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Abstract 
	

Utilization of computational modelling and simulation is expanding as computer processing 

power has increased and as new tools have been developed.  This thesis focuses on efforts to 

improve the accuracy of simulations in aluminosilicate zeolites, an industrially important 

category of materials for catalysis and separations.  For these sorbents, partial atomic charge 

represents a critical parameter in molecular mechanics simulations, determining the Coulombic 

non-bonding interaction.  Partial charges may also be used as a measure of important physical 

parameters of the system such as the degree of covalency or the relative acidity of catalytic sites. 

We compare several common methods for predicting partial atomic charges in siliceous (pure 

silica) zeolites, analyze the geometric dependence of these charges, and we test if that data can 

be used to predict the site for tetrahedral atom substitution in the synthesis of catalytically active 

zeolites. In addition, we test the partial atomic charges for their ability to predict N2 and O2 

adsorption with common dispersion-repulsion parameterizations.  

A second project is also described where detailed first-principles analysis of a pentanuclear 

technetium iodide structure was conducted in the solid state. We utilized spin polarization in 

DFT to test the average magnetic moment and sought further explanation using the structures 

density of states and electronic band structures.   
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Chapter 1: Introduction 

Section 1.1: Density Functional Theory 
 
1.1.1: Schrodinger Equation 

 
Quantum mechanics was introduced in the 1920’s as a way of explaining phenomena that could not 

be explained with classical mechanics. In general, quantum mechanics is important when the length scale 

of the phenomena is on the same order as Planck’s constant, as dictated by the Heisenberg uncertainty 

principle. Through the concept of wave-particle duality, quantum particles exhibit characteristics of both 

waves and particles, allowing us to describe the particles as waves using wave functions analogous to 

those found in classical wave mechanics. Following similar principles to wave mechanics, Erwin 

Schrödinger defined a way of describing the quantum state of a wave function in both its time-dependent, 

and (more relevant to this discussion) time-independent form: 

 

!" = $"    (Equation 1) 

 

where ! is the differential many-body Hamiltonian operator, which, when acted on a trial state of the 

system, 	" , returns the total (kinetic and potential) energy, E, of that state. "  is the wave function 

containing all information that can be known about the quantum system currently at hand. The stationary 

state with the lowest energy is dubbed the ground state of the system, and it is in this state the system will 

typically be found to exist. Equation 2 shows the terms of the expanded Hamiltonian operator in atomic 

units.  
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Here N is the number of number of electrons, M is the number of nuclei, i and j represent 

electrons, A and B represent nuclei, Z represents the atomic number of a nuclei, and r and R represent the 

distance between the indicated particles. The combination of the first two terms represent the kinetic 

energy (momentum squared over twice the mass) of the system coming from both the electrons and nuclei 

as determined by the differential Laplacian, )+, operator. The remaining three terms, which describe the 

potential energy, include the attractive electrostatic interactions between the nucleus and electrons, the 

repulsion between the electrons, and the repulsive interaction between the nuclei. Under the Born-

Oppenheimer approximation, it can be assumed due to the separation in the orders of magnitude of time 

for the relative motion of electrons and nuclei that their contributions to the Hamiltonian may be 

separated. This paves the way for a simpler means of solving an electronic Hamiltonian where the nuclei 

act as fixed point charges - creating a stationary, attractive, Coulomb interaction potential for the 

electrons.	 Rewriting the above equation under the Born-Oppenheimer approximation yields Equation 3, 

where the remaining nuclear-nuclear potential is a constant scalar for fixed atomic configurations:  
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(Equation 3) 

 

This simplified electronic Hamiltonian represents more clearly an electronic wave function dependent 

directly on the electronic coordinates (parametrically on nuclear coordinates), while the total energy of 

the system becomes the summation of the new electronic Schrödinger equation with a nuclear constant 

component of the constant nuclear repulsive term:  

 

!:": = $:":      (Equation 4) 
 

$< = $, + $:     (Equation 5) 
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As in all wave phenomena problems, these wave functions are required to obey certain boundary 

conditions which ostensibly give rise to the quantized stationary states of the system we seek.	 The wave 

function itself is not observable, so any property must be inferred from the electronic probability density 

derived from the wave function. Thus the modulus square of the wave function is taken to yield that 

probability density. The integral over all space of the probability density must be equal to one, which 

indicates a 100% chance of finding the electrons, as shown below.  

 

∫ …∫ " 2., 2+, 2@, … , 2,
+A2.A2+A2@ …A2, = 1 

∫ …∫ " 2., 2+, 2@, … , 2,
+A2.A2+A2@ …A2, = B 2   (Equation 6) 

 

By scaling the wave functions to produce the value of 1 upon integration, the wave functions are 

said to be normalized, describing the state of the N electrons. Furthermore, we have yet to describe the 

process in which we achieve the ground state of the system for the time–independent Schrödinger 

equation in terms of the many-body electron wave functional. To do so, we evaluate a new trial wave 

function using the variational principle. In short, the variational principle takes a trial wave function and 

computes a trial energy based on the given N and given external potential Vext. By definition, the true 

ground-state of the system, "C , is the state with the lowest energy, $C  represented by the following 

equation: 

 

$C = " →
3*E

F " G + H,: + H:: "     (Equation 7) 
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Once N and Vext are established, the ground state of the system can be determined by constructing 

the Hamiltonian, formulating a trial wave function, and evaluating it by the right-hand side of the above 

equation. This process is continued throughout all acceptable N-electron wave functions to minimize the 

IC expression, and repeated until the lowest numerical value for E is found, thus giving us the closest 

estimate (if not the actual) for the ground-state of the system.  

 

For simple systems like a harmonic oscillator, a rigid rotor, or the central force (aka. Hydrogen 

atom) problem, there are known analytic functional forms of the wave function. Although the Schrödinger 

equation hypothetically allows for complete evaluation of any quantum system, when extended to systems 

with many bodies (nuclei or electrons), there is no longer a simple analytic form of the wave function. To 

utilize quantum mechanics with many-bodies, a numeric solution to the problem has to be solved. There 

are two main approaches to solving the many-body problem as it pertains to the electronic structure of 

atoms, molecules, and more complicated chemical entities: a wave function based and a charge density 

based approach.(1-4) Wave function based calculations happen to be extremely computationally 

expensive in order to accurately evaluate the system. Thus their use is limited to only small or medium-

sized molecular systems. In comparison, the evaluation of the charge density approach aka. density 

functional theory (DFT) is a more efficient computational method for mapping the ground-state and thus 

determining the physical properties of a microscopic electronic system. DFT is the more popular of the 

two approaches for solving quantum chemistry problems, and it has been shown in numerous texts(5-7) 

that this approach is far more practical in describing large molecular systems and condensed phases.  

  

 

 

 

 

1.1.2: Hohenberg – Kohn Theorem  
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The work conducted by Hohenberg and Kohn(8) lays the theoretical pillars upon which DFT has been 

erected, and defines the ability to solve for the ground state of a system using the density based approach. 

Their first theorem focused on how all properties of the system (including the Hamiltonian) can be 

determined by the overall electron density. This is an extension of what we describe above as the external 

potential, except for a constant c, which fixes the Hamiltonian since it is a unique function of the charge 

density, B 2 , therefore causing the many-body ground state to become a function of the overall density, 

B 2 . The question remains: Can we have two external potentials that yield the same ground state electron 

density? We can answer this using the following proof which follows the presentation in Koch et al.(7) by  

firstly defining two separate Hamiltonians that differ only by their external potentials:  
 
 

! = G + H:: + H:KL    (Equation 8) 
 
 

!M = G + H:: + H:KL
M     (Equation 9) 

 

where each Hamiltonian corresponds to a separate ground-state wave function, "  and "M , and with 

respective ground-state energies $C and $CM . Assuming each comes from the same B 2 , we can apply the 

variation principle while making sure to account for the additional constant of the external potential, 

 

$C < "M ! "M = "M !′ "M + "M ! − !′ "M  
 

$C < $C
M + "M G + H:: + H:KL − G − H:: − H:KL

M "M  
 

$C < $C
M +	 "M H:KL − H:KL

M "M               
 

$C < $C
M + ∫ B 2 H:KL − H:KL

M A2 
 
 

 
by switching primed indices,             (Proof 1) 

 
$C
M < " !′ " = " ! " + " !′ − ! "  



	 6	

 
$C
M < $C + ∫ B 2 H:KL

M − H:KL A2	
 

$C
M < $C − ∫ B 2 H:KL − H:KL

M A2 
 

and by combining the two expressions: 
 

$C + $C
M < $C

M + $C 
 

0 < 0 
 

Since zero cannot be less than zero, we conclude that the two external potentials not only yield the same 

ground-state electron density, but also the ground-state energy as a functional of the ground-state electron 

density. This relationship is expanded in their second theorem, where for any external potential there 

exists a density functional E[n], whose global minimum is the exact ground state energy. Thus, the total 

energy expression may be rewritten as a functional of the electron density: 

 
$ B = G B + $:: B + $,: B   (Equation 10) 

 
 
 
We can again separate the above expression as done previously into systematic dependencies to the 

kinetic energy, electronic potential, and external potential contributions. If the exact functional were 

known, then the Schrödinger equation would be solvable as a whole requiring no further methodological 

development. What has thus far been dubbed the electron-electron interaction potential may be separated 

into a few physically relevant terms: the classical Coulomb (Hartree) term, the electron exchange term 

arising from the Fermionic nature of electrons, VX, and the electron-electron correlation term, VC. DFT 

method development has long been focused on evaluating and accurately representing the complicated 

electron–electron exchange and correlation terms will be discussed in the following sections. 

Theoretically, this does start the foundations for what we today call DFT, but since the form of the 

universal function is unknown, our discussion continues away from general descriptions and to the 

considerations of major technical breakthroughs that have achieved practical solutions with DFT.  
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1.1.3: Kohn Sham 

 
 
 The seminal 1965 paper of Kohn and Sham (9) gave birth to an idea similar to the Thomas – 

Fermi method,(10) that direct functionals of the electron density fail in their ability to evaluate the kinetic 

energy terms effectively beyond the description of a free-electron gas. Thus, Kohn and Sham introduced 

the concept of non-interacting reference systems built from sets of one electron functions, allowing for a 

means to calculate the electronic kinetic energy with improved accuracy. Doing so requires a way to 

calculate as much information as possible from these one-electron functions while applying the remaining 

portions of the energy to be determined by the chosen approximate functional. This may be achieved by 

rewriting the Hohenberg – Kohn theorem universal functional for the energy of the ground state as: 

 

$C = Q →
3*E

F R ST U∫ V W XY ZW   (Equation 11) 
 
 

[ B 2 = G B 2 + \ Q 2 + $E]^ B 2   (Equation 12) 
 
 
 

where from left to right, Eqn. 12 includes the functionals for the kinetic, Hartree (classical Coulombic 

repulsion), and non-classical electronic energies. The non-classical terms come from self-interaction, 

electron exchange, and other electron correlation effects. All terms present in the above expression and 

those in the Thomas – Fermi – Dirac Model are explicit functionals of the electron density. Unfortunately, 

those methods based on Thomas – Fermi and more recent models (11; 12) fail in comparison to more 

quantitative trends targeted to describe the electronic kinetic energy. This stems from an inaccuracy of 

approaches defined by real-space densities to correctly describe the doubly differential aspect of the 

Laplacian operator. Thus, Kohn and Sham devised a way to describe the kinetic energy with better 

accuracy through the mechanisms employed to solve the Hartree-Fock wave function based approach.(13) 

They found that Slater determinants represent the exact wave functions of non-interacting fermions, and 

that they also represent a ground-state wave function. By choosing a reasonable effective potential and 
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determining its resultant electron density, the one-electron wave functions may be determined as vectors 

which diagonalize that density in a respective one-electron basis:  

 

B 2 = _* 2
+

`
,

*
   (Equation 13) 

 

where s is the spin of the Kohn-Sham orbitals. To calculate the true kinetic energy of the system, they 

defined expressions for both the kinetic energy contributions to the non-interacting and interacting 

reference systems. Unfortunately, even if these systems shared the same density, both contributions would 

not account for the total true kinetic energy. The Kohn-Sham approach thus allows us to separate the 

universal functional and add the residual portions of the non-classical electrostatic contributions not 

covered by the true kinetic energy into the exchange-correlation functional. With these additions we can 

rewrite our overall energy expression as follows (including a more general functional representation of 

the contribution of the external potential ‘Ne’):  

 

$ B 2 = G̀ B 2 + \ B 2 + $K] B 2 + $,: B 2  (Equation 14) 
 

 

In principle, the Kohn-Sham approach is exact, and the only fully unknown variable at this point 

is exchange-correlation functional. The exchange-correlation functional contains not only the 

contributions to the potential energy, but now also the kinetic energy with respect to the external 

potentials. Unfortunately, as in the universal functional, the true exchange-correlation functional is 

unknown. Any further extension to the Kohn-Sham approach makes the exchange-correlation functional 

more accurate for the system at hand. To clarify, the quality of DFT depends on how accurately the 

exchange-correlation functional is calculated. To provide the most accurate solution, we will see in the 

next section not only the drawbacks of DFT but its evolution through the issues of self-interaction of the 

charge density and the behavior of the corresponding exchange-correlation potentials in the long range 

asymptotic region.  
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1.1.4: LDA’s, GGA’s, Meta GGA’s, Hybrids, and Dispersion Corrections 
 

We have discussed the Hohenberg-Kohn theorem and Kohn-Sham method as the basis of DFT. 

Now we move in to establishing why the local density and local spin-density approximations are the 

model systems from which every other functional is derived. The core idea of this methodology is the 

concept of a uniform electron gas in which the system is effectively charge neutral, since each electron 

moves in a positive background of uniform charge distribution. We use the uniform electron gas because 

it is the only model where the exchange energy is known analytically and the correlation energy can be 

determined with very high accuracy.  

 
 

$K]
ab0 B = ∫ B 2 IK] B 2 A2         (Equation 15) 

 
 

IK] B 2 = IK B 2 + Ic Q 2               (Equation 16) 
 

 

 As can be seen from the above expression, under the local density approximation, the exchange 

and correlation functional energies are able to be separated and evaluated independently. This allows us to 

define the exchange, EX, functional as that of an electron gas of uniform particle density, which is also 

known as the Slater exchange functional. The correlation, EC, functional lacks a definite expression, but 

has been formulated in multiple studies including the most widely accepted form of Perdew and Wang in 

their 1992 publication.(14) The above expression is presented in the spin-restricted formulation, but it can 

be extended to account for the electron densities of a specific electron spin, ie. the local-spin density 

approximation: 

 

$K]
ab0 Bd, Be = ∫ B 2 IK] Bd 2 , Be Q A2     (Equation 17) 
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 Obviously, this approximation relies on the overall assumption that the exchange-correlation 

potentials depend only on the values of Bd  and Be . This is not optimal, considering that the actual 

densities of our system are certainty anything but constant, and do not resemble the uniform electron gas. 

Still, this method overall describes many chemical (especially metallic) systems rather well and can be 

made more computationally efficient than the wave function based Hartree-Fock methodology.  

 

 The first step to improve the local density approximation is the use of not only the information of 

the electron densities but also the gradient of the charge density, which should account for the Local 

Density Approximation’s (LDA) problem of non-homogeneity. This can be done by extending the 

exchange – correlation function with a Taylor expansion of the initial interpretation of the local density 

approximation, yielding the following: 

 

$K]
ff0 Bd, Be = ∫ B 2 IK] Bd B , Be Q A2 + gK]

h,hi Bd, Be
)Bh

B+∕@
)Bh

i

B+∕@
A2 + ⋯

h,hi

 

(Equation 18) 

 

 

The above equation defines the gradient expansion approximation, which should provide more accurate 

solutions to chemical problems. Unfortunately, this approximation falls short of the desired accuracy, 

because by extending the gradient, the sum rules no longer apply and the electron hole functions are no 

longer required to be negative for a pair r1 and r2. Due to this side-effect, LDA produces better electron 

hole functions. In efforts to restore the portions of the gradient where the hole constraints were removed, 

one arrives at what is known as the generalized gradient approximation(15-17): 

 

 

$K]
ff0 Bd, Be = 	∫ l Bd, Be, )Bd, )Be A2  (Equation 19) 
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As shown in equation 20, the exchange portion is an extension of LDA as described. Above, l is the 

reduced density gradient for spin, either based on the above generalized gradient approximation (GGA) 

exchange functional, ie Becke 88,(16) or a rational functional of the reduced gradient, ie. PBE.(18) An 

example of a rational functional is shown below, where mh  is the local inhomogeneity parameter. 

 

$K]
ff0 = 	$K]

ab0 −	 [ mh Bh
n∕@

2 A2
h

  (Equation 20) 
 

mh =
)B 2

Bh
n @

2
 

 
 

 Of all the variations of these two types of GGA’s, in theory each exchange function could be 

combined with any correlation functional. In practice, only a few of these combinations are used in 

computations. BP86(19) and BLYP(16; 20) for example, BP86 is a combination of Becke’s exchange 

functional with Perdew’s 86(21) correlation functional, while BLYP is Beck’s 88 exchange with Lee-

Yang-Parr correlation function.(20) Overall, these GGA functionals are coined as nonlocal in the 

literature, which can often be misleading. All GGA functionals are mathematically local and are defined 

to be nonlocal because they extend beyond the boundaries of LDAs. The idea of meta-GGA functionals 

includes either incorporating higher derivatives of the electron density, or the kinetic energy density 

within the exchange-correlation functional. All of the mentioned functionals depend on the Kohn-Sham 

orbitals, which describe the spin-up and spin-down kinetic energy densities.  

 

 At this point, we’ve expressed multiple ways of evaluating an accurate expression for the 

exchange functional in order to determine more meaningful results from DFT. Hybrid functions allow us 

to take an additional step by again extending the exchange-correlation functional, but this time by 

combining the Hartree-Fock exact exchange energy with a DFT approximation to the exchange energy 
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which includes some other electron-electron correlation. The first step was taken by Becke in his 

1993(22) functional which utilizes his 1988(16) exchange functional with Perdew and Wang’s 1991 

correlation functional.(23) This approach introduced a couple of error functionals to correct for the exact 

exchange in the overall functional. These adiabatic connection methods or ACM’s, extend to the very 

popular B3LYP(24) functional, which has been used in many chemical applications including those of 

open-shell transition-metal chemistry.  With the introduction of Becke’s 1996(25) function, the previous 

method’s three error parameters are limited to one, allowing us to show the adaptation of the exchange 

with respect to hybrid functionals as follows:  

 

$K = o$K
bR< + 1 − o $K

pR   (Equation 21) 	
 

All hybrid functionals follow this general formulation, where improvements to predicted chemistry are 

made by combining several different DFT exchange functionals in a similar manner, ie. the B3 of B3LYP 

is 8% Slater LDA exchange, 72% Becke88 GGA exchange, and 20% exact Hartree-Fock exchange. It has 

been proven that a long-range correction for exchange functionals allows solutions to various problems 

through DFT that are computationally intractable or incorrect by other functionals or methodologies. The 

exact exchange employed for hybrid functionals at least partially accounts for this long-range effect.  As 

with the PBE0(26; 27) functional, which uses 25% Hartree-Fock exchange at all length scales and 75% 

PBE exchange at all length scales. Hybrid functionals provide significantly more accurate predictions 

when compared to other functionals, but like other DFT function, they do have short-comings.  

  

 Dispersive interactions are attractive forces that appear due to instantaneous induced dipoles and 

higher-order multipoles. These forces are termed the van der Waals interactions, or more specifically 

London dispersion, and are a medium-to-long range electron correlation effect. Coincidentally, the 

regions where these interactions are important are where there is little or no overlap of localized electron 

densities. A downside with LDA, GGA, and hybrid functionals is their inability to accurately describe 
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these interactions. In fact, wave function based methods need additional correlation terms beyond those of 

Hartree-Fock to correctly describe these interactions. A popular solution to this problem is to add a semi-

empirical correction term to an already existing DFT functional.(28; 29) The correction basically acts as 

an additional constant for attractive nuclear-nuclear potential energies, and they do not directly alter the 

electronic structure for a given arrangement of nuclei. The corrections also provide a significant 

improvement to descriptions of the intermolecular chemistry of a system with a miniscule increase in 

computational cost.  The added dispersion term allows for adjustments for different atom types and parent 

functionals with adjustable parameters. There are considerations that arise with this technique if the 

system is not well-behaved and the atoms become infinitesimally close to each other. As these corrections 

are purely attractive, this leads to energy and forces becoming infinite, leading to unfavorable energetics 

and optimized geometries. If this is accounted for with a damping function or if the system is reasonably 

well-behaved, this technique performs rather well in comparison to experiment and other DFT models. 

The corrections aren’t a new type of functional, but in recent years there has been development of 

correlation functions that intrinsically include dispersion interactions spearheaded by the work of 

Langreth et al.(30-33) 

 

 We have described multiple types of functionals up to this point, and have briefly covered the 

ways in which each type was derived. The main point in discussing these functionals is to define in what 

scenario each of the above expressions are applicable and why. We conclude this topical review with a 

summary.(34) LDAs are optimal for electron band structures of “sea of electron” metals. They tend to 

overestimate lattice parameters, overestimate binding energies, and show incorrect phase stabilities. 

GGAs greatly reduce the bond dissociation energy error, improve transition-state barriers, and generally 

provide a better description than LDAs of the chemistry (ie. bonding) of a system. GGAs are good for 

equilibrium geometries, vibrational frequencies, multipole moments, and accurate molecular atomization 

energies. Hybrid functionals describe intra- and intermolecular charge transfer phenomena much better 

than LDAs and GGAs and are therefore superior at predicting excitation spectra using time-dependent 
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DFT (TD-DFT).  Hybrid functionals are also typically the best choice for a model chemistry black box for 

compounds and reactions chemistry. One drawback to hybrid functionals is that in periodic systems they 

become quite computationally expensive, limiting their use in condensed phase simulations.(35) Lastly, 

dispersion corrections and functionals are necessary for accurate predictions of binding/cohesive energies, 

lattice parameters, and geometries of molecular compounds of solid-state molecular compounds. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Section 1.2: Partial Charges Methods 
 
1.2.1: Semi-Empirical Techniques 
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 There are many techniques for computing the partial charges of a system, and the most commonly 

used techniques in classical mechanics simulations are the semi-empirical methods that do not require ab 

initio simulations. The electronegativity-equalization method (EEM) was the first of such methods 

developed by Mortier et al.(36) EEM stems from the postulate that when atoms join together to form a 

molecule, their electronegativites become equalized.(37) By expanding the internal energy of an N-

electron system as a second order Taylor series with respect to the number of electrons in the system, an 

expression for the chemical potential of an atom (∂E/∂N) can be readily obtained. The electronegativity of 

a species is the negative of that chemical potential. Equating each atom’s chemical potential expression 

equalizes the electronegativity and provides a readily solvable system of linear equations that yield the 

partial atomic charges of the system. EEM is parameterized by the values of the electronegativity and 

hardness for the neutral atoms of the system.(37; 38) The EEM method is advantageous over fixed 

generic charges for each atom since it provides a geometry and connectivity dependent description of the 

partial atomic charges and allows for simulations to adjust to the electrostatic environment of the system. 

 

 Seeking an improved description of partial charges, particularly for modeling biological systems, 

Rappe and Goddard introduced the charge equilibration (QEq) method.(39) QEq utilizes a similar Taylor 

expansion to EEM, but instead of the atomic hardness, QEq relates the derivatives of the energy with 

respect to the number of electrons to the ionization potential and electron affinity of the atoms. The 

difference between the functions of these terms is a damped Coulomb term, evaluated by the Coulomb 

integral of s-type orbitals centered on each atom. At short bond distances the charge distribution arises not 

from interacting point charges, but from overlapping atomic electron densities, and the damped Coulomb 

term acts to shield the nuclei improving the underlying physics of the QEq model - as opposed to EEM, 

which uses the full 1/R Coulomb term between the nuclei. Overall, QEq has been shown to perform quite 

well for inorganic, organic, and biological systems, and it is by far the most ubiquitous semi-empirical 

charge determination method in the academic literature. The general utility lattice program (GULP) 
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software package has even built in the derivatives of the QEq model to allow the charges of the system to 

fluctuate correctly as part of the dynamics.(40) 

 

 To improve the QEq model for describing the partial charges in metal-organic frameworks 

(MOFs) with regards to modern electronic structure calculations, Wilmer et al. introduced the extended 

charge equilibration method (EQEq).(41) The major change between QEq and EQEq is that in EQEq, 

each atom can have a different and unique value for the charge the Taylor expansion is centered on, and 

choosing a value of zero should return the original QEq values. EQEq also expands the internal energy of 

the whole system, not just the individual atoms, and includes two additional terms beyond those included 

in QEq. The first term accounts for the interaction of the charge on an atom with those of all other atoms 

in the system and the second is a familiar short-ranged damping term to prevent infinite charge separation 

between arbitrarily close atoms. The author’s tests of EQEq demonstrated a marked improvement over 

QEq in predicting charges on MOFs when compared to the REPEAT and ChelpG methods that will be 

discussed later.  

 

 Also seeking to improve on the QEq method, Chan and Martinez developed the charge transfer of 

polarization current equalization (QTPIE) method.(42) QTPIE was developed to include polarization and 

charge transfer effects and to represent correct behavioral effects as bonds are broken, like in a reactive 

force field simulation. Instead of using a Taylor expansion for terms of atomic charges, QTPIE uses 

charge transfer variables and introduces a term to penalize long-range charge transfer, thus reducing 

unphysical finite charges between separate atoms. In general, QTPIE performs similarly to QEq given 

that its parameters are optimized for QEq. However, QTPIE is much better at describing polarization 

currents, which are potentially important to zeolites, given the prevalence of the core-shell model in many 

zeolite structural force fields. 

1.2.2: Ab Initio Techniques 
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 The previously described methods are semi-empirical and require no other input than their 

parameter set and the structure of the framework. While they are regarded as less accurate than a full ab 

initio simulation (ie. DFT), they are advantageous in that the charges can be evaluated in a matter of 

seconds instead of the minutes, hours, or days time scale required for a complete DFT simulation and 

post-processing. Charges derived from DFT simulations are regarded as more accurate than their semi-

empirical counterparts. The simplest technique is Mulliken population analysis,(43) which for each atom, 

sums the one-particle density matrix contracted with the overlap matrix represented in the atomic orbital 

basis over just the orbitals centered on that atom. Mulliken population analysis is a computationally cheap 

post-processing method and is typically included by default in most ab initio simulations. An atomic 

orbital basis set is required, prohibiting performance of Mulliken population analysis in plane-wave basis 

simulations, especially because Mulliken population analysis also suffers from a heavy basis set 

dependence. Another computationally inexpensive technique is Löwdin population analysis,(44) which 

symmetrically orthogonalizes the one-particle density matrix, and then computes the charges on each 

atom by summing over the individual atom’s atomic basis functions. The Löwdin symmetrically 

orthogonalized basis functions are the orbitals that most closely resemble the underlying non-orthogonal 

atomic basis. Löwdin population analysis suffers less of a basis set dependence than Mulliken population 

analysis, but it still requires an underlying atomic orbital basis set prohibiting its use in plane-wave 

simulations. Atom-specific projections from Fourier-space to real-space enable some similar integrations 

of atomic charge density, but they are not as robust as rigorous Mulliken or Löwdin analysis. 

 

 An alternative to population analysis is the fitting of partial atomic charges directly from the 

electrostatic potential (ESP) of the system. The ESP is comprised of the one-electron potential energy and 

the Hartree potential, ie. DFT. ESP encompasses all of the potential energy ansatz except the exchange-

correlation potential. The CHarges from ELectrostatic Potentials (CHELP) method computes the partial 

atomic charges from the electrostatic potential by performing a linear least squares fit between the 

quantum ESP and the classical ESP created by the partial atomic charges, E=∑i,j qj/rij, with a Lagrange 
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constraint that the partial atomic charges must sum to a defined total value.(45) CHELP represents the 

electrostatic potentials on a radial grid of points emanating from each atomic center to determine the fit, 

and includes the constraint that the radial grid points within the van der Waals radius of any atom are 

discarded from the fit. The CHELP method does not exhibit the desired property of rotational invariance 

owing to the sparse placement of grid points that depend on the molecular geometry. The sparse 

placement of grid points around the exterior of the molecule also leads to an inadequate representation of 

the more internal atoms of the system. The CHarges from ELectrostatic Potentials on a Grid (CHELPG) 

method instead defines a headspace around the system and places a regular series of grid points within 

that volume to fit the ESP.(46) This denser, more evenly spaced grid, does a better job of representing the 

ESP and effectively removes the rotational variance of CHELP. The main drawback to the CHELPG is 

that it does not include any concept of periodicity and requires an effective vacuum of headspace grid 

points around the system, which confines its usage to molecular clusters. The Repeating Electrostatic 

Potential Extracted ATomic charges (REPEAT) method enables analysis of fully periodic systems by 

employing a full Ewald sum of the classical electrostatic potential.(47) In addition, REPEAT uses a 

modified form of the RESP error function to improve the description of buried atoms without a large grid 

density around them because of the removal of grid points by the van der Waals radii constraint.(48) 

REPEAT interfaces well with many of the leading periodic DFT packages, and is becoming widely used 

for MOFs.(49-54) 

 

 The Quantum Theory of Atoms in Molecules (QTAIM or AIM) is a model pioneered by Richard 

Bader that strives to describe the properties of atoms and bonds in a system through a partitioning of the 

electron density distribution function (aka the charge density).(55) The partitioned charge density divides 

the whole simulation volume into smaller volumes that directly correspond to the atoms of the system and 

may or may not include a vacuum volume unassociated with any particular atom. The partitioning of the 

charge density can be accomplished by defining zero flux surfaces between the atoms in the system, and 

these zero flux surfaces are defined as locations where the charge density, with respect to the surface, is at 
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a minimum.(56) In bonded systems, there are shared electron densities between the atoms, yet the charge 

density of the core electrons is much larger, allowing for zero flux surfaces to be drawn through bonds 

and the magnitude of charges included on each atom can be used to describe the covalency of that bond. 

The charge density is typically represented along a regular real space grid spanning the whole system as 

in CHELPG and REPEAT. The total number of electrons associated with an atom (and thus the partial 

atomic charge) can be found by summing the charge density for all the grid points within an atom’s Bader 

volume. Bader’s AIM approach has been implemented for the analysis of the charge densities of periodic 

systems, including many algorithmic advances that prevent the tendencies of Bader surfaces to align 

along the grid directions.(57-59) The iterative Hirshfeld (HI) method is another AIM model that seeks to 

parse the electronic charge density onto individual atoms.(60) The non-iterative Hirshfeld scheme parses 

the total charge density by weights determined from the isolated charge densities on a reference state of 

the atom of interest (the neutral atom in Hirshfeld’s original paper), divided by the sum of the isolated 

charge density on all atoms. The superior iterative approach refines these weights, and thus the on-atom 

charge densities, under a constraint that the weights remain normalized.(61) One comment on Hirshfeld 

charges is their inability to correctly reproduce the electrostatic potential of the system, which a reference 

- free methodology known as the iterative stockholder (ISA) method seeks to correct.(62) Density 

Derived Electrostatic and Chemical method (DDEC) is an iterative AIM method that combines the ISA 

method with the reference charge densities used in Hirschfield analyses to reproduce reliable electrostatic 

potentials and partial atomic charges.(63) The DDEC/c6 version is the best of the options due to its 

enhanced performance in the determination of net atomic charges.  

 

 
 
 
 
 
 
Section 1.3: Sampling Thermodynamic Properties with Monte Carlo 
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 By defining a partition function, all thermodynamic quantities of a system of interest can be 

computed.  In only a few cases can the multidimensional integrals needed to compute thermodynamic 

properties be computed analytically, so the integration needs to be done numerically. Monte Carlo 

methods (MC) are computational algorithms that numerically integrate an expression by randomly 

sampling the possible states of the system. Purely random sampling is the first choice of all MC methods, 

but it can lead to incorrect property determinations due to over-sampling of regions where the 

contributions to the value of interest are negligible, ie. where it is systematically improbable for the 

system to exist. Increasing the number of states sampled or using importance sampling can fix this 

concern. Importance sampling uses a predetermined range of system conditions to sample where the 

effective probabilities of the value of interest will be at their peak. Unfortunately, importance sampling 

too can run into difficulties from both under-sampling and the impossibility of extension to describe 

multidimensional integrals that generate points with a probability density exactly proportional to those of 

the function of interest. 

 

In chemistry, the partition function is sampled with MC and then processed with statistical 

mechanics to predict the expectation values of relevant thermodynamic properties. The focus is on the 

evaluation of the Boltzmann distribution and thus the partition function. The Boltzmann distribution is the 

probability that a system is in certain states at given conditions. Often the configurational portion of the 

partition function is not of particular interest - just the averages of microscopically determinable 

quantities A(2,) are (whose expectation values are defined in the following equation using the partition 

function): 
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This formulation allows us to solve thermodynamic integrals using the efficient sampling scheme 

described by Metropolis et al.(64) Metropolis explained that instead of choosing states at random and 

determining their Boltzmann factor yze{, one could with more efficiency choose configurations with that 

are connected to other probable nearby states and weigh them evenly. Therefore, the Metropolis algorithm 

generates sequences of random states that in the end reach a significant probability per the equilibrium 

distribution of the appropriate statistical ensemble. This is done by solving directly for the 

thermodynamic average of the observable A. By rewriting it in terms of a summation, this allows us to 

solve for the average without determining the partition function.  

 

q = 	
.

,_`}~S^:`
q*(2

,)
,_	`}~S^:`

*-.
  (Equation 23) 

 

Another fundamental part of the Metropolis algorithm is what is known as a Markov chain: a sequence of 

trials that yields one set of states dependent only on their preceding state. There is a transition probability 

which connects the Boltzmann probability,  

 

B 2, ≡
:rst(v
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Ä
    (Equation 24) 

 

in the current, M, state through the transition to the next, N, state: 

 

B3Å3→, = 	B,Å,→3   (Equation 25) 

 

Here, p is a dimensionless square matrix that satisfies the condition of microscopic reversibility. 

Connecting the states M and N are what Metropolis called “trial” moves, which simultaneously move 

multiple atoms across multiple directions in phase space and relates the energy differences between the 
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final and initial configuration to determine the probability of the transition. The trial move is accepted 

with the following probability:   

 

Ç}]] 2
~ → 2E = ÉÑÖ 1,
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ã

BÜáàâä W
å 	= min	(1, yzeD{)  (Equation 26) 

 

If the determination of the probability from initial M to final N state is found to be less than a randomly 

generated number between [0,1] then the move becomes rejected outright. If the trial move lowers the 

energy of the system, then the probability is greater than 1, and the move is always accepted. 

 
The benefits of Monte Carlo simulations are that they can be performed on various statistical 

ensembles. The simplest type of ensemble is the microcanonical ensemble, which fixes the number of 

particles in the system, the volume, and the energy of the system. The Boltzmann distribution for this 

ensemble directly relates to the entropy of the system.  

 

B =
.

ê
; 	m = íì ln ï    (Equation 27) 

 

The canonical ensemble builds on this, allowing the energy to fluctuate while holding the volume, 

temperature and the number of particles fixed. Its partition function is represented as Q(N,V,T), ie. the 

NVT ensemble, and has the Boltzmann probability of a microscopic configuration:  
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where U is the potential energy, V the volume, ù  is the de Broglie’s thermal wavelength, û  is the 

Boltzmann distribution, and N is the number of particles. The pre-factor is the connection between the 
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non-interacting ideal and interacting microcanonical states of the system. The free energy associated with 

the canonical ensemble is the Helmholtz free energy:  

 

−ûq = ln ü      (Equation 28) 

 

The grand canonical ensemble allows the number of particles within the system to fluctuate while 

it holds the chemical potential †, volume, and temperature fixed. The number of particles is allowed to 

fluctuate by equating the chemical potentials for the species of interest with a reservoir of molecules that 

can be moved into and out of the system. This canonical Boltzmann distribution can be modified in terms 

of the grand canonical ensemble:  
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    (Equation 29) 

 

The Monte Carlo method, specifically in the grand canonical ensemble, is the leading means for 

simulating gas adsorption using statistical thermodynamics of the interacting system of interest. Grand 

canonical Monte Carlo is the most advantageous methodology for adsorption studies because of the direct 

relationship between the chemical potential of the adsorbed fluid and the desired pressure of the system 

made with an equation of state. With zeolites and other porous materials, the phase space available to 

adsorbed gases within the framework is sampled by defining how the particles move within the system 

and the energetic interactions that define how the gas interacts with the framework. The trial moves 

include molecule translation and rotation (canonical moves) as well as the creation and destruction of the 

molecules within the framework. Using the previously outlined details, a very accurate picture of gas 

adsorption can be obtained using only simple classical dispersion and electrostatic interactions. 
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Section 1.4: Zeolites, a Brief Introduction 
 

Since the mid-eighteenth century, zeolites have been a topic of considerable interest of study, thanks to a 

Swedish geologist by the name of Axel Cronstedt. During an experiment, he rapidly heated a stone noting 

the adsorptive properties of the mineral as it released water vapor.(65)  Therefore, he coined the term 

“zeolite”, from “zeo,” – (to boil) and “lithos” – (stone). A few hundred years later, and the name 

represents almost two hundred and fifty structurally different materials, some of which we use every day. 

Naturally occurring zeolites such as volcanic and sedimentary rocks are often what comes to mind to 

those familiar with the word. So far, there have been about forty naturally occurring zeolites discovered. 

The most commercially and academically sought after naturally occurring zeolites include mordenite, 

chabazite, and clinoptilite. Due to their ready availability and cheap manufacture, zeolites have found 

uses in countless adsorption and catalytic industrial processes. Mining naturally occurring zeolites is still 

the most economical approach to zeolite material obtainment. However, synthetic zeolites have garnered 

considerable attention in various industrial applications within the last 40 years such as in the 

manufacture of consumer products (laundry detergent, zeolite Linde Type A) and oil-processing 

(faujastite, zeolite X and Y). Both natural and synthetic zeolites have their uses, but what makes each 

structure unique and useful are their individual molecular geometries.   

 

Basic zeolite topology is a network of corner-sharing tetrahedra with an overall framework 

stoichiometry of TO2, where T are metal/metalloid atoms (typically Si), connected through two-

coordinate oxygen. The tetrahedra link together to form several composite building units, which together 

form many different topology patterns with regular pore structures that vary in shape, size, and accessible 

pockets. The International Zeolite Association (IZA) currently recognizes 232 unique zeolite topologies 

that occur naturally or have been synthesized in laboratories in its structural database, each denoted with a 

3-letter code.(14) The simplest zeolites are networks of tetrahedra of silicon and oxygen atoms (SiO4) 

only, and are named the siliceous zeolites. The majority of the IZA recognized frameworks may be 
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synthesized over a range of Si/Al ratios and may contain additional T-site substitutions, creating far more 

than just 232 zeolite frameworks. While the number of zeolite structure types appears small compared to 

the large number of metal-organic frameworks (MOFs) that have been reported, many of the topologies 

have been synthesized with several different T-atoms that create an overall framework charge (like Al). 

These may be ion-exchanged to contain a wide range of cations to balance that charge and each different 

ratio and cation lends different properties to the framework. The inclusion of extra-framework cations 

may further modify the effective pore size and surface chemistry, which in turn affects the performance of 

specific zeolite in specific applications. Zeolites are attractive materials for investigation into new 

processes and problems since several structures are commercially produced, widely available and 

inexpensive, they exhibit a low toxicity (as they are made from earth-abundant elements), and they are 

stable in non-ambient environments required for catalysis and practical separations.   

 

The porous in nature of zeolites allows for physical separations of many different fluids. Where 

the absorbed fluid physisorbs or chemisorbs to a site within the framework, strong framework-guest 

interaction occurs and the fluid separates. The most attractive site for most fluids of interest is the 

accessible extra-framework cations, which attract through strong electrostatic interactions. These sites are 

often blocked with water following zeolite synthesis or exposure to air, but that water may be removed by 

heating and placing in a vacuum to create more accessible sites for adsorption. Of course, there are 

several factors affecting the adsorption capacity of a framework such as: available cations in the 

framework, pore sizes of the cages, the type of fluid being adsorbed, and intrinsic structural properties of 

the zeolite such as the effective charge at particular atomic sites which we will explore in the next 

chapter. The average pore size in zeolites ranges from 4-5 angstroms, and can essentially deter some 

fluids from certain regions or sections of the framework based on the size of the fluid molecules.  

Changing the size of the cations in the framework directly affects the size of the channels of a zeolite, and 

therefore which fluids can access certain regions in the interior of zeolites. Systematically, we can predict 
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adsorption and separation processes in zeolites using statistical mechanics, ie. grand canonical Monte 

Carlo, as described in the previous section.  

 

The primary interest of our groups regarding zeolites is for their adsorption and separation 

properties, but it is worth noting that another key use for zeolites is in catalysis. The ability to adjust size-

selectivity of the material as mentioned above is certainly key to their importance in industrial catalysis 

alongside their overall availability. T-atom substitution with elements such as Sn and Ti provides Lewis 

acid sites in the framework, which enables acid catalysis. An additional route for creating a zeolite 

catalyst is to ion exchange monovalent cations with those of higher valency. This leaves framework sites 

with a higher concentration of negative charge that are a long distance from their balancing counter-

cation. These sites also act as acid catalysis sites, often through the destruction and re-formation of silanol 

groups that have been created due to an abundance of framework charge at these sites. There has been a 

large effort in the literature to determine a priori which sites will be the acidic sites, and in the next 

chapter we discuss how we used several different classical and ab initio (ie. DFT) partial atomic charge 

determination methods to predict the acidic sites using just siliceous forms of the zeolite frameworks, and 

how these determined charges affect the simulated adsorption for two commonly separated gases - N2 and 

O2.   
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Chapter 2: Predicting Partial Atomic Charges in Siliceous Zeolites 

Section 2.1: Introduction 

 Zeolites represent the most commercially important class of crystalline nanoporous materials, 

finding application in catalysis, adsorption, molecular sieving, ion exchange, and electronics.(66-78) 

While the International Zeolite Association (IZA) currently recognizes only 232 unique zeolite 

topologies.(79) the majority of these may be synthesized over a range of Si/Al ratios, may contain 

additional T-site substitution (ie., Ge, Sn, Ti, P), and may be ion-exchanged to contain a range of cations. 

All these substitutions modify effective pore size and surface chemistry which in turn affects a specific 

zeolites performance for specific applications. Considering the diversity of potential zeolites and their 

potential for applications, appreciable development has occurred towards developing simulation 

approaches to aid in understanding and predicting zeolite behavior.(80) The majority of these studies have 

focused on force field-based molecular mechanics approaches.  

Simulations frequently aim to accurately describe a zeolite’s structure or to provide an accurate 

description of the framework atoms’ interaction with guest species. The chief commonality between force 

fields developed for these purposes is the inclusion of a Coulomb term utilizing partial charges located on 

the framework atom centers. Following the work of Catlow et al.,(81) many popular structural force fields 

use formal ionic charges at each atom center (+4 for Si and -2 for O) with a core-shell term on the oxygen 

atoms.(82) As on-site ion polarization and charge transfer between ions are nearly indistinguishable, the 

core-shell term can be thought of as describing either the polarizability of the oxygen or the covalency 

between the framework atoms.(83) Other force fields geared towards modeling structure instead use no 

core-shell term and smaller partial atomic charges, accounting for covalency with dispersion-repulsion 

terms or conventional harmonic bonding potentials.(84-89) Force fields developed expressly for 

separation and sieving applications (such as adsorption and diffusion) do not typically include core-shell 

terms. If partial charges have been parameterized for the framework, they are often much smaller than 
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those used in a structural force field.(90; 91) If no partial charges have been specified, then they must be 

determined through various approaches, as detailed in the following sections.  

 For adsorption and diffusion problems, the simplest and most widely used method is to treat the 

framework atoms as rigid (ie. fixed positions) as this greatly reduces the computational complexity of the 

simulation.(92) However, it is known that zeolites can exhibit appreciable flexibility, in part due to the 

small energetic penalty associated with changing the T-O-T angle.(68; 84) Recent experiments and 

simulations have shown that flexibility must be addressed in at least some instances, such as the important 

commercial zeolite MFI (ZSM-5), in order to obtain reasonable accuracy.(93-95) Many of the better 

simulations currently being published address this flexibility,(96-98) however the simulation force field 

now needs to describe both the framework structure and interaction with guest species well. Therefore, 

the question remains - what is the correct description of the partial charges of a zeolite framework? 

 Another key industrial use of zeolites is as solid acid catalysts where confinement within 

nanopores allows for size and shape selectivity. Coupled with the possibility of high acidity, tunability in 

the number of (and, consequently, spacing between) acid sites, zeolites make nearly ideal acid catalysts. 

The catalytic site in aluminosilicates may arise from the exchange of higher valence charge-balancing 

cations (ie. Na+ exchanged for La3+), creating strong local fields near the framework Al.  The distance 

between a high valence cation site and the framework Al sites favors water disassociation by stabilizing 

hydroxyl species associated with the cation and H+ associated with an Al3+ site, and a trivalent cation 

(such as La+3) can create two catalytic Brønsted acid sites per cation in an aluminosilicate.(99) Since 

strong local fields create the Brønsted acid site, it follows that the high valent cations are likely to be 

located at the least electropositive Al. In other words, the Al sites with the highest partial charges will 

likely function as the primary acid sites. Alternatively, the substitution of heavier metals like Sn or Ti for 

Si has been shown to greatly increase the catalytic capabilities of a zeolite.(100) These heavier metals are 

strong Lewis acid sites and can catalyze reactions such as petroleum refining, isomerization, methanol 

conversion, esterification, etc.(101) Although pure SiO2 zeolites themselves are not important catalysts, 

many commercial catalysts have sufficiently high Si/Al ratios that they are nearly siliceous in overall 
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composition.  Even for zeolites with smaller Si/Al ratios, insights generated from the pure SiO2 

framework often provide useful information, predicating catalytic sites and behavior. 

 Recently Hamad et al. gave an overview of many common methods and demonstrated their 

performance in predicting partial atomic charges for some representative metal-organic frameworks 

(MOFs).(102) They tested methods that require ab initio quantum mechanical simulations as well as those 

that only use a crystal structure. Their results showed a surprisingly high degree of variability in the 

predicted partial atomic changes depending on methodology.  Not surprisingly, these differences impact 

separation, adsorption, and diffusion simulations. In addition, they demonstrated that the choice of partial 

atomic charge had a large impact on the predicted structural properties when framework flexibility was 

introduced into the simulation. 

 Here, we present a study similar in spirit to that of Hamad et al. focused on understanding the 

predicted partial atomic charges of siliceous zeolite frameworks. Unlike MOFs, it is more difficult to 

break down zeolites into simple molecular clusters as the same composite building units (CBUs) appear 

in many zeolite frameworks and the partial charges for one CBU may vary greatly depending on which 

other CBUs are connected to it. There are several different methodologies that have been created to 

determine the partial atomic charges on atoms in a structure from structural and quantum chemical 

information. These methods can be applied to single molecules or periodic systems, and as our goal is to 

analyze their performance in zeolites the focus will be only on methods that can be applied to extended 

periodic systems. As many of these methods have been thoroughly discussed in the literature, we only 

offer a brief summary of the methods we use in Table 1 (a fuller review is in the previous introductory 

chapter). In this work, we will compare the predicted partial atomic charges from each method, consider 

the effect of the local geometry on the charges, and we will assess if these charges can be used to identify 

known acidic or catalytic T-sites in select zeolites. Lastly, we will analyze the effect of compression on 

the predicted partial charges, and the effect the partial atomic charges from the different methodologies 

has on predicted gas adsorption behavior. 
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Table 1. A summary of the partial atomic charge determination methods used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Type Description Ref. 

EEM semi-empirical Charges determined through equalization of electronegativity (36) 

QEq semi-empirical Like EEM but uses screened Coulomb repulsions in lieu of 
atomic hardness 

(39) 

EQEq semi-empirical QEq which allows the Taylor series to be expanded around non-
zero charges  

(41) 

QTPIE semi-empirical QEq but in terms of charge transfer variables that penalize long-
range charge transfer 

(42) 

Iterative 
Hirshfeld (HI) 

ab initio Parses the charge density by fitting it to a superposition of 
reference atomic states.  

(60; 61) 

DDEC ab initio Atoms-in-Molecule (AIM) decomposition of charge density 
coupled with an iterative stockholder approach using the 
reference atomic charge densities 

(63) 

Bader ab initio Atoms-in-Molecule (AIM) decomposition of charge density (57-59) 
REPEAT ab initio Charges fit to reproduce the electrostatic potential (47) 
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Section 2.2: Methods 

2.2.1: Simulation 

 The crystal structures for the zeolites studied were taken directly from the Structure Commission 

of the IZA’s (IZA-SC) database of structures.(79) The IZA-SC’s structures, optimized with DLS76 using 

only bond length and bond angles, provides fully self-consistent idealized structures appropriate as 

starting points for our analysis. Atomic connectivity and geometry were evaluated using the zeoTsites 

package, and verified with structure visualization.(103; 104) The EEM and QEq partial atomic charges 

were determined using the General Utility Lattice Program (GULP).(40) The EQEq partial atomic 

charges were determined with the stand-alone program provided as a supplement to the work of Wilmer 

et al.(41) The QTPIE partial atomic charges were determined with GULP. 

 Periodic plane-wave DFT calculations were performed with version 5.4.1 of the Vienna ab-initio 

Simulations Package (VASP).(105-107) The generalized gradient approximation (GGA) exchange-

correlation functional of Perdew, Burke and Ernzerhof (PBE) was utilized.(18) As it has been previously 

demonstrated that long-range dispersion is necessary for accurately predicting zeolite frameworks,(108) 

Grimme’s -D3 semi-empirical dispersion correction was included during structural optimizations.(29) 

The plane augmented wave (PAW)(109; 110) pseudopotentials for PBE which represent the valance 

configurations of 2s22p4 for O and 3s23p2 for Si were employed. Optimized cell volumes were obtained 

through a fit to the Vinet equation of state(111) from a series of constant volume conjugate-gradient 

optimizations of the cell shape and atomic positions that spanned at least ±5% of the IZA-SC listed unit 

cell volumes. Constant volume optimizations were performed as two subsequent optimizations of the cell 

shape and lattice positions, and a final single point energy evaluation was performed to minimize Pulay 

stress. For the optimizations only the gamma point was used to represent the first Brillouin zone. The first 

Brillouin zone was represented with an automatically generated G-centered mesh with grid points spaced 

evenly at ~0.03 2pÅ-1 increments along the reciprocal axes for the single point simulations used to 

compute the charge density and electrostatic potential. The k-space integration in the first Brillouin zone 
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was done with the tetrahedron method with Blöchl corrections.(112) The plane wave basis was cut off at 

520 eV. The Kohn-Sham (9) expressions were solved via the RMM-DIIS algorithm with blocked 

Davidson pre-convergence steps. The tolerance for energies is 10-5 eV. The convergence tolerance for 

forces was 10-2 eV/Å. REPEAT partial atomic charge analysis was performed using the stand-alone 

package of Campañá et al.(47) Bader partial atomic charge analysis was performed using the 0.95a 

version of the Bader Charge Analysis package distributed by Henkelman et al.(56)  Iterative Hirshfeld 

(HI) charges were determined using the HIVE program.(61) DDEC charges were found with the 

‘DDEC6’ algorithm in the DDEC package distributed by Manz and Sholl.(113) 

 Gas adsorption was simulated with Monte Carlo in the grand canonical ensemble (GCMC) with 

our own in-house modified version of the MuSiC package using the Peng-Robinson equation of state for 

fugacities.(64; 114-117) Each simulation employed 200,000 equilibration cycles and 300,000 production 

cycles. A cycle here consists of N moves, where N is the number of adsorbed particles (minimum 20). 

2x2x2 unit cells were used to represent the zeolite framework, and the framework was held as rigid during 

the simulations. The adsorbed particles could fluctuate with random translations, rotations, insertions, and 

deletions with equal weight. The adsorbate-framework Coulomb interactions were computed using Ewald 

sums, and on-the-fly adsorbate-adsorbate Coulomb interactions were computed using the damped, shifted 

potential and force method of Fennell and Gezelter cutoff at 12 Å.(118) All Coulomb interactions used a 

damping parameter, a, of 0.2 Å-1. The van der Waals interactions were computed with 12-6 Lennard-

Jones (LJ) potentials with cutoff at 12 Å. The Lorentz-Berthelot mixing rules were used to obtain the pair-

wise LJ parameters from the atomistic force fields. A potential energy map for adsorbate-framework 

interactions was made prior to the GCMC simulation. The framework LJ parameters were taken from the 

TraPPe-zeo force field.(91) The atomistic LJ parameters for N2 and O2 were taken from the all atom 

TraPPe-small force field.(119; 120) The inaccessible volumes in the zeolite framework were blocked 

using our recently develop energy based pore mapping program with Ar as a probe (e=120K, 

s=3.4Å).(92) The simulated adsorption isotherms were excess corrected using the pore volumes produced 
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by our energy based pore mapping program. Simulated heats of adsorption were obtained with fluctuation 

theory. 

 

2.2.2: Experimental 

 Siliceous sodalite (SOD) was synthesized according to the procedure outlined in Qisheng et al. 

(121) The organic structure directing agent was pyrolyzed and the material converted to its final 

rhombohedral (R-3) state following procedures suggested by King et al.(122) The SOD was compressed 

in a diamond anvil cell with Fluorinert-70 as a non-penetrating pressure transmitting medium. In situ X-

ray diffraction was performed at beamline 16 BMD of the High-Pressure Collaboration Access Team HP- 

CAT, Advanced Photon Source APS, Argonne National Laboratory ANL. Ruby was used as a pressure 

calibrant. Diffraction images were integrated using Fit2d and unit cell parameters were determined using 

GSAS. 

 A sample of the zeolite FAU was obtained from Joesph Hriljac.(123) 100 mg of the sample was 

activated under dynamic vacuum at 300°C for 18 hours followed by a N2 surface area measurement at 

77K. Adsorption isotherms were measured using a Micromeritics ASAP 2020 adsorption analyzer fitted 

with a He cryostat with a stability of 0.01K. All the isotherms were collected up to ~750 mmHg with 

incremental doses of 5 cm3/g and sufficiently long equilibration times. Desorption measurements were 

also taken at the end of each isotherms. Prior to each measurement, the sample was reactivated at 250°C 

under dynamic vacuum for an hour followed by an hour of equilibration in the cryostat at the target 

temperature. N2 and O2 isotherms were measured at 130K, 140K and 150K. Isosteric heats of adsorption 

were calculated by using the Clausius-Clapeyron relation. 
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Section 2.3: Results and Discussion 
 
2.3.1: Comparing Charge Methodologies  

 To compare the magnitudes of the charges produced by the various methods for determining 

partial charges, we will focus first look at the IZA-SC structure for zeolite-b (BEA) (data tables for the 

IZA-SC structures of the other known siliceous zeolites are in the SI). BEA is an important zeolite in that 

it has been demonstrated in the literature to be highly site-selective with regards to acid catalysis and 

tetrahedral atom substitution.(124) Structurally, BEA consists of three intersecting twelve membered 

rings (12MR) with 17 unique oxygen atoms and 9 T atoms. Table 2 shows the different partial charges 

determined for BEA by both semi-empirical and ab initio techniques broken down by its 

crystallographically unique atoms. Looking first at the semi-empirical techniques, we see the methods 

produce an increasingly ionic description of the frameworks following the order: QTPIE < QEq < EEM < 

EQEq. The QTPIE charges are markedly low compared to the rest of the methods. We believe they are so 

low because the polarization correction, although implemented for periodic boundary conditions, does not 

work well for extended systems. The EEM and QEq methods both produce charges that would describe a 

polar covalent system (ie. less than 50% ionic qSi=+2), and that are in line with zeolite force fields such as 

that of Nicholas and TraPPe-ZEO where qSi is 1.1.e and 1.5e respectively.(86; 91)  

 

The EQEq charges are much larger than any of the other semi-empirical methods for all the 

zeolites studied. The EQEq charges are in line with very strong polar covalent bonds, which is the best 

description of the bonding in zeolite frameworks.(125) The reason the EQEq charges are much larger than 

the regular QEq charges is the re-centering of the Taylor expansion. Centering the charges on zero did in 

fact return the same charge values as QEq. Here the Taylor sum was centered around the fully ionic 

charges: +4 for Si and -2 for O. We found that it didn’t matter what value was picked for oxygen (0, -1, -

2); EQEq returned the same charges so long as the Taylor series for Si was centered at +4. 
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Table 2. A comparison of the partial charges determined with several methodologies for the IZA-SC structure of 
BEA. The site ‘Label’ is the one used in the IZA-SC database. The average value for each atom type and the RMS 
deviation from that average are shown at the bottom of the table. 
 

Label EEM QEq EQEq QTPIE HI DDEC Bader REPEAT 

O1 -0.8066 -0.6043 -1.2013 -0.0322 -1.2786 -1.1327 -1.5984 -0.5807 
O2 -0.8426 -0.6315 -1.1570 -0.0352 -1.3155 -1.0665 -1.6150 -0.6439 
O3 -0.8046 -0.6007 -1.2053 -0.0321 -1.2827 -1.0985 -1.5967 -0.5770 
O4 -0.8857 -0.6562 -1.2921 -0.0375 -1.3539 -0.9411 -1.5885 -0.7248 
O5 -0.8857 -0.6042 -1.2038 -0.0322 -1.2778 -1.0508 -1.5977 -0.5674 
O6 -0.8452 -0.6328 -1.1638 -0.0353 -1.3169 -1.0971 -1.6153 -0.6277 
O7 -0.8073 -0.6026 -1.2110 -0.0322 -1.2853 -1.2864 -1.5991 -0.5650 
O8 -0.7980 -0.5977 -1.2103 -0.0316 -1.2742 -1.6345 -1.5942 -0.5810 
O9 -0.8646 -0.6408 -1.2880 -0.0363 -1.3355 -0.9970 -1.6090 -0.6664 

O10 -0.8429 -0.6355 -1.3070 -0.0372 -1.3150 -1.0361 -1.6020 -0.6565 
O11 -0.7974 -0.5989 -1.2089 -0.0316 -1.2757 -1.7678 -1.5952 -0.5741 
O12 -0.8420 -0.6356 -1.3043 -0.0372 -1.3148 -1.0232 -1.6008 -0.6263 
O13 -0.8413 -0.6271 -1.3101 -0.0369 -1.3171 -1.6368 -1.6031 -0.6000 
O14 -0.8840 -0.6505 -1.3959 -0.0415 -1.3500 -0.9747 -1.6128 -0.7772 
O15 -0.8527 -0.6361 -1.3265 -0.0375 -1.3229 -1.6380 -1.6013 -0.6490 
O16 -0.8394 -0.6282 -1.3046 -0.0367 -1.3133 -1.3367 -1.6031 -0.5900 
O17 -0.8493 -0.6354 -1.3199 -0.0371 -1.3190 -1.7086 -1.6036 -0.6295 
T1 1.6672 1.2405 2.4059 0.0677 2.6149 2.1571 3.1964 1.2500 
T2 1.6680 1.2366 2.4130 0.0678 2.6153 2.2334 3.1977 1.2272 
T3 1.6649 1.2535 2.4939 0.0670 2.6061 2.5754 3.2078 1.2656 
T4 1.6652 1.2528 2.4973 0.0672 2.6054 2.6140 3.2092 1.2289 
T5 1.6708 1.2411 2.6745 0.0808 2.6295 2.7166 3.1985 1.3045 
T6 1.6679 1.2439 2.6615 0.0804 2.6259 2.5198 3.1988 1.2647 
T7 1.6821 1.2584 2.5541 0.0670 2.6188 2.9355 3.2077 1.2233 
T8 1.6819 1.2655 2.5498 0.0666 2.6166 2.7506 3.2078 1.2090 
T9 1.6789 1.2530 2.5483 0.0677 2.6184 2.4350 3.2010 1.2636 

Avg. qO -0.8406 -0.6246 -1.2594 -0.0353 -1.3087 -1.2604 -1.6021 -0.6257 
RMSD 0.0287 0.0185 0.0659 0.0028 0.0247 0.2869 0.0072 0.0566 

Avg. qT 1.6719 1.2495 2.5331 0.0703 2.6168 2.5486 3.2028 1.2485 
RMSD 0.0067 0.0090 0.0887 0.0055 0.0075 0.2334 0.0049 0.0278 

 

 Turning to the ab initio methods, we see that the REPEAT charges are the lowest of the survey 

and all the other methods provide a more ionic description of the system. The HI and DDEC methods 

produce very similar charges that like EQEq describe the strongly polar covalent bonding in the system 

that core-shell potentials are built to mimic. Bader analysis produces the most ionic description of the 

system, which arises from the atoms-in-molecules produced atomic volumes for Si having an unphysical 

nearly zero value. This appears to be a buried atom problem, wherein an atom is contained within the 
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diffuse valence shell of several other atoms making it appear that the atom has no valence charge density. 

Tetrahedral atoms in strongly polar covalent systems will be particularly susceptible to this problem. HI 

and DDEC are less prone to buried atom issues as they both use iterative comparisons to reference atomic 

states (neutral and ionic). The DDEC3 algorithm relies more heavily on Bader atoms-in-molecule 

decomposition for charge determination, and the DDEC3 charges were much more ionic than even the 

Bader charges with some being too ionic: ie. qSi > 4, qO < -2. Because of this, we believe that the Bader 

charges are an over-estimation caused by an unphysical parsing of the charge density. Interestingly, the 

non-Bader ab initio methods are replicated quite well by a semi-empirical method: QEq for REPEAT and 

EQEq centered on the ionic charges for HI and to a lesser extent DDEC. This good agreement is the case 

for all the zeolites studied as there is a high uniformity in the magnitude of the charges predicted by a 

method across all the zeolites studied. Each charge determination method produced charges that vary 

from site-to-site on the order of 0.01e, with the variations on the O atoms being greater than those of the 

Si atoms. These variations represent the different chemical environments around each unique T-site, and 

these site-to-site charge variations can be used to gain physical insight into the zeolite framework. Each 

charge determination method produced charges that vary from site-to-site on the order of 0.01e, with the 

variations on the O atoms being greater than those of the Si atoms. These variations represent the different 

chemical environments around each unique T-site, and these site-to-site charge variations can be used to 

gain physical insight into the zeolite framework. 

 

2.3.2: The Relationship Between Acidic/Catalytic Sites and Partial Atomic Charges 

 The determination of a zeolite’s catalytic site experimentally has been a heavily investigated topic 

over the past few decades. A leading hypothesis is that the T-site with the largest T-O-T angle should be 

the acidic site going along with the concepts of strain in the framework and the ionic character of a metal-

oxygen-metal bond increasing with an increased bond angle.(126) However, Sastre et al. (and others) 

have shown little to no direct correlation between local structure and the acidic site and instead 

conjectured that the acidity arises from the long-range electrostatics.(127; 128) In a different study, Gale 
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showed the classical- and cluster-based models often mis-predicted the site of interest because of a 

neglect of long-range electrostatics, and that full periodic super cell simulations are more likely to make 

correct predictions.(129) Contrarily, Yang et al. asserted that distortions away from a regular TO4 

tetrahedron (in terms of the RMS deviation of the O-T-O angles at a site) are what cause a T-site to be 

more acidic.(108) As zeolites are acid catalysts, one hypothesis is that the catalytic site will be the most 

acidic and therefore have the most positive charge in the system from its Lewis acidity. An 

aluminosilicate has Brønsted acidity from the presence of a hydroxyl associated with an oxygen bound to 

an Al.  It is reasonable to expect the hydroxyl to associate with an oxygen atom having the most negative 

charge and where neighboring T-atoms will likely bear a higher positive charge. The charge 

determination methodologies readily predict the most positive site in a zeolite, so we will test this 

hypothesis by analyzing a few well-studied commercially relevant zeolite frameworks: BEA, BEC, MFI, 

MWW, and TON. Using only siliceous frameworks, this will also determine if the acidic sites can be 

predicted a priori treating each T-site equivalently from a parameterization/pseudo-potential point of 

view. 

 
Table 3: A comparison of the partial charges determined for the DFT optimized structure of BEA. The site ‘Label’ 
is the one used in the IZA-SC database. Literature identified T-sites of interest are in grey. 

 

Label EEM QEq EQEq QTPIE HI DDEC Bader REPEAT 

T1 1.6045 1.2446 2.1724 0.0669 2.5908 3.6562 2.2824 1.3139 

T2 1.6049 1.2378 2.1808 0.0669 2.5938 2.7429 2.9094 1.3151 

T3 1.6003 1.2580 2.2366 0.0662 2.5812 2.5536 2.7367 1.2516 

T4 1.5996 1.2566 2.2355 0.0664 2.5824 2.1657 2.9270 1.2395 

T5 1.6084 1.2351 2.3960 0.0782 2.6091 2.6920 2.9683 1.3201 

T6 1.5968 1.2379 2.3589 0.0778 2.5996 2.3176 3.1222 1.2508 

T7 1.6179 1.2712 2.2849 0.0669 2.5945 2.8284 2.9523 1.2579 

T8 1.6136 1.2827 2.2673 0.0672 2.5890 1.9532 3.1693 1.1923 

T9 1.6131 1.2644 2.2770 0.0672 2.5928 2.7103 3.1828 1.3604 

 

Since experimentally measured structures rely on data of variable quality (most are determined by 

powder PXRD) and the refinements use different approaches (especially with respect to the level of 
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restraints/constraints), we were concerned that experimental structures would not be sufficiently self-

consistent for our purposes.  We have already analyzed the DLS76 structures, but these structures are 

highly idealized and can often be off from the experiment either in terms of unit cell volume or a specific 

structural feature. To determine if these small changes to the framework can have noticeable effect on the 

predicted partial atomic charges in the previous section, we re-optimized the DLS76 structures of our 

commercially relevant zeolite frameworks using periodic plane-wave DFT. Table 3 shows the partial 

atomic charges for each method charges for the T-sites for optimized BEA. When compared to the values 

shown in Table 2, it can be readily seen that the charge for each site changed following the DFT 

optimization. However, the predicted magnitudes of the charges do not change significantly (>0.3e). The 

EQEq and Bader charges experienced the greatest change in magnitude with the average T-site charges 

dropping to 2.267e and 2.916e, respectively. On the other hand, the HI and REPEAT charges for the 

optimized structures are much closer (> 0.03e) to the DLS76 structures charges: 2.593e and 1.278e 

respectively. In addition to changing values at each site, the ordering of sites by charge magnitude also 

changed with optimization for each method. For example, the site T5 has the greatest REPEAT charge for 

the DLS76 structure, yet the site T9 has the greatest REPEAT charge for the DFT optimized structure. 

This demonstrates just how sensitive these charge determinations are to structure, as upon optimization 

there was only a 1.4% increase in volume chiefly from an elongation of the crystallographic c-axis, which 

had the consequence of increasing the eccentricity of the elliptical 12MR channels of BEA. Because of 

the sensitivity of the charges to structure, the comparison with the literature for determining acidic sites 

will be done with the likely higher quality DFT optimized structures. 
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Figure 1: The crystal structure of BEA along [100]. Site T5 is highlighted in blue, site T9 is highlighted in green, 
oxygens are in red, and the remaining T-sites are black. 
 

 The literature provides several different (often inconsistent) accounts of which site is the acid site 

or the most favorable for substitution for each zeolite depending on how the problem was approached and 

the experimental conditions. There is also not much literature devoted to the determination of site acidity, 

instead the focus has been on determining the preferred T-atom (T=Sn, Ge, Ti, etc) substitution site as 

that site will act as the catalytic site post-substitution. It is worth noting that frequently the IZA-SC and 

experimental structures have different site labels, so for consistency we will use the IZA-SC site notation. 

Extended X-ray adsorption fine structure spectroscopy and periodic DFT simulations comparing HOMO-

LUMO gaps of substituted frameworks have identified the T5/T6 site of BEA as the primary substitution 

site, consistent with the large T-O-T angle between sites T5 and T6. (100; 130) These studies also 

indicated that the T5/T6 site should be the most acidic. The later work of Yang et al. argues that, while T6 

is the most favorable substitution site, T9 as the least stable substitution site should be the most acidic site 

based on simulated water adsorption.(108) The T5 and T9 sites of BEA are illustrated in Figure 1, and 

similar cartoons for the other materials are available in the Appendix B. For BEC (the pure polymorph C 

of BEA with higher crystallographic order), the primary substitution site for metal atoms was determined 

to be at T1 in the D4R unit. However, T3 was shown to become the most favorable with increasing Ge 

concentration.(131-133) The description of MFI is the most varied, and a recent review of the preferred 
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substitution sites concluded that most sites were identified as a preferred substitution site by at least one 

study, but sites T8 and T10 are implicated most frequently.(134) Part of the difficulty may arise from the 

high flexibility in MFI, with at least two distinct monoclinic and orthorhombic phases that have been 

shown to distort with heating or guest molecules loaded into the framework.(93; 94; 135-137) Later 

simulation studies have identified the acidic site as T11, T7, or T12 as the most acidic site.(138-141) 

Gale’s study into MFI that expressed the need for correct-long range electrostatics identified T4 as the 

primary substitution site, which was corroborated with Ti and Fe substitution studies.(129; 142-144) 

Hydroxyl IR studies ranked sites T1, T3, and T5 as the most acidic in MWW, with T6 as the most stable 

substitution site and T8 the least.(127; 128) A later experimental and QM/MM study indicated that Al 

substitution prefers sites: T6 > T3 > T8, and the acidity went as T8 > T3 > T6 in the presence of acetone 

and T6 > T8 > T3 in the presence of TMPO.(127; 128) Early cluster simulations indicate that T1 and T4 

are the most favorable Al substitution sites in TON.(145) However, a later NMR and simulation study 

indicated T4 would be the most favorable and almost no substitution should occur at T1.(146) Cluster 

simulations mark T2 as the most acidic site,(147) a later cluster study selected T1 as the most stable, 

accessible Brønsted acid site (although the other sites surpassed it yet were dubbed inaccessible),(138) 

and a more recent ab initio molecular dynamics employed T3 as the Brønsted acid site to good effect in 

elucidating the mechanism of propene methylation in TON.(148)  

 

The different charge determination methods provide identify different sites as the most positive 

(Tables like table 4 for the other zeolites are in the Appendix B). EQEq, QTPIE, and HI all predict T5 and 

T6 as the first and second most positive sites in BEA, whereas Bader and REPEAT identify T9 as the 

most positive site. The charge difference between the first and second most positive sites in BEA is large 

enough (~34% of the total for HI) to suggest chemically significant distinctions between the sites. 

Somewhat surprisingly, DDEC has a large distribution of charges (1.95e-3.65e) in BEA and the other 

zeolites, and it picks T1 as the most positive site in BEA. The other charge determination methods all 

predict that T3 is the most positive site of BEC. The literature BEC studies used force field and cluster 
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simulations, both of which were noted by Gale as prone to incorrect predictions,(129) which casts enough 

of a shadow of doubt that the charge determination results cannot be instantly ruled out. REPEAT is the 

only method that predicts site T4 as the most acidic in MFI, following Gale’s prediction. Considering the 

other methods, we see that Bader predicts T8 and DDEC T1 for MFI. HI, EQEq, and EEM all agree on 

site T3 for MFI, with REPEAT indicating that should be the second most acidic site. No method agreed 

with the substitution literature on MWW, placing T6 or T1 as the most positive site. QEq and REPEAT 

agreed with the QM/MM study identifying T8 as the most positive site, and DDEC was the sole method 

that selected T3 as the most acidic site. Similar to BEC, most of the charge determination methods agree 

that site T4 is be the most positive site in TON, with DDEC as the only ab initio method to predict T1 as 

the most positive. The margins between the charges at different sites are the lowest for TON, making it 

seem that T2 and T4 should have comparable acidity according to Bader and HI. 

 

Overall, the REPEAT method appears to yield the best agreement for the most electropositive T-

site compared with the most reliable literature. An exception is the case of BEC, and to a lesser extent 

TON, where REPEAT agrees with most of the other methods. DDEC is the only ab initio method that 

agrees with the literature determination of T1 for BEC and TON. Both these charge determination 

methods use the DFT periodic electrostatic potential (and thus long-range electrostatics) to determine the 

charges, so it is sensible they are the most adept at predicting acidic sites. HI also does a reasonable job of 

predicting the literature-identified substitution sites. A unique aspect of our approach compared to other 

investigations is that we used DFT-optimized structures while most other investigators performed 

simulations on the experimental structure.  Considering the differences noted above, this is likely a major 

reason why we reach slightly different conclusions in some cases, especially compared with cluster and 

QM/MM studies. An additional point is that, in the optimization of MFI, we discovered two different 

solutions in the same range of unit cell volumes, and the lower energy solution reported more closely 

resembles the high temperature, evacuated phase of MFI. 



	42	

 

 

 

 

To see if there is any connection between partial atomic charge for a T-site and its local structure, 

we analyzed the dependence on the local bond angles for the leading ab initio charge determination 

methods. Following Yang’s assertion, the T-sites with the greatest RMS deviation of O-T-O angles 

should be the most acidic,(108) and Figure 2 illustrates those deviations for the 5 zeolites using three 

different sets of charges. The average O-T-O angle in each case is the anticipated ~109.47°. In each of the 

structures with each of the tested partial charge determination methods, the site with the largest RMS O-

T-O deviation was not the site with the highest charge. The data show no clear correlation between 

predicted charge RMS O-T-O deviation.  The scatter evident in Figure 2 clearly shows that, for the most 

promising methods investigated here, O-T-O deviations have at best a secondary affect partial charge. 

There is however some evidence of correlation between the T-O-T angles and predicted partial charges 

(Figure 3).  Specifically, for the HI method, charges track the average T-O-T angles quite well, although 

not quantitatively. By its design, the HI method should do the best job of predicting the iconic character 

of a bond. Considering that more linear metal-oxygen-metal bond angles are expected to be more ionic, 

the observed correlation is expected. In TON, there are several linear T-O-T bonds in the system. We 

interpret that those large angles strain the tetrahedra, leading to the higher than average RMS deviations 

of the O-T-O and T-O-T angles. Since all these sites show higher simulated charges in HI, there is likely a 
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Figure	2:	A	 comparison	of	 the	 RMS	deviation	 of	 the	O-T-O	angles	 to	 the	HI,	 DDEC,	 and	REPEAT	
charges	for	each	crystallographically	unique	T-site	in	the	5	zeolites.	
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relationship although far from perfect.  For example, site T2 is connected via two linear T-O-T angles 

(giving the second highest average T-O-T angle in the cell), but the average O-T-O angle at T2 is the 

closest to the anticipated value with an RMSD of 1.73°. 

 

 

Figure 3: A comparison of the average (top) and RMS deviation (bottom) of the T-O-T angles to the HI, DDEC, 
and REPEAT charges for each crystallographically unique T-site in the 5 zeolites. 

  

The correlation between RMS deviations of the T-O-T angles and partial charge is about as poor 

as the correlation between the partial charges and the RMS O-T-O deviations, ie. the HI and DDEC plots 

just look like scatter plots. The REPEAT method appears to have a weak dependence on the RMS T-O-T 

deviations, but again it is not significant enough to be quantitative. We cannot exclude the possibility that 

stronger correlations might emerge when considering multiple, coupled geometric factors, but such 

analysis is beyond the scope of this project. However, as summarized at the start of this section, other 
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teams have attempted to extract similar relationships from local geometry without success. Our results are 

consistent with their conclusions that long range correlations are at least as important as local geometry. 

 

 

2.3.3: The Effect of Compression on Partial Atomic Charges 

Compressing a zeolite under high pressure is one of the best ways to experimentally manipulate 

and change a zeolite’s structure, and it is one of the best tests for predicting zeolite structures using force 

field simulations. Since we have shown that changes in structure lead to changes in the predicted partial 

atomic charges, we endeavored to explore how the partial atomic charges of a zeolite changed in response 

to compression. We have synthesized and compressed samples of rhombohedral (R-3) siliceous sodalite 

(SOD) in fluorinert-loaded diamond anvil cells. Fluorinert has previously served as a quasihydrostatic 

non-penetration pressure transmitting medium in other zeolite studies.   

 

Table 4: The structural parameters for the ambient and three compressed unit cells of R-3 SOD.  
 

Pressure (kbar) a (Å) c (Å) Volume  
(Å3) 

Avg. 
Si-O Length 

(Å) 

Average 
Si-O-Si Angle 

0 12.46 7.21 969.40 1.601 149.97° 
4 12.34 6.86 904.66 1.564 150.29° 

14 12.11 6.32 802.27 1.504 150.78° 
22.2 11.92 6.21 764.14 1.480 150.79° 

 

The lattice vectors of the compressed SOD sample were determined with synchrotron powder X-

ray diffraction (Table 4) at ambient conditions and at 4, 14, and 22.2 kbar. Over this pressure range, it was 

found that R-3 symmetry was maintained. As in-situ high pressure diffraction studies of powder samples 

do not typically provide sufficiently reliable atomic positions, we used ab initio simulations to predict 

reasonable atom coordinates (optimized structures in the SI). We started using the atomic positions from 

King et al.’s single crystal X-ray diffraction study and relaxed the atom positions, keeping the lattice 

parameters fixed to our experimentally determined values.(122) The optimization process reduced 
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internal stress from the original guessed structure that used our lattice vectors and King’s atomic crystal 

coordinates by homogenizing the Si-O bond lengths and a reducing/homogenizing the Si-O-Si bending 

angles. The cell maintained the nearly rectangularly elongated 6MRs which differentiate rhombohedral 

SOD from the icosahedral form found in the IZA-SC. The Si-O bond lengths initially varied between 

1.57-1.64 Å, and optimized to all be around 1.62 Å at 0 kbar. The Si-O-Si bending angles also became 

closer in value going from 147-152° to all being around 146°. These median structural values are quite 

similar to the potential parameters of typical zeolite force fields, ie. 1.61 Å and 149.5° for the Nicholas 

Force Field.(86) The primary mechanism for compression is an increase Si-O-Si bend (ie. a lower Si-O-Si 

angle). The regular 6MR’s Si-O-Si angles went from 146.0°, 139.6°, 132.2°, to 129.6° at 0, 4, 14, and 

22.2 kbar respectively; whereas the elongated 6MR’s Si-O-Si angles not shared with a regular 6MR 

compress slower going from 146.0°, 142.1°, 135.9°, to 133.6° upon compression. Upon compression, the 

bond lengths also acquire more alternation while still staying ~1.62 Å. The difference increases from 

0.004 Å, 0.006 Å, 0.012 Å, to 0.0016 Å as pressure is increased. The elongated 6MR is the stiffest feature 

of the cell with its’ nearly rectangular shape only becoming more pronounced with compression (the 

largest Si-Si-Si angle in the elongated 6MR increases from 138.7° to 153.3° with compression).  
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Figure 4: A comparison of partial charge methods for the ambient and compressed structures of R-3 SOD. 
 

 The compression caused noticeable changes to the SOD structure, so we decided to investigate 

the effect of those structural changes on the partial atomic charges. Figure 4 shows the charges for the 

single crystallographically unique Si atom of each of the four optimized SOD structures predicted by the 

ab initio methods. The magnitudes of the charges on the uncompressed structures are close to those 

predicted for the IZA-SC structures (Table 2 and SI), providing confidence in the results of the 

optimization. The HI, DDEC, and Bader methods all exhibited a monotonic decrease in charge on the Si 

atom with increased pressure. This effect was more pronounced for the DDEC and Bader methods, where 

the initial drop in charge is far larger than for any subsequent compression. The more apparent decrease is 

because the atoms-in-molecules parsing will be the most sensitive to the subtle changes in geometry, and 

the difference between the Si-O-Si angles in the two different 6MRs had the biggest change between 0 

and 4 kbar. The HI charges do not change significantly, indicating that the valence state and ionic 

character of the Si-O bonds did not change during this amount of compression. The ionic character of the 

Si-O bonds, while not changing much, decreased with increasing pressure as is evident by the decrease in 

HI, DDEC, and Bader charges. Previous studies have shown that, for inorganic compounds, lower metal-
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oxygen-metal bending angles tend to be more covalent.(149; 150) The Si charges predicted by REPEAT 

do not appear to change appreciably with compression. The nearly identical charges up to 2.22 kbar show 

that the electrostatic potential is scaling relative to the change in the size of the void volumes. We take 

these REPEAT charges to imply that there is a reasonably constant environment for physisorbed guest 

species within the pores of this zeolite during compression.  

 
 
2.3.4: Performance in Predicting Gas Adsorption  
 
 One of the most common applications of partial atomic charges is to perform force field gas 

simulations to model gas adsorption capacity, the heat of adsorption, and a material’s ability to separate 

gases. We have previously studied the ability of the siliceous zeolite frameworks to separate Kr and Xe 

gas mixtures.(92) Kr and Xe have no partial atomic charges and cannot be used to test the applicability of 

our determined partial charges, so we will model N2 and O2 which have partial atomic charges to replicate 

their standing molecular quadrupole moments. The adsorption of N2 and O2 into the FAU (faujasite) 

framework was simulated with GCMC using the same TraPPe-ZEO dispersion-repulsion parameters 

employed in our previous study, and is compared to in-house obtained experimental adsorption data. As 

in the previous sections, we used a DFT optimized structure with charges determined from the ab initio 

methods. In the high symmetry Fd-3m FAU structure, there is only one crystallographically unique 

tetrahedral atom and four unique oxygen atoms in the unit cell, and the partial charges on the tetrahedral 

atom are 1.140 < 1.500 < 2.357 < 2.556 < 2.953 for REPEAT, TraPPe-ZEO (force field, denoted TZ), HI, 

DDEC, and Bader methods respectively. As may be seen in Figure 5, the simulated isotherms and heats 

of adsorption increase with higher partial charges on the T-sites with differences in magnitude (roughly) 

proportional to differences in partial charge.  The large difference in partial charge magnitude between 

REPEAT and TraPPE-ZEO compared with HI, DDEC, and Bader is quite apparent in the simulated N2 

isotherms and HOA; a similar split is also present for O2 but with a much smaller magnitude due 

primarily to oxygen’s much smaller quadrupole moment (and partial atomic charges). The different 
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partial charges do make a significant difference in predicted adsorption, for both the isotherm and 

predicted heat of adsorption. 

 

 
Figure 5: Simulated and experimental (Expt) N2 (top) and O2 (bottom) adsorption isotherms (left) and heats of 
adsorption (right) for FAU at 140K. The TraPPe-ZEO dispersion-repulsion parameters were used in all simulations. 
 

The most eye-catching detail is how most of these combinations, including the defined charges 

for TraPPe-ZEO, under-predicts the experimental adsorption by upwards of 25%. In our previous 

investigations, we noted that just a 12-6 Lennard-Jones dispersion-repulsion for the adsorbate species did 

lead to an under-prediction at high loadings, especially for relatively low temperatures near the critical 

temperature in large pore materials like HKUST-1 and FAU.(151) The remedy was to utilize a 9-6 

Lennard-Jones potential that was parameterized for the liquid state for the fluid-fluid interactions.(152) 

Even then, the predicted isotherms for Kr and Xe into a sample of FAU from the same batch under-

predicted experimental adsorption by 5-15% at various temperatures. Using 10% as a reasonable margin 

of error for these results, the HI and DDEC charges are the best at reproducing the experimental 
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adsorption. However, it is unreasonable to conclude that a simple substitution of charges into an existing 

force field would produce perfect agreement as many common zeolite force fields are fit for different 

purposes and with their own respective charge models. To further demonstrate that we performed 

additional GCMC simulations combining the iterative Hirshfeld charges with the dispersion-repulsion 

parameters of several other common force fields (Figures in SI), and as should be expected there was no 

significant improvement. A better next generation force field for simulating zeolites could be constructed 

by refining the dispersion-repulsion and bonding parameters for the zeolite framework with the better 

determined partial atomic charges produced by the iterative Hirshfeld or the similarly valued EQEq 

method. 

 

To see if the site-to-site variations in charges mattered for predicting adsorption compared to a 

“one-charge fits all” type approach, we created a hypothetical set of partial atomic charges that featured 

site-to-site variations yet had the same average values as the base TraPPe-ZEO charges which uses only a 

single charge for Si and O. The REPEAT charges are the closest in value to the TraPPe-ZEO charges, so 

they were scaled so that their average values matched the TraPPe-ZEO charges. While FAU with its fairly 

uniform internal surface (compared to other zeolites like BEA and MFI) may not be the best example to 

show the differences from using site-specific charges, Figure 6 clearly shows a difference in the GCMC 

predicted adsorption for N2 and O2 using the REPEAT, scaled REPEAT, and TraPPe-ZEO charges. 

Increasing the magnitude of the REPEAT charges did increase the overall predicted adsorption, but it is 

still not equivalent to the adsorption predicted using the single valued TraPPe-ZEO charges. The scaled 

REPEAT charges do exhibit a smaller predicted adsorption than the TraPPe-ZEO charges, and this  

 

 

is most likely because the oxygens in the adsorption site at the 6MR window into the b-cage have lower 

than average charges (-0.728e and -0.686e) compared to the other oxygens (-0.768e and -0.817e). This 
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inhomogeneity in charge clearly leads to a lower electrostatic potential at the solid-fluid interface in FAU 

compared to just using -0.75e for each oxygen, which directly affects the predicted adsorption. 

 

 

 

 

 

 

 

 

Figure 6: Simulated N2 (top) and O2 (bottom) adsorption isotherms (left) and heats of adsorption (right) for FAU at 
140K using the TraPPe-ZEO (TZ), REPEAT, and scaled REPEAT (SR) charges.  
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Section 2.4: Conclusions 

 We have shown that the different methodologies to compute partial atomic charges produce 

significantly different solutions when applied to the known pure silica zeolites. Atoms-in-molecule 

partitioning of the DFT charge density predicted the system to be the most ironically charged whereas all 

the other different methodologies predicted charges that better reflected the known covalency of the Si-O 

bond. All the methodologies showed at least some difference in charge between the different 

crystallographically unique sites with the RMS differences of the Bader charges being the least 

pronounced of all the methods. That these differences are physical and meaningful is evident from 

inspection of the zeolites’ internal geometry where the chemical environment around each T-site is 

unique. Partial atomic charge analysis on the full periodic structure is a simple way to a priori predict the 

most catalytically active sites or sites most likely to undergo substitution in zeotype frameworks, 

especially since none of the simple local geometric metrics from the literature were found to correlate 

with the partial atomic charges. The closest connection to local geometry and partial atomic charge is the 

correlation between the average T-O-T angle at a T-site and the iterative Hirshfeld charges, but it is too 

weak to build a simplified, analytic algebraic model. Slight changes in the zeolite structure through 

structural optimization or compression experiments also had a noticeable impact on the predicted partial 

atomic charges and their variation between crystallographically unique atomic sites. This serves to 

emphasize the need for high quality, reliable structures for zeolite simulations. Framework-to-framework 

and site-to-site variations in partial charge represent subtle, yet important, features that will cannot be 

captured by fixed charge force fields, although they may be accounted for by core-shell potentials to at 

least some extent. Given the large amount of site-to-site charge variation observed within this work, we 

recommended using partial charges that account for these differing chemical environments rather than a 

fixed value for atoms of the same type. 

 The lingering question is which choice of partial atomic charges is the most appropriate appears 

to depend on the specifics of the problem to be addressed. The iterative Hirshfeld charges described the 
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strongly polar covalent nature of the bonding within the framework and tended to better predict 

substitution sites, whereas the REPEAT charges were better overall at predicting the acidic/catalytic site 

within a zeolite. Given their agreement with ab initio methods in both magnitude and variance between T-

sites, the QEq/EQEq methods are likely to prove the best overall approach to predicting partial atomic 

charges once they have been tweaked to better reproduce the values and site-to-site variations of the 

REPEAT/iterative Hirshfeld charges. This is especially true for molecular dynamics where the charges 

should be recomputed “on-the-fly” to reflect the new bonding environment and where full ab initio 

methods are prohibitively computationally expensive. The EQEq approach is likely better for zeolites 

because centering the Taylor expansion on the fully ionic states returns partial charges closely resembling 

the HI charges. As we have shown the choice of partial atomic charge has an impact on the prediction of 

gas adsorption, and merely substituting ‘better’ partial atomic charges is not a sufficient solution as in 

many cases the van der Waals parameters are co-fit with the partial atomic charges. For flexible 

framework simulations with zeolites, a better force field of sufficiently high quality that can describe the 

zeolite structure and interaction with guest species needs to be parameterized around the iterative 

Hirshfeld or tweaked EQEq charges.  
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Appendix A  

A New Binary Halide Structure Type; Pentanuclear Technetium Iodide, Tc5I13 

 

An additional project was carried out during my work towards this Master’s thesis that is 

summarized here, but not described in detail.  The work is only summarized because the simulations 

complement and experimental project, and the experimental portion of the work has not yet been fully 

analyzed.  Additionally, the project did not fit the theme of this thesis closely.  This section summarizes 

this work which is anticipated to contribute towards two papers eventually. 

 

The above simulations support an investigation into a new binary halide, (Tc5I13), discovered 

within UNLV’s Radiochemistry program. The synthesis and parts of the physical analysis of this new 

compound were conducted by William Kerlin.  Additional work on the experimental side includes 

Frederic Poineau, Alfred Sattelberger, Ken Czerwinski, Christos Malliakas and Mercouri Kanatzidis. 

 

 Computational analysis of the Tc5I13 utilized DFT in order to verify the structures overall 

resistivity and magnetic susceptibility. The connectivity of the Tc5I13 allowed for C4V symmetry, but upon 

closer examination of the overall electronic structure, this cluster distorts to C2V. Further analysis of the 

solid’s band gap gave insight to the electronic behavior of this material and validation of the experimental 

resistivity and magnetic susceptibility measurements. 
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Appendix B  

 
 

Table 5: A comparison of the partial charges determined from several methodologies for the zeolite AFI. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 
Table 6: A comparison of the partial charges determined from several methodologies for the zeolite AST. The ‘site’ 

is the atom label used in the crystal structure for the zeolite available from the IZA database. 
 
 

 
 

Table 7: A comparison of the partial charges determined from several methodologies for the zeolite ATS. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 8: A comparison of the partial charges determined from several methodologies for the zeolite BEC. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.774202 #0.631929 #1.036083 #0.086770 #1.325206 #1.028014 #1.600983 #0.539895
O2 #0.689064 #0.632021 #1.038750 #0.085061 #1.317877 #1.864432 #1.610583 #0.557171
O3 #0.645093 #0.614842 #1.110000 #0.081369 #1.292247 #1.991698 #1.602900 #0.502692
O4 #0.704105 #0.633518 #1.160417 #0.088324 #1.334426 #1.812537 #1.616783 #0.574868
T1 1.406232 1.256155 2.172625 0.170762 2.634046 3.348341 3.215600 1.087313

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.852655 #0.628127 #0.612083 #0.215842 #1.320097 #1.547614 #1.608800 #0.642418
O2 #0.828231 #0.593643 #0.906625 #0.193609 #1.308859 #1.287266 #1.592000 #0.499565
T1 1.669785 1.226890 1.315625 0.422307 2.620639 2.949988 3.203300 1.213643
T2 1.749712 1.235773 2.036500 0.380259 2.671794 2.634797 3.207500 0.998194

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.811032 #0.602777 #1.042000 #0.175670 #1.282522 #0.843682 #1.584300 #0.516477
O2 #0.838241 #0.619111 #0.944500 #0.183512 #1.312232 #1.419059 #1.599800 #0.515805
O3 #0.879443 #0.642891 #1.115000 #0.198150 #1.344200 #1.859602 #1.615250 #0.564586
O4 #0.854545 #0.628229 #0.964500 #0.190312 #1.327832 #1.387346 #1.602600 #0.606252
O5 #0.842564 #0.626453 #1.068000 #0.184073 #1.309615 #0.556544 #1.608500 #0.600894
O6 #0.808881 #0.604700 #1.034000 #0.175728 #1.277105 #2.379267 #1.596900 #0.567360
T1 1.683588 1.239911 2.017500 0.370327 2.625334 2.642443 3.203400 1.050206
T2 1.683415 1.246773 2.026500 0.371216 2.625599 2.252482 3.194100 1.157041
T3 1.678086 1.241911 2.014000 0.369276 2.618654 2.818485 3.206300 1.204407

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.866994 #0.653234 #1.112375 #0.073923 #1.337235 #1.167701 #1.593600 #0.695877
O2 #0.841764 #0.644894 #1.040750 #0.072006 #1.307554 #1.117364 #1.615800 #0.661990
O3 #0.810354 #0.613103 #1.088375 #0.065066 #1.285151 #1.311074 #1.605600 #0.593024
O4 #0.795226 #0.598660 #1.121125 #0.063240 #1.274561 #1.724300 #1.600800 #0.562299
O5 #0.840221 #0.598660 #1.166000 #0.078570 #1.324097 #1.175658 #1.588850 #0.633372
O6 #0.864830 #0.621887 #1.226250 #0.079777 #1.336629 #1.290089 #1.608100 #0.730123
O7 #0.839861 #0.631223 #1.267625 #0.073691 #1.312502 #1.415521 #1.598900 #0.603010
T1 1.642886 1.246463 2.138938 0.135606 2.596001 2.808032 3.201100 1.242549
T2 1.683695 1.255197 2.424500 0.131480 2.616078 2.886835 3.217200 1.217628
T3 1.672344 1.252268 2.512750 0.161340 2.625989 2.605755 3.193500 1.260528
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Table 9: A comparison of the partial charges determined from several methodologies for the zeolite CFI. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 10: A comparison of the partial charges determined from several methodologies for the zeolite CHA. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O6 #0.866622 #0.636674 #1.237500 #0.147688 #1.324633 #1.641312 #1.604800 #0.629218
O7 #0.870967 #0.619082 #1.372000 #0.147338 #1.343626 #1.437304 #1.615000 #0.658488
O8 #0.878374 #0.631286 #1.408250 #0.151364 #1.345212 #1.849636 #1.596700 #0.685511
O9 #0.842189 #0.622495 #1.168000 #0.139250 #1.318434 #1.677410 #1.588500 #0.576521
O10 #0.614185 #0.449882 #0.901000 #0.098008 #1.286921 #0.982846 #1.597700 #0.535570
O11 #0.896998 #0.650790 #1.149500 #0.153982 #1.354699 #0.887756 #1.613650 #0.704838
O12 #0.827326 #0.601867 #1.245500 #0.134504 #1.297371 #1.608520 #1.595400 #0.609018
O13 #0.842351 #0.613791 #1.233375 #0.138043 #1.317615 #1.557767 #1.609675 #0.636052
T1 1.671514 1.239518 2.366000 0.277720 2.619958 2.964827 3.205650 1.146052
T2 1.707324 1.250045 2.604500 0.283127 2.638796 3.209814 3.199000 1.303286
T3 1.699361 1.241046 2.363750 0.282718 2.646101 2.887784 3.219550 1.301056
T4 1.736056 1.218917 2.914500 0.315872 2.667061 3.225984 3.212500 1.313722
T5 1.711717 1.230841 2.580250 0.270116 2.646253 2.865273 3.217750 1.248628

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.862213 #0.639178 #1.109500 #0.182638 #1.329609 #1.409656 #1.613150 #0.653231
O2 #0.809182 #0.599962 #1.084000 #0.164202 #1.287172 #0.947447 #1.593600 #0.549504
O3 #0.819134 #0.611151 #1.098000 #0.168816 #1.290150 #1.240758 #1.604267 #0.605897
O4 #0.850938 #0.628249 #1.024000 #0.177498 #1.322156 #2.073244 #1.614300 #0.659419
T1 1.670733 1.239270 2.157750 0.346577 2.614192 2.835551 3.212625 1.234026
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Table 11: A comparison of the partial charges determined from several methodologies for the zeolite CSV. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 12: A comparison of the partial charges determined from several methodologies for the zeolite DDR. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
T1 1.674579 1.273844 2.540000 0.230692 2.609022 2.647245 3.207900 1.168964
T2 1.642906 1.236277 2.484000 0.234571 2.593503 2.664387 3.203600 1.261054
T3 1.660740 1.260439 2.616000 0.256279 2.616880 3.050561 3.211300 1.289377
T4 1.644847 1.278389 2.401000 0.218773 2.586892 2.618166 3.208200 1.320613
T5 1.679611 1.287487 2.482000 0.220482 2.606778 2.062985 3.206000 1.103967
T6 1.657623 1.249025 2.445000 0.210930 2.599866 3.420922 3.203500 1.156213
T7 1.641145 1.252317 2.418000 0.217774 2.592793 2.832705 3.209500 1.155039
T8 1.654392 1.275733 2.669000 0.280969 2.617138 2.876056 3.207000 1.209192
T9 1.643478 1.247881 2.490000 0.243842 2.592941 2.844698 3.202000 1.274742
T10 1.664945 1.259854 2.597000 0.251977 2.614554 2.884195 3.202500 1.023757
O1 .0.798564 .0.612874 .1.217000 .0.111246 .1.275935 .0.938252 .1.591200 .0.550957
O2 .0.827369 .0.624955 .1.293000 .0.124687 .1.307266 .1.252664 .1.607500 .0.524664
O3 .0.846148 .0.637971 .1.296000 .0.122764 .1.320874 .1.301117 .1.612000 .0.550683
O4 .0.790552 .0.610160 .1.183000 .0.106804 .1.263218 .1.264937 .1.594800 .0.621298
O5 .0.854973 .0.647786 .1.290000 .0.125716 .1.322710 .1.354487 .1.608400 .0.693213
O6 .0.842870 .0.639492 .1.254000 .0.116887 .1.315017 .1.607290 .1.608000 .0.623269
O7 .0.846218 .0.650760 .1.306000 .0.128289 .1.312030 .1.528111 .1.604100 .0.663897
O8 .0.815240 .0.619195 .1.247000 .0.115678 .1.296174 .0.908124 .1.601100 .0.527807
O9 .0.874125 .0.657971 .1.377000 .0.138769 .1.342684 .1.719939 .1.615250 .0.735883
O10 .0.830896 .0.633011 .1.258000 .0.117564 .1.309973 .2.046153 .1.602900 .0.687133
O11 .0.850291 .0.643541 .1.241000 .0.116899 .1.319134 .1.144658 .1.610600 .0.666122
O12 .0.786676 .0.610685 .1.163000 .0.103149 .1.262924 .1.098358 .1.599500 .0.559282
O13 .0.786930 .0.599454 .1.168000 .0.101682 .1.261873 .0.830961 .1.594100 .0.551354
O14 .0.826266 .0.623698 .1.253000 .0.116771 .1.300473 .1.207713 .1.603300 .0.497400
O15 .0.803732 .0.611303 .1.204000 .0.111413 .1.276916 .0.917296 .1.592400 .0.554725
O16 .0.838842 .0.631052 .1.254000 .0.117620 .1.313282 .1.991896 .1.607200 .0.631264
O17 .0.823949 .0.631950 .1.222000 .0.110844 .1.297649 .1.828097 .1.606000 .0.543740
O18 .0.826046 .0.636691 .1.258000 .0.117077 .1.297749 .1.783639 .1.594600 .0.538683
O19 .0.847384 .0.657275 .1.324000 .0.131929 .1.317742 .1.467062 .1.606700 .0.667323
O20 .0.847195 .0.641421 .1.334000 .0.130502 .1.321873 .1.711167 .1.601600 .0.574222

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.831512 #0.621809 #1.241333 #0.057999 #1.294781 #1.528315 #1.602800 #0.723507
O2 #0.823418 #0.611832 #1.203000 #0.054626 #1.294445 #1.794144 #1.600950 #0.685155
O3 #0.861764 #0.640994 #1.233500 #0.060820 #1.317870 #1.474437 #1.612250 #0.791941
O4 #0.827219 #0.619095 #1.151000 #0.055735 #1.295582 #1.363009 #1.597725 #0.666528
O5 #0.849813 #0.631477 #1.315000 #0.059801 #1.312946 #2.081640 #1.600000 #0.774523
O6 #0.857578 #0.626990 #1.391500 #0.062278 #1.325386 #1.264227 #1.602500 #0.773669
O7 #0.842730 #0.612586 #1.281500 #0.055630 #1.308013 #1.276183 #1.596000 #0.673843
O8 #0.837851 #0.612994 #1.297000 #0.055553 #1.317875 #1.453244 #1.611250 #0.667080
O9 #0.862851 #0.620978 #1.329500 #0.057886 #1.329416 #1.723967 #1.609900 #0.812162
O10 #0.855447 #0.640329 #1.143000 #0.060159 #1.321167 #1.243158 #1.615400 #0.717672
O11 #0.858089 #0.615064 #1.407500 #0.060466 #1.332366 #1.650481 #1.603400 #0.816976
T1 1.664777 1.258364 2.400500 0.114247 2.597022 3.065633 3.203900 1.410825
T2 1.665280 1.255023 2.560500 0.123148 2.605200 3.118207 3.209600 1.525296
T3 1.699461 1.232976 2.629500 0.111563 2.637034 3.196525 3.209400 1.376136
T4 1.700920 1.240819 2.523500 0.109708 2.627813 3.409815 3.214100 1.454514
T5 1.669118 1.237299 2.207000 0.113747 2.611552 2.537699 3.210350 1.367744
T6 1.737621 1.209911 2.813500 0.117081 2.659384 3.238546 3.214100 1.650931
T7 1.724470 1.232086 2.974500 0.129955 2.659586 2.894773 3.186800 1.613836
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Table 13: A comparison of the partial charges determined from several methodologies for the zeolite DOH. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 14: A comparison of the partial charges determined from several methodologies for the zeolite DON. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.852232 #0.599174 #1.297792 #0.060024 #1.324128 #1.523634 #1.604100 #0.606215
O2 #0.867533 #0.611017 #1.265167 #0.061483 #1.336541 #1.473620 #1.607700 #0.604458
O3 #0.871729 #0.611389 #1.422000 #0.062941 #1.337921 #1.337280 #1.613333 #0.665549
O4 #0.857189 #0.606500 #1.314667 #0.060474 #1.320733 #0.970779 #1.596550 #0.632217
O5 #0.884227 #0.624166 #1.358167 #0.063925 #1.344806 #1.356722 #1.616833 #0.678526
O6 #0.852657 #0.599983 #1.320333 #0.059061 #1.325878 #1.264710 #1.592533 #0.578095
O7 #0.869317 #0.605286 #1.607000 #0.062950 #1.341571 #1.212172 #1.596600 #0.704853
T1 1.584281 1.111097 2.520583 0.112152 2.664666 2.885044 2.952875 1.225565
T2 1.719660 1.218530 2.582000 0.122288 2.653506 2.729931 3.206367 1.267124
T3 1.724921 1.216128 2.444000 0.119932 2.666867 2.725138 3.198400 1.188012
T4 1.725682 1.194771 3.005000 0.126277 2.667807 2.636271 3.213700 1.372906

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.854725 #0.629615 #1.305250 #0.081092 #1.323328 #2.615678 #1.599300 #0.742028
O2 #0.797734 #0.619534 #1.182250 #0.073589 #1.265003 #1.951333 #1.578600 #0.664302
O3 #0.833591 #0.645848 #1.228000 #0.080430 #1.293440 #0.883669 #1.601900 #0.788994
O4 #0.862028 #0.632897 #1.339000 #0.078771 #1.332214 #2.055089 #1.614500 #0.713834
O5 #0.824189 #0.610708 #1.272000 #0.070520 #1.294536 #2.056188 #1.602100 #0.625216
O6 #0.844760 #0.608106 #1.298000 #0.070158 #1.319609 #2.767755 #1.601700 #0.647901
O7 #0.846654 #0.611758 #1.317000 #0.070751 #1.322250 #1.105478 #1.602400 #0.618858
O8 #0.829442 #0.632498 #1.233500 #0.076897 #1.302633 #0.869276 #1.609700 #0.681421
O9 #0.876286 #0.663245 #1.309750 #0.082275 #1.339404 #0.851118 #1.613350 #0.778498
O10 #0.811079 #0.622354 #1.227250 #0.072691 #1.280214 #0.800245 #1.589500 #0.617071
O11 #0.844565 #0.636971 #1.282000 #0.076151 #1.319030 #0.712588 #1.592400 #0.647226
O12 #0.860755 #0.648290 #1.380000 #0.083514 #1.318984 #1.185389 #1.599800 #0.779015
T1 1.646553 1.267990 2.446500 0.152441 2.590049 2.616908 3.198200 1.340110
T2 1.659476 1.250201 2.526750 0.148485 2.604219 2.080182 3.193800 1.316350
T3 1.724727 1.240802 2.653500 0.141143 2.651329 4.000000 3.219200 1.310239
T4 1.652148 1.301611 2.433500 0.159316 2.579606 3.166626 3.174200 1.495729
T5 1.696290 1.243896 2.713250 0.169259 2.640675 3.972442 3.205600 1.490152
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Table 15: A comparison of the partial charges determined from several methodologies for the zeolite EUO. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 16: A comparison of the partial charges determined from several methodologies for the zeolite FAU. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.825136 #0.626240 #1.279000 #0.039906 #1.303483 #1.280383 #1.605500 #0.670487
O2 #0.816881 #0.607797 #1.276000 #0.038200 #1.298143 #1.461304 #1.600900 #0.649391
O3 #0.826394 #0.623688 #1.259875 #0.040135 #1.296419 #1.316382 #1.597600 #0.655736
O4 #0.881600 #0.653114 #1.350000 #0.044401 #1.354688 #0.915174 #1.618500 #0.787725
O5 #0.840177 #0.593865 #1.108250 #0.037400 #1.312569 #2.034554 #1.608000 #0.640882
O6 #0.852132 #0.609877 #1.310250 #0.038765 #1.321578 #1.558781 #1.603600 #0.623126
O7 #0.856538 #0.615203 #1.259125 #0.040733 #1.323953 #1.126658 #1.592800 #0.662632
O8 #0.854996 #0.619380 #1.307750 #0.041008 #1.328153 #1.384769 #1.607500 #0.729146
O9 #0.824973 #0.611990 #1.266875 #0.040446 #1.291944 #1.432047 #1.588100 #0.718166
O10 #0.881898 #0.647237 #1.371250 #0.044980 #1.344334 #0.902972 #1.617300 #0.820565
O11 #0.844866 #0.623460 #1.324000 #0.040492 #1.312289 #1.706465 #1.607300 #0.708119
O12 #0.821135 #0.599681 #1.287625 #0.036456 #1.300806 #0.996681 #1.595100 #0.651215
O13 #0.872572 #0.630783 #1.380250 #0.042787 #1.343199 #1.142347 #1.599100 #0.827439
O14 #0.863834 #0.628829 #1.356750 #0.043949 #1.335674 #1.382104 #1.611000 #0.888403
O15 #0.863394 #0.628958 #1.362250 #0.043152 #1.331691 #1.374775 #1.607600 #0.788010
O16 #0.864245 #0.630476 #1.251500 #0.042379 #1.344911 #1.170939 #1.619300 #0.776156
O17 #0.879596 #0.642956 #1.303500 #0.044513 #1.338898 #1.917026 #1.614000 #0.785337
O18 #0.861294 #0.621992 #1.055500 #0.042350 #1.327924 #1.779884 #1.609500 #0.640805
O19 #0.878326 #0.629531 #1.363000 #0.040626 #1.349625 #0.757525 #1.589400 #0.740959
O20 #0.429815 #0.309205 #0.663000 #0.020030 #1.321458 #2.073367 #0.804250 #0.671499
O21 #0.850070 #0.627360 #1.323000 #0.038902 #1.310957 #1.825542 #1.605600 #0.707943
T1 1.450349 1.100223 2.240625 0.070962 2.623042 2.452191 2.809800 1.386085
T2 1.735658 1.230804 2.522750 0.077378 2.657342 3.261415 3.214800 1.337524
T3 1.686718 1.250217 2.648500 0.085348 2.636266 2.775479 3.214500 1.508092
T4 1.701873 1.235793 2.668750 0.076034 2.644160 2.673185 3.215900 1.396494
T5 1.722469 1.232567 2.790250 0.091503 2.652201 2.512481 3.195000 1.694426
T6 1.685415 1.246425 2.511500 0.082450 2.631019 2.595112 3.199500 1.405180
T7 1.712534 1.229404 2.388500 0.085387 2.648478 2.803775 3.193000 1.319956
T8 1.680625 1.259615 2.509500 0.085179 2.619793 2.662392 3.188600 1.590754
T9 1.713977 1.227165 2.684500 0.079653 2.645055 2.873350 3.196200 1.290989
T10 1.693956 1.239967 2.630000 0.074922 2.640504 2.468597 3.191600 1.412813

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.823767 #0.626219 #1.081500 #0.044585 #1.294117 #1.273639 #1.602850 #0.612267
O2 #0.858252 #0.649183 #1.178500 #0.048048 #1.323336 #1.128989 #1.612375 #0.650273
O3 #0.817155 #0.621867 #1.132000 #0.044671 #1.290143 #1.235728 #1.601983 #0.581393
O4 #0.799751 #0.608974 #1.113500 #0.042726 #1.273252 #1.316394 #1.597350 #0.552511
T1 0.000000 1.253716 2.252750 0.090015 2.590189 2.477375 3.207325 1.198222
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Table 17: A comparison of the partial charges determined from several methodologies for the zeolite FER. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 18: A comparison of the partial charges determined from several methodologies for the zeolite FRA. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 19: A comparison of the partial charges determined from several methodologies for the zeolite GME. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.626819 #0.602213 #1.292750 #0.078782 #1.315479 #1.486953 #1.601375 #0.680927
O2 #0.410271 #0.600758 #1.251875 #0.078708 #1.312046 #1.032179 #1.603575 #0.627512
O3 #0.357182 #0.618917 #1.283000 #0.076647 #1.302735 #1.261086 #1.604200 #0.662972
O4 #0.644525 #0.614316 #1.300750 #0.082713 #1.358971 #0.963099 #1.622175 #0.791093
O5 #0.665670 #0.618956 #1.165250 #0.090407 #1.316895 #1.558876 #1.602700 #0.598297
O6 #0.636307 #0.612350 #1.091500 #0.084180 #1.298766 #2.505161 #1.596000 #0.529893
O7 #0.430128 #0.623695 #1.245750 #0.086931 #1.334722 #2.028943 #1.609550 #0.686679
O8 #0.358864 #0.622786 #1.297500 #0.078417 #1.309911 #1.191483 #1.606100 #0.647270
T1 1.021869 1.228825 2.585250 0.155990 2.636221 2.436892 3.214575 1.389041
T2 1.052123 1.206550 2.416500 0.165583 2.648767 3.033366 3.219200 1.192363
T3 1.031077 1.232563 logout 0.162416 2.627983 2.972018 3.200900 1.339323
T4 0.542332 0.602631 1.095500 0.092999 2.643612 3.638845 1.600450 1.269468

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O7 #0.800233 #0.607942 #1.011167 #0.800233 #1.315584 #1.071123 #1.529879 #0.746014
O8 #0.799119 #0.609628 #0.809667 #0.799119 #1.313565 #1.126416 #1.502003 #0.746466
O9 #0.804036 #0.611518 #0.812667 #0.804036 #1.314575 #1.106410 #1.522235 #0.735360
O10 #0.800087 #0.611079 #0.912583 #0.800087 #1.317266 #1.433493 #1.418073 #0.751676
O11 #0.801034 #0.610488 #0.912417 #0.801034 #1.317393 #1.279381 #1.480640 #0.745393
O12 #0.802092 #0.609877 #1.033667 #0.802092 #1.315439 #1.316168 #1.464198 #0.745712
O13 #0.796189 #0.593375 #1.004500 #0.796189 #1.324756 #1.109097 #1.554658 #0.776628
O14 #0.802869 #0.609426 #0.786667 #0.802869 #1.315096 #1.148241 #1.512375 #0.741400
O15 #0.799851 #0.607298 #1.051667 #0.799851 #1.315095 #1.105570 #1.512810 #0.746829
O16 #0.793458 #0.619191 #1.011500 #0.793458 #1.301840 #1.192040 #1.567725 #0.692359
O17 #0.799135 #0.608495 #0.928833 #0.799135 #1.314941 #1.534378 #1.399555 #0.742715
O18 #0.799291 #0.609971 #0.806667 #0.799291 #1.315094 #1.168078 #1.490616 #0.746144
O19 #0.800351 #0.607240 #1.045667 #0.800351 #1.315347 #1.029132 #1.551902 #0.743365
O20 #0.799661 #0.606381 #1.018667 #0.799661 #1.314549 #1.030072 #1.564689 #0.737718
O21 #0.803879 #0.607001 #0.557833 #0.803879 #1.315232 #1.085435 #1.533765 #0.733250
T1 1.601558 1.216094 2.053167 1.601558 2.629702 2.267835 3.055671 1.486183
T2 1.601423 1.216486 2.124917 1.601423 2.630037 2.483047 2.965696 1.488937
T3 1.595921 1.218994 2.039583 1.595921 2.631268 2.477671 3.024247 1.488777
T4 1.609286 1.218606 1.051833 1.609286 2.630560 2.236659 3.044655 1.473546
T5 1.596896 1.217421 1.592917 1.596896 2.629671 2.688210 2.883251 1.491086
T6 1.605616 1.221677 1.605333 1.605616 2.631360 2.376507 3.023452 1.474412

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.674470 #0.636471 #1.127000 #0.081324 #1.328522 #1.016720 #1.549865 #0.666627
O2 #0.627306 #0.604671 #0.898250 #0.074050 #1.286273 #1.505422 #1.367585 #0.562349
O3 #0.727100 #0.633104 #1.115417 #0.080061 #1.321060 #0.789817 #1.601146 #0.651736
O3 #0.609323 #0.614682 #1.079750 #0.075376 #1.289664 #0.979492 #1.512189 #0.581419
T1 1.319100 1.244464 2.110208 0.155405 2.612494 2.145726 3.019901 1.231065
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Table 20: A comparison of the partial charges determined from several methodologies for the zeolite GON. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 21: A comparison of the partial charges determined from several methodologies for the zeolite IFR. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.806592 #0.624963 #1.136750 #0.149615 #1.290155 #1.373616 #1.596700 #0.780510
O2 #0.806303 #0.627360 #1.142000 #0.150252 #1.286162 #1.210106 #1.597750 #0.772845
O3 #0.857176 #0.659744 #1.174500 #0.164878 #1.341587 #1.118661 #1.598500 #0.912733
O4 #0.802110 #0.619881 #1.151250 #0.146795 #1.288558 #0.750734 #1.596900 #0.745055
O5 #0.818989 #0.630258 #1.159500 #0.155840 #1.301191 #1.266483 #1.603950 #0.781634
O6 #0.793298 #0.609987 #1.143500 #0.143294 #1.287512 #1.690020 #1.601800 #0.707904
O7 #0.822984 #0.638211 #1.167750 #0.160125 #1.306152 #1.006685 #1.604100 #0.825717
O8 #0.809289 #0.630076 #1.071500 #0.160824 #1.293452 #1.256398 #1.604050 #0.782043
O9 #0.853128 #0.657004 #1.191750 #0.166154 #1.339474 #1.558453 #1.616700 #0.937074
O10 #0.794321 #0.611933 #1.021500 #0.143487 #1.280939 #1.404347 #1.602700 #0.718643
T1 1.630488 1.263494 2.314750 0.306991 2.601044 2.154207 3.199400 1.622132
T2 1.645777 1.274913 2.359750 0.298955 2.606776 2.374067 3.205900 1.530043
T3 1.632637 1.260654 2.259750 0.331510 2.607678 2.583296 3.210500 1.666255
T4 1.628247 1.254486 2.220250 0.297565 2.597266 2.789221 3.203800 1.585066

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.836213 #0.633041 #1.284000 #0.158395 #1.310574 #2.096471 #1.597500 #0.608861
O2 #0.877801 #0.671574 #1.367000 #0.174161 #1.337503 #1.589057 #1.622500 #0.742519
O3 #0.806319 #0.614314 #1.223500 #0.146217 #1.283771 #0.923911 #1.593300 #0.598529
O4 #0.842586 #0.648969 #1.318000 #0.161235 #1.316504 #0.956717 #1.612100 #0.627809
O5 #0.798089 #0.613065 #1.185000 #0.143117 #1.269197 #0.764177 #1.594800 #0.580677
O6 #0.849197 #0.649707 #1.276000 #0.159550 #1.318931 #1.347797 #1.615900 #0.686673
O7 #0.842938 #0.645613 #1.252000 #0.154843 #1.310096 #1.737443 #1.604900 #0.704668
O8 #0.807000 #0.623872 #1.183000 #0.139454 #1.278993 #0.892910 #1.602400 #0.643499
O9 #0.835558 #0.637933 #1.221000 #0.149427 #1.305593 #1.149553 #1.596000 #0.664290
O10 #0.811223 #0.624516 #1.196000 #0.141595 #1.283251 #1.609953 #1.606300 #0.607446
T1 1.658680 1.285051 2.424000 0.289400 2.590611 1.903951 3.201100 1.286516
T2 1.656914 1.252425 2.600000 0.321985 2.611905 2.808414 3.213300 1.250618
T3 1.652809 1.267412 2.490000 0.313096 2.593864 2.946167 3.201700 1.278912
T4 1.648118 1.260333 2.413000 0.285240 2.589193 2.657695 3.201200 1.316701
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Table 22: A comparison of the partial charges determined from several methodologies for the zeolite IHW. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 23: A comparison of the partial charges determined from several methodologies for the zeolite ISV. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.855146 #0.634579 #1.271750 #0.042026 #1.318414 #1.507780 #1.608300 #0.680463
O2 #0.860894 #0.635100 #1.286000 #0.042497 #1.325956 #1.631474 #1.612100 #0.680362
O3 #0.826300 #0.613118 #1.272500 #0.039707 #1.299623 #2.052288 #1.600900 #0.632664
O4 #0.813431 #0.604849 #1.255250 #0.038980 #1.288820 #1.198531 #1.596100 #0.597249
O5 #0.821672 #0.608585 #1.282500 #0.039108 #1.289672 #2.122618 #1.597500 #0.658721
O6 #0.853707 #0.629505 #1.349500 #0.043158 #1.325215 #2.200898 #1.605100 #0.709929
O7 #0.850116 #0.641491 #1.323750 #0.045259 #1.318208 #1.616755 #1.597700 #0.732922
O8 #0.833885 #0.623525 #1.326000 #0.042835 #1.301700 #1.081793 #1.597800 #0.694741
O9 #0.882463 #0.653425 #1.411500 #0.047651 #1.352657 #1.783911 #1.614400 #0.929610
O10 #0.826462 #0.621648 #1.311000 #0.043404 #1.300335 #1.789386 #1.607800 #0.752890
O11 #0.828869 #0.618120 #1.315250 #0.041744 #1.304521 #1.729628 #1.600200 #0.729359
O12 #0.859323 #0.640119 #1.347000 #0.045799 #1.328982 #1.499731 #1.602000 #0.767892
O13 #0.843860 #0.633040 #1.362000 #0.044660 #1.314689 #0.984712 #1.606500 #0.794633
O14 #0.819412 #0.623778 #1.281000 #0.043765 #1.291916 #1.540518 #1.605700 #0.814816
O15 #0.837093 #0.643565 #1.306500 #0.047017 #1.297309 #1.207850 #1.594500 #0.911140
O16 #0.847188 #0.642809 #1.342250 #0.046626 #1.309661 #1.787291 #1.602200 #0.788826
O17 #0.855833 #0.652648 #1.317500 #0.048569 #1.315927 #1.666947 #1.604300 #0.851568
O18 #0.629591 #0.473419 #0.991250 #0.034824 #1.305943 #1.129374 #1.194375 #0.824959
T1 1.471757 1.090232 2.211625 0.070723 2.618538 3.153977 2.808838 1.274281
T2 1.694310 1.239046 2.623000 0.079610 2.627396 4.000000 3.211000 1.389851
T3 1.693471 1.258812 2.721500 0.090344 2.631680 3.653772 3.207900 1.507361
T4 1.690799 1.247591 2.627000 0.081516 2.622497 2.780518 3.213500 1.376396
T5 1.696130 1.254697 2.732250 0.087990 2.641971 2.835402 3.217600 1.640209
T6 1.670891 1.269905 2.677750 0.097506 2.617303 3.052882 3.186600 1.594712
T7 1.643515 1.296321 2.490250 0.094215 2.595681 3.063795 3.194500 1.840110
T8 1.647732 1.277499 2.606500 0.189243 2.598344 2.979120 3.181900 1.457939
T9 1.673498 1.284727 2.635500 0.090380 2.607265 3.081792 3.190300 1.645860

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O6 #0.876587 #0.659578 #1.028375 #0.037640 #1.343420 #1.177388 #1.597800 #0.742134
O7 #0.827648 #0.628108 #0.811250 #0.034208 #1.296780 #1.236120 #1.611000 #0.635370
O8 #0.822043 #0.622979 #0.799875 #0.033077 #1.295282 #1.273783 #1.601800 #0.615404
O9 #0.796620 #0.598910 #1.058875 #0.031595 #1.275668 #1.710674 #1.594100 #0.591040
O10 #0.840561 #0.633506 #1.201313 #0.037095 #1.312037 #1.499378 #1.597400 #0.693801
O11 #0.842142 #0.633747 #1.259688 #0.037105 #1.313566 #1.267159 #1.599400 #0.693590
O12 #0.796518 #0.595531 #1.177938 #0.031334 #1.274766 #1.557330 #1.598000 #0.584894
O13 #0.840168 #0.640648 #1.010500 #0.039834 #1.325854 #0.993139 #1.599650 #0.804008
O14 #0.857545 #0.613914 #1.186250 #0.039668 #1.331224 #1.281713 #1.620300 #0.873615
O15 #0.856987 #0.613928 #1.305500 #0.039645 #1.331614 #1.061919 #1.586600 #0.871575
O16 #0.841375 #0.640342 #1.306500 #0.039749 #1.326142 #0.984042 #1.598750 #0.787648
O17 #0.822010 #0.618789 #1.228375 #0.032687 #1.296402 #1.095358 #1.598800 #0.597459
O18 #0.880037 #0.658649 #1.301875 #0.037389 #1.346709 #1.025409 #1.592050 #0.730648
O19 #0.832808 #0.632694 #1.242875 #0.034540 #1.300899 #1.082816 #1.609100 #0.625098
T1 1.581295 1.178617 2.259438 0.061788 2.617889 3.021761 3.007406 1.323293
T2 1.647297 1.245239 1.785438 0.067349 2.599725 2.777407 3.195900 1.271711
T3 1.651776 1.241027 2.461750 0.066874 2.603398 2.438582 3.194400 1.246986
T4 1.669252 1.257471 2.273375 0.081632 2.621583 2.431965 3.198600 1.536402
T5 1.670026 1.254212 2.605625 0.081351 2.623359 2.212898 3.195900 1.520805
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Table 24: A comparison of the partial charges determined from several methodologies for the zeolite ITE. The ‘site’ 

is the atom label used in the crystal structure for the zeolite available from the IZA database. 
 
 

 
 

Table 25: A comparison of the partial charges determined from several methodologies for the zeolite ITH. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.804360 #0.629845 #1.102625 #0.069579 #1.307030 #1.465980 #1.607900 #0.672227
O2 #0.772041 #0.603466 #1.055500 #0.061864 #1.270730 #0.925862 #1.594800 #0.654613
O3 #0.777290 #0.607813 #1.070250 #0.065507 #1.274111 #1.498661 #1.585500 #0.630388
O4 #0.792425 #0.623051 #1.075000 #0.065971 #1.292542 #1.614589 #1.601800 #0.667748
O5 #0.824864 #0.645795 #1.062500 #0.072118 #1.319198 #1.546438 #1.606800 #0.790335
O6 #0.782461 #0.612800 #1.056250 #0.064175 #1.286237 #1.630242 #1.587400 #0.630168
O7 #0.779124 #0.616873 #1.046500 #0.066218 #1.274570 #1.165389 #1.594500 #0.659037
O8 #0.802346 #0.634199 #1.087250 #0.071542 #1.299570 #1.763439 #1.604100 #0.674576
O9 #0.833264 #0.654838 #1.115000 #0.075453 #1.330568 #1.759986 #1.615150 #0.786921
O10 #0.761044 #0.604142 #0.953500 #0.065280 #1.259864 #1.549491 #1.587800 #0.599381
T1 1.604727 1.254878 2.183250 0.128365 2.592228 2.678139 3.200600 1.354370
T2 1.592283 1.254382 2.126000 0.133585 2.588086 2.944266 3.197900 1.367032
T3 1.585843 1.242933 2.197750 0.145473 2.588863 3.441581 3.198600 1.345032
T4 1.576159 1.247527 2.053500 0.138564 2.577805 3.030074 3.200300 1.361711

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.844280 #0.630417 #1.092250 #0.085635 #1.315367 #1.726010 #1.603000 #0.640004
O2 #0.845964 #0.645346 #1.606500 #0.089315 #1.312235 #1.575763 #1.614000 #0.771678
O3 #0.817602 #0.614788 #1.243500 #0.079827 #1.288043 #1.409726 #1.598700 #0.654341
O4 #0.867853 #0.640333 #1.083000 #0.091259 #1.336293 #1.449644 #1.607700 #0.732353
O5 #0.838955 #0.639883 #1.084000 #0.082547 #1.305378 #1.010796 #1.619550 #0.581985
O6 #0.835992 #0.626715 #0.930000 #0.079008 #1.313566 #1.003546 #1.592750 #0.550907
O7 #0.822984 #0.623207 #1.285500 #0.082639 #1.304397 #1.075382 #1.604700 #0.678993
O8 #0.601271 #0.452286 #0.725500 #0.057405 #1.277994 #1.318417 #1.199025 #0.558128
O9 #0.814931 #0.606472 #1.225000 #0.077033 #1.290347 #1.243713 #1.600200 #0.640662
O10 #0.857063 #0.646835 #1.084000 #0.086342 #1.322430 #1.322114 #1.607800 #0.619166
O11 #0.864147 #0.645238 #1.424000 #0.090449 #1.325989 #1.043533 #1.607800 #0.777623
O12 #0.599136 #0.450672 #0.804250 #0.056034 #1.274798 #1.083320 #1.198050 #0.535650
O13 #0.826840 #0.619446 #1.225000 #0.084912 #1.295897 #1.265091 #1.595900 #0.675998
O14 #0.819696 #0.624956 #0.840000 #0.079269 #1.291396 #1.052214 #1.602900 #0.583502
O15 #0.847917 #0.619880 #1.219500 #0.084652 #1.326152 #1.172568 #1.605700 #0.630067
O16 #0.857661 #0.629738 #1.312500 #0.087169 #1.331872 #1.998385 #1.594700 #0.703286
O17 #0.862760 #0.648357 #1.181000 #0.096843 #1.325436 #0.999955 #1.610500 #0.731035
O18 #0.872284 #0.641825 #1.245000 #0.094459 #1.341372 #1.247677 #1.599000 #0.725841
O19 #0.848706 #0.643331 #1.021500 #0.085447 #1.319490 #1.348671 #1.616550 #0.597289
O20 #0.858862 #0.639702 #1.322000 #0.085354 #1.323555 #1.078801 #1.615000 #0.707967
O21 #0.884459 #0.665087 #1.321000 #0.096914 #1.338578 #1.228236 #1.620100 #0.790705
T1 1.704577 1.253971 2.497000 0.179419 2.640039 2.445900 3.196900 1.340887
T2 1.642358 1.250006 1.713500 0.162548 2.594757 2.638611 3.209100 1.161536
T3 1.697231 1.263106 2.521500 0.160493 2.628241 2.424341 3.217100 1.326781
T4 1.688574 1.234610 2.013000 0.195825 2.637506 2.396944 3.197500 1.429622
T5 1.648643 1.241359 2.055500 0.157128 2.602739 2.244246 3.205000 1.119171
T6 1.695598 1.264218 2.199500 0.158680 2.625423 2.304692 3.214600 1.252916
T7 1.664099 1.268359 2.846000 0.174743 2.606645 2.755690 3.210600 1.454783
T8 1.689405 1.252326 2.640500 0.161380 2.625777 2.719109 3.206100 1.365662
T9 1.681762 1.240074 2.706000 0.183142 2.631159 3.871303 3.203100 1.357149
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Table 26: A comparison of the partial charges determined from several methodologies for the zeolite ITW. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 27: A comparison of the partial charges determined from several methodologies for the zeolite IWR. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 28: A comparison of the partial charges determined from several methodologies for the zeolite LTA. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.840574 #0.611792 #0.835500 #0.180065 #1.315152 #1.236348 #1.604300 #0.741553
O2 #0.813600 #0.608390 #1.092000 #0.179054 #1.288585 #1.806717 #1.597600 #0.590049
O3 #0.820837 #0.614291 #1.097500 #0.184146 #1.293832 #1.367206 #1.596700 #0.609744
O4 #0.846110 #0.608623 #0.836000 #0.180400 #1.323135 #1.441871 #1.607200 #0.717924
O5 #0.859922 #0.643163 #1.226500 #0.201695 #1.327026 #1.577672 #1.611200 #0.625795
O6 #0.842261 #0.636955 #1.193500 #0.197349 #1.309582 #0.869510 #1.608600 #0.602452
O7 #0.831820 #0.631860 #1.197500 #0.191537 #1.301028 #1.228051 #1.607500 #0.550541
O8 #0.831311 #0.634294 #1.175000 #0.195710 #1.299568 #0.913098 #1.604900 #0.571226
T1 1.723219 1.263875 1.951000 0.367562 2.643608 2.889204 3.210800 1.409604
T2 1.645847 1.240710 2.356500 0.378506 2.597631 2.824515 3.206600 1.137202
T3 1.642460 1.241498 2.324000 0.390033 2.596262 2.317070 3.208500 1.171857

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.839118 #0.630172 #1.261750 #0.085013 #1.313027 #1.741146 #1.603600 #0.618896
O2 #0.843989 #0.614703 #1.293000 #0.086636 #1.323564 #1.444606 #1.593550 #0.673473
O3 #0.866585 #0.652382 #1.284000 #0.093278 #1.322655 #1.441895 #1.619700 #0.713836
O4 #0.827555 #0.627248 #1.186000 #0.077589 #1.301861 #1.261527 #1.600200 #0.586175
O5 #0.860975 #0.648243 #1.185500 #0.084670 #1.327446 #2.202023 #1.616700 #0.633000
O6 #0.790221 #0.600611 #1.155000 #0.073616 #1.266700 #1.679767 #1.592000 #0.536732
O7 #0.838628 #0.635739 #1.202000 #0.080632 #1.307157 #1.760690 #1.605050 #0.581273
O8 #0.841823 #0.636281 #1.232000 #0.084407 #1.311585 #1.002726 #1.602800 #0.638124
O9 #0.812811 #0.623605 #1.205000 #0.079325 #1.286171 #1.031749 #1.601050 #0.620145
O10 #0.806493 #0.625802 #1.207500 #0.081738 #1.281955 #1.310079 #1.603000 #0.586244
O11 #0.869632 #0.655646 #1.285000 #0.091112 #1.334987 #1.062766 #1.614150 #0.716356
T1 1.648874 1.245486 2.336500 0.155545 2.598546 3.634355 3.205800 1.158010
T2 1.673079 1.263014 2.448000 0.157508 2.608291 2.619011 3.207300 1.228301
T3 1.645207 1.270828 2.460500 0.171142 2.594310 2.281789 3.207400 1.273614
T4 1.692198 1.248900 2.572000 0.182027 2.628265 2.880800 3.203700 1.304648

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.842753 #0.625933 #0.836000 #0.087299 #1.315060 #0.988171 #1.610975 #0.613643
O2 #0.846730 #0.631021 #0.630375 #0.089280 #1.315597 #1.019592 #1.605050 #0.613353
O3 #0.791667 #0.588079 #0.805750 #0.079605 #1.273945 #1.075884 #1.602900 #0.499753
T1 1.663940 1.238026 1.451250 0.172733 2.609642 2.051619 3.212000 1.170051
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Table 29: A comparison of the partial charges determined from several methodologies for the zeolite MEL. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.843265 #0.623882 #0.641750 #0.048484 #1.315509 #1.493043 #1.608250 #0.679259
O2 #0.881753 #0.650377 #0.826625 #0.053115 #1.348495 #1.285919 #1.617425 #0.738859
O3 #0.828209 #0.616709 #0.833375 #0.047765 #1.296798 #1.584613 #1.593600 #0.620660
O4 #0.864767 #0.634869 #0.846625 #0.050175 #1.336163 #1.940847 #1.611425 #0.648694
O5 #0.813394 #0.609886 #1.025000 #0.045011 #1.287860 #1.776980 #1.599775 #0.577454
O6 #0.761917 #0.572966 #0.715250 #0.046727 #1.330011 #1.782576 #1.414488 #0.694826
O7 #0.826319 #0.618024 #1.046500 #0.046684 #1.297375 #2.193106 #1.604050 #0.650133
O8 #0.831974 #0.616434 #1.004625 #0.046636 #1.306058 #1.542452 #1.604700 #0.605671
O9 #0.809412 #0.598926 #0.779250 #0.044035 #1.281712 #1.387504 #1.587975 #0.572957
O10 #0.866089 #0.635508 #1.050500 #0.049292 #1.337218 #1.369662 #1.613475 #0.641601
O11 #0.823106 #0.613450 #0.741750 #0.047082 #1.291987 #1.504845 #1.600950 #0.595992
O12 #0.826323 #0.620063 #0.796500 #0.049435 #1.298638 #1.454432 #1.602600 #0.609375
O13 #0.820278 #0.622461 #0.620250 #0.050373 #1.290111 #2.217501 #1.601850 #0.615348
O14 #0.837859 #0.633702 #0.826250 #0.053697 #1.306608 #1.669240 #1.593875 #0.629637
O15 #0.838900 #0.620514 #0.437750 #0.046632 #1.309227 #2.120329 #1.607000 #0.711323
T1 1.699405 1.243302 1.192500 0.103246 2.642065 3.295909 3.209350 1.339780
T2 1.667732 1.256814 2.140000 0.093866 2.607773 3.554782 3.208950 1.284944
T3 1.695879 1.244356 2.001750 0.093418 2.633994 3.042785 3.209700 1.228833
T4 1.687707 1.248627 1.902750 0.096497 2.628893 2.969491 3.215475 1.271280
T5 1.663010 1.269781 1.288000 0.107195 2.605343 3.520813 3.206175 1.270592
T6 1.688653 1.255519 1.104500 0.092958 2.626607 3.479821 3.216250 1.410651
T7 1.692825 1.250891 2.087000 0.093732 2.633243 3.306192 3.215425 1.206681
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Table 30: A comparison of the partial charges determined from several methodologies for the zeolite MFI. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.812756 #0.612289 #1.256500 #0.023434 #1.289508 #0.813448 #1.592200 #0.629223
O2 #0.800286 #0.615808 #1.220750 #0.023331 #1.262405 #1.663786 #1.596600 #0.676732
O3 #0.830423 #0.628698 #1.301250 #0.025087 #1.302665 #1.268555 #1.605600 #0.699564
O4 #0.876707 #0.646556 #1.379750 #0.027345 #1.349651 #1.853311 #1.617100 #0.890848
O5 #0.806643 #0.621805 #1.241500 #0.024484 #1.273010 #1.121451 #1.579400 #0.685823
O6 #0.854529 #0.644379 #1.298000 #0.026966 #1.325058 #0.965921 #1.605800 #0.730051
O7 #0.839699 #0.631952 #1.282500 #0.025378 #1.308551 #1.377047 #1.605200 #0.717836
O8 #0.819606 #0.627006 #1.285750 #0.025380 #1.292602 #1.369556 #1.604100 #0.728404
O9 #0.854475 #0.649432 #1.366000 #0.027600 #1.323218 #0.945420 #1.600400 #0.866262
O10 #0.866223 #0.644069 #1.347500 #0.026720 #1.338361 #1.400093 #1.613100 #0.847244
O11 #0.839733 #0.635648 #1.338500 #0.026383 #1.310795 #1.432549 #1.609400 #0.767188
O12 #0.849428 #0.639501 #1.349750 #0.026689 #1.319395 #1.370706 #1.603700 #0.729016
O13 #0.812204 #0.609569 #1.269750 #0.023469 #1.288463 #1.330262 #1.598300 #0.594329
O14 #0.845021 #0.633968 #1.318500 #0.025698 #1.309831 #0.789448 #1.606400 #0.629697
O15 #0.828525 #0.627594 #1.287750 #0.024588 #1.304375 #1.190833 #1.605400 #0.726754
O16 #0.827681 #0.627408 #1.301000 #0.025263 #1.302036 #1.084822 #1.606900 #0.662392
O17 #0.830414 #0.629221 #1.290250 #0.025985 #1.302076 #1.764955 #1.596100 #0.703073
O18 #0.814873 #0.617956 #1.269000 #0.024557 #1.286424 #1.082974 #1.601900 #0.650095
O19 #0.815776 #0.631158 #1.263250 #0.025523 #1.278495 #1.231286 #1.595300 #0.659701
O20 #0.861544 #0.650261 #1.335250 #0.028015 #1.321613 #1.428941 #1.613000 #0.792421
O21 #0.815211 #0.617878 #1.255500 #0.024055 #1.299911 #0.953060 #1.603700 #0.638186
O22 #0.868550 #0.643586 #1.348250 #0.027174 #1.331272 #0.940178 #1.603400 #0.763142
O23 #0.831259 #0.630038 #1.324500 #0.025954 #1.310953 #1.120396 #1.604400 #0.666548
O24 #0.857511 #0.642641 #1.349000 #0.027195 #1.321742 #0.946162 #1.608200 #0.711934
O25 #0.828464 #0.626451 #1.300750 #0.025654 #1.302269 #1.285784 #1.600500 #0.688055
O26 #0.820475 #0.631643 #1.284000 #0.025934 #1.291455 #0.896089 #1.604400 #0.723836
T1 1.675872 1.261921 2.574000 0.047788 2.125496 2.506777 3.202900 1.471130
T2 1.650100 1.266461 2.464000 0.049084 2.591465 2.767898 3.193100 1.415903
T3 1.666638 1.273531 2.619000 0.052428 2.607546 2.377791 3.209900 1.570886
T4 1.682993 1.264025 2.753000 0.057283 2.631453 3.013863 3.205300 1.673518
T5 1.685525 1.256231 2.610500 0.048122 2.619111 2.221662 3.206600 1.236660
T6 1.686442 1.258634 2.633750 0.049689 2.621685 2.400224 3.213600 1.457912
T7 1.681602 1.273166 2.607250 0.049716 2.614923 2.503852 3.206400 1.406183
T8 1.650026 1.273572 2.573500 0.056042 2.598744 2.781100 3.203400 1.401748
T9 1.664775 1.254047 2.551750 0.048886 2.602924 2.248624 3.210300 1.391082
T10 1.676310 1.252315 2.655000 0.053513 2.617991 2.206401 3.204500 1.397538
T11 1.679095 1.261924 2.656000 0.052648 2.617950 2.059066 3.208900 1.319640
T12 1.667726 1.271929 2.600250 0.052412 2.609946 2.513511 3.208200 1.496823
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Table 31: A comparison of the partial charges determined from several methodologies for the zeolite MRE. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 32: A comparison of the partial charges determined from several methodologies for the zeolite MTF. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 33: A comparison of the partial charges determined from several methodologies for the zeolite MTN. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.838341 #0.636638 #1.264000 #0.108183 #1.303202 #1.081445 #1.605300 #0.781725
O2 #0.853597 #0.647222 #1.379500 #0.112860 #1.311945 #1.096359 #1.605900 #0.639862
O3 #0.843794 #0.616353 #1.315000 #0.098305 #1.316512 #0.838499 #1.614350 #0.564250
O4 #0.853919 #0.637194 #1.288000 #0.107383 #1.323272 #1.056646 #1.615300 #0.770893
O5 #0.856629 #0.637821 #1.323250 #0.111376 #1.319481 #1.698191 #1.601750 #0.691246
O6 #0.857910 #0.634965 #1.357125 #0.107887 #1.325573 #1.391480 #1.611875 #0.631223
O7 #0.836775 #0.611291 #1.274750 #0.096572 #1.310967 #1.679766 #1.602000 #0.570677
O8 #0.834741 #0.623153 #1.288125 #0.100829 #1.303321 #0.857429 #1.603150 #0.648135
O9 #0.856469 #0.652877 #1.256500 #0.110656 #1.317065 #1.007673 #1.612725 #0.752638
O10 #0.812865 #0.623274 #1.229875 #0.101704 #1.281293 #1.399876 #1.596175 #0.673685
T1 1.714197 1.248681 2.661250 0.196312 2.642374 2.344290 3.221925 1.200938
T2 1.665538 1.260810 2.503375 0.209716 2.605227 2.235656 3.212650 1.418501
T3 1.660901 1.288138 2.492000 0.215183 2.593384 2.646563 3.199750 1.448882
T4 1.684215 1.253133 2.708250 0.228415 2.629561 2.860793 3.205100 1.278824

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.848700 #0.631056 #1.327250 #0.119933 #1.323579 #1.505834 #1.613000 #0.628307
O2 #0.871171 #0.675947 #1.390000 #0.141823 #1.336796 #1.359423 #1.616600 #0.740782
O3 #0.834201 #0.630985 #1.351000 #0.130839 #1.313621 #1.612016 #1.606800 #0.642260
O4 #0.859589 #0.646338 #1.347500 #0.121113 #1.328096 #1.353860 #1.611300 #0.729885
O5 #0.824927 #0.602102 #1.051000 #0.102464 #1.299637 #1.665530 #1.602000 #0.627267
O6 #0.856612 #0.650917 #1.330500 #0.126715 #1.331297 #2.256836 #1.616400 #0.718222
O7 #0.830104 #0.619570 #1.204500 #0.105062 #1.300827 #1.103725 #1.602100 #0.614030
O8 #0.824618 #0.622139 #1.152500 #0.102402 #1.292809 #0.409279 #1.601900 #0.674061
O9 #0.861489 #0.641611 #1.042000 #0.113679 #1.325189 #1.308033 #1.613900 #0.708891
O10 #0.822645 #0.613500 #1.193500 #0.105622 #1.293847 #0.830946 #1.598800 #0.634168
O11 #0.803633 #0.605663 #1.270500 #0.130402 #1.278853 #1.548757 #1.588300 #0.606858
O12 #0.844122 #0.657477 #1.333500 #0.141959 #1.315498 #1.515724 #1.611900 #0.751617
O13 #0.847669 #0.671665 #1.145000 #0.143876 #1.318010 #1.129832 #1.610200 #0.673192
T1 1.250867 0.948155 1.619250 0.157981 2.605646 1.921050 2.405925 1.327315
T2 1.690302 1.254723 2.763500 0.253511 2.640442 3.030839 3.217000 1.364987
T3 1.719066 1.228096 2.465500 0.207662 2.647849 3.102625 3.221900 1.293994
T4 1.678293 1.325455 2.695500 0.283134 2.627308 3.623639 3.214300 1.378594
T5 1.653236 1.304781 2.504500 0.289336 2.609643 2.779376 3.210800 1.368627
T6 1.682819 1.245896 2.525000 0.220786 2.619989 1.771859 3.214300 1.348636

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.864901 #0.604205 #1.291667 #0.061404 #1.337452 #1.613699 #1.610275 #0.671229
O2 #0.852376 #0.598225 #1.140500 #0.059367 #1.326329 #1.279922 #1.607425 #0.625904
O3 #0.878547 #0.619615 #1.263000 #0.062411 #1.336374 #1.291006 #1.613500 #0.623130
O4 #0.869889 #0.607163 #1.330375 #0.062973 #1.340560 #1.335637 #1.598450 #0.717798
T1 1.724488 1.211406 2.398375 0.120560 2.667415 2.728300 3.221725 1.277009
T2 1.734395 1.210106 2.667375 0.125594 2.666994 3.098054 3.208550 1.355356
T3 1.726723 1.198218 2.635500 0.126521 2.663049 2.680223 3.192100 1.430032
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Table 34: A comparison of the partial charges determined from several methodologies for the zeolite MTT. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 35: A comparison of the partial charges determined from several methodologies for the zeolite MTW. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.837643 #0.607387 #1.063250 #0.090625 #1.309344 #1.018398 #1.603300 #0.595392
O2 #0.872476 #0.628345 #0.886750 #0.097267 #1.343401 #1.137745 #1.609000 #0.664396
O3 #0.840610 #0.611059 #1.068500 #0.092421 #1.312561 #1.087458 #1.609000 #0.616486
O4 #0.836915 #0.611925 #0.945000 #0.092670 #1.309204 #1.161684 #1.602500 #0.589599
O5 #0.870453 #0.630788 #1.144750 #0.102446 #1.341040 #1.047904 #1.609800 #0.702374
O6 #0.827124 #0.606823 #1.041250 #0.090916 #1.293338 #1.033541 #1.590100 #0.651659
O7 #0.869665 #0.633302 #1.013000 #0.102615 #1.340776 #1.201895 #1.612200 #0.747245
O8 #0.861298 #0.629084 #1.133250 #0.094480 #1.325985 #1.064819 #1.611000 #0.695423
O9 #0.848059 #0.615347 #1.084500 #0.094480 #1.323955 #1.024658 #1.613700 #0.633079
O10 #0.867742 #0.628453 #0.973250 #0.098555 #1.341630 #1.262210 #1.607000 #0.736174
T1 1.713204 1.234173 1.939500 0.186285 2.653769 2.223910 3.219400 1.260808
T2 1.705853 1.239517 2.060500 0.185741 2.644524 2.135728 3.211800 1.224855
T3 1.701563 1.233556 2.080000 0.189225 2.642312 2.231311 3.211700 1.357885
T4 1.706688 1.250073 2.176250 0.218295 2.655829 2.289642 3.209500 1.497421
T5 1.700744 1.242804 2.058750 0.189486 2.640486 2.217719 3.223200 1.236227
T6 1.725093 1.246933 2.048500 0.195410 2.665796 2.354869 3.210800 1.365363
T7 1.695933 1.248302 1.944500 0.186846 2.633045 2.256292 3.202400 1.417592

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.849199 #0.616404 #1.205000 #0.163043 #1.325883 #0.676248 #1.601350 #0.641245
O2 #0.837291 #0.623080 #1.198500 #0.167469 #1.311268 #1.182581 #1.611600 #0.666382
O3 #0.877484 #0.644385 #1.232000 #0.179441 #1.333312 #0.977803 #1.605800 #0.784285
O4 #0.826371 #0.613906 #1.135500 #0.159850 #1.297023 #1.448983 #1.603400 #0.566170
O5 #0.816799 #0.610858 #1.255500 #0.160522 #1.281168 #1.415957 #1.585300 #0.589910
O6 #0.877759 #0.637898 #1.376500 #0.184356 #1.347130 #1.203686 #1.614400 #0.820787
O7 #0.819422 #0.607468 #1.275000 #0.160418 #1.291057 #0.840995 #1.592300 #0.580517
O8 #0.869350 #0.632857 #1.357500 #0.181204 #1.343410 #1.078994 #1.625600 #0.678147
O9 #0.851427 #0.633906 #1.401000 #0.183147 #1.320284 #1.198774 #1.611300 #0.728462
O10 #0.846327 #0.625316 #1.340500 #0.171287 #1.319725 #0.976574 #1.604500 #0.526399
O11 #0.862290 #0.628504 #1.315000 #0.173797 #1.339514 #1.328559 #1.614100 #0.584433
T1 1.690363 1.220692 2.356000 0.331490 2.637172 2.037638 3.215200 1.377073
T2 1.681698 1.234244 2.165500 0.324515 2.624713 2.394601 3.201300 1.226610
T3 1.676303 1.258161 2.548000 0.336453 2.620329 2.392392 3.206900 1.364121
T4 1.691604 1.256155 2.565000 0.322933 2.627022 2.333719 3.217000 1.203818
T5 1.702706 1.271709 2.818000 0.398066 2.648471 2.285955 3.226000 1.648604
T6 1.699006 1.251021 2.741500 0.342669 2.635690 2.184563 3.213500 1.182245
T7 1.707128 1.253492 2.633000 0.338873 2.644723 2.530619 3.216000 1.125280
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Table 36: A comparison of the partial charges determined from several methodologies for the zeolite MWW. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 37: A comparison of the partial charges determined from several methodologies for the zeolite NON. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.790895 #0.593532 #1.126000 #0.027279 #1.280475 #1.111715 #1.578700 #0.284796
O2 #0.833843 #0.635731 #1.227167 #0.031385 #1.310720 #1.681552 #1.600000 #0.587873
O3 #0.794107 #0.610009 #1.159292 #0.029453 #1.272090 #1.477424 #1.581617 #0.590175
O4 #0.872114 #0.668946 #1.346667 #0.037625 #1.337909 #1.763811 #1.612133 #0.698874
O5 #0.861233 #0.652418 #1.388500 #0.037239 #1.332827 #1.375796 #1.592200 #0.672322
O6 #0.857946 #0.631009 #1.301750 #0.033364 #1.335832 #1.005034 #1.592667 #0.666913
O7 #0.859944 #0.649304 #1.264500 #0.033329 #1.329857 #1.001765 #1.610967 #0.682066
O8 #0.868837 #0.643810 #1.370333 #0.034299 #1.329160 #1.466432 #1.610100 #0.711657
O9 #0.846644 #0.618428 #1.314083 #0.031451 #1.321357 #1.573025 #1.601567 #0.639914
O10 #0.834191 #0.611971 #1.324667 #0.030492 #1.304072 #1.577961 #1.599033 #0.670958
O11 #0.831718 #0.603448 #1.336333 #0.028460 #1.305594 #2.016514 #1.603300 #0.560485
O12 #0.859959 #0.622535 #1.436000 #0.029611 #1.327314 #1.339141 #1.598317 #0.618897
O13 #0.849377 #0.619100 #1.381333 #0.028896 #1.307094 #1.178213 #1.610567 #0.603327
T1 1.635292 1.270535 2.436500 0.062692 2.596112 3.378764 3.175567 1.287849
T2 1.719204 1.244694 2.720667 0.059546 2.646207 3.435430 3.213667 1.263272
T3 1.693895 1.225048 2.796167 0.057262 2.629415 2.954027 3.203333 1.190321
T4 1.667771 1.257411 2.393000 0.062048 2.614983 2.472439 3.194333 1.256426
T5 1.704724 1.241965 2.625083 0.067139 2.646182 2.763190 3.194167 1.324911
T6 1.666829 1.249534 2.422500 0.058382 2.615540 2.845413 3.202700 0.932278
T7 1.619070 1.263875 2.691000 0.083569 2.610079 2.983122 3.199300 1.279856
T8 1.689182 1.276679 2.706000 0.065888 2.627656 3.015911 3.199200 1.422358

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.857752 #0.618818 #1.343875 #0.101167 #1.327308 #1.369866 #1.609150 #0.676209
O2 #0.846183 #0.600735 #1.329500 #0.094923 #1.318217 #1.343443 #1.601475 #0.568621
O3 #0.842847 #0.594787 #1.339750 #0.094270 #1.319116 #1.060598 #1.609650 #0.586891
O4 #0.757459 #0.538898 #1.187125 #0.089121 #1.335045 #1.548463 #1.410613 #0.681239
O5 #0.864821 #0.613816 #1.211500 #0.103336 #1.330964 #1.394509 #1.607900 #0.686301
O6 #0.874883 #0.624679 #1.356250 #0.106613 #1.345186 #1.564625 #1.614650 #0.790984
O7 #0.869145 #0.621778 #1.356000 #0.100473 #1.332031 #1.389929 #1.614300 #0.583140
O8 #0.880481 #0.629840 #1.382000 #0.102451 #1.345532 #1.055091 #1.616300 #0.603715
O9 #0.835374 #0.610678 #1.289750 #0.099665 #1.300645 #1.923080 #1.601750 #0.704271
O10 #0.882478 #0.632250 #1.206000 #0.108200 #1.351881 #1.374096 #1.615100 #0.782013
T1 1.727427 1.223308 2.742125 0.192783 2.661475 2.740482 3.220200 1.244286
T2 1.297421 0.913172 2.001250 0.157455 2.666422 3.021278 2.414675 1.416120
T3 1.709944 1.221189 2.671750 0.195447 2.647841 2.476481 3.210100 1.138377
T4 1.698228 1.239423 2.537250 0.208297 2.649313 3.049589 3.219450 1.458622
T5 1.695698 1.250135 2.610500 0.208826 2.638266 3.300699 3.216500 1.520352
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Table 38: A comparison of the partial charges determined from several methodologies for the zeolite RRO. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 39: A comparison of the partial charges determined from several methodologies for the zeolite RTE. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 
 
 
 
 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.853362 #0.641025 #1.267500 #0.132878 #1.326433 #1.849433 #1.607800 #0.681636
O2 #0.811640 #0.592673 #1.122500 #0.113262 #1.297132 #0.857595 #1.599400 #0.424240
O3 #0.820591 #0.620952 #1.201000 #0.123565 #1.288053 #1.389464 #1.593300 #0.649560
O4 #0.836791 #0.624147 #1.230750 #0.124716 #1.307286 #1.925440 #1.603700 #0.599563
O5 #0.878438 #0.635506 #1.289500 #0.138020 #1.356575 #1.656154 #1.610500 #0.843780
O6 #0.801737 #0.619876 #1.204500 #0.126950 #1.261059 #1.290418 #1.589700 #0.666033
O7 #0.857105 #0.642446 #1.276750 #0.136671 #1.323386 #1.514451 #1.610100 #0.714660
O8 #0.834162 #0.623293 #1.167000 #0.127119 #1.306779 #1.524386 #1.599900 #0.614775
O9 #0.812452 #0.617080 #1.211000 #0.123723 #1.286397 #1.786591 #1.603100 #0.598594
O10 #0.840731 #0.625151 #1.166000 #0.129893 #1.318958 #1.437099 #1.610200 #0.656338
T1 1.694996 1.247306 2.443500 0.237192 2.632902 2.726927 3.212600 1.135995
T2 1.660489 1.253421 2.523750 0.276681 2.608864 3.432070 3.202500 1.476154
T3 1.667413 1.253961 2.470500 0.254556 2.616137 3.616574 3.203700 1.266877
T4 1.659381 1.262970 2.426250 0.262152 2.601939 2.809005 3.201800 1.439809
T5 1.705365 1.239227 2.211500 0.255446 2.640565 2.648723 3.211600 1.237858

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.841554 #0.625491 #1.271250 #0.190201 #1.311914 #1.121425 #1.600300 #0.686080
O2 #0.852555 #0.633969 #1.304000 #0.198377 #1.320024 #1.142337 #1.610700 #0.716957
O3 #0.827210 #0.614554 #1.243500 #0.184601 #1.302685 #1.321338 #1.603300 #0.638933
O4 #0.862405 #0.642735 #1.316000 #0.203462 #1.326732 #1.058271 #1.605200 #0.724496
O5 #0.853731 #0.629434 #1.260500 #0.190881 #1.317322 #1.744066 #1.598700 #0.714854
O6 #0.833504 #0.612295 #1.230000 #0.177720 #1.307095 #1.098171 #1.594800 #0.670894
O7 #0.821019 #0.620814 #1.233500 #0.181080 #1.287606 #1.620371 #1.601900 #0.624686
O8 #0.827474 #0.612876 #1.132000 #0.178128 #1.295513 #2.230091 #1.605100 #0.663800
T1 1.671936 1.245950 2.561000 0.396450 2.617447 2.192095 3.203300 1.364818
T2 1.671222 1.244873 2.487500 0.364923 2.610263 2.669512 3.196400 1.333130
T3 1.694568 1.246149 2.449500 0.362555 2.625382 3.448927 3.208800 1.377782
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Table 40:  comparison of the partial charges determined from several methodologies for the zeolite RUT. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 41: A comparison of the partial charges determined from several methodologies for the zeolite RWR. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 
Table 42: A comparison of the partial charges determined from several methodologies for the zeolite SAS. The ‘site’ 

is the atom label used in the crystal structure for the zeolite available from the IZA database. 
 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.854380 #0.629854 #1.254000 #0.129840 #1.322975 #1.479180 #1.610300 #0.683745
O2 #0.837180 #0.622934 #1.273500 #0.126961 #1.307406 #1.672850 #1.610500 #0.600501
O3 #0.837673 #0.620695 #1.247000 #0.125084 #1.310625 #1.017366 #1.608500 #0.654737
O4 #0.853339 #0.630612 #1.275000 #0.131996 #1.319904 #1.141702 #1.610900 #0.692253
O5 #0.844439 #0.637609 #1.252500 #0.132931 #1.310251 #1.162176 #1.611600 #0.718795
O6 #0.824651 #0.616479 #1.230000 #0.125152 #1.297378 #1.081904 #1.604100 #0.596843
O7 #0.833963 #0.624155 #1.208000 #0.128871 #1.296652 #1.985372 #1.596300 #0.666368
O8 #0.838963 #0.618136 #1.219000 #0.127490 #1.308448 #1.403440 #1.603000 #0.705954
O9 #0.835597 #0.635450 #1.179000 #0.130230 #1.300695 #1.157850 #1.606700 #0.663805
O10 #0.829926 #0.617739 #1.221000 #0.124549 #1.299606 #1.294131 #1.606400 #0.622075
O11 #0.825613 #0.612189 #1.116000 #0.122360 #1.290392 #1.988223 #1.594100 #0.686276
T1 1.680447 1.236351 2.553000 0.254438 2.623079 2.726566 3.218300 1.266050
T2 1.659259 1.256429 2.467500 0.263256 2.598016 2.732048 3.205600 1.346353
T3 1.666344 1.250561 2.377000 0.257795 2.605017 2.796311 3.210600 1.320090
T4 1.689390 1.242409 2.407500 0.250774 2.621313 2.908931 3.208600 1.410884
T5 1.697737 1.252022 2.519000 0.245921 2.625596 2.459578 3.215600 1.226574

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.846797 #0.628028 #1.187500 #0.150236 #1.316645 #1.601582 #1.608600 #0.717407
O2 #0.827210 #0.629624 #1.176625 #0.148241 #1.291092 #1.174653 #1.600525 #0.709400
O3 #0.872791 #0.627597 #1.186250 #0.151890 #1.348735 #1.552825 #1.620425 #0.757663
O4 #0.847666 #0.618757 #1.070250 #0.146745 #1.318486 #0.954594 #1.600200 #0.661051
T1 1.723981 1.246987 2.319375 0.300184 2.657689 2.989061 3.223600 1.431369
T2 1.657052 1.261870 2.360500 0.297847 2.599870 2.642465 3.204425 1.422203

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O3 #0.811093 #0.623647 #1.002000 #0.126831 #1.310551 #1.827748 #1.611500 #0.587623
O4 #0.769958 #0.593055 #0.971500 #0.116204 #1.272831 #1.105545 #1.588000 #0.564313
O5 #0.821484 #0.640406 #1.118000 #0.139171 #1.314182 #1.436051 #1.609500 #0.645829
O6 #0.793245 #0.613367 #1.059500 #0.127245 #1.294351 #1.335007 #1.602250 #0.560563
T1 1.586061 1.251435 2.066500 0.247356 2.602402 2.847595 3.207950 1.169464
T2 1.586061 1.224055 2.157250 0.267823 2.591262 2.725116 3.205775 1.173460
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Table 43: A comparison of the partial charges determined from several methodologies for the zeolite SGT. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 44: A comparison of the partial charges determined from several methodologies for the zeolite SOD. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

 
 

Table 45: A comparison of the partial charges determined from several methodologies for the zeolite STF. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.815078 #0.604771 #1.219125 #0.068938 #1.280467 #1.213927 #1.589800 #0.549952
O2 #0.862182 #0.629761 #1.301375 #0.073935 #1.330728 #0.989225 #1.618350 #0.562976
O3 #0.845409 #0.613828 #1.273750 #0.069571 #1.317101 #1.177124 #1.605300 #0.604510
O4 #0.847451 #0.636056 #1.251250 #0.074543 #1.311976 #1.210585 #1.613000 #0.703137
O5 #0.856687 #0.633620 #1.233063 #0.074105 #1.319800 #0.961670 #1.610575 #0.708105
O6 #0.836451 #0.611281 #1.225688 #0.067422 #1.305501 #0.987548 #1.608950 #0.634144
O7 #0.832902 #0.597917 #1.264500 #0.063859 #1.307560 #0.881217 #1.608100 #0.631020
T1 1.693844 1.241182 2.566125 0.145299 2.627677 2.155113 3.218100 1.107039
T2 1.656341 1.245415 2.444250 0.146991 2.600313 2.274359 3.207700 1.329895
T3 1.680486 1.228731 2.356125 0.141325 2.620307 1.790881 3.216700 1.330585
T4 1.718452 1.239822 2.603125 0.131084 2.642022 2.104259 3.220550 1.301496

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.855875 #0.609182 #0.985000 #0.340640 #1.323208 #1.291708 #1.598200 #0.692997
T1 1.711750 1.218363 1.970000 0.681280 2.646549 2.583417 3.196300 1.385995

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.848546 #0.640922 #1.376500 #0.154388 #1.316417 #0.972483 #1.595900 #0.770799
O2 #0.829409 #0.616010 #1.297500 #0.143493 #1.306423 #1.205480 #1.603700 #0.704159
O3 #0.889879 #0.654323 #1.432500 #0.167294 #1.359861 #0.964466 #1.618600 #0.905599
O4 #0.845644 #0.625682 #1.334500 #0.154786 #1.317341 #1.306200 #1.600100 #0.664490
O5 #0.809793 #0.609416 #1.234500 #0.131604 #1.278519 #0.976335 #1.597750 #0.639092
O6 #0.849456 #0.631326 #1.299000 #0.146708 #1.322944 #1.466328 #1.612300 #0.686537
O7 #0.867133 #0.640316 #1.312500 #0.147657 #1.338718 #1.420293 #1.609000 #0.775891
O8 #0.820208 #0.611539 #1.259000 #0.132877 #1.287285 #1.503686 #1.603600 #0.655708
O9 #0.815286 #0.612153 #1.241500 #0.140781 #1.281470 #1.094892 #1.594600 #0.622351
O10 #0.858857 #0.638865 #1.224000 #0.153894 #1.330812 #1.179168 #1.610300 #0.646342
T1 1.683803 1.262073 2.544000 0.307548 2.624623 2.451114 3.209800 1.292737
T2 1.686836 1.232817 2.566000 0.267311 2.622720 2.695781 3.212000 1.395290
T3 1.666007 1.270080 2.516500 0.281592 2.604347 2.390979 3.205700 1.364568
T4 1.693587 1.242060 2.734500 0.302308 2.643711 2.211890 3.201800 1.576780
T5 1.684051 1.243458 2.743500 0.323301 2.633423 2.271218 3.206800 1.481519
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Table 46: A comparison of the partial charges determined from several methodologies for the zeolite STT. The ‘site’ 
is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.792497 #0.597795 #1.170500 #0.035459 #1.258581 #1.598649 #1.589200 #0.516646
O2 #0.861932 #0.633805 #1.308500 #0.035530 #1.330981 #1.028360 #1.600100 #0.716448
O3 #0.853070 #0.640948 #1.320000 #0.038576 #1.325618 #1.273083 #1.612000 #0.733870
O4 #0.815141 #0.605042 #1.233500 #0.064095 #1.291176 #0.733442 #1.597000 #0.611392
O5 #0.826733 #0.621317 #1.210500 #0.034682 #1.301334 #2.131219 #1.600300 #0.718873
O6 #0.807380 #0.615841 #1.206500 #0.033605 #1.275098 #1.465771 #1.592900 #0.653453
O7 #0.852860 #0.644150 #1.269500 #0.038891 #1.320889 #1.610307 #1.609800 #0.745988
O8 #0.816147 #0.604862 #1.240500 #0.032141 #1.292180 #1.278869 #1.601400 #0.573552
O9 #0.806325 #0.619317 #1.202500 #0.034330 #1.281612 #1.434539 #1.599400 #0.648877
O10 #0.841328 #0.629834 #1.338500 #0.038078 #1.309762 #1.473473 #1.602500 #0.635342
O11 #0.790497 #0.608137 #1.165500 #0.033560 #1.259402 #2.245257 #1.587100 #0.684628
O12 #0.825951 #0.618623 #1.234500 #0.037022 #1.303144 #1.439996 #1.600600 #0.635851
O13 #0.798332 #0.619124 #1.175000 #0.035284 #1.260480 #1.217384 #1.592800 #0.592307
O14 #0.830829 #0.632326 #1.227000 #0.035846 #1.297222 #1.902127 #1.603400 #0.683263
O15 #0.853442 #0.650480 #1.278500 #0.038232 #1.318769 #0.950197 #1.605800 #0.763369
O16 #0.817557 #0.632039 #1.201500 #0.036819 #1.274581 #1.453051 #1.595900 #0.710584
O17 #0.852778 #0.648468 #1.312000 #0.039381 #1.323366 #1.266692 #1.615300 #0.697000
O18 #0.829470 #0.612874 #1.294500 #0.035160 #1.306235 #1.623972 #1.604400 #0.690812
O19 #0.830502 #0.616101 #1.287500 #0.034750 #1.304950 #1.386493 #1.607000 #0.659230
O20 #0.831195 #0.625179 #1.257000 #0.034666 #1.301921 #1.777956 #1.606000 #0.638988
O21 #0.869855 #0.648340 #1.260500 #0.039658 #1.334094 #1.805139 #1.609600 #0.864641
O22 #0.811838 #0.617567 #1.223500 #0.035762 #1.276533 #1.622947 #1.593800 #0.694560
O23 #0.844277 #0.633138 #1.227500 #0.038113 #1.317932 #1.815120 #1.608200 #0.673689
O24 #0.815009 #0.619808 #1.243000 #0.035893 #1.285628 #1.037567 #1.595200 #0.699130
O25 #0.847325 #0.617689 #1.297500 #0.037119 #1.323281 #1.489825 #1.606800 #0.643419
O26 #0.865334 #0.637541 #1.291000 #0.035911 #1.332585 #0.960320 #1.613600 #0.699685
O27 #0.841468 #0.639133 #1.252000 #0.035982 #1.310158 #1.452543 #1.615300 #0.701643
O28 #0.885862 #0.660075 #1.399000 #0.041932 #1.348304 #1.253214 #1.613700 #0.867754
O29 #0.851004 #0.638625 #1.339500 #0.039510 #1.324643 #1.082563 #1.615800 #0.614756
O30 #0.817596 #0.629235 #1.238000 #0.037153 #1.291000 #1.031561 #1.590000 #0.673032
O31 #0.817648 #0.614164 #1.253500 #0.034012 #1.291746 #1.387443 #1.599300 #0.605058
O32 #0.849650 #0.632277 #1.260500 #0.037163 #1.319970 #0.844720 #1.607850 #0.738582
T1 1.706483 1.235888 2.629000 0.066287 2.636546 2.723255 3.212800 1.323941
T2 1.688809 1.233518 2.531500 0.066251 2.624244 3.102450 3.201900 1.380140
T3 1.641778 1.284680 2.363500 0.074453 2.571611 3.176943 3.202700 1.237763
T4 1.653312 1.264955 2.495000 0.079084 2.593089 3.049112 3.205300 1.223465
T5 1.654799 1.244725 2.465500 0.066441 2.595973 2.762692 3.210700 1.278289
T6 1.678250 1.244952 2.529000 0.066485 2.614067 2.457232 3.209400 1.267842
T7 1.649654 1.247851 2.455500 0.072524 2.590404 2.502229 3.204300 1.356822
T8 1.644306 1.266708 2.357000 0.072163 2.583851 4.000000 3.197700 1.534274
T9 0.000000 0.000000 2.637500 0.076495 2.621403 2.371920 3.208200 1.481577
T10 0.000000 0.000000 2.461000 0.077873 2.596769 3.104586 3.190300 1.428648
T11 0.000000 0.000000 2.576000 0.076216 2.615883 2.538425 3.213600 1.341706
T12 1.673197 1.238885 2.447500 0.069814 2.591029 2.707779 3.204000 1.458679
T13 0.000000 0.000000 2.499000 0.071448 2.607115 2.675008 3.209900 1.360995
T14 0.000000 0.000000 2.630500 0.073656 2.624308 2.801543 3.207000 1.301581
T15 0.000000 0.000000 2.426000 0.071857 2.588682 2.396652 3.204000 1.448311
T16 1.654670 1.255834 2.715500 0.153078 2.635421 2.703969 3.210300 1.362391
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Table 47: A comparison of the partial charges determined from several methodologies for the zeolite TON. The 
‘site’ is the atom label used in the crystal structure for the zeolite available from the IZA database. 

 
 
 
 
 

 
Figure 7: The structure for BEC with the acidic T-site in green, oxygen sites in red, and the remaining T-sites in 

blue. 
 

 
 

Figure 8: The structure for MFI with the acidic T-site in green, oxygen sites in red, and the remaining T-sites in 
blue. 

 

Site EEM QEQ EQEQ QTPIE HI DDEC Bader REPEAT
O1 #0.837006 #0.610553 #0.945500 #0.837006 #1.308526 #1.131120 #1.595800 #0.586424
O2 #0.865856 #0.629019 #1.137750 #0.865856 #1.334305 #0.709914 #1.600700 #0.701765
O3 #0.842158 #0.610353 #1.053000 #0.842158 #1.314922 #0.824440 #1.604300 #0.620782
O4 #0.837087 #0.608184 #1.053250 #0.837087 #1.307435 #0.466038 #1.588700 #0.638066
O5 #0.872603 #0.628130 #0.845750 #0.872603 #1.343575 #1.185252 #1.605500 #0.707800
O6 #0.871717 #0.632906 #1.020500 #0.871717 #1.342691 #1.543971 #1.606000 #0.753907
T1 1.704154 1.241687 2.053250 1.704154 2.643616 1.763262 3.209200 1.230957
T2 1.715199 1.238659 1.875750 1.715199 2.653652 1.834232 3.207000 1.339276
T3 1.704642 1.230997 2.068500 1.704642 2.645531 2.108280 3.184700 1.368202
T4 1.709504 1.246602 2.185000 1.709504 2.658925 2.418200 3.185100 1.508821
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Figure 9: The structure for MWW with the acidic T-site in green, oxygen sites in red, and the remaining T-sites in  
blue. 

 
Figure 10: The structure for TON with the acidic T-site in green, oxygen sites in red, and the remaining T-sites in 

blue. 
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Figure 11: Comparison of partial charge for each tetrahedral atom in zeolite FER as a function of level of 

optimization using the REPEAT (left) and iterative Hirshfeld (right) methods. 
 

 
 

Figure 12: Comparison of partial charge for each tetrahedral atom in zeolite NON as a function of level of 
optimization using the REPEAT (left) and iterative Hirshfeld (right) methods. 
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Figure 13: Comparison of partial charge for each tetrahedral atom in zeolite TON as a function of level of 
optimization using the REPEAT (left) and iterative Hirshfeld (right) methods. 
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Figure 14: Simulated N2 (top) and O2 (bottom) adsorption isotherms (left) and heats of adsorption (right) for 
FAU at 140K using HI substituted partial charges on the Anne Boutin Forcefield (2-Site), Clay Forcefield (CFF), 

Dreiding Forcefield (DRE), Nicholas Forcefield (NIC) and TraPPe-ZEO Forcefield (TZ). 
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