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ABSTRACT 

A Potential Solution to a Poopy Problem: Bile Salt Analogs as Prophylactics 

Against Clostridium Difficile Infection (CDI) 

 

by 

 

Jacqueline Renee Phan 

 

Dr. Ernesto Abel-Santos, Examination Committee Chair 

Professor of Biochemistry 

University of Nevada, Las Vegas 

 

Clostridium difficile infection (CDI) is a major cause of antibiotic-

associated diarrhea. In 2011, over 500,000 patients were diagnosed with CDI in 

the United States and over 29,000 people died of CDI-related complications. 

With an average of $35,000 to treat a single case of inpatient CDI, cost burden 

to the healthcare system can reach up to $3.2 billion annually. As both hospital- 

and community-acquired CDI incidences rise due to the emergence of 

hypervirulent strains and CDI reoccurrences of up to 25%, standard treatments 

are rendered less effective and new methods of prevention are critical. 

CDI is caused by bacteria called Clostridium difficile. A key characteristic 

of Clostridium difficile is its ability to form tough and dormant structures called 

spores. The spores’ dormant nature allows them to survive in the gastrointestinal 

tract of susceptible patients without showing any signs of infection. When the 

spores are under stress, they can germinate into toxin-producing cells that cause 

symptomatic infection. 
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Clostridium difficile spore germination is promoted by the bile salt 

taurocholate with the amino acid glycine. Another naturally-occurring bile salt 

called chenodeoxycholate (CDCA) can compete with taurocholate to inhibit 

spore germination. These bile salts are regulated by the indigenous gut 

microbiota. However, for patients who are immunocompromised or who have 

recently taken antibiotics, the composition of natural intestinal microflora can 

become altered, making bile salt regulation much less efficient, thus allowing 

spore germination to occur. 

Previously, CamSA, a synthetic bile salt analog of taurocholate, was found 

to be a more potent germination inhibitor than CDCA when tested against 

epidemic type X strain 630. Currently, a new analog called 07C revealed to be 

a stronger germination inhibitor than CamSA in strain 630 as well as in various 

other strains. Plated germination inhibition assays showed that 07C inhibited 

spore germination in several strains of C. difficile using less than 50 μM of 

compound. Furthermore, mice challenged with each of the C. difficile strains 

had significantly reduced CDI symptoms or were completely protected from 

CDI symptoms when given three doses of 50 mg/kg 07C. From these 

explorations, bile salt analogs have the potential to serve as CDI prophylactic 

treatments in antibiotic-treated patients. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Significance 

Clostridium difficile is a pathogenic bacterium linked with Clostridium 

difficile antibiotic-associated diarrhea. Collectively, disease caused by this 

bacterium is recognized as Clostridium difficile infection (CDI). The discovery of 

C. difficile was preceded by the characterization of pseudomembranous colitis 

(PMC) by John Miller Turpin (J.M.T.) Finney in 1893.1 PMC is an inflammatory 

condition in which exudative plaques form on the intestinal mucosa causing 

necrotizing disease. As a surgeon at Johns Hopkins Hospital, Finney discovered 

PMC in an autopsy of a postoperative patient who had undergone a 

gastroenterostomy for an ulcerated pylorus.1,2 Although the patient began to 

recover ten days post-surgery, the patient soon developed bloody diarrhea and 

succumbed five days later.1 Over the next 50 years, other similar cases were 

reported involving postoperative PMC.2-4 By the 1950s, several reports of 

diarrhea and colitis were associated with prior exposure to antibiotics.5-8 

Meanwhile, in 1935, while investigating the colonization of bacteria in the 

gastrointestinal (GI) tracts of human neonates, Ivan C. Hall and Elizabeth 

O’Toole isolated bacteria they named “Bacillus difficilis” from the stools of the 

healthy newborn infants.9 The name “difficilis” arose from the bacterium’s initial 

difficulty to isolate and culture from human feces. While working with “Bacillus 

difficilis”, Hall and O’Toole found that the organism was able to produce toxin 
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that was lethal to guinea pigs.9 Interestingly, the infants of which the organism 

was discovered from were found to be asymptomatic carriers of the bacterium.9 

Thus, the organism was deemed as commensal. A 2011 comprehensive review 

by Kachrimanidou and Malisiovas reported that approximately 5% of healthy 

adults and 50% of newborn infants are asymptomatic carriers of C. difficile.10 

It was not until the 1970s, when the antibiotic clindamycin was first 

introduced, that “Bacillus difficilis”, now renamed to Clostridium difficile, was 

found to be responsible for antibiotic-associated diarrhea and a primary cause 

of PMC.11-14 Moreover, the toxins produced by C. difficile were implicated as the 

causative agents of PMC.15-18 By 1996, United States hospital discharges from 

Clostridium difficile antibiotic-associated diarrhea were 31 cases per 100,000 

population.19,20 This proportion doubled to 61 cases per 100,000 population by 

2003.19,20 

In 2011, the Centers for Disease Control (CDC) reported that over 500,000 

people were diagnosed with CDI in the United States.21,22 In that same year, 

approximately 29,000 people died of CDI-related complications within 30 days 

of initial diagnosis.22 With an average of $35,000 to treat a single inpatient case, 

cost burden to the United States healthcare system can reach up to $3.2 billion 

annually.22-26 Some studies have even traced CDI as the cause of $4.8 billion in 

excess cost to United States acute-care facilities.27 A 2011 study by Miller et al. 

suggests that CDI has even surpassed the infamous methicillin-resistant 

Staphylococcus aureus (MRSA) as the most common cause of hospital 
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associated infections (HAIs) in community hospitals in the southeastern United 

States.28 

 

1.2 Biology of Clostridium difficile 

1.2.1 Taxonomy 

Clostridium difficile is a member the Domain Bacteria and Kingdom 

Eubacteria (Figure 1.1). It belongs to the Phylum Firmicutes. Like most of the 

bacteria in Phylum Firmicutes, C. difficile is Gram-positive, which means that it 

contains a thick peptidoglycan cell wall that can readily absorb the primary 

stain crystal violet.29,30 Once the stain becomes fixed to the cells upon 

application of the mordant iodine, the C. difficile rods can be viewed as purple 

under light microscopy (Figure 1.2). By contrast, Gram-negative bacteria, such 

as Escherichia coli, possess a thin peptidoglycan layer sandwiched between an 

inner cytoplasmic cell membrane and an outer membrane composed of 

lipopolysaccharides.31,32 This causes Gram-negative organisms to not retain the 

primary stain crystal violet after decolorization with alcohol, but readily uptake 

the secondary stain safranin. Therefore, they appear pink under light microscopy 

(Figure 1.2). This staining technique was devised by Danish bacteriologist Hans 

Christian Gram in 1884 as a means of separating bacteria into two distinct 

groups based on their cell wall content (Figure 1.3).29,30 Phylum Firmicutes 

bacteria are also known for their low percentage of guanine-cytosine (GC) 
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nitrogenous base content in their genetic information (DNA or RNA). The C. 

difficile genome has been reported to have a 29.06% GC content.33 

 

 

 

 

 

Figure 1.1. Classification of Clostridium difficile. 

Figure 1.2. Gram stain of Gram-positive C. difficile (purple) and Gram-negative E. coli (pink). 
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Phylum Firmicutes consists of two major classes of rod-shaped bacteria: 

Bacilli and Clostridia (Figure 1.1). While Bacilli can be obligate or facultative 

aerobes, Clostridia are obligate anaerobes.34,35 This means that they do not 

tolerate the presence of oxygen, and thus use nitrate as their final electron 

acceptor in cellular respiration to produce molecular energy in the form of the 

adenosine triphosphate (ATP).34-36 Therefore, the anaerobic nature of the 

Figure 1.3. Representation of Gram-staining technique. Heat-fixed bacteria are stained with 

the primary stain crystal violet for 1 minute, then washed with water (Step 1). The mordant 

Gram’s iodine is then added for 1 minute to fix the crystal violet dye to Gram-positive 

bacteria (Step 2). After washing with water, alcohol is added for 10-20 seconds to decolorize 

Gram-negative bacteria. Finally, the secondary stain safranin is added for 1 minute to 

counterstain Gram-negative bacteria (Step 4). Excess stain is washed with water. Gram-

positive bacteria will appear purple while Gram-negative bacteria will appear pink under 

light microscopy. 
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mammalian GI tract coupled with its high nutrient availability allows C. difficile 

the ability to thrive within it.37 

C. difficile is further classified into Order Clostridiales and Family 

Clostridiaceae (Figure 1.1). As with other bacteria in Family Clostridiaceae, C. 

difficile is able to form structures called endospores.30,35 Endospores are very 

often referred to as “spores” although they are not true spores in the sense that 

they are not reproductive offspring (such as with plants or fungi), but rather are 

non-reproductive seed-like entities. Endospores are tough and dormant 

structures that are formed when the vegetative cell is exposed to harsh or 

stressful conditions like nutrient deprivation. These spores are highly resistant to 

various stressors such as high temperatures, ultraviolet irradiation, and a variety 

of antimicrobial treatments.38-40 Their dormant nature also allows them to survive 

on surfaces such as hospital counters and in the GI tracts of susceptible 

patients.41 

Finally, the genus Clostridium contains about 200 species that consist of 

non-symbiotic bacteria, commensal bacteria, as well as notorious pathogenic 

bacteria such as C. botulinum (responsible for botulism), C. perfringens 

(responsible for gas gangrene), C. tetani (responsible to tetanus), and C. difficile 

(responsible for CDI) (Figure 1.1).34 

C. difficile strains are highly motile and move via peritrichous flagella, 

which are flagellar extensions that are spread throughout the surface of the 

bacterium.42 However, Baban et al. has shown that C. difficile strain R20291 
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exhibits monotrichous flagella (a single flagellum on one end of the 

bacterium).42 The study suggests that monotrichous flagella assists the strain 

R20291 bacteria not only in motility, but also in adherence and colonization to 

the intestinal epithelium upon infection.42 

 

1.2.2 Sporulation 

The production of endospores is a key characteristic of C. difficile. The 

process by which endospores are formed is called sporulation. Sporulation is 

triggered by stimuli from both the external and internal environment. External 

cues include quorum sensing, nutrient starvation, and desiccation. Following 

external stimulus, initiation proteins that comprise of sensory histidine kinases 

phosphorylate regulatory proteins including the master transcriptional regulator 

protein Spo0A, which is highly conserved among members of the Bacillus and 

Clostridium genera.43 Spo0A has been found to be an important factor in the 

transmissivity of CDI and play a significant role in maintenance of persistent 

infection.43 The recruitment of initiation and regulatory proteins commence a 

cascade of sigma (σ) factors and additional sporulation proteins that signal the 

formation of the many layers of the C. difficile endospore.44,45 

The overall structure of the C. difficile spore is similar that of other spore-

forming bacteria in genera Bacillus and Clostridium (Figure 1.4). However, C. 

difficile lacks some sporulation orthologs that are commonly conserved in other 

species of those genera. This is particularly apparent in the outer layers of the C. 
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difficile spore. The outermost layer of the spore is the exosporium, which contains 

hair-like proteinaceous projections that help attach the spore to host cells.45 The 

exosporium is also the outermost layer in B. anthracis and B. cereus.45,46 

Interestingly, C. difficile spores that possessed defective or missing exosporium 

layers were found to adhere better to Caco-2 colonic cells and germinate more 

readily than spores with intact exosporiums.45,47 

 

 

  

 

The exosporium surrounds the next layer, the spore coat, which is 

commonly the outermost layer of spores in many other spore-forming bacteria. 

Despite many structural similarities, C. difficile only shares less than 25% of similar 

spore coat proteins homologs with the well-studied B. subtilis.46 The C. difficile 

Figure 1.4. C. difficile endospore structure. Adapted from Paredes-Sabja et al. 2014.45  
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spore coat is proposed to contain a dense and rigid polypeptide lattice 

consisting of many cysteine residues that form disulfide bridges under aerobic 

conditions.46 The spore coat is resistant to harsh chemicals and functions as a 

protective barrier to the underlying spore cortex, which is susceptible to 

lysozyme degradation.45,46,48 It is also a passageway for small molecules known 

as germinants to pass through into the inner spore layers.49 

The cortex is sandwiched between an outer and inner membrane. The 

cortex is comprised of cross-linked layers of peptidoglycan.50 The cortex plays an 

essential role in dehydrating the spore’s core, which contributes to the spore’s 

heat resistance. During germination, the process by which the outgrowth of a 

vegetative cell occurs, the cortex is degraded by hydrolytic enzymes from the 

core. The degradation of the cortex is necessary for the full rehydration of the 

core upon germination. Directly underneath the cortex is the germ cell wall 

which will become the cell wall of the bacterial cell following germination. 

The spore’s inner membrane is a stiff lipid bilayer. For Bacillus and 

Clostridium species other than C. difficile, the inner membrane contains the 

germination receptors (Ger).48 C. difficile lacks a known Ger receptor, but it is 

proposed that its germination receptor is present at this layer.45,51,52 The low 

permeability of the rigid inner membrane also aids in the protection of DNA in 

the underlying core.45,53,54,55 

The innermost spore layer is the core which stores large amounts 

dipicolinic acid (DPA) chelated with calcium ions (Ca2+). DPA is suggested to be 
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responsibility for the spore’s heat resistance.56 The Ca2+-DPA complex makes up 

20-25% of the core’s dry weight.45,57 Also in the core are small acid-soluble 

proteins (SASPs) that are tightly bound to DNA. They have been linked with the 

spore’s chemical and UV resistance.58 SASPs make up approximately 10-20% of 

the core’s dry weight.48,58 Moreover, the spore’s low water content (25-60% wet 

weight) also contributes to its resistance capabilities.45,57 In addition to housing 

the genetical material of the spore (DNA and RNA), the core also contains 

enzymes that are required for degradation of the outer spore layers during 

germination and outgrowth. 

Endospore formation occurs in a cycle and is characterized by several 

key morphological steps (Figure 1.5). In B. subtilis, it can take approximately 3 

hours for the first morphological change to occur after sporulation is 

inaugurated.44 However, C. difficile can take between 8 to 20 hours for the 

same sporulation stage to jumpstart.44 This variability may explain possible 

differences in sporulation rates among various C. difficile strains. First, the 

vegetative bacterial cell senses an environmental stressor (Stage I). As a way to 

preserve the cell’s genetic material, it begins to form the endospore. This first 

step is characterized by the formation of a septum on one side of the cell (Stage 

II). Following septum formation, the peptidoglycan in the septum begins to 

degrade and smaller side of the cell becomes engulfed to form a forespore 

(sometimes referred to as the prespore) (Stage III). The remainder of the cell is 

referred to as the mother cell. The mother cell produces several endospore-
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specific components that aid in the maturation of the fully formed endospore.  

The mother cell synthesizes the core and cortex (Stage IV), then manufactures 

the germ cell wall, inner membrane, and outer membrane (Stage V). After the 

inner layers are formed, the spore coat and exosporium are deposited around 

the spore (Stage VI). Once all layers are constructed, the mother cell programs 

cell death and lyses, causing the mature endospore to be released and freed 

(Stage VII). Upon exposure to ideal conditions and activation by a germinant 

(discussed further in section 1.4), the endospore can germinate, resulting in 

outgrowth of a vegetative toxin-producing cell (Stage VIII). As a defense 

mechanism to protect its DNA, the bacterial cell can reenter the sporulation 

cycle to produce more endospores under stressful conditions. 
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The presence of spores can be confirmed by microscopic visualization. 

One approach is the Schaeffer-Fulton endospore staining technique which uses 

the malachite green to stain spores and safranin to counterstain bacterial cells 

(detailed in section 2.2.4.1).59 It was designed in 1933 by Alice B. Schaeffer and 

MacDonald Fulton, both of whom were microbiologist at Middlebury College in 

Middlebury, Vermont. It is sometimes referred to as the Wirtz-Conklin method 

Figure 1.5. C. difficile endospore life cycle. The vegetative cell senses an environmental 

stressor which triggers sporulation (Stage I). A septum is formed (Stage II) and the cell is 

asymmetrically split to form a smaller forespore and a larger mother cell (Stage III). The 

mother cell assembles the spore core and cortex (Stage IV). Then, the mother cell forms the 

germ cell wall, inner membrane, and outer membrane (Stage V). The final manufacturing 

step is the deposition of the spore coat and exosporium (Stage VI). The mother cell lyses and 

releases the free mature endospore (Stage VII). During spore germination, outgrowth of a 

vegetative cell will occur (Stage VIII). The vegetative cell can then reenter into sporulation 

under unfavorable conditions. Adapted from Paredes-Sabja et al. 2014.45 
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after the two bacteriologists who originally developed the technique in 1908.59 

Schaeffer and Fulton slightly modified Wirtz and Conklin’s previous method by 

replacing osmic acid with heat as a fixating agent to provide a technique that 

was faster and more efficient than other methods used at that time. One of 

those methods was Dorner’s endospore staining technique, published in 1922, 

which used Ziehl-Neelsen Carbol Fuchsin (ZNCF) to penetrate into the spores, 

causing them to appear red, and 10% Nigrosine to stain the background of the 

slide black.59 

 

1.2.3 Toxin Production 

Upon germination and outgrowth of C. difficile spores, toxins are 

produced and released. These toxins are responsible for the pathogenicity of 

CDI and are the determinants for disease. The two major C. difficile toxins are 

enterotoxin TcdA (Clostridium difficile toxin A) and cytotoxin TcdB (Clostridium 

difficile toxin B), both of which have been implicated in CDI symptoms such as 

diarrhea and PMC.21,60,61 Several strains of C. difficile are also capable of 

producing a third toxin known as CDT (Clostridium difficile transferase), which 

has been frequently implicated in severe cases of CDI.62 Non-toxigenic strains of 

C. difficile also exist naturally and do not cause disease.63 

TcdA and TcdB are among the largest bacterial toxins known with 

molecular masses of 308 kDa and 270 kDa, respectively.60,64 TcdA and TcdB are 

encoded by genes tcdA and tcdB, which are found in open reading frames 
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situated within the 19.6 kb pathogenicity locus (PaLoc) of the C. difficile 

chromosome.65,66 Additionally, tcdA and tcdB genes have low GC content as 

does the entire C. difficile genome.60 The toxins also have a high degree of 

similarity with 66% homology overall.60 

During the early exponential phase of C. difficile cell growth, toxin release 

levels are relatively low. At this point, TcdC, a negative regulator of toxin 

production, is expressed at high levels.60,67,68 The tcdC gene, which encodes 

TcdC, lies downstream of tcdA and tcdB and is transcribed in the opposite 

direction.60,67,68 By the late exponential phase to stationary phase, TcdC levels 

decline and toxin production significantly increases.60,67,68 Another regulator, 

TcdD, encoded by the upstream tcdD gene, has been suggested to be a 

positive regulator of toxin production.60,69  

TcdA and TcdB are both glucosyltransferases that inactivate intracellular 

GTPases (Rho, Rac, and Cdc42 proteins) within target cells.60,70 These GTPases 

are regulatory proteins of the actin cytoskeleton.60,71 Both tcdA and tcdB genes 

contain four key domains (from C-terminus to N-terminus): the combined 

repetitive oligopeptide repeat (CROP) domain, the putative translocation 

domain, the cysteine protease domain (CPD), and the glucosyltransferase 

domain (GTD). The CROP domain, or receptor-binding domain, binds to 

carbohydrate and protein receptors on the surface of the host epithelial cells. 

TcdA binds to glycoprotein 96 (gp96) and sucrase-isomaltase on the apical 

membrane of human colonocytes; whereas, TcdB binds to chondroitin sulfate 
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proteoglycan 4 (CSPG4) and poliovirus receptor-like 3 (PVRL3) on the surface of 

intestinal epithelium.60,70-73 Upon interaction with the host cell receptors, the 

toxins are internalized via endocytosis. The endosome acidifies, causing the 

toxins to partake in conformational changes that allow for their translocation 

into the cytoplasm. Once the toxins are internalized into the host cell, toxins are 

auto-catalytically cleaved by their CPD domain, thus activating GTD, the 

catalytic domain. GTD aids in the transfer of glucose from UDP-glucose to the 

target GTPases, rendering them inactive. The glycosylation of the GTPases 

triggers modification of the actin cytoskeleton and increased permeability of 

tight junctions, leading to epithelial cell damage, increased fluid secretion, 

mucosal necrosis, and apoptotic cell death.21,60 Increased epithelial 

permeability also leads to neutrophil infiltration and accumulation, which are 

the hallmarks of pseudomembranous colitis (PMC) (Figure 1.6).21,60,70 
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The detection of TcdA and TcdB have long been paramount for 

diagnosing CDI. Immunoassays and cytotoxicity assays have been employed to 

detection the presence of toxins. Enzyme immunoassay (EIA) tests have quick 

turnover times and can detect the presence of free TcdA and TcdB in stool.74-76 

Due to their low sensitivity, toxin EIAs are usually not used as stand-alone 

diagnostic tools.77,78 The cell cytotoxicity neutralization assay (CCNA) have been 

long considered as the “gold standard” for C. difficile toxin detection.77-79 

CCNAs take the filtrate of collected stool samples and test them against 

mammalian cell cultures; cell round up and necrosis are indicative of the 

presence of TcdB. Verification of C. difficile toxin as the cause of cytopathic 

effects is determined by neutralization with specific antitoxin antibodies.78,79 

Figure 1.6. Simplified representation of toxin release contributing to pseudomembranous 

colitis (PMC). Adapted from Voth & Ballard 2005, Rupnik et al. 2009, and Abt et al. 2016.21,59,69 

Pseudomembrane 
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While highly sensitive and specific, the CCNA has a slow turnaround time and 

requires technical expertise.79 The nucleic acid amplification test (NAAT) uses 

real-time quantitative polymerase chain reaction (RT-PCR) to amplify C. difficile 

toxin gene fragments.80 However, this method does not account for the 

expression of active toxins. 

CDT is a ribosyltransferase that was first discovered in C. difficile strain 

CD196 by Popoff et al. in 1988.62,81 It was found to exhibit ADP-ribosyltransferase 

function similar to Clostridium botulinum toxin C2 and Clostridium perfringens 

toxin E iota. As a binary toxin, it is composed of two separate proteins: CdtA, the 

enzymatic component, and CdtB, the binding component. CDT binds to the 

lipolysis-stimulated lipoprotein receptor (LSR) on the surface of intestinal 

epithelial cells. Similar to TcdA and TcdB, CDT is internalized via endocytosis. 

CdtB creates a small pore in the acidified endosome facilitating the release of 

CdtA into the cytosol. There, CdtA ribosylates G actin, collapsing the host cell’s 

actin cytoskeleton by inhibiting actin polymerization and promoting fibronectin 

microtubule elongation and protrusion. Furthermore, this fosters C. difficile’s 

adherence to the intestinal epithelium.62,82 

CDT has been associated with hypervirulent (severe disease-causing) C. 

difficile strains such as the epidemic strain BI/NAP1/027.62,83 In addition to TcdA 

and TcdB, BI/NAP1/027 strains are also capable of producing active CDT. 

Although many other factors account for the virulence of BI/NAP1/027 strains, it 

is possible that CDT has synergistic effects with TcdA and TcdB. More on 
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hypervirulence and BI/NAP1/027 strains will be discussed in section 1.3.5 and 

chapter 2. 

 

1.3 Clostridium difficile Infection (CDI) 

1.3.1 Disease Characteristics 

Clostridium difficile Infection (CDI) is a primarily nosocomial disease 

caused by Clostridium difficile. It is predominately linked to patients who have 

had prior antibiotic use.84,85 Individuals who are elderly or immunocompromised 

are also disproportionately affected and are more susceptible to disease.21 Use 

of antibiotics such as clindamycin can disrupt the natural colonic gut flora, thus 

removing the beneficial bacteria and allowing for the colonization of C. difficile. 

Due to the resistant nature of C. difficile spores, they can survive passage 

through the acidic stomach, the small intestine, and into the large intestine 

(colon).38 When in the intestines, the anaerobicity and nutrient-rich environment 

promotes the spores to germinate into toxin-producing vegetative cells that are 

capable of eliciting disease. 

CDI symptoms can range from mild to severe disease. Mild disease is 

defined solely as the presence of diarrhea.85,86 Moderate disease includes a 

repertoire of other symptoms such as abdominal pain, loss of appetite, fever, 

nausea, vomiting, GI bleeding, bloody stools, and weight loss.85 Severe disease 

includes the same symptoms associated with mild-to-moderate diarrhea with 

the addition of more serious conditions such as elevated white blood cell 
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counts, hypotension, high grade fever, pseudomembranous colitis (PMC), ileus 

(the reduction in peristaltic movement of stools through the GI tract), abdominal 

distention, altered mental status, and organ failure.85 PMC can lead to another 

grave condition called toxic megacolon, which renders the colon incapable of 

expelling gas and stool, potentially leading to rupture. Moreover, organ failure 

can ultimately lead to death. 

 

1.3.2 Mode of Transmission 

CDI is transmitted through an oral-fecal route (Figure 1.7). C. difficile 

spores can be ingested through the oral cavity and shed through feces. In 

healthy individuals, indigenous gut bacteria will assist in the regulation of bile 

acids that aid in the prevention of spore germination.87-89 Thus, the spores that 

enter the body will exit the body as spores.90 However, in patients with depleted 

gut microflora, C. difficile spores can germinate in the colon and cause CDI 

symptoms.73,87-89 
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The spore’s resistant qualities may allow it to survive for long periods of 

time. Contaminated surfaces, instruments, and equipment such as counters, 

beds, and gloves can become reservoirs for C. difficile spores. Therefore, 

decontamination is critical in the prevention of CDI from spreading. Proper hand 

hygiene and glove wearing are initial preventative measures used in hospital-

related settings as precautions when working with CDI patients. Some hospitals 

have also implemented infection control programs.85,91 Because C. difficile 

spores are resistant to alcohol-based cleaners, disinfectants that contain a 

Figure 1.7. Route of transmission of C. difficile spores through mammalian host. C. difficile 

spores (green circles) are ingested by the mammalian host. The spores’ dormant and 

resistant nature allows them to survive the stomach’s low pH until they eventually reach the 

lower GI tract. In the large intestine, the spores germinate into toxin-producing cells (purple 

rods). To aid in their survival, these vegetative cells also produce spores that can exit the 

body through feces. The excreted spores can re-infect the original host or infect another host 

through ingestion. 
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minimum of 5,000 ppm of chlorine are recommended to kill the spores. Isolation 

of patients may also be required to reduce transmission from person to person. A 

cohort studied showed that patients in double rooms are more likely to acquire 

CDI than patients placed in single rooms.85,92 

Traditionally, CDI has been considered a nosocomial disease. However, 

some studies have also isolated C. difficile outside of the hospital setting in non-

human reservoirs. C. difficile has been found in food as well as domestic 

animals.93-95 This could be one possible mode of transmission in the community-

acquired CDI setting. 

For some individuals, C. difficile is indigenous rather than acquired through 

transmission.10,96,97 These individuals are often asymptomatic C. difficile carriers 

and have the presence of other intestinal microbes that keep C. difficile in 

check to manageable quantities. Asymptomatic carriers have also been shown 

to be less susceptible to CDI even under antibiotic therapy. This may possibly be 

attributed to their natural immune system. A study by Sanchez-Hurtado et al. 

suggested that carriers have increased antibody response to C. difficile.98 

Another study done by Kyne, Warny, Qamar, and Kelly showed that higher 

production of the antibody immunoglobulin G (IgG) against Clostridium difficile 

toxin A helps confer immunity.99 Nevertheless, asymptomatic carriers may still 

pose a risk for transmitting C. difficile to vulnerable individuals.97 
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1.3.3 Establishment of Infection 

There are three steps at the host level that enable the establishment of 

CDI: ingestion of spores, susceptibility to CDI due to antibiotic exposure, and loss 

of a natural protective barrier in the GI tract. Infection begins with the ingestion 

of C. difficile spores from the environment. In most archetypal CDI models, the 

host must become predisposed to CDI by antibiotic usage. Prior to antibiotic 

treatment, the gut flora is naturally in symbiosis (Figure 1.8). Antibiotics disrupt the 

natural microbiota within the GI tract causing dysbiosis (Figure 1.8). The loss of 

the natural protective barrier in the gut allows for C. difficile overgrowth and 

accumulation (Figure 1.8). Moreover, the depletion of beneficial gut microbes 

results in a crucial loss in the regulation of various factors involved in inhibiting 

the establishment of infection such as germination inhibition. 
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At the spore level, there are also three steps to establishing infection: the 

entrance of the spore into the host, germination of the spore, and production of 

toxins. Spores are the vehicle for infection. Although they do not cause disease 

symptoms, they are the infecting agents that enter the host and set the 

foundation for infection. Once the spores pass the acidic stomach, the 

favorable environment in the small intestine along with the presence of key 

germinants, in the form of bile salts and amino acids, promote spore 

germination.49,52,87,89,100 While the spore prepares for the outgrowth of vegetative 

cell, the spore travels to the large intestine (colon). There, the resultant 

metabolically active vegetative cells produce toxins, which are the 

determinants for disease. The internalization of the toxins eventually recruits 

Figure 1.8. Changes in gut microbiota due to antibiotic use. During symbiosis, the natural 

intestinal microflora is present. During exposure to antibiotics, the microbiota is disrupted, 

destroy some beneficial microorganisms and causing dysbiosis. Once C. difficile is introduced 

into the host, the dysbiotic environment allows C. difficile to allocate space and nutrients 

resulting in overgrowth and accumulation. 

 



24 

 

neutrophils that cause an inflammatory response, giving rise to diarrheal 

symptoms and pseudomembranous colitis. Sporulation by the vegetative cells is 

also localized to the colon.  

 

1.3.4 Current Treatment Options 

CDI is usually instigated by broad-spectrum antibiotics used to treat other 

illnesses. Patients who are on cephalosporins, fluoroquinolones, and clindamycin 

are at even higher risk for contracting CDI.101 Once CDI is diagnosed, timely 

treatment is crucial. Ironically, CDI patients usually must stop taking those 

antibiotics to begin taking CDI-specific antibiotics. Conventionally, the 

antibiotics metronidazole and vancomycin have been used to treat CDI. 

Metronidazole (trade name Flagyl) is a nitroimidazole antibiotic that is 

active against anaerobic bacteria (Figure 1.9). Due to its small size and low 

molecular weight, it can passively diffuse through the C. difficile cytoplasm. 

Metronidazole acts by stealing electrons from bacterial electron transfer proteins 

flavodoxin and ferredoxin. This results in a nitroso free radical that hinders nucleic 

acid synthesis. Metronidazole is used to treat mild-to-moderate CDI. However, 

metronidazole is usually avoided in prolonged treatment as long-term use has 

been linked with neurotoxicity and hepatotoxicity.86,102 Also, resistance to 

metronidazole has previously been reported and can arise from factors such as 

slow drug activation, increased drug efflux, and horizontal gene transfer of 

nitroimidazole resistant genes.86,103  
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For more moderate-to-severe cases of CDI, vancomycin is usually the 

drug of choice. Vancomycin (trade name Vancocin) is a cell wall inhibitor that 

targets mainly Gram-positive bacteria by preventing the synthesis of 

peptidoglycan (Figure 1.9).104-107 It forms hydrogen bonds with the terminal D-

alanyl-D-alanine residues of N-acetylglucosamine (NAG) and N-acetylmuramic 

acid (NAM) peptides of the peptidoglycan layer. Vancomycin also prevents 

spore outgrowth.108 As a large hydrophilic molecule, vancomycin is poorly 

absorbed from the intestines. Therefore, in order to reach the site of infection 

(the GI tract), vancomycin must be administered orally for CDI cases.104,107,109,110 

Unlike metronidazole, C. difficile has not yet been reported to show resistance to 

vancomycin.106 However, vancomycin is much more expensive than 

metronidazole. 

Vancomycin can be used in conjunction with metronidazole to treat CDI 

recurrences, thought it may not be successful in preventing them. Because 

metronidazole and vancomycin both target a broad range of bacteria, they 

can suppress the growth of the intestinal microbiota, resulting in a high 

frequency of relapse.107,111,112 In recent years, a newer antibiotic called 

fidaxomicin (trade name Dificid) has been used in metronidazole- and 

vancomycin- failed treatment (Figure 1.9).106,107,111-113 Fidaxomicin was originally 

isolated from Dactylosporangium aurantiacum subspecies hamdenesis and is a 

macrocyclic antibiotic.113 Fidaxomicin prevents the opening and closing of the 

DNA/RNA clamp responsible for the initiation of transcription. Although 
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fidaxomicin shows minimal disruption to the indigenous gut microflora, one 

caveat is that it is relatively ineffective against recurrent CDI.111,114 Despite this, 

fidaxomicin has been associated with lower rates of recurrence.111  

 

 

 

 

Several novel treatment options are available for patients suffering from 

CDI. For more extreme cases of CDI, fecal microbiota transplantation (FMT) is an 

alternative approach to treating multiply-recurrent CDI. FMT is the introduction 

of healthy donor stools into the colon of CDI patients (Figure 1.10). This method is 

used to restore the diverse gut microbiota that was killed off by antibiotics and 

reinstate resistance to C. difficile colonization. FMT is typically administered via 

colonoscopy, endoscopy, or through an enema, but can also be taken as a 

frozen oral pill.115,116 Although success rates are generally high (86-99%), the 

procedure can be aesthetically unappealing.115,117 The perceived concern for 

Figure 1.9. Chemical structure of clinically relevant antibiotics used to treat CDI. 
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transmission of infectious agents of the donor stools has also been a topic of 

concern.85,115 However, a 2011 review found that there were no reported 

infection transmission reports in over 370 published studies.118 Regardless, donor 

stools undergo careful selection and rigorous screening prior to being used in 

treatment, which increases the cost of the treatment.119 

  

 

Other novel treatments include the use of probiotics, vaccines, and 

antitoxins. Like FMT, probiotics introduces “good” microorganisms into the GI 

tract of CDI patients (Figure 1.11). Unlike FMT, it usually only includes a few 

specific combinations of microbial species. Common microorganisms included 

Figure 1.10. Representation of fecal microbiota transplantation (FMT). Donor stools are 

carefully screened and selected for use in FMT (Step 1). The stools are blended, strained, then 

stored in a freezer (Step 2). Prior to treatment, the stools are portioned (Step 3) and 

administered to the patient via colonoscopy/endoscopy tube, enema, nasogastric tube, 

nasoduodenal tube, orogastric tube, or oral capsule (Step 4). 
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in probiotics are Saccharomyces boulardii, Lactobacilli, Clostridia, Streptococci, 

and Bifidobacteria. Lactobacilli and Bifidobacteria are ordinarily found in yogurt 

and dairy products, respectively. Probiotics are usually administered in tablet 

form. Several meta-analyses have shown probiotics to be useful in treating 

Irritable Bowel Syndrome (IBS) and CDI.120,121 A few sporadic cases of probiotic 

therapy have reported bloodstream infections due to bacteremia and 

fungemia in immunocompromised patients.122,123 This brings up the concern of 

probiotic safety evaluation as they are currently not overseen by a major 

regulatory entity.124,125 Probiotic therapy, along with other innovative treatment 

options such as vaccines and antitoxins, are still relatively new and theirs benefits 

with treating CDI are still under investigation.126-129 
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1.3.5 The CDI Dilemma 

Previously, CDI has been associated with those who are in a hospital-

related setting or those who are elderly and/or immunocompromised. However, 

in the past decade, CDI has been on the rise in both hospital and community 

settings. CDI incidences rose due, in part, to emergence of hypervirulent 

strains.102,130-133 Hypervirulent strains, such as the previously introduced 

BI/NAP1/027 strains, exhibit a wide variety of characteristics that attribute to their 

“hypervirulence”.83 Hypervirulent strains can exhibit increased sporulation rates, 

increased toxin production, or sometimes both, which can contribute to more 

Figure 1.11. Representation of probiotic therapy. First, the patient ingests the probiotic 

supplements in the form of a pill or tablet (Step 1). Microorganisms in the probiotics are 

introduced into the intestinal environment and act to restore microbial balance by either 

bringing beneficial bacteria to the GI tract (during depletion of the gut microbiota) or by 

competing with C. difficile for resources and thus reducing colonization (during C. difficile 

overgrowth) (Step 2). 
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severe diarrhea and disease progression, increased recurrence, and higher 

mortality rates.132 

The emergence of new strains has also been noted as the probable 

cause of the growing problem of community-acquired CDI. As briefly discussed 

in section 1.3.2, food and domestic animals can be a possible source of CDI 

transmission in the community setting. In addition, transmission through 

asymptomatic carriers and healthcare workers have also been reported. 

However, many community-acquired CDI cases have shown an absence of 

classic risk factors for CDI such as antibiotic exposure, elderly age, 

comorbidity/immunosuppression (e.g., cancer, HIV), and a clinical setting.93 The 

multitude of discovered C. difficile strains make it increasingly difficult to treat 

CDI with standard methods.132-136 Some strains are also specific to certain 

settings and geographical regions.83,131,136-138 PCR-ribotyping, which is a method 

of bacterial identification based on the similarities of polymorphisms in the 16S 

rRNA gene, allows researchers to categorize these different C. difficile strains into 

groups, making similarities and differences between strains easier to 

identify.135,139-141  

Treatment of CDI and other afflictions with broad-spectrum antibiotics 

can also produce a viscous cycle of antibiotic use, which further predispose 

individuals to CDI recurrences. With CDI recurrences of up to 25%, standard 

treatments are rendered less effective.111,112 As a multi-faceted problem, new 

avenues of treatment for CDI need to be explored. The dilemma with CDI is that 
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it is an antibiotic-associated disease that is commonly treated with antibiotics. 

Therefore, finding prophylactic/preventative methods are critical. 

 

1.4 Spore Germination and Inhibition 

1.4.1 Germination 

Spore germination is necessary for the establishment of CDI. When the C. 

difficile spore is exposed to ideal conditions, such as the anaerobic, nutrient-rich 

GI tract, germination can occur. This phenomenon begins with the hydration of 

the spore. As water enters the spore, large amounts of Ca2+-DPA complex are 

released from the spore. Hydrolytic enzymes are also released from the spore 

core to degrade the cortex and spore coat. The destruction of the cortex is 

necessary for the full hydration of the anhydrous core.45,48,142,143 SASPs are 

hydrolyzed into smaller amino acids that are used for the outgrowth of the 

vegetative cell. The germ cell wall also becomes the cell wall of the bacterial 

cell. 

Spore germination is expedited by the presence of germination promotors 

called germinants. When the germinants bind to the spore, the germination 

process is irreversible.48,88 In most Bacillus and Clostridium species, spore 

germinants include amino acids, saccharides, nucleosides, and ions.45,49 In 

contrast, C. difficile spore germinants are specific bile acids that are initially 

produced by the liver or are later modified in the intestines.87 These germinants 

are proposed to bind to Ger receptors on the spore.54,144 C. perfringens possess 
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three germination-specific subtilisin-like serine proteases, CspA, CspB, and CspC, 

that act by cleaving lytic enzymes responsible for degrading the spore 

cortex.145-147 In C. difficile, CspA and CspC are predicted to be catalytically 

dead. However, a 2013 study by Francis et al. suggested that mutations in CspC 

alter the spore’s response to bile salts.147 Identification of a putative C. difficile 

germination receptor is currently being studied. 

 

1.4.2 The Role of Bile Salts on Spore Germination and Inhibition 

Past studies have showed that bile acids play an instrumental role in the 

promotion and inhibition of C. difficile spore germination.87-89,100 Bile acids are 

steroid compounds that are produced in the liver and stored in the gallbladder. 

Upon released from the gallbladder, their primary function is the emulsify 

(physically separate) larger fat aggregates to aid in lipid digestion and 

reabsorption in the small intestines. 

The synthesis of bile acids begins in the liver with cholesterol (Figure 1.12). 

In the liver, cholesterol is converted to the primary bile acids 

chenodeoxycholate and cholate through several enzymatic steps.89,148,149 With 

the addition of the amino acid glycine or the amino acid derivative of cysteine 

called taurine, the primary bile acids become conjugated bile acid (also known 

as bile salts). For chenodeoxycholate, the bile salt derivatives are 

glycochenodeoxycholate and taurochenodeoxycholate. For cholate, the bile 
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salts counterparts are taurocholate and glycocholate. The liver secretes the 

synthesized bile acids as bile salts. 

Once the gallbladder releases bile containing bile salts into the intestines, 

the gut microbiota takes over the modification of the bile salts (Figure 1.12). In 

the upper ileum, bile salt hydrolases, produced by many intestinal microbes, 

deconjugate the bile salts by cleaving their amino acid side chains and 

converting them back into primary bile acids.89,149 When unabsorbed bile acids 

reach the lower ileum, indigenous clostridial species such as C. scindens 

dehydroxylates the primary bile acids via 7α-dehydroxylase.89,150 The products 

are lithocholate (from chenodeoxycholate) and deoxycholate (from cholate). 

These are known as secondary bile acids. Most of the bile acids are reabsorbed 

through active transport by ileal mucosal cells and transported back into portal 

blood by enterohepatic circulation.151,152 Interestingly, while chenodeoxycholate 

is very readily absorbed into the gut, its dehydroxylated derivative lithocholate is 

poorly absorbed. Accumulation of lithocholate in the colon revealed 

carcinogenic properties in the early stages of colon cancer.153 
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Bile acids also have a secondary role of regulating C. difficile spore 

germination, though they are at the mercy of the indigenous gut microflora that 

are responsible for maintaining them through conjugation and hydrolysis. 

Taurocholate, and to lesser extents, cholate and glycocholate, have been 

Figure 1.12. Synthesis of bile acids in the liver and GI tract. Adapted from Shen 2015.89 
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found to be natural germinants of C. difficile spores; whereas, 

chenodeoxycholate was discovered to be a natural germination inhibitor 

(Figure 1.12).88,154,155 Taurocholate also requires a co-germinant, the amino acid 

glycine, to activate C. difficile spore germination.52,87 Although glycine alone 

does not promote germination, it acts synergistically with taurocholate by 

increasing cooperative binding affinity to the spore.52 In a state of symbiosis such 

as in a healthy digestive tract, native bacteria keep the amounts of bile acids 

present in the gut in check.89,156 Hence, there are less germinants and more 

inhibitors present as bile acids move further down the GI tract (Figure 1.13). Due 

to the careful balance of bile acid content, the C. difficile spores that enter the 

gut do not germinate and are shed in feces.90 However, in patients who have 

depleted gut microbiota induced by antibiotics, a state of dysbiosis is present. 

Therefore, the remaining microorganisms are much less efficient at regulating 

the bile salts. Consequently, there is a buildup of germinants and lower presence 

inhibitors are present further down the gut (Figure 1.13). C. difficile spores 

entering the body are more likely to germinate around the increased 

attendance of germinants, causing CDI symptoms. 
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1.4.3 Targeting the Germination Pathway 

Due to spore germination being a pivotal step in CDI establishment, anti-

germination therapy has been proposed as a CDI prophylactic target. Past 

studies in the Abel-Santos Laboratory have proposed the production of synthetic 

bile salt analogs to compensate for the imbalance in key natural bile salts due 

Figure 1.13. Simplified representation of change in gut bile acid pool during symbiosis versus 

dysbiosis. During symbiosis, intestinal bacteria maintain healthy levels of bile acids. Therefore, 

there is less taurocholate and more chenodeoxycholate as bile acids are moved down the 

GI tract. Resultantly, spores do not germinate and are shed in feces. The opposite is true 

during dysbiosis, thus manifesting in the germination of spores and initiation of CDI. 
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to antibiotic-associated microflora disruption. It was hypothesized that modifying 

the side chain of cholate (cholic acid) would result in possible competitive 

inhibitors of cholate derivatives for the binding to the C. difficile spore (Figure 

1.14). 

 

 

 

 

One successful synthetic bile salt analog called CamSA is a cholate with a 

meta-aminobenzene sulfonic acid side chain (Figure 1.15). Through kinetic 

analysis, CamSA was shown to be a 275 times better binder to the spore than 

taurocholate and was found to be a five times better germination inhibitor than 

chenodeoxycholate. CamSA was found to be a germination inhibitor in strain 

630 and VPI 10463 in vitro.157 CamSA had half maximal inhibitory concentration 

(IC50) of 58.3 μM against strain 630 spores.100 In mice challenged with C. difficile 

strain 630, CamSA was able to prevent CDI with a single 50 mg/kg dose.157 

Furthermore, CamSA showed no observable toxicity to mice.90,157 In studies with 

simulated gastric and intestinal juices, CamSA remains stable.90 Despite being 

Figure 1.14. Synthetic bile salt analogs are cholic acid derivatives with modified side chains. 
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highly susceptible to CDI, hamsters given C. difficile strain 630 with CamSA 

showed reduced CDI symptoms when coupled with vancomycin therapy. 

Following these initial CamSA studies, the effects of CamSA against other 

strains of C. difficile needed to be uncovered. After preliminary testing of 

CamSA with the hypervirulent BI/NAP1/027 strain R20291, CamSA was unable to 

prevent spore germination in vitro. Although CamSA was infective against strain 

R20291 in vitro, it’s in vivo effects were still of interest. It is also possible that 

CamSA is potent against other strains of C. difficile that were not yet tested. To 

find a new potent germination inhibitor, over 200 CamSA analogs were 

screened. Of the compounds tested, one compound called 07C was 

discovered to inhibit spore germination in both germination in strain 630 as well 

as strain R20291 both with less than 10 μM concentrations (Figure 1.15). Other 

screened compounds did not display as promising preliminary results as 07C, 

though many more compounds are still being screened in the Abel-Santos 

Laboratory. 
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1.5 Specific Aims of This Study 

The first specific aim of this study is to test synthetic bile salt analog 

compounds against various C. difficile strains in vitro. Prior to this study, CamSA 

analogs were pre-screened in vitro via germination assays that helped identify 

each compound’s potential to inhibit spore germination. The compound that 

possessed the lowest inhibitory concentration against the hypervirulent C. 

difficile strain R20291 was the cholic acid aniline derivative 07C. Therefore, 

CamSA and 07C were chosen and tested as leading potential germination 

inhibitors for this specific aim. The germination assay also allowed for compound 

potency testing to investigate whether the compounds are inhibitors or 

promotors of spore germination for each C. difficile strain at varying 

concentrations. 

From the in vitro analyses, testing of the compounds against various strains 

in vivo was the next specific aim. The mice model was used to observe animals 

Figure 1.15. Chemical structure of the two bile salt analogs used in this study. CamSA is a 

meta-aminobenzene sulfonic acid derivative of cholate. 07C is an aniline derivative of 

cholate. 
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for signs for CDI. The mice model also allowed for visual observation of more 

subtle differences between infection symptoms of CDI caused by the different 

strains. Mice symptoms severities were scored via a CDI rubric. Mice that 

received spores only were compared to those that received spores and 

compound treatment. 

The hypothesis of this study is that the behavior of CamSA and 07C 

against the various C. difficile strains in vitro may give insight into their ability to 

prevent CDI in the animal model.  Moreover, prophylactic treatment of CDI 

through these CamSA analogs can act as molecular probes to target C. 

difficile’s spore germination pathway. 
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CHAPTER 2  

IN VITRO STUDIES: 

GERMINATION PROFILES OF CLOSTRIDIUM DIFFICILE CLINICAL ISOLATES 

2.1 Introduction 

In 2011, Tenover et al. typed 350 toxigenic strains of C. difficile from seven 

laboratories in the United States and Canada.135  The strains were organized by 

three molecular typing techniques: PCR-ribotyping, pulsed-field gel 

electrophoresis (PFGE), and restriction endonuclease analysis (REA).135 Of the 

strains that were typed, approximately 70% were of known PCR-ribotypes, 54% 

were of known PFGE groups, and 70% were of 1 of 8 common REA groups.135 

Some isolates typed using one method also overlapped with clusters from the 

other typing methods, while others did not. Therefore, using more than one 

typing method can give a more comprehensive outlook on the epidemiology of 

the rising diversity of C. difficile strains and their roles in CDI. 

 Some categories of isolates may display other unique characteristics such 

as the higher prevalence in specific geographical regions.83,131,136-138 For 

example, a Southern Taiwanese study found that C. difficile ribotypes 017 and 

078 were predominant among toxigenic clinical isolates from stools collected 

from medical wards of the district hospital in the area.138 Similarly, rising 

prevalence of C. difficile ribotype 078 was found in hospital settings in Europe 

and the United States.131,158 Ribotype 078 isolates found in Canada were, 

however, more prevalent among cattle and swine than in humans.131,159,160  
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Some groups of isolates also exhibit resistance to certain anti-microbial 

agents and genome alterations that confer hypervirulence. Of interest are the 

C. difficile BI/NAP1/027 strains. BI refers to the BI group based on REA, NAP1 is the 

North American pulsed-field type 1 based on PFGE, and 027 is the PCR-ribotype. 

BI/NAP1/027 strains were isolated from several hospital facilities around North 

America and Europe. Strains of PCR-ribotype 027 have been linked with 

fluoroquinolone antibiotic resistance.83,161 Although fluoroquinolone antibiotics 

are not commonly prescribed to treat CDI, BI/NAP1/027’s resistance to them 

have been thought to be a factor in its epidemic spread and 

hypervirulence.83,162 One PCR-ribotype 027 strain called R20291 caused recent 

CDI epidemics in Europe and North America.133 Strain R20291 as well as other 

PCR-ribotype 027 strains have been deemed “hypervirulent” as they were 

involved in cases of severe diarrhea, high mortality rates, and high 

recurrences.133,163-165 Moreover, PCR-ribotype 027 isolates have been found to 

have 234 additional genes compared to type strain 630 (epidemic type X, PCR-

ribotype 012).166 A deletion at position 117 of the tcdC gene (responsible for 

repression of toxin A and B production) has been implicated as the cause of 

increased toxin production in BI/NAP1/027 strains.83,166,167 

As the vehicle for infection, studying how spores germinate is important to 

understanding how diverse strains cause CDI. One method used to explore 

spore germination is by exploiting their unique property of optical density loss.168-

170 Spores are optically dense structures. Upon hydration of the spore core and 
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degradation of the spore coat, the spore loses its natural refractility, and thus 

loses optical density. This can be observed by spectrophotometry. 

By employing optical density methods, Heeg et al. mapped the 

germination profiles of spores from various C. difficile clinical isolates including 

from strain R20291.171 Although some strains displayed expected germination in 

the presence of the natural germinant taurocholate (TC) and germination 

inhibition in the presence of the natural inhibitor chenodeoxycholate (CDCA), 

some strains (R20291, 8085054, CDC 38, DH1834, and 7004578) interestingly 

displayed some germination in the presence of 2 mM CDCA when incubated 

with 0.1% TC in supplemented brain heart infusion (BHIS) (Table 2.1).155,171  In 

contrast, strain 05-1223-046, exhibited high germination when incubated with 

0.1% TC in BHIS. Although no unusual germination pattern arose with strain 

9001966, it was unable to replicate on BHIS media without TC 

supplementation.171 Due to their unique germination and growth profiles, seven 

of these strains, along with type strain 630, were used in this thesis study (Table 

2.2).171 
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Strain 0.1% TC 2 mM CDCA BHIS 

9001966 47% 3% 11% 

8085054 72% 13% 38% 

CDC 38 42% 12% 6% 

DH1834 58% 57% 27% 

05-1223-046 74% 0% 38% 

7004578 46% 30% 7% 

Spore were heat treated at 60°C for 25 minutes, then incubated with either 0.1% 

TC in BHIS, 0.1% TC with 2 mM CDCA in BHIS, or BHIS only. Data from this table was 

obtained by Heeg et al. 2012.171 

 

 
Strain PCR-Ribotype Country of Origin 

9001966 002 The Netherlands 

630 012 Switzerland 

8085054 014 The Netherlands 

CDC 38 027 USA 

DH1834 027 East of England, Ipswich, UK 

R20291 027 Stoke Mandeville, UK 

05-1223-046 027 Belgium 

7004578 078 The Netherlands 

 

Table 2.2. C. difficile clinical isolates used in this thesis study. 

 

Table 2.1. Percentage loss of spore optical density of select C. difficile clinical isolates. 
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Previously, CamSA has only been tested as an anti-germinant against 

strain 630. When incubated with 6 mM TC and 12 mM glycine, CamSA was able 

to prevent strain 630 spore germination with a half maximal inhibitory 

concentration (IC50) of 58.3 μM.100 In recent preliminary studies performed in the 

Abel-Santos Laboratory, CamSA was unable to prevent spore germination in the 

hypervirulent strain R20291 at concentrations up to100 μM. Because of this 

drawback, the Abel-Santos Laboratory screened over 200 other bile salt analogs 

as potential anti-germinants against multiple C. difficile strains. From these 

screens, we found some anti-germinant candidates that had IC50 values smaller 

than CamSA against strain R20291. The best anti-germinant, compound 07C, 

prevented spore germination in both strain 630 and strain R20291 at 

concentrations below 100 μM. The goal of this project is to examine the effects 

of CamSA and 07C on the spore germination of eight selected C. difficile strains. 

The compounds’ abilities to prevent spore germination in vitro will give insight 

into possible in vivo effects. 

 

2.2 Materials and Methods 

2.2.1 Materials 

C. difficile strains R20291, 9001966, 05-1223-046, CDC 38, DH1834, 7004578, 

and 8085054 were generously donated by Professor Nigel Minton at the 

University of Nottingham in Nottingham, United Kingdom. C. difficile strain 630 
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was purchased from the American Type Culture Collection (ATCC). Synthesized 

bile salt analogs were provided by Professor Steven M. Firestine at Wayne State 

University in Detroit, Michigan, or were previously synthesized in the Abel-Santos 

Laboratory. 

 

2.2.2 C. difficile Sporulation 

C. difficile cells from a stock culture, frozen in 25% glycerol in brain heart 

infusion (BHI) broth supplemented with 0.5% yeast, were streak plated onto BHI 

agar supplemented with 2% yeast extract, 0.1% L-cysteine-HCl, and 0.05% 

sodium taurocholate (BHIS) to yield single-cell colonies.52 After 48 hours, a single 

colony was inoculated into BHI broth supplemented with 0.5% yeast extract and 

incubated for 48 hours. The inoculated broth was then spread plated onto BHI 

agar prepared as described above. Inoculated plates were incubated for 7 

days at 37°C in an anaerobic chamber (10% CO2, 10% H2, 80% N2). 

 

2.2.3 C. difficile Spore Harvest and Purification 

Prior to harvesting spores, inoculated plates were flooded with ice-cold 

deionized (DI) water. Cells and spores were then harvested by scraping bacteria 

colonies from the plates. The harvested cells and spores were pelleted via 

centrifugation at 8,000 × g for 5 minutes. The mixture was then resuspended in DI 

water and pelleted again. This washing step was repeated twice more. After the 

three washing steps, the mixture was centrifuged through a 20% (5 mL) to 50% 
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(10 mL) HistoDenz™ gradient at 18,200 × g for 30 minutes with no brake (Figure 

2.1).172 As dense structures, only spores can penetrate through the 50% 

HistoDenz™ layer to form a thick pellet at the bottom of the centrifuge tube, 

while vegetative cells and small fragments of incidentally scraped off agar are 

lighter, consequently remaining above the 20% HistoDenz™ layer. The pelleted 

spore was then transferred to a clean centrifuge tube where it is washed five 

more times before being stored in DI water at 4°C. To determine spore purity, 

selected samples were stained using Schaeffer-Fulton endospore staining 

method or were visualized via phase contrast microscopy (discussed further in 

section 2.2.4).173-175 Spore preparations used were greater than 95% pure after 

centrifugation through the HistoDenz™ gradient (Figure 2.2). 

 

 

 

 

Figure 2.1. Spore purification via HistoDenz™ gradient. 
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2.2.4 C. difficile Spore Visualization 

C. difficile spores and cells were visualized before and after spore harvest 

via light microscopy. Two microscopic visualization methods were used to 

determine the presence and number of spores: Schaeffer-Fulton endospore 

staining method and phase contrast microscopy. 

 

2.2.4.1 Endospore Staining Technique 

The Schaeffer-Fulton method is an endospore staining technique that 

utilizes malachite green and safranin to differentiate endospores from 

vegetative cells (Figure 2.3).173 In the Schaeffer-Fulton method, a small inoculum 

of bacteria is placed in a glass microscope slide and mixed with a drop of DI 

Figure 2.2. Schaeffer-Fulton endospore stain of harvested C. difficile spores. Harvested C. 

difficile strain 630 spores (green) after centrifugation through HistoDenz™ gradient shows > 

95% purity as observed through light microscopy. 
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water using an inoculating loop. The inoculum is air dried, then heat fixed to the 

slide by waving the slide over a flame three to five times. A small porous paper is 

then placed over the slide and is drenched with the primary stain malachite 

green. The endospore is forced to uptake malachite green by heat from an 

open flame for 5 minutes. The heat acts as a mordant to fix the malachite green 

to the spores. The excess malachite green is washed from the slide with DI water 

for 10-20 seconds to decolorize vegetative cells. Vegetative cells are then 

counterstained with safranin for 30 seconds. Endospores and vegetative cells 

can be visualized under a light microscope at 1000x magnification. Endospores 

will appear green and vegetative cells appear pink (Figure 2.4). 
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Figure 2.3. Representation of Schaeffer-Fulton endospore staining technique. Heat-fixed 

bacteria are stained with the primary stain malachite green (Step 1). Heat is applied to the 

bacteria while malachite green is continuously added for 5 minutes to allow the dye to 

penetrate spores and become retained (Step 2). Excess dye is washed with water for 10-20 

seconds resulting in the decolorization of vegetative cells (Step 3). The secondary stain 

safranin is added for 30 seconds to counterstain vegetative cells (Step 4). Vegetative cells will 

appear pink while spores appear green under light microscopy. 



51 

 

 

 

 

2.2.4.2 Phase Contrast Microscopy 

Endospores can also be visualized using phase contrast microscopy.174,175 

This method does not require staining, but requires a specialized phase contrast 

lens to detect differences between vegetative cells and spores. Due to their 

high refractive index, dormant spores show as bright structures, while 

germinated spores and vegetative cells appear as dark structures.174 A small 

inoculum of bacteria is placed on a glass microscope slide and mixed with a 

drop of DI water using an inoculating loop as described in 2.2.4.1. A glass cover 

slip is placed over the bacteria sample. The slide is viewed under the 1000x 

magnification phase contrast microscope lens. Under the phase contrast lens, 

Figure 2.4. Schaeffer-Fulton endospore stain of C. difficile strain 630. Spores (green) were 

stained with malachite green. Vegetative cells (pink) were counterstained with safranin. 

spore 

vegetative cell 
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endospores will appear to glow with a halo of light surrounding them, which is 

caused by diffracted light passing through the structures (Figure 2.5). 

 

 

 

 

2.2.5 Preparation of Spore Germination Assay 

Spores were washed three times with DI water, then heat shocked at 68°C 

for 30 minutes. The heat shocking process both kills vegetative cells that may be 

present within the spore suspension and heat-activates spores so that they 

become more responsive to germinants.176-178 After heat-shock, spores were 

washed an additional three times. Heat-shocked spores were resuspended into 

germination buffer (0.1 M sodium phosphate buffer supplemented with 0.5% 

sodium bicarbonate and adjusted to pH 6.0) to reach an optical density at 580 

Figure 2.5. Phase contrast microscopy of C. difficile strain 630 spores. Only spores appear to 

have the characteristic surrounding glowing halo. 
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nm (OD580) of 1.00. Optical density was measured using a Thermo Scientific 

Spectronic Genesys™ 10 Bio UV-Vis spectrophotometer using germination buffer 

as a blank. 

Stock solutions were prepared in either DMSO or H2O. A 120 mM sodium 

taurocholate solution was prepared in DMSO. A 480 mM glycine solution was 

prepared in H2O. Other bile salt analogs were also prepared at various 

concentrations in DMSO. 

The spore germination assays were performed in 96-well plates (Figure 

2.6). All experiments were done in triplicate. As negative germination controls, 

spores were treated with neat DMSO. As positive germination controls, spores 

were treated with 6 mM of sodium taurocholate and 12 mM of glycine. To test 

for spore germination inhibition, bile salt analogs were added at different 

concentrations to spores. Co-germinant solutions were then pipetted into wells 

containing the experimental groups for a final concentration of 6 mM of sodium 

taurocholate and 12 mM of glycine. 

Following the addition of compound, 180 μL of spores in germination 

buffer (OD580 = 1.00) were added to each well. The final volume in each well 

was 200 μL. Optical density over time was read by a Labsystems iEMS Reader MF 

plate reader using Ascent™ software or a Tecan Infinite M200 plate reader using 

Tecan i-control™ software. 
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2.2.6 Analysis of Spore Germination and Inhibition Properties 

Data obtained following experimental run were transferred to Microsoft 

Excel for preliminary data analysis. Optical density change over time was 

graphed (Figure 2.7). Optical density readings that did remain the same (at 

OD580 = 1.00) over the course of the experiment indicated spores that did not 

germinate.87,88,168,169 In contrast, decreasing optical density correlated with spore 

germination. 87,88,168,169 

Preliminary data analysis allowed for the inhibitory concentration ranges 

of the bile salt analog compounds against each C. difficile strain to be 

Figure 2.6. Example of a plated 96-well plate used for the spore germination assay. 

Experiment was done in triplicate. Blue wells (A1-A3) are the negative germination controls 

containing only spores and DMSO. Orange wells (A4-A6) are the positive germination controls 

containing only spores and co-germinants taurocholate and glycine. The green wells (A7-H9) 

are the experimental groups containing spores, germinants (taurocholate and glycine), and 

increasing concentrations of bile salt analogs. 
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determined. Following determination of inhibitory concentration ranges, 

intermediate concentrations (minimum of 9 values) were used to determined 

percent (%) germination by comparing the slope from the germination curves of 

each concentration of bile salt analog to the slope from the germination curve 

of the positive germination control. The slopes were taken from the linear 

portions of each concentration curve from the germination assay kinetic graphs 

at around the same timeframe (approximately before 50-60 minutes elapsed 

time) (Figure 2.7). Germination kinetic graphs containing the concentrations of 

bile salt analogs used to construct dose-dependent curves to determine IC50 

values are included in Figures S1-S6, Appendix. 

The bile salt analog concentrations with their respective percent 

germination values were then transferred to SigmaPlot Version 11 or SigmaPlot 

Version 13 and fitted with the four-parameter logistic function to obtain dose-

dependent curves used to determine the IC50 values for anti-germinant 

compounds.179,180 Adjusted R2 values from the regression analyses were above 

0.95. IC50 values represent the amount of compound required to reduce spore 

germination rate to half the maximal value and are used to compare inhibitory 

potency of bile salt analogs.100,179,180 Compounds that had IC50 values under 100 

μM were considered active inhibitors, whereas, compounds that had IC50 values 

above 100 μM were deemed inactive. 
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2.2.7 C. difficile PCR Confirmation 

When necessary, polymerase chain reaction (PCR) was used to amplify 

specific segments of genomic DNA. DNA band analysis via 1% agarose gel 

electrophoresis confirmed the presence or absence of C. difficile. Specific 

forward and reverse primers were used to detect C. difficile and consider the 

possibility of C. sordellii contamination (another Clostridium species used in the 
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Figure 2.7. Example of a germination assay kinetic graph measuring optical density change 

over time. The blue line represents the negative germination control in which no germination 

occurs (no loss in optical density). The orange line represents the positive germination control 

in which spores are germinating (losing optical density) over time. The area in the red box 

represents the linear portion of the curve that will be used to determine the slope of the 

positive germination control. The ratio of experimental group slope to the positive 

germination control slope will determine percent spore germination. 
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Abel-Santos Laboratory). Primers were ordered from Integrated DNA 

Technologies (IDT). Primers, 2.5 μL of each, were added to 1 μL of genomic DNA, 

then mixed with 6.5 μL of water and 12.5 μL of Lucigen EconoTaq® PLUS 2x 

Master Mix containing EconoTaq DNA polymerase, dNTPs, MgCl2, a PCR 

enhancer, and reaction buffer, for a final volume of 25 μL. DNA was denatured 

at 94°C annealed at 50°C, and extended at 68°C in a Bio-Rad MyCycler™ 

Thermal Cycler. 

Following amplification, 5 μL of each sample of PCR contents [mixed with 

1 μL of 6x loading dye] was added to individual wells of a 1% agarose gel 

prepared with 1x TAE (Tris-acetate-EDTA) buffer and stained with 0.5 μg/mL 

ethidium bromide (EtBr) to act as a fluorescent tag. Gel electrophoresis was run 

for 20 minutes at a voltage of 135 V, current of 500 mA, and wattage of 250 W. 

DNA bands were analyzed using the UVP VisionWorks®LS Analysis Software and 

the UVP EC3 Imaging System. A Promega BenchTop 1kb DNA ladder was used 

for reference markers. 

 

2.3 Results and Discussion 

2.3.1 Germination Profile of strain 630 

Both CamSA and 07C were able to prevent germination of C. difficile 

strain 630 spores. The IC50 value of CamSA against strain 630 was previously 

determined to be 58.3 μM.100 Therefore, this germination assay was only used to 

confirm that CamSA could prevent spore germination at around that same 
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concentration (Figure 2.8). At 50 μM CamSA, 31% of spore germination was 

inhibited. 

 

 

 

07C was found to be a better germination inhibitor than CamSA by 7-fold 

against strain 630. Spores were treated with 6 mM taurocholate and 12 mM 

glycine and added to various concentrations of 07C (Figure 2.8). At 6.25 μM 

07C, 39% of spore germination was inhibited. At 50 μM 07C, spore germination 

was mostly inhibited. The IC50 of 07C against strain 630 was determined to be 
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Figure 2.8. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain 630 spores. Spores were resuspended in germination buffer and treated with 

neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and glycine (12 

mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 μM CamSA 

(■), 6.25 μM 07C (♦), and 50 μM 07C (●). In actuality, more concentrations of bile salt analogs 

were used and data was collected every minute for 120 minutes (Figure S1, Appendix). For 

clarity, select concentrations are represented and data at five minute intervals are shown. 

The data points indicate the means from three independent measures (n = 3) and the error 

bars signify standard deviation from the mean. 
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8.19 μM by regression analysis of a dose-dependent curve (Figure 2.9). The 

adjusted R2 for this curve was 0.9654. 

 

 

 

 

2.3.2 Germination Profile of strain R20291 

The germination assay for the hypervirulent strain R20291 displayed unique 

results. Contrary to expectation, CamSA was unable to prevent germination of 

strain R20291 spores. At 50 μM CamSA, spores germinated at about the same 

Figure 2.9. IC50 calculation for 07C against C. difficile strain 630 spores. The graph represents 

the dose-response curve of strain 630 spores germinated with fixed concentrations of 

taurocholate (6 mM) and glycine (12 mM) added to various concentrations of 07C. The IC50 

value of 07C obtained from this regression is 8.19 μM. The germination assay kinetic graph 

that includes the 07C concentrations used to determine this IC50 value can be found in Figure 

S1, Appendix. 
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rate as the positive germination controls containing only taurocholate and 

glycine (Figure 2.10). Moreover, up to 1000 μM CamSA, spore germination was 

comparable to the positive germination control. It is possible that CamSA might 

be able to prevent loss in optical density of strain R20291 spores, but may require 

higher concentrations in the millimolar range. 
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Figure 2.10. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain R20291 spores. Spores were resuspended in germination buffer and treated with 

neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and glycine (12 

mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 μM CamSA 

(■), 1.5625 μM 07C (▲), 6.25 μM 07C (♦), and 25 μM 07C (●). In actuality, more concentrations 

of bile salt analogs were used and data was collected every minute for 120 minutes (Figure 

S2, Appendix). For clarity, select concentrations are represented and data at five minute 

intervals are shown. The data points indicate the means from three independent measures (n 

= 3) and the error bars signify standard deviation from the mean. 
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Although CamSA was unable to prevent germination of strain R20291 

spores, 07C prevented spore germination even at low micromolar 

concentrations (Figure 2.10). At just 1.5625 μM 07C, 43% of spore germination 

was inhibited. At 25 μM 07C, spore germination was inhibited by 87%. Regression 

analysis from a dose-dependent curve revealed an IC50 of 1.92 μM for 07C 

against strain R20291 with an adjusted R2 of 0.9922 (Figure 2.11). 

 

 

 

 

Figure 2.11. IC50 calculation for 07C against C. difficile strain R20291 spores. The graph 

represents the dose-response curve of strain R20291 spores germinated with fixed 

concentrations of taurocholate (6 mM) and glycine (12 mM) added to various 

concentrations of 07C. The IC50 value of 07C obtained from this regression is 1.92 μM. The 

germination assay kinetic graph that includes the 07C concentrations used to determine this 

IC50 value can be found in Figure S2, Appendix. 
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2.3.3 Germination Profile of strain 9001966 

Similar to strain R20291, strain 9001966 spores were able to germinate in 

the presence of CamSA (Figure 2.12). Up to 100 μM CamSA, loss of optical 

density remained nearly the same as the positive germination control. Since the 

cutoff for inhibition activity was set at 100 μM, CamSA was deemed inactive 

against strain 9001966. 
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Figure 2.12. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain 9001966 spores. Spores were resuspended in germination buffer and treated 

with neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and 

glycine (12 mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 

μM CamSA (■), 6.25 μM (▲), 25 μM 07C (♦), and 50 μM 07C (●). In actuality, more 

concentrations of bile salt analogs were used and data was collected every minute for 120 

minutes (Figure S3, Appendix). For clarity, select concentrations are represented and data at 

five minute intervals are shown. The data points indicate the means from three independent 

measures (n = 3) and the error bars signify standard deviation from the mean. 
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Germination inhibition of strain 9001966 spores required higher 

concentrations of 07C than strain R20291. Like, strain 630, 07C was able to inhibit 

spore germination at similar concentrations (Figure 2.12). At 6.25 μM 07C, 42% of 

spore germination was inhibited. The IC50 for 07C against strain 9001966 was 

found to be 7.60 μM with an adjusted R2 of 0.9915 (Figure 2.13). 

 

 

 

 

Figure 2.13. IC50 calculation for 07C against C. difficile strain 9001966 spores. The graph 

represents the dose-response curve of strain 9001966 spores germinated with fixed 

concentrations of taurocholate (6 mM) and glycine (12 mM) added to various 

concentrations of 07C. The IC50 value of 07C obtained from this regression is 7.60 μM. The 

germination assay kinetic graph that includes the 07C concentrations used to determine this 

IC50 value can be found in Figure S3, Appendix. 
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2.3.4 Germination Profile of strain 05-1223-046 

C. difficile strain 05-1223-046 displayed a strikingly different germination 

profile than the majority of tested strains. As expected, strain 05-1223-046 did not 

lose optical density when incubated with neat DMSO. Despite this, strain 05-

1223-046 was also unable to germinate in the presence of 6 mM taurocholate 

with 12 mM glycine (Figure 2.14). After several trials resulting in the same pattern, 

we hypothesized that this strain may require a higher concentration of 

taurocholate and/or glycine for germination to occur. Regardless of increasing 

the concentration of one or both germinants, however, strain 05-1223-046 spores 

were still unable to germinate (Figure 2.14). Therefore, inhibition by the bile salt 

analog compounds in vitro could not be determined for this strain under these 

circumstances. 
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To rule out contamination, a C. difficile PCR confirmation was performed 

(Figure 2.15). Certain forward and reverse primers were chosen to support or 

disprove the presence various factors. One pair of primers was for the putative 

conjugative transposon protein Tn5397, which has target sites within C. difficile 

strain 630.181-183 Therefore, primers for that target sequence was used to detect 

strain 630. The absence of a band for Tn5397 established that the C. difficile 

strain present in the sample was not strain 630 (Figure 2.15, Lane 2). The Cs2gp 

primers were used to detect the presence of the C. sordellii reference strain 

Cs2.184 The absence of a band excluded C. sordellii as a contaminant in the 

sample (Figure 2.15, Lane 3). The primers for C. difficile toxin A (tcdA) was used 

to detect C. difficile and the universal primer pairs GM3 and GM4 were used to 

ample 16S rDNA found in bacteria.185 The appearance of bands for these 

sequences confirmed that the sample was C. difficile (Figure 2.15, Lane 4 and 

5). 

 

 

 

Figure 2.14. Effects of taurocholate with glycine on the germination kinetic behavior of C. 

difficile strain 05-1223-046 spores. Spores were resuspended in germination buffer and treated 

with neat DMSO (○), 6 mM taurocholate with 12 mM glycine (∆), 6 mM taurocholate with 24 

mM glycine (□), and 12 mM taurocholate with 24 mM glycine (◊). For clarity, data at five 

minute intervals are shown. The data points indicate the means from three independent 

measures (n = 3) and the error bars signify standard deviation from the mean. 
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There could be a number possibilities as to why strain 05-1223-046 spores 

were unable to germinate with taurocholate and glycine. Perplexingly, in the 

Heeg et al. study, strain 05-1223-046 spores lose optical density by 74% when 

incubated with 0.1% taurocholate in BHIS.171 In that preparation, glycine was not 

added as a co-germinant. One hypothesis is that glycine may not be the most 

suitable co-germinant for spore germination of this particular strain. In a study by 

Figure 2.15. PCR confirmation of C. difficile strain 05-1223-046. PCR products from specific 

primers and genomic DNA were analyzed on 1% agarose gel. A 1 kb ladder is used for 

reference (Lane 1). The absence of a band for the putative conjugative transposon tn5397 

672 confirms the absence of strain 630 (Lane 2). The absence of a band for C. sordellii 

reference strain Cs2 gp 927 verifies that C. sordellii contamination is not present in the sample 

(Lane 3). Bands for tcdA 1170 (Lane 4) and universal GM3/GM4 16S rDNA (Lane 5) confirm 

the presence of C. difficile. 
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Howerton, Ramirez, and Abel-Santos, several other amino acid analogs were 

able to induce germination of strain 630 spores to different degrees.100 

Individually, the amino acids were unable to trigger spore germination, but as a 

cocktail or in addition to taurocholate, spore were able to elicit germination.100 

Testing different possible co-germinants in the germination of strain 05-1223-046 

may be the next step in determining optimal germination conditions as well as 

discovering whether our proposed bile salt analog compounds can inhibit spore 

germination of that strain. 

 

2.3.5 Germination Profile of strain CDC 38 

C. difficile strain CDC 38 spores were able to germinate in the presence of 

CamSA. Up to 100 μM CamSA, spores germinated at the same rate as the 

positive germination control containing taurocholate and glycine (Figure 2.16). 

Therefore, based on the cutoff criteria, CamSA is not considered to be an active 

germination inhibitor at concentrations below 100 μM. 
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Compound 07C greatly inhibited strain CDC 38 spore germination at low 

micromolar concentrations (Figure 2.16). At 1.5625 μM 07C, 79% of spores 

germinated. Only 43% of spores germinated at 6.25 μM. At 12.5 μM 07C, 

germination was inhibited by 77%. The IC50 for 07C against the CDC 38 isolate 

was calculated to be 4.62 μM with an adjusted R2 of 0.9897 (Figure 2.17). 
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Figure 2.16. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain CDC 38 spores. Spores were resuspended in germination buffer and treated 

with neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and 

glycine (12 mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 

μM CamSA (■), 1.5625 μM 07C (▲), 6.25 μM 07C (♦), and 50 μM 07C (●). In actuality, more 

concentrations of bile salt analogs were used and data was collected every minute for 120 

minutes (Figure S4, Appendix). For clarity, select concentrations are represented and data at 

five minute intervals are shown. The data points indicate the means from three independent 

measures (n = 3) and the error bars signify standard deviation from the mean. 
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2.3.6 Germination Profile of strain DH1834 

Like the other tested isolates aside from strain 630, CamSA was unable to 

prevent spore germination of strain DH1834 (Figure 2.18). At 50 μM CamSA, spore 

germination resulted at a similar rate to the positive germination control. Even at 

100 μM CamSA, comparable germination was exhibited. Thus, CamSA is not 

considered to be an active inhibitor against spores of this strain. 

 

Figure 2.17. IC50 calculation for 07C against C. difficile strain CDC 38 spores. The graph 

represents the dose-response curve of strain CDC 38 spores germinated with fixed 

concentrations of taurocholate (6 mM) and glycine (12 mM) added to various 

concentrations of 07C. The IC50 value of 07C obtained from this regression is 4.62 μM. The 

germination assay kinetic graph that includes the 07C concentrations used to determine this 

IC50 value can be found in Figure S4, Appendix. 
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Germination inhibition was, however, evident with micromolar 

concentrations of 07C (Figure 2.18). At 1.5625 μM 07C, spore germination was 

down to 74%. At 50 μM 07C, loss of optical density was comparable to the 

negative germination control containing only DMSO and spores in germination 

buffer. Compound 07C’s IC50 against strain DH1834 is 4.15 μM with an adjusted 

R2 of 0.9720. 
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Figure 2.18. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain DH1834 spores. Spores were resuspended in germination buffer and treated with 

neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and glycine (12 

mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 μM CamSA 

(■), 1.5625 μM 07C (▲), 6.25 μM 07C (♦), and 50 μM 07C (●). In actuality, more concentrations 

of bile salt analogs were used and data was collected every minute for 120 minutes (Figure 

S5, Appendix). For clarity, select concentrations are represented and data at five minute 

intervals are shown. The data points indicate the means from three independent measures (n 

= 3) and the error bars signify standard deviation from the mean. 
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2.3.7 Germination Profile of strain 7004578 

C. difficile strain 7004578 sporulated poorly on BHIS agar. Hence, this strain 

was sporulated on C. difficile sporulation media (SMC) agar containing 90 g 

Bacto peptone, 5 g proteose peptone, 1 g (NH4)2SO4, 1.5 g Tris base, 15 g agar 

powder, and 5 g yeast per liter.186-188 All other sporulation conditions remained 

the same. 

Figure 2.19. IC50 calculation for 07C against C. difficile strain DH1834 spores. The graph 

represents the dose-response curve of strain DH1834 spores germinated with fixed 

concentrations of taurocholate (6 mM) and glycine (12 mM) added to various 

concentrations of 07C. The IC50 value of 07C obtained from this regression is 4.15 μM. The 

germination assay kinetic graph that includes the 07C concentrations used to determine this 

IC50 value can be found in Figure S5, Appendix. 
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Oddly, spores of strain 7004578 were only able to germinate nominally in 

the presence of 6 mM taurocholate and 12 mM glycine. Spores, however, did 

not germinate in the negative germination control with DMSO. Like with strain 

05-1223-046, we tested the effects of different concentrations of taurocholate 

and glycine on germination (Figure 2.20). Unlike with strain 05-1223-046, strain 

7004578 spores germinated more when the concentrations of taurocholate and 

glycine were doubled. Loss of optical density, however, occurred to a much 

lesser degree than what was observed with other strains. Because optical 

density was only decreased by less than 10%, detecting slight changes in 

germination rates using multiple small concentrations of bile salt analog 

compounds would not be ideal for calculating IC50. Hence, the effects of 

CamSA and 07C on strain 7004578 spore germination could not be determined. 
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As with strain 05-1223-046, a PCR was run to confirm the presence of C. 

difficile. The same primers used for strain 05-1223-046’s PCR confirmation was 

used for strain 7004578 (see section 2.3.3). No C. sordellii contamination was 

found in the strain 7004578 sample (Figure 2.21, Lane 3). Moreover, the sample 

was confirmed to be C. difficile based on the presence of bands for both tcdA 

and 16S rDNA (Figure 2.21, Lane 4 and 5). 
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Figure 2.20. Effects of taurocholate with glycine on the germination kinetic behavior of C. 

difficile strain 7004578 spores. Spores were resuspended in germination buffer and treated 

with neat DMSO (○), 6 mM taurocholate with 12 mM glycine (∆), 6 mM taurocholate with 24 

mM glycine (□), and 12 mM taurocholate with 24 mM glycine (◊). For clarity, data at five 

minute intervals are shown. The data points indicate the means from three independent 

measures (n = 3) and the error bars signify standard deviation from the mean. 
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Since PCR confirmed that the sample was C. difficile, another possibility as 

to why the spores had trouble germinating was the SMC agar used to 

sporulation strain 7004578. To test this, a germination assay of strain 630 

sporulated using SMC agar was performed and compared to a germination 

assay of strain 630 sporulated using BHIS agar. The assay revealed that spores of 

strain 630 that were sporulated on SMC agar were able to germinate normally 

when incubated with 6 mM taurocholate and 12 mM glycine. Although the 

relative optical density loss slightly differed between spores sporulated on BHIS 

agar versus SMC agar, the rate of germination remained the same. Therefore, it 

Figure 2.21. PCR confirmation of C. difficile strain 7004578. PCR products from specific primers 

and genomic DNA were analyzed on 1% agarose gel. A 1 kb ladder is used for reference 

(Lane 1). The absence of a band for the putative conjugative transposon tn5397 672 confirms 

the absence of strain 630 (Lane 2). The absence of a band for C. sordellii reference strain Cs2 

gp 927 verifies that C. sordellii contamination is not present in the sample (Lane 3). Bands for 

tcdA 1170 (Lane 4) and 16S rDNA (Lane 5) confirm the presence of C. difficile. 
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is concluded that the SMC agar media was not responsible of strain 7004578’s 

failure to germinate. 

The choice of amino acid co-germinant could be a factor in the 

germination of strain 7004578 spores. Although doubling the concentrations of 

taurocholate and glycine did lower optical density slightly, the cause of this 

could be due to the doubling of the taurocholate itself since doubling of the 

glycine concentration alone had no difference in optical density loss compared 

to 6 mM taurocholate and 12 mM glycine data (Figure 2.20). If this were the 

case, taurocholate was still only able to induce germination minimally. A 

different amino acid co-germinant may be needed for optimal germination of 

this strain. This will be explored further in future studies. 

 

2.3.8 Germination Profile of strain 8085054 

For C. difficile strain 8085054 spores, CamSA was not an active inhibitor. 

Spore germination failed to be inhibited at 50 μM CamSA (Figure 2.22). Although 

CamSA may be active at much higher concentrations, it was not active with 

less than 100 μM. 
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Compound 07C appeared to be active against strain 8085054 at low 

micromolar concentrations (Figure 2.22). At just 1.5625 μM 07C, 54% of spore 

germination was inhibited. The IC50 of 07C against strain 8085054 is 1.28 μM with 

an R2 of 0.9880 (Figure 2.23). 
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Figure 2.22. Effects of germinants and inhibitors on the germination kinetic behavior of C. 

difficile strain 8085054 spores. Spores were resuspended in germination buffer and treated 

with neat DMSO (○) or treated with a fixed concentration of taurocholate (6 mM) and 

glycine (12 mM) added to final concentrations of 0 μM of bile salt analog compound (∆), 50 

μM CamSA (■), 1.5625 μM 07C (▲), 6.25 μM 07C (♦), and 50 μM 07C (●). In actuality, more 

concentrations of bile salt analogs were used and data was collected every minute for 120 

minutes (Figure S6, Appendix). For clarity, select concentrations are represented and data at 

five minute intervals are shown. The data points indicate the means from three independent 

measures (n = 3) and the error bars signify standard deviation from the mean. 
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2.3.9 Comparison of Germination Profiles Among All Tested C. difficile Strains 

A total of eight C. difficile strains were tested for their responses to bile salt 

analog compounds CamSA and 07C. Although there are several similarities 

among the germination profiles of the strains, there are also some striking 

differences. These comparisons include differing responses to the germinants 

taurocholate and glycine and varying activity of bile salt analogs against each 

testable strain (Table 2.3). 

Figure 2.23. IC50 calculation for 07C against C. difficile strain 8085054 spores. The graph 

represents the dose-response curve of strain 8085054 spores germinated with fixed 

concentrations of taurocholate (6 mM) and glycine (12 mM) added to various 

concentrations of 07C. The IC50 value of 07C obtained from this regression is 1.28 μM. The 

germination assay kinetic graph that includes the 07C concentrations used to determine this 

IC50 value can be found in Figure S6, Appendix. 
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Strain CamSA IC50 07C IC50 

630 58.3 μM* 8.19 μM 

R20291 > 100 μM 1.92 μM 

9001966 > 100 μM 7.60 μM 

05-1223-046 TBD TBD 

CDC 38 > 100 μM 4.62 μM 

DH1834 > 100 μM 4.15 μM 

7004578 TBD TBD 

8085054 > 100 μM 1.28 μM 

TBD denotes IC50 values that are yet to be determined for 

compounds where spores of those C. difficile strains were 

unable to germinate in the presence of 6 mM taurocholate and 

12 mM glycine. Modifications will be made to determine 

potential co-germinants and conditions needed to promote 

germination in those strains. 

*Value was obtained from Howerton, Ramirez, and Abel-Santos 

2011.100 

 

All strains did not germinate in the neat DMSO negative germination 

control. Six of the eight strains were able to germinate with 6 mM taurocholate 

and 12 mM glycine as expected. These concentrations were chosen after 

previous research showed that they were optimal for germination of strain 630 

and appropriate for germination inhibition studies.100 Those six strains observed 

loss of optical density by 30%-50% when incubated with taurocholate and 

Table 2.3. Comparison of germination profiles among all tested C. difficile strains. 
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glycine. Therefore, measuring IC50 values for those strains was possible as long as 

germination rates corresponded to varying concentrations of compounds. 

However, strains 05-1223-046 and 7004578 spores failed to exhibit the same 

decrease in optical density as the other tested strains. After the possibilities of 

contamination and increasing concentrations were eliminated, it is 

hypothesized that other molecules may act as co-germinants of these two 

strains. Both strains are different PCR-ribotypes: 027 for strain 05-1223-046 and 078 

for strain 7004578. Although no other 078 strains were tested, other 027 strains did 

not exhibit the same issue as 05-1223-046. Also, strain 7004578 spores were able 

to germinate slightly with doubled taurocholate and glycine concentrations, but 

strain 05-1223-046 spores were unable to display germinate distinct from the 

negative germination control. Future studies will include testing other amino 

acids as co-germinants of these two strains. At the conclusion of this part of the 

in vitro germination study, the IC50 for these two bile salt analog compounds 

against these strains have yet to be determined. 

Of the remaining strains that were able to germinate with taurocholate 

and glycine, only strain 630 was capable of avoiding spore germination using 

less than 100 μM CamSA. A couple other strains were tested up to 1 mM final 

concentration of CamSA, but still did not display inhibition. CamSA may still be 

an inhibitor of spore germination, but may be weaker and require higher 

concentrations against the 6 mM taurocholate and 12 mM glycine. Spores from 

four strains (9001966, CDC 38, DH 1834, and 8085054) were tested for inhibition 
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using the naturally-occurring inhibitor chenodeoxycholate. Those four strains 

exhibited spore germination inhibition with 2 mM chenodeoxycholate. CamSA 

may be active against those other strains at concentrations above 1 mM, 

though this has not yet been tested. 

While CamSA had an IC50 of 58.3 μM against strain 630, 07C had IC50 

values of less than 10 μM against all testable strains. With strains R20291 and 

8085054 spores, 07C’s IC50 values were less than 2 μM. Compound 07C had IC50 

values between 4-5 μM against CDC 38 and DH 1834 isolates. The IC50 of 07C 

against strains 630 and 9001966 were between 7-9 μM. With low IC50 values, 07C 

may be a promising germination inhibitor in vivo, though other factors may also 

contribute to germination in an in vivo environment. 

  

2.4 Conclusions 

The diverse germination profiles of each C. difficile isolate reveal a 

glimpse of why CDI is such a fast-growing epidemic. While some strains respond 

to known germinants, others may require different molecules for germination to 

occur. Moreover, germination inhibition via bile salt analogs also vary among 

strains. Thus, finding a prophylactic solution for CDI will require a comprehensive 

study on C. difficile germination. Withal, the bile salt recognition site on C. 

difficile still has yet to be discovered. 

In this study, some strains demonstrated typical behavior against known C. 

difficile germinants, taurocholate and glycine. However, spores of two strains, 
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05-1223-046 and 7004578, failed to germinate with those molecules. Spores of 

strain 630 were prevented from germinating in the presence of both CamSA 

and 07C; whereas, spores of all other testable strains were only inhibited by 07C.  

Of the strains that could germinate in the presence of taurocholate and 

glycine, all observed inhibition of spore germination with the compound 07C 

with less than 100 μM. Furthermore, those six strains all had IC50 values less than 

10 μM. Although CamSA was only able to prevent germination with strain 630 

spores with less than 100 μM, it may still be a potential inhibitor with other strains 

at higher concentrations that have not been tested at this time. These in vitro 

germination profiles may give insight into in vivo prophylactic treatment of CDI 

using the bile salt analogs against these different C. difficile strains. In addition, 

there may also be possible correlation between IC50 values and CDI symptoms 

in vivo. 
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CHAPTER 3  

IN VIVO STUDIES: 

CDI SYMPTOMS IN THE ANIMAL MODEL 

3.1 Introduction 

Many animal models have been employed to study various aspects and 

mechanisms of CDI. Animals involved in CDI studies include, but are not limited 

to hamsters, mice, rabbits, guinea pigs, gnotobiotic piglets, Rhesus monkeys, 

and even zebrafish embryos.189,190 Furthermore, food animals like pigs and cattle 

and companion animals such as dogs and horses have been implicated in CDI 

studies, bringing into question foodborne- or animal interaction-related 

transmission of disease. 93-95,191,192 The use of in vivo methods also provides insight 

into a plethora of host-pathogen interactions such as CDI pathophysiology and 

progression in hosts and C. difficile adaptation and colonization within the GI 

tract.189 

Animal C. difficile induction models aim to examine CDI symptoms in vivo. 

The most commonly and traditionally used animal CDI induction model is the 

hamster model193-196. The hamster model was first used in antibiotic-associated 

colitis studies in the 1970s when several independent studies found links between 

antibiotic use, diarrhea, and colitis.8,12-14,193-197 C. difficile was later implicated as 

the culprit of the hemorrhagic lesions.197 After pre-treatment with antibiotics such 

as clindamycin, hamsters have been shown to be highly sensitive to CDI when 

given relatively low dosages of spores.197 Hamsters can elicit fulminant disease to 
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lethal within 48 hours.189,197,198 Although both humans and hamsters are 

susceptible to CDI after exposure to clindamycin, the disease progression in 

hamsters is much more extreme compared to in humans which can range from 

asymptomatic to severe symptoms.189 Also, unlike in humans where the site of 

infection is in the colon, hamsters CDI occurs in the cecum.189 Hamster models 

are also advantageous in studying colonization of C. difficile in the gut.189 

The mouse CDI model is a rodent model that has been developed in 

recent years.199,200 Mice are widely used as animal models and are less 

expensive than hamsters. In contrast to hamsters, mice are highly resistant to CDI 

and require a large inoculum of spores to establish significant infection 

symptoms.201 Similar to humans, mice symptoms can range from mild to severe 

disease signs. Clinical endpoint is slower in mice than in hamsters and lethality 

from CDI is less common in mice.189,199 Therefore, mice models are practical for 

studying spore shedding from the GI tract. Interestingly, mice that survive CDI 

often make a full recovery and do not relapse.157,189,198-200 A 2013 study by 

Howerton, Patra, and Abel-Santos showed that CDI-recovered mice did not 

show signs of relapse after being given another course of antibiotic treatment 

following a 14-day recovery period.157 

The Abel-Santos Laboratory has previously tested the bile salt analog 

CamSA in both the mouse and hamster CDI models. In the mouse CDI model, 

CamSA prevented CDI symptoms in female C57BL/6 mice with a single 50 

mg/kg dose given immediately after challenge with C. difficile spores of strain 
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630 and strain VPI 10463.157 Additionally, there was no observable toxicity at this 

dosage. Moreover, all mice that were treated with three doses of 50 mg/kg 

CamSA did not develop signs of CDI; whereas, mice treated with lower dosages 

of CamSA eventually developed some signs of CDI or succumbed to disease.157 

In the hamster CDI model, female Golden Syrian hamsters treated with 50 

mg/kg CamSA showed a delayed onset of CDI symptoms and fatality 

compared to untreated hamsters. Treatment with vancomycin (which is 

commonly used to treat CDI) further delayed CDI symptoms and clinical 

endpoint in hamsters. In both cases, all hamsters eventually became moribund. 

However, the pairing of CamSA and vancomycin treatment in the hamster CDI 

model has shown synergistic effects in preventing CDI with an 80% survival rate. 

In this current study, the mouse CDI model was utilized to test whether 

CamSA and 07C can prevent CDI symptoms in mice challenged with spores of 

diverse C. difficile strains. The results were also compared to the data obtained 

from the in vitro germination profile analysis. 

 

3.2 Materials and Methods 

3.2.1 Materials 

C. difficile strains R20291, 9001966, 05-1223-046, CDC 38, DH1834, 7004578, 

and 8085054 were generously donated by Professor Nigel Minton of the 

University of Nottingham. C. difficile strain 630 was purchased from the ATCC. 

Synthesized bile salts were provided by Professor Steven M. Firestine of Wayne 
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State University A, or were previously synthesized in the Abel-Santos laboratory. 

Laboratory Rodent Diet was provided by the University of Nevada, Las Vegas 

animal care facility from LabDiet (St. Louis, MO, USA). 

 

3.2.2 Animals 

All procedures involving animals in this study were performed in 

accordance with the Guide for Care and Use of Laboratory Animals outlined by 

the National Institutes of Health. The protocol was reviewed and approved by 

the Institutional Animal Care and Use Committee (IACUC) at the University of 

Nevada, Las Vegas (Permit Number: R0914-297). Weaned female mice (strain 

C57BL/6) were purchased from Charles River Laboratories (Wilmington, MA, 

USA). Mice were housed in groups of five per cage at the University of Nevada, 

Las Vegas animal care facility. Upon arrival at the facility, mice were allowed to 

acclimate for one week prior to the start of experimentation. All bedding, 

cages, food, and water were autoclaved prior to housing animals. All post-

challenge manipulations were performed within a biosafety level 2 laminar flow 

hood. 

 

3.2.3 30-Day Compound Toxicity Regimen 

Animals were given 300 mg/kg body weight (BW) of bile salt analog 

compound once per day for 30 days to test for possible toxicity. Bile salt analogs 

were administered via oral gavage with a total volume of 50 μL per dose. Neat 
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DMSO was used as a control in one cage of mice. Another cage of mice was 

given CamSA and mice in a third cage was given 07C. Fecal matter was 

collected per mice on days 0, 10, 30 for a separate study involving changes in 

gut microbiota. Weight changes were recorded on those days. Significant 

weight loss was defined as a loss of greater 15% original body weight. Mice were 

observed for signs of distress (i.e. lethargy and hunched posture) daily. At the 

end of the thirty-day trial, animals were sacrificed and necropsied to investigate 

for potential anatomical abnormalities. 

 

3.2.4 Preparation of C. difficile Spores for Infection 

C. difficile spores were harvested and purified using the Abel-Santos 

Laboratory Method as outlined in section 2.2.5 and section 3.2.3.1. Following 

spore purification, colony forming units (CFUs) were determined via plating 

methods. C. difficile spore inoculums were then optimized for infection in the 

murine CDI model. 

 

3.2.4.1 C. difficile Spore Harvest and Purification 

Prior to harvesting spores, inoculated plates were flooded with ice-cold 

deionized (DI) water. Cells and spores were then harvested by scraping bacteria 

colonies from the plates. The harvested cells and spores were pelleted via 

centrifugation at 8,000 × g for 5 minutes. The mixture was then resuspended in DI 

water and pelleted again. This washing step was repeated twice more. After the 
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three washing steps, the mixture was centrifuged through a 20% (5 mL) to 50% 

(10 mL) HistoDenz™ gradient at 18,200 × g for 30 minutes with no brake (Figure 

2.1).172 The pelleted spore was then transferred to a clean centrifuge tube where 

it is washed five more times before being stored in DI water at 4°C. Spore purity 

was determined via Schaeffer-Fulton endospore staining method or phase 

contrast microscopy (see section 2.2.4). Spore preparations used were > 95% 

pure after centrifugation through the HistoDenz gradient (Figure 2.2).  

 

3.2.4.2 Determination of Colony Forming Units (CFUs) 

Spores were washed three times with DI water, heat shocked at 68°C for 

30 minutes, then washed three more times. Heat-shocked spores were 

suspended into a fixed volume of DI water before being serially diluted in water. 

Serial dilutions were then plated on BHIS agar supplemented with 2% yeast 

extract, 0.1% L-cysteine-HCl, and 0.05% sodium taurocholate (prepared as 

described in section 2.2.2). Plates were incubated in an anaerobic chamber 

(10% CO2, 10% H2, 80% N2) for 48 hours to yield individual colonies. Colonies were 

then counted to enumerate colony-forming units (CFUs). 

 

3.2.4.3 Optimization of C. difficile Spore Inoculum for Infection 

The murine CDI induction model used in this experiment was adapted 

from procedures published by Chen et al. in 2008 (Scheme 3.1).200 Mice were 

fed a standard laboratory rodent diet. Mice were given three consecutive days 
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of filtered antibiotic cocktail containing kanamycin (0.4 mg/ml), gentamycin 

(0.035 mg/ml), colistin (850 U/ml), metronidazole (0.215 mg/ml), and 

vancomycin (0.045 mg/ml). Mice were allowed to drink the antibiotic cocktail 

ad libitum. Antibiotic cocktail was refreshed daily or as needed. Mice were then 

given autoclaved and filtered DI water for the remainder of the experiment. On 

the day prior to infection (24 hours before C. difficile challenge), mice were 

given an intraperitoneal (IP) injection of 10 mg/kg BW clindamycin. On the day 

of infection, mice were challenged with 108 C. difficile spores via oral gavage. 

This heavy inoculum of spores (108 CFUs) has been shown to establish severe CDI 

with mice challenged with C. difficile strain 630.90 Mice were then observed for 

CDI symptoms for seven days post-challenge (discussed further in section 3.2.5). 

 

 

 

  

 

 

Scheme 3.1. Murine CDI induction model adapted from Chen et al. 2008.200 This model also 

represents the positive CDI control group regimen (spores only).
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3.2.5 Animal CDI Model Regimens 

The murine CDI prevention models used in this experiment were adapted 

and slightly modified from procedures published by Howerton, Patra, and Abel-

Santos in 2013.157 Immediately following challenge, mice received 0 mg/kg BW 

or 50 mg/kg BW of one of two synthetic bile salt analogs via oral gavage: 

CamSA and 07C. One group of five antibiotic-treated mice was used as a 

negative CDI control group and were challenged with only DI water in place of 

C. difficile spores (Scheme 3.2). Positive CDI control mice received 108 C. difficile 

spores and 0 mg/kg BW of the synthetic bile salt analog (Scheme 3.1). 

Experimental groups were challenged with 108 C. difficile spores and received 

daily 50 mg/kg of the synthetic bile salt analog compound at 0, 24, and 48 hours 

post-challenge (Scheme 3.3) for a total of three doses. 

 

 

 

  

 

  

 

Scheme 3.2. Negative CDI control group regimen (no spores).
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3.2.6 Observation of CDI Symptoms in Animals 

Mice were observed for signs of CDI twice daily and were scored 

according a CDI scoring rubric (Table 3.1). This rubric has been adapted and 

slightly modified from a previously published rubric by Howerton, Patra, and 

Abel-Santos in 2013.157 CDI signs included anogenital redness, 

lethargic/distressed behavior, presence of diarrhea or soiled bedding, wet tail, 

hunched posture, and weight loss. 

 

 

 

 

Scheme 3.3. Experimental group regimen (spores and bile salt analog). Bile salt analogs 

(yellow stars) are given as a single daily dose immediately after challenge, 24 hours post-

challenge, and 48 hours post-challenge for a total of 3 doses. 
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CDI Disease Signs Score 

Pink anogenital area 1 

Red anogenital area 2 

Lethargy/distress 2 

Increased diarrhea/soiled bedding 2 

Mild wet tail 1 

Wet tail 2 

Hunched posture 2 

8-15% weight loss 1 

> 15% weight loss 2 

Adapted and modified from Howerton, Patra, and 

Abel-Santos 2013..157 

 

Scores from each animal were tallied to determined severity of CDI 

symptoms (Table 3.2). Animals scoring equal to or less than 2 were 

undistinguishable from noninfected controls and were considered non-diseased. 

Animals scoring 3–4 were considered to have mild CDI. Animals scoring 5–6 were 

considered to have moderate CDI. Animals scoring greater than 6 were 

considered to have severe CDI and were immediately sacrificed. 

 

 
CDI Symptoms Severity Score 

Non-diseased ≤ 2 

Mild CDI 3-4 

Moderate CDI 5-6 

Severe CDI (euthanized) < 6 

 

Table 3.1. CDI Scoring Rubric for mouse CDI model. 

Table 3.2. Mouse CDI symptoms severity with corresponding scores. 
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3.2.7 Statistical Analysis 

Severity of symptoms were analyzed via box-and-whisker plots. Data from 

the plots were expressed as mean ± standard deviation. Standard deviations 

represent a minimum of three independent values (n ≥ 3, where n is one mouse). 

A one-tailed unpaired Student’s T-test was performed to determine statistically 

significant difference between two means (positive CDI control group versus 

experimental group). Statistical significance was determined as P values of < 0.1 

(*), < 0.05 (**), or < 0.01 (***). 

 

3.3 Results and Discussion 

3.3.1 Observable Toxicity of Bile Salt Analogs in Mice 

Of the bile acids present in the gut, approximately 95% of them get 

recycled back into enterohepatic circulation.151,152 Some bile salts, such as 

chenodeoxycholate, are very readily absorbed by the intestines and brought 

back to the liver, while others, such as lithocholate (formed from unabsorbed 

chenodeoxycholate), are poorly absorbed and remain in the gut. Although 

most of the remaining 5% of bile acids are eliminated through excretion, 

accumulation of too much of bile acid like lithocholate can lead to toxic 

effects.153 Thus, the two synthetic bile salt analog compounds, CamSA and 07C, 

were tested for any toxic effects to mice. Mice were given 300 mg/kg of either 

CamSA or 07C every day for thirty days and were observed for signs of toxicity. 
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Neat DMSO was used as a control since bile salt analogs were dissolved in 

DMSO. 

Body weight loss is often used as a measure of toxicity in 

pharmacodynamic studies.199,200,202 Weight loss in mice was calculated as 

percent change from the weight on day 0. Mice that received neat DMSO, 300 

mg/kg CamSA, and 300 mg/kg 07C all did not experience weight loss greater 

than 10% over the course of the trial (Figure 3.1). Moreover, mice did not appear 

to display signs of distress such as lethargy or having a hunched posture. Mice 

activity was monitored for 15-20 minutes after oral gavage every day. Mice 

appeared to exhibit normal behavior following oral gavage. 
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Furthermore, necropsy was performed to check for anatomical anomalies 

that may be caused by the compounds given. Of all fifteen mice tested, only 

one mouse in the 300 mg/kg CamSA cage succumbed to death on day 21. 

After necropsy of the animal, an air pocket was found in the stomach. This is 

most likely due to an oral gavage error when air may have accidentally been 
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Figure 3.1. Mean relative percent weight change of mice in bile salt analog toxicity study. 

Data points represent mean relative percent weight change compared to day 0 from five 

independent measures (n =5). Error bars indicate standard deviation from the mean. A) 

Average weight of mice that received neat DMSO daily for thirty days (solid line). B) Average 

weight of mice that received 300 mg/kg CamSA daily for thirty days (dotted line). C) 

Average weight of mice that received 300 mg/kg 07C daily for thirty days (dashed line). 
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introduced. No organomegaly or other abnormalities of any other organs were 

found, making the cause of death unlikely to be due to compound toxicity. 

All other mice survived the entirety of the trial. Upon necropsy, all organs 

were intact and no enlargement was discovered. Organ enlargements of 

concern included digestive organs such as the liver, pancreas, spleen stomach, 

small intestine, and colon. The liver was of interest as it is responsible for recycling 

bile salts. Attention was also brought to the intestines as they are the sight of 

reabsorption of bile salts. Neither had visibly observable damage or 

enlargement. With weight loss, signs of distress, and necropsy surveillance in 

consideration, neat DMSO, CamSA, and 07C all appeared to have no 

observable toxicity to mice. 

 

3.3.2 Analysis of CDI Symptoms in Mice Challenged with DI Water 

One cage of five mice challenged with DI water in place of C. difficile 

spores was used as a negative CDI control. These mice did not receive any bile 

salt analog compound treatment. Other than incidental weight loss that was 

less than 15% original body weight prior to challenge, the mice did not develop 

any signs of CDI. Thus, the mice received a maximum score of a 1 indicating no 

disease (Figure 3.2). 
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3.3.3 Analysis of CDI Symptoms in Mice Challenged with strain 630 

CamSA and 07C both prevented CDI in mice challenged with C. difficile 

strain 630. Mice that were challenged with 108 strain 630 spores (positive CDI 

control), developed CDI symptoms, though to varying degrees (Figure 3.3A). At 

48 hours post-infection, the mean symptoms severity for the positive control 

cage was 4.2, indicating mild-to-moderate CDI (Table 3.3). Although one animal 

received a score of a 3 (mild CDI), another succumbed to disease with a score 

of an 8 (severe CDI). Positive control mice eventually recovered after 72 hours 

and were monitored for at least seven more days. No surviving mice exhibited 

relapsed CDI. 
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Figure 3.2. CDI symptoms severity in mice 

challenged with DI H2O only. Data points (●) 

represent each animal’s symptoms severity 

based on the CDI scoring rubric. Overlap of 

data points occurs when animals share the 

same score. Error bars indicate standard 

deviation from the mean. Standard 

deviations represent a minimum of three 

independent values (n ≥ 3). 
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Figure 3.3. CDI symptoms severity in mice challenged with strain 630 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of mice treated with three doses of 

50 mg/kg CamSA (□). C) Symptoms severity of mice treated with three doses of 50 mg/kg 

07C (∆). 
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630 Group 24 h 48 h 72 h 96 h 120 h 

Control 2.0 4.2 0.5 0.5 0 

CamSA-treated 0 0.2 0.2 0 0.2 

07C-treated 0.4 0 0 0 0 

KEY: light green = non-disease, yellow-orange = mild-to-moderate CDI 

 

Compared to the mild-to-moderate CDI found in the untreated mice, 

CamSA- and 07C-treated mice were mostly asymptomatic. Scores of 1 by 

individual mice were caused by slight changes in weight which can sometimes 

be an indicator of progressive CDI when weight continues to decrease over a 

period of time. CamSA-treated mice had a maximum mean score of 0.2, 

signifying no disease (Figure 3.3B, Table 3.3). Likewise, 07C-treated mice had a 

maximum mean score of 0.4, also indicative of no CDI (Figure 3.3C, Table 3.3). 

Thus, both compounds were effective at preventing CDI symptoms in strain 630-

infected mice at the three 50 mg/kg doses given. 

 

3.3.4 Analysis of CDI Symptoms in Mice Challenged with strain R20291 

Mice challenged with C. difficile strain R20291 spores exhibited slightly 

higher CDI scores than strain 630. Untreated positive CDI control mice had a 

maximum mean symptoms severity of 5.2 at 48 hours post-infection, indicating 

moderate CDI (Figure 3.4A, Table 3.4). At the lower end, two mice had mild CDI 

with scores of 4. At the higher end, one mouse became moribund with severe 

Table 3.3. Mean CDI symptoms severity for mice challenged with strain 630 spores. 
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CDI, receiving a score of 7. The remaining mice received scores of 5 and 6 

(moderated CDI). 
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Figure 3.4. CDI symptoms severity in mice challenged with strain R20291 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of mice treated with three doses of 

50 mg/kg CamSA (□). C) Symptoms severity of mice treated with three doses of 50 mg/kg 

07C (∆). 
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R20291 Group 24 h 48 h 72 h 96 h 120 h 

Control 1.0 5.2 2.0 1.25 0.75 

CamSA-treated 1.0 4.2 4.75 1.25 0 

07C-treated 0 2.0 2.6 0.2 0.6 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow-orange = mild-to-

moderate CDI, orange = moderate CDI 

 

 CamSA-treated mice were not protected from CDI. At 48 hours, CDI 

symptoms in CamSA-treated mice were not significantly different from the 

positive control (Figure 3.4B). Although the mean symptoms severity is 4.2 (mild-

to-moderate CDI) for CamSA-treated mice compared to 5.2 (moderate CDI) in 

the positive control, the spread is much larger in the CamSA-treated mice (SD = 

2.58 vs. 1.30 in positive control mice) (Table 3.4). This may be due to differences 

in germination rates in vivo as well as a number of other possible factors. Since 

the in vitro germination assay reveal that CamSA was not an inhibitor of 

germination strain 630 spores with less than 100 μM of compound, it is not 

surprising that CamSA was unable to prevent CDI against strain 630 spores. It is 

possible that CamSA does not inhibit strain 630 spore germination even at higher 

concentrations. 

 Compound 07C reduced and delayed CDI symptoms in strain 630-

challenged mice (Figure 3.4C). 07C-treated mice still developed CDI symptoms, 

but only with a maximum mean symptoms severity score of 2.6, which reaches 

Table 3.4. Mean CDI symptoms severity for mice challenged with strain R20291 spores. 
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into the mild CDI range (Table 3.4). One mouse approached a score of a 4, 

indicating mild CDI. While the positive control mice displayed maximum 

symptoms at 48 hours post-infection, 07C-treated mice CDI peaked at 72 hours 

post-challenge. Considering that mice were given the last dose of 50 mg/kg 

07C at 48 hours post-infection, it is possible that the discontinuation of treatment 

resulted in the delay of CDI. One study revealed that strain 630 spores shed over 

a 96-hour timeframe.90 It is unknown when strain R20291 spores fully shed from 

feces, though they may remain in the gut over the 48 hours (after treatment is 

discontinued). Therefore, extending bile salt analog treatment may fully prevent 

germination of strain R20291 spores in the gut until they are shed. 

All surviving mice were kept for at least seven more days for observation. 

None of the mice had disease relapse. All surviving mice appeared to fully 

recover from initial CDI. 

 

3.3.5 Analysis of CDI Symptoms in Mice Challenged with strain 9001966 

C. difficile strain 9001966-challenged mice begin to have mild-to-

moderate CDI starting at 24 hours post-challenge (Figure 3.5A). At 48 hours post-

challenge, two mice reached scores of 6 (moderate CDI) (Table 3.5). Both at 24 

and 48 hours post-challenge, mean symptoms severity was 4.6 (mild-to-

moderate CDI). At 72 hours, maximum mean symptoms severity was reached 

(score of 5.2) and all mice had moderate CDI. Interestingly, the mice remain sick 

until 120 hours post-challenge, when they begin to recover. Although data past 
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120 hours is not shown, the mice continued to be monitored and all fully 

recovered from CDI by 144 hours post-challenge. 
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Figure 3.5. CDI symptoms severity in mice challenged with strain 9001966 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of mice treated with three doses of 

50 mg/kg CamSA (□). C) Symptoms severity of mice treated with three doses of 50 mg/kg 

07C (∆). 
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9001966 Group 24 h 48 h 72 h 96 h 120 h 

Control 4.6 4.6 5.2 4.6 0.4 

CamSA-treated 0.5 1.25 3.5 2.0 0.75 

07C-treated 0.25 1.0 0.75 3.0 2.25 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI, orange = moderate CDI 

 

Although CamSA and 07C did not fully protect CDI in strain 9001966-

challenged mice, both compounds reduced CDI symptoms significantly (Figure 

3.5B-C). Average symptoms severity scores were 3.5 for CamSA-treated mice 

and 3.0 for 07C treated mice, both representing mild CDI (Table 3.5). Curiously, 

both onsets of maximum symptoms also appeared later than the control. This, 

again, could be related to the cessation of treatment, allowing remaining 

spores in the gut to germinate. 

CamSA was unable to prevent strain 9001966 spore germination in vitro, 

though it was able to reduce CDI symptoms in mice. CamSA may be active 

against strain 9001966 spores in vitro at higher concentrations. 07C was able to 

inhibit germination of strain 9001966 spores with an IC50 of 7.60 μM. Oddly, 

although the IC50 of 07C against strain 630 is slightly higher at 8.19 μM, 07C fully 

prevented CDI in strain 630-challenged mice. Therefore, there may not be a 

direct correlation in in vitro IC50 values and in vivo CDI symptoms severity. This 

Table 3.5. Mean CDI symptoms severity for mice challenged with strain 9001966 spores. 
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may be due to C. difficile inter-strain variability or other variables present in each 

individual mouse’s gut. 

 

3.3.6 Analysis of CDI Symptoms in Mice Challenged with strain 05-1223-046 

In vivo, both CamSA and 07C were able to reduce CDI symptoms in mice 

given C. difficile strain 05-1223-046 spores (Figure 3.6B-C). Mean CDI symptoms 

severity scores at all time points indicate non-diseased mice. However, 

untreated mice did not develop as intense symptoms as untreated mice given 

other strains (Figure 3.6A). The difference between treated and untreated mice 

was still statistically significant, though to different degrees depending on the 

times point. Maximum mean symptoms severity in untreated mice occurs at 24 

and 48 hours and is only a score of 3.0, which is at the lower end of mild CDI 

(Table 3.6). This brings speculation about strain 05-1223-046’s resistance to 

germination with the natural germinants taurocholate and glycine. 
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Figure 3.6. CDI symptoms severity in mice challenged with strain 05-1223-046 spores. Data 

points represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of 

data points occurs when animals share the same score. Error bars indicate standard 

deviation from the mean. Standard deviations represent a minimum of three independent 

values (n ≥ 3). Experimental groups were statistically significant (unpaired Student’s T-test) 

compared to the positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) 

Symptoms severity of untreated positive control mice (○). B) Symptoms severity of mice 

treated with three doses of 50 mg/kg CamSA (□). C) Symptoms severity of mice treated with 

three doses of 50 mg/kg 07C (∆). 
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05-1223-046 Group 24 h 48 h 72 h 96 h 120 h 

Control 3.0 3.0 2.4 2.0 0 

CamSA-treated 0 0.2 1.2 0.4 0 

07C-treated 0.6 1.0 1.4 1.8 0.8 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI 

 

3.3.7 Analysis of CDI Symptoms in Mice Challenged with strain CDC 38 

Mice challenged with C. difficile strain CDC 38 spores displayed onset of 

maximum mean symptoms severity score of 4.2 at 24 hours post-infection, 

signifying mild-to-moderate CDI (Figure 3.7A, Table 3.7). The intensity of CDI 

steady decreased over time until all mice eventually recovered around 120 

hours post-infection. 

CamSA was unable to prevent or significantly reduce CDI symptoms in 

strain CDC 38-infected mice (Figure 3.7B). The highest achieved scored was by 

one mouse at 24 hours with a score of 5 (moderate CDI). The remaining mice 

reached mild-to-moderate CDI at 48 hours. At that time, the maximum mean 

symptoms severity score of 3.8 (mild CDI) was attained (Table 3.7). 

Table 3.6. Mean CDI symptoms severity for mice challenged with strain 05-1223-046 spores. 
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Figure 3.7. CDI symptoms severity in mice challenged with strain CDC 38 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of mice treated with three doses of 

50 mg/kg CamSA (□). C) Symptoms severity of mice treated with three doses of 50 mg/kg 

07C (∆). 
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CDC 38 Group 24 h 48 h 72 h 96 h 120 h 

Control 4.2 3.4 2.8 2.0 0.4 

CamSA-treated 0 3.2 3.8 1.6 1.0 

07C-treated 0.4 3.4 3.2 1.8 1.6 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI 

 

Of all the strains tested in the mouse CDI model, 07C appears to be the 

least potent against strain CDC 38. 07C-treated mice still developed mild CDI 

with a maximum mean symptoms severity of 3.4 (mild CDI) at 48 hours post-

challenge (Figure 3.7C). However, this was a mild score reduction from the 

untreated mice mean score of 4.2 (mild-to-moderate) at 24 hours post-

challenge (Table 3.7). This decrease is statistically insignificant. Ironically, 07C 

had quite a low IC50 of 4.62 μM against strain CDC 38. In vivo, mice may require 

higher dosages of 07C for it to be an effective prophylactic against this strain.  

 

3.3.8 Analysis of CDI Symptoms in Mice Challenged with strain DH1834 

C. difficile strain DH1834-challenged mice had a steady progression to 

maximum symptoms (Figure 3.8A).  Starting at 24 hours, mice began to develop 

CDI symptoms. However, maximum mean symptoms severity was occurred at 72 

hours, with a score of 4.6, indicating mild-to-moderate CDI (Table 3.8). One 

mouse reached a score of 7 and reached clinical endpoint. At 96 hours, 

Table 3.7. Mean CDI symptoms severity for mice challenged with strain CDC 38 spores. 
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remaining mice recovered and remained asymptomatic for at least seven more 

days.  
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Figure 3.8. CDI symptoms severity in mice challenged with strain DH1834 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of mice treated with three doses of 

50 mg/kg CamSA (□). C) Symptoms severity of mice treated with three doses of 50 mg/kg 

07C (∆). 
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DH1834 Group 24 h 48 h 72 h 96 h 120 h 

Control 4.0 3.4 4.6 2.75 2.5 

CamSA-treated 4.6 2.75 3.0 0.75 1.5 

07C-treated 3.4 0.8 0.8 0.2 0.6 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI 

 

 CamSA did not prevent CDI in mice challenged with strain DH1834 spores 

(Figure 3.8B). Mice developed maximum mean symptoms severity score of 4.6 

(mild-to-moderate CDI) at 24 hours (Table 3.8). Symptoms severity continued to 

drop from 48 hours on. 07C also did not reduce CDI symptoms to a significant 

degree, however, it did significantly cut symptoms severity in the following days 

(Figure 3.8B). Maximum mean symptoms severity in 07C-treated mice was 3.4, 

which is a slight decrease from the positive CDI control (Table 3.8). As 07C also 

has a low IC50 of 4.15 μM against strain DH1834 spores, other in vivo factors may 

play a role in the germination of strain DH1834 spores. 

 

3.3.9 Analysis of CDI Symptoms in Mice Challenged with strain 7004578 

Like with strain 05-1223-046, the maximum mean symptoms severity for strain 

7004578 was also in the mild CDI range (Figure 3.9A). In the in vitro germination 

profile study, both of these strains had difficulty germinating in the presence of 

the natural activators. However, the reason for the low mean score of 3.2 at 24 

Table 3.8. Mean CDI symptoms severity for mice challenged with strain DH1834 spores. 
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hours post-challenge was mainly due to two animals remaining asymptomatic 

throughout the duration of the experiment (Table 3.9). Of the three remaining 

mice, two mice reached clinical endpoint: one at 24 hours and the other at 48 

hours. The third mouse kept a steady score of 4 (mild CDI) from 24 hours to 72 

hours, until it began to recover at 96 hours. Although the two non-diseased mice 

could not be considered as outliers, another graph was added to the figure 

below to provide an alternative view of disease progression (Figure 3.9B). 
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Figure 3.9. CDI symptoms severity in mice challenged with strain 7004578 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of positive control mice with data 

points for two asymptomatic mice eliminated (◊). C) Symptoms severity of mice treated with 

three doses of 50 mg/kg CamSA (□). D) Symptoms severity of mice treated with three doses of 

50 mg/kg 07C (∆). 
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7004578 Group 24 h 48 h 72 h 96 h 120 h 

Control 3.2 2.75 1.33 0.67 0.33 

CamSA-treated 2.75 3.25 2.0 1.5 1.75 

07C-treated 0 0 0 0.4 0.2 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI 

 

 CamSA was not effective at preventing or reducing CDI symptoms of 

mice given strain 7004578 spores. There is no statistically significant difference 

between symptoms of CamSA-treated mice and untreated mice (Figure 3.9C). 

Maximum mean symptoms severity for CamSA-treated mice occurred at 48 

hours with a score of 3.25 (mild CDI) (Table 3.9). However, 07C was able to 

prevent CDI altogether with strain 7004578-challenged mice remaining non-

disease throughout duration of the experiment (Figure 3.9D). 

 

3.3.10 Analysis of CDI Symptoms in Mice Challenged with strain 8085054 

CDI symptoms of C. difficile strain 8085054-infected mice displayed a 

similar progression of disease to mice infected with strain 630 and strain R20291 

(Figure 3.10A).  Positive CDI control mice that received strain 8085054 spores 

presented with mild CDI (mean score of 3.4) at 48 hours post-infection (Table 

3.10). At 72 hours and beyond, mice gradually recovered and did not relapse. 

 

 

Table 3.9. Mean CDI symptoms severity for mice challenged with strain 7004578 spores. 
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Figure 3.10. CDI symptoms severity in mice challenged with strain 8085054 spores. Data points 

represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap of data 

points occurs when animals share the same score. Error bars indicate standard deviation from 

the mean. Standard deviations represent a minimum of three independent values (n ≥ 3). 

Experimental groups were statistically significant (unpaired Student’s T-test) compared to the 

positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) Symptoms severity of 

untreated positive control mice (○). B) Symptoms severity of positive control mice with data 

points for two asymptomatic mice eliminated (◊). C) Symptoms severity of mice treated with 

three doses of 50 mg/kg CamSA (□). D) Symptoms severity of mice treated with three doses of 

50 mg/kg 07C (∆). 
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8085054 Group 24 h 48 h 72 h 96 h 120 h 

Control 0.4 3.4 2.4 1.2 0.4 

CamSA-treated 0 0 0.2 1.0 1.0 

07C-treated 0 0.6 1.2 0 0.8 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI 

 

Both CamSA and 07C prevented or reduced CDI symptoms for this strain 

(Figure 3.10B-C). CamSA also appeared maximum symptoms in a couple mice 

until 96 hours. Most mice were non-diseased throughout the experiment (Table 

3.10). 07C-treated mice received scores of 0 to 2, marking them as non-

diseased (Table 3.10). In vitro, 07C had the lowest IC50 value (1.28 μM) against 

strain 8085054. In this case, the in vitro data reflects the in vivo results. 

 

3.3.11 Comparison of CDI Symptoms Among All Tested C. difficile Strains 

The eight tested C. difficile strains exhibited distinct CDI disease 

progression and symptoms severity (Table 3.11). The range in onset of maximum 

symptoms also vary among strains. Strains R20291 and 9001966 both presented 

with the highest maximum mean symptoms severity with a score of 5.2, 

indicating moderate CDI. Some of those mice also became moribund. Strain 

R20291 is the hypervirulent strain of ribotype 027. Therefore, it is expected that 

mice given this strain would display more severe CDI. Strains 630, CDC 38, and 

DH1834 all showing mild-to-moderate CDI. However, the onset of maximum 

Table 3.10. Mean CDI symptoms severity for mice challenged with strain 8085054 spores. 
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symptoms all vary between the three strains. Strain 05-1223-046, 7004578, and 

8085054 only presented with averages of mild CDI, although some mice 

became more symptomatic than others. 

 

 
Strain 24 h 48 h 72 h 96 h 120 h 

630 2.0 4.2 0.5 0.5 0 

R20291 1.0 5.2 2.0 1.25 0.75 

9001966 4.6 4.6 5.2 4.6 0.4 

05-1223-046 3.0 3.0 2.4 2.0 0 

CDC 38 4.2 3.4 2.8 2.0 0.4 

DH1834 4.0 3.4 4.6 2.75 2.5 

7004578 3.2 2.75 1.33 0.67 0.33 

8005054 0.4 3.4 2.4 1.2 0.4 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI, orange = moderate CDI 

 

Mice also responded differently to bile salt analog treatment depending 

on the C. difficile strain used for challenge (Table 3.11 and 3.12). CamSA was not 

expected to be able to prevent CDI any C. difficile strains other than strain 630 

since the in vitro data suggested that it was only a potent inhibitor against that 

strain. However, CamSA showed some promising results with some strains in the 

mouse CDI model. CamSA prevented CDI in strain 630, as predicted, but also in 

strains 05-1223-046 and 8085054. Symptoms reduction was seen in strain 9001966 

Table 3.11. Comparison of mean CDI symptoms for all positive control mice. 
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in CamSA-treated mice. Thus, the concentration of CamSA may need to be 

increased much more against these strains in vitro to possibly determine 

inhibitory concentrations against germination. In contrast, CamSA was not 

effective against strains R20291, CDC 38, DH1834, and 7004578. 

 

 
Strain 24 h 48 h 72 h 96 h 120 h 

630 0 0.2 0.2 0 0.2 

R20291 1.0 4.2 4.75 1.25 0 

9001966 0.5 1.25 3.5 2.0 0.75 

05-1223-046 0 0.2 1.2 0.4 0 

CDC 38 0 3.2 3.8 1.6 1.0 

DH1834 4.6 2.75 3.0 0.75 1.5 

7004578 2.75 3.25 2.0 1.5 1.75 

8005054 0 0 0.2 1.0 1.0 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI, orange = moderate CDI 

 

07C significantly prevented, reduced, or reduced and delayed CDI 

symptoms in mice challenged with almost all strains tested. The only strain that 

showed the most insignificant symptom reduction against was strain CDC 38. In 

strains 630, 05-1223-046, 7004578, and 8085054, mice were considered non-

diseased when treated with 07C. Symptom onset was delayed with the 

hypervirulent strain R20291. However, CDI was greatly reduced in mice 

Table 3.12. Comparison of mean CDI symptoms for all CamSA-treated mice. 
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challenged with strain R20291. CDI symptoms were reduced and delayed with 

strain 9001966-infected mice. Finally, with strain DH1834, maximum symptoms 

were only mildly reduced, but mice did exhibit delayed protection at the 

subsequent time points. 

 

 
Strain 24 h 48 h 72 h 96 h 120 h 

630 0.4 0 0 0 0 

R20291 0 2.0 2.6 0.2 0.6 

9001966 0.25 1.0 0.75 3.0 2.25 

05-1223-046 0.6 1.0 1.4 1.8 0.8 

CDC 38 0.4 3.4 3.2 1.8 1.6 

DH1834 3.4 0.8 0.8 0.2 0.6 

7004578 0 0 0 0.4 0.2 

8085054 0 0.6 1.2 0 0.8 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI, orange = moderate CDI 

 

3.4 Conclusions 

The mouse CDI model has demonstrated the powerful potential of bile salt 

analogs in the prophylactic treatment of CDI in mice. By using the in vitro 

germination profile data, we made predictions about the outcomes of the in 

vivo mouse CDI model. However, although some in vitro data reflected in vivo 

findings, others did not show a direct correlation. This may be due to different 

Table 3.13. Comparison of mean CDI symptoms for all 07C-treated mice. 
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germination rates of spores of certain C. difficile strains in vivo. This could be 

caused by, but not limited to, natural bile acids found within the gut, the mouse 

gut microbiota, diet, and cage dominance. These variables as well as others will 

need to be explored in further research. In the meantime, the results of this study 

illustrate the general patterns of disease and inhibitory abilities of the bile salt 

analogs. CamSA can reduce or prevent CDI symptoms in mice for a few tested 

strains, while 07C is able to reduce, prevent, or reduce and delay CDI symptoms 

in mice with all but one strain tested. By modifying treatment while discovering 

new bile salt analogs, we may be able to find a potent prophylactic treatment 

option to be treated on CDI-inflicted organisms. 
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CHAPTER 4  

CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Conclusions 

CDI is an antibiotic-associated disease that is localized to the GI tract. 

After C. difficile spores become ingested through contact with various mediums 

such as table surfaces, food, animals, and unwashed hands, they undergo a 

transformative process while in the anaerobic intestines called germination. 

Bacterial cells that are capable of producing damage-inducing toxins arise from 

this germination process. CDI poses a serious threat to predisposed individuals 

who have weakened immune systems or who have recently taken antibiotics 

that deplete their natural protective bacterial barrier in the gut. With the 

emergence of new and hypervirulent strains of C. difficile, well individuals can 

also be vulnerable to CDI. 

C. difficile spores germinate when in the presence of promoters called 

germinants. These germinants, specifically taurocholate, are bile acids that are 

naturally produced in the liver. Smaller amino acid co-germinants like glycine 

aid the germination process by increasing cooperative binding affinity of other 

co-germinants to the spore. Conversely, a few naturally occurring bile acids 

such as chenodeoxycholate can act as germination inhibitors. In individuals with 

gut microbiome imbalances, the germinant bile acids cannot be regulated 

efficiently by the indigenous intestinal microorganisms and inhibitor bile acids 

are not strong enough to protect from CDI in an overabundance of germinants. 



121 

 

Synthetic bile salt analogs have been proposed to act as more potent 

germination inhibitors than the natural inhibitor. One analog called CamSA was 

effective at preventing spore germination of strain 630 and CDI symptoms 

against a few other C. difficile strains in the CDI mouse model, while another 

analog called 07C was a powerful anti-germinant and CDI symptom 

reducer/preventer in multiple C. difficile strains. These bile salt analogs act as 

prophylactics against CDI and open the gateway to navigating the C. difficile 

germination pathway. 

Germination assays were used to test bile salt analogs’ in vitro activity in 

preventing spore germination. CamSA was only able to prevent spore 

germination of strain 630 at less than 100 μM final concentration, while 07C 

inhibited germination of strains 630, R20291, 9001966, CDC 38, and DH1834 

spores. Inhibitory activity could not be determined for strains 05-1223-046 and 

7004578 as they were both unable to germinate in the presence of the natural 

activators taurocholate and glycine. No major germination profile similarities 

were found in different strains from the same ribotype group. The calculated IC50 

values from the germination assays provided a general outline of expectations 

for the in vivo study and were used for comparison purposes. 

The bile salt analogs were tested as prophylactic agents against the 

various C. difficile strain spores in vivo in the CDI mouse model. Mice were 

challenged with an inoculum containing 108 C. difficile spores via orogastric 

administration. Mice symptoms severity varied among each tested C. difficile 
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strain. Maximum CDI scores in untreated mice ranged from 4-8 on the day of 

maximal symptoms. Similarly, duration of disease symptoms also differed 

between strains. Interestingly, CamSA was not only able to protect mice from 

CDI when challenged with strain 630 spores, but it also prevented CDI symptoms 

in mice challenged with strains 05-1223-046 and 8085054, and reduced CDI 

symptoms in mice challenged with strains 9001966 and delayed symptoms in 

one mouse given strain 8085054. Overall, 07C was effective in preventing, 

reducing, or both reducing and delaying CDI in almost all tested strains. 

Compound 07C protected mice challenged with 630, 05-1223-046, 7004578, 

and 8085054. Mice challenged with strain R20291 experienced a one day delay 

in symptoms onset, and the mean symptoms severity was significantly lower in 

the 07C-treated mice compared to the control. Delay of maximum symptom 

onset was also noted in mice that received strain 9001966 spores. DH1834-

infected mice treated with 07C experienced a slight reduction in CDI symptoms 

and quick recovering soon thereafter. Of all the tested strains 07C seemed to be 

least effective against strain CDC 38 with only an insignificant reduction and 

delay in CDI symptoms. 

The in vitro IC50 values for each strain did not correlate with the degree of 

protection from CDI in vivo. However, the more potent compound, 07C, was 

generally a better prophylactic against multiple C. diffiicle strains than CamSA. 

The differences between in vitro and in vivo activities could be due to the 

influences that may only be present in living systems. A considerable amount of 
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heterogeneity in symptoms severity was found among mice of the same cage 

and treatment regimen. Although variables such as dosages, temperature, and 

light cycles were well controlled, other variables include ad libitum drinking of 

the antibiotic cocktail, mouse dominance, and epigenetic factors are more 

difficult to control. 

4.2 Research Questions 

The findings from both the in vitro and in vivo studies raise a few questions 

about variables that may confound results. To recap on peculiar discoveries 

from the in vitro study, two C. difficile strains, 05-1223-046 and 7004578, were 

unable to germinate in the presence of the germinants taurocholate and 

glycine. As previously mentioned in chapter 2, the appropriate amino acid co-

germinant required for germination may not be the expected glycine. 

Alternatively, the co-germinant may be a molecule other than an amino acid. 

Once a suitable co-germinant is found, another question to answer is whether 

CamSA and 07C act as active inhibitors against those strains. 

For the in vivo study, many possibilities may be responsible for the 

heterogeneity found within each group of mice. A recent article discussed the 

variability found between seemingly identical mice and associated it with 

minute and difficult-to-control factors.203 One proposed variable was sex. All 

mice used in the study were weaned female C57BL/6 mice. By the time mice 

were mature enough to be used in the study, they were of age to enter 

menarche (start of the estrous cycle). As most CDI mice studies are performed 
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using female mice, the variation between sexes was not yet considered. No 

current or previously published studies have explored the differences between 

male and female mice CDI thoroughly. One hallmark CDI mice study that 

happened to use both male and female mice showed similar symptoms severity 

between the two sexes.200 

  Estrogen has been suggested to play a role in mediating gut 

inflammatory response and modifying intestinal permeability.204,205 Studies have 

found that post-menopausal women are at higher risk for intestinal diseases such 

as Crohn’s disease and Irritable Bowel Syndrome (IBS).206 Increased inflammatory 

bowel diseases (IBD) have also been associated with pregnancy and use of oral 

contraceptives.206,207 Furthermore, previous work from the Abel-Santos 

Laboratory showed that progesterone analogs affect in vitro germination of C. 

difficile spores.208 These results are intriguing since steroidal hormones share the 

same cholic backbone with bile salts.209 Therefore, regulation of estrogen via the 

estrous cycle may play a role in other intestinal diseases like CDI. Although 

estrogen’s role in Crohn’s and IBS have been well researched, estrous cycle 

effects on CDI have yet to be examined. Higher susceptibility to intestinal 

inflammation post-menopause may contribute to the increased CDI risk in 

elderly women. Conversely, changes in gut microbiota can also effect estrogen 

excretion and reuptake.205 Imbalances in intestinal microflora can cause an 

increase in β-glucuronidase, which can uncouple the normally excreted 
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estrogen-glucuronic acid complex, causing estrogen to be more readily 

reabsorbed by the gut, thus resulting in increased estrogen load.210 

We conducted a preliminary experiment to investigate differences 

between male and female CDI symptoms severity. The primary purpose of this 

experiment was to see if male mice experience more homogenous symptoms 

than female mice.  Experimental setup was performed in the same manner as 

with other mouse CDI model experiments outlined in chapter 3. All cages were 

run in tandem. All mice were of the same age and were post-pubescent. 

Although heterogeneity still existed, disease symptoms are statistically less 

severe in males than in female in the control groups (Figure 4.1, Table 14.1). Also, 

males seemed to have a more heterogenous spread than females (Figure 4.2).  

Of the five males in the control cage, two remained asymptomatic, while the 

other three had mild to moderate CDI. Interestingly, bile salt analogs failed to 

protect male mice from CDI. Although there have been several studies done on 

estrogen effects on several types of GI afflictions, testosterone effects have not 

been well characterized. It may still be advantageous to continue using female 

mice model; since male mice get slightly less sick from CDI, having female mice 

that are more susceptible to CDI may be important for observing minor changes 

in symptoms severity between regimens. 
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Figure 4.1. CDI symptoms severity in female mice challenged with strain 9001966 spores. Data 

points represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap 

of data points occurs when animals share the same score. Error bars indicate standard 

deviation from the mean. Standard deviations represent a minimum of three independent 

values (n ≥ 3). Experimental groups were statistically significant (unpaired Student’s T-test) 

compared to the positive control group at p < 0.1 (*), p < 0.05 (**), and p < 0.01 (***). A) 

Symptoms severity of positive untreated control mice (○). B) Symptoms severity of mice 

treated with three doses of 50 mg/kg CamSA (□). C) Symptoms severity of mice treated with 

three doses of 50 mg/kg 07C (∆). 
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Figure 4.2. CDI symptoms severity in male mice challenged with strain 9001966 spores. Data 

points represent each animal’s symptoms severity based on the CDI scoring rubric. Overlap 

of data points occurs when animals share the same score. Error bars indicate standard 

deviation from the mean. Standard deviations represent a minimum of three independent 

values (n ≥ 3). Experimental groups were statistically insignificant (unpaired Student’s T-test) 

compared to the positive control group up to p > 0.1. Males groups were statistically 

significant (unpaired Student’s T-test) compared to corresponding female groups at p < 0.1 

(†), p < 0.05 (††), and p < 0.01 (†††). A) Symptoms severity of positive untreated control mice 

(○). B) Symptoms severity of mice treated with three doses of 50 mg/kg CamSA (□). C) 

Symptoms severity of mice treated with three doses of 50 mg/kg 07C (∆). 
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9001966 Group 24 h 48 h 72 h 96 h 120 h 

Females Control 0 3.0 3.6 0 0 

Males Control 0 2.4 1.8 1.0 0 

Females with CamSA 0 0.4 0 0 0 

Males with CamSA 0 2.2 1.6 0.6 0.2 

Females with 07C 0 2.8 1.4 0.6 0 

Males with 07C 0 2.8 1.4 0.2 0.2 

KEY: light green = non-disease, green = non-diseased-to-mild CDI, yellow = mild CDI, yellow-

orange = mild-to-moderate CDI, orange = moderate CDI 

 

On a similar note, diet has also been shown to affect the diverse gut 

enterotypes. Thus, this may also have an effect of the prognosis of CDI. Long-

term studies have shown that high levels of genus Bacteroides bacteria in the 

gut are linked to high protein and animal fat intake.211 Similarly, increase 

carbohydrate consumption is associated with genus Prevotella bacterial 

prevalence.211 Imbalance of these gut microbe could influence the progression 

of CDI. 

Another uncertainty is whether symptom heterogeneity is caused by 

discrepancies in sporulation or in bile salt activation. As mentioned in section 

1.2.2, differences in sporulation rates among various C. difficile strains may 

account for variation of symptoms onset and severity among mice. In vivo 

conditions may influence when spores germinate in the gut. One study using C. 

Table 4.1. Comparison of mean CDI symptoms for all 9001966-challenged mice groups. 



129 

 

difficile strain 630 revealed that spore shedding occurs over a 96-hour period 

from the time of infection.90 Therefore, strain 630 sporulation may occur up to 

that point. Moreover, recovered spores were undistinguishable from spore of the 

original inoculum, so it is possible that newer spores could be formed in the GI 

tract.90 These discoveries were only made for strain 630; other strains may 

behave differently in vivo. 

At the bile salt level, cleavage of side chains in vivo by native gut 

microorganisms may also be probable. As a site of bile salt modification, the 

intestinal tract may also modify synthetic bile salt analog side chains. Therefore, 

finding a stable inhibitor is necessary. One study done by past members of the 

Abel-Santos Laboratory showed that CamSA was stable toward bile salt 

hydrolases.90 

4.3 Future Directions 

There is a plethora of paths that can be explored to follow-up this thesis 

study. As this study is completed, other bile salt analogs are being tested as 

potential potent germination inhibitors. At this time, no other screened bile salt 

analog has shown in vitro inhibitory activity as powerful as compound 07C. 

To address the issue of other possible C. difficile spore germinants, amino 

acid analogs will be tested with strains 05-1223-046 and 7004578 spores via 

germination assays. The most suitable germinant will be used to identify whether 

bile salt analogs CamSA and 07C demonstrate anti-germinants behavior.  
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Another matter to investigate is whether CamSA is an active inhibitor at 

higher concentrations. Although CamSA was not shown to be an active anti-

germinant against five of the six testable C. difficile strains at low micromolar 

concentrations in vitro, CamSA was able to reduce CDI symptoms in mice given 

certain C. difficile strains. Also, IC50 value was not found to have direct 

correlation to reduction of CDI symptoms possibly due to a number of in vivo 

factors to take into account. However, germination inhibition with CamSA in 

vitro may explain why it still exhibits prophylactic activity in mice that receive C. 

difficile strains other than strain 630. 

Now that some results have been established in the prophylactic mice 

CDI model again various C. difficile isolates, we can adjust treatment regimens 

to cater to each individual strain. For some strains, upping the concentration of 

bile salt analog compound may necessary for protection from CDI. As no 

toxicity was observed at 300 mg/kg compound and only 50 mg/kg was given to 

C. difficile infected mice, increasing the concentration of bile salt analogs 

below 300 mg/kg should be non-toxic. Following that study, we can modify bile 

salt analog compound regimens to test on the extremely susceptible hamster 

model. As mentioned in chapter 3, CamSA protected hamsters from CDI when 

synergistically paired with vancomycin treatment. However, one animal did 

reach demise. By tailoring the treatment plans per strain, the potent inhibitor 

07C may have effective prophylactic effects in the hamster model.  
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Further investigations into sex effects on CDI may be studied in more 

detail. If the estrous cycle may be a culprit in the heterogeneity of mice CDI 

symptoms, a vaginal epithelial swab can be used to determine the mice’s stage 

in the estrous cycle. One caveat to using this method is that it would be difficult 

to deliberately sync all mice in one cage to the same stage in the cycle. 

However, the stages could be used to backtrack and find possible correlations 

between them and CDI symptoms severity. 

Issues concerning diet effects on gut microbiota can also be examined 

using the mice model. Changes in enterotype composition can be tracked as 

mice diet changes. Mice will be given different feeds containing an abundance 

of one or more types of macromolecules. Moreover, CDI susceptibility of mice 

on the special diets will be observed. Mice will then be treated with bile salt 

analog prophylactics while on the specific diets.  

To address concern of bile salt analog absorption by intestinal epithelium 

or modification in the gut, an in vitro bind assay study will be used to test CamSA 

and 07C’s binding to the intestinal chyme. This will give us an understanding of 

how the absorptivity of these compounds by the intestinal epithelium. Moreover, 

the bile salt analogs’ effect on the gut microbiota can also be studied further. 

Because onset of CDI symptoms occurred rapidly within 48 hours for the 

published study involving strain 630, bacterial loads following that timeframe 

could not be determined as the mice reached moribund.90 By using a non-

toxigenic C. difficile strain, shedding spores from feces will be easier to recover 
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since mice will be asymptomatic. This also greatly minimizing possible suffering 

for the animal. Using a non-toxigenic strain also brings up the question of 

whether these non-toxigenic spores will still germinate in the gut like spores of 

other strains do if untreated. 

CDI is a quick spreading quandary as new strains of C. difficile are still 

being discovered. Because of the variable responses of the strains to various 

environments and factors, finding a “one-size-fits-all” solution may not be 

possible for CDI. On top of that, there is also the conundrum that CDI is an 

antibiotic-associated disease treated by antibiotics. Therefore, the exploration 

into prophylactic treatment is indispensable. If these tested bile salt analogs can 

protect animals from CDI, they may be used to control the prognosis of CDI as 

molecular probes. This would lead CDI research one step closer to uncovering 

the binding action of these bile salt germinants and inhibitors to the spore. By 

focusing on the preventative capability of bile salt analogs like CamSA and 07C, 

we may be able to flush away this poopy problem in the near future. 
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Figure S1. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain 630 spores. These concentrations were used to construct the dose-dependent 

curve to determine the IC50 of 07C against strain 630. Spores were resuspended in 

germination buffer and treated with neat DMSO (●) or treated with a fixed concentration of 

taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 0 μM (●), 3.125 

μM (●), 6.25 μM (●), 9.375 μM (●), 12.5 μM (●), 15.625 μM (●), 25 μM (●), 31.25 μM (●), 37.5 μM 

(●), 40.625 μM (●), and 50 μM (●) 07C. In actuality, data was collected every minute for 120 

minutes. For clarity, data at five minute intervals are shown and error bars signifying standard 

deviation were eliminated. The data points indicate the means from three independent 

measures (n = 3). 
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Figure S2. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain R20291 spores. These concentrations were used to construct the dose-

dependent curve to determine the IC50 of 07C against strain R20291. Spores were 

resuspended in germination buffer and treated with neat DMSO (●) or treated with a fixed 

concentration of taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 

0 μM (●), 0.048828 μM (●), 0.146484 μM (●), 0.195313 μM (●), 0.390625 μM (●), 0.585938 μM (●), 

0.78125 μM (●), 1.171875 μM (●), 1.5625 μM (●), 2.34375 μM (●), 6.25 μM (●), 9.375 μM (●), 

15.625 μM (●), 25 μM (●), and 28.125 μM (●) 07C. In actuality, data was collected every 

minute for 120 minutes. For clarity, data at five minute intervals are shown and error bars 

signifying standard deviation were eliminated. The data points indicate the means from three 

independent measures (n = 3). 
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Figure S3. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain 9001966 spores. These concentrations were used to construct the dose-

dependent curve to determine the IC50 of 07C against strain 9001966. Spores were 

resuspended in germination buffer and treated with neat DMSO (●) or treated with a fixed 

concentration of taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 

0 μM (●), 1.5625 μM (●), 2.34375 μM (●), 3.125 μM (●), 6.25 μM (●), 9.375 μM (●), 15.625 μM (●), 

18.75 μM (●), 25 μM (●), 31.25 μM (●), 37.5 μM (●), and 40.875 μM (●) 07C. In actuality, data 

was collected every minute for 120 minutes. For clarity, data at five minute intervals are 

shown and error bars signifying standard deviation were eliminated. The data points indicate 

the means from three independent measures (n = 3). 
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Figure S4. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain CDC 38 spores. These concentrations were used to construct the dose-

dependent curve to determine the IC50 of 07C against strain CDC 38. Spores were 

resuspended in germination buffer and treated with neat DMSO (●) or treated with a fixed 

concentration of taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 

0 μM (●), 0.1953125 μM (●), 0.390625 μM (●), 0.78125 μM (●), 1.5625 μM (●), 2.34375 μM (●), 

3.90625 μM (●), 4.6875 μM (●), 6.25 μM (●), 9.375 μM (●), 12.5 μM (●), 15.625 μM (●), 25 μM (●), 

and 37.5 μM (●) 07C. In actuality, data was collected every minute for 120 minutes. For 

clarity, data at five minute intervals are shown and error bars signifying standard deviation 

were eliminated. The data points indicate the means from three independent measures (n = 

3). 
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Figure S5. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain DH1834 spores. These concentrations were used to construct the dose-

dependent curve to determine the IC50 of 07C against strain DH1834. Spores were 

resuspended in germination buffer and treated with neat DMSO (●) or treated with a fixed 

concentration of taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 

0 μM (●), 0.78125 μM (●), 1.171875 μM (●), 1.5625 μM (●), 3.90625 μM (●), 4.6875 μM (●), 6.25 

μM (●), 12.5 μM (●), 15.625 μM (●), and 18.75 μM (●) 07C. In actuality, data was collected 

every minute for 120 minutes. For clarity, data at five minute intervals are shown and error 

bars signifying standard deviation were eliminated. The data points indicate the means from 

three independent measures (n = 3). 
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Figure S6. Germination kinetic graph containing various concentrations of 07C against C. 

difficile strain 8085054 spores. These concentrations were used to construct the dose-

dependent curve to determine the IC50 of 07C against strain 8085054. Spores were 

resuspended in germination buffer and treated with neat DMSO (●) or treated with a fixed 

concentration of taurocholate (6 mM) and glycine (12 mM) added to final concentrations of 

0 μM (●), 0.01220703125 μM (●), 0.0244140625 μM (●), 0.048828125 μM (●), 0.09765625 μM (●), 

0.146484375 μM (●), 1.171875 μM (●), 1.5625 μM (●), 9.375 μM (●), 12.5 μM (●), 15.625 μM (●), 

25 μM (●), 28.125 μM (●), 37.5 μM (●), 43.75 μM (●), and 50 μM (●) 07C. In actuality, data was 

collected every minute for 120 minutes. For clarity, data at five minute intervals are shown 

and error bars signifying standard deviation were eliminated. The data points indicate the 

means from three independent measures (n = 3). 
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