiring English language skills (Brown, 2005). Brown’s (2005) study examined the Maryland 

State Department’s (MSDE) literacy-based performance assessment designed for math testing in 

Grades 3, 5, and 8 to find differences in scores between ELL and NES students within the same 

socioeconomic status (SES). The analysis found that high-SES NES students outperformed high-

SES ELLs, but there was no significant difference found between low-SES NES students and 

low-SES ELLs. Results suggested that high-SES ELLs may have scored lower because their 

language background impeded their performance on the math-based test. The researchers 

speculated that ELLs’ true math ability could be concealed by their under-developed academic 

language proficiency (Brown, 2005).  

Language also becomes a factor in assessing students’ content knowledge in science 

courses. Noble et al.’s (2012) study claimed that large-scale, standardized science assessment 

differentially measures students’ knowledge. They examined 36 students’ responses on multiple 

choice questions (MCQs) on a standardized science test for 5th, 8th and 10th grade students. The 

participants included low-income students, ELLs, and middle-class NES. Researchers found that 
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low-income and ELL students were more likely than middle-class NES students to answer 

science assessment items incorrectly despite demonstrating knowledge of the corresponding 

science content during interviews.  

 Overall, the studies discussed above suggest that ELLs tend to answer test items 

differently than NES students, but not because of a lack of knowledge or ability. This evidence 

refutes the assumption underlying the psychometric model of large-scale tests that if a student 

incorrectly answers questions on the standardized test it is because the student lacks proficiency 

in the content knowledge (Noble et al., 2012). Student performance on math or science 

assessments is not solely a function of the math or science content they were taught or their 

resulting level of knowledge. It is also dependent on students’ culture and language, factors 

which are not often considered in the interpretation of student performance on science tests 

(Messick, 1989). The major focus of the current study is the influence of language on students’ 

interpretation of assessment items in chemistry. However, because language cannot be 

completely divorced from culture, I briefly discuss the role of culture in assessing ELLs’ 

knowledge in the section that follows.  

Role of culture in assessing ELLs. Given that linguistic and cultural factors are closely 

intertwined, the issue of cultural validity has become an important point of discussion in the 

literature as it pertains to assessing ELL students’ content knowledge. Culture shapes the way we 

construct knowledge and form meanings from experience, which is linked to the way we think, 

reason, and solve problems (Solano-Flores & Nelson-Barber, 2001).  

Because culture and society shape mental functioning, individuals have predisposed 

notions of how to respond to questions, solve problems and so forth. It follows that these 

predispositions influence the ways in which students interpret material presented in tests 
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and the ways in which they respond to test items. Surprisingly, this view has not been 

incorporated into the set of actions required to develop valid assessments. Current 

approaches in assessments give little consideration to understanding how these 

sociocultural predispositions influence student thinking. (Solano-Flores & Nelson-

Barber, 2001, p. 554) 

The resistance to integrating cultural validity into instruction and assessment is especially 

prevalent in science and mathematics; however, integration is indispensable if the goal is to 

make science accessible to all (Lemke, 2001; Luykx et al., 2007). Traditionally, science and 

math are considered bodies of knowledge that are universally valid and “culture-free,” in that 

they remain the same regardless of social and cultural groups that take part in it. This conception 

of science in incompatible with a multicultural approach to science education. Lemke (2001) 

argues that science is a social enterprise and, even if we ignore the large-scale society that 

science operates in, we cannot ignore that students’ attitudes toward science, beliefs, and 

identities are a consequence of a student’s life outside the classroom. Classrooms are not closed 

communities. He suggests that an overly narrow and rationalistic view of science is 

unwelcoming to the new era of students trying to approach science in a new global economy 

(Lemke, 2001).  

Currently, the assessment of linguistic (and cultural) minority students is guided by 

superficial assumptions about language, cultural misconceptions, and stereotypes rather than a 

multicultural approach to science (Solano-Flores & Nelson-Barber, 2001). Research in science 

education on assessment tends to focus strictly on cognitive psychology to explain performance 

tasks without taking into consideration the social and cultural aspects of science teaching and 

learning. This has been attributed to the assimilationist perspective in science, which assumes 
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that others should adapt to the Western way of knowing and doing science (Solano-Flores & 

Nelson-Barber, 2001).  

However, studies that examine how knowledge is acquired and organized assert that the 

cultural component is salient. For example, research suggests that categorization of objects and 

ideas is culturally dependent. Bilingual Chinese organize objects more relationally than 

European Americans: by the internal association of the objects to each other instead of the 

identities and functions of the objects. In terms of reasoning skills, research indicates that the 

Chinese reason in a holistic and relation manner compared to European Americans, whose 

reasoning skills are more analytic (Ji & Zhang, 2004).  

Solano, Nelson, and Trumbull’s (2003) study illustrates that the same question can be 

interpreted differently depending on the test taker’s cultural background. The following three 

groups of 4th and 5th grade students were presented with the National Educational Assessment 

Progress (NAEP) mathematical test problems: (a) White, suburban, high income; (b) American 

Indian, rural, low income; and (c) African American, inner city, low income. The test question 

referred to as the “Lunch Money” item, is given below: 

Sam can purchase his lunch at school. Each day he wants to have juice that costs 50 

cents, a sandwich that costs 90 cents, and fruit that costs 35 cents. His mother has only 

$1.00 bills. What is the least number of $1.00 bills that his mother should give him so he 

will have enough money to buy lunch for 5 days? (Solano, Nelson & Trumbull, 2003, p. 

4; underlining added for emphasis)  

The researchers found that 84% of White students interpreted the underlined sentence as 

intended by the test designer. The intended meaning of this phrase is that his mother has $1 bills, 

but does not have any coins or any other bills. However, only 56% of American Indian and 52% 
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of African-American students read the sentence as intended, with 10% and 18% of American 

Indian and African-American students, respectively, interpreting the word only as limiting the 

number of dollars and not the number of dollar bills. The follow-up questions during the 

interview with a low-income, minority student revealed that he thought about the context of this 

problem differently than intended: 

Researcher (R): Now, what do you think this question is asking from you? What is it 

about? 

Student (S): It’s about Sam and he wants to buy his juice, his sandwich and his fruits. For 

lunch. Maybe he was hungry. But, I think his mom didn’t have enough money. 

R: Why? 

S: Because she only had one dollar bill. (Solano, Nelson & Trumbull, 2003, p. 5)  

The analysis of such items in the study showed that the construction of interpretations of 

the wording on the test were influenced by cultural backgrounds; however, because culture is not 

generally factored into test performance, these issues go largely undetected for linguistic 

minority students on standardized exams (Solano-Nelson & Trumbull, 2003).  

 Another study that examined how students’ prior knowledge and cultural knowledge 

shaped their responses on science assessments found that tests are not culture-free entities 

(Luykx et al., 2007). The project studied the responses on 6,000 tests (two pre-tests and two post-

tests) administered to 1,500 3rd and 4th grade students on the topics of measurement and matter 

(3rd grade students) and the water cycle and weather (4th grade students). The study conducted a 

qualitative analysis of the influences of the students’ home language on their written responses to 

the administered questions. The researchers also looked for evidence of the influences of cultural 

beliefs and linguacultural factors (e.g., voice, genre, and framing of responses) in students’ 
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written responses. The findings are summarized below under the bulleted categories of (1) 

linguistic influences, (2) cultural influences, and (3) linguacultural influences (Luykx et al., 

2007).  

 Linguistic influences: Students’ responses in English differed in spelling, reflecting the 

phonology or orthography of the home language. When these responses did not reflect the 

spelling and/or pattern of Standard English, teachers often regarded the response as incorrect 

or as indicating a lack of understanding of content knowledge. For example, “…the waro gos 

to the nodo baro” [the water goes to the other bottle] and “Meibi the to spribriment the to or 

abaut eor” [Maybe the two experiments the two are about air] (Luykx et al., 2007, p. 909). 

Additionally, students seemed to interpret science terms in terms of their everyday meanings 

and associations, instead of their specialized meanings in the context of science. For 

example, the ELLs in the Luykx et al. study (2007) confused gas (state of matter) with 

gasoline, states of matter with geographical states, and scientific instruments with musical 

instruments. 

 Cultural influences: Home norms, practices and beliefs seemed to surface in many student 

responses. For example, when asked a question about where condensed water droplets come 

from, one student answered, “A leak in the roof” while others said “God makes it rain.” 

When asked a follow-up question “where did the [evaporated] water go?” another student 

wrote “Someone stole it” (Luykx et al., 2007, student responses are from p. 910). Clearly, 

each of these responses was influenced by the culture and experiences the children had in 

their home environments.  

 Linguacultural influences: In their analysis of the students’ written responses to assessment 

questions, the researchers found “confusion around discursive conventions for the 
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interpretation and production of scientific texts” (Luykx et al., 2007, p. 911). For example, a 

mathematical question stated:  

Your parents tell you to be home at 6:00 p.m. for dinner. It is now 4:00 p.m. How much 

time do you have to get home for dinner? Show your work.” Most students were able to 

figure out “2 hours” but were unclear about the follow-up statement: Show your work. 

Many students left the item blank, some drew pictures of dinner tables or themselves 

playing at their home with their parent figure instead of showing the expected 

mathematical operation (i.e., 4 + ? = 6). (Luykx et al., 2007, p. 914)  

Overall, the findings of Luykx et al.’s (2007) study questioned whether culture-free tests 

are ever feasible. If culture is an inevitable factor in assessment, then an understanding of non-

mainstream cultures should be integrated as part of the process that informs assessment 

development.  

Summary. Discussion in the literature regarding the challenges of assessing ELLs in 

science classes focuses on four main topics as outlined in Figure 7: (1) when the language of 

assessment is not the primary language of the test taker, limited content knowledge can be 

masked by limited language proficiency; (2) scientific terms have meanings that are different 

from everyday words and, while students may know the everyday definitions of terms, they do 

not necessarily know the meanings of the terms as intended in the context of science; (3) when 

dealing with an increasingly diverse and heterogeneous body of students, it is important to 

recognize the intrinsic role of culture in the way test questions are interpreted; and (4) science 

assessments inevitably contain culturally- and linguistically-implicit knowledge that is not 

accessible to all students because science does not operate in a cultural vacuum. Overall, the 
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literature emphasizes that the failure to acknowledge these limitations threatens the integrity of 

the tools used to measure the fair achievement and competencies of all students.  

Measurement Error  

 The literature about assessing ELLs raises concerns about the validity of the standardized 

tests that are widely utilized to make long-lasting decisions about students’ abilities and 

educational futures. Factors that threaten the validity of commonly used assessments contaminate 

the analyses and inferences that can be made from the test results for this population of students. 

The fair assessment of students calls for an examination of factors that contribute to the 

measurement error of tests. The second section in this literature review focuses on issues of 

measurement error involved in the assessment of ELLs. In this section, I discuss literature that 

pertains to measurement error that threatens the test validity of standardized exams for ELLs, 

including issues related to language and dialect, the use of norming groups in test development, 

and the issue of construct irrelevance variance.  
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Figure 7. An overview of the “Measurement Error” section. 

 

Factors contributing to measurement error. Discussion in the literature about 

assessing ELL students has been directed toward issues of test design, particularly issues that 

contribute to measurement error in scoring. Measurement error is defined as the observed error 

that occurs when there is a difference between a measured value and a true value. The main 

source of measurement error for ELL students stems from proficiency in the language in which 

tests are administered (Abedi, 2002). There are concerns that current approaches to test design do 

not account for language proficiency in evaluating a heterogeneous student population. Indeed, 

current test development methods only loosely address the role of how cognitive processes are 

shaped by language (Lee & Fradd, 1998).  

Language and dialect. Solano-Flores and Li’s (2009) study examined language and 

dialect as sources of measurement error that could threaten the validity of the National 
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Assessment of Educational Progress (NAEP) mathematics test for Grades 4 and 5. The study 

focused on the language of test administration (Spanish or English) and the dialect of Spanish on 

the test (local and standard dialects of Spanish) using test data collected from native Spanish-

speaking ELL students. Fourth and fifth grade ELL students were given the same set of NAEP 

test items in either two languages or two dialects in order to examine score variation that was due 

to main and interaction effects of student, item, rater, and language. The analysis showed a 

significant score variation due to the interaction between student, item, and language, which 

suggested that each item posed linguistic challenges in each language and that each student had a 

unique set of strengths and weaknesses in each language. Similar results were found across 

dialects (Solano-Flores & Li, 2009). The results of the study highlight that measurement error in 

testing ELL students could result from assuming linguistic homogeneity in the population.  

Norming groups. Another issue that contributes to measurement error is the student 

population for which a test is normed (Abedi et al., 2004). The commonly-accepted assumption 

that tests have been standardized across student populations is strained when considering that the 

norming group of test takers is mainly mainstream students. Generally, norming groups selected 

for test standardization purposes are not representative of a diverse student body and do not 

include ELLs. For example, the SAT9 included only 1.8% ELLs in its norming population even 

though this test is actively conducted in states, such as California, where ELLs represent 25% of 

test takers (Solorzano, 2008). The fact that many tests are normed with mainstream students 

implies that most test items are built on prior knowledge and learning experiences of the 

dominant group of students, not on those of linguistic minority students. Cummins et al. (1988) 

argues this point further as a threat to test validity:  
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To the extent that their culturally-conditioned learning experiences differ from those of 

the majority group, minority children have less opportunity to learn the test content than 

majority children. The construct validity of the IQ test as a measure of previous learning 

[for minority children] automatically disappears since their previous learning experiences 

have not been adequately sampled. (Cummins et al., 1988, p. 267)  

When tests that are normed for native English speakers are taken by students with a 

developing language proficiency, the resulting scores may not reflect an accurate measure of 

their ability. Instead, the test scores from such tests partially reflect English proficiency instead 

of content knowledge, competencies, and/or aptitude.  

Construct-irrelevant variance. One of the central problems with applying standardized 

test scores to ELL students’ performance is the failure to account for the language factor. Abedi 

(2007) contends that “there is no evidence to suggest that [ELLs] have less ability to learn 

content knowledge than NES students. Therefore, nuisance variables such as linguistic and 

cultural biases may mainly be responsible for such performance gaps” (p. 11). Consequently, 

measuring an extraneous construct, which is not related to the test’s intended construct, causes a 

biased score distribution and is defined as construct irrelevant variance (CIV).  

 CIV is often described as the error variance arising from systematic error on test scores. 

Haladyna and Downing (2004) explained CIV using a linear model: “y = t + er + es, where y is 

the observed test score, t is the true score, er is random error and es is systematic error due to 

CIV” (p. 18). The extent to which CIV causes ELL students’ scores on exams to deviate from 

those of NES students depends on the attributes of the test as well as those of the test takers. The 

quality of the test item and students’ verbal abilities—which include reading, writing, speaking 

and listening—are among the salient factors influencing CIV for ELLs. Downing’s (2002) work 
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showed that poorly-crafted test items on a locally generated exam particularly impacted low-

scoring students more than high-scoring students. Vocabulary terms used on test items have a 

significant impact on the CIV for students with limited English proficiency (Abedi et al., 2000). 

Time limits of a test also contribute to CIV because ELLs are often slower readers and require 

more time for comprehension (Fitzgerald, 1995).   

Developing Equitable Assessments 

In order to make assessments more accurate, meaningful, and equitable for ELL students, 

research suggests that additional measures be taken during test development (Solorzano, 2008). 

These include rectifying linguistically complex test items, including a diverse group of students 

in norming groups, and refining the test items to remove any language and cultural biases. 

However, virtually no such efforts have been made formally in large-scale testing procedures. 

This is, in part, due to the shortage of research that investigates assessment issues for ELLs. 

Kopriva (2002) highlights the need for this type of research: 

Undertaking studies that seek to understand what elements in the tests provide barriers 

for specific students, for what reasons, and what can be done to alleviate these barriers, 

will provide important construct-validity evidence. (Kopriva, 2002, p. 106) 

This section focuses on literature that discusses the development of equitable assessment 

practices as outlined in Figure 8. Two main approaches have been suggested to make 

assessments more equitable: test accommodations and universal design. The following section 

includes a discussion of each of these approaches, starting with test accommodations.  
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Figure 8. An overview of the subcategories under “Accommodations.” 

 

Test accommodations. Historically, the use of test accommodations for ELLs has been 

suggested as a way to improve test validity and accountability for ELLs by minimizing the 

construct that is not being measured. Rather than changing the test itself, proponents of test 

accommodations contend that ELLs should be provided with additional tools during the test to 

reduce impact of the language factor on their performance.  

 There are many types of test accommodations that can be used to aide ELL students 

during tests. Some of them include changing the environment in which students take the test (i.e., 

assigning ELLs to take the test outside of the classroom), increasing the amount of time allocated 

(i.e., providing more time to ELLs to complete the test), and allowing the use of additional 

equipment or materials during the test (e.g., dictionaries, translating tools, etc.). To evaluate the 

efficiency of accommodations for ELLs participating in large-scale assessments, Kieffer et al. 
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(2009) conducted a meta-analysis of seven different types of test accommodations that were 

empirically evaluated: (1) simplified English; (2) English dictionary or glossary; (3) bilingual 

dictionary or glossary; (4) tests in native languages; (5) dual language test booklets; (6) dual 

language questions for English passages; and (7) extra time. Their analysis reviewed 11 studies 

that included 23,999 participants (17,445 NES students and 6,554 ELLs) in order to compare the 

academic achievement test scores of ELLs with or without the accommodation with those of 

NES students. Their meta-analysis also evaluated the effectiveness of the accommodations in 

improving ELLs’ performance, as well as the validity of these accommodations. The results 

indicated that only the use of English dictionaries or glossaries had a statistically significant 

impact on ELLs’ test performance: there was a 10-25% reduction in performance gap between 

ELL and NES students when ELLs were allowed to use an English dictionary or glossary 

(Kieffer et al., 2009). The results from Kieffer et al.’s (2009) work suggest that test 

accommodations (with the potential exception of dictionaries) are mainly ineffectual in 

significantly reducing the performance gap between ELL and  NES students on large-scale 

assessments.  

Dictionaries. Other studies that examined the use of published dictionaries as a test 

accommodation provided to ELLs did not find similar results. Allowing the use of commercially- 

published dictionaries was thought of as a way to add language support to ELLs, as students 

would be able to look up the meanings of unfamiliar terms. Abedi et al. (2005) investigated the 

use of published dictionaries and bilingual dictionaries for 611 students in Grades 4 and 8 across 

several schools in the U.S with ELL and NES students on science tests. They reported that 

published dictionaries were not useful and were problematic to implement because certain 

definitions did not carry the appropriate meanings in the context of the test item. Mainly, these 
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researchers concluded that commercially-available dictionaries and bilingual dictionaries provide 

definitions that are often broader, not content-specific and with varying levels of difficult 

vocabulary. In other words, commercially-available dictionaries provided definitions in the 

context of everyday talk and not in terms of contextualized science meanings. 

Customized glossary and dictionary. Given the results presented above, providing 

students with a glossary of relevant definitions of unfamiliar words in the test booklet could be 

considered more effective than providing students with commercially-published dictionaries. 

Abedi et al. (2000) found that when provided extra time, both ELLs and NES students performed 

significantly higher on updated versions of math tests that included embedded definitions. 

Another study examined the use of three different types of accommodations among 422 8th grade 

students’ performance on a national science test. The test format included one test booklet with 

an English glossary, one with words translated in Spanish placed in the margins, and a test 

booklet with a customized English dictionary at the end of the booklet that included only the 

words that appeared in the test items. ELL students scored highest on the customized dictionary 

accommodation in the study, but there was not a significant increase in scores for NES students 

using the same accommodation (Abedi et al., 2000). Based on these studies, the use of 

customized dictionaries as an accommodation in the test itself seems to yield effective results for 

ELL students.  

Extra time. Additional time is the most common type of test accommodation provided to 

ELLs in K-6 systems; however, its effectiveness is uncertain. Abedi et al.’s (2000) study 

investigated the effects of different accommodation strategies employed during a mathematics 

test administered to 946 8th grade students, which included both ELLs and NES students. The 

accommodations provided included (1) a glossary, (2) extra time, and (3) a glossary plus extra 
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time. Their findings indicated that, although providing students with a glossary and extra time 

resulted in a modest increase in scores, students’ scores were most improved in the 

accommodation that included a (3) a glossary with extra time. Miller et al. (1999) investigated 

the effect of providing extra time, translating instructions, and/or providing a bilingual dictionary 

on ELLs’ performance on a Grade 11 mathematics exam. They found that ELL students’ scores 

were, overall, the highest under standard testing conditions (without accommodations) and 

declined under the condition of extra time. The findings from these two studies imply  that 

offering additional time on exams does not necessarily help ELL students during test taking at all 

grade levels; however, when extra time is given in conjunction with the use of another 

accommodation (such as a customized dictionary), extra time could be useful.  

Limitations of test accommodations. The idea of using test accommodations often raises 

controversial questions in the field such as: Who should receive accommodations? Who is 

eligible and who should decide eligibility? What type of accommodation is appropriate for each 

student? Is a one-accommodation-fits-all approach feasible for linguistic minority students? Even 

if using established criteria for eligibility, the literature suggests that there are legal and ethical 

issues (e.g., discrimination, equal opportunity, and grade pollution) associated with fairness 

about giving some students accommodations and excluding others, which has raised concerns 

among parents and administrators (Abedi et al., 2004).  

One major limitation of using test accommodations is that the ELL student population 

varies tremendously in linguistic backgrounds. Consequently, their language proficiencies are 

diverse in English. Therefore, while a particular accommodation may be useful for one student, it 

may not be equally beneficial to another. Research strongly suggests that in order to make test 

accommodations more effective, accommodations should be developed individually for each 
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student based on her or his language proficiency (Solano-Flores & Li, 2009). Unfortunately, this 

task is administratively cumbersome, costly, and unlikely to be implemented in undergraduate 

science courses at the postsecondary levels, the area of focus for the current study.  

 

 

Figure 9. An overview of the “Universal Design” subcategory.  

 

Universal design. Universal design (outlined in Figure 9) offers an alternate approach in 

making assessments equitable. The main idea underlying the universal design approach for 

assessments is that it transforms the test in a way that increases accessibility and equity for all 

students. Originating from the field of architecture, the goal of universally designed tests is to 

develop assessments that are accessible for the widest range of participants without threatening 

validity. In order to clarify tests and reduce the complexity added by irrelevant constructs, the 

following strategies are recommended in literature (Thompson et al., 2002):  
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 Reduce excessive length of sentences. 

 Use common words and avoid unusual words (e.g., use “use” instead of “utilize”). 

 Avoid passive voice and complex sentence structures. 

 Avoid ambiguous words that may have more than one meaning. 

 Avoid irregularly spelled words. 

 Avoid proper names. 

 Avoid multiple names for the same concept. 

 Use well-designed graphic arrangements and headings to relay importance of 

information. 

 Give clear and obvious signals to indicate separate questions.  

 Place illustrations and/or schematics that contain information being assessed directly 

next to the test item.  

The tenets of universal design promote the notion that language simplification of the test 

does not necessarily mean that the level of content knowledge being assessed has to be altered. 

Instead, the emphasis is on providing scaffolded language support that helps all students, 

including ELLs, better understand the questions within their linguistic boundaries. The benefit of 

universal design for the instructor is that it helps them better evaluate an ELL student’s content 

knowledge by decreasing the cognitive load of linguistic complexity. Pappamihiel and Mihai 

(2006) offered an example (shown below) that illustrates an application of such linguistic 

modifications on a middle school standardized assessment test in the mathematics section. 
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Original question:  

An engineer is designing a metal gasket for a spacecraft. The gasket has the shape of a 

cylinder with a cylindrical hole through the center. The diameter of the gasket is 9 

centimeters, and its height is 4 centimeters. The diameter of the hole is 3 centimeters. 

What is the volume of metal, in cubic centimeters, that is required to make the gasket? 

(Pappamihiel & Mihai, 2006, p.37) 

Because of the level of unfamiliar vocabulary in the question and sentence structure, the 

question most likely reads to an ELL student like this:  

An _________ is designing a metal ______ for a ________. The ______ has the shape of 

a cylinder with a __________ hole through the center. The diameter of the _______ is 9 

centimeters, and its height is 4 centimeters. The diameter of the hole is 3 centimeters. 

What is the volume of ______, in cubic centimeters, that is required to make the 

_______? (Pappamihiel & Mihai, 2006, p.37) 

In order to alleviate the complicated form of the question, a well-labeled diagram could 

be added without compromising the content knowledge targeted (Figure 10) and the question 

could be reworded as shown below.  

 

Figure 10. Modification of a math test question by adding a diagram (Pappamihiel & Mihai, 

2006, p. 37). 
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Modified question:  

A cylinder has a diameter of 9 centimeters, and its height is 4 centimeters. There is a hole 

in the middle of the cylinder. The diameter of the hole is 3 centimeters. You want to fill 

the cylinder with water. What is the volume of water that is required to fill the cylinder in 

cubic centimeters (cm3)? (Pappamihiel & Mihai, 2006, p.37) 

Universal design encourages the use of diagrams on science and math test questions to 

alleviate an overload of textual information. Martinello’s (2009) study underscored the 

usefulness of including schematic representations in math word problems for ELL students. The 

study investigated the linguistic complexity of word problems as a source of differential item 

functioning (DIF) for ELLs on a 4th grade math test. DIF contributes to measurement error, 

which occurs when people from different groups with the same level of ability or skills have a 

different probability of getting an answer correct on a test. The project examined 3,179 ELL and 

65,660 NES students’ scores from the statewide implemented standardized math test. A smaller 

focal group of 24 ELL students were selected for think-aloud interviews about the meaning-

making processes they employed as they read the math word problems. The study discovered 

that multiclausal complex structures, unfamiliar vocabulary, references to mainstream American 

culture and text layout were the main hindrances for text comprehension. Findings indicated that 

the greater the test questions’ grammatical and lexical complexity, the greater the difficulty 

estimates differences favoring NES students over ELL students. However, as designated by the 

universal design approach, it was confirmed that adding schematic representations on revised test 

items seemed to mitigate the effect of language complexity and alleviate DIF.  

More support for the application of the elements of universal design came from Abedi et 

al.’s (2005) study that found that simplifying test items seemed to improve test scores for ELLs 



 

46 

 

in higher grade levels. Abedi et al. (2005) studied the results of a standardized science test for 

Grades 4 and 8 ELL and NES students. The test was administered under four conditions: (1) no 

accommodation, (2) English dictionary, (3) bilingual dictionary, and (4) linguistic modification 

of test items. The results differed for each Grade level. English dictionaries worked better at 

Grade 4; however, linguistic modification of science test items worked best in Grade 8. This 

implies that, at higher grade levels such as in undergraduate courses, linguistic simplification 

tends to be more effective as content assessments include more higher-level academic language. 

Summary. The discussion in the literature regarding assessing ELLs paints a 

troublesome picture of current assessment practices. Research emphasizes that as exams are 

administered in English, it is essentially difficult to determine the degree to which ELLs’ test 

performance reflects their knowledge about the concepts or their language proficiency. There are 

important sources of measurement error that impede an accurate reflection of students’ scores 

including language/dialect, norming groups, and CIV. In an effort to strengthen the reliability of 

test scores, the use of accommodations during testing has been employed, including customized 

glossaries, dictionaries, and/or extra time. Although employing test accommodations is a 

common strategy in PK-6 levels, studies have questioned the effectiveness of this strategy and 

found it to be controversial in terms of fairness. An alternate approach called universal design 

indicates that test items should be simplified in order to benefit the widest possible range of 

students. Studies show positive evidence for universal design in reducing the performance gap 

between ELL and NES students.  

Chemistry Assessments 

Many of the aforementioned studies regarding the obstacles in assessing ELLs and 

developing equitable assessments were based in the context of math and science. Because the 
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purpose of this study is to examine chemistry test questions at the undergraduate level, it is 

important to briefly review the relevant literature on the current practices of chemistry 

assessments in the undergraduate setting. In this section, studies about the current assessment 

practices followed in the university undergraduate setting are discussed first, followed by a 

discussion of the general trends in alternative chemistry assessments at this level.  

Current Practices in Chemistry Assessments 

Although the National Science Foundation (NSF) recommends that science achievement 

should be measured using multiple methods (National Research Council, 1996), a large-scale 

study that looked at 28,576 science faculty members’ grading practices revealed that chemistry 

and physics faculty used fewer assessment types in their courses than biology faculty. The study 

included faculty from both public and private and 2- and 4-year institutions across the U.S. The 

dominant method was found to be paper-and-pencil, multiple-choice items across chemistry and 

physics. Findings suggest that less than half of chemistry and physics faculty used assessment 

types that offered students opportunities to express their ideas through alternative modes such as 

essay answers or term papers. Data from the study suggested that faculty may perceive time 

constraints, limited resources and large class sizes of undergraduate classes as challenges to 

utilizing alternative strategies of assessment (Goubeaud, 2010).  

Currently, most exams conducted in general chemistry courses in the university setting 

are in the multiple choice question format (MCQ), which has been considered standard practice 

in the field. It has been a challenge to develop alternate instruments to accurately assess the 

chemical knowledge of students (Hartman & Lin, 2011). The MCQ format is favored over other 

types of questions because this format can be answered by a large class of students and can be 

graded quickly with minimal error. However, literature suggests that MCQs do not provide 
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deeper insights into students’ understanding of key concepts compared with other formats such 

as short-answer, worked-out questions, etc. In fact, many MCQs in chemistry are focused on 

calculations which could be solved algorithmically and without an understanding of underlying 

concepts (i.e., these questions tend to be “plug and chug”) (Nakhleh, 1993).  

Hartman and Lin’s (2011) study provided evidence for the claim that the commonly-used 

MCQ format in general chemistry exams cultivate the assessment of problem-solving algorithms 

in lieu of core chemical paradigms. The study selected MCQs from a pool of common questions 

from a database at the United States Naval Academy and followed the responses of 900 students 

to questions about specific general chemistry topics. Data analyses found that the percentage of 

correct answers (PCA) does not correspond to how advanced the topic was, and 47 to 93% of 

students can choose the correct answer based on the format of the question and not the content. 

For example, although students were able to correctly choose a response for the calculation of Kb 

from Ka, they were unable to correctly answer a conceptual question that asked them to interpret 

what the value of Kb means in the context of base strength (Hartman & Lin, 2011). These 

findings highlighted the fact that there is a lack of correlation between a student’s ability to solve 

a problem algorithmically and her/his conceptual understanding of the question. Because a 

majority of general chemistry test bank questions (from mainstream textbooks and commercial 

test banks) involve algorithmic questions, there are concerns in literature about whether students 

are being taught problem-solving computations in order to succeed on exams in lieu of 

fundamental paradigms that pertain to general chemistry (Hartman & Lin, 2011). 

Trends in Alternative Chemistry Assessments  

Research suggests that a shift from more objective, paper and pencil based tests to less 

objective, student-centered tests is beneficial for assessing students in chemistry (Hartman & 
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Lin, 2011; Lewis et al., 2010; Noble et al., 2012; Wygoda & Teague, 1995). A study that 

implemented a restructured chemistry curriculum in high school found that that this approach 

increased student test scores on achievement tests and college entrance exams. Performance-

based chemistry assessments were implemented in a first-year high school chemistry course. 

These included various activities that gave the students the opportunity to demonstrate their 

content knowledge. In order to best accommodate the changes in assessment procedures, the 

amount of material covered was reduced by selecting the most important concepts and skills to 

emphasize during the course. Students were assessed regularly on their scientific communication 

skills through writing and public speaking activities; collaboration skills were assessed as 

students worked in cooperative groups. For the “final” assessment, the researchers required 

students to perform a culminating demonstration of a cross-cutting chemical concept. Results of 

this alternative method of student assessment revealed that integrating alternative assessment 

elements to the content encouraged creativity and ingenuity in teaching and learning chemistry 

(Wygoda & Teague, 1995). 

Another study that examined assessments in chemistry similarly found that shifting to a 

nontraditional form of assessment afforded students the opportunity to better demonstrate their 

knowledge (Lewis et al., 2010). Freshmen college-level science courses typically use traditional, 

multiple-choice questions or short-answer questions with only one correct answer (Lewis et al., 

2010). This approach is considered a teacher-centered approach as the teacher chooses what 

students should know and then tests them on it. This approach provides only a partial picture of a 

students’ knowledge in a course. The Lewis et al. (2010) study introduced an alternative 

assessment method in freshmen chemistry courses called Creative Exercises (CEs), in which 

students were given a statement or a prompt (for example, H2(g) + Cl2(g) → 2HCl(g), on the topic 
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of covalent bonding and electronegativity) and asked to write down as many distinct, correct, and 

relevant facts about the prompt as they can. This way, students were provided the opportunity to 

present their knowledge and were rewarded for the retention of previously presented concepts 

(Lewis et al., 2010).  

Lewis et al. discovered that CEs were relatively easy to design and to grade, taking about 

an hour to grade CEs for a class of 70 students. CEs were especially insightful to instructors as 

they allowed the instructors to become aware of misconceptions and inappropriate conceptual 

connections that students had made. Additionally, through this method, students were able to 

show interconnectedness of chemistry topics through the course, which indicated a deeper 

understanding of concepts rather than remembering unrelated facts (Lewis et al., 2010). 

Despite support in literature for alternate assessments in chemistry, current practices in 

general chemistry courses reveal that MCQs remain the preferred method of testing for 

undergraduate students.   

Assessment of ELLs in Science 

 There is a lack of research that focuses on how undergraduate students perceive the 

characteristics of general chemistry assessments. Because an important goal of this study is to 

examine general chemistry test items from the perspectives of students, it was important to 

review any literature related to this topic. Accordingly, this section focuses on studies about 

student perceptions of science test items.  

 Siegel’s (2007) study investigated the effects of original versus modified classroom 

assessments items. The original life science assessment items were selected by the teachers of 

two seventh-grade science classes whose students were participating in the study. The modified 

items were revised per the guidelines of the equity framework (discussed in detail in Chapter 3) 
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to add linguistic support and prompts. The study quantitatively measured students’ performance 

through a pre-test/post-test design. The pretest contained all original questions, and the post-test 

contained all modified questions. The research questions were aimed at understanding which 

modifications were needed to develop more equitable assessments, and how effective the 

modified items were for advanced ELL students compared to NES students. (Siegel, 2007).  

The results of this study implied that science test items can be made more accessible for 

all students. Findings of this study indicated that both ELLs and NES students performed better 

on the posttest, which included modified items. Although ELL students’ performance was 

significantly lower than that of the NES students on the pretest, the improvement in ELL 

students’ scores on the posttest reduced this gap. The revisions based on the equity assessment 

framework yielded accessible items for all students (Siegel, 2007). A major premise of this study 

was that ELLs know more than they can demonstrate on content assessments. This premise was 

supported by the results, as refining the test items reduced the performance gap between ELL 

and NES students.  

In order to gain a deeper understanding of students’ interpretations of original versus 

science test items that had been modified according to the guidelines set forward in the Equity 

Framework for Classroom Assessment (EFCA, see Chapter 3), Siegel et al. (2014) conducted a 

qualitative investigation. The written assessment items were developed from disciplinary core 

ideas as outlined in the Next Generation Science Standards (NGSS) for life sciences, with topics 

including molecules, organism structures, ecosystems, energy, and dynamics. The original items 

were developed using typical discourse patterns of commonly used assessment questions. The 

goal of the EFCA revisions was to simplify the structure and language of the original test items 
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to make them more accessible and approachable for ELL students. An example for how their 

item simplification was conducted as well as a list of all modifications applied is shown below: 

 

 
Left: Zebra mussels clogging a pipe (1,2). Right: Smaller Zebra mussels attached to larger, native 

mussel (1,2) 

 

Describe What has been the impact of zebra mussel on Missouri ecosystems ecosystems 

in Missouri in terms of competition and the mussel’ effects on man made structures the 

following: (3) 

 Competition with other mussel species (4) 

 Effects on man-made structures and equipment (dams, boats, etc.) (4) 

 Modifications: 

1. Addition of visual support 

2. Brief note describing each visual support. 

3. Reduction of words in the item stem. 

4. Replacing a long question with two simple questions. (Siegel et al., 2014, p. 686) 

Data were collected in two forms: written data on students’ notes as they solved the 

questions, and interview data from think-aloud protocols and post-assessment questions. The 

students found that both versions of the question were challenging in terms of content and 

struggled with talking through their reasoning; however, the modified versions provided prompts 
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that better facilitated their understanding. The modified items increased students’ comprehension 

of the questions, elicited responses, and helped students with organizing and visualizing their 

thoughts, which enabled them to perform better on the question than they did without the 

modifications (Siegel et al., 2014).  

The two aforementioned studies highlight that revising science assessment questions with 

structural modifications, such as multiple prompts and graphic organizers, and visual tools, such 

as photographs and diagrams, enhances students’ abilities to respond to those questions in a 

meaningful way (Siegel, 2007; Siegel et al., 2014). 

Summary. The research literature about language acquisition and assessment indicates 

that more research is needed to design test questions that adequately reflect ELLs’ content 

knowledge instead of their limited proficiencies in the English language. As outlined in the 

literature, the development of valid assessments for ELLs is not a straightforward process as it 

involves the consideration of key issues at stake, including academic language proficiency, 

culture, using norming groups that better represent ELLs during test development, and 

accounting for construct irrelevance variance. Educators have attempted to address these issues 

in two major ways: (1) offering students accommodations during tests, and (2) utilizing a global 

approach, called universal design, aimed at making tests accessible to all students. Siegel et al.’s 

(2007, 2014) work demonstrated that there is value in revising original classroom assessment 

items for all students. However, this work was focused on middle school ELL and NES students 

in life science classrooms. Additional work is needed to determine if the modifications suggested 

by the EFCA are equally valid and effective for the undergraduate chemistry student population, 

including both ELL and NES students.  



 

54 

 

Justification for Current Study 

  According to the President’s Council of Advisors on Science and Technology (PCAST, 

2012), one million additional more STEM graduates should be produced over the next decade to 

meet the demand of a STEM-ready workforce in the U.S. During a time of economic recession in 

the U.S., the unemployed outnumbered jobs vacancies 3.6 to one for non-STEM jobs; however, 

for STEM occupations, there were twice as many jobs per one qualified person (Change the 

Equation, 2010). Racial and ethnic minority students represent a largely untapped STEM talent 

pool in the U.S. Minority students are rapidly increasing in the national education system; 

however, low rates of success among minority students in STEM education persist (Museus et 

al., 2011). Although linguistic minority students are an important subgroup of this 

underrepresented population, they are often overlooked. Reports indicate that the ELL 

population is rapidly growing in the education system (ECS, 2014); however, there is little 

research that examines their specific needs to succeed in STEM courses.  

Research indicates that there is significant attrition among STEM majors, especially in 

the first two years of college, during which many students enrolled in introductory science 

courses choose to switch majors (Rask, 2010; Seymour & Hewitt, 1994; Tobias, 1990). The way 

students experience assessments in their undergraduate coursework could play a critical role in 

their decision to continue in STEM majors. Research indicates most science assessments do not 

sufficiently factor in the language and cultural backgrounds of students and fall short of 

adequately assessing students’ content knowledge. However, there is a short supply of research 

studies focused on gaining a deeper understanding of how undergraduate students perceive their 

course assessments. There are even fewer research studies focused on ELLs’ perceptions of 

science assessment items. Furthermore, there are currently no research studies that are aimed at 
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studying the perceptions of undergraduate ELL and NES students about general chemistry 

assessments.  

One major goal of this study was to revise original general chemistry assessment items 

based on the theoretical principles of the equity framework for classroom assessments (see 

Chapter 3), with the goal of making items more accessible and clearer for all students to 

understand and answer. Unlike most other studies in the field that have used quantitative 

approaches to evaluate student scores to validate an assessment method, this study was designed 

to gain insights through the experiences of students who are actively attempting to think through 

each assessment item presented to them. This included students’ perceptions of typical chemistry 

assessment questions as well as their perceptions of assessment items that were modified 

according to the principles of the equity framework for classroom assessments. Specifically, I 

was interested in knowing which features of the questions students find beneficial and/or 

confusing for interpreting and answering each question as intended. This research study 

addresses a gap in literature by explaining how NES and ELL undergraduate students perceive 

general chemistry assessment items—both commonly-used assessment items and items that have 

been revised according to the equity framework for classroom assessment. The results of the 

current study will benefit instructors, administrators, and other entities with a vested interest in 

creating equitable assessments for all students pursuing STEM fields.  
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CHAPTER 3 THEORETICAL FRAMEWORK 

Overview 

The Equity Framework for Classroom Assessments (EFCA) is a relatively new 

conceptual framework. The goal of this framework is to modify test items in order to make 

testing more equitable without reducing the difficulty of the content being assessed. In this 

chapter, I first discuss the development of the framework, followed by a description of the 

framework, including its main principles. The later sections include a discussion of data 

collection and data analysis in studies informed by this framework. This chapter also includes an 

explanation of the framework’s limitations and a justification for its use in the current study. The 

final part on this chapter contains a definition of each item modification derived from the 

framework, which modifications were applied to the general chemistry assessment items used in 

this study.  

The Development of the Equity Framework 

The equity framework for classroom assessments has its underpinnings in sociocultural 

perspectives of learning, which profess that individuals are continually shaping and are being 

shaped by their social environments. This view is rooted in Vygotskian beliefs that human 

consciousness is not an internal property of the subject or an interior element; rather, it is the 

product of the individual’s interaction with the social world and carries a dialectical and 

mediated character (Leont’ev, 1978). This implies that the individual engages in discourse with 

others to establish truth through negotiated reasoning. Vygotsky theorized that language is the 

key in mediating knowledge. From this position, an individual cannot be a fully internal being 

isolated from external experiences; she/he, then, develops on the basis of her/his cultural and 

historical resources, including language (Peim, 2009).  
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A Brief History of the Equity Framework 

 The EFCA started as a set of assessment principles for science teachers of ELLs (Siegel, 

2007). At the time of the development of the EFCA, most research on assessing ELLs focused on 

accommodation strategies that included using a translating tool, dictionary, glossary, or 

providing extended time limits on large-scale assessments. The researchers that developed the 

EFCA noticed that, when different accommodation strategies were tested (extra time, glossary, 

glossary plus extra time, and linguistically modified test items), the only strategy that reduced the 

performance gap between ELL and NES students was linguistically modified items (Abedi et al., 

2000). Therefore, the researchers designed the EFCA as a new approach to linguistic 

modification that can be implemented in diverse classrooms in an effort to improve assessments 

(Siegel, 2007).  

Sociocultural perspectives contributed to the development of the EFCA. Here, I briefly 

discuss the tenets of the sociocultural perspectives which apply to the EFCA. The sociocultural 

point of view of learning contends that in order to understand how students learn, it is critical to 

see students as part of a community outside of the classroom, with their own cultural and 

sociological interactions that influence their sense-making processes. The need for sociocultural 

perspectives on science and science education became more evident as researchers challenged 

the view that science takes place in a closed system, disconnected from social institutions, 

cultural beliefs, and values (Haraway, 1989, 1991, 1999; Latour, 1987; Shapin & Schaffer, 

1985). The premise that science education must be examined as a human activity in the context 

of the dominant culture and political issues of the time has become increasingly accepted 

(Lemke, 2002). According to Lemke (2002), learning and doing science is “primarily socially 

learned cultural traditions of what kinds of discourses and representations are useful and how to 
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use them, far more than whatever brain mechanisms may be active while we are doing so” 

(Lemke, 2001, p. 298). In the EFCA, these ideas have been extended to consider of how minority 

students understand written scientific discourse. The culminating premise of these ideas is 

reflected in the main principles of the EFCA, which are discussed in the next section.  

Description of the Equity Framework 

 Assessing the content knowledge of an increasingly diverse body of students is 

understandably challenging. Research from Okhee Lee (2004) suggests that a majority of 

teachers are unaware of ways to teach (and test) ELLs the English language in the context of 

science. For instructors who may not have the tools and/or experience in evaluating ELLs, 

designing test items that are both fair and valid can be a daunting task. Rather than making the 

tests easier for ELLs and/or giving them additional accommodations (e.g., extra time, glossary, 

translator, etc.), the equity framework designates five principles that reduce linguistic complexity 

and make test items more accessible for all students. In this section, I discuss the five main 

principles of the equity framework for classroom assessments and how they are applied to the 

modification of test items to make them more accessible: 

1. Assessments should match the learning and instructional goals. 

2. Assessments should be linguistically and culturally comprehensible. 

3. Assessments should challenge students to think about difficult ideas. 

4. Assessment should elicit student understanding. 

5. Assessment should scaffold the use of language and support learning. (Siegel et 

al., 2008, p. 44) 
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Assessments Should Match the Learning and Instructional Goals 

 “The assessment is the curriculum, as far as the students are concerned. They will learn 

what they think they will be assessed on, not what is in the curriculum, or even on what has been 

‘covered’ in class” (Biggs, 2003, p. 3). Because of this, an important goal for classroom 

assessments should be to match the learning tasks and/or activities done in the classroom. Biggs 

(2003) uses the term constructive alignment to describe this notion. In constructive alignment, 

students are making meaning through relevant learning tasks in class, and assessments are 

designed to correlate with those tasks. For example, if the assessment in the course involves a 

seminar talk or presentations, then instruction should emphasize communication skills of the 

discipline and work on activities that expound upon these skills. This model drives teachers to 

think about what they want their students to learn and explicitly work to clarify learning 

outcomes (Biggs, 2003). 

 Constructive alignment is particularly advantageous for ELL students because their 

classroom tasks mirror their assessment tasks. Classroom activities play an important role in 

teaching ELLs how and when to use academic language skills in context. For example, if an 

upcoming course exam includes extended essay responses, classroom learning tasks can be 

designed to include sample questions and sample essay responses. Biggs (2003) contends that 

what is assessed and how it is graded sends a message to students about the type of knowledge 

and skills that are most valued in a discipline. Therefore, if an instructor is trying to downgrade 

the language factor (inherent linguistic components that can pose as barriers to comprehension) 

in the test items, she/he may choose to include assessments that allow students to holistically 

demonstrate their knowledge of a concept by allowing students to include non-verbal 

components with their written responses (e.g., illustrations, drawing, showing an experiment, 
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etc.). Per Biggs (2003), this type of adjustment to assessments would convey the message to 

students that understanding of how concepts work is important and/or more important than 

verbatim responses or rote memorization of facts.   

 Based on the concept of constructive alignment, Siegel (2007) suggests that modified 

written items should match the concepts, scientific goals, and the discourse of the original 

written item. This principle ensures that revised items maintain the conceptual rigor of the 

original item. To make certain that revised items are more accessible than their original 

counterparts, the language of the revised items must also be consistent with the language of 

instruction (Center for Research on Evaluation Standards & Student Testing [CRESST], 2001). 

For example, if the word trial is used during teaching, then the word experiment should not be 

used on the assessment, even though the two words may have equivalent meanings to a native 

English Speaker. ELLs may not be familiar with synonyms of discipline-specific terms, and this 

unfamiliarity results in an increased reading time and/or unintended evaluation of academic 

language terms rather than understanding of a concept. 

Assessments Should Be Linguistically and Culturally Comprehensible 

 Language is so much a part of teaching and assessment that educators seldom stop to 

acknowledge the innate role it plays in constructing meaning. Unless instructors are trying to 

teach ELLs and/or students with language learning disabilities, the linguistic skills and issues 

that can impact student success go largely unrecognized. Mainstream instructors may not be 

aware of many linguistic demands that assessments pose on students. The second principle of the 

equity framework addresses these linguistic demands and aims to make assessments more 

accessible to ELLs.  
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It is important for instructors to recognize common language barriers that are present in 

test items. Science questions are often decontextualized, and contain unfamiliar words, complex 

sentences, and grammatical characteristics that are difficult to follow. Science test items tend to 

be decontextualized in nature. As a consequence, students may require added support to 

understand the questions as intended by the test maker. Because outside support is not typically 

available during testing, ELLs may not be able to get clarification on the intended meaning of the 

test question. In this case, they are forced to bring their own extra-linguistic context, which is 

influenced by their personal backgrounds, to the test item.  

Unfamiliar vocabulary is another issue that is known to add to linguistic barriers of 

assessments. The terms that cause linguistic barriers are not always scientific terms. Instead, 

words that have different meanings in everyday language versus technical language are more 

difficult to follow. For example, likely (expresses something that is probable, not the act of liking 

something), respectively (expresses the order things mentioned, not having respect as a virtue), 

significant (statistically different, not important in common terms), are used to relay scientific 

reasoning (Abedi et al., 2005).  

Sentence and text complexity also pose barriers to comprehension. For example, the 

following question contains double negatives, “Under what conditions is it not impossible to 

float a lead canoe?” Other problematic grammatical characteristics within sentences include long 

phrases in questions, compound sentences, logical connectors, long noun phrases, relative 

clauses (starting with “who/whom,” “that,” “which”), lengthy problem statements, passive voice, 

and poor cohesion across paragraphs (e.g., lack of transition words such as “then” or “next.”) 

(Trumbull & Solano-Flores, 2011).  
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 The equity framework denotes that because language is crucial in conveying meaning, 

test items must be revised in a way that reduces linguistic barriers. One important goal is to 

minimize the unnecessary linguistic complexity of assessments so that ELLs are not forced to 

spend extra time reading the test item compared to NES students. Based on this principle, the 

following measures should be taken: 

 Sentences should be shortened and simplified. 

 Ideas should be bulleted to reduce reading time. 

 Pictures and/or other illustrations should be added in place of words when possible.  

The following example shows how this principle can be applied: 

Original item: The scientists interviewed the patients to find out whether their coughs 

were as frequent and as serious. They also asked the patients if they had any new health 

problems while taking the medicine.  

Revised item: At the end of one week, the scientists asked the patients:  

 Is your cough better, the same or worse? 

 Do you have any side effects, such as dizziness or upset stomach? (Siegel et al., 2008, 

p. 9) 

Because culture is a major component of students’ prior knowledge, the equity 

framework contends that student learning should be assessed by factoring in the role of culture 

(Fong & Siegel, 2005). Culture is defined as “subtle and invisible […] a collection of values, 

beliefs, and standards which influence how students think, feel, and behave in various social 

setting including classrooms” (Readence et al., 2004, p. 31). Assessment, then, not only 

evaluates students’ cognitive capabilities, but also their sociocultural backgrounds. Research 

suggests that cognition and reasoning skills differ across cultures (Ji et al., 2004). This is 
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especially the case on science assessments, where critical thinking and problem solving skills are 

probed.  

The way students interpret science items and respond to them may be more influenced by 

personal experience than formal school learning experience. Frequently, everyday life 

experiences seem to be what first comes to students’ minds when they respond to science 

items. (Solano-Flores & Nelson-Barber, 2001, p. 559) 

When designing assessments, it is important to be mindful of students’ backgrounds and 

how they may hinder students from correctly interpreting test items. Linguistic and cultural 

assumptions underlying a test item may interfere with the intent of that assessment task and may 

not be applicable to non-mainstream groups of students, such as ELLs, low socioeconomic status 

students, immigrant students, etc. For example, a physics problem that uses a golf course as the 

context to solve a problem would be assuming that all students taking the test are familiar with 

golf courses. However, economically underprivileged inner city students who may not have seen 

a golf course would be placed at a disadvantage when attempting to answer such a problem 

(Siegel et al., 2008). 

Creating linguistically- and culturally-accessible assessments is a difficult process. The 

equity framework emphasizes that removing bias altogether from test items is not possible. 

However, the goal is to reduce biases that are due to differences in race, culture, economics, 

gender, and language by modifying and refining assessment items where assessment biases 

might exist (Siegel et al., 2008). 

Assessments Should Challenge Students to Think About Difficult Ideas 

 Another important recommendation that the equity framework makes is that assessments 

should challenge students to think about tough ideas. This notion urges instructors to create 



 

64 

 

assessments that are rigorous in content. Unfortunately, watering down content and reducing the 

curriculum is done too often to accommodate ELL students, and this leads to denying students an 

equal opportunity to learn (Walqui, 2003). Instead, equitable assessments should remain 

challenging to promote intellectual growth and preparedness for more advanced concepts. The 

following techniques are suggested to help students deal with linguistic issues while the content 

level is maintained (Note: examples of modifications for each of the following have been 

included at the end of this chapter, under the heading “Item Modifications”):  

 “Simplify vocabulary and grammar; 

 Use scaffolding; 

 Provide customized dictionary; 

 Offer word bank for responses; 

 Use interpreter; 

 Read questions aloud” (Siegel et al., 2008, p. 9). 

Additionally, Garcia and Pearson (1994) advocate for the use of written and materials-

based performance assessments to assess the knowledge of ELL students. Performance 

assessments prompt students to take multiple steps in completing tasks that utilize the skills, 

knowledge and dispositions for a discipline. For example, an activity is presented to students 

which would involve results of an experiment. The students would have to think of multiple 

operations to determine how variables X and Y are related and discuss outcomes. The task would 

be scored holistically in terms of reasoning, problem solving, communication, and connections. 

In this manner, assessments are not necessarily made easier, but they are contextualized and 

operationalized to measure students’ understanding.  
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Assessments Should Elicit Student Understanding 

The fourth principle of the equity framework focuses on better regulating students’ 

responses on test items to match the intended response. The premise of this principle originates 

from White and Gunstone’s (1992) work, which suggests that effective assessments should probe 

students’ understanding and help students express their ideas. If students’ responses reflect 

misinterpretations of the prompt and/or skipping parts of the prompt, then those items must be 

revised to be more effective. Test items that are written very generally often lack the direction 

students need to correctly follow the prompt and come to the outcome intended by the question. 

The following is an example of how an item was changed to elicit thinking:  

Original prompt: Should Rita stop taking antibiotics or finish the treatment? Explain the 

advantages and disadvantages of stopping and of continuing the antibiotics. 

Revised prompt:  

What are some good and bad things about stopping the full course of antibiotics? What 

are some good and bad things about continuing to take the full course of antibiotics? 

Write your answers in the table below: 

Good things Bad things 

Stop taking 

antibiotics 

Continue taking 

antibiotics 

Stop taking 

antibiotics 

Continue taking 

antibiotics 

    

    

    

 

(Siegel et al., 2008, p. 45) 
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White and Gunstone (1992) describe general guidelines for designing assessments to 

stimulate thinking. The following strategies offer students multiple opportunities to express their 

learning: 

 Questions should be based on expanding ideas taught, not just recall. 

 Questions should demand students’ thinking about fact-based answers. 

 Assessments should ask questions that start with “how would…” or “what if…” 

 Questions should provide stimuli (e.g., quotations, data tables, maps, or diagrams) for 

questions. 

 Questions should provide a large concept, and ask for thoughts on unanswered 

questions (e.g., “when a cell dies, does their DNA die as well?”). 

 Questions should be written about X to test students’ deeper understanding of Y. In 

assessments, write questions about X that would test students’ deeper understanding 

of Y.  

Assessments Should Scaffold the Use of Language and Support Learning 

 The equity framework states that assessments should provide scaffolds for ELL students 

to support language use during testing, which can enhance their comprehension of the question. 

The term scaffolding means to add support to a structure and then gradually remove it. 

Scaffolding is an established learning strategy that has been used for ELLs to enrich and amplify 

the learning of content without diminishing the level of difficulty (Walqui, 2003). Teachers use 

scaffolds to provide temporary support that is later removed during classroom activities. When 

applying scaffolds to chemistry test items, the goal would be to embed a series of linguistic 

scaffolds to offset the high cognitive load of reading, translating, interpreting, and solving a 
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chemistry problem. Adding scaffolding in the test items may help students comprehend the 

question, think about the topic and respond to the question better (Siegel et al., 2008).  

 The following scaffolding approaches can be applied to assessments: modeling, 

contextualizing, sentence starters, and graphic organizers, each of which is discussed below. 

Modelling offers students a representation of learning that can be used as a standard to imitate. 

Although modeling is primarily done during instruction for students, it has direct benefits in 

assessment as well. When students are given clear examples of what is expected of them in terms 

of responses to test questions, they are more comfortable approaching the assessment tasks. A 

10th grade ELL student responded positively to this technique:  

In my chemistry class I can always do well because the teacher first demonstrates an 

experiment, and then we try a similar one. Then he asks us to write down the procedure 

and the conclusions in groups of two or four. I can do it. I can even use the new words 

because I know what they mean. (Walqui, 2000, p.94) 

Research suggests that, in addition to modelling, adding sensory language to increase 

contextual information may reduce the demands of academic language. Because academic 

language is context-reduced and can be different from everyday language, embedding sensory 

language, pictures, prompts, and/or analogies can help ELLs better grasp the intended meaning 

of the test item (Walqui, 2003). For example, in order to describe the role of mitochondria in 

generating ATP, a teacher could use the word “furnace” or “powerhouse” to help them imagine a 

furnace generating heat energy and also show short clip of this cellular structure (Walqui, 2003).  

 Sentence starters and graphic organizers can also serve an important purpose by 

providing scaffolding for test items. Sentence starters can give students additional clues about 

where a question is leading them. For example, “these groups are similar/different because…”, 
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“one has…,but the other does not,” and “when…it causes…” Inserting phrases such as these in 

the beginning of the question provides signal words and messages about the purpose of the 

question. Graphic organizers can also be crucial in reducing the language complexity of a 

question prompt by visually arranging relevant information for students. Concept maps, K-W-L 

charts (What I Know- What I Want to know- What I Learned), T-charts, and Venn diagrams are 

a few example of graphic organizers that have been suggested to use in order to scaffold test 

items (Siegel et al., 2008). One example of a graphic organizer is shown below:  

Matter can be classified as shown on the chart below.  

Based on this classification, which type of matter is air?  

 

 

Summary. The overarching goal of the EFCA is to make assessments more accessible 

for all students. Because students interpret language differently, the five philosophical principles 

of the EFCA provide foundational support for designing assessments that:  

 are aligned with instruction,  

 consider students’ language and cultural backgrounds, 

 enable student to think critically about content, 

 elicit student learning through assessments, and 
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 provide scaffolded cues to facilitate comprehension. 

These five principles of the framework led to the development of a list of modifications that can 

be implemented to revise test items, each of which will be discussed in detail later in this 

chapter. 

Methods & Analysis 

As a relatively new framework, the EFCA has started to receive more attention in 

literature; and two recent studies—one using quantitative methods and one using qualitative 

methods—have directly applied the EFCA in research. Because the premise of EFCA is to 

transform assessment questions into more accessible items for ELL students, both studies 

focused how the students (ELL and NES students) interpreted and performed on the test items. 

The purpose of the quantitative study was to identify ways to improve written assessments for 

ELLs (Siegel, 2007). The qualitative study focused on the use of scaffolds in written classroom 

assessments through the perceptions of ELL and NES students (Siegel et al., 2014). In this 

section, I focus not on the individual studies, but on the data collection and analysis techniques 

used in both studies. This section is arranged in the following order: (1) typical participant pools, 

(2) item modifications, (3) typical methods of data collection, and (4) typical methods of data 

analysis used in EFCA studies.  

Participants 

 In both of the studies that have been carried out with the EFCA as a guiding framework, 

the participant pool has included ELL students. Given that the goal of the EFCA is to make 

assessment items more equitable for ELLs, it is important that the voices and experiences of 

ELLs are a major focus of any study informed by the EFCA. Although the major focus of a study 

informed by the EFCA will be on ELL students, it is possible to include NES students in addition 



 

70 

 

to the ELLs as participants. In theory, the modifications suggested by the EFCA should make 

assessment items more accessible by all students, so it may be important to include the voices of 

NES students, in addition to those of ELLs in a study informed by the EFCA (Siegel, 2007; 

Siegel et al., 2014).  

Item Modification 

Because an important goal of the EFCA is to revise and improve original assessment 

items based on the modifications indicated, the process of developing revised assessment items 

precedes data collection. Original science questions are identified from specific topics, which are 

drawn from course content. These original items are revised and refined with modifications such 

as reduced linguistic complexity, simpler sentence structures, reduction of non-essential 

information, etc. (Note: a list of explanations of each modification used in this study is provided 

below.)  

The five principles of the EFCA discussed previously provide the rationale for specific 

item modifications that should be implemented to revise original test items. However, the 

original work does not propose operationalized definitions of each item modification utilized in 

the framework. To address this limitation, I have devised operational definitions of each type of 

item modification based on how each modification has been applied in previous EFCA studies 

and my own understanding of the principles of the EFCA. The operational definitions for each 

item modification are provided below, and in Appendix A.  

Not all modifications described here will be necessarily applied to every original test 

item; some original test items may require more or fewer modifications than others depending on 

the nature of the item itself. To emphasize how each modification has been applied, only parts of 

a question are included as examples. To see the complete original test items and their completed 
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modified versions that have been included in this study, please refer to Appendix B. To see the 

specific ways in which each question in this study was modified, please refer to Appendix C.  

1. Linguistic simplification of vocabulary and syntax:  

a. Linguistic simplification of vocabulary: removing unnecessarily complex words 

and/or phrases and replacing them with simple terms that convey the same 

meaning 

b. Linguistic simplification of syntax: Replacing long sentences with embedded 

commas and/or semicolons with shorter and more direct statements that convey 

the same information in terms of content 

An example below shows how the first two statements of a general chemistry item 

have been modified. 

Original Modified 

Methanol (CH3OH), also called methyl 

alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in 

race cars and is a potential replacement 

for gasoline. 

Methanol (chemical formula: CH3OH) is 

the simplest alcohol. It can replace 

gasoline, and it is used as fuel in race 

cars.  

 

2. Replacement of sentences with lists: 

a. Modifying sentences that give more than one piece of information and/or adding a 

bulleted list to separate the pieces of information  

An example below shows how long statements from a part of a general chemistry 

item have been converted into a list. 
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Original Modified 

Calculate the theoretical yield of C2H5Cl 

when 125 g of C2H6 reacts with 255 g of 

Cl2, assuming that C2H6 and Cl2 react only 

to form C2H5Cl and HCl. Calculate the 

percent yield of C2H5Cl if the reaction 

produces 206 g C2H5Cl. 

A. Using the balanced equation you 

wrote for Part A, find the 

theoretical yield of C2H5Cl when 

125g of C2H6 reacts with 255g of 

Cl2. 

B. If you conducted the reaction 

described in Part B in the 

laboratory and only collected 206 g 

of C2H5Cl, what is the percent 

yield of C2H5Cl? 

3. Reduction of nonessential information:  

a. Reducing the number of words in the item by removing unnecessary words that 

add to the overall reading time for students. This also includes removing 

extraneous words that are not necessary to understand and solve the problem, and 

removing content information that is irrelevant to solving the problem  

An example below shows how statements from a general chemistry item have been 

modified by taking out unessential words such as raw, material, and roasting from 

the stem of the question.  

 

 

 

 

 

 

 



 

73 

 

Original Modified 

The raw material used as a source of 

chromium and chromium compounds is a 

chromium-iron ore called chromite. For 

example, sodium chromate, Na2CrO4, is 

made by roasting chromite with sodium 

carbonate, Na2CO3. 

Chromite, a chromium-iron ore, is a 

source of chromium and chromium 

compounds. By mixing chromite 

(FeCr2O4) with sodium carbonate, 

Na2CO3, you get sodium chromate, 

Na2CrO4. 

4. Addition of visual supports in the stem of item: 

a. Making the information in the item more visually accessible by formatting the 

question in a way that easily differentiates background information in the question 

stem (portion that gives background information) from pertinent information in 

the question. For example, adding paragraphs, line breaks, adding/removing space 

between background information, etc. 

b. Adding an illustration that encapsulates the information discussed in the item.  

An example of a general chemistry item below shows how adding an illustration of 

jars in the beginning of the question strengthened the description of the problem.  
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Original Modified 

You have seven closed containers, 

each with equal masses of chlorine 

gas (Cl2). You add 10.0g of sodium 

to the first sample, 20.0g of sodium 

to the second sample, and so on. 

Sodium and chlorine react to form 

sodium chloride. 

 

 

 

There are seven total closed gas jars shown 

in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add 

sodium (Na(s)) as follows: 

Jar 1: 10.0 g Na(s) 

Jar 2: 20.0 g Na(s) 

Jar 3: 30.0 g Na(s) 

Jar 4: 40.0 g Na(s) 

Jar 5: 50.0 g Na(s) 

Jar 6: 60.0 g Na(s) 

Jar 7: 70.0 g Na(s) 

5. Division of data:  

a. Rearranging the order in which the information appears in the question so that it is 

logical and easy to follow. 

b. Adding a data table that contains critical information relevant to the problem.  
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An example below shows that this item was revised by letting the student know about 

the 92.0% yield before asking for the mass of sodium sulfide. 

Original Modified 

How many grams of sodium sulfide are 

formed if 1.25 g of hydrogen sulfide is 

bubbled into a solution containing 2.00 g 

of sodium hydroxide, assuming that the 

sodium sulfide is made in a 92.0% yield? 

You are told that this reaction gives 

you a 92.0% yield for sodium sulfide 

when you do the reaction in the 

laboratory.  

 How many grams of sodium 

sulfide will you make in the 

laboratory if you mix 1.25 g of 

hydrogen sulfide with 2.00 g of 

sodium hydroxide?  

6. Alignment with the language of instruction: 

a. Monitoring the level of academic language used during instruction and matching 

the level of vocabulary in exam items. This would be outside the scope of my 

study because I will not be attending participants’ classrooms. Therefore, I have 

not included an example of this modification.  

7. Alignment of the language within the item: 

a. Ensuring that the tense, voice, and overall structure of the item are consistent.  

An example below shows statements from a general chemistry item that reflect 

confusing tenses: mistake is made and we used. These statements were modified to be 

consistent in the overall voice and tense. 
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Original Modified 

What if a mistake is made and we used 

2.37 grams of Ca(OH)2 and 2.69 grams of 

H3PO4? How much Ca3(PO4)2 will be 

obtained? 

We made a mistake in our 

measurements. Instead of using the 

amount of calcium hydroxide you 

calculated in Part B, we used 2.37g of 

Ca(OH)2 and 2.69g of H3PO4. How 

many grams of Ca3(PO4)2 should be 

made under these conditions? 

8. Use of bold type for emphasis: 

a. Highlighting an important phrase or word(s) in the item that is crucial for solving 

the problem. 

An example below shows statements from a general chemistry item that gives 

important information to students about setting up a balanced equation based on the 

reaction described. In this case, the compound formulas were added and darkened.  

Original Modified 

Methanol can be manufactured by 

combining gaseous carbon monoxide and 

hydrogen. 

Methanol is made by mixing gaseous 

carbon monoxide (CO) and gaseous 

hydrogen (H2).  

 

9. Addition of graphic organizers in the prompts: 

a. Adding illustrations and/or representations in order to better describe the problem  
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An example below shows that chemical formulas for calcium hydroxide and calcium 

phosphate were added as a form of representations.  

Original Modified 

How many grams of calcium hydroxide 

are needed to make 3.75 grams of calcium 

phosphate? 

Calcium hydroxide (Ca(OH)2) and 

phosphoric acid (H3PO4) react to 

produce calcium phosphate (Ca3(PO4)2) 

and water.  

10. Division of the prompts into smaller units: 

a. Dividing the question prompt into smaller, more comprehensible units if the 

question prompt is more than three sentences. 

An example below shows a general chemistry test item that was written in a visually 

unstructured manner. This item was restructured by breaking apart the prompt into 

smaller, more comprehensible units.  
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Original Modified 

How many grams of calcium hydroxide 

are needed to make 3.75 grams of calcium 

phosphate? 

What if a mistake was made and we used 

2.37 grams of Ca(OH)2 and 2.69 grams of 

H3PO4? Which compound is the limiting 

reagent? How much Ca3(PO4)2 would be 

obtained? What if 2.37 grams of Ca(OH)2 

were used along with excess H3PO4 and 

only 2.98 grams of Ca3(PO4)2 were 

obtained (instead of the theoretical yield)? 

What would be the percent yield?  

 

Calcium hydroxide (Ca(OH)2) and 

phosphoric acid (H3PO4) react to 

produce calcium phosphate (Ca3(PO4)2) 

and water.  

A. Write the balanced equation for this 

reaction. 

B. How many grams of calcium 

hydroxide (Ca(OH)2) do we need to 

measure out to make 3.75g of 

calcium phosphate (Ca3(PO4)2)?  

C. We made a mistake in our 

measurements. Instead of using the 

amount of calcium hydroxide you 

calculated in Part B, we used 2.37g 

of Ca(OH)2 and 2.69g of H3PO4. 

How many grams of Ca3(PO4)2 

should be made under these 

conditions? 

D. Which compound is the limiting 

reagent for the reaction described in 

Part C? 

E.  What would be the percent yield if 

we only collected 2.98g of calcium 

phosphate when we did the reaction 

described in Part C in a laboratory?   

 

11. Contextualization of the test item:  

a. Adding meaning by embedding contextual cues that help stage the test item as a 

problem.  
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b. Making connections between parts of the questions to establish flow. 

c. Adding more steps to scaffold all parts of the problem.  

An example below shows that to stage this problem better, the factory setting was 

added with a task assigned that is part of solving this problem “at your job.”  

Original Modified 

The Haber process is the conversion of 

nitrogen and hydrogen at high pressure 

into ammonia as the following: 

N2(g) + 3H2(g)  2NH3(g) 

If you must produce 700g of ammonia, 

what mass of nitrogen should you use in 

the reaction, assuming that the percent 

yield of this reaction is 70%? 

You work in a factory that manufactures 

ammonia gas. The factory uses the 

Haber process to make ammonia. In the 

Haber process, nitrogen gas and 

hydrogen gas react together at a high 

pressure to create ammonia gas. This 

process is shown in the reaction below: 

N2(g) + 3H2(g)  2NH3(g) 

You know that this process will give 

you a percent yield of 70% for ammonia 

gas. Your job is to make 700g of 

ammonia. What mass of nitrogen do 

you need to use so you can collect 700g 

of ammonia? 

 

Data Collection 

The process of data collection begins after the assessment items have been modified. 

Data is primarily collected in the form of student test responses and/or student interviews. A 
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think-aloud protocol is typically employed during the interview process. A think aloud protocol 

is an important tool to get a glimpse of students’ sense-making skills, obstacles they perceive to 

understanding or answering a problem, and their overall comprehension in real time. Think aloud 

protocols “provide a direct view of a reader’s mental activity, a kind of window into those 

processes which are usually hidden” (Block, 1986, p. 464). Students are asked to read the 

question aloud and then talk through what they are thinking as they try to solve the question. In 

the Siegel et al. (2014) study, students talked about and wrote down notes as they solved the 

problems. During the think aloud process, researcher(s) can ask follow-up questions to students’ 

responses. 

At the end of the think-aloud protocol, post-assessment interviews are typically 

conducted with each participant. The purpose of post-assessment interviews is to allow students 

to reflect upon the quality of the item they had completed. This is a time when the students can 

discuss what they found most challenging or most helpful in an item, and/or to further clarify 

their understanding of an item. The main goal of including post assessment interviews in the 

Siegel et al. (2014) study was to determine the students’ perceptions of the accessibility of the 

test items and how students would alleviate any perceived obstacles present in the test items.  

Data Analysis 

Data analysis in both of the studies that adhered to the guidelines of the EFCA has 

focused on comparing student responses to original and modified assessment items. Students’ 

understanding of original and modified items is typically evaluated using rubrics and/or 

interview data. Rubrics and interview data are analyzed once a set of criteria is established for 

each assessment item. The criteria are generally focused on students’ understanding of particular 

features of each item, for example, flow of language, vocabulary, framing, organization, etc. 
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Additional criteria regarding students’ experienced difficulty in an item have also been 

implemented; these can include the following: (1) whether or not student’s interpretation 

matches the intended meaning of the item; (2) if the student found it easy to interpret the 

question; and (3) if parts of the question posed potential barriers to students’ understanding.  

Emerging themes are typically established based on patterns in the coded data. 

Trustworthiness is established by incorporating multiple researchers, multiple data sources, 

and/or by consulting with language specialists. Previous studies informed by the EFCA have also 

employed member-checking during the post-assessment portion of the interview to establish 

trustworthiness of the data and of the findings (Siegel, 2007; Siegel et al., 2014).  

Limitations of the Equity Framework 

A major limitation of the EFCA is that it is newer in the field of educational assessment 

and still evolving. Because of this, a formal critique of the EFCA as a theoretical framework has 

not yet been published. However, in examining the framework and attempting to apply it to 

design the current study, I identified some potential limitations of using the framework to inform 

the design of research studies. In this section, I explain these potential limitations. I will discuss 

how these limitations have been accounted for in my study in the Methods chapter (Chapter 4).  

The foundational principles of the EFCA were shaped by sociocultural philosophies of 

learning and science education; however, the connections between this framework and 

theoretical foundations in sociocultural perspectives could be strengthened. Fully understanding 

and applying the EFCA requires a deeper look at its theoretical foundation; however, the lack of 

historical context about EFCA’s theoretical connections makes it difficult to fully determine how 

it is related to more established theoretical frameworks such as constructivism and sociocultural 

theory.   
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 Because the EFCA is a new framework, there are only two empirical studies that have 

utilized the EFCA as a guiding framework. The patterns of data collection and analysis described 

in previous sections have been established primarily based on the design of these two studies. 

Because there have been a limited number of studies that have applied the EFCA, it is 

challenging to understand a broader scope of data collection and analysis techniques that can be 

adopted under this framework.  

While it is clear that an important part of applying the framework is knowing how to use 

the suggested item modifications, the EFCA lacks clear, operational definitions of each type of 

modification. Little guidance is provided in previous studies on how each type of modification 

can be consistently applied to revise original test items. Because of this limitation, item 

modifications have been operationally defined for the current study.   

Justification for Using the Equity Framework in the Current Study 

Because I found chemistry assessment items difficult to interpret as an ELL student, I am 

particularly interested in ways that chemistry assessment items can be modified to make them 

more accessible for other ELL students. The EFCA provides guidelines for assessment item 

modifications that have been effective for middle school science students. I am interested in 

examining whether these same modifications—or others—are useful for an undergraduate 

chemistry student population.  

An important goal of this study is to understand how undergraduate students perceive 

typical and altered chemistry test questions. The EFCA provides the guidelines to make 

assessment items more equitable for a diverse student population without watering down the 

content (not decreasing the content difficulty) and still challenging students to think critically 

about key concepts. I believe that the EFCA matches the aims of this study because it preserves 
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high content standards for refining assessments, while still focusing on multicultural aspects of 

evaluating students’ knowledge in ways that reduce potential sources of bias in assessment items.  
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CHAPTER 4 METHODOLOGY 

Research Design 

 The purpose of this study is to investigate how individual chemistry test items are 

interpreted by ELL and native English speaking (NES) students. This study uses the lens of the 

Equity Framework for Classroom Assessments (EFCA) to modify general chemistry assessment 

questions in ways that should make questions easier to interpret for all students. This task 

required a deeper examination of the construction of the test items and asking the student 

participants to identify features of the items that they considered confusing or helpful in their 

interpretations of the items. A distinct aspect of this research is that it looks directly to students’ 

perceptions of the items’ characteristics, and does not only rely on the test maker’s intended 

meanings for the items. This study provided a unique opportunity to examine test items from the 

point of views of both ELL and NES students, thus potentially addressing the gap in the 

literature regarding the assessment of undergraduate ELL students in general chemistry.  

 The following research questions have been developed to match this study’s purpose:  

1. What are English language learners’ (ELL) and native English speakers’ (NES) 

perceptions of typical general chemistry exam questions as compared with chemistry 

exam questions that have been modified according to the equity framework for 

classroom assessments (EFCA)? 

a. Which features of the questions do ELL and NES students perceive to be helpful? 

b. Which features of the questions do ELL and NES students perceive to be 

challenging? 

2. What modifications do ELL and NES students believe would make chemistry exam 

questions easier to comprehend?  
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Target Population 

 One important goal of this study was to understand how students who are still developing 

their fluency in the English language manage to interpret general chemistry test items. Another 

goal was to ensure that test items that have been modified according to the guidelines of the 

EFCA are accessible to all students. Accordingly, participants for this study included two types 

of students: (1) students who are native English speakers, and (2) those who are still in the 

process of learning English. To be eligible as an NES participant for this study, a student must 

have been born in the U.S. and be a native English speaker.  To be eligible as an ELL participant 

for this study, students must have met the following criteria: 

 Must have been born outside of the U.S. and/or other countries where English is the 

national language, 

 Must have a first language (L1) other than English, 

 Must be able to read, write, and understand basic conversational English, 

 Must have been residing in the U.S. for 10 years or less.  

These criteria for the selection of ELL participants are based on Cummins’ (1980, 1981, 

1984, 2000) work on language acquisition in English language learners. ELL participants who 

are not born in countries where English is the national language and whose first language is not 

English will not have a strong background in the English language. Based on Cummins’ (1980, 

1981, 1984, 2000) work on language acquisition, basic interpersonal communication skills begin 

to develop in the first two years of being in the English-speaking country for incoming ELL 

students; however, it could take up to 8-10 years for incoming ELL students to develop cognitive 

academic language proficiency. Because I was interested in students’ interpretations of chemistry 

exam questions, tasks that require the use of academic language, I chose to solicit participants 
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that have basic conversational skills in English, but who were still in the process of developing 

CALP according to Cummins’ (1980, 1981, 1984, 2000) timeline. Because this group of students 

could be potentially more susceptible to struggling with interpreting exam questions, their 

perceptions were valuable to the current study.  

Participant Demographics 

 A total of 20 participants were recruited for this study, 10 students were native English 

speakers, and 10 students were English language learner students. The age range of the 

participants was 18 to 23. In terms of gender, there were three males and seven female students 

in the NES participant pool. There was one male, and nine female students in the ELL participant 

pool. The racial and ethnic background of the NES participants are as follows: two Caucasian 

students, two Filipino (second generation) students, two Hispanic (second generation) students, 

one African American student, one Chinese (second generation) student, one Hawaiian student, 

and one Armenian (second generation) student. The ethnic and racial backgrounds of the ELL 

participants are as follows: two Filipino students, two Thai students, two Hispanic students 

(Colombian and Venezuelan), one Indian student, one Chinese student, one student from Guam, 

and one Russian student.  

 Academically, all participants reported that their grades were at a C or better in their 

current chemistry course. Participants were enrolled in general chemistry because it was a 

prerequisite course for their majors or degree program. In order to protect the identity of 

participants, pseudonyms have been assigned to each of the participants.  

Data Collection 

 Think aloud protocols and post-assessment interviews were employed as the primary 

tools for data collection in another study informed by the EFCA (Siegel et al., 2014). This study 



 

87 

 

employed retrospective protocols and post-activity interviews as the main methods of data 

collection instead. In retrospective protocols, participants are given time to read and interpret the 

information presented to them before they are asked to discuss their perceptions of the 

information. Retrospective protocols were utilized instead of think aloud protocol to allow for 

more processing time for students to read and interpret the item and to avoid potentially 

influencing the processing of the word problem. Retrospective protocols have been successfully 

used in similar studies that ask students to discuss their thought process of an assessment item in 

this manner (Noble et al., 2012).  

Specifically, I asked students to read the assessments items presented to them. Then, they 

were asked to circle words or phrases that they found unclear in red ink and to circle any words 

or phrases they found helpful in guiding their understanding to be circled in blue ink. Then they 

were asked to discuss what the problem was asking, and how they would set up the item. At this 

point, they were reassured that they were not being graded and that I was more interested in their 

thoughts about the item than in correct answers. In the following section, I briefly describe the 

assessment items that were selected for this study, and then I discuss the student interview guide 

and methods of participant recruitment.  

Assessment Items 

The assessment items used in this study focused on the concepts of limiting reactant and 

percent yield, which are considered foundational topics for general chemistry. These topics focus 

on quantitative relationships between the compounds involved in a chemical reaction.  

In the text that follows, I provide an example of a limiting reactant word problem and an 

example of a percent yield word problem, as well as their solutions. I also outline what students 

need to know and do in order to solve the problems.  
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Limiting Reactant Problem: What mass of water forms when solutions containing    

3.27 g of hydrochloric acid and 7.62 g of calcium hydroxide are mixed?  

Solution:   

Students need to write the balanced equation for the reaction described in the problem. 

2HCl(aq) + Ca(OH)2(aq)  CaCl2(aq) + 2H2O(l)   

 

Students need to perform the following stoichiometric calculation to convert grams of 

HCl into moles of water. 

 

3.27 𝑔 𝐻𝐶𝑙 𝑥 
1 𝑚𝑜𝑙 𝐻𝐶𝑙

36.46 𝑔 𝐻𝐶𝑙
 𝑥 

2 𝑚𝑜𝑙 𝐻2𝑂 

2 𝑚𝑜𝑙 𝐻𝐶𝑙
= 0.0897 𝑚𝑜𝑙 H2O = Limiting Reactant 

 

 

Students need to perform the following stoichiometric calculation to convert grams of 

calcium hydroxide into moles of water.  

 

7.62 𝑔 𝐶𝑎(𝑂𝐻)2 𝑥 
1 𝑚𝑜𝑙 𝐶𝑎(𝑂𝐻)2

74.092 𝑔
 𝑥 

2 𝑚𝑜𝑙 𝐻2𝑂

1 𝑚𝑜𝑙 𝐶𝑎(𝑂𝐻)2
= 0.206 𝑚𝑜𝑙 𝐻2𝑂 

 

 

Once the limiting reactant is identified (reactant yielding the smaller number of moles), 

students must convert the smaller number for moles of water to grams of water.  

 

0.897 𝑚𝑜𝑙 𝐻2𝑂 𝑥 
18.006 𝑔

1 𝑚𝑜𝑙 𝐻2𝑂
= 1.62 𝑔 𝐻2𝑂 𝑓𝑜𝑟𝑚𝑠 

 

Percent Yield Problem: Phosphorus reacts with bromine to form phosphorous 

tribromide. If 35.0 g of bromine are reacted with 27.9 g of phosphorous tribromide are 

formed, what is the percent yield?  

Solution:   

Students need to write the balanced equation for the reaction described in the problem. 

2 P + 3 Br2  2PBr3  
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Students need to perform the following stoichiometric calculation to convert grams of 

bromine into grams of phosphorous tribromide to obtain the theoretical yield for the 

reaction.  

 

35.0 𝑔 𝐵𝑟2 𝑥 
1 𝑚𝑜𝑙 𝐵𝑟2 

159.808 𝑔 𝐵𝑟2
 𝑥 

2 𝑚𝑜𝑙𝑒𝑠 𝑃𝐵𝑟3 

3 𝑚𝑜𝑙𝑒𝑠 𝐵𝑟2
 𝑥 

270.686 𝑔 𝑃𝐵𝑟3

1 𝑚𝑜𝑙 𝑃𝐵𝑟3
= 39.5 𝑔 𝑃𝐵𝑟3 

 

Once grams of phosphorous tribromide is obtained, students then need to use the 

equation shown below (inputting the experimental amount given in the problem and the 

theoretical amount obtained above) to calculate percent yield. 

 

% 𝑦𝑖𝑒𝑙𝑑 =  
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡
 𝑥 100 

  

% 𝑦𝑖𝑒𝑙𝑑 =
27.9 𝑔 𝑃𝐵𝑟3  

39.5 𝑔 𝑃𝐵𝑟3
∗ 100 = 70.63% 

 
 

I chose to use limiting reactant and percent yield assessment items for the current study 

because word problems associated with this content typically contain technical language and 

require mathematical computations, both of which have shown to be challenging for students 

(Carter & Brickhouse, 1989). I applied the following criteria in selecting the specific limiting 

reactant and percent yield assessment items for the current study: 

 Items must have mathematical and chemical concepts and phrases that students need 

to think through; in other words, the problems cannot be solved by simply plugging 

values into a formula. 

 Items should challenge students to think about underlying chemistry concepts. 

 Items must be revisable based on modifications of the EFCA. 

 Items must realistically be potential assessment questions in general chemistry. 

In consultation with other instructors of general chemistry and according to criteria I 

established, I chose seven items for the current study. Original items were selected from general 

chemistry textbooks and a general chemistry instructor’s test bank. Each item was revised based 



 

90 

 

on the modifications (see Appendix A) derived from the EFCA (see Appendix B for all items 

and Appendix C to see how each item was modified). Each item was also assigned a content 

difficult level of easy, medium, or hard. The content difficulty levels were assigned by the 

original sources of the items, which were textbooks, and general chemistry instructors. Of the 

seven original items selected and revised according to the EFCA, four total items were used 

during the interviews because of time limitations. Items 1, 2, 5, and 6 were selected because they 

included a range of modifications (see Appendix A for a complete list). They also varied in 

content difficulty levels (e.g., easy, medium, hard). Item 1 was rated at medium difficulty, item 2 

was rated as hard, item 5 was rated at medium difficulty, and item 6 was rated as easy.  

Interview Guide 

The main goal of the student interview protocol was to understand students’ perceptions 

of general chemistry assessment items. Accordingly, the interview guide (see Appendix D) was 

developed to allow students to express their thoughts and perceptions about the original items 

and the modified items. The interview consists of four main sections: (1) informed consent (see 

Appendix E for informed consent forms); (2) rapport building questions; (3) retrospective 

protocol activity questions; and (4) post-activity questions. The interviews were semi-structured 

in nature: students’ responses were followed-up with additional questions as deemed appropriate 

and the interviews were conversational. Each interview lasted approximately 1 hour.  

Rapport Building Questions. The goal of the questions in this section was to solicit 

information about students’ backgrounds and to help the participants feel comfortable with the 

setting and the interviewer. I started by asking about the participants’ country of origin, first 

language, and experiences when moving the U.S. (if ELL) in order to gain information about 

their language and cultural backgrounds. I also asked participants about their experiences in their 
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chemistry course, such as their favorite topic(s) and how they felt about their course exams and 

quizzes in order to transition the flow of the conversation to general chemistry assessment and 

the retrospective protocol.  

Main Activity. This was the main activity portion of the interview, in which data was 

collected that relates to both research questions. The participant was given a single general 

chemistry item on a sheet of paper, along with writing utensils. Whether the participant received 

an original version of an assessment item or a modified version of an assessment item was 

randomized. Participants were informed that I would like for them to read the question presented 

to them. After a few minutes, I asked them to make annotations on the paper: to circle parts of 

the item that they found challenging in red and to circle parts that were helpful in blue. At this 

point, they were asked to discuss each of the parts they circled. I also asked participants to talk 

through how they would set up the problem. I reminded the students that they were not being 

graded. I asked them to describe their problem solving process in terms of why they started 

where they did, what the problem is asking them to do, and whether or not the question was easy 

or hard to follow. Based on their responses, follow-up questions were asked during this activity 

such as “how do you think you would change the item to make it easier to understand?” 

 The order in which students received the questions was randomized to reduce the 

likelihood of bias that students may carry should they notice any patterns between the original 

and modified versions. When the original version was first presented to the participant, the 

modified version of the same question was then shown to the participant without letting them 

know which version of the question is which. The student was then asked to review and 

comment on the modified version as they did on the original version. Likewise, when a 

participant first received a modified version of an assessment item, they were then asked to 
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review and comment in a similar way on the original version of the same question. After the 

participant commented on both versions of the same question, I placed both versions of the same 

item in front of them and asked them to compare the versions and comment on which one they 

would prefer to encounter on an actual exam. Lastly, participants were asked to suggest their 

own modifications of the items to make it easier for them to follow. This procedure was followed 

until the student had seen both version of all four assessment items.  

Post-Activity Questions. After the main activity portion was completed, the participants 

were asked a few general questions about all the problems they completed in both versions. I 

asked the participants to choose (1) the most difficult item to understand and (2) the easiest item 

to understand, and to explain their choices. They were also asked to express their thoughts on 

modifications that would make their chemistry exam questions easier to understand in general. 

Finally, they were given an opportunity to ask questions and add any additional thoughts to their 

interviews.  

Interview Procedure 

Interviews were audio recorded. Participants’ written notes about each problem were 

saved and collected for reference during data analysis. I also took notes during the main activity 

portion in order to track responses and develop potential follow-up questions during the 

interview. Participants were provided with a set of three pens: black (for notes to set up the 

question), red (for indicating unclear parts) and blue (for indicating useful parts). All materials 

were collected at the end of the interview.  

Participant Recruitment 

 I used purposeful sampling to select undergraduate students for this study. In purposeful 

sampling, participants are sought that specify a pre-determined criteria based on the research 
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question (Creswell, 2007). I solicited participation from students enrolled in the first and second 

general chemistry courses (General Chemistry 121 and 122) at the University of Nevada, Las 

Vegas (UNLV). ELL and NES students who were currently enrolled in these courses at the time 

of data collection and were 18 years of age or older were eligible to participate. I obtained the 

syllabi for the General Chemistry courses, CHEM 121 and CHEM 122, from the instructors to 

determine when the topics of limiting reactants and percent yield were covered in class. I 

recruited participants from CHEM 121 after the exams that covered these topics in their classes 

to ensure that they had had the opportunity to study these topics. Because students in CHEM 122 

learned these topics in a previous course, I did not have limitations on when I could recruit these 

participants. I recruited the CHEM 122 students at a time when it was convenient for the 

instructor. 

I attended course lectures to inform students about this project, with the instructor’s 

permission. A pre-written script (see Appendix F) was read in the classes, informing students 

about the purpose and goal of this project. They were asked to participate in an in-person, face-

to-face interview where they will be solve several limiting reagent and percent yield problems 

(see Appendix B). Interested students were asked to write their email addresses and phone 

numbers on index cards that I handed out in class. Students were contacted via email and/or 

phone to set up a convenient time and location for the interviews. The goal was to obtain 5-15 

participants, which is in alignment with a previous, qualitative study that utilized the EFCA 

(Siegel et al., 2014). For the current study, I recruited 10 ELL students and 10 NES students 

total.  
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Data Analysis 

 The audio-recorded data from all participant interviews was transcribed verbatim. Once 

the interview transcripts were produced, I began the process of coding data. I used a grounded 

theory approach to analyze the interview transcripts and searched for emergent themes related to 

the features in the items. This process was iterative and continued until no new themes were 

identified. Participants’ written notes were also used for cross checking new categories in order 

to maintain the authenticity of emerging categories. 

Each general chemistry item (both versions) was coded separately as each item differed 

in the type of modifications applied. Each item was first coded individually based on the features 

that were identified by participants as being helpful. Next, each item was coded individually 

based on the features participants identified as being challenging. I noticed that these features—

whether identified as helpful or challenging—were similar and only differed negatively or 

positively. Because of this, I grouped the helpful and challenging coded features and searched for 

similarities. These coded features were combined into larger categories.  The following 

categories emerged:  

 Description of the problem 

 Bullet points  

 Chemical formulas 

 Word choices (simple or complex wording)  

 Syntax 

 Length of the item  

 Graph 

 Illustration 
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 Phrasing 

 Steps to solve the problem (guidance provided or lack of support) 

 Sentence structure 

 Type of the question 

 Background information: relevant or irrelevant  

 Equation 

 Visual appearance  

 Support (or lack of support) to solve the problem 

Next, I grouped categories that were related to similar types of features. The following 

list shows how categories were grouped: 

 Visual appearance and length  

 Wording, syntax, phrasing, and sentence structure 

 Diagrams, graphs, chemical formulas, equations and illustrations 

 Contextual support and guided support for the content  

Each of these groups corresponds to a major theme that characterizes the data: (1) 

macrostructure, (2) readability, (3) representation, and (4) scaffolding. These four themes are 

based in research that characterizes features of written text.  

Macrostructure is a term adopted from literature on reading comprehension (Lacroix, 

1999; Lo et al., 2016). Macrostructure is an important aspect of reading comprehension (Lo et 

al., 2016). Research on the cognitive processes of reading a text suggests that the way textual 

materials are presented to readers allows the readers to form coherent mental representations of 

the text. Features such as headings, spacing and organization influence how readers perceive the 
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textual information (Lacroix, 1999). The theme of macrostructure was used to describe the 

features that contributed to the overall appearance and textual structure of the item.  

Readability is a commonly used term to describe how written words are understood by 

readers. Word choices, phrasing, syntax and sentence structures can contribute to how well text 

is communicated and understood. Thus, these types of features are commonly assessed to 

measure the overall readability of written text (Pontus et al., 2017). Therefore, the readability 

theme includes features that contributed to how well the participants were able to comprehend 

the item.   

Visual representations are widely discussed in literature as a significant feature that 

supports students’ learning in science (Evagorou et al., 2015). Prior studies show that embedding 

graphs, images, graphic organizers, diagrams, photographs, models, symbols, etc. helps both 

ELL and NES students understand assessment items (Siegel, 2014). Thus, the representation 

theme was used to describe these types of features.   

Scaffolds are features that provide content support in assessment items in the form of 

contextual signals and guided inquiry. Scaffolds played a significant role in decreasing the 

performance gap between ELL and NES students in middle school life science assessments 

(Siegel, 2007; Siegel et al., 2014). These features help students make connections between parts 

of the item or provide additional information that influences how students understand the context 

of the item. Thus, the scaffolding theme includes features related to content support, guidance, 

and contextualization in items.  

Each of the helpful and challenging categories described above was assigned to a 

corresponding theme. A summary of the themes, as well as examples of helpful and challenging 
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features included in each theme, is shown in Table 1. A detailed explanation of each of these 

themes with operational definitions is provided in the results and discussion chapter (Chapter 5).  

 

Table 1. Overarching themes that describe students’ perceptions of helpful and challenging 

features. 

Theme Categories Examples of 

Helpful Features 

Examples of 

Challenging Features 

Macrostructure 

 Superficial structures 

 Visual appearance  

 

 Spacing within the 

text 

 Text broken down 

into smaller parts 

 One block of written 

text 

 Lack of separation 

within text 

Readability 

 Sentence structure 

 Syntax 

 Wording  

 Voice 

 Direct sentences 

 Simple vocabulary 

 Active voice 

 Indirect sentences 

 Complex vocabulary 

 Passive voice 

Representation 

 Graphic organizers 

 Visual elements  

 

 Graphs 

 Illustrations 

 Chemical formulas 

 Chemical equations 

 Incomplete 

representations 

 Unclear information 

within 

representations 

Scaffolding 

 Content support  

 Guidance  

 Contextualization  

 Phrases that point to 

key information  

 One step guides to the 

next 

  Contextual cues that 

help understand the 

problem 

 Lack of signals to 

identify key 

information 

 No clear delineation 

of steps  

 Lack of contextual 

cues to understand 

the problem 

 

It is important to ensure that the data analysis process is reliable among multiple coders; 

this is has been referred to as inter-rater reliability. This was done by taking a small number of 

completed interview transcripts and asking a colleague to read through the transcripts and code 

the transcripts according to the categories and themes I had developed. If potential differences 

were found between my analysis and her analysis, we discussed these and we came to an 



 

98 

 

agreement about any changes to the description of categories. This ensured that my own 

interpretations were consistent with the data and useful to others.  
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CHAPTER 5 RESULTS AND DISCUSSION 

Test Item Features: Chapter Overview 

My objectives for this project were to identify undergraduate students’ perceptions of 

original and revised chemistry assessment items and ask students to suggest additional 

modifications that could improve each item. Specifically, Research Question 1 asked: what are 

ELL and NES students’ perceptions of typical general chemistry exam questions as compared 

with chemistry exam questions that have been modified according to the equity framework for 

assessments? Research Question 2 asked: what (additional) modifications do ELL and NES 

students believe would make chemistry exam questions easier to comprehend? The assessment 

items selected for this study were focused on the topics of limiting reagent and percent yield.  

The findings from both research questions are presented together in this chapter. This 

decision was made because of the way students responded during the semi-structured interviews. 

In general, while students were able to identify beneficial and challenging features of assessment 

items, they were less able to identify ways in which items could be further improved. The few 

students who did provide suggestions for assessment item improvement did so in reference to 

challenging features of the item. For example, a participant stated, “I think it’s confusing when 

different units are shown in the same long phrase,” to which the interviewer responded, “I 

see…how would you change this part to make it easier to follow?” The participant responded by 

saying, “I would break down the phrase into multiple sentences and separate those units.” Thus, 

participants’ suggestions for item improvement were directly tied to the features they identified 

as challenging in an item.  

Based on my analysis of student responses, four major themes emerged that represent the 

features of the assessment items that students considered helpful and/or challenging. The four 
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major themes that emerged from the data are: (1) macrostructure, (2) scaffolding, (3) readability, 

and (4) representation. The operational definitions and descriptions of each theme are provided 

below. Item-specific examples of each modification discussed in the themes can be found in 

Appendices B and C.  

Macrostructure 

 Macrostructure is an important emergent theme in this study that describes the superficial 

structures of the assessment items. These features were characterized by how the item visually 

appeared on paper and the affective responses the item elicited. Specifically, macrostructure 

encompasses features that contribute positively or negatively to the written text’s visual and 

spatial presentation, and organizational format. For example, an assessment item (not used in this 

study) with one long block of text is shown below. Based on literature findings, most students 

would respond negatively to this block presentation of an assessment item.  

 

 

 

 

On the other hand, research indicates that students would be likely to respond to the 

assessment item more positively if the text were broken up into smaller parts, as shown below.  

 

 

 

 

 

 

 

 

 

When ethane (C2H6) reacts with chlorine (Cl2), the main product is C2H5Cl, but other 

products containing Cl, such as C2H4Cl2, are also obtained in small quantities. The 

formation of these other products reduces the yield of C2H5Cl. Calculate the 

theoretical yield of C2H5Cl when 125g of C2H6 reacts with 255g of Cl2, assuming that 

C2H6 and Cl2 react only to form C2H5Cl and HCl. Calculate the percent yield of 

C2H5Cl if the reaction produces 206 g C2H5Cl. 
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Macrostructure is acknowledged in literature to play a significant role in enhancing 

reading comprehensibility and supporting the communicative purposes of the written text 

(Carrell, 1982; Kilray, 2015). For the purposes of the current study, macrostructure describes the 

following features identified by participants: bulleted or lettered lists or a physical separation of 

the background information from the question. These features impacted the perceived 

accessibility of the item.  

Readability 

 Readability describes the features of the assessment item that positively or negatively 

contributed to how well the participants comprehended the item as intended. Features such as 

sentence structure (direct or indirect), vocabulary (simple or complex), syntax (i.e., the 

arrangement of words in the sentence), and tense (passive or active) were characterized within 

this theme. Prior research underscores the significance of these types of grammatical structures 

on the overall readability of written text and, thus, on students’ performance on standardized 

exams (Amos, 2009).  

For the purposes of this study, the following operational definitions are used:  

When ethane (C2H6) reacts with chlorine (Cl2), the reaction produces C2H5Cl as the 

main product. Other products containing chlorine are also produced in small amounts. 

These are called minor products. Minor products decrease the amount of C2H5Cl (main 

product) that is made in this reaction. 

 

A. Write the balanced equation for the reaction between ethane and chlorine that 

produces C2H5Cl and HCl as products.  

 

B. Using the balanced equation you wrote for Part A, find the theoretical yield of 

C2H5Cl when 125g of C2H6 reacts with 255g of Cl2?  

 

C. If you conducted the reaction described in Part B in the laboratory and only 

collected 206g of C2H5Cl, what is the percent yield of C2H5Cl? 
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 Direct sentences are those in which the object receives the action of the sentence (e.g., 

where can I buy lab coats?), where the object is the lab coat and the action is “buy.” 

Indirect sentences also have the object and an action; however, these sentences include 

additional information that is not essential to convey the meaning (e.g., could you tell me 

where I can buy lab coats?)  

 Simple vocabulary includes words that are less formal and used in everyday talk (e.g., 

use), whereas complex vocabulary includes words that more formal and/or technical in 

nature (e.g., utilized).  

 “Syntax” describes sentence construction. A sentence with simple syntax contains a 

single clause (a sentence containing a subject and predicate). For example, I don’t like 

dogs. Sentences with more complex syntax contain multiple clauses that are put together 

with commas and/or conjunctions (e.g., I don’t like dogs, and my sister doesn’t like cats 

because they make her sneeze).  

Representation 

 Representation describes visual tools embedded in the item to organize, consolidate 

and/or illustrate information. This theme includes both the positive and negative features of the 

representation(s) provided in assessment items. Literature strongly suggests that visual 

representations—such as pictures, imagery, illustrations, and graphic organizers—assist with the 

understanding of text by reducing the load on working memory and augmenting the 

comprehensibility of the written text (Boonen et al., 2014; Siegel et al., 2014).  

Scaffolding 

 The scaffolding theme includes features of the assessment items that offer—or fail to 

offer—content support and guidance to solve the problem. In previous similar studies, 
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scaffolding is broadly defined as supportive structures that help students comprehend, visualize, 

organize thinking, and elicit responses (Siegel et al., 2014). For the purposes of the current study, 

scaffolds include the following features: (1) content support, (2) guidance, and (3) 

contextualization.  

Content support is an important scaffold because it helps students identify the most 

essential pieces of information in an assessment item. Content support encompasses features that 

help students identify specific, content-based information to solve for limiting reactant and 

percent yield word problems such as the quantities of reactants, or components of the chemical 

reaction, and/or distinguishing actual and theoretical yield. For example, a percent yield 

assessment item included the following phrase: “You found that 35.0 g of acetic acid is actually 

produced. What is the percent yield of acetic acid?” The first phrase provides content support by 

helping students recognize that they are given the actual yield and will need to calculate the 

theoretical yield to find the percent yield.  

The scaffolding theme also includes guidance in the form of contextual cues and signals 

embedded in the item that help students think about the information available and connect that 

information to potential next steps to solve the problem. This process is described as “guided 

inquiry-based learning,” which leads students to collect key information, ask questions, and 

make connections to useful knowledge (Akkuzu & Uyulgan, 2017). For example, in the item 

shown below, the lettered parts first instruct students to write a balanced equation, then to use 

that equation to find the theoretical yield.  
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Contextualization is also an important scaffold. Context helps students make connections 

between the content and the environment in which the content can be relevantly applied. 

Contextualization is generally provided in an item’s background information, which is stated 

before the question portion. Context is provided to help students situate new ideas and 

comprehend the concepts embedded in the item. For example, in the item below, the factory that 

manufactures ammonia gas using the Haber process is the context provided to situate this 

problem.  

 

In similar studies that employed scaffolding in assessment items, the aforementioned 

features (content support, guided inquiry, and contextualization) helped students focus on the 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 

 

When ethane (C2H6) reacts with chlorine (Cl2), the reaction produces C2H5Cl as the 

main product. Other products containing chlorine are also produced in small amounts. 

These are called minor products. Minor products decrease the amount of C2H5Cl 

(main product) that is made in this reaction. 

 

A. Write the balanced equation for the reaction between ethane and chlorine that 

produces C2H5Cl and HCl as products.  

 

B. Using the balanced equation you wrote for Part A, find the theoretical yield of 

C2H5Cl when 125g of C2H6 reacts with 255g of Cl2?  

 

C. If you conducted the reaction described in Part B in the laboratory and only 

collected 206g of C2H5Cl, what is the percent yield of C2H5Cl? 
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underlying goal in the question and attend to key aspects of the question. These features also 

increased the students’ comprehension of the items (Siegel et al., 2014). 

A summary of each of these themes along with examples of each theme’s helpful and 

challenging features is presented below in Table 1, which was originally presented in Chapter 4. 

 

Table 1. Overarching themes that describe students’ perceptions of helpful and challenging 

features. 

Theme Categories Examples of 

Helpful Features 

Example of Challenging 

Features 

Macrostructure 

 Superficial structures 

 Visual appearance  

 

 Spacing within the 

text 

 Text broken down 

into smaller parts 

 One block of written 

text 

 Lack of separation 

within text 

Readability 

 Sentence structure 

 Syntax 

 Wording  

 Voice 

 Direct sentences 

 Simple vocabulary 

 Active voice 

 Indirect sentences 

 Complex vocabulary 

 Passive voice 

Representation 

 Graphic organizers 

 Visual elements  

 

 Graphs 

 Illustrations 

 Chemical formulas 

 Chemical equations 

 Incomplete 

representations 

 Unclear information 

within 

representations 

Scaffolding 

 Content support  

 Guidance  

 Contextualization  

 Phrases that point to 

key information  

 One step guides to 

the next 

  Contextual cues that 

help understand the 

problem 

 Lack of signals to 

identify key 

information 

 No clear delineation 

of steps  

 Lack of contextual 

cues to understand 

the problem 

 

 

Although I prepared seven modified items, initial interviews suggested that there was not 

sufficient time for students to respond to all six items. Therefore, I selected four items to include 

during interviews. The four total assessment items used in this study: items 1, 2, 5, and 6.   
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In the sections that follow, I present the findings of the current study, as related to student 

responses to questions 1, 2, 5, and 6, in that order. I begin by presenting students’ responses to 

the original version of an item, followed by students’ responses to the revised item. Figure 11 

shows the order in which the findings are presented. Within individual subsections, themes that 

emerged from the data (see Table 1) are presented in order from the most commonly reported 

themes to the least commonly reported themes.  

 

  
 

Figure 11. An outline of the order in which findings are presented for each assessment item.  

 

I. Original Test Item 

a. Helpful Features  

i. ELL students’ perceptions of helpful features, organized by theme 

ii. NES students’ perceptions of helpful features, organized by theme 

iii. Comparison of themes: Helpful features 

b. Challenging Features 

i. ELL students’ perceptions of challenging features, organized by 

theme 

ii. NES students’ perceptions of challenging features, organized by 

theme 

iii. Comparison of themes: Challenging features 

II. Revised Test Item 

a. Helpful Features 

i. ELL students’ perceptions of helpful features, organized by theme 

ii. NES students’ perceptions of helpful features, organized by theme 

iii. Comparison of themes: Helpful features 

b. Challenging Features 

i. ELL students’ perceptions of challenging features, organized by 

theme 

ii. NES students’ perceptions of challenging features, organized by 

theme 

iii. Comparison of themes: Challenging features 



 

107 

 

Results and Discussion 

In the following sections, the item features referred to by students are shown in black 

text. The remaining portion of the item is shown in gray text. 

Item 1: Original Version 

 The original version of this item exam item (shown below) assesses students’ ability to 

calculate a theoretical yield for a reaction, and then to use that theoretical yield to calculate a 

percent yield.  

 

In order to solve the problem, students must: 

1. Write a balanced equation for the production of methanol from carbon monoxide and 

hydrogen gas.  

2. Then they must use stoichiometric relationships to calculate the theoretical yield.  

3. Once the theoretical yield is found, that value needs to be used to solve for the 

percent yield for the reaction.  

ELL students’ perceptions of helpful features in item 1 (original). ELL students 

found this question to be difficult to understand and most students were unable to successfully 

set up the problem. Each participant was asked to discuss any features in the test item that he/she 

found to be helpful. These features are discussed in the order of the following emerging themes: 

(1) readability, and (2) representation.  

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 
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Readability. The most common features perceived to be helpful by ELL students are 

features that pertain to the readability of this item. Specifically, ELL students found the direct 

sentence structure (shown below) to be easy to interpret.  

 

They understood that one goal of the item was to calculate the theoretical yield of methanol. ELL 

participants reported that the last phrase of this item also had direct and shorter sentences, which 

was easy to follow. 

 

Anastasia: So I like this… I noticed that the part where they talk about the task is broken 

up into much shorter sentences for all of the [background] information, so I think that 

part is good just because you have some processing time in between sentences. 

 

 

ELL participants also liked the word “actually” in this item, as it prompted them to make a 

connection to actual yield, which is needed to calculate percent yield.  

 

Representation. ELL participants also found the inclusion of the chemical formulas of 

the compounds involved in the chemical reaction for the formation of methanol to be helpful 

visual representations.   

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 

 

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 
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NES students’ perceptions of helpful features in item 1 (original). Whereas ELL 

students identified features related to the readability of the text and the symbolic representations 

included in the item, NES students focused on helpful features that contributed to the readability 

of the item and which provided scaffolding for solving the problem. These features will be 

discussed in the order of the following prevalent themes: (1) readability, and (2) scaffolding. 

Readability. Similar to the responses of ELL participants, NES students identified helpful 

features regarding the readability of item 1. NES students found direct sentence structures in the 

question portion of item 1 to be helpful. Eric mentioned, “That’s straightforward; calculate the 

theoretical yield of methanol. It's just more simple, condensed down and that's what I like about 

it.” 

 

Additionally, NES students noted that the word “manufactured” helped them understand 

that carbon monoxide and hydrogen are needed to make methanol. Matt stated, “Manufactured? I 

think it was an important word for the question. Without it, you really wouldn't necessarily know 

what combining carbon monoxide and hydrogen could really produce.” Another word that Josh 

found helpful is ‘reacted’: “I like that they used ‘reacted’ here instead of ‘mixed’ because 

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 

 

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest 

alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 
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whenever I see ‘mixed,’ it throws up signs for that I need to add something…” Josh was 

referring to adding things mathematically.  

Scaffolding. The next set of features that NES students perceived to be helpful were 

related to the background information provided in this item. The description of methyl alcohol 

and how it is formed was considered to supportive because it helped them understand the 

chemical reaction discussed in this item, which provided content support.  

 
 

Comparison of helpful features in item 1 (original). Both ELL and NES students 

identified readability features, such as direct sentence structures in the questions of the item, to 

be helpful. Unlike NES students, ELL students pointed out that they particularly appreciated the 

fact that chemical formulas were given after the name of each compound. NES students, on the 

other hand, found the written description of the methanol reaction to be helpful in this item. This 

difference suggests that ELL students relied more on visual structures such as chemical formulas, 

which were less language-dependent compared to NES students, who were able to use language-

dependent features of the item such as the description of the reaction. This finding is in 

alignment with previous literature that reports that representations are especially useful in 

reducing the cognitive load for students with limited English proficiencies (Boonen et al., 2014).  

A summary of the themes pertaining to this item are shown in the Figure 12.  
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Item 1 Original: Helpful Features 

 

 

 

 

 

Figure 12. A comparison of the themes for item 1 (original) helpful features presented in the 

order of frequency.  

 

ELL students’ perceptions of challenging features in item 1 (original). ELL students 

indicated specific challenging features that could be improved in the item. The features that ELL 

students found to be challenging are related to the following themes: (1) scaffolding, (2) 

readability, and (3) macrostructure.  

Scaffolding. ELL students highlighted concerns about the lack of contextual cues and 

guidance in the item, which left them uncertain about where to begin. This was especially the 

case with reading the first two sentences about the simplest alcohol and replacement for gasoline. 

ELL students struggled with understanding how this information was related to the main 

question, which asked about calculating the theoretical yield of methanol. They searched for a 

connection in the background information that could have help them solve the problem, which 

led to uncertainty and confusion.  
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Seojun: So I don't know if it's really needed to include this mess [pointing at the first two 

lines] that it is also called a methyl alcohol just because throughout the rest of the 

problem it's referred to as methanol. So it really doesn't matter what else you call it. Then 

I guess the same thing with this one with simplest alcohol it's not very relevant. 

 

  ELL students further indicated that they were confused by the amount of information that 

was embedded in the questions of the item. They explained that it is stressful to see multiple 

numerical values given in any one complex statement, especially when it is in the question 

portion of the item. 

 

 

Lupe: Well, for me, you won't really know at first where to start. They just give you a 

bunch of numbers. It takes a while to figure out these numbers from this number and 

from this molecule, and then this one's from this. It's just hard to organize it at first. You 

actually have to work on it first before you really work on it or else you'll forget the 

details.  

 

Readability. The next set of challenging features highlighted by ELL participants were 

those that made it more difficult for the students to comprehend the item itself. These features 

included word choices such as “potential” and “manufactured” which the students considered to 

be complex vocabulary. Students also felt that the item included long sentences containing 
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alcohol. It is used as a source of fuel in race cars and is a potential replacement for 

gasoline. Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g), calculate the theoretical 

yield of methanol. If 3.57 x 104g CH3OH is actually produced, what is the percent yield 

of methanol? 
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complex syntax. For example, the question portion of the item below was written with 

hypotheticals words “suppose,” and “if,” to start the first part of the sentence followed by a direct 

question. This arrangement of words and phrases in sentences was perceived to be challenging to 

follow.  

 

Rohan: I noticed that a lot of the word choices here are elevated and then in general 

seems like it has a longer sentence structure. ‘Potential’ and ‘manufactured’ are words 

that are sort of especially because some of this information is not super needed especially 

when it's talking about being simplest alcohol and like potential replacement for gasoline. 

 

Rohan’s comment suggests that the use of “elevated” vocabulary in this item did not seem to be 

necessary, especially since these words are used to discuss parts of the item that were not 

considered to be important.  

Macrostructure. ELL participants expressed verbally and in writing that they were 

overwhelmed as soon as they looked at this item because it appeared as one long block of text. 

They suggested separating the parts of the item to make it more visually accessible.  
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NES students’ perceptions of challenging features in item 1 (original). In general, the 

challenging features identified by NES participants were similar to those identified by ELL 

students. Despite finding challenging features in the item, most NES students were able to 

successful setup the problem. These features will be discussed in the following order of themes: 

(1) scaffolding, (2) macrostructure, and (3) readability.  

Scaffolding. NES participants indicated that one of the most challenging parts of this 

item was that the background information was irrelevant to the questions that the item was 

asking. Many NES participants regarded the information about methyl alcohol and its use as a 

source of fuel to be unnecessary and advised that it be eliminated. 

 

The responses of NES participants also indicated that the fact that the item required two 

separate answers—the theoretical yield of methanol and the percent yield of methanol—was not 

clear. Many students assumed that they only needed to report the percent yield of methanol.  

 

Alex: I'm going to go back and double-check…is it asking for two [answers]? Oh, 

calculate the theoretical yield. And then with the percent yield…  

Interviewer: Do you think other students would have missed that?  

Alex: Yeah. I definitely would've. 
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Macrostructure. Another challenging feature reported by NES students regarding the 

original item 1 is that appears to be one, long block of text, which contains a lot of critical 

information without visual cues, such as spacing between parts or a graphic organizer.  

 

Nora: Because with this one it looks like a paragraph of information. I feel that's how 

some of my chem questions are like, and this is when it starts to get hard for me because 

when I have so much information to sift through I don't know what I'm looking for. 

 

 

Readability. NES participants identified word choices in the original item 1 that made 

this question difficult to follow. The use of ‘manufactured’ was questioned instead of simpler 

alternatives such as ‘made.’ Additionally, starting a sentence with the word ‘suppose’ was noted 

to be especially unsettling during an exam. 

Nora explained why the use of “suppose” deterred her:  

 

Nora: Because people are really unsure and scared going through this and you hear, 

‘Suppose,’ and couldn’t it just be stated like, ‘Yes, this is how much was put in.’ […] I’m 

already nervous and scared and your 'suppose' makes me nervous and scared for the rest 

of it. That’s just my own personal feeling, [especially] if my test anxiety is already 

shooting. 
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Comparison of themes: Challenging features in item 1 (original). Both ELL and NES 

students reported similar challenging features in original item 1. Both groups indicated that it 

was visually overpowering to come across a question like this during an exam, where the text 

appears to be in one long paragraph form. Both groups of students did not find the background 

information provided to be necessary and/or relevant. ELL students did not find the word 

“manufactured” helpful; however, some NES students mentioned that it was good word to use. 

ELL students noted that the use of complex words like “manufactured” was unnecessary, 

especially because when these words were not conveying essential information needed to solve 

the item. On the other hand, NES students considered the word “manufactured” to be important 

chemistry vocabulary that needed to be embedded in the item. This suggests that NES students 

see words such as “manufactured” as situational and understand that certain words should be 

used in certain contexts.  

A summary of the comparison of themes is shown in the Figure 13.  
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Figure 13. A comparison of the themes for item 1 (original) challenging features presented in the 

order of frequency.  
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Figure 13 indicates that NES students found the visual appearance of the item more 

challenging than the features that affected the readability of the item. ELL students, on the other 

hand, identified more readability-related issues as being challenging than macrostructure-related 

features. This implies that readability issues had a stronger effect on ELL students than they did 

on NES students. It is important to note that most ELL students were unable to set up this 

problem successfully while most NES students were able to set it up correctly. This may suggest 

that NES students were able to understand the complex words and sentence structure in the item 

enough to be able to set up the problem correctly. This finding is consistent with literature that 

reports that ELL students are more negatively impacted by language-dependent features than 

NES students on test items (Martiniello, 2009). 

Item 1: Revised Version 

 The original version of Item 1 was revised according to the EFCA guidelines discussed in 

Chapter 3 and modifications discussed in Appendix A. The revised version includes 

modifications that linguistically simplified the background information by dividing complex 

sentences into simpler sentences and adding chemical formulas after the names of all 

compounds. The two questions were also separated by bulleted points. The revised version of 

item 1 is shown below.  

 

Methanol (chemical formula: CH3OH) is the simplest alcohol. It can replace gasoline, 

and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  

 

 What would be the theoretical yield of methanol if you mix 68.5kg of CO(g) 

with 8.60 H2(g)? 

 You found that 3.57x104g CH3OH is actually produced. What is the percent 

yield of methanol? 
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ELL students’ perceptions of helpful features in item 1 (revised). ELL participants 

generally responded favorably to the modified features in the revised version and were able to 

successfully set up the problem. Data is presented below in the order of most prevalent emerging 

themes: (1) macrostructure, (2) scaffolding, (3) readability, and (4) representation.  

Macrostructure. ELL participants found it especially useful that the revised item 

appeared to have distinguishable parts. For example, the space after the background information 

and the two bulleted questions were visually appealing and provided clarity. This was beneficial 

because many ELL students did not realize that the original item required two separate answers 

until they were able to look at the revised item, which made the two separate parts apparent. ELL 

students admitted that their answers to the original version of item 1 would most likely have been 

incorrect if it were on an exam. The helpful features in terms of macrostructure on the revised 

item 1 are shown below.  

 
 

Scaffolding. ELL students perceived that the bulleted questions offered support and 

guidance to set up and solve the problem. They discussed that the separated questions provided 

content support because the first bulleted part prompted them to solve for the theoretical yield of 

methanol, which would be needed to later solve for the percent yield of methanol using the 

actual yield given. ELL students also acknowledged that the third sentence in the background 

information about how methanol is made was useful in enhancing their understanding of the 

Methanol (chemical formula: CH3OH) is the simplest alcohol. It can replace gasoline, 

and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  

[Space] 

 What would be the theoretical yield of methanol if you mix 68.5kg of CO(g) 

with 8.60 H2(g)? 

 You found that 3.57x104g CH3OH is actually produced. What is the percent 

yield of methanol? 
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chemical reaction taking place in the problem. One ELL student also pointed out that the phrase 

starting with “you found that…” resonated with her because “you” adds context to the item and 

“actually” signals that the value is for actual yield.  

 

 

Sheela: This one's [revised version item 1] much better, it's neater and you know which 

steps you need to take. It's much easier to understand because you can distinguish 

between which is the background, which is the main sentence. Then, the bullet points tell 

you which parts you need to do and then there's two steps to the problem. 

 

Readability. Furthermore, ELL participants perceived that the direct sentence structures 

present in the questions of the item supported their comprehension. The bulleted parts of the item 

that start with “what” were perceived to be easy to read.  
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Representation. Lastly, ELL students identified the chemical formulas next to the names 

of compounds methanol, carbon monoxide, and hydrogen gas as helpful visual features in the 

item. Chemical formulas provide a symbolic representation of each of the compounds discussed 

in the item. They provide a way to visualize a chemical reaction and make it easier for a student 

to write a balanced equation.  

 

NES students’ perceptions of helpful features in item 1 (original). NES participants 

generally responded positively to the revised version of item 1. The features they found to be 

helpful have been thematically arranged and will be discussed in the following order: (1) 

macrostructure, (2) representation, and (3) readability.  

Macrostructure. The most dominant helpful feature in the revised version of item 1 that 

the NES students mentioned was related to the visual organization of the question, especially the 

separation of the questions into two separate bullet points. NES students found this revised 

version to be structurally clearer and noted that it was easier to determine what they were asked 

to do in response to the item.  
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and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  
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Abby responded positively to this item when shown, “Obviously, it's cleaner looking … 

like … the two questions are broken up so you don't have to keep rereading it and looking for 

what was it asking. […] It's just easier to see.” 

Representation. The next most frequently reported helpful features by NES participants 

regarding the revised item 1 were related to the theme “representations”: the presence of 

chemical formulas of the chemical compounds, methanol, carbon monoxide and hydrogen gas. 

Although the chemical formulas were provided in the original item, NES students mentioned that 

these representations were more clearly evident in the revised item because the chemical 

formulas appeared in parentheses next to the name of each compound as it was initially being 

discussed. Ana stated, “[chemical formulas] help me put this together, I have an image of what 

the reaction looks like.”  

 

Readability. NES students also indicated other helpful features in the revised version that 

augmented the overall readability of this item. Among these were the simple sentence structure 

Methanol (chemical formula: CH3OH) is the simplest alcohol. It can replace gasoline, 

and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  
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yield of methanol? 
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used in the description of the reaction, which made it easier to read the background information 

provided. Compared to the original version of this item, the revised version modified syntax and 

simplified longer sentences into shorter sentences, which was perceived to be easier to follow.  

 

Scaffolding. NES students identified features in the revised item that provided guidance 

as being helpful. They specifically found that bullet points led them to first find the theoretical 

yield, and then to use the provided actual yield to solve for the percent yield. Emery mentioned, 

“This one was pretty easy because it's like writing the book. Each question leads to the other. 

You need each question to finish this whole series of questions.” Ana similarly stated, “I like 

how you need the answer for each question to move on to the next.” Jessica also mentioned, “It 

walks you and it guides you down a little more of what you’re doing.”  

Comparison of themes: Helpful features in item 1 (revised). A comparison of themes 

between ELL and NES students for the revised item 1 suggest that both groups responded 

favorably to the overall presentation (macrostructure) of the item 1 (revised). However, ELL 

participants more frequently indicated that they benefitted from the structured bulleted parts, 

which gave them the guidance and a map of where to start and how to solve the problem than did 

the NES students. In terms of readability-related features, the groups of participants identified 

different helpful features: NES students found the simple and shorter sentences and syntax in the 

background information portion to be useful; whereas ELL students identified the direct 
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sentences in the questions that start with “what” to be useful. Both groups reported that the 

chemical formulas were clearer to see and that the simple sentence structure made it easier to 

read the provided background information.  

These findings suggest that both groups of students found visual organization an 

important feature in this item. The separation of the background from the bulleted parts seemed 

to help students see that this item consisted of a two-part question and enhanced the item’s 

accessibility. This point is in alignment with prior research that suggests that structuring written 

text spatially adds to visual clarity and also plays a role in reducing cognitive load (Lacroix, 

1999). 

Another important finding is that while ELL participants relied on scaffolding features 

when attempting to set up and solve the problem, NES participants reported using more 

language-dependent features, such as sentence structures and wording, to set up the problem. 

This suggests that students with lower English language proficiencies may particularly benefit 

from scaffolding within items, as reported in similar studies (Siegel et al., 2014).  

A summary of the comparison of themes is shown in Figure 14 below. 
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Item 1 Revised: Helpful Features 

 

 

 

 

 

 

 

 

 

Figure 14. A comparison of the themes for item 1 (revised) helpful features presented in the 

order of frequency. 

 

ELL students’ perceptions of challenging features in item 1 (revised). ELL 

participants largely favored features of the revised version of item 1. Their responses indicating 

challenging features in the revised version of item 1 were limited to one aspect: scaffolding.  

Scaffolding. The ELL participants identified that the background information about 

simplest alcohol and gasoline provided in the item was unnecessary, irrelevant and/or not helpful 

in solving the problem. 

 

NES students’ perceptions of challenging features in item 1 (revised). Although NES 

participants also favored many features in the revised version of item 1, their responses indicated 
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several challenging features, related to the themes of scaffolding and readability, which could be 

improved.  

Scaffolding. NES participants identified that the background information provided in the 

item as unnecessary, irrelevant and/or not helpful in solving the problem. Abby stated, “I would 

remove the fact that methanol can replace gas just because I really don’t think it helps with 

calculating your answer.” Likewise, Ana mentioned, “Yes, take this part out – it’s fun to know 

these little fun facts, but I mean in an exam (laughs), cool, but I don’t need to know this.” Ana’s 

comment suggests that, during a timed exam, additional information not related to solving the 

problem is not helpful.  

 

Readability. NES participants also indicated that the revised item contained confusing 

words that made it difficult to follow. The words ‘mixing’ and ‘mix’ were considered 

problematic because some students perceived ‘mix’ to suggest that the numerical values for 

carbon monoxide and hydrogen gas should be mathematically added together since these 

compounds are chemically reacting. Jessica expressed, “Whenever anything says mix, I 

immediately think of adding but I feel that's not what I'm supposed to do.” NES students 

suggested eliminating “mix” and using a more precise word such as “reacted.”  

Methanol (chemical formula: CH3OH) is the simplest alcohol. It can replace gasoline, 

and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  
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Comparison of themes: Challenging features in item 1 (revised). After reviewing 

revised and original items, both groups of participants reported that they would choose the 

revised version of item 1 on an actual exam. Both ELL and NES students did not find the 

background information provided in the revised item 1 to be useful, especially on an exam. The 

background information was included in the item to add context to the problem, which is 

recommended to be a useful feature in previous studies conducted with middle school students 

(Siegel, 2007); however, NES and ELL undergraduate students’ responses suggest that any 

information that is not directly tied to setting up and solving the problem is not perceived to be 

useful.  

Another interesting finding is that NES students identified readability-related features in 

terms of word choices that they found challenging. NES students indicated that the words 

“mixing” and “mix” were not as clear as “react,” which is used in the original version. Many 

NES participants commented that “mix” can mislead students to think that the values of the 

reactants should be mathematically added and suggested that “react” is better. This is an 

interesting point because the word “react” is considered to be more technical than “mix” and it 

was intentionally replaced by “mix” in the revised version for the purposes of linguistic 

simplification (Siegel, 2007). This finding suggests that NES students are more experienced with 

gauging the technical accuracy of words compared to ELL students. Because of this, certain 

Methanol (chemical formula: CH3OH) is the simplest alcohol. It can replace gasoline, 

and it is used as fuel in race cars. Methanol is made by mixing gaseous carbon 

monoxide (CO) and gaseous hydrogen (H2).  
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connotations of words should also be considered when changing vocabulary as it can influence 

the way students form interpretations.  

A summary of these themes is shown in Figure 15.  
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Figure 15. A comparison of the themes for item 1 (revised) challenging features presented in the 

order of frequency.  
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Item 2 (original) required students to interpret a graph to determine the limiting reactant 

in a reaction, using stoichiometric calculations (shown below). The following steps are required 

to solve this item:  

1. To successfully solve this item, the student must recognize–without being 

prompted–that she/he needs to first write a balanced chemical equation based on 

the description provided about Na being added to Cl2 to produce NaCl.  

2. Next, part a asks the student to explain the shape of the graph, which requires 

her/him to read the graph provided and understand that the production of NaCl 

plateaus once 40 g of Na is added. At this point, they may notice that there are no 

numerical values provided on the y-axis which correlate with the amount of NaCl 

produced.  
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3. Part b expects the student to solve for the mass of NaCl made when 20.0 g of Na 

is added by performing stoichiometric calculations based on the balanced 

chemical equation.  

4. Part c asks students calculate the mass of Cl2 in each container. From the initial 

description provided about the seven containers, they know that there will be 

equal amount of Cl2; however, to determine an exact numerical value of Cl2, they 

must use a mass of Na and solve for the mass of Cl2 using stoichiometric 

calculations.  

5. Part d requires a similar setup of the problem to part b. The students needed to 

solve for the mass of NaCl produced when 50.0 g of Na is added by performing 

stoichiometric calculations based on the balanced chemical equation.  

6. Finally, students are asked to identify the limiting reactant (Na or Cl2) and 

calculate its mass in the previous steps, b and d. This part then requires that the 

masses of each compounds be stoichiometrically used to find a mass of the 

product, NaCl. The reactant yielding a lower amount of product is the limiting 

reactant.  

The item 2 (original) was deliberately selected in this study because it has a higher level 

of content and conceptual difficulty as it was labeled as a “challenge question” in the original 

source of this item. This item requires higher problem solving skills than other limiting reactant 

items and the ability to make conceptual connections to identify the steps necessary to solve it. 

Students’ responses to this item were helpful because they provided insights on the types of 

linguistic features students may rely on and/or find unsupportive in solving challenging limiting 

reactant word problems.  
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ELL perceptions of the helpful features in item 2 (original). ELL students generally 

found this item to be difficult to solve and were unable to successfully set up the problem; 

however, they reported helpful features represented by the following themes: (1) scaffolding, (2) 

readability, (3) macrostructure, and (4) representation.  

Scaffolding. ELL students indicated that they found the background information about 

the setup of the reaction to be helpful and relevant in understanding the overall context of the 

item. For example, the information about how the reaction of chlorine gas and sodium is set up 

tells the student to how to write a chemical equation.  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 
a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Readability. Additionally, ELL students reported that they appreciated having direct 

sentences in the lettered points of the item after the graph because these points were easy to read 

and comprehend. Ina commented, “…at least I know what they want…if they want a mass, they 

say, ‘calculate the mass of’…”  

 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above. 
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Macrostructure. ELL students reported that seeing that the question was organized in 

lettered points separated from the background made it appear more approachable. Elara 

mentioned, “I just think it’s not as scary looking. Plus, I kind of jumped to just looking straight at 

the graph, rather than going back and re-reading.”  

 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Representation. As mentioned by Elara above, ELL students specified that the graph was 

a positive feature of the question because they were able to see that as sodium was added to the 

reaction, it changed the amount of sodium chloride produced up to a certain point. Lupe stated, 

“I thought it was a really good visual representation of what was going on.” 

 

NES perceptions of the helpful features in item 2 (original). Similar to ELL 

participants, NES participants found the original version of item 2 to be difficult to solve, and 

only a few students were able to set up this problem successfully. The key helpful features 

identified by NES students are represented by the following themes: (1) macrostructure, (2), 

readability, (3) scaffolding, and (4) representation.  

Macrostructure. The more prevalent features identified by NES participants were related 

to the overall appearance of this question. Students noticed that the item was structured in a way 

that appeared to be shorter in length and that parts were separated into bulleted points. Abby was 

pleased to see that amount of reading required on this item minimal: “I liked [item 2 original] 

because you don’t have to read too much.” This comment is interesting because it seems that the 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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format of the item made it appear that the item did not require as many steps as it actually does to 

set up and solve the problems.  

 

Readability. NES participants noted that this item was easy to read because it contained 

direct sentences in the bulleted parts. Emery mentioned: “I like how this one’s worded. 

‘Calculate the mass…’ That’s straightforward.”  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

[Space] 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Scaffolding. The next set of helpful features discussed by NES students showed that they 

found the description of the reaction provided in the first part of the item to be helpful. Students 

mentioned that this information enabled them to better interpret the graph provided. Ana stated, 

“They are telling you that the first sample has this amount and the second sample has this 

amount. It just helps you understand what the graph is supposed to be.”  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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The description of the reaction also helped students understand that the same reaction is taking 

place in seven different containers.  

Jasper explained the usefulness of this feature:  

 

Jasper: I think seven closed containers is pretty important because it tells you what 

you’re looking at when you look at the graph. You’re not just looking at somebody who 

just added to a substance to one container. It also tells you that the mass of chlorine gas 

does not change, that’s important too…. Yet, sodium chloride amount peaks at some 

points and it’s because the amount of chlorine gas didn’t change. That’s in the question 

so that is helpful.  

 

Representation. NES students also indicated that having the graph available enabled 

them to understand the nature of the reaction described as they were able to track the amount of 

sodium added to the reaction and how it was related to the production of sodium chloride.  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Comparison of themes: Helpful features for item 2 (original). Both groups of 

participants found the original item 2 to be challenging to solve, which was expected. Although 

most students were unable to successfully set up and explain how to solve this problem in its 

entirety, they were able to point the features that helped them in the process of solving this item. 

ELL students reported that the description given in the beginning of the item was most helpful 

because the background information provided a description about how this reaction was set up 

over seven containers. NES students, on the other hand, found the most helpful feature to be the 

item’s overall appearance. Both groups recognized that having direct sentences in the lettered 

parts of the item made it easier to read and know what the questions were asking. The graph was 

also considered to be a relatively helpful representation to convey the nature of the reaction.  

An interesting finding here is that ELL students tended to identify scaffolding-related 

helpful features while NES students tended to identify macrostructure-related helpful features for 

item 2 (original). One possible explanation for this is that ELL students rely more on supportive 

structures that provide context to the problem they are being asked to solve (Siegel, 2007; Siegel 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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et al., 2014). In the case of item 2 (original), the first three statements provided useful contextual 

information about how the reaction of chlorine gas and sodium was set up to form sodium 

chloride in seven containers. This information provided the foundation needed to interpret the 

graph. NES students may not have needed this description as much as ELL students since NES 

students indicated that they noticed the graph and the lettered parts of the item first. Literature on 

the relationship between language proficiency and academic performance suggests that ELL 

students need contextual connections in items that are more cognitively demanding, as this item 

was (Cummins, 1984). 

Although both the ELL and NES participants determined that the background 

information provided in item 1 (original and revised) was not helpful because they could not use 

it to set up the problem. In item 2, however, the students found the background information 

helpful because they could use it to set up the problem. This suggests that there are differences in 

the type of contextualization employed in an item in terms of its usefulness for students. If the 

context supports problem solving, then it is considered helpful. If the context provides additional 

information that does not contribute to solving the problem, then it is not considered helpful.  

A comparison of the themes that emerged from students’ responses about helpful features 

in the original item 2 are shown in Figure 16.  
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Item 2 Original: Helpful Features 

 

 

 

 

 

 

 

 

Figure 16. A comparison of the themes for item 2 (original) helpful features presented in the 

order of frequency. 

 

ELL students’ perceptions of challenging features in item 2 (original). ELL students 

identified challenging features that have been organized in the following themes: (1) 

representation, (2) scaffolding, and (3) readability.  

Representation. Although it was visually appealing to have a graphical representation 

included in the item that described the reaction of sodium and chlorine to form sodium chloride, 

not having a y-axis labeled was problematic part of calculations for students. ELLs were drawn 

to the graph; but, upon further inspection, they could not understand whether or not the graph 

was intentionally given without the y-axis.  

 

Interviewer: Where do you think other students may have struggled in this question? 

ELL NES 

Macrostructure Scaffolding  

Representation 

Readability  Readability  

Representation 

Macrostructure Scaffolding  
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Naima: I think they would have a tough time trying to think about what the y-axis is, the 

numbers and the values for the y-axis, and that would just throw them off of just figuring 

out B, C, and D parts, and eventually towards E.  

 

To successfully solve this problem, the students would have needed to determine the 

numerical values on the y-axis using stoichiometry to solve for the grams of NaCl formed in 

each container.  

 

During the interviews, I observed that several ELL students drew their own visual 

diagram of the seven containers in the experimental setup. When I asked Lupe why she had 

drawn this figure, she responded, “It’s just easier for me.” Ultimately, when I asked the students 

how item 2 (original) could be improved, ELL students suggested that it would be helpful to 

include a visual representation of the background information about the reaction in seven 

containers.  

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Scaffolding. In addition to the confusing graph and the lack of a representation of the 

seven containers, ELL students also indicated that it was difficult to figure out how to begin 

solving the problem. After carefully reading all of it (and re-reading), ELL students struggled 

with finding an effective starting point for answering parts b, c, d, and e. Carlos stated, “…it took 

a couple of times to read because they asked for a lot of things so I just took a couple of times to 

read through it.”  

Rohan remarked that it was challenging to connect all the pieces of this item. He stated,  “[item 2 

original] is the hardest because it looks simple but the wording makes you think a lot, and people 

would get confused especially since you don't have any guidelines...confusing steps. There’s no 

y-axis value and stuff.” 

Readability. The final set of features ELL participants found to be challenging were 

focused on vague wording and phrases in the item. Phrases such as “and so on” in the 

background portion of the item and “explain the shape” in part b were perceived to be vague. It 

was unclear whether or not the students should make the assumption that sodium continues to be 

added to in the same increments over seven containers or more. Additionally, the word “explain” 

in part was not precise enough to relay the type of information students should be conveying as 

part of their answers. For example, “explain the shape” could potentially be asking the student to 

discuss the shape that results from connecting the data points, the slope of the line, and/or the 

features of the graph such as axes, relationships, etc. 
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Interviewer: Do you think students would be able to answer part a?  

Seojun: Yes, especially if they're just—their first language is [English]. They probably 

just even write one word. But for me, I can't really put a shape to it right away. I just had 

to describe what it looks like to me. 

 

NES students’ perceptions of challenging features in item 2 (original). NES students 

also found the original item 2 to be challenging to solve even though they appreciated its 

structured presentation. During the interviews, NES students would often try to ask me follow-up 

questions to check their understanding and receive further guidance in order to clarify features 

they found challenging. The specific features NES students identified as challenging are 

arranged in the following themes: (1) scaffolding, (2) readability, (3) representation.  

Scaffolding. The main challenge reported by NES participants was that the item was 

difficult to solve because it was difficult to determine which steps to take to solve the problems. 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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NES students felt that there was a lack of guidance and embedded cues that help them 

understand where to begin and provide reassurance along the way. For example, Alex 

mentioned, “… it doesn’t remind you to balance the equation.”  

NES students also perceived that there are many implicit connections and steps they are 

expected to make, which is stressful during an exam. Nora expressed, “I feel like if you were to 

get [item 2 original] on the test, and you don’t know what’s going on, I feel like you would get 

anxiety…” Ana discussed how there was not enough guidance to understand the concept in the 

item. She mentioned, “This one [item 2 original], I could have solved the math. But I wouldn’t 

have really understood the entire concept that they were going after […] but I definitely think 

that this one you don’t learn from.”  

Readability. NES students also suggested that there were several words and phrases that 

could be clearer to communicate what the question is asking. For example, “remaining,” “and so 

on,” and “explain the shape” were perceived to be vague and elicited multiple meanings.  

 

Abby indicated: I personally just hate it when they're like “explain the shape” of the 

curve for me.  

Interviewer: Why is that? 

Abby: Well, I don't know, it's not -- Do you want it mathematically or…I don't know. I 

was like it's a positive slope, and then it levels off. Do you want a simple version? Or do 

you want me to go into details that there's a positive correlation? 

 

Matt further echoed Abby’s concern regarding part a.  
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Matt: I feel like not every student would put down the same answer. I feel like if 

someone were to say shape like someone would say like an L, because sometimes when I 

see shape, I’m like "it’s a circle." Maybe for this, it'd be better to describe the relationship 

or at least that’s what I would put down. 

 

Although “remaining” was not perceived as a complex word, students were unfamiliar 

with being asked about the “remaining reactant” since they were more used to being asked about 

the “limiting reactant,” which caused some uncertainty.  The phrase “so on” was considered 

vague because students are forced to assume that sodium is continually added in the same 

increments.  

Representation. NES participants conveyed that while the graph should have been 

helpful, it appeared to be incomplete. They explained that they were unsure if the absence of 

values on the y-axis was deliberate or an error was made in the question itself, which caused 

confusion. They were unable to determine that they would need to perform stoichiometric 

computations in order to label the values on the y-axis.  

Overall, NES students conveyed that additional clarification about the values on the y-

axis would help them interpret the graph.  When asked to make suggestions how to improve this 

item, most NES students reported that a visual representation about the setup of the reaction 

would have been a helpful tool in the question because picturing seven containers and how it 

relates to the graph was challenging. Alex explained his overall impressions about the original 

item 2 when he said, “…There's no visual aid for the containers […] and then, the y-axis…there 

are no units on there and no numbers.” 
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Comparison of themes: Challenging features in item 2 (original). The original item 2 

was generally perceived to be challenging to solve for both ELL and NES participants. Although 

the students identified helpful features regarding the item’s structured presentation, graph and 

bulleted points, both groups also perceived that it contained features that were problematic for 

understanding the item. ELL students’ perceptions highlighted that they tried to infer guidance 

from the graph provided; however, this strategy was not effective because the graph lacked 

values on the y-axis. Because of the lack of content support and signals, ELL students could not 

make the connection that they needed to use the masses of Na to solve for the mass of NaCl in 

order to assign values to the y-axis. Both ELL and NES students indicated the presence of 

complex vocabulary deterred their ability to comprehend the question as intended.  

A summary of the order of emerging themes between ELLs and NES students is 

presented below in Figure 17.  

 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). You 

add 10.0g of sodium to the first sample, 20.0g of sodium to the second sample, and so 

on. Sodium and chlorine react to form sodium chloride. 

 

a. Explain the shape of the graph. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. Calculate the mass of Cl2 in each container. 

d. Calculate the mass of NaCl formed when 50.0g of sodium is used. 

e. Identify the remaining reactant, and determine its mass for parts b and d above.  
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Original Item 2: Challenging Features 

 

 

 

 

 

 

Figure 17. A comparison of the themes for item 2 (original) challenging features presented in the 

order of frequency. 

 

Participants’ responses imply that each group approached the item differently in trying to 

make sense of how to begin solving the problem. ELL students read the background description 

of the reaction first, which they found to be helpful; next, they looked to the graph to understand 

how adding sodium is related to the production of sodium chloride since the amount of chlorine 

added remained the same. Unfortunately, the graph led to uncertainty and confusion as ELL 

students could not figure out how or why the y-axis values were missing and that they needed to 

solve for the mass of sodium chloride using stoichiometry. ELL students looked at the lettered 

parts for content support and guidance on how to begin solving the problems, which was also 

lacking.  

NES students, on the other hand, first approached the lettered parts of the item to begin 

solving the problem; however, they noticed that there was little guidance about how to begin 

setting up the calculations. NES students were then confused by complex words and phrases, 

followed by the missing information on the graph. This finding suggests that ELL and NES 

students look for different types of features to make sense of and solve difficult, multi-step word 

ELL NES 

Scaffolding  

Representation Readability  

Readability  

Representation Scaffolding  
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problems. Consistent with the literature (Siegel et al., 2014), the ELL students prioritized using 

the representation to form their interpretations of the problem, as this is a less language-

dependent strategy for developing understanding of a problem.   

Item 2: Revised Version 

 The original item 2 was modified based on the guidelines of the EFCA discussed in 

Chapter 3 and modifications discussed in Appendix A. The revised version of item 2 was 

modified to include two visual representations of the setup of the reaction. The first showed 

seven reaction containers, and the second was a list of the masses of Na in each container. The 

lettered subparts (a,b,c,d,e) in the original item were rewritten and restructured to provide 

scaffolding by embedding guided inquiry and content support intended to help students make 

connections from one step to the next in solving the item. For example, part a in the revised 

version instructs the students to write a balanced equation, which was not explicitly mentioned in 

the original item. Part b in the revised item notifies the student that there are intentionally no 

numbers on the y-axis because they are expected to compute the mass of NaCl based on known 

values of Na. The next eight steps similarly offer content support and guide them to solve for Cl2 

and, eventually, identify the limiting reactant. Because of the length of this item, which spans 

two pages, the item has been divided into two parts as shown below: (1) the background 

information part, including the jars, list and the graph; and (2) the lettered parts.  
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There are seven total closed gas jars shown in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add sodium (Na(s)) as follows: 

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make sodium chloride. After the reaction in each jar is 

complete, you collect and measure the amount of sodium chloride formed. The graph 

below shows your data.  
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ELL students’ perceptions of helpful features for item 2 (revised). As the revised 

version of item 2 was presented to ELL participants, they were generally more confident in 

approaching it and solving each part of it. They also reported that they would be more likely to 

get the revised item 2 correct if it were on an exam. When asked to identify the features of the 

item they found to be helpful, ELL students reported the features related to the following themes: 

(1) scaffolding, (2) representation, and (3) readability.  

Answer the following questions about this reaction and the data in the graph: 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

 

b. If you notice, there are no numbers on the y-axis of graph above. This means 

that you will have to figure out the numbers on the y-axis. Based on the 

balanced equation in Part A, what mass of NaCl should be produced when 

20.0g of Na reacts with the Cl2 in jar 2? 

 

c. Based on the amount of NaCl that you calculated in Part B, label the y-axis of 

your graph.  

 

d. Each of the jars has the same mass of Cl2. We do not know what that mass is, 

but we do know that there was enough Cl2 to react with the 20.0g of Na in jar 

2. What mass of Cl2 was needed to produce the amount of NaCl you calculated 

in step b of this problem?  

 

e. Use the balanced equation from Part A to calculate the mass of chlorine gas 

you would need to react with the 50g of Na in jar 5. 

 

f. How does the amount of Cl2 you calculated in Part E compare to the amount of 

Cl2 that is actually in the jar? What is the leftover reactant? 

 

g. What is the mass of the leftover reactant in jar 5?  

 

h. In the graph above, you can see that more NaCl is produced when as you add 

more Na, but when you add more than 40g of Na, the amount of NaCl 

produced is does not change. Using the information you found in the previous 

steps, explain the following: 

i. Why does the amount of NaCl produced increase at first when you add 

more sodium? 

ii. Why is the amount of NaCl produced constant when you add more than 

40g of sodium? 
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Scaffolding. The most helpful feature reported about the revised item 2 was the content 

support and guidance it provided for solving the problem. Although ELL students found this 

item difficult to solve, ELL students were able to begin setting up the problem and successfully 

explain it. Many ELL students discussed that they were able to follow the logic of steps a 

through h as they were thinking through this item because these steps helped them connect the 

computational parts involving stoichiometry with the graph to the concept of limiting reactant. 

Ina stated, “It leads you, it guides you. Each question leads to another one.” 

 

Sheela: Even though there are much more words, it's more comprehensive than the last 

one. The other one is just like, Oh, what is that? But you don't really know where to start 

with. This one it gives it to you like … for here, you tell me to write a balanced equation, 

it's what I did. You can solve that relationship, you see that you're supposed to use this 

relationship to figure out the rest… 

 

Representation. The next most commonly reported helpful features about the revised 

item 2 related to the provided visual representation of the seven jars, as well as the list of 

contents in each jar. Students discussed that it is often hard to remember the details given in the 

background of the item when trying to solve it, and being able to see an illustration of the jars 

helped them remember it without having to reread the background information. These 

representations can be seen in the first part of the item shown below. 
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Hector: Because you have a visualization of the parts of it. With the other one [item 2 

original], I forgot that there's supposed to be seven [jars]. I totally forgot in the other one 

[item 2 original]. It just says so on and so on, I was like, Okay, I guess they just invented 

it. 

 

 

Readability. Finally, ELL students discussed that although the revised version was longer 

in length than the original version, it was easy to read and comprehend. Because of the item’s 

 

There are seven total closed gas jars shown in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add sodium (Na(s)) as follows: 

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make sodium chloride. After the reaction in each jar is 

complete, you collect and measure the amount of sodium chloride formed. The graph 

below shows your data.  
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simple sentence structure and word choices, ELL students were able to more readily understand 

the tasks being presented to them. For examples, ELL students particularly appreciated reading 

the lettered parts that began with directives such as “write…” and “what is…” and “how…” 

These features have been shown in the latter portion of the item below.  

 

NES students’ perceptions of helpful features. NES students were more successful in 

their setup of the revised version of this item than they were in their setup of its original version. 

Answer the following questions about this reaction and the data in the graph: 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

 

b. If you notice, there are no numbers on the y-axis of graph above. This means 

that you will have to figure out the numbers on the y-axis. Based on the 

balanced equation in Part A, what mass of NaCl should be produced when 

20.0g of Na reacts with the Cl2 in jar 2? 

 

c. Based on the amount of NaCl that you calculated in Part B, label the y-axis of 

your graph.  

 

d. Each of the jars has the same mass of Cl2. We do not know what that mass is, 

but we do know that there was enough Cl2 to react with the 20.0g of Na in jar 

2. What mass of Cl2 was needed to produce the amount of NaCl you calculated 

in step b of this problem?  

 

e. Use the balanced equation from Part A to calculate the mass of chlorine gas 

you would need to react with the 50g of Na in jar 5. 

 

f. How does the amount of Cl2 you calculated in Part E compare to the amount of 

Cl2 that is actually in the jar? What is the leftover reactant? 

 

g. What is the mass of the leftover reactant in jar 5?  

 

h. In the graph above, you can see that more NaCl is produced when as you add 

more Na, but when you add more than 40g of Na, the amount of NaCl 

produced is does not change. Using the information you found in the previous 

steps, explain the following: 

i. Why does the amount of NaCl produced increase at first when you add 

more sodium? 

ii. Why is the amount of NaCl produced constant when you add more than 

40g of sodium? 



 

152 

 

They also generally responded positively to the modifications that were added. The helpful 

features most commonly reported by NES students were related to the following themes: (1) 

representations, (2) scaffolding, and (3) readability.  

Representation. The helpful features most commonly reported by NES participants were 

the visual representations of the jars and the list of the contents of each jar. The students 

discussed that having the visual representation of the jars was particularly helpful in 

understanding the setup of the problem. Emery stated, “I think that's [visual of jars] really helpful 

because you understand that each jar has the same amount of Cl2 in it. It actually makes you 

understand.” These features have been shown below in the first part of the item.  
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Scaffolding. NES participants also identified helpful features in the revised version of 

item 2 that provided guidance for each step need to solve the problem. NES participants 

discussed that this question was particularly good at walking them through the logic of the 

problem and helped them understand why the values on the y-axis were left out. Nora 

commented, “This one is more specific because it guides you through the process. It starts off 

with ‘write your equation first’ [but] the other one [item 2 original] didn't mention any of that. 

That was on your own to figure out.” 

 

There are seven total closed gas jars shown in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add sodium (Na(s)) as follows: 

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make sodium chloride. After the reaction in each jar is 

complete, you collect and measure the amount of sodium chloride formed. The graph 

below shows your data.  
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Alex also added that the revised version was a good question for eliciting learning, which 

is important. However, he perceived that the original version of the item may be more 

appropriate for testing purposes because he felt that chemistry exam questions are not typically 

designed with this much content support and guidance. Alex believed this in part because he did 

not need as much guidance to successfully solve this item; he was able to solve it without relying 

on the added scaffolding.  

 

Alex: For learning something, I feel like this one 2 revised shows if you’re proficient 

with it just because it's better for learning just because the few steps on 2 original are 

broken into almost double the steps in 2 revised. If a student's trying to learn it and 

wanted not a step-by-step but easing their way through it, 2 revised would be better, but 2 

original is the better purely test question. 

 

Readability. Finally, NES participants discussed that the revised version of item 2 was 

easier to comprehend because of its direct sentences and simpler words. For example, statements 

in the lettered parts such as “write the balanced equation,” “what mass of NaCl,” and “label the 

y-axis” are examples of what the students identified as helpful, direct sentences. These features 

are shown below in the first part of the item.  
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Comparison of themes: Helpful Features in item 2 (revised). Unlike the original item 

2, ELL and NES students found the revised version of item 2 to be easier to read and solve. 

Although the revised version asked the students to solve for the same points as the original 

version, the revised version contains significantly more content support. ELL students found this 

type of support to be the particularly helpful in solving the problem. While NES students 

Answer the following questions about this reaction and the data in the graph: 

 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

 

b. If you notice, there are no numbers on the y-axis of graph above. This means 

that you will have to figure out the numbers on the y-axis. Based on the 

balanced equation in Part A, what mass of NaCl should be produced when 

20.0g of Na reacts with the Cl2 in jar 2? 

 

c. Based on the amount of NaCl that you calculated in Part B, label the y-axis of 

your graph.  

 

d. Each of the jars has the same mass of Cl2. We do not know what that mass is, 

but we do know that there was enough Cl2 to react with the 20.0g of Na in jar 

2. What mass of Cl2 was needed to produce the amount of NaCl you calculated 

in step b of this problem?  

 

e. Use the balanced equation from Part A to calculate the mass of chlorine gas 

you would need to react with the 50g of Na in jar 5. 

 

f. How does the amount of Cl2 you calculated in Part E compare to the amount of 

Cl2 that is actually in the jar? What is the leftover reactant? 

 

g. What is the mass of the leftover reactant in jar 5?  

 

h. In the graph above, you can see that more NaCl is produced when as you add 

more Na, but when you add more than 40g of Na, the amount of NaCl 

produced is does not change. Using the information you found in the previous 

steps, explain the following: 

i. Why does the amount of NaCl produced increase at first when you add 

more sodium? 

ii. Why is the amount of NaCl produced constant when you add more than 

40g of sodium? 
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acknowledged that the scaffolding-related features provided guided support, they reported that 

visual representation of the jars to be more helpful than the content support.  

The difference in the order of the emergent themes emphasizes the helpfulness of 

scaffolding particularly for ELL students on items with higher content difficulty. This finding is 

in alignment with previous research (Siegel, 2007; Siegel et al., 2014) that indicates that the use 

of scaffolding is especially beneficial for ELL students and effective at lowering the test score 

gaps between ELL and NES students on science assessment items. Some NES students found 

that adding a high level of content support and guidance would make this item more appropriate 

for learning instead of for testing purposes. This viewpoint suggests that students may have 

preconceived expectations of exam items versus practice or homework items. Students may not 

expect chemistry exam items to contain guided inquiry, especially in college-level introductory 

chemistry courses, where most instructors utilize multiple choice formatted questions focused on 

computational problem solving (Hartman & Lin, 2011). As such, students may expect more 

content support and guidance to appear on homework items than on exam items. 

A summary of the comparison of themes is shown in Figure 18. 
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Item 2 Revised: Helpful Features 

 

 

 

 

 

 

 

 

Figure 18. A comparison of the themes for item 2 (revised) helpful features presented in the 

order of frequency. 

 

ELL students’ perceptions of challenging features in item 2 (revised). ELL 

participants generally perceived the revised version of item 2 to be more accessible and easy to 

understand than the original version. When asked to identify challenging features within the 

revised version, they discussed how several features of the item could be improved to better suit 

their assessment needs. The major challenging features identified by ELL participants are related 

to the item’s (1) macrostructure, (2) readability, and (3) representation. 

Macrostructure. The main concern for ELL participants regarding the revised version of 

item 2 is that the item appeared to be lengthy at first glance. Compared to the original version of 

item 2, the revised version does have added steps and two additional visual representations (the 

illustration of the jars and the list of the contents of the jars), which required this item to be 

presented over two pages. ELL students discussed that when questions appear to be long and 

wordy, it is concerning because it requires more reading. Naima described her reaction, “Yeah, 

that's pretty overwhelming considering how the presentation to like all the questions are in one 

page but I think there are ways to make it shorter there's some stuff that I didn't think it was 

ELL NES 

Scaffolding  Representation 

Readability  Readability  

Representation Scaffolding  
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necessary.” Elara expressed a similar perception: “Okay, this one looks more overwhelming but 

easier to solve then the other one. I like the pictures here too.”  

Readability. Furthermore, ELL participants identified features in the phrases and 

sentences in the item that they found difficult to interpret. They discussed that parts b and d had 

multiple big ideas in each step, which could have been separated or better organized to make 

simpler. As they were reading the parts, they paused and often looked up to ask for clarity by 

asking me if part b meant that they would need figure out all the numbers of the y-axis or just a 

few points. They felt that the instructions could have been clearer here. For part d, many students 

asked me about clarifying the second sentence. They found it awkward that it was stating that we 

did not know the mass of Cl2, but we did know there was enough. These features are shown 

below in the latter part of the item. 
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Representation. ELL participants appreciated having a visual representation of the setup 

of the problem. However, several participants suggested that it was unnecessary to have the 

visualization of the jars in addition to the list of the contents of the jars. They recommended that 

one of the representations (either the jars or the list) should be removed and it would reduce the 

length of this item. Some students recommended keeping the jars and others chose the list. The 

representations are shown below in the first part of the item.  

Answer the following questions about this reaction and the data in the graph: 

 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

 

b. If you notice, there are no numbers on the y-axis of graph above. This means 

that you will have to figure out the numbers on the y-axis. Based on the 

balanced equation in Part A, what mass of NaCl should be produced when 

20.0g of Na reacts with the Cl2 in jar 2? 

 

c. Based on the amount of NaCl that you calculated in Part B, label the y-axis of 

your graph.  

 

d. Each of the jars has the same mass of Cl2. We do not know what that mass is, 

but we do know that there was enough Cl2 to react with the 20.0g of Na in jar 

2. What mass of Cl2 was needed to produce the amount of NaCl you calculated 

in step b of this problem?  

 

e. Use the balanced equation from Part A to calculate the mass of chlorine gas 

you would need to react with the 50g of Na in jar 5. 

 

f. How does the amount of Cl2 you calculated in Part E compare to the amount of 

Cl2 that is actually in the jar? What is the leftover reactant? 

 

g. What is the mass of the leftover reactant in jar 5?  

 

h. In the graph above, you can see that more NaCl is produced when as you add 

more Na, but when you add more than 40g of Na, the amount of NaCl 

produced is does not change. Using the information you found in the previous 

steps, explain the following: 

i. Why does the amount of NaCl produced increase at first when you add 

more sodium? 

ii. Why is the amount of NaCl produced constant when you add more than 

40g of sodium? 
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NES participants’ perceptions of challenging features in item 2 (revised). NES 

students’ responses to the revised version of item 2 were similar to those of the ELL students. 

NES students echoed the concerns of ELL students in that although the revised item 2 is more 

accessible, it appears to be structurally lengthy and offered suggestions to improve the item. The 

challenging features they identified were related to (1) macrostructure, (2) readability, and (3) 

representation.  

 

There are seven total closed gas jars shown in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add sodium (Na(s)) as follows: 

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make sodium chloride. After the reaction in each jar is 

complete, you collect and measure the amount of sodium chloride formed. The graph 

below shows your data.  
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Macrostructure. NES participants perceived the most challenging feature in the revised 

version item 2 to be its length. The item appeared to be very lengthy and although the actual 

steps involved were easy to follow, the length made students nervous. Eric described his reaction 

to the item, “I think just having it so long and wordy, even bulleted A through J, it's a lot. I think 

it could overwhelm a student.” Alex also expressed his concerns, “I just think it's too many 

words to read. When I read exam question, I just want to know straight what the information is, 

or what it's asking, and then the givens.” 

Readability. Additionally, NES students discussed how certain parts in the question 

seemed wordy and could be shortened to improve readability. For example, it was suggested that 

part c be connected as an extension to part b since part b was already referring to labelling the y-

axis. Part d was considered to be redundant because the background information about the same 

amount of Cl2 in all jars was reiterated here. These features are shown below in the latter part of 

the item.  
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Representation. NES students also indicated that having two representations (the jars and 

the list) reflecting the same setup is unnecessary. By circling the visual representation of the jars 

and the list of the contents of the jars, they indicated that only one of these two is sufficient to 

convey the information that the amount of Na is changing, and the amount of Cl2 is staying the 

same. Some students recommended keeping the jars and others chose the list. 

Answer the following questions about this reaction and the data in the graph: 

 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

 

b. If you notice, there are no numbers on the y-axis of graph above. This means 

that you will have to figure out the numbers on the y-axis. Based on the 

balanced equation in Part A, what mass of NaCl should be produced when 

20.0g of Na reacts with the Cl2 in jar 2? 

 

c. Based on the amount of NaCl that you calculated in Part B, label the y-axis of 

your graph.  

 

d. Each of the jars has the same mass of Cl2. We do not know what that mass is, 

but we do know that there was enough Cl2 to react with the 20.0g of Na in jar 

2. What mass of Cl2 was needed to produce the amount of NaCl you calculated 

in step b of this problem?  

 

e. Use the balanced equation from Part A to calculate the mass of chlorine gas 

you would need to react with the 50g of Na in jar 5. 

 

f. How does the amount of Cl2 you calculated in Part E compare to the amount of 

Cl2 that is actually in the jar? What is the leftover reactant? 

 

g. What is the mass of the leftover reactant in jar 5?  

 

h. In the graph above, you can see that more NaCl is produced when as you add 

more Na, but when you add more than 40g of Na, the amount of NaCl 

produced is does not change. Using the information you found in the previous 

steps, explain the following: 

i. Why does the amount of NaCl produced increase at first when you add 

more sodium? 

ii. Why is the amount of NaCl produced constant when you add more than 

40g of sodium? 
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Comparison of themes: Challenging features for item 2 (revised). Both ELL and NES 

students responded similarly in regard to the challenging features of revised item 2. Participants 

were able to follow the guided steps to setup the item. Most students from both groups also 

indicated that they would prefer to see the revised item version of item 2 on an exam. Students 

perceived that while the revised item was more accessible and easier to follow than the original 

version, item 2 revised can be further improved. The main challenge that both groups of students 

identified is the overall length of the revised item. The macrostructure of the item seemed to 

 

There are seven total closed gas jars shown in the image above. Each jar has the same 

mass of chlorine gas (Cl2(g)) in it. You add sodium (Na(s)) as follows: 

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make sodium chloride. After the reaction in each jar is 

complete, you collect and measure the amount of sodium chloride formed. The graph 

below shows your data.  
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overwhelm students initially. Additionally, both groups perceived that having a visual 

representation of the jars as well as a list of the content of each jar was unnecessary and that only 

one representation would have been sufficient. It should also be noted that both groups of 

participants suggested having one of the two representations (the seven jars or the list) would be 

sufficient for their understanding. However, the preference for one over the other were evenly 

split among participants, which suggests that the type of helpful representation is a subjective 

choice for individual students regardless of language proficiency.  

Another noted concern was the readability of parts b, c, and d. ELL students discussed 

that it was challenging to understand parts b and d because these parts contained too much 

information and, therefore, they were hard to process. They suggested separating the big ideas. 

By comparison, NES students stated that parts b, c, d were too wordy, redundant, and should be 

made more concise so that the information could be conveyed more efficiently. This suggests 

that although both groups found similar parts of the item hard to follow, NES students were still 

able to interpret the information and identify language-based changes that could be made to 

improve readability. ELL students, on the other hand, were unable to come up with concrete 

language-based suggestions to improve these item parts, which could be attributed to their 

developing English language proficiencies. As shown in prior research, this finding affirms that 

ELL students could be differentially and disproportionately affected by linguistically challenging 

factors on science assessments (Hartman & Lin, 2011; Turkan & Liu, 2012).  

A comparison of the themes discussed has been shown in Figure 19.  

 

 

 



 

165 

 

Item 2 Revised: Challenging Features 

 

 

 

 

 

 

 

 

 

Figure 19. A comparison of the themes for item 2 (revised) challenging features presented in the 

order of frequency. 

 

The students’ responses to this item indicate that although there are advantages of adding 

content support and guidance to an item, there are other important factors to be considered such 

as the item’s length and the amount of reading time it requires, especially on an exam. This was 

not something that has been examined in previous studies that implemented the EFCA with 

middle school students (Siegel, 2007). However, this factor is significant for undergraduate 

students at the university setting because most exams are time-limited.  

Item 5: Original Version 

 The original version of this assessment item (shown below) asks the students to compute 

a mass of nitrogen based on the reaction of the Haber process. In order to solve this problem, 

students are required to:  

1. Stoichiometrically calculate a mass of N2 gas based on the given amount of 700g of 

NH3  

2. Account for the 70% yield by adjusting the mass of N2  
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ELL students’ perceptions of helpful features for item 5 (original). ELL students 

generally responded favorably the original item 5 in that they seemed to understand it; however, 

they were unable to successfully set up the problem. Although students recognized that solving 

the item was more mathematically complicated than other items they had seen in the study, the 

item itself was easy to follow. To that end, ELL participants identified helpful features related to 

the following themes: (1) macrostructure, (2) readability, and (3) representation.  

 Macrostructure. The most commonly identified helpful features for this item were 

related to its short length and overall presentation. ELL participants discussed during the 

interviews that it was comforting to see that this item appeared to be short in length. ELL 

students said that short problems require less reading time, which is important to them on timed 

exams. They also indicated that the visual separation of the background information from the 

question in the item was helpful.  

Readability. Additionally, ELL students identified helpful features for this item that were 

related to its simple sentence structure. ELL students found it especially helpful that the first 

sentence was not wordy and remained straightforward because it was directly phrased and 

contained simple syntax. They also reported that it was clear to follow what the question was 

asking them to do. Rohan’s statement exemplifies this perception: “…for [item 5 original], the 

thing I like about it is that it's very forthcoming, it’s good how they just go straight to the 

question and it stated directly what the problem is asking.” Seojun similarly mentioned, “[This 

one is] somewhat simpler, it's just like the unnecessary stuff is basically taken out.” 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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 Representation. ELL participants also circled and commented on the presence of the 

balanced equation provided in this item. This feature was considered to be a helpful 

representation of the Haber process as it shows that nitrogen gas reacts with hydrogen gas to 

produce ammonia. Students appreciated that the chemical equation was already balanced as 

indicated by the coefficients in front of the compounds. Another benefit of the provided chemical 

equation was that it showed the chemical symbols of the compounds, which was also considered 

useful by ELL students.  

 

NES students’ perceptions of helpful features for item 5 (original). Similar to ELL 

students, NES students found this item to be succinct and easy to interpret; however, they had a 

difficult time setting up this problem successfully. They reported helpful features that were 

related to the themes of (1) readability and (2) representation.  

 Readability. NES participants appreciated that this item was readable and easy to 

comprehend. They indicated that words in this item such as “must produce,” were simple and 

effective at pointing to the end goal of the item. They also identified the simple sentence 

structure of the first sentence to be helpful because it was easy to understand. 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 

 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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Representation. As did the ELL students, NES participants noted that that the balanced 

equation was a useful feature. They discussed that the balanced equation provided in the item 

was a key useful feature because the equation shows the reaction as well as the chemical symbols 

of the compounds involved in the reaction.  

 

 

Josh: The equation is probably the most important part because even though the question 

tells you that the conversion of nitrogen and hydrogen can turn into ammonia, if they 

don't give you the formulas, it'd be hard to figure it out. 

 

Comparison of themes: Helpful features for item 5 (original). The original version of 

item 5 was not considered to be an easy problem to solve computationally; however, both groups 

of participants identified key features that were helpful. ELL students primarily found the overall 

appearance to be helpful, while NES participants primarily found its simple vocabulary and 

sentence structure to be easily readable. The comparison of the emerging themes between ELL 

and NES participants is illustrated below in Figure 20. 

 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 

 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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Item 5 Original: Helpful Features 

 

 

 

 

 

 

Figure 20. A comparison of the themes for item 5 (original) helpful features presented in the 

order of frequency. 

 

These results suggest that ELL students were initially drawn to the item’s organization 

and visual structure. ELL students realized that this item is short in length and required less 

reading and interpreting of the English language. NES students were more focused on the 

readability-related features, which were more language-dependent. NES students found the 

phrase “must produce” useful in directing them to the main goal of the item. By contrast, ELL 

students did not notice this phrase and only a few students identified the direct sentence structure 

of the question, which begins with “what mass of nitrogen…” to be useful in focusing their 

attention on the question. This suggests that NES students are more prone to recognizing specific 

words in items than ELL students, who tend to first focus on language-free structures.  

ELL students’ perceptions of challenging features in item 5 (original). The main 

difficulty they encountered was the inability to figure out whether the mass of N2 should be 

decreased or increased to account for the 70% yield. In light of this, the challenging features they 

mainly perceived dealt with not having enough content support and guidance in the item. ELL 
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perceptions of challenging features were related to the following themes: (1) scaffolding, and (2) 

readability.  

Scaffolding. ELL participants discussed that the item lacked guidance on how to set up 

the problem and sounded vague. The background information provided was not perceived to be 

helpful and left students questioning how the term “high pressure” was related to the problem. 

Another concern expressed is that it was challenging to figure out where to begin the problem; 

some participants began with the 70% yield and others started with 700 g of NH3. Lupe 

expressed her concerns, “This one's way more vague, and the way that they're asking you to find 

the mass of nitrogen is confusing.” 

 

 

Ina: I found really interesting where it describes the Haber process. I've never heard of 

this before but if people know or if the students know what this process is then would 

[they] know how to set up this problem? But at the same time, it’s kind of redundant 

because so I would say like instead of like giving this extra information, they would just 

might cut it out like the first sentence and then just include these two things like the 

chemical formula and reaction region and then the question directly beneath it. 

 

Readability. ELL participants also perceived the last statement, where the main task is 

asked, to be confusing. Students suggested that this sentence be broken down into several 

simpler sentences instead of one, long complex sentence. Lupe’s suggestion reflects this notion, 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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“Instead of making multiple sentences, they have a really long sentence that basically asks you to 

find the mass of nitrogen but it doesn’t clearly point out which parts of the sentence are 

important.” 

 

NES students’ perceptions of challenging features for item 5 (original). NES students 

expressed significant concerns about the item containing background information that they did 

not find relevant. They also indicated features in the item related to readability, which they found 

to be confusing. Their perceptions are discussed below in the order of (1) scaffolding, and (2) 

readability.  

Scaffolding. NES students indicated that the original version of the item included 

information that was not relevant to the task at hand. This was identified as a challenging feature 

because it made students wonder if that information was supposed to be somewhat essential to 

solving the problem. Additionally, students discussed how it was difficult to determine how to 

compute the 70% yield value once they found the mass of nitrogen. 

 

Ana expressed her concern with the phrase ‘high pressure.’ 

 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 

 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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Ana: There's nothing here that indicates that it's at high pressure. If there was maybe a 

symbol or something for high pressure, then that would be necessary so we could know 

what it's talking about. But it just looks like a simple reaction here. 

 

Abby discussed that challenges of having the irrelevant background information.  

 

Abby: At first, I thought it was going to be something like that was relevant to the 

question, but it’s not. It just doesn’t add anything, but I guess it’s a short phrase. It’s 

important to know what kind of reaction this is. But obviously having it on a test question 

is not more important, talking over lecture or something, but on a test question it just 

looks cluttered. It just gives you more to read and if you happen to think that you have to 

take into account high pressure while you’re doing this, then that would be important, 

because in physics if you talk about high pressure that you’d use a different equation 

what you have for interaction molecule order. 

 

Jessica’s concerns were related to the order of information in the item. 

 

Jessica: I guess for me personally, I like it when the question is stated at the beginning 

and then you have your givens versus having the question at the end. Because sometimes 

I’ll find myself running to finish, like on a test I want to get through it quickly. If I have 

the question here and we're told what to find first, then that's already in the back of my 

mind as I read the rest of the question. Just because it’s the way I process information. 
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Readability. NES students also identified parts of the item that were unclear. They 

indicated that the last sentence, which is the main question of the item, was a long, complicated 

sentence, which they found confusing. They discussed how a direct question would have been 

clearer in this case. Additionally, they suggested not placing information about two different 

compounds in the same, complex statement because it is confusing to understand which 

compound is being asked about. For example, the last sentence provides the mass of ammonia, 

but it is asking about the mass of nitrogen, which can be difficult to process.  

 

Abby: I kept repeating it over and over again because what was throwing me off was that 

at the end it was saying the percent yield of this reaction is 70%. My mind was thinking, 

What do I do with this? 

 

 

 

Comparison of themes: Challenging features for item 5 (original). Both ELL and 

NES participants perceived this item to be difficult to solve. Both ELL and NES students 

perceived similar features to be challenging in the original version of item 5. The most 

commonly reported challenging feature was that description of the Haber process not relevant 

and useful for solving the problem. Many students mentioned that the information about high 

pressure deterred their understanding because they expected pressure to be involved in their 

calculations. Both groups also felt that the last sentence could have been simplified by being 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into 

ammonia as the following: 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the 

reaction, assuming that the percent yield of this reaction is 70%? 
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broken down into multiple sentences to make the question clearer and provide better content 

support. An illustration of a comparison of the emerging themes is shown in Figure 21. 

 

Item 5 Original: Challenging Features 

 

 

 

 

 

Figure 21. A comparison of the themes for item 5 (original) challenging features presented in the 

order of frequency. 

 

An interesting finding here is that although both groups of students mentioned that this 

item was generally easy to follow and they understood what was being asked, most students were 

unable to correctly compute an answer for this item. Many participants were unable to first 

recognize that the 700 g of ammonia was an actual yield value, which speaks to chemistry 

content related issues that were most likely exacerbated by the challenging features identified by 

participants. These results suggest that along with the aforementioned challenging features, 

students’ lack of chemistry knowledge and/or practice with solving this type of percent yield 

item may have contributed to their inability to solve the item successfully. This item required 

students to recognize that the 700g of ammonia is an actual yield, which needed to be divided by 

70% to get the theoretical yield of ammonia to be produced. It is this value of ammonia that must 

be used to solve for the mass of nitrogen gas that should be used in the reaction. 

Another important finding is that many participants believed that including background 

information that is not directly helping them solve the question should be eliminated on exam 

ELL NES 

Readability  Readability  

Scaffolding  Scaffolding  
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items. Participants’ reasoning behind their perceptions indicates that their mindsets for exam 

questions is solely focused on the bottom line, which is adequately solving the problem within 

the time allotted. This type of mindset reflects that students carry preconceived expectations of 

exam items, which may be different if the item was presented as a homework item. This is an 

important topic that needs to be further investigated.  

Item 5: Revised Version 

 The original version of item 5 was revised based on the guidelines of the EFCA as 

discussed in Chapter 3 and using the modifications shown in Appendix A. Specifically, 

contextualization was added to this item by including a storyline about the student working in a 

factory where the Haber process was used to make ammonia. The student in the storyline was 

tasked with finding the mass of nitrogen is needed to make 700 g of ammonia, with a percent 

yield of 70%. Additionally, the original version was revised by changing the sentence structure 

in the first and last sentences into direct sentences with simpler syntax. The presentation of the 

revised version was restructured by adding spaces between the background information, the 

balanced equation, and the question. The revised item 5 is shown below.  

 

ELL students’ perceptions of helpful features in item 5 (revised). When ELL students 

were asked to identify helpful features in the revised version of item 5, they generally responded 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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positively to the modifications in the item. ELL students’ perceptions of helpful features are 

discussed below in the order of the following themes: (1) scaffolding, (2) representation, (3) 

macrostructure, and (4) readability.  

 Scaffolding. ELL students mentioned that it was helpful to be told the objective of the 

question directly. They discussed that the part of the storyline where they were told that it was 

“your job” to make ammonia was particularly helpful as it functioned as a contextual signal that 

emphasized the question in the item. Additionally, ELL students also reported that this item 

provided more guidance that helped them follow the logic of the question. 

 

Hector discussed why he found these features helpful.  

 

Hector: Because they're telling you what you need to make. The whole story is that you 

are a factory worker, [chuckles] so, they give you what you need to make, which is an 

important part of the question in order to find the mass of nitrogen. 

 

Representation. Similar to the original version of this item, the revised version also 

included a balanced chemical equation. This was an important helpful feature identified by ELL 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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students because it showed the chemical symbols of each compound in the Haber process 

reaction and coefficients to indicate that the equation is balanced. 

 

Macrostructure. ELL students noticed that the revised version of item 5 included more 

spacing between the background, chemical equation and the question portions of the item. This 

separation of sections was considered to be helpful, especially if this item was given on an exam. 

Naima discussed this feature, “Putting space between parts or listing each part of the question or 

making just the question itself into multiple sentences really helps like in [this one].” 

Readability. One of the challenging features discussed in the original item 5 was the 

length of the final statement. In the revised version, this statement was replaced with multiple 

shorter sentences that lead to the question. ELL students perceived this change in sentence 

structure to be helpful in understanding the question. Elara stated, “In [original] question 5, they 

just asked you one sentence, one really longer sentence with just the actual problem hidden in 

between, but in [revised] question 5, they split it into three sentences, and you knew what you 

needed to do.” 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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NES students’ perceptions of helpful features in item 5 (revised). With the exception 

of macrostructure, NES students generally reported the same helpful features identified by ELL 

students. These features were related to the following themes: (1) scaffolding, (2) readability, 

and (3) representation.  

Scaffolding. The most frequently reported helpful feature by NES participants related to 

the content support present in the revised item. The embedded contextual cues simplified and 

emphasized the question portion of the item. Specifically, NES students mentioned that the 

phrase “your job is…” provided a signal to focus on the main goal. Emery expressed, “I think the 

biggest part for me is when it says ‘Your job.’ Starting there, it solidified what I needed to do for 

this question.” Jasper also stated, “It focuses my attention on what I need to do.” 

 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 

 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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Readability. NES students also indicated that the direct question and the short sentence 

structure in the question were helpful features. Compared to the original item, which contained 

one long statement in the end, this version divided the information over three shorter sentences 

with simpler syntax and added a separated direct question starting with “what.” Nora mentioned, 

“I like the question, and the last sentence, ‘what mass of nitrogen’…”  

 

Representation. NES students found the balanced chemical equation to be another 

helpful feature. Matt discussed that seeing the equation clarified the problem, “But after the 

equation is written, it’s a lot more clear that what it’s wanting you to do in terms of the steps that 

you’re going to need.” 

 

Comparison of themes: Helpful features in item 5 (revised). Both ELL and NES 

students identified similar helpful features in the revised item 5. The most commonly reported 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 

 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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helpful feature was the content support provided in the revised item by including contextual cues 

and emphasizing to students that they are tasked with making 700g of ammonia. Both groups 

discussed that having direct and shorter sentence structures clarified the main point of the 

question. Additionally, both groups of students appreciated having the balanced chemical 

equation provided in the item. ELL students mentioned that the revised item was easier to 

approach because it had added spacing, a fact which was not identified by NES students. 

A comparison of these themes has been shown in Figure 22. 

 

Item 5 Revised: Helpful Features 

 

 

 

 

 

 

 

 

 

Figure 22. A comparison of the themes for item 5 (revised) helpful features presented in the 

order of frequency. 

 

These findings suggest that both groups appreciated having a phrase in the item that 

provided a contextual signal emphasizing their main task in the item. After scaffolding, more 

ELL students commented on the chemical equation than NES students, who focused more on 

sentence construction and phrasing. Additionally, ELL students discussed how restructuring the 
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item on the page by adding more spaces between the background information, chemical 

equations, and question made the item appear more approachable. Consistent with other findings 

in the current study, the students’ responses to this item suggest that NES students rely on 

language-dependent features more than ELL students, who focus on less language-dependent 

features, when solving word problems.   

 ELL students’ perceptions of challenging features in item 5 (revised) Although ELL 

students found many of the modified features of the revised item 5 helpful, they found the item 

difficult to solve. They discussed several challenging features about this item and made 

suggestions on how to improve the item. These features are discussed in the order of the 

following themes: (1) scaffolding, (2) macrostructure, and (3) representation.  

 Scaffolding. The challenging features identified by ELL students included the mentions 

of the Haber process and high pressure in the background information of the item. ELL 

participants discussed that this information was not relevant to be included and that it deterred 

them from working on the problem as well as it increased their reading time. Sheela mentioned, 

“The Haber Process, I don't even know what is that…I didn't really need to know that.” Lupe 

stated, “There's not really any areas that is not helpful but the ‘high pressure’ in the first part, it 

throws you off […] For this one, you would think of whether you have to use the ideal gas law? 

 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction 

below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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Another important challenging feature was the added contextualization in the revised 

version of item 5. ELL students expressed that the storyline was interesting and it was unique to 

picture themselves be a part of the context of working in a factory; however, reading this 

information would ultimately take extra time during an exam and did not help them solve the 

problem. Carlos discussed how having a storyline present in the item was not useful during an 

exam as it was not tied to solving the question. Carlos expressed, “Because I'm taking the test 

and I'm just trying to know what the answer is. I do not really visualize myself working in a 

factory, but it’s okay.”  

Macrostructure. ELL students noted that the revised version of item 5 appeared to be 

more wordy and longer in length than the original version, which was considered challenging. 

Despite the added spaces between the background information, chemical questions, and question 

of item, which were identified as helpful features, the item’s overall length made it challenging. 

The main reason ELL students mentioned for this is because this item requires more reading and 

interpreting than the original version, which contained fewer words and appeared shorter in 

length.  

Readability. Another problematic feature was what ELL students perceived to be the 

presence of redundant information. The mention of collecting 700g of ammonia in the last 

sentence was considered to be repetitive since this information was had already been stated in the 

first sentence after the chemical equation. Additionally, ELL students discussed that the words 

“Haber process,” which appeared twice—first in the second sentence and then also in the second 

sentence were—were redundant. ELL students suggested eliminating the redundant words in 

order to reduce the overall length of the item. Ammonia was another word that was circled to 

indicate redundancy as it appears in two sentences near the question of the item. ELL students 
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mentioned that redundant words could be eliminated to reduce their reading time. Sheela 

commented, “It's more wordy than [item 5 original]. So it has more of a production, which I 

don't really like it because it's just like waste of time just by reading it when you have a timed 

exam.” 

 

Representation. ELL students found the balanced chemical equation to be especially 

helpful and did not identify challenging features regarding this representation in the item. When 

asked to suggest further modifications to improve this item, ELL students suggested that adding 

the chemical formulas of each compound as they are mentioned next to the names would further 

add valuable representations in the revised item.  

 NES students’ perceptions of challenging features in item 5 (revised). NES students 

reported many of the same challenging features that ELL students identified. Overall, NES 

students generally perceived the revised item to contain irrelevant information which was not 

effective at providing content support and guidance to solve the problem. The challenging 

features will be discussed in the following order of emerging themes: (1) scaffolding, (2) 

readability, and (3) representation.  

 Scaffolding. NES participants resonated the concerns of ELL students pertaining to 

background information that is not directly relevant to solving the problem. The revised version 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the 

reaction below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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of item 5 provides students with information about the Haber process occurring under high 

pressure. Students considered this information to be problematic as it made them question if this 

information impacted the reaction in the item somehow. Ana mentioned, “Haber process … it's 

just extra. Most students probably don't know what that is. We don't need to write, ‘in the Haber 

process,’ we could just write, nitrogen gas and hydrogen gas react together to create ammonia 

gas.” 

 

 The presence of a storyline to add context for students in the item was considered to be 

unnecessary as it added extra information. Some students mentioned that it is not the type of 

information they are accustomed to experiencing on chemistry problems. Abby mentioned, 

“Well, it's kind of like a story but this is chemistry. It's not a story. We can't put ourselves in it. 

Yes, because we're just trying to figure out the answer.” 

 

Alex: I feel when you add more to anything that's circled in red [irrelevant features], that 

you're just doing it to set a tone and a mood. With only so much time, you're able to have 

on a test, setting the mood and all that, is unnecessary and no student wants to read it. 

They're only reading it, because you are making them, because they don't want to miss 

something. 

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the 

reaction below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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Readability. NES students also reported that phrases in the question portion contained 

redundant information. For example, NES students identified that the task of making 700g of 

ammonia was stated twice since it appears in the sentence before the question itself and then it is 

restated in the question as shown below. Additionally, the phrase ‘you know that this process…’ 

was considered to be confusing as students discussed that it was unclear if the item was asking 

them to make an assumption or whether they had to perform a computation to prove the yield. 

 

 

Eric: I don't like it much because it makes me think of algebra questions and geometry 

questions but I just like more straightforward questions that say that you need to get 70% 

of ammonia gas or 700 grams of ammonia. How much nitrogen do you need for this? 

 

Macrostructure. When students were asked to compare the revised version to the original 

version of item 5, they noticed that the revised version contained more words and additional 

sentences, which signified more information to process. The overall structure of the revised item 

was reported to appear lengthy, which was considered to be a negative feature for NES students.  

You work in a factory that manufactures ammonia gas. The factory uses the Haber 

process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the 

reaction below: 

 

𝑁2(𝑔) + 3𝐻2(𝑔)  2𝑁𝐻3(𝑔) 

 

You know that this process will give you a percent yield of 70% for ammonia gas. 

Your job is to make 700g of ammonia. What mass of nitrogen do you need to use so 

you can collect 700g of ammonia? 
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Comparison of themes: Challenging features in item 5 (revised). When asked to 

choose, both ELL and NES students preferred the original version over the revised version of 

item 5 on an actual exam. Although they appreciated some guided inquiry features embedded in 

the revised version, both groups preferred the original item for an exam as it contained the least 

amount of non-essential information. Both groups indicated that the background information was 

not useful because the process of solving the problem did not require the knowledge of the Haber 

process of high pressure. ELL students reacted to the longer length and increased number of 

words in the revised version with concerns about more reading and interpreting time Both ELL 

and  NES students reported that redundancy should be eliminated in the revised version. The 

results of the emerging themes have been shown in Figure 23. 

 

Revised Item 5: Challenging Features 

 

 

 

 

 

 

 

Figure 23. A comparison of the themes for item 5 (revised) challenging features presented in the 

order of frequency.  

 

The key feature that differentiated revised item 5 from the original version of item 5 was 

the presence of a storyline that added a real-life context for this problem. Interestingly, both 

groups of participants did not find the storyline to be a useful feature. Although the storyline 
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provided an opportunity for students to envision themselves as working as a chemist in a factory, 

participants found it unnecessary and mentioned that it was atypical to see this type of contextual 

feature on chemistry exam items. Previous studies that employed contextualization by adding a 

storyline to life science items found that middle school students (both ELL and NES students) 

responded positively to reading the story within the item (Siegel, 2007; Siegel, 2014). However, 

this may not be the case for undergraduate students in general chemistry courses, who seem to be 

more focused on how to numerically solve the problem in a timely manner when taking exams. 

Item 6: Original Version 

Item 6 focuses on the topic of percent yield. To solve this problem, students are expected 

to: 

1. Use stoichiometry to convert the kilograms of FeCr2O4 into kilogram of the product, 

Na2CrO4.  

2. Recognize that the given numerical value of 1.2 kg of Na2CrO4 is the actual yield  

3. Calculate the theoretical yield 

4. Use that information to compute the percent yield of the reaction.  

 

ELL students’ perceptions of helpful features in item 6 (original). ELL students 

paused frequently when reading this item and often made notes on the side of the item while 

reading through this item during the interviews. In general, ELL students were unable to 

successfully solve this problem, and most ELL participants could not completely explain how to 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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get to a final answer. When asked to identify helpful features of the item, ELL students’ 

discussed features related to the themes of (1) representation and (2) readability.  

Representation. The feature ELL students most frequently reported as helpful in this item 

was the balanced chemical equation. Students mentioned that they heavily relied on this 

equation, as the description of the reaction was difficult to understand.  

 

ELL students also found the chemical formulas of the compounds appearing next to the 

name of the compounds to be helpful. Seojun mentioned, “I like how the names and the symbols 

[are next to each other].” 

Readability. ELL students reported that they appreciated the direct sentence structure of 

the question in the item. For example, the question started with “what is the percent yield…” was 

considered to be phrased directly and focused the students’ attention on the goal of the item, 

which was to find the percent yield.  

 

NES students’ perceptions of helpful features in item 6 (original). NES participants 

generally discussed that this item included a lot of information. For this reason, they needed to 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 

 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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spend extra time reading the item.  Despite this, most NES students were able to successfully set 

up this problem and solve it. They discussed the following helpful features related to the 

following themes: (1) readability and (2) representation.  

Readability. NES participants most frequently identified helpful features in the item that 

related to wording and sentence construction. NES students circled the word “produced,” which 

was an important word to them because it signified that sodium chromate was being made as the 

product. They also identified the direct phrasing of the question in the item as being helpful. For 

example, NES students identified the direct phrasing in “what is the percent yield…” as helpful 

because it emphasized the main goal of the item and allowed them to focus on solving for the 

percent yield.  

 

Representation. NES participants also reported that they found the balanced chemical 

equation to be essential in this problem as it visually described the entire reaction. The balanced 

equation showed how chromite and sodium carbonate react to form sodium chromate and other 

products. It also provided the chemical symbols of each of the compounds described in the 

background information, which was also perceived to be helpful. The students also appreciated 

that the equation showed that it had been balanced as indicated by the coefficients in front of 

each compound.  

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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Comparison of themes: Helpful features in item 6 (original). Both groups identified 

similar helpful features in original item 6, however, in different order of frequency. ELL students 

found the balanced chemical equation to be the most helpful part of the item because it provided 

a visual representation of the chemical reaction, while NES students found the direct sentence 

structure of the question and the word choice “produce” to be helpful because it helped them 

understand the item. This finding suggests that ELL students rely more on language independent 

features in accessing a word problem, such as representation; where as NES students utilize more 

language-dependent features of the world problem, such as sentence construction and word 

choices. A comparison of these themes is shown in Figure 24.  

 

Item 6 Original: Helpful Features 

 

 

 

 

 

 

Figure 24. A comparison of the themes for item 6 (original) helpful features presented in the 

order of frequency. 

 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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An important point to note here is that despite both groups identifying similar helpful 

features, ELL students were unable to successfully set up this problem. This is problematic 

because it indicates that the identified helpful features related to representation and readability 

were not enough to support ELL students’ performance in this item. According to literature that 

addresses fairness and validity issues in assessments, an item such as this could be detected as 

one that carries differential validity for different groups of test takers and should be reviewed for 

construct irrelevance variance (Abedi et al., 2004; Abedi, 2007; Haladyna & Downing, 2004; 

Turkan & Liu, 2012).  

ELL students’ perceptions of challenging features in item 6 (original). ELL 

participants discussed many difficulties with interpreting this item. They identified several 

features that made understanding this item challenging and offered suggestions on how to 

improve these features. The reported challenging features are discussed in the following order of 

emerging themes: (1) readability, (2) scaffolding, and (3) representation.  

 Readability. ELL students predominantly perceived that it was difficult to comprehend 

the item because of word choices and complex sentence structures. The word “roasting” was not 

one that ELL students were familiar with, and they perceived the use of it to be confusing 

because they questioned how it was involved in the problem. They also mentioned that it was 

hard to follow the first sentence and, as a consequence they had to re-read the first sentence 

many times to get a sense of what was being communicated about chromite. 

 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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Rohan: I don't understand how [roasting] would help me with the question. It's just a 

weird word…because when you think of roasting you think of like heat. Then, you had to 

think about if heat is lost or gained in the equation. So, it might confuse people, it's just 

not a great word to put in there. 

Additionally, ELL students also mentioned that the latter part of the question was 

difficult to comprehend as it contained a lot of information in one long, complex sentence. 

Although the sentence began with a direct question, ELL students discussed that the sentence’s 

syntax made it confusing because it included numerical information of two different compounds 

in the same phrase. They suggested separating this complex sentence into simpler sentences.  

 

Ina: I know most chemistry equations are written like this. It's just when there are two 

numbers back to back like this, I don’t know which one to use first on the conversion 

factor thing. Yes, it's just a bit confusing. 

 

 Scaffolding. ELL students expressed their concerns about the usefulness of the 

background information and the lack of content support in the item. ELL students found that the 

description about the making of chromite was not useful in solving the problem. When asked 

how they would further modify this item to improve it, ELL students suggested that the first 

sentence should be eliminated as this information did not provide support for solving the 

problem. Additionally, ELL students mentioned that this item was difficult to solve because 

there was a lot of information embedded in the question portion of the item and there was a lack 

of guidance on how to begin setting up the problem.   
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Representation. ELL students questioned why the chemical formula for chromite was 

missing when the chemical formulas for sodium chromate and sodium carbonate were given. 

Students felt that it was inconsistent to not also have the chemical formula for chromite. 

Eventually, they were able to figure out that chromite was FeCr2O4 based on the chemical 

equation provided; however, they expressed uncertainty that this was the correct compound for 

chromite and asked me to verify. 

 

NES students’ perceptions of challenging features in item 6 (original). NES 

participants generally expressed their frustration about the way this item was written. The 

challenging features NES students reported are reported in the following order of emerging 

themes: (1) readability, and (2) scaffolding.  

 Readability. The most frequently mentioned challenging features for this item related to 

its sentence structure in the first and last sentences, and the use of the word “roasting.” NES 

students discussed that the question portion of the item is unclear. It was difficult to determine 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 

 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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that they were being asked to look for the percent yield of sodium chromate because the sentence 

structure contained too much information. 

 

Josh: You put two values in the same question, but they are not supposed to be used in 

the same step, that gets confusing. Even if it was just 1.2 kilogram of sodium chromate 

was produced, period. What is the percent yield from that or contains -- just separating 

those [values] even in the slightest bit. Because when you put in the same question, an 

average student wouldn’t probably know [how to start]. 

The sentence construction in the first sentence was also reported to be challenging, especially 

due the overuse of the word “chromium.”  

 

Jasper mentioned: I think it's very wordy or dense, especially in the beginning. I read 

through and it said, 'Use a source of chromium in chromium compounds,' they really just 

put chromium and chromium back together, but because compound was [shown below], I 

said, ‘Oh, okay.’ 

 

 

Scaffolding. Another challenging aspect of the original item 6 indicated by NES students 

was the irrelevant background information and lack of content support. NES discussed that the 

background information provided that described chromite was unnecessary and should be 

The raw material used as a source of chromium and chromium compounds is a 

chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 

by roasting chromite with sodium carbonate, Na2CO3. A simplified version of the net 

reaction is 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg 

of FeCr2O4? 
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removed. Students conveyed that this information was not only confusing to understand, it also 

did not serve a purpose in helping them setup the problem. NES students suggested that the item 

should include more content support in the form of guided steps to help students begin setting up 

the problem.  

 

 

Comparison of themes: Challenging features in item 6 (original). Both ELL and NES 

students found the original version of item 6 to be a difficult one to follow, mainly because of 

confusing wording and sentence structures. The lack of content support was a concern for both 

groups of participants. ELL students suggested that adding the chemical formula for chromite 

would have helped them follow the reaction better. A comparison of the themes that encapsulate 

the challenging features between ELL and NES participants is shown in Figure 25. 
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chromium-iron ore called chromite. For example, sodium chromate, Na2CrO4, is made 
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reaction is 
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Original Item 6: Challenging Features 

 

 

 

 

 

 

 

 

 

 

Figure 25. A comparison of the themes for item 6 (original) challenging features presented in the 

order of frequency. 

 

These findings suggest the challenging features impacted ELL students more than NES 

students as ELL students were unable to set up the item successfully. Readability-related issues 

were identified by both groups as challenging; however, NES students were still able to interpret 

this item despite the presence of confusing wording and sentence structures. As noted previously, 

one potential explanation for this finding is offered in literature, which suggests that there could 

be linguistically complex elements embedded in item that differentially favor NES students’ 

performance, which attribute to the performance gap between ELL and NES students (Abedi, 

2007; Abedi et al., 2004; Haladyna & Downing, 2004; Turkan & Liu, 2012).   

Item 6: Revised Version 

 The original version of item 6 was revised according to the EFCA guidelines as discussed 

in Chapter 3 and item modifications listed in Appendix A. The background information was 

restructured to reduce non-essential information. Chemical formulas for all compounds discussed 

in the background information were added next to the names of each compound. Physical spaces 

were added to separate the background, balanced equation and the main question portions. The 
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sentence construction of the question in the item was also modified to clarify that students should 

calculate the percent yield of Na2CrO4. 

 

ELL students’ perceptions of helpful features for item 6 (revised). In general, ELL 

students found the aforementioned modifications to be helpful in understanding the item. More 

ELL students were more able to successfully set up the problem and explain how they would get 

to the final answer with the revised version than the original version of item 6. They identified 

helpful features related to the following themes: (1) readability, and (2) representation.  

 Readability. ELL students indicated that it was helpful to read fewer words in the revised 

version of the item. They also noted that the simpler sentence structure was easy to comprehend 

and that specific word choices, such as “made from” instead of “produced,” were easier to 

follow. Lupe mentioned, “This one says ‘made from’ instead of ‘produced,’ which is better.” 

Naima indicated that the “[Revised version was] easier to read and understand the question…you 

don’t get overwhelmed by so many parts.” 

 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite, FeCr2O4, with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 

 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite, FeCr2O4, with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 
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Representation. Another aspect that ELL students reported to be helpful in the revised 

version was having the chemical formulas of compounds presented next to the name of each 

compound. This was helpful because the chemical formula of chromite was shown as it was 

being discussed, unlike the original item, which seemed to elicit uncertainty among ELL 

students. The addition of the chemical formulas next to the name of each compound made it 

easier to follow the description of the reaction.  

 

NES students’ perceptions of helpful features for item 6 (revised). NES participants 

generally found the revised version the item 6 to be easier to solve and follow than the original 

version. They indicated helpful features related to the following themes: (1) readability, and (2) 

representation. 

Readability. NES participants indicated that the revised version of item 6 was easier to 

read than the original version because it was less wordy, contained shorter sentence structures 

and fewer redundant words. These helpful elements made the item more explicit for NES 

students. Specifically, the second sentence of the item discusses the mixing of the reactants, 

chromite and sodium carbonate, and then states that the product, sodium chromate, is made. NES 

students indicated that this sentence was easier to follow than the corresponding sentence in the 

original version.  

 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite, FeCr2O4, with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 
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Eric: It’s more explicit in what it’s doing. It’s like you mix this and this, and you get this. 

Unlike the other [original] one, it says that, but it’s not as wordy about it. Yes, that’s why 

I think this one is probably easier. 

 

 

Representation. NES participants also noted that having the chemical formulas next to 

the name of each compound was another helpful feature in the item in addition to the balanced 

equation provided. Having chemical formulas values next to the name of each compound as they 

are discussed helped students make the correct associations with the compounds and their 

symbols. The balanced chemical equation was effective at illustrating the overall reaction that 

took place to make Na2CrO4. Alex mentioned, “The chemical formula is okay, but then having 

the names by it does make it a little easier.”  

 

Comparison of themes: Helpful features for item 6 (revised). Both ELL and NES 

participants found the modifications in the revised version of item 6 to be helpful and both 

groups indicated that they would prefer to see the revised version on an exam. It is interesting to 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite, FeCr2O4, with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 
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chromate, Na2CrO4. This reaction is shown below in the balanced equation: 
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FeCr2O4? 
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note that both groups of participants identified similar features as helpful in this item. There were 

no major differences between the perceptions of ELL and NES students in terms of the features 

identified as well as the order of the emerging themes for this item. This finding suggests that the 

modifications employed in this item, as recommended by the guidelines of the EFCA (discussed 

in Chapter 3 and explained in Appendix B), served to support both groups of participants by 

reducing the cognitive load and making the item more accessible. A comparison of themes is 

shown in Figure 26. 

 

Item 6 Revised: Helpful Features 

 

 

 

 

 

 

Figure 26. A comparison of the themes for item 6 (revised) helpful features presented in the 

order of frequency. 

 

ELL students’ perceptions of challenging features for item 6 (revised). Although ELL 

students found the revised version to be easier to understand the original, they were able to 

identify several challenging features in it that could be improved. To that end, ELL students 

identified challenging features related to (1) readability and (2) scaffolding.  

 Readability. Although the sentence structure in the main question was revised, ELL 

students reported that there was still too much information presented in the question, which is in 

the last statement of the item. This statement (shown below) was perceived to be confusing and 
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overwhelming to interpret. ELL students suggested that multiple compounds with multiple 

numerical values not be presented in one, complex sentence.  

 

 Scaffolding. Another challenging aspect of the revised version of item 6 identified by 

ELL students was related to what they saw as irrelevant information included in the item. ELL 

students conveyed that the background information provided was not useful and did not provide 

cues to help set up the problem. In particular, the sentence regarding the description of chromite 

was not thought to be helpful. Sheela expressed, “[Background information] Kind of and kind of 

not [helpful] because the beginning, it wants to be helpful but it's not really helpful. Because it's 

saying, chromite is the source of chromium and chromium compounds.” 

 

NES students’ perceptions of challenging features in item 6 (revised). Although NES 

students preferred the revised version over the original version of item 6, they indicated that it 

included confusing features related to (1) scaffolding and (2) readability.  

 Scaffolding. The biggest challenge reported by NES students regarding the revised 

version of item 6 related to the background information about chromite, which was considered to 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite (FeCr2O4) with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 

 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite (FeCr2O4) with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 

 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? 
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be unnecessary. Students found the additional information about chromite was not only 

irrelevant, but also confusing because it made them question if “chromium and chromium 

containing compounds” needed to be somehow used in the chemical equation. For example, 

students questioned if they needed to look for other “chromium containing compounds” in the 

products of the reaction. Eventually, they were able to figure out that this information was not 

needed to solve the problem. 

 

Readability. Another challenging feature indicated by NES students was the sentence 

structure in the question portion of the item. NES students had a similar perception as ELL 

students in that they reported that it was confusing to read about multiple numerical values and 

compounds in the same phrase. During the interview, they circled the part after the percent yield 

of Na2CrO4 and indicated that there was too much information here. It was suggested to this 

question could be simplified by dividing its information among multiple sentences, but did not 

provide concrete examples of how to do so. 

 

Chromite, a chromium-iron ore, is the source of chromium and chromium compounds. 

By mixing chromite (FeCr2O4) with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. This reaction is shown below in the balanced equation: 
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FeCr2O4? 
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 Comparison of themes: Challenging Features for item 6 (revised). Both ELL and 

NES students perceived that the background information provided in the revised version of item 

6 was not relevant to solving the problem and that the main question part of the item was 

constructed in a convoluted manner. Both groups of students made similar suggestions to 

improve these features of the item. Despite reporting these challenging features, ELL and NES 

students were able to set up the problem successfully. A comparison of the emerging themes 

between ELL and NES participants is shown in Figure 27.  

 

Item 6 Revised: Challenging Features 

 

 

 

 

 

Figure 27. A comparison of the themes for item 6 (revised) challenging features presented in the 

order of frequency. 

 

This finding suggests that when there are multiple pieces of information provided in one 

sentence on assessment items, both groups of students struggle with interpreting the information. 

Both groups’ participants conveyed they experienced cognitive overload when reading these 

types of statements; however, more ELL students indicated that this feature was particularly 

challenging for them than NES students. This suggests that ELL students are more prone to 

experiencing difficulty on complex readability-related features than NES students as affirmed in 

literature (Noble et al., 2014).  
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Chapter Summary 

 In this chapter, I examined students’ perceptions of four original and revised assessment 

items and their suggestions about ways to improve the item. I found that both groups of students 

appreciated most of the modifications of the EFCA applied in the revised versions of the items, 

including linguistic simplification, division of prompts, and addition of representations. The 

added background information was generally considered unnecessary and cumbersome by both 

groups of participants. Accordingly, both groups of students preferred the revised versions of 

items 1, 2, and 6 on an actual exam. 

The item 5 was the only revised item presented to participants which was not preferred 

by students. Contextualization in the form of a storyline was a key feature included in the revised 

item 5, which the students did not perceive to be as helpful as was intended by the EFCA. The 

added context in the revised item 5 provided a storyline that placed the student in a factory that 

produces ammonia. Both groups of students found the storyline in this item to be unnecessary 

and preferred the original version of item 5. This finding is not in alignment with previous 

research that reported that storylines in written assessment items for middle school ELL and NES 

students for life sciences functioned was valuable tool to engage the students in the item and 

elicit learning (Siegel et al., 2014). The results of the current study described that both groups of 

undergraduate students did not find that the storyline feature played a role in solving the 

problem, which made it unnecessary and problematic as it was wordier and required more 

reading time than the original item.  

In the same vein, the findings suggest that undergraduate students’ expectations of exam 

items played a significant role in how they responded to specific features in the items. The 

results revealed that both groups of participants only preferred to see essential information that 
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directly contributed to solving the problem. Although some students mentioned that the 

background information did provide context and was interesting, their responses implied that 

“fun facts” and/or “cool information” should be saved for homework or in-class practice 

problems. This suggests that undergraduates have been trained to view chemistry exam items as 

purely a means to solve the problem to get to a correct answer in the shortest amount of time as 

opposed to an opportunity to learn, be engaged and demonstrate their knowledge. One of the 

principles of the EFCA (discussed in Chapter 3) denotes that assessments should elicit learning; 

however, students’ perceptions reveal they are not accustomed to viewing the test as a learning 

opportunity.    

Overall, the features identified by students in the assessment items reveal significant 

implications about how students perceive assessment items in general chemistry. The finding 

that both groups of students reacted similarly to the modifications embedded in revised versions 

of the items suggest that the EFCA maybe a useful tool to revise preexisting written assessment 

items in a way that is more accessible for all students. The implications of these findings are 

discussed in the final chapter.  
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CHAPTER 6 CONCLUSIONS & IMPLICATIONS 

Project Summary 

 This study attempted to modify cognitively difficult features of written assessment items 

on the topics of limiting reactant and percent yield in general chemistry courses to be more 

accessible for undergraduate ELL students. The goal of this study was to make the assessment 

items more accessible for ELL students; however, the end result was that all students saw the 

items as more accessible. The modifications used to refine the items were derived from the 

EFCA, which included simplification of vocabulary and syntax, reduction of non-essential 

information, and addition of visual support. Students were shown either the original (unchanged) 

version or the revised version of the assessment item in random order. During semi-structured 

interviews, students were asked to discuss the following: what the item was asking, and features 

of the item that were helpful and/or challenging, and how they would change the question to 

further improve it.  

There were several interesting findings in the current study. First, ELL and NES students 

utilized different types of features to develop an understanding of and set up the problems in the 

items. ELL students largely used language-independent features to make meaning and set up the 

items while NES students used more language-dependent features to understand and set up the 

items. Second, features related to macrostructure played an important role in changing the 

cognitive load of an item for both groups of students. Third, compared to NES students, more 

ELL students indicated that they found scaffolding in the form of content support and guidance 

within items to be helpful in solving the problems. Finally, neither ELL students nor NES 

students found features that provided context for the problems to be useful when the context was 
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not directly related to solving the problem. In fact, students suggested that this type of 

information be eliminated on exam items.  

The Equity Framework of Classroom Assessment 

 A significant goal of this study was to examine the effectiveness of the extending the 

EFCA in written assessment questions in general chemistry through the voices of students. In 

previous studies, the EFCA approach to scaffolding life science assessment items for middle 

school ELL students yielded promising findings (Siegel, 2007; Siegel et al., 2014). The results of 

the current study suggest that the EFCA is applicable to general chemistry assessment items and 

beneficial overall to undergraduate students; however, not every EFCA modification utilized in 

the items was perceived to be helpful by students.  

 Of the 11 modifications originally proposed in the EFCA, the four assessment items used 

in this study included eight. A list of these modifications alongside the items that utilize each 

them as well as whether each modification was perceived to be helpful or challenging is 

presented in the table below. 
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Table 2. Summary of how students perceived each modification.  

 

Modifications Items Helpful Challenging 

1 2 5 6 

Simplification of vocabulary and syntax x x x x x  

Replacement of sentences into lists x    x  

Reduction of non-essential information x  x x x  

Addition of visual support x x   x  

Rearrangement of data  x x x x  

Addition of active voice and direct 

sentences 

 x x  x  

Division of prompt into smaller units  x x  x  

Contextualization (adding a storyline)  x x   x 

 

As shown in Table 2, contextualization was reported by both groups of students as a 

challenging feature for the purposes of the exam; however, students may respond differently if 

contextualization were included on homework items, where time to complete word problems is 

less of an issue. Contextualization was a dominant feature employed in revised item 5, which 

added a storyline to the problem by telling students that they work in a factory. Based on the 

principles of the EFCA, adding context to science assessment items helps ELL students find cues 

and may help them interpret the academic language embedded in the item (Siegel et al., 2008). In 

the case of item 5, the added storyline did not provide enough scaffolding to help students 

identify and set up the problem at hand, which was to calculate the amount of nitrogen needed to 
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make ammonia. Many students expressed that the storyline was an interesting feature because 

most chemistry questions are not typically written this way; however, the storyline did not 

provide the support needed to make the item more accessible. Additionally, many ELL 

participants expressed that it made the item lengthier, which would add to their reading time on 

an actual exam.  

On the other hand, participants found other modifications implemented in the revised 

versions to be helpful. ELL students, particularly, found that scaffolding-related features–such as 

division of prompts into smaller units that provided guidance—to be useful, especially in solving 

multi-step problems with difficult readability. From the perspective of developing language 

proficiency, scaffolding has been shown to help students identify key parts in an item and to 

provide content support to solve the problem (Nobel et al., 2012; Siegel, 2007). In the current 

study, ELL students’ responses suggest that features that guided their understanding and 

supported their ability to make connections across tasks alleviated some of the cognitive 

demands of the item.  

Conclusions 

 The findings suggest that the principles of the EFCA are applicable to general chemistry 

assessment items and beneficial to both ELL and NES undergraduate students. An important part 

of using the EFCA for modifying exam questions was reconstructing the item in a way that is 

accessible for students who are not fully fluent in the English language while maintaining the 

content difficulty. By removing linguistically complex elements, adding visual clarity and guided 

inquiry into original exams items, challenging features consisting of technical vocabulary and 

content specific academic language were mitigated. Students were better equipped to solve the 

word problems.  
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  Another significant goal of this study is to promote fairness in classroom assessments for 

all students, particularly for students who are still learning the English language. In this study, 

ELL students especially benefitted from the modifications applied to exam items. Most ELL 

students were unable to successfully explain their understanding of many of the original items. If 

these items were shown on an actual course exam, many ELL students would be unable to 

complete their work and, as a results, would have performed poorly. In a typical college 

chemistry course, their lower exam scores could be thought of as a result of lack of studying, 

dedication, intelligence, etc.; however, the results of this study suggest that the test score gap 

between ELL and NES students could be reduced by modifying the exam items. The responses 

of ELL students indicated that revising the items mitigated linguistically complex features and 

they were able to better understand, explain, set up and solve the problems.   

 Interestingly, participants whose first language is English also perceived most of the item 

modifications positively. NES students showed similar preferences as ELL students in choosing 

revised items and reiterated similar perceptions of helpful and challenging features in all items. 

Although more NES students were able to successfully set up the original versions of the 

questions than ELL students, they expressed that certain parts of the original items were still 

challenging to follow and should be improved. When presented with the revised versions, NES 

participants were able to explain the items more confidently. This finding suggests that revising 

general chemistry exam questions can benefit not only ELL students, but all students in a general 

chemistry course.  

 This study explores the complex issue of classroom assessments at the postsecondary 

level. Research that focuses on the needs of linguistically underrepresented university students in 

science courses is rare, but especially valuable in understanding the nature of testing in college 
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classrooms. Given the constraints of teaching a historically difficult subject at the university 

setting, this study informs the development of more equitable assessments in college chemistry 

courses. It also acts as a foundation for future studies that focus on changing classroom 

assessments in a way that benefits the learning needs of students with developing English 

language proficiencies as well as NES students in general chemistry.  

Broader Implications for Teaching 

 The results of the current study have implications for teaching and learning. Assessing 

students with limited English language proficiencies is a tricky issue; however, as educators, we 

have an obligation to give all students an equal opportunity to demonstrate their knowledge by 

minimizing sources of measurement error. The results of this study reveal that the EFCA can be 

applied to assessment items in general chemistry and this approach may represent a more 

promising approach for supporting ELL students in the college classroom settings than using test 

accommodations (e.g., extra time, dictionaries, translators, etc.). Designing equitable 

assessments will require the careful consideration and examination of many factors including, 

but not limited to, the role of language and culture of students, scientific understanding, and 

effective assessment practices. The results of this study will need to be verified through future 

studies that focus on different topics in general chemistry to further confirm the effectiveness of 

the EFCA modifications for making chemistry classroom assessments more accessible and 

equitable for all students.  

Limitations 

 Conducting this qualitative study with undergraduate students in general chemistry led to 

new discoveries as well as limitations that must be mentioned. The ELL student population 

recruited for this study included ELLs who have been residing in the U.S. for 10 years or less. 
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This group of students exhibited a wide range of English language proficiencies from students 

who were advanced English learners to students who were beginners. Narrowing this time frame 

range and differentiating the levels of English proficiencies would have yielded a more holistic 

understanding of how different ELL students interpreted the assessment items. Also, it is 

important to mention that the ELL students in this study had different ethnic and language 

backgrounds, which may have played a role in how they approach assessment items in general 

chemistry. 

 Another limitation of the current study is that it was not implemented in a specific 

general chemistry course. For the purposes of the study, undergraduate students were recruited 

from the general chemistry I and general chemistry II courses. Many participants had different 

chemistry instructors, who had different teaching and testing styles, which may have impacted 

the way students learned the topics of limiting reactant and percent yield.   

Future Research 

Future research is needed to inform the field and contribute to the body of literature on 

equitable assessments. As an extension to the current study that examined ELL and NES 

students’ perceptions of features of the assessment items qualitatively, a future study that 

measures students’ performance on original versus revised exam questions quantitatively would 

beneficial in understanding the effects of revising assessment items on student exam scores. It 

would also be helpful to understand how this framework can be applied to different chemistry 

topics. Additionally, future work should also investigate the perceptions of ELL students who 

have the same language backgrounds as this may play an important role in their perceptions of 

assessments.  
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 One of the findings of the current study suggests that undergraduate students’ mindsets 

about exam items compared to other non-exam items, such as homework or in-class practice 

word problems, are different. Their perceptions of helpful and challenging features were largely 

guided by the fact the items presented to them were exam items. An interesting future study 

would be focused on understanding how students think of homework word problems compared 

to exam problems in terms of the usefulness of the EFCA modifications implemented.  

 This study suggested that students hold their own expectations of exam items; however, 

these expectations may be different from instructors’ expectations of exam items. A future study 

could focus on examining how general chemistry instructors think of assessments in their 

courses. Understanding the methods instructors are currently using to design their classroom 

assessments, and the type of exam items they find to be useful for assessing students’ content 

knowledge will add a much needed dimension to this body of research.  

Another critical direction for future research focuses on the beliefs of faculty who teach 

general chemistry. Understanding the instructors’ perspectives about evaluating students of 

linguistically diverse background in chemistry is a key aspect of advancing the field of equitable 

assessments. Most studies suggest that teachers are unaware of ways to teach and assess ELL 

students, especially in the context of science (Lee, 2005). However, it is important to understand 

how much instructors know about the needs of ELL students in the classroom. The bulk of 

research about how instructors approach teaching culturally and linguistic minority students has 

centered on K-6 classrooms (Buxton et al., 2008; Cho & McDonnough, 2009; Lee, 2004; 

Swanson et al., 2014); however, research on understanding this issue at the postsecondary level 

is scarce but necessary. 
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APPENDIX A 

List of Item Modifications  

1. Linguistic simplification of vocabulary and syntax:  

a. Linguistic simplification of vocabulary: removing unnecessarily complex words 

and/or phrases for simple terms that convey the same meaning  

b. Linguistic simplification of syntax: Replacing long sentences with embedded 

commas and/or semicolons with shorter and more direct statements that convey 

the same information in terms of content  

2. Replacement of sentences with lists 

a. Modifying sentences that give more than one piece of information and adding a 

bulleted list to separate the pieces of information  

3. Reduction of nonessential information  

a. Reducing the number of words in the item by removing unnecessary words that 

add to the overall reading time for students. This also includes removing 

extraneous words that are not necessary to understand and solve the problem, and 

removing content information that is irrelevant to solving the problem  

4. Addition of visual supports in the stem of item 

a. Making the information in the item more visually accessible by formatting the 

question in a way that easily differentiates background information in the question 

stem (portion that gives background information) from pertinent information in 

the question. For example, adding paragraphs, line breaks, adding/removing space 

between background information, etc. 
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5. Division of data:  

a. Rearranging the order in which the information appears in the question so that it is 

logical and easy to follow. 

b. Adding a data table that contains critical information relevant to the problem  

6. Alignment with the language of instruction 

a. Monitoring the level of academic language used during instruction and matching 

the level of vocabulary in exam items. This would be outside the scope of my 

study since I will not be attending participants’ classrooms. Therefore, I have not 

included an example of this modification.  

7. Alignment of the language within the item 

a. Ensuring that the tense, voice, and overall structure of the item are consistent.  

8. Use of bold type for emphasis 

a. Highlight an important phrase or word(s) in the item that is crucial for solving the 

problem 

9. Addition of graphic organizers in the prompts 

a. Adding illustrations and/or representations in order to better describe the problem  

10. Division of the prompts into smaller units 

a. Dividing the question prompt into smaller, more comprehensible units if the 

question prompt is more than three sentences 

11. Contextualization of the test item  

a. Adding meaning by embedding contextual cues that help stage the test item as a 

problem  

b. Making connections between parts of the questions to establish flow 
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c. Adding more steps to scaffold all parts of the problem  
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APPENDIX B 

Chemistry Questions 

Original Revised Modifications Applied 

1. Methanol (CH3OH), also called 
methyl alcohol, is considered to 
be the simplest alcohol. It is used 
as a source of fuel in race cars and 
is a potential replacement for 
gasoline. Methanol can be 
manufactured by combining 
gaseous carbon monoxide and 
hydrogen. Suppose 68.5kg CO(g) is 
reacted with 8.60kg H2(g). Calculate 
the theoretical yield of methanol. 
If 3.57 x 104g CH3OH is actually 
produced, what is the percent 
yield of methanol? 
Source: 
Zumdahl, S.S. & Zumdahl, S.A. 
(2008) Chemistry (8th ed.). 
Belmont, CA: Cengage Learning. 
(p. 113). 

Methanol (chemical formula: 
CH3OH) is the simplest alcohol. It 
can replace gasoline, and it is used 
as fuel in race cars.  
Methanol is made by mixing 
gaseous carbon monoxide (CO) and 
gaseous hydrogen (H2).  
Knowing that methanol is made 
when you react CO with H2, what 
would be the theoretical yield of 
methanol if you mix 68.5kg of CO(g) 
with 8.60 H2(g)?  
You found that that 3.57x104g 
CH3OH is actually produced. What 
is the percent yield of methanol? 
 

1: Linguistic simplification of 
vocabulary and syntax 
2: Replacing sentences with 
lists 
3: Reduction of words in the 
item stem 
4: Adding to visual support in 
the stem of items 

2. You have seven closed 
containers, each with equal 
masses of chlorine gas (Cl2). You 
add 10.0g of sodium to the first 
sample, 20.0g of sodium to the 
second sample, and so on. Sodium 
and chlorine react to form sodium 
chloride. 

 
Explain the shape of the graph. 
Calculate the mass of NaCl formed 
when 20.0g of sodium is used.  
Calculate the mass of Cl2 in each 
container. 
Calculate the mass of NaCl formed 
when 50.0g of sodium is used. 
Identify the remaining reactant, 

There are seven total closed gas 
jars shown in the image above. 
Each jar has the same mass of 
chlorine gas (Cl2(g)) in it. You add 
sodium (Na(s)) as follows: 
Jar 1: 10.0g Na(s) 
Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to make 
sodium chloride. After the reaction 
in each jar is complete, you collect 
and measure the amount of sodium 
chloride formed. The graph below 
shows your data.  

1: Linguistic simplification of 
vocabulary and syntax 
4: Addition of visual supports 
in the stem of item 
5: Division of data 
7: Matching the language 
within the item  more 
precisely 
9: Addition of graphic 
organizer in prompt 
10: Division of prompts into 
smaller units 
11: Contextual scaffolding  
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and determine its mass for parts b 
and d above.  
Source: 
Zumdahl, S.S. & Zumdahl, S.A. 
(2012) Chemistry: An atoms first 
approach (2nd ed.). Boston, MA: 
Cengage Learning. (p. 241). 
  

Answer the following questions 
about this reaction and the data in 
the graph: 
 
A. Write the balanced equation 

for the reaction between Cl2 
gas and sodium. 

B. If you notice, there are no 
numbers on the y-axis of graph 
above. This means that you will 
have to figure out the numbers 
on the y-axis. Based on the 
balanced equation in Part A, 
what mass of NaCl should be 
produced when 20.0g of Na 
reacts with the Cl2 in jar 2? 

C. Based on the amount of NaCl 
that you calculated in Part B, 
label the y-axis of your graph.  

D. Each of the jars has the same 
mass of Cl2. We do not know 
what that mass is, but we do 
know that there was enough 
Cl2 to react with the 20.0g of 
Na in jar 2. What mass of Cl2 
was needed to produce the 
amount of NaCl you calculated 
in step b of this problem?  

E. Use the balanced equation 
from Part A to calculate the 
mass of chlorine gas you would 
need to react with the 50g of 
Na in jar 5. 

F. How does the amount of Cl2 
you calculated in Part E 
compare to the amount of Cl2 
that is actually in the jar? What 
is the leftover reactant? 

G. What is the mass of the 
leftover reactant in jar 5?  
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H. In the graph above, you can 
see that more NaCl is produced 
when as you add more Na, but 
when you add more than 40g 
of Na, the amount of NaCl 
produced is does not change. 
Using the information you 
found in the previous steps, 
explain the following: 

I. Why the amount of NaCl 
produced increases at first 
when you add more sodium? 

J. Why is the amount of NaCl 
produced constant when you 
add more than 40g of sodium? 

3. When ethane (C2H6) reacts with 
chlorine (Cl2), the main product is 
C2H5Cl, but other products 
containing Cl, such as C2H4Cl2, are 
also obtained in small quantities. 
The formation of these other 
products reduces the yield of 
C2H5Cl. Calculate the theoretical 
yield of C2H5Cl when 125g of C2H6 

reacts with 255g of Cl2, assuming 
that C2H6 and Cl2 react only to 
form C2H5Cl and HCl. Calculate the 
percent yield of C2H5Cl if the 
reaction produces 206 g C2H5Cl. 
Source: 
Brown, T.L., LeMay, H. E., Bursten, 
B.E., Murphy, C.J., Woodward, 
P.M. & Stoltzfus, M.W. (2015). 
Chemistry: The central science (13 
ed.). Upper Saddle River, NJ: 
Pearson (p. 118). 

When ethane (C2H6) reacts with 
chlorine (Cl2), the reaction produces 
C2H5Cl as the main product. Other 
products containing chlorine are 
also produced in small amounts. 
These are called minor products. 
Minor products decrease the 
amount of C2H5Cl (main product) 
that is made in this reaction. 
 
A. Write the balanced equation 

for the reaction between 
ethane and chlorine that 
produces C2H5Cl and HCl as 
products.  

B. Using the balanced equation 
you wrote for Part A, find the 
theoretical yield of C2H5Cl 
when 125g of C2H6 reacts with 
255g of Cl2?  

C. If you conducted the reaction 
described in Part B in the 
laboratory and only collected 
206g of C2H5Cl, what is the 
percent yield of C2H5Cl? 

 

1: Linguistic simplification of 
vocabulary and syntax 
2: Replacing sentences with 
lists 
3: Reduction of nonessential 
information 
4: Addition of visual support 
in the stem of item 
5: Division of data 
10: Division of the prompts 
into smaller units 
11: Contextual scaffolding  
 
 

4. When hydrogen sulfide gas is 
bubbled into a solution of sodium 
hydroxide, the reaction forms 
sodium sulfide and water. How 
many grams of sodium sulfide are 
formed if 1.25g of hydrogen 
sulfide is bubbled into a solution 

When hydrogen sulfide gas is mixed 
into a solution of sodium 
hydroxide, the reaction makes 
sodium sulfide and water. You are 
told that this reaction gives you a 
92.0% yield for sodium sulfide 
when you do the reaction in the 

1: Linguistic simplification of 
vocabulary and syntax 
3: Reduction of nonessential 
information  
5: Division of data 
10: Division of prompts into 
smaller units 
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containing 2.00g of sodium 
hydroxide, assuming that the 
sodium sulfide is made in a 92.0% 
yield?  
Brown, T.L., LeMay, H. E., Bursten, 
B.E., Murphy, C.J., Woodward, 
P.M. & Stoltzfus, M.W. (2015). 
Chemistry: The central science (13 
ed.). Upper Saddle River, NJ: 
Pearson (p. 118). 

laboratory.  
How many grams of sodium sulfide 
will you make in the laboratory if 
you mix 1.25g of hydrogen sulfide 
with 2.00g of sodium hydroxide?  
 

11: Contextual scaffolding  
 

5. The Haber process is the 
conversion of nitrogen and 
hydrogen at high pressure into 
ammonia as the following: 
N2(g) + 3H2(g)  2NH3(g) 

If you must produce 700g of 
ammonia, what mass of nitrogen 
should you use in the reaction, 
assuming that the percent yield of 
this reaction is 70%? 
 Adapted from: 
Brown, T.L., LeMay, H. E., Bursten, 
B.E., Murphy, C.J., Woodward, 
P.M. & Stoltzfus, M.W. (2015). 
Chemistry: The central science (13 
ed.). Upper Saddle River, NJ: 
Pearson (p. 338). 

You work in a factory that 
manufactures ammonia gas. The 
factory uses the Haber process to 
make ammonia. In the Haber 
process, nitrogen gas and hydrogen 
gas react together at a high 
pressure to create ammonia gas. 
This process is shown in the 
reaction below: 
 
N2(g) + 3H2(g)  2NH3(g) 
 
You know that this process will give 
you a percent yield of 70% for 
ammonia gas. Your job is to make 
700g of ammonia. What mass of 
nitrogen do you need to use so you 
can collect 700g of ammonia?  

1: Linguistic simplification of 
vocabulary and syntax 
5: Division of data 
7: Matching the language 
within the item more 
precisely  
11: Contextual scaffolding 

6. The raw material used as a 
source of chromium and 
chromium compounds is a 
chromium-iron ore called 
chromite. For example, sodium 
chromate, Na2CrO4, is made by 
roasting chromite with sodium 
carbonate, Na2CO3. A simplified 
version of the net reaction is 

4FeCr2O4  8Na2CO3  7O2  

8Na2CrO4  2Fe2O3  8CO2 
What is the percent yield if 1.2kg 
of Na2CrO4 is produced from ore 
that contains 1.0kg of FeCr2O4? 
Source: 
Bishop, M. (2001). An 
Introduction to Chemistry. Chiral 
Publishing Company.  
 

Chromite, a chromium-iron ore, is 
the source of chromium and 
chromium compounds. By mixing 
chromite (FeCr2O4) with sodium 
carbonate, Na2CO3, you get sodium 
chromate, Na2CrO4. This reaction is 
shown below in the balanced 
equation: 
 

4FeCr2O4  8Na2CO3  7O2  

8Na2CrO4  2Fe2O3  8CO2 

 

What is the percent yield of 
Na2CrO4 if 1.2kg of Na2CrO4 is made 
from 1.0kg of FeCr2O4? 
 
 
  

1: Linguistic simplification of 
vocabulary and syntax 
3: Reduction of nonessential 
information  
5: Division of data 
10: Division of prompts into 
smaller units 
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7. How many grams of calcium 
hydroxide are needed to make 
3.75 grams of calcium phosphate? 
What if a mistake was made and 
we used 2.37 grams of Ca(OH)2 
and 2.69 grams of H3PO4? Which 
compound is the limiting reagent? 
How much Ca3(PO4)2 would be 
obtained? What if 2.37 grams of 
Ca(OH)2 were used along with 
excess H3PO4 and only 2.98 grams 
of Ca3(PO4)2 were obtained 
(instead of the theoretical yield)? 
What would be the percent yield?  
Source: 
Instructor’s test bank 

Calcium hydroxide (Ca(OH)2) and 
phosphoric acid (H3PO4) react to 
produce calcium phosphate 
(Ca3(PO4)2) and water.  
Write the balanced equation for 
this reaction. 
How many grams of calcium 
hydroxide (Ca(OH)2) do we need to 
measure out to make 3.75g of 
calcium phosphate (Ca3(PO4)2)?  
We made a mistake in our 
measurements. Instead of using the 
amount of calcium hydroxide you 
calculated in Part B, we used 2.37g 
of Ca(OH)2 and 2.69g of H3PO4. How 
many grams of Ca3(PO4)2 should be 
made under these conditions? 
Which compound is the limiting 
reagent for the reaction described 
in Part C? 
What would be the percent yield if 
we only collected 2.98g of calcium 
phosphate when we did the 
reaction described in Part C in a 
laboratory?   

1: Linguistic simplification of 
vocabulary and syntax 
3: Reduction of nonessential 
information  
4: Addition of visual support 
in the stem of item 
7: Matching the language 
within the item more 
precisely  
9: Addition of graphic 
organizer in prompt (adding 
chemical formulas after the 
name of the compound) 
10: Division of prompts into 
smaller units 
11: Contextual scaffolding 
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APPENDIX C 

Item Modification Procedure 

 

Question 1  

Methanol (CH3OH), also called methyl alcohol, is considered to be the simplest alcohol. 

Methanol (chemical formula: CH3OH) is the simplest alcohol (1). It is used as a source of fuel in 

race cars and is a potential replacement for gasoline. It can replace gasoline, and it is used as fuel 

in race cars. (1, 3) Methanol can be manufactured by combining gaseous carbon monoxide and 

hydrogen. Methanol is made by mixing gaseous carbon monoxide (CO) and gaseous hydrogen 

(H2) (1). Suppose 68.5kg CO(g) is reacted with 8.60kg H2(g). What would be the theoretical yield 

of methanol if you mix 68.5kg of CO(g) with 8.60 H2(g)? 

 (1, 2, 4) Knowing that methanol is made when you react CO with H2, what would be the 

theoretical yield of methanol if you mix 68.5kg of CO(g) with 8.60 H2(g)? Calculate the 

theoretical yield of methanol. If 3.57 x 104g CH3OH is actually produced,  

 (2, 4) You found that that 3.57x104g CH3OH is actually produced, what is the percent yield 

of methanol? 

Content difficulty: Medium  

Source:  

Zumdahl, S.S. & Zumdahl, S.A. (2008) Chemistry (8th ed.). Belmont, CA: Brooks Cole Press. (p. 

113). 

 

Question 2 

 

 

You have seven closed containers, each with equal masses of chlorine gas (Cl2). There are seven 

total closed gas jars shown in the image above. Each jar has the same mass of chlorine gas 
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(Cl2(g)) in it (1). You add 10.0g of sodium to the first sample, 20.0g of sodium to the second 

sample, and so on.  You add sodium, (Na(s)), as follows: (1,4,5)  

 

Jar 1: 10.0g Na(s) 

Jar 2: 20.0g Na(s) 

Jar 3: 30.0g Na(s) 

Jar 4: 40.0g Na(s) 

Jar 5: 50.0g Na(s) 

Jar 6: 60.0g Na(s) 

Jar 7: 70.0g Na(s) 

 

Sodium and chlorine react to form sodium chloride. After the reaction in each jar is complete, 

you collect and measure the amount of sodium chloride formed. The graph below shows your 

data. (10, 11) 

 

(Original graph)   (9)  

 

Answer the following questions about this reaction and the data in the graph: (5,11) 

a. Write the balanced equation for the reaction between Cl2 gas and sodium. 

b. Calculate the mass of NaCl formed when 20.0g of sodium is used.  

c. If you notice, there are no numbers on the y-axis of graph above. This means that you 

will have to figure out the numbers on the y-axis. Based on the balanced equation in part 

a, what mass of NaCl should be produced when 20.0g of Na reacts with the Cl2 in jar 2? 

(5,10,10) 

d. Based on the amount of NaCl that you calculated in part b, label the y-axis of your graph. 

(7,10,11) 

e. Calculate the mass of Cl2 in each container. 

f. Use the balanced equation from part a to calculate the mass of chlorine gas you would 

need to react with the 50g of Na in jar 5. (7,10,11) 

g. Each of the jars has the same mass of Cl2. We do not know what that mass is, but we do 

know that there was enough Cl2 to react with the 20.0g of Na in jar 2. What mass of Cl2 

was needed to produce the amount of NaCl you calculated in step b of this problem?  

h. Identify the remaining reactant, and determine its mass for parts b and d above. 

i. How does the amount of Cl2 you calculated in part e compare to the amount of Cl2 that is 

actually in the jar? What is the leftover reactant? 

j. Calculate the mass of NaCl formed when 50.0g (jar 5) of sodium is used. 

k. What is the mass of the leftover reactant in jar 5?  

l. Explain the shape of the graph. (5) 
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m. In the graph above, you can see that more NaCl is produced when as you add more Na, 

but when you add more than 40g of Na, the amount of NaCl produced is does not change. 

Using the information you found in the previous steps, explain the following: 

a. Why the amount of NaCl produced increases at first when you add more sodium?  

b. Why is the amount of NaCl produced constant when you add more than 40g of 

sodium? (1,2,10,11)  

 

Content difficulty: Hard 

Source: 

Zumdahl, S.S. & Zumdahl, S.A. (2012) Chemistry: An atoms first approach (2nd ed.). Boston, 

MA: Cengage Learning. (p. 241). 

 

Question 3 

When ethane (C2H6) reacts with chlorine (Cl2), the main product is C2H5Cl as the main product. 

(1,3) but other products containing Cl, such as C2H4Cl2, are also obtained in small quantities. 

Other products containing chlorine are also produced in small amounts. formation of these other 

products reduces the yield of C2H5Cl. These are called minor products. Minor products decrease 

the amount of C2H5Cl (main product) that is made in this reaction (1,3). Calculate the theoretical 

yield of C2H5Cl when 125g of C2H6 reacts with 255g of Cl2, assuming that C2H6 and Cl2 react 

only to form C2H5Cl and HCl. Calculate the percent yield of C2H5Cl if the reaction produces 206 

g C2H5Cl. 

1. Write the balanced equation for the reaction between ethane and chlorine that produces 

C2H5Cl and HCl as products. (10,11) 

2. Using the balanced equation you found in part 1, find the theoretical yield of C2H5Cl 

when 125g of C2H6 reacts with 255g of Cl2? (2,4,5,10) 

3. If conducted the reaction described in part 2 in the laboratory and only collected 206g of 

C2H5Cl, what is the percent yield of C2H5Cl? (2,4,5, 10, 11) 

 

Content difficulty: Medium 

 

Source: 

Brown, T.L., LeMay, H. E., Bursten, B.E., Murphy, C.J., Woodward, P.M. & Stoltzfus, M.W. 

(2015). Chemistry: The central science (13 ed.). Upper Saddle River, NJ: Pearson (p. 118). 

 

Question 4 

When hydrogen sulfide gas is bubbled into a solution of sodium hydroxide, the reaction forms 

makes (1) sodium sulfide and water. You are told that this reaction gives you a 92.0% yield for 

sodium sulfide when you do the reaction in the laboratory. (1,5,11)  

How many grams of sodium sulfide are formed will you make in the laboratory if you 

mix (1) 1.25g of hydrogen sulfide is bubbled into a solution containing (3) with 2.00g of 

sodium hydroxide, assuming that the sodium sulfide is made in a 92.0% yield? (10) 

Content difficulty: Hard 
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Source: 

Brown, T.L., LeMay, H. E., Bursten, B.E., Murphy, C.J., Woodward, P.M. & Stoltzfus, M.W. 

(2015). Chemistry: The central science (13 ed.). Upper Saddle River, NJ: Pearson (p. 118). 

 

Question 5 

The Haber process is the conversion of nitrogen and hydrogen at high pressure into ammonia as 

the following: You work in a factory that manufactures ammonia gas.(11) The factory uses the 

Haber process to make ammonia. In the Haber process, nitrogen gas and hydrogen gas react 

together at a high pressure to create ammonia gas. This process is shown in the reaction below: 

(11) 
N2(g) + 3H2(g)  2NH3(g) 

If you must produce 700g of ammonia, what mass of nitrogen should you use in the reaction, 

assuming that the percent yield of this reaction is 70%? You know that this process will give you 

a percent yield of 70% for ammonia gas.(1) Your job is to make 700g of ammonia.(11) What 

mass of nitrogen do you need to use so you can collect 700g of ammonia? (5,7,11) 

 

Content difficulty: Hard 

 

 Adapted from: 

Brown, T.L., LeMay, H. E., Bursten, B.E., Murphy, C.J., Woodward, P.M., & Stoltzfus, M.W. 

(2015). Chemistry: The central science (13 ed.). Upper Saddle River, NJ: Pearson (p. 338). 

 

Question 6 

The raw material used as a source of chromium and chromium compounds is a chromium-iron 

ore called chromite. Chromite, a chromium-iron ore, is the source of chromium and chromium 

compounds. (1) By mixing chromite (FeCr2O4) with sodium carbonate, Na2CO3, you get sodium 

chromate, Na2CrO4. (1,3) For example, sodium chromate, Na2CrO4, is made by roasting 

chromite with sodium carbonate, Na2CO3. A simplified version of the net reaction is: This 

reaction is shown below in the balanced equation (10): 

4FeCr2O4  8Na2CO3  7O2  8Na2CrO4  2Fe2O3  8CO2  

What is the percent yield if 1.2kg of Na2CrO4 is produced from ore that contains 1.0kg of 

FeCr2O4?  What is the percent yield of Na2CrO4 if 1.2kg of Na2CrO4 is made from 1.0kg of 

FeCr2O4? (1) 

 

Content difficulty: Easy 

Source: 

Bishop, M. (2001). An Introduction to Chemistry. Chiral Publishing Company.  

 

Question 7 

How many grams of calcium hydroxide are needed to make 3.75 grams of calcium phosphate?  

Calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) react to produce calcium phosphate 

(Ca3(PO4)2) and water. (4,10,11) 
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A. Write the balanced equation for this reaction. (10,11) 

B. How many grams of calcium hydroxide, (Ca(OH)2), do we need to measure out to make 

3.75g of calcium phosphate (Ca3(PO4)2)? (1,9,10) 

What if a mistake was made and we used 2.37 grams of Ca(OH)2 and 2.69 grams of H3PO4? 

How much Ca3(PO4)2 would be obtained? 

C.  We made a mistake in our measurements. Instead of using the amount of calcium hydroxide 

you calculated in Part B, we used 2.37g of Ca(OH)2 and 2.69g of H3PO4. How many grams 

of Ca3(PO4)2 should be made under these conditions? (10,11) 

D. Which compound is the limiting reagent for the reaction described in Part C? (10,11) What if 

2.37 grams of Ca(OH)2 were used along with excess H3PO4 and only 2.98 grams of Ca3(PO4)2 

were obtained (instead of the theoretical yield)? What would be the percent yield?  

E. What would be the percent yield if we only collected 2.98g of calcium phosphate when we did 

the reaction described in Part C in a laboratory?  (1,3,7,10)  

 

Content difficulty: Easy 

 

Source: 

Instructor’s test bank. Item received via internal correspondence from a general chemistry 

instructor. 
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APPENDIX D 

Student Interview Guide 

I. Informed Consent 

a. Hi_________________, my name is Eshani, and I want to thank you for taking 

time to meet with me today. I appreciate your insights and help with this project. 

Before we begin, did you receive the Informed Consent document I emailed you?  

 

i. Did you have a chance to read it? 

ii. Do you have any questions about it?  

iii. Do you agree to participate in this interview? Do you agree to be audio- 

and video-taped during the interview? If so, could you please sign this 

copy of the Informed Consent document? Thank you.  

 

II. Background Questions 

a. Can you tell me a little bit about your personal background?  

 

i. Where are you from? 

ii. Which language(s) did you grow up speaking?  

iii. How old were you when you came to the U.S.? 

iv. [If appropriate, omit for NES.] How much English did you speak before you 

moved here? 

v. [If applicable] Tell me a little bit about your experiences moving to the U.S 

without speaking English. 

[Add personal background here: “I also did not speak English growing up. 

My family and I immigrated in to the U.S. when I was 12...”] 

b. Tell me about your chemistry coursework. 

 

i. Which chemistry course are you taking now? (Which other courses have 

you taken? Which ones do you still have to take?) 

ii. What is your favorite topic in chemistry? What is your least favorite topic? 

iii. How do you feel about the exams or quizzes you’ve been taking in your 

chemistry class?  

iv. What do you find most difficult about chemistry test questions?  

v. What do you think could be done to make the exams easier for you?  
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vi. As you probably know by now, I am a graduate student in the chemistry 

department, and I am interested in understanding how our ability to speak 

and read English affects the way we interpret test questions. Since English is 

not my first language, taking tests was particularly challenging for me. I am 

very interested in finding out what you think about certain test questions that 

I will show you today. Just so you know, you are not being graded in any 

capacity on these questions, and the goal is not to get the right answer. I am 

more interested in your thoughts: what you think about how the question is 

presented to you and how you would solve these questions. For example, 

you’ll start by reading the question and talk me through the process of how 

you would solve the question. Then, you can tell me about any phrases or 

words that may be unclear or sentences that are difficult to understand, or 

anything about the question that is good or bad in terms of helping you solve 

it. The information I get from this interview will help me understand how to 

change chemistry exam questions so students them better.  

III. Think aloud activity  

a. I am going to show you some chemistry exam questions and ask what you think 

of them. I particularly want to know which parts of the questions make them easy 

or hard to comprehend. After I give you each question, I want you to read it out 

loud. I want to remind you that you are not being graded today on your answer 

choices. I am more interested in your process of solving the problems (like how 

you set it up and your approach to solving it) and what you think about the 

specific parts of the questions. So, shall we get started with the first question? 

 

[Present first test question to the participant. Do not mention if it is an original or 

modified version of the question] 

 

i. Please take a few minutes to read the question out loud.  

ii. What is the problem asking you to do? Is it easy to figure out what this 

question is asking? Why or why not? Was the question easy? Was the 

question hard? 

iii. Can you talk me through how you would set up and solve this problem? 

Feel free to write down your work.  

1. I saw that you started your work with __________. Can you explain why 

you started here? (Note: Ask these follow up questions based on how the 

student set up the problem) 

iv. Please circle any words or phrases that you found unclear with the red pen. 

Please circle any words that you found to be helpful with the blue pen. 

Here is the legend for your reference. (If applicable) Why did you circle 

______ ? 
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1.  [Possible follow up question when applicable: What do you think the 

question means by the phrase: ________ ?] 

2. Where do you think someone else could get stuck on this problem? 

Ok, now I am going to show you another version of the same question and ask 

you to think about how it compares to the first one you just saw.  

 

[Take the first of the question version back. Present the next version of the same 

question to the participant. Do not mention that it is an original or modified 

version of the question] 

 

v. Please take a minute to read through the question out loud.  

vi. Please circle any words or phrases that you found unclear with the red pen. 

Please circle any words that you found to be helpful with the blue pen?  

(If applicable) Why did you circle ______ ? 

1.  [Possible follow up question when applicable: What do you think the 

question means by the phrase: ________ ?] 

2. Where do you think someone else could get stuck on this problem? 

[Give back the participant’s copy of first version of the question.] 

 

vii. Now that you have seen both versions of the same question, which version 

was easier for you to understand – the first or the second? Can you explain 

why?  

viii. Which version would you prefer to have on the test? Can you tell me why? 

ix. Neither one of the two question versions is perfect. If you could rewrite this 

question so that it would be easier for you to understand, how would you 

do it? Feel free to add, remove, or change anything in the question so the 

question is easier to understand.  

x. [Look at features of the questions that have changed by the participant if 

applicable] Why did you change this word or phrase? Why did you add the 

following ______ ? Why did you remove the following _______ ? 

xi. Thank you for talking through the first question. Now, I’ll ask you the same 

set of questions as we go through the next set of questions. 
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[Repeat questions from Parts a(i) – a(xi) for the additional sets of test item 

pairs, as time allows.] 

IV. Post-activity questions

a. Now that we’ve gone through all the problems, I would like to ask you a few

general questions about the problems you just completed.

i. Of the three sets of questions that you saw here today, which one was the

most difficult to understand? Why?

ii. Which question was the most clear in what was being asked of you to solve

the problem? Why?

iii. What advice would you give to your professor about how they could write

chemistry exam questions so that you can understand them better?

iv. Do you have any questions? Any comments or additional thoughts about

what we have talked about here?

Thank you very much for your time and willingness to participate in this

project.

Pen Colors Legend 

 Unclear = Red

 Helpful = Blue
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APPENDIX E 

 

 

 

- 1 - Generated on IRBNet 

UNLV Social/Behavioral IRB - Exempt Review 

Exempt Notice 

DATE: June 7, 2017 

TO: MaryKay Orgill 

FROM: Office of Research Integrity - Human Subjects 

 

PROTOCOL TITLE: [1069437-1] The Equitable Assessment of English Language Learners in 

General Chemistry 

 

ACTION: DETERMINATION OF EXEMPT STATUS 

EXEMPT DATE: June 7, 2017 

REVIEW CATEGORY: Exemption category #2 

 

Thank you for your submission of New Project materials for this protocol. This memorandum is 

notification 

that the protocol referenced above has been reviewed as indicated in Federal regulatory statutes 

45CFR46.101(b) and deemed exempt. 

 

We will retain a copy of this correspondence with our records. 

PLEASE NOTE: 

Upon final determination of exempt status, the research team is responsible for conducting the 

research as stated in the exempt application reviewed by the ORI - HS and/or the IRB which 

shall include using the most recently submitted Informed Consent/Assent Forms (Information 

Sheet) and recruitment materials. 

 

If your project involves paying research participants, it is recommended to contact Carisa 

Shaffer, ORI Program Coordinator at (702) 895-2794 to ensure compliance with the Policy for 

Incentives for Human Research Subjects. 

 

Any changes to the application may cause this protocol to require a different level of IRB review. 

Should any changes need to be made, please submit a Modification Form. When the above-

referenced protocol has been completed, please submit a Continuing Review/Progress 

Completion report to notify ORI -HS of its closure. 
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If you have questions, please contact the Office of Research Integrity - Human Subjects at 

IRB@unlv.edu or call 702-895-2794. Please include your protocol title and IRBNet ID in all 

correspondence. 

 

Office of Research Integrity - Human Subjects 

4505 Maryland Parkway . Box 451047 . Las Vegas, Nevada 89154-1047 

(702) 895-2794 . FAX: (702) 895-0805 . IRB@unlv.edu 

 

 

 

 

 

 

  

mailto:IRB@unlv.edu
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Informed consent  

Department of Chemistry and Biochemistry 

    

TITLE OF STUDY: The equitable assessment of English language learners in general 

chemistry.  

INVESTIGATOR(S): Dr. MaryKay Orgill (UNLV Professor), and Eshani Lee (UNLV 

Doctoral Student) 

For questions or concerns about the study, you may contact Dr. Orgill at 702 895-3580.  

For questions regarding the rights of research subjects, any complaints or comments regarding 

the manner in which the study is being conducted, contact the UNLV Office of Research 

Integrity – Human Subjects at 702-895-2794, toll free at 877-895-2794 or via email at 

IRB@unlv.edu. 

   

Purpose of the Study 

You are invited to participate in a research study. The purpose of this study is to determine what 

undergraduate general and organic chemistry students understand about general chemistry 

assessment questions.  

Participants 

You are being asked to participate in the study because you fit this criterion: you are currently 

enrolled in the first semester of general chemistry and/or you are a student whose first language 

is not English.  
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Procedures  

If you volunteer to participate in this study, you will be asked to do the following: participate in a 

one-hour interview about how you understand question exams on theoretical yield and limiting 

reagents. 

Benefits of Participation  

There may not be direct benefits to you as a participant in this study. However, we hope to learn 

about how students’ interpret general chemistry test items, and discussing your thoughts on this 

topic may change your understanding of it. 

Risks of Participation  

There are risks involved in all research studies. This study may include only minimal risks which 

may include embarrassment, emotional distress, and psychological trauma associated with the 

discussion of unfamiliar topics.  

Cost /Compensation 

There will not be financial cost to you to participate in this study. The study will take 

approximately 60 minutes of your time. You will be provided with a $10 Amazon.com gift at the 

end of the interview.   

Confidentiality  

All information gathered in this study will be kept as confidential as possible. No reference will 

be made in written or oral materials that could link you to this study. All records will be stored in 

a locked facility at UNLV for three years after completion of the study. After the storage time the 

information gathered will be destroyed. 

Voluntary Participation  

Your participation in this study is voluntary. You may refuse to participate in this study or in any 

part of this study. You may withdraw at any time without prejudice to your relations with 
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UNLV. You are encouraged to ask questions about this study at the beginning or any time during 

the research study.  

 

Participant Consent:  

I have read the above information and agree to participate in this study. I have been able to ask 

questions about the research study. I am at least 18 years of age. A copy of this form has been 

given to me. 

 

             

Signature of Participant                        Date  

 

        

Participant Name (Please Print)                          

 

Audio/Video Taping: 

I agree to be audio and video taped for the purpose of this research study. 

 

             

Signature of Participant                        Date  

 

 

        

Participant Name (Please Print)                      
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APPENDIX F 

In-Class Solicitation Script 

Good (morning/afternoon), 

I would like to thank Professor ___________________ for letting me come in and speak with 

you today. 

My name is Eshani Lee, and I am a doctoral student in the chemistry department here at UNLV. 

I am working on my dissertation research and am looking for general chemistry students to 

participate in a one-hour audiotaped individual interview. You will receive a $10 gift card for 

Amazon.com for your participation immediately following the interview.  

The interview will be held in the chemistry building. I am willing to work with your schedules 

and find a time that best works for you. 

If you agree to be interviewed, the interview questions I will ask you do not have right or wrong 

answers, rather they will ask you for your perspectives about how you understand general 

chemistry test questions. Through this research I am hoping to find ways to improve the way 

exam questions are written in undergraduate general chemistry courses. To accomplish this goal, 

I need to hear from general chemistry undergraduate students about their experiences with these 

exam questions, specifically how you read and interpret chemistry test questions.  

My research is comparative in nature, so I am looking for general chemistry undergraduate 

students who fit two different study criteria: 

First, I am looking for students who grew up speaking English as a second language AND who 

have been in the U.S. for less than 8 years.  

Second, I am looking for all other students (i.e. students who are native English speakers from 

anywhere in the world including the U.S.). 

If you are interested in participating please write your name and preferred e-mail address 

on the index card I handed out. If you do not want to participate, leave the card blank. 

Pass back all cards. If I get a card with your contact information on it, I will contact you 

to set up a specific day/time for us to meet for the interview.  

Thank you all for your time, and a special thank you to anyone who chooses to participate. 
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