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ABSTRACT 

Insufficient data exists on the effects of prompt fast neutron activation on metals found 

commonly in nuclear devices and the urban environment.  Different metals such as Ti, Au, Fe, and 

Cu were activated using the Flattop Criticality Benchmark at the Device Assembly Facility on the 

Nevada Test Site using a known neutron spectra and flux to determine a baseline cross section 

value.  Cross section information gathered from these neutron activation measurements could 

provide information that helps government and law enforcement agencies to correctly trace the 

origin of a nuclear device’s fuel or component features. 

Based on activation products produced in the Flattop benchmark irradiations, chemical 

separation methods were developed to isolate higher specific activity samples for doping simulated 

urban melt glass debris.  Extraction chromatography batch contact studies using resins from 

Eichrom Technologies were performed to determine the retention of stable scandium and titanium. 

Column studies adapted from these contact studies were optimized using higher mass loading for 

later use to purify 46Sc, 47Sc, and 48Sc produced from natural titanium through the n-p nuclear 

reaction. 

This method shown above could also be applied to the field of nuclear medicine for use in 

extracting 44Sc (a positron emitter) from 44Ti.  Positron emitting radionuclides such as 44Sc, or 

more commonly 13C, 14N, and 18F can be utilized in Positron Emission Tomography (PET), which 

is a form of nuclear diagnostic medicine used to model metabolic processes.  All of these isotopes 

have half-lives of a few minutes to a few hours, which requires localized medical cyclotrons and 

chemistry laboratories for production followed by separation. 
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In recent years, interest has been shown in using longer-lived radioisotopes such as 52Mn 

for positron emission tomography, which has a significantly longer half-life of 5.591 days and 

similar positron decay energy.  The isotope 52Mn could easily be produced at a cyclotron, 

chemically separated, and shipped further distances allowing for a wider use of PET while 

minimizing the need to purchase cyclotrons and chemistry laboratories.  In this research, chemical 

separation methods solvent extraction and extraction chromatography were employed to separate 

stable Mn from Cr using trioctylamine (TOA) ligand.  Once developed, this method will be used 

to separation medically produced quantities of 52Mn from 52Cr. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation for Research 

“The Manhattan Project, effected by the United States during World War II, forever 

changed the technical, social and political framework of the world.”1  

Development of the nuclear industry led to the significant advancement in energy 

production, medical treatments, and weapon capabilities.  Fission of a nucleus provided the 

capability to release 109 times more energy than the exothermic release from a chemical reaction 

of equal mass.  Controlled nuclear reactions can be used to produce energy in a reactor, or used to 

produce radioisotopes useful to irradiation of cancerous tumors.  However, the main driving force 

behind the advent of nuclear technology was for the development of significantly more devastating 

weapons compared to conventional explosives.  

In the summer of 1945, two nuclear weapons, nicknamed Little Boy and Fat Man were 

dropped on Japan over the course of three days.  Little Boy, a gun-type design fueled by 235U with 

an explosive yield of ~15 kilotons, and Fat Man, an implosion type design fueled by 239Pu with an 

explosive yield of ~21 kilotons, caused a combined 210,000 fatalities by the end of 1945.1  Single 

explosive devices of such devastation had never been seen before hence the name “Weapons of 

Mass Destruction”.   

After WWII, an arms race began between the United States and the Soviet Union (USSR) 

leading to proliferation in the number, type, and explosive yield of nuclear weapons.  By 1986, the 

Soviet Union had an arsenal of 45,000 warheads averaging five hundred kilotons each which was 

enough to destroy over 60% of the United States land and water mass from the combination of the 

initiation detonation and the subsequent radiation fallout.1  The United State of America had 
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comparable arsenal as well which led to the term Mutually Assured Destruction (MAD) defining 

the state of the world where either side could completely annihilate at least 40% of an adversary’s 

population and 70% of its industry.  Even today, after the Cold War, after significant reduction in 

the nuclear weapons stockpile, the United States and Russia each possess thirty four tons of 

weapons-grade plutonium waiting for disposal with a total potential up to 20,000 weapons if placed 

in the wrong hands.2  In attempts to safeguard against use of these weapons, forensic methods have 

been developed in an attempt to deter smuggling or misuse of nuclear materials.   

In addition to a new class of weapons, the field of medicine was advanced by the nuclear 

industry.  Use of radioisotopes produced from nuclear reactors or accelerators have allowed for 

significant advancements in imaging, diagnostics, and treatment in the fields of oncology, 

cardiology, and neurology.  Generally, gamma and x-ray emitters are useful for imaging tumors 

or tracing the biological pathways of compounds in the human body.  This is performed through 

the addition of a tracer (radionuclide) to a biomolecule that emits electromagnetic radiation as it 

passes through the system.  The electromagnetic radiation produced from annihilation of a beta 

and electron is measured using a detector and is converted images.  Alpha and beta emitters are 

useful for treating tumors through localized emission of radiation to cancer cells.  An example of 

this method is through the use of the 131I tracer which will concentrate in the thyroid gland.3–5 

In either case, the production of nuclear fuels for weapons or radioisotopes used for medical 

applications require separation methods to isolate isotopes of interest.  In the case of nuclear fuels, 

separations can be utilized to measure specific chemical or physical characteristics linking 

materials to their production sources.  In this dissertation work, chemical separation methods were 

applied to concentrate radioisotopes to determine nuclear information useful for post detonation 

nuclear forensics and isolate radioisotopes to perform imaging of the human body.   
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1.2 Research Goals 

In the 1st portion of the dissertation, the fast neutron reaction capture cross sections of 

elements found in the earth’s crust, weapon device composition, and urban construction materials 

was determined using gamma decay measurements of activated metal foils.  These activated metal 

samples were produced simulating the effects of 235U fission using the Flattop Benchmark Critical 

Assembly.  Batch contact studies using extraction chromatography (EXC) resins from Eichrom 

Technologies were performed to measure the retention of stable scandium and titanium in varying 

concentrations of mineral acids.  Additional kinetic studies were performed to insure sufficient 

extraction was performed.  Based on the optimal separation factor, the separation conditions were 

applied to gravity column studies to separate Sc from Ti followed by adaption to vacuum column 

studies allowing a significant increase in mass loading to simulate the quantities of  46-50Sc 

produced from activated natTi foil.   

In the 2nd portion of the dissertation, solvent extraction (SX) was employed to separate 

stable Mn from Cr.  This work is being performed for the purpose of isolating activated 52Mn from 

52Cr for use in positron emission tomography (PET).   Based on previous SX studies using the 

trioctylamine (TOA) ligand, quantification and improvements in third phase reduction, extraction 

kinetics, and retention studies were performed to determine optimal separation parameters.  Resins 

based on the SX studies were produced through Triskem International SAS for characterization by 

batch contact studies to determine separation potential.   
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1.3 Dissertation Overview 

 Chapter 1 provides a general introduction to nuclear forensics and nuclear medicine in 

addition to the project goals for this dissertation. Chapter 2 provides background information on 

the separation methods used for the project goals.  Chapter 3 provides experimental procedures, 

data analysis, and background on instruments utilized.  Chapter 4 displays the results of the neutron 

activation on metal foils using the Flattop Critical Benchmark Assembly followed by flux and 

cross section determination.  Chapter 5, 6, 7, and 8 consist of experimental separation studies 

followed by discussion of the results.  Chapter 5 shows the use of extraction chromatography resins 

for batch contact studies of titanium and scandium.  Chapter 6 shows the gravity and vacuum 

column separation studies of titanium and scandium based on the work in chapter 5.  Chapter 7 

shows the solvent extraction studies of manganese from chromium.  Chapter 8 shows the use of 

extraction chromatography resins based on chapter 7 to separate manganese from chromium.  

Chapter 9 provides a conclusion of the work followed by an appendix displaying all of the raw 

data for the dissertation. 
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1.4 Nuclear Forensics 

In the event of a nuclear detonation, significant quantities of fissile material (233U, 235U, or 

293Pu) or fissionable material (237Np, 238U, or 234U)1 in a supercritical form will fission emitting 

thermal energy, radioactive particles, and fission products.  Characteristics of the device, in 

addition to the altitude of the detonation will affect the distribution of energy and the prompt versus 

long term radiation effects from nuclear fallout. As part of the detonation, an enormous flux of fast 

neutrons (1020 at ground zero for a device on the surface)6  would be emitted varying by distance 

from the epicenter.  The surrounding environment will be irradiated by neutrons in the form of 

scatter or capture reactions and gamma/X-rays which contribute significantly to the dose received 

near ground-zero.   

The magnitude of the blast and energy of the emitted particles is determined by the 

isotopics of the fuel being used and the type of device being utilized.  The three fissile isotopes 

designated special nuclear materials (SNM) refer to 233U, 235U, and 293Pu.  Fissile isotopes are able 

to fission through the capture of thermal (0.025 eV) neutrons causing the nucleus to be excited 

causing deformation releasing into two primary fission fragments along with neutrons and gamma 

radiation. 

There are two general methods used in employment of supercritical masses.  The one stage 

fission device also known as the gun type weapon involves two subcritical masses propelled by an 

explosive assembling a supercritical mass.  One state fission devices are usually composed of 235U 

or 233U.  The second method, known as an implosion device involves a subcritical mass of fissile 

fuel surrounded by explosive propellant.  Compression of a subcritical mass causes the fuel density 

to drastically increase while decreasing the surface area.  Additionally, boosting was developed to 
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greatly increase the number of high energy neutrons release useful for extend the longevity and 

efficiency of the fission fuel process.1  With the rapid compression by the explosive propellant, 

the pressure and temperature increase radically causing fusion to occur in the secondary 

component.  Fusion as opposed to fission occurs through the combination of smaller atomic masses 

isotopes (e.g. D-D, Li-D, D-T) producing fast energy neutrons.  These neutrons energies vary from 

3 to 4 MeV for D-D fusion and 14 MeV for D-T.1 

It is important to note that each different fuel type has different enrichment thresholds 

needed to be considered weapons grade material.  For 235U, weapons grade fuel consists of greater 

than 90% (93.5 wt.% in the US) while 239Pu requires greater than 93% 239Pu and 7% or less 240Pu.  

Different quantities are necessary based on properties of the device such as propellant and 

reflectors.  A bare isolated sphere of critical mass needs far greater quantities of fuel (52 kg for 

235U) as opposed to a fully reflected sphere (17 kg 235U).   However, a bare isolate sphere of about 

10-15 kg of 239Pu (based on metallurgical phase) or 233U would be all that is needed for 

supercriticality.6  

1.4.1 Pre and Post Detonation Analysis 

 In the field of nuclear forensic analysis (NFA), there is pre-detonation and post detonation 

analysis.  Pre-detonation analysis involves measurements of isotopic signatures and other well 

characterized features of fuels, device materials, and or entire weapons which are generally 

traceable to unique manufacturing and enrichment processes of each nuclear state.  Post detonation 

analysis is significantly more complicated as the process of a nuclear detonation will alter the 

isotopic makeup of the fuel through fission creating fission products and releasing radiation 

through heat and particulates that will changed the surrounding environmental.  Depending where 
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the device is detonated will greatly affect how the components are spread out and mixed in the 

surrounding area.  It is unlikely that a significant fraction of the total analyte inventory will be 

recovered for analysis.1    

 The ability to trace information about the initial device has to be reverse engineered based 

of what can be recovered.  Each fuel type (233U, 235U, and 239Pu) has different fission product yield, 

average neutron yield, and average neutron energy spectra which can be used to work backwards 

to characterize the initial device.  The isobar yield of fission by thermal and fast neutron on 233U, 

235U, and 239Pu is shown below in figure 1.   

 

 

Figure 1: Isobar yield of fission of 233U, 235U, and 239Pu7 
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Each of the spectra differ enough that it may be feasible to trace enough information about 

the device employed if the distribution of products was evenly spread.  However, the radioactive 

products will fractionate based on their relative volatility to a degree based the altitude, location, 

weather patterns as well as inconsistent mixing with the natural and urban environment.  Previous 

nuclear testing performed were used to see the effects on the natural environment, but no testing 

has been performed on a contemporary urban center.  The common urban environment consists 

mainly of roads, sidewalks, buildings, and automobiles which are comprised of cement, concrete, 

metal, and glass.  In the US, a standard composition for each common form of these materials has 

been determined by the National Institute of Standards and Technology (NIST) which is invaluable 

for post detonation analysis.   Fast-neutrons (1-20 MeV)8 released from a detonation will interact 

with elemental nuclei in these materials through capture or scatter reactions.   Capture reactions 

are of particular interest, as they will produce activation products based on the neutron flux and 

energy of the fuel employed in the detonation.6 

Post detonation analysis includes nondestructive (NDA) and destructive analysis (DA) 

methods to collect information from debris such as melt glass. The NDA method generally refers 

to radioanalytical measurements of samples to gain insight about isotopic composition. Isotopes 

such as 137Cs, are ideal due to their significant γ transition ratios and small number of unique full 

energy photopeaks.  Other NDA tools such as microscopy are generally useful to gain 

morphological or structure characteristics used in sample preparation.  Samples with very high 

versus low activity would ideally be treated differently such as would melt glass versus metal 

samples.  In many cases, conclusive information cannot be gained through NDA such as in the 

case of multiple isotopes with interfering decay schemes or energies.   
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The DA method is essential for forensic samples such as melt glass that require changes in 

physical and or chemical properties to measure other forms of radiation.  Alpha, beta and x-ray 

radiation has a significantly shorter range than gamma rays and will likely be attenuated in a solid 

sample.  Other methods can be employed to measure isotopic and elemental abundance 

information through use of inductively coupled plasma mass spectrometry (ICP-MS) or optical 

emission spectroscopy (ICP-OES) for samples in the ppm to ppt range.  These methods are 

generally used for lower activity samples.  More information on these instruments is shown below 

in chapter 3. 

1.4.2 Neutron Activation  

The process of neutron activation is used to simulate the effects of a specific neutron 

spectra irradiating samples to produce radioisotopes.  NDA of radioisotopes with neutrons is 

known as Neutron Activation Analysis (NAA) while radioisotopes produced required chemical 

separation to remove interfering species or require concentration to increase specific activity is 

known as Radiochemical Neutron Activation Analysis (RNAA).1  The general equation for 

neutron activation is shown below as equation 1.  

 

ܴ௉ ൌ ܰ ∙ Φ ∙  8(1)      ߪ

 

Rp or the rate of isotope production is determined from the initial flux of neutrons per unit 

volume Φ, the capture cross section σ, and the number of targets per unit volume N.8  The flux and 

targets employed can vary based on the needs of the production experiment while the cross section 
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is a physical constant based on the probability of capture of a neutron at a given energy for a 

specific isotope.  In an ideal situation, the neutron flux and average neutron energy can be 

determined based on measuring the abundance and isotopic ratios of activation.  However, in a 

real world situation, activation products like fission products would be heterogeneously distributed 

and activation product isotopics would be used synergistically with fission product isotopics to 

trace origin of the material.   

1.4.3 Flattop Critical Assembly Benchmark 

Reverse engineering device information from an urban detonation requires simulating the 

effects of fissioning each fuel type on a known composite material (such as the previously 

mentioned NIST standards).  With the self-imposed moratorium on nuclear testing in 1992,1 a 

different method would be needed to simulate this process.   

Multiple benchmark critical assemblies built prior to the moratorium have been used to 

measure the effects of fissile species in various configurations including physical form, mass of 

fuel, power levels, and level of neutron reflection.  Among them, the Flattop bench mark critical 

assembly, was specifically for the purpose of fast neutron activation to measure reactivity 

coefficients.  Neutronic data for critical masses of 233U, 235U, and 239Pu has been meticulously 

characterized in this instrument allowing precise cross section verification for weapons and reactor 

programs.9  Using Flattop, common elements in urban materials were activated using a precise 

neutron energy spectrum meant to approximate a fast neutron flux from nuclear detonation.   

A schematic structure of the Flattop critical assembly machine version used for this 

research is shown below in figure 2 for an aerial view and in figure 3 for a side view.  Flattop is 

comprised a core of highly enriched uranium (HEU) enclosed in a thick natural uranium reflector.  
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The core consists of two screwed together sitting on a pedestal track that can be positioned using 

a hand crank.  The reflector is split into one stationary hemisphere, and two moveable quarter 

spheres on tracks.  One sphere is moved using either hydraulic pressure while the other uses a 

motor.  Additionally, there are three voids that can be filled with plugs or control rods composed 

of natural uranium to control the neutronics of the system.  Finally there is a glory hole between 

the two quarter spheres going into the HEU core where samples were placed for irradiation.9,10  An 

image of the Flattop assembly is shown below in figure 4. 

 

 

Figure 2: Schematic of Flattop (Aerial View)10 
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Figure 3: Schematic of Flattop (Side View)10 

 

 

 

Figure 4: Flattop Benchmark Criticality Assembly10 
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1.4.4 Application to Research 

 As previously stated in the research objectives, the Flattop critical assembly was used to 

irradiate elements founds in the earth’s crust, components of detonation device, and urban 

construction materials.  Use of a known neutron energy spectra and flux, fast neutron reaction 

cross sections by measuring the radioactive decay of activation products.  The three main reactions 

seen were n-p, n-2n, and n-γ.  Examples of these reactions are shown below in figure 5. 

 

݊ଵ଴
ଵ ൅ ܺே௓

஺ → 	 ேܻାଵ௓ିଵ
஺ ൅	 ଴ଵ݌

ଵ  

݊ଵ଴
ଵ ൅ ܺே௓

஺ → 	 ேܻିଵ௓
஺ିଵ ൅ 	2 ݊ଵ଴

ଵ  

݊ଵ଴
ଵ ൅ ܺே௓

஺ → 	 ܺேାଵ௓
஺ାଵ ൅  ߛ	

Figure 5: Nuclear reactions n-p, n-2n, and n-γ 

  

For gamma emitting isotopes of significant activity produced, determining the amount of 

activation product is simple and can be performed using NDA.  Difficulty arises when activation 

products produced do not have significant activity, clear gamma photopeaks, or are stable 

preventing the use of NDA.  DA must be used in these cases.  The elements irradiated were 

aluminum (Al) , gold (Au), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), iridium (Ir), nickel 

(Ni), lead (Pb), platinum (Pt), titanium (Ti), and tungsten (W).  All of these samples are found in 

NIST reference alloys, concretes, and cements.11 Additionally, Ti, Ir, and Au can be used to 

measure the fission rates of uranium and plutonium.12 Historically, test shots using Oralloy 
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incorporated Ti as an indicator of the fission fraction based on the fast neutron n-p reaction of 47Ti 

to 47Sc.13 

 In real world situations, samples collected will be in a different matrix requiring 

sophisticated DA to analyze isotopic composition.  Samples produced from a nuclear detonation 

will be composed variable amounts of metal, concrete, cement, and glass.  Production and 

characterization of melt glass standards is required matching similar environmental and detonation 

conditions so as to develop specific radioisotope separation methods.  Examples of different 

synthetic melt glasses comparing environments, and different bomb designs has been produced by 

Nizinski,14 and Molgaard.15   Experimental methods need to be produced to efficiently measure 

isotopic prior to real world samples.   Examples of sample digestion, and separation methodology 

using simulated melt glass was performed by Roman, and Bond,16 for separating multiple 1st row 

transition metals.  

 This dissertation work, involves developing a chemical separation method for application 

to activated scandium (46-50Sc) from natural titanium (46-50Ti) for use in producing artificial debris.  

The production of radioactive scandium is very minimal as shown later in the data and requires 

separation and concentration to increase specific activity.  The longest lived isotope produced is 

46Sc with an 83.79 day half-life.17  Improving capture cross section measurements of radioisotopes 

of Sc is important to the weapons stockpile in addition to use for nuclear forensics. 

Additionally, this separation method developed for nuclear forensic purposes could be 

applied to nuclear medicine.  Chemical separation methods developed for nuclear forensic 

purposes rely on the same principles and can be adapted for use in nuclear medicine.  The Ti/Sc 

separation mentioned previously could be applied to separate 44Ti from 45Sc which was found 

useful in nuclear imaging.18,19 
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1.5 Nuclear Medicine 

 In the third part of the research, chromatographic separation methods were applied for use 

in positron emission tomography (PET).  Positron emission tomography is a medical diagnostic 

tool that produced three-dimensional images of metabolic processes in the human body. A 

radionuclide tracer that emits positron is chemically bound to a biomolecule which is ingested by 

a patient.  Different biomolecules and radionuclides tracers are used depending on where you want 

it to concentrate in the human body.  Positron emitted from the tracer combine with electrons and 

annihilate into two 180 degrees 511 keV gammas.  These gammas are measured in coincidence by 

a ring of scintillation detectors such as sodium iodide (NaI).  Each measured γ corresponds to a 

slice of a total image constructed through computer analysis. PET individually or combined with 

computer tomography (CT) or magnetic resonance imaging (MRI) allows for details 

measurements of the body useful for diagnosing or determining treatment options.3  An example 

of a PET instrument  is shown below in figure 6.   

Figure 6: An example of a positron emission tomography (PET) instrument20 
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Clinical PET imaging is used primarily for three purposes: cancer diagnosis and 

management, cardiology and cardiac surgery, and neurology and psychiatry.   For cancer diagnosis 

and management, PET imaging is used to diagnose the type, the number, the primary, and the stage 

of a cancerous tumor.  Additionally, it can be used to look for residual diseases while measuring 

treatment response and detecting recurrence.  For cardiology and cardiac surgery, it can be used to 

diagnose and assess the condition of the heart such as in the case of coronary artery disease (CAD).  

This is needed to determine the risks of surgery, and to determine if a cardiac transplant is needed 

in addition to associated risks and limitations.  For neurology and psychiatry, it used to diagnose 

brain tumors, and determine risks involved with surgery.  It is also used to measure metabolic 

processes to diagnose cases of mental deterioration such as in the case of dementia or Alzheimer’s 

disease. The power of clinical PET has been shown to substantially alter patient management, 

through avoidance of futile aggressive therapy, high risk procedures, and improved cost 

effectiveness.3   A reference table of costs saved by PET per life-year in different clinical 

procedures is shown below in table 1.   

 

Table 1: Comparison of costs saved per year using PET by clinical procedures in 2005 

Procedure Cost/Life-Year Saved (US Dollars)3 

Liver Transplant $43,000-250,000 
Mammography (<50 years) $160,000  

Renal dialysis $116,000  
Chemotherapy $46,000  

Cardiac transplant $27,000  
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Many different isotopes have been utilized previously for PET.  In the past, the most 

prevalent were ones with short half-lives, and positron energies of ~0.5 MeV.  Some common 

examples are shown below in table 2. 

 

Table 2: Properties of some common positron emitting nuclides of interest3 

Nuclide Emode (MeV) Half-life (Minutes) Average Range in Water (mm) 
11C 0.326 20.4 1.1 
13N 0.432 9.96 1.5 
15O 0.696 2.03 2.5 
18F 0.202 109.8 0.6 

68Ga 0.783 68.3 2.9 
82Rb 1.385 1.25 5.9 

 

All of these isotopes consist of short half-lives that range from a few minutes to a few 

hours.  Use of these nuclides, require production and separation methods close to the treatment 

centers.  This requires a designated cyclotron, and staff to produce the isotopes of interest followed 

by chemical separation prior to shipping while trying to maintain a significant activity for potential 

medical use.  In the case of 18F, one of the most common isotopes, the production, separation, and 

medical treatment would have to be performed under 18.3 hours (10 half-lives).  Each additional 

treatment would require another round of production/separation.   
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1.5.1 Application to Research 

To reduce the need for cyclotrons, and radiochemistry laboratories at every hospital, longer 

lived PET radiometals such as 64Cu (12.7 hours), 89Zr (3.26 days), and 52Mn (5.59 days) have 

become more popular.20,21   Of these, 52Mn shows the most promise with an average positron 

energy of 0.24 MeV.  Additionally, in the case of full time-course of treatments (2-3 week periods), 

only one round of production/separation for 52Mn is required.21 

The isotope 52Mn has been produced either indirectly using 52Fe (8.3 hours)22 as a 

radionuclide generator or directly through activation of 52Cr.  The indirect method uses high energy 

3He, 4He, or protons onto Cr, Mn, or Ni targets to produce 52Fe.  This method is more involved 

requiring purification of 52Fe from the targets followed by separation of 52Mn as it grows in. The 

direct method involves activation of 52Cr with 10-20 MeV protons (p-n reaction) followed by a 

chemical separation.  The direct method is preferred over the indirect as it has fewer production, 

and separation steps.   The cross section of the p-n reaction of 52Cr at 10.5 MeV is 98 millibarns.23  

It is considered a high yield route available to small biomedical cyclotrons which can use natCr due 

to a 83.8% natural abundance of 52Cr and a small impurity formation of other Mn isotopes.22   

Application of 52Mn PET allows for imaging the cellular processes of organ structure, 

function, disease, and cancer.24   Use of longer lived radioisotopes makes it simpler to perform 

long term imaging of a system.  It has also been used measure cellular processes such as Ca2+ 

uptake pathways in the brain,24 and human stem cell expression.25   Significant bioaccumulation 

has been shown in the brain, liver, kidney, and pancreas26 while use of chelating agents allows for 

imaging of the rest of the body.  Examples of chelating agents used with 52Mn are dipyridoxyl 

diphosphate, macrocyclic Schiff-base ligands, cyclopentadienide, and porphyrin derivatives.27,28  
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These chelating agents have been repurposed from contrasting agents used in MRI procedure.27,28    

Radiostable Mn2+ has previously been used in MRI to image anatomical details, and trace neutral 

pathways.29  Mn2+ is a paramagnetic ion that works as analog for Ca2+ allowing it to enter excitable 

cells such as cardiac or neurons through voltage gated channels.  Once inside a cell, it can travel 

along neural axons cross synapses to different neurons.  This method of measuring neutral 

pathways with Mn is called manganese enhance magnetic resonance imaging (MEMRI).29   

Production and separation of 52Mn in the divalent oxidation state would allow for neural imaging 

application looking at the metabolic processes with PET and the anatomical structure with MRI. 
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CHAPTER 2: CHEMICAL SEPARATIONS 

2.1 Solvent Extraction 

 Solvent extraction (SX), otherwise known as liquid-liquid extraction, is a chemical 

extraction technique used to separate solutes between two immiscible or partially miscible solvent 

phases. Generally, there is an aqueous phase composed of a polar solvent such as water, acid or 

base and an organic phase consisting of a nonpolar solvent and extracting ligand.  Additionally, 

modifiers may be added to each phase to aid in enhancing or suppressing extraction of a solute 

between layers.  Difference classes of extraction ligands based on strength of the donating atom in 

addition to the oxidation, and ionic size of the analyte.  In the case of a metal cation, a ligand 

dissolved in the organic phase will form a chelate with the metal at one or more sites creating a 

neutral species when contacted.  The newly formed neutral species will have greater solubility in 

nonpolar solvents and will migrate across the phase boundary into the organic layer. Certain 

extracting ligands cannot readily complex with solutes unless aided by the addition of diluents to 

improve its physical properties.  For example, diluents are used to aid in solubilizing solid 

extractants into the liquid organic phase.  Alternatively, modifiers can be added to the aqueous 

phase to complex solutes reducing their extractability.30 

In a solvent extraction system, a solute dissolved the organic or aqueous layer will 

distribute between phases until equilibrium.  Usually the system requires mixing to increase 

surface area contact thereby promoting distribution of the analyte.   At system equilibrium, the 

ratio of solute concentration in the organic phase [A]org to the solute concentration in the aqueous 

phase [A]aq is known as the distribution ratio D of the solute concentration.  The distribution ratio 

equation is shown below as equation 2.30 
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ܦ  ൌ
ሾ஺ሿ೚ೝ೒
ሾ஺ሿೌ೜

      (2)30 

 

 The distribution ratio is always expressed as the ratio of the organic phase concentration to 

the aqueous phase concentration irrespective of each layer’s density.  In many solvent extractions, 

multiple solutes are distributed between the two immiscible phases and are designated with the 

subscript A, B, C, etc.  If the distribution ratio of each solute differs, then each solute can be 

separated from the others by a single or multistage solvent extraction.  The separation factor SF is 

the term used to designate the separation capability of two solutes in a solvent extraction system.  

The equation for separation factor is below as equation 3.31 

 

஺஻ܨܵ ൌ 	
஽ಲ
஽ಳ

       (3)31 

 

Alternatively, the decontamination factor DF can be determined to show the level of 

contamination of one analyte in regard to another in each separation fraction.  This is performed 

using the ratio of one analyte concentration to another in each separation or elution fraction.32 

In many practical applications of solvent extraction, it is common to use the term percent 

extraction %E which refers to the extraction potential of a solute between two immiscible phases 

in a system.  The equation for percent extraction is below as equation 4.30 

 

ܧ% ൌ ଵ଴଴∗஽

ሺଵା஽ሻ
          (4)30 
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 Use of this equation only occurs when a reasonable percent of the desired solute is extracted 

in one solvent extraction step.  For example, when the distribution ratio D equals 1 then the solute 

is equally distributed between both phases.30 

 Different vessels such as a separatory funnel or test tube is used to separate the two phases.  

Generally, the organic phase has a lower density and will form the upper layer while the aqueous 

phase has a higher density and will form the lower layer.30 There is sometimes a third phase that 

forms at the phase boundary which is a emulsion or colloid formation.  This is caused by the 

suspension of insoluble particles (dispersed phase) in another substance (continuous phase).  A 

schematic of the three phases is shown below in figure 7.33 

 

  

Figure 7: Schematic of solvent extraction phases in a test tube 
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 Phase disengagement or removal of the third phase is essential to extraction of the solute 

between phases.  There are many causes to third phase formation such as incompatibility of 

solvents, higher concentration of extraction, or impurities in the system.34 Third phase can be 

reduced/removed by the adding an aromatic diluent and or a modifier such as a strong Lewis base 

(e.g. octanol or tributyl phosphate).30 

2.2 Extraction Chromatography  

Extraction chromatography (EXC) is chemical separation technique based on solvent 

extraction composed of an inert support, a stationary phase, and a mobile phase. The inert support 

consists of porous silica or an organic polymer usually ranging from 50 to 150 μm in diameter.  

The stationary phase is comprised of a liquid extractant sorbed to the surface of the inert support 

which extracts analytes from the mobile phase.  The mobile phase is a aqueous polar phase 

consisting usually of dissolved solute in an acid matrix.30   Similar to solvent extraction, diluents 

may be added to aid solubilization of the extracting ligand while increasing the hydrophobicity of 

the stationary phase. Other modifier such as complexants may be added to enhance selectivity of 

an analyte or to promote stripping of strongly retained metal ions from a column.35 Extraction 

chromatography is preferential to SX due to a great reduction in organic waste produced which is 

compounded when dealing with radionuclides.30 

In EXC, the volume distribution ratio D measured in a solvent extraction system (SX) can 

be converted to the number of free column volumes to peak maximum defined as k’ (the resin 

capacity factor) using the volume ratio of the stationary Vs and mobile phase Vm.  This is shown 

below in equation 5.35 

 

݇ ′ ൌ ܦ ∙ ௩ೞ
௩೘

      (5)35 
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  In EXC systems, it is simpler to measure the weight distribution Dw and convert the 

volume distribution D or resin capacity factor k’.  The term Dw is determined by measuring the 

amount analyte retained for a known weight of resin and volume of aqueous solution.  The equation 

for measuring Dw is shown below in equation 6.3535 

 

௪ܦ ൌ ஺೚ି஺ೞ
஺ೞ

∙ ௏
௪

     (6)35 

 

The term A0 refers to the initial activity or analyte concentration in the known volume 

before extraction while As refers to the final activity or concentration after extraction.  The 

expression A0 - As refers to the activity or concentration sorbed onto a known weight of resin w in 

grams using a known total volume V of solution in mL.  Conversion of the weight distribution Dw 

to the volume D is shown below as equation 7. 

 

ܦ ൌ ௪ܦ ∙
ௗ೐ೣ೟ೝ
ௐி

      (7)35 

 

The term dextr refers to the extractant density and WF refers to weight fraction of extractant 

loading in grams per grams of resin.  Substituting equation 7 into 5 provides a direct relationship 

between the weight distribution and k’ and is shown below as equation 8.35,36 

 

݇ ′ ൌ ௪ܦ ∙
ௗ೐ೣ೟ೝ
ௐி

∙ ௩ೞ
௩೘

     (8)35,36 
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Achieving an optimal separation in EXC means minimizing band broadening to prevent 

early breakthrough while avoiding disproportionate cross-contamination of the analytes being 

separated.  Poor column efficiency through significant band broadening can negate a very selective 

extraction resin. Column efficiency can generally be expressed in terms of height equivalent to a 

theoretical plate (HETP).  Height equivalent to a theoretical plate is a concept based on the length 

of the column, the width of the peak, and volume of eluent.  Each theoretical plate represents a 

step or stage in the multi-stage extraction process where equilibrium is established between the 

mobile and stationary phase. Increasing the number of plates for a set column length allows for an 

improvement in analyte separation.37 

In extraction chromatography, the efficiency of a column is determined by flow 

phenomena, diffusion of the mobile phase with respect to the stationary phase, and extraction 

kinetics of the ligand.  Flow phenomena deals with eddy diffusion which are variations in the 

analytes phase flow path affecting band broadening.   Diffusion to the stationary phase refers to 

analytes ability to diffuse back and forth from the mobile phase to the stationary phase. While 

extraction kinetics refers to rate at which the extractant can electrochemically bind to analytes 

diffusing through the column.  Column efficiency additionally depends on the size of the resin 

particles, the porosity of the support, the extractant loading and mobile phase velocity, and the 

operating temperature.37 
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2.3 Application of Separation Methods 

2.3.1 Extraction of Scandium from Titanium 

 In this research, EXC will be used to extract scandium from titanium.  Shown later in 

chapter 4, fast neutron activation of titanium produces scandium in quantities less than 1% of the 

initial mass.  In any separation method, it is simpler, faster, and requires less extracting ligand to 

extract a smaller quantity of analyte from the initial bulk concentration.   

Extraction chromatography was used to separate Sc and Ti based on their difference in 

oxidation states and ionic radii in aqueous solution.  Neutral scandium has an electronic 

configuration of [Ar]3d14s2 and acts as a strong reducing agent in aqueous solutions primarily 

forming Sc3+.38,39  The diameter of the neutral Sc radius is 162 pm but decreases to 89 pm in 

trivalent form.  In hydrochloric acid, formation of ScCl3 becomes the predominant species from 1 

to M up while in nitric acid, Sc(NO3)3 primarily forms as the nitrate concentration increases.  At 

very low acid concentrations speciation will split between the hydroxide, oxide, and acid ion 

form.38,40 Alternatively, neutral titanium has an electronic configuration of [Ar]3d24s2 and 

primarily is in the divalent form Ti2+ or tetravalent TiO2+ form in solution under a pH of 2 at a 

voltaic potential above -1.5 volts. 38,39  The diameter of neutral Ti radius is 147 pm but decreases 

to 60.5 pm in tetravalent and 86 in divalent form.38,39 In hydrochloric acid, Ti remain in the oxide 

form TiO2 while at very low concentrations until ~9 M or higher when it may form the complex 

TiCl6.  In nitric acid, TiO2 may not react with nitrate unless the concentration is high forming 

Ti(NO3)4.
38,41 

 Separation methods using ion exchange, solvent extraction and extraction chromatography 

have been used previously to separate Sc and Ti.  Cation and anion exchange columns using AG 

MP-50,42 Dowex 50 X8,43 and Dowex 1 X844 were able to separate scandium from titanium with 
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a separation factor up to 90 and recoveries from 50 to 90%.  The main issue in using ion exchange 

is the significantly larger volume of acid (orders of magnitude) needed for column elution 

producing significantly more waste.  Solvent extraction using tributyl phosphate (TBP),42,43 

Trioctylamine (TOA),45 di(2-ethyl-1-hexyl) phosphoric acid (HDEHP),46 and N,N,N’,N’-tetra-n-

octyldiglycolamide (TODGA)47 showed better separation factors up to ~1000 with scandium 

recovery greater than 90% Sc.  Similar to ion exchange, solvent extraction produced large amount 

of organic waste in each separation which is significantly costlier if radionuclides are involved.  

Additionally, the HDEHP ligand was used in a EXC column and recovered greater than 98% of 

the initial scandium.  However, this method did not determine the titanium contamination.48,49 Use 

of EXC resins instead of ion exchange and solvent extraction would allow for a potentially high 

recovery while minimizing organic and aqueous waste.    

In addition to getting a large separation factor, analyte recovery, and minimizing waste, the 

separation process needs to be quick and efficient in the case of a nuclear detonation.  For this 

work, commercial available resins using ligands previously shown to separate scandium from 

titanium were employed.  Ln 1 (LaNthanide), and DGA resin produced by Eichrom technologies 

relying on the HDEHP ligand and TODGA ligand have been shown to previously separate these 

species.   

 The Ln 1 resin is comprised of 40% (w:w) di(2-ethyl-1-hexyl) phosphoric acid (HDEHP) 

sorbed onto Amberchrom CG-71 beads (50-100μm).50,51 The structure of the ligand HDEHP is 

shown below in figure 8.   
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Figure 8: HDEHP ligand structure 

 

Ln 1 resin, Ln 2 and Ln 3 vary in the number of oxygen atoms bonded between the 

phosphate and carbon chains.  Ln 1, shown above has four oxygen atoms bound to the phosphate 

while Ln 2 has only three and Ln 3 has only two.51,52 Having more oxygen atoms bound to the 

phosphate group in the case of Ln 1 allows for greater resonance and a stronger extraction potential 

than Ln 2 and Ln 3.   

Two different coordination forms have been theorized for the complexation between 

HDEHP ligands and a trivalent metal.  The first involves the monodentate complexation of six 

ligands around a single metal center acting as dimer pairs through shared hydrogen bonding while 

the second involves the bidentate complexation of six ligands shared between two metal centers 

(M2HDEHP6).52,53 Understanding of the coordination forms allow for prediction of the 

coordination number between the metal ion and ligands.  Both structures are shown below in figure 

9. 
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Figure 9: Trivalent metal complexation structure using HDEHP ligands52,53 

 

DGA resin is composed of 40 wt.% N, N, N’, N’-tetra-n-octyldiglycolamide (TODGA) 

sorbed onto Amberchrom CG-71 beads (50-100μm).54 The structure of the ligand is shown below 

in figure 10.   

 

 

Figure 10: TODGA ligand structure 

 

DGA has been shown to be tridentate in configuration for actinides and lanthanides, 

complexing trivalent metal ions through two carbonyl oxygen donors and one ether oxygen donor.  

Three stable five-membered chelate rings form between each of the three TODGA ligands and one 

metal ion forming a coordination number of 9.55 Although, Sc does not possess f shells, work 

performed by Zhu47 using solvent extraction and TODGA shows Sc(III) coordinating with an 

average of 2.6 ligands.  This may be due some ligands only binding with two oxygen atoms instead 

of three. 
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2.3.2 Extraction of Manganese from Chromium 

 Similar to the Sc/Ti separation, Mn produced from Cr will have a significantly smaller 

atomic fraction and will likely require less material to extract.  Separation of the two was 

performed using solvent extraction to determine potential ligands followed by EXC to reduce 

waste.  The separation was based on the difference in oxidation states and ionic radii in aqueous 

solution.  Neutral manganese has an electronic configuration of [Ar]3d54s2 and is predominantly 

Mn2+ in acid concentrations below a pH of 8.  The neutral radius is 127 pm but decreases to 67 pm 

in divalent form.  In hydrochloric acid, Mn will form different chloride species as the acid 

concentration increases.  At very low acid (less than 1 M), Mn will form oxides or hydroxides, 

from 1 to 4 M MnCl2 will be the dominant form, and from 6 to 12 M MnCl3
- will be the dominant 

form. In nitric acid, little complexation will occur and Mn will likely remain in the oxide or 

hydroxide form.38,56  Alternatively, neutral chromium has an electronic configuration of [Ar]3d54s1 

and is primarily Cr3+ in aqueous solutions below a pH of 4.  The neutral radius is 128 pm and 

decreases to 61.5 pm in trivalent form.   Separation of divalent Mn from trivalent Cr can be 

performed in acidic conditions under a pH of 4 with a voltaic potential between -0.6 and 1.4 volts. 

38,39   In hydrochloric or nitric acid, Cr speciation more complicated as the Cr strongly binds with 

water forming the species Cr(H2O)6
3+

  Cr2O3 preventing formation of anionic complexes due to 

strong binding of water.41   

 Separation methods using ion exchange and solvent extraction were used previously to 

separate Mn from Cr.  Cation and anion exchange columns using Dowex 50Wx8,57 and Ag-1x826 

were used to separate Mn(II) from Cr(III) with separation factors up to 50, and recoveries from 73 

to 99% but require significantly larger quantities of acid to run a column.  Solvent extractions 

using methyltrioctylammonium chloride (Aliquat 336),58 tris(2-ethyhexyl)phosphate,59 and 
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hexaacetateocalixarene60 demonstrated separation factors from 10 to 50 using Cr(VI) and Mn(II) 

with analyte recoveries from 50 to 80%.  The optimal method shown by Lahiri61 was to use the 

ligand trioctylamine (TOA) to separate Mn(II) from Cr(III) with a separation factor >10,000.  

Although, significant organic waste is produced in SX, it is necessary to determine ligand 

extraction potential and was explored prior to development of a EXC resin.   

 The ligand TOA consists of a nitrogen atom bonded to three R groups consisting of eight 

carbon chains.  The nitrogen center of TOA acts as an electron donor extracting divalent species 

in the case of Mn2+.  The structure of the TOA ligand is shown below in figure 11.  The equilibrium 

expression for extraction of Mn(II) into the organic from the aqueous phase is shown below in 

figure 12.    

 

 

Figure 11: Trioctylamine (TOA) ligand structure 

 

 

ሻݍଶሺ݈ܽܥ݊ܯ ൅ 2ሺܴଷ݈ܰܥܪሻሺ݃ݎ݋ሻ ↔ ሺܴଷܰܪሻଶ݈ܥ݊ܯସ	ሺ݃ݎ݋ሻ 

Figure 12: Equilibrium expression for the extraction of Mn(II) into the organic phase using TOA62 
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In hydrochloric acid, ~2 ligands of TOA are needed to extract Mn(II) from the aqueous to 

the organic phase.56   Opposed to the Sc/Ti extraction, the extraction here is unidentate and should 

not vary in the number of ligands of extractant coordinated to the metal center.  In the Sc/Ti system, 

both Ln and DGA resin use ligands that complex using bidentate configuration which may cause 

a variation in measured ligand coordination while in solution.  Instead of complexing with three 

bidentate ligands, two ligands may attempt to partially coordinate with the metal center instead of 

a single fully coordinated ligand creating a temporary four ligand coordination.  This should not 

occur in the Mn/Cr separation as the TOA ligand coordination is unidentate.  
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CHAPTER 3: METHODOLOGY 

3.1 Materials  

 In this research, all standards used (Ti, Sc, Cr, and Mn) were ICP-MS certified reference 

grade from British Drug Houses (BDH).  All acid solutions were prepared from ARISTAR Plus 

grade (metal impurities <1 ppb) nitric and hydrochloric acid from BDH.  All acids were titrated 

prior to use in any experiment using 0.1 N sodium hydroxide solution and phenolphthalein 

indicator solution from Sigma Aldrich.  All solutions were prepared using 18.2 MΩ.cm deionized 

water from a Millipore or Pall water purification system. All pipetting performed used Eppendorf 

pipettes and tips from VWR.  All mixing or sample agitation performed used Labquake™ shaker 

tables from Thermo Scientific. All plastic vials (2 mL, 5 mL, 15 ml, or 50 mL) used were composed 

of polypropylene from VWR.  All laboratory glassware, glass bottles used for chemical storage, 

and glass scintillations vials were composed of borosilicate glass from VWR. 

 All high purity germanium measurements performed used a 5 mL solid in plastic liquid 

scintillation vial source (84912-602) for energy calibration from 59.5 to 1836.1 keV.  The source 

was purchased from Eckert & Ziegler.    

 In the solvent extraction work performed, Trioctylamine ≥97.0% ligand, and 1-Octanol 

≥99.0% was purchased from TCI America.  ACS grade cyclohexane used was purchased from 

BDH.  Any deviation in solvent extraction materials used will be described in chapter 7. 

 In the batch contact studies performed, bulk 50 – 100 μm particle size Ln 1, and DGA resin 

was purchased from Eichrom Technologies.  Additional details about these resins are described in 

chapters 2, and 5.  All TOA resins used were specially produced from Triskem International and 

are discussed further in chapter 6.  Polypropylene spatulas for weighing resin, and BD Luer-lok 

tipped syringes used for filtration were purchased from VWR.  Acrodisc® syringe filters using 
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0.45 μm polytetrafluoroethylene membranes were purchased from Pall Life Sciences.   Any 

deviation in batch contact study materials used will be described in chapters 5, and 8.    

 In the column studies performed, 2 mL columns, 25 mL extension funnels, and a vacuum 

system with associated parts (Part# AR-12-Box) was purchased from Eichrom Technologies.  Any 

deviation in column study materials used will be described in chapter 6.    

3.2 Cross Section Determination using Flattop Criticality Benchmark 

3.2.1 Experimental Procedure 

 An HPGe well detector was calibrated using a water standard matching the geometry, 

volume, and container type of each activation sample.  A background activity measurement was 

taken of the room for one and twenty-four hours using a blank or empty plastic vial matching the 

geometry, volume, and container of each activation sample.  A comprehensive nuclide library of 

potential activation products including γ decay ratios, and energies was prepared for all metal foils 

planning to be irradiated.  

After each neutron activation run, individual activation foil solutions were measured for 

one hour to determine short-lived radioisotope production from the run. This was followed by a 

twenty-four hour measurement to get a more accurate and precise activity value for each 

radioisotope produced.   

3.2.2 Flattop Data Analysis  

3.2.2.1 Gamma Spectra Analysis 

Data analysis of each gamma measurement was performed using the Genie 2000 gamma 

software by Canberra.   Calibration of the instrument involved taking a measurement of the water 

standard for a few hours followed by calibration of the spectra using the certificate energy 

distribution and efficiency.  Each activation foil measurement spectra were processed using the 
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peak locate and area functions where peaks in a spectrum with counts above the baseline were 

identified, followed by integration and summation of all counts within the energy region.  The area 

correction function was used subtract background counts from previously measured background 

spectra matching volume, geometry, and measurement time.  Each spectrum was then calibrated 

for efficiency and energy distribution by channel using the previously made calibration file 

followed by nuclide identification on a list of proposed elements being activated.  The nuclide 

identification process involves matching gamma peaks by their energy and decay ratio to provide 

a total weighted activity and uncertainty in μCi for each isotope. 

3.2.2.2 Flux and Cross Section Determination 

 Cross section determination for each radioisotope produced was performed using a 

variation of the neutron activation equation shown in equation 1.  Instead of solving for the rate of 

production Rp, the cross section σ for each isotope produced can be determined using the activity 

right after irradiation (time zero) A, the flux of neutrons Φ, the target density n, the length of 

irradiation t, and the decay constant for said isotope λ.  The full equation is shown below in 

equation 9. 

 

ܣ ൌ ሾ1ߪ݊ߔ െ ݁ሺିఒ௧ሻሿ			 	 	 	   (9)63	

  

 For this work, the activity A at time zero was calculated using the measured activity of each 

isotope produced or activity final Af , using the standard radioactive decay equation shown below 

in equation 10.  In equation 10, the time variable t refers to the total length of time after irradiation 

(time zero) to the end of the measurement. 
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௙ܣ ൌ  ሺିఒ௧ሻ       (10)63݁ܣ

 

 To solve for the cross section σ of each isotope, the flux of neutrons Φ, and target density 

n are still needed.  The target density was based on the total number of isotope atoms in a known 

target mass divided by the surface area of the target that was determined using the standard density 

of the metal foil or salt.  Certificate information was not provided for each run so it was assumed 

that each target was without impurity and cubic in shape.  

To determine the neutron flux in this calculation, the only information known was that the 

power level was consistent for each run64 and that an Au foil was placed in the same relative 

position to the 235U core, which has been used previously to calculate a 235U fission rate.  This 235U 

fission rate or neutron flux can be determined based on the production of 198Au from the nuclear 

reaction 197Au(n, γ)198Au using a known amount of 197Au target.12   In each Flattop run, power 

levels were measured ensuring consistency between all runs,64 it is fair to assume that the average 

of these fluxes would be useable to determine individual nuclear reaction cross sections for each 

foil activated.  For this purpose, a fission spectra cross section average was taken from the Japanese 

Atomic Energy Agencies JENDL-4.0 program.  Each cross section determined beside Au was 

compared to cross sections calculated from different runs in addition to fission spectra cross 

section averages determined by the JENDL-4.0 program if available. 
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3.3 Solvent Extraction Research 

3.3.1 Solvent Extraction Study 

3.3.1.1 Experimental Procedure 

Two solvent extraction studies based on previous methods used in literature were 

performed to measure the extraction potential of a analyte by varying the ligand or analyte 

concentration.59,61,62   In both studies a known volume and concentration of 1:1 ratio of ratio 

organic to aqueous phase was added to a vial.  The organic phase consisted of TOA ligand in 

cyclohexane solvent and 1-octanol to reduce third phase formation.  The aqueous phase consisted 

of a known concentration of Cr and Mn analyte in a set hydrochloric or nitric acid concentration.  

Each vial containing both phases was mixed on a Labquake shaker table for set period to promote 

mixing.  An aliquot of the aqueous phase was removed after mixing to measure the loss of analyte 

to the organic phase.  Samples from the aqueous phase were diluted and analyzed using an ICP-

AES or ICP-MS further detailed in section 3.6.  Specific experimental details are described in 

chapters 5 and 7.   

3.3.1.2 Data Analysis 

The analyte concentration measured in the aqueous phase was subtracted from the total 

initial concentration to determine the analyte concentration in the organic phase.  The distribution 

ratio D, separation factor SF, and percent extraction %E were calculated using equations 2, 3, and 

4 from chapter 2.       
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3.3.2 Kinetic Study 

3.3.2.1 Experimental Procedure 

 The kinetic study procedure duplicated the solvent extraction procedure in section 3.3.1.1 

using the optimal ligand and acid concentration determine while varying the mixing time needed 

to test the extraction kinetics.  Specific experimental details are described in chapters 5, and 7.   

3.3.2.2 Data Analysis 

 The data was analyzed by the same method shown in section 3.3.1.2. 

3.3.3 Third Phase Formation Study 

3.3.3.1 Experimental Procedure 

 The third phase formation procedure duplicated the solvent extraction procedure in section 

3.3.1.1 without any analyte in the aqueous phase and only TOA ligand and cyclohexane in the 

organic phase.  After mixing each solution, drops of 1-octanol were added to each vial using a 

Pasteur pipette followed by mixing.  This was repeated until the third phase disappeared.  The 

number of drops were recorded for each ligand/acid concentration.  Using the same Pasteur pipette, 

the average mass of one drop of 1-octanol was weighed on a laboratory scale.  Specific 

experimental details are described in chapters 5, and 7.   

3.3.3.2 Data Analysis 

 The volume of 1-octanol needed to remove the third phase in each acid/ligand 

concentration was determined by dividing the density of 1-octanol by the mass of 1-octanol 

(number of drops) used to remove the colloid or third phase formation.   
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3.4 Batch Contact Research 

3.4.1 Batch Contact Studies  

3.4.1.1 Experimental Procedure 

The batch contact procedure adapted for this work was based on previous literature 

methods.35,36,65,66  A known mass of resin was added to a vial, which was preconditioned using a 

set volume of acid.  The vial was mixed on a Labquake shaker table for a set period expediting the 

diffusion of the aqueous phase into the interstitial space between each resin bead.  The swollen 

resin was left for another set period ensure it reached equilibrium.  A stock solution of analyte in 

a set hydrochloric or nitric acid matrix was added to each resin vial followed by mixing for another 

set period.  The solution of each vial was filtered into a new clean vial by filtration using a syringe 

and 0.45 μm PTFE filter. Samples from the aqueous phase were diluted and analyzed using an 

ICP-AES or ICP-Ms further detailed in section 3.6.  Specific experimental details are described in 

chapters 5, and 7.   

3.4.1.2 Data Analysis 

  The weight distribution Dw followed by conversion to k’ was determined equation 6, 7, 

and 8 in section 2.2.   

3.4.2 Kinetic Batch Contact Study 

3.4.2.1 Experimental Procedure 

The kinetic batch contact study replicated the batch study procedure per section 3.4.1.  In 

the kinetic study, each batch study was replicated using a varied mixing time after the spike 

addition step. 
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3.4.2.2 Data Analysis 

 The data analysis method is described in section 3.4.1.2. 

3.4.3 Batch Contact Volume Correction 

3.4.3.1 Experimental Procedure 

 For each resin tested, two sets of vials labelled 1st and 2nd set were weighed for each acid 

concentration.  Set mass of resin was added to each vial in the 1st set followed by each vial being 

weighed again.  A known volume of for each acid concentration was added to each vial in the 1st 

set followed by each vial being weighed again.  Each vial in the 1st set was placed on mixing table 

for a set period.  The contents of each vial were filtered using a syringe and 0.45 μm PTFE filter 

into a designated vial from the 2nd set.  Each vial in the 2nd set was weighed again.  Specific 

experimental details are described in chapters 5, and 7.   

3.4.3.2 Data Analysis 

 The difference in mass between the initial acid volume in the 1st vial set and the final acid 

volume in the 2nd vial set divided by the mass of resin in each vial gives the mass loss of for a 

specific acid concentration.  The volume lost is determined from the specific density for that acid 

concentration.  Specific experimental details are described in chapters 5, and 7.    
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3.5 Column Studies 

3.5.1 Gravity Column Studies 

3.5.1.1 Experimental Procedure 

 The gravity column studies performed were based on previous work by Horwitz.32,33,59   

Elution volumes in a column are based on the free column volume for a specific set up and required 

determination.  A set amount of resin was wet using DI water in a vial and allowed to swell.  After 

sufficient time, the Eichrom column was filled with DI water and the swelled resin was added 

dropwise allowing the system to settle by gravity.  The resin was added dropwise to reduce 

formation of trapped air bubbles within the column.  The height of the resin was measured, and 

glass wool was added to prevent movement of the resin surface as additional liquids were added.  

Excess DI water was drained until the solution level was in line with the bed height.  The number 

of DI water drops from the column were counted over time to determine a flow rate.   

To determine the FCV, a small volume of acid was added to the top of the resin bed and 

was eluted off the column in drops.  Each drop was collected into a pre-weighed container with a 

piece of litmus paper touching the surface. The litmus paper became acidified when the acid 

dripped through the column and the volume collected was deemed one FCV for this system.  

The set up for the gravity column study is similar to measuring the FCV.  A set amount of 

swelled resin at an acid concentration and type matching the load solution is added to a column 

filled with DI water.  Glass wool is added to the top of the wet slurry bed.  Each column was 

preconditioned/washed using 5-10 FCVs of acid matching the load solution.  A load solution 

containing the proper analyte concentration in acid was added to the column followed by collection 

of drops in separate vial fractions.  A wash fraction of matching acid concentration was added to 

ensure complete elution of the analyte into the 1st set of vial fractions.  In the case of multiple 
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analytes, the column can be reconditioned by washing with a different acid concentration and 

matrix to cause elution of other analytes. Samples from the aqueous phase were diluted and 

analyzed using an ICP-AES further detailed in section 3.6.1.  Specific experimental details are 

described in chapters 6.   

3.5.1.2 Data Analysis 

 Analyte concentration in each fraction were measured to determine an elution profile or 

distribution of the analyte.    Recovery of the analyte was determined by summing the total analyte 

concentration recovered.         

3.5.2 Vacuum Column Studies 

3.5.2.1 Experimental Procedure 

The vacuum column procedure used was based on previous literature methods.35,36,66–68 A 

vacuum box system from Eichrom was set up where only one column hole was left unsealed.  The 

spout on the side of the vacuum box was connected to a pressure gauge/regulator connected to a 

vacuum system or outlet by rubber tubing. A pre-packed resin cartridge from Eichrom was 

connected to the unsealed column hole atop the vacuum box.  A syringe was connected to the top 

of the pre-packed cartridge.  A sample holder was placed in the box to collect elution fractions.  

The vacuum was turned on to elute each fraction and turned off to change elution fraction 

containers.  The prepacked cartridge was conditioned using a set volume of acid matching the load 

solutions concentration and matrix.  A load solution containing analytes was added to the syringe 

followed by elution through the column into a separate container.  Another volume of clean acid 

matching the load solution was added to the column to elute the analyte of interest off the column.  

For multiple analyte solutions, another known volume of acid different from the load solution was 

used to strip off different analytes.   These column studies were repeated in triplicate at different 
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flow rates.  Samples from the aqueous phase were diluted and analyzed using an ICP-AES or ICP-

Ms further detailed in section 3.6.  Specific experimental details are described in chapters 6.   

3.5.2.2 Data Analysis 

 The concentration of analyte in each fraction was measured to determine analyte recovery 

from the column.    

3.6 Instrumentation 

3.6.1 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

3.6.1.1 Theory 

 The ICP-AES is an instrument used to measure UV-Visible light produced by rapid de-

excitation of an electron from a higher electronic state to their ground state.  This was performed 

using a plasma source known as an ICP torch made of three concentric quartz tubes streams argon 

gas, which is ionized using an induction coil.  Ionization of the argon gas occurs through used of 

a radio frequency-initiated spark using a tesla coil.  The interactions of ions and flow of charge in 

the gas causes the plasma to form and heat.  Samples are introduced as liquids and pumped into a 

nebulizer, which aspirates the solution transporting droplets into a spray chamber.  As these 

droplets enter the plasma, electrons in the outer shells of each element in the sample are excited to 

higher energy states.  Relaxation of these electrons causes emission of UV-Vis light characteristic 

of the elements in the sample.  The spectrometer acts to selectively grate or disperse light of interest 

into a photomultiplier tube (PMT) detector.  The intensity of the light that interacts with the PMT 

is converted to electrical signal corresponding to the concentration of that element in the 

sample.69,70   
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3.6.1.2 Analysis Method 

A Perkin Elmer Optima 7000 (CSU), 8000 (UNLV) and Thermo Scientific ICAP 6500 

Duo (LANL) was used to analyze samples in chapters 5, and 6.  The accompanying Syngistix 

software included in the instrument was used for data acquisition and analysis.  For each study, an 

aliquot from each sample added to 15 mL centrifuge vial and diluted to an analyte concentration 

range of 1-100 ppm using 2% v/v HNO3.  A 2% v/v HNO3 nitric blank solution and set of 5 

calibration solutions ranging from 1-200% of the dilute analyte concentration were made from 

analyte standards listed in sec 3.1.  These were used as standards to produce a calibration curve 

for comparing the intensity measured for each analyte in the sample solutions.    Additional analyte 

standards at 100% of the dilute analyte concentration were placed through the sample run order to 

account for instrumental drift over time.  Additional experimental details are described in chapters 

5 and 6.   

3.6.2 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

3.6.2.1 Theory  

 The ICP-MS is an instrument used to measure elemental or isotopic abundance of analytes 

in a sample by ionization followed by separation based on the mass to charge ratio.  An 

introduction system involving ICP, and nebulizer detailed above in section 3.6.1.1 is used to bring 

aliquot of solution from sample vials to the plasma for ionization.  Ions produced in the plasma 

will travel through a set of magnetic and electrostatic analyzers such as a quadrupole, which 

through use of a RF field will separate ions by their mass to charge ratio.  These sons of the interest 

with will travel through a filter grate and interact with a semiconductor array such as a discrete 

dynode detector.  The intensity of each isotope measured will be amplified through secondary 
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electron multiplication and converted to a electrical signal corresponding to the concentration of 

the isotope in the sample.69 

3.6.2.2 Analysis Method 

A Perkin Elmer NexION 350 (CSU) and ELAN DRC II (UNLV) ICP-MS was used to 

analyze samples chapters 7, and 8.  The general analysis method is shown above in section 3.6.1.2.    

Additional experimental details are described in chapters 7, and 8.   

3.6.3 High Purity Germanium (HPGe) Well Detector 

3.6.3.1 Theory 

 An HPGe well detector is primarily used to measure γ or x rays through use of a well 

capacity with near 4π geometry.  The ideal energy range for radiation detector is 20 keV up to 10 

MeV.65   In a standard system, a depleted region up to a thickness of a few centimeters is used to 

absorb radiation.  Under a reverse bias, an electric field extends over this region causing charge 

carriers (holes and electrons) produced by the interaction of photons with the depleted volume to 

migrate toward the anode or cathode.  The measured signal at the electrodes is proportional to the 

energy deposited in the depleted volume by the incoming photon.  This charge is converted into a 

voltage pulse through the system preamplifier.  Additionally, each germanium system needs to be 

cooled such as through use of liquid nitrogen to reduce the thermal generation of charge carrier 

due to a low band gap.69,71,72 

3.6.3.2 Analysis Method 

 An HPGe well detector from Canberra was used to measured samples in chapter 4.  The 

analysis method is shown above in section 3.2.2.  Additional experimental details are described in 

chapter 4. 
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CHAPTER 4: DETERMINATION OF FAST NEUTRON CROSS SECTIONS USING 

ELEMENTS IRRADIATED ON THE FLATTOP CRITICALITY BENCHMARK 

4.1 Introduction 

In this experiment, several elements were irradiated using fast neutrons in an attempt to 

simulate the effects of a nuclear detonation.  A series of irradiation runs were performed using the 

Flattop Critical Assembly Benchmark on the Nevada National Security Site under controlled 

conditions such as neutron flux and length of irradiation.  The focus of these experiments were to 

irradiate elements found in the urban environment and used in nuclear device components using a 

neutron flux and spectra similar to a device using HEU.  In the form of metal foils or salts, samples 

were activated by fast neutrons producing activation products based on a specific nuclear reaction 

cross section.  Measurements were taken of activation products to determine the specific activities 

for each isotope produced.  Based on the known conditions of the irradiation, the activity a time 

zero (end of irradiation) can be determined and further used to determine specific nuclear reaction 

cross sections for each activation product.  However, many of the specific details about the 

irradiations were not publically available so a series of academic calculations were performed to 

determine cross sections instead. 

4.2 Materials 

 All activation solutions consisted of individual elemental samples (foil or salt) dissolved 

in clean acid to a volume of 5 mL in 5 mL plastic vials.  All other materials used are described in 

section 3.1.   
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4.3 Experimental Procedure  

4.3.1 Metal Foil Measurements 

 The general procedure used is shown in section 3.2.1.  The HPGe well detector was 

calibration using a 5 mL water standard matching the same volume, geometry, container type as 

each activation sample.  A background activity measurement was taken of the room at one and 

twenty four hour intervals using an empty 5 mL plastic vial matching the geometry, volume, and 

container type used for each activation product solution.  A comprehensive nuclide library of 

potential activation products including gamma decay ratios, and energies was prepared for all 

metal foils planning to be irradiated.  

After each neutron activation run, individual activation foil solutions were provided in 5 

mL vials and were measured for one hour intervals to determine short lived radioisotope 

production from the run. This was followed by a twenty four hour measurement to get a more 

accurate and precise activity value for each radioisotope produced.  The process of measuring foils 

followed by subsequent calculations occurred on four separate occasions.  A list of all elements 

irradiate by run is shown in table 3.    

 

Table 3: Elements irradiated using the Flattop Benchmark Critical Assembly 

Element Irradiated Run 1 March 2014 Run 2 October 2014 Run 3 March 2015 Run 4 June 2015 

Au (Gold) X  X  X  X 

Co (Cobalt)       X 

Cr (Chromium)       X 

Fe (Iron)   X      

Ir (Iridium) X    X    

Ni (Nickel)   X      

Pb (Lead)       X 

Pt (Platinum) X    X    

Ti (Titanium) X  X  X    

W (Tungsten)       X 
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 A list of properties for each target irradiated including mass, chemical form, chemical 

composition and isotope composition for each run is shown below in tables 4, 5, 6, and 7.  It was 

assumed that each target was 100% pure as no certificate information was provided. 

 

Table 4: Target properties of elements irradiated in run 1 

Target Activation 
Element 

Target Mass         
(mg) 

Chemical 
Form 

Chemical 
Composition 

Isotopic 
Composition73 

Atom Percent 
Fraction73 

Au 305.9 metal foil natural Au-197 1.00 

Ir 
229.9 

 (69.1 mg of Ir) 
K2IrCl6 salt natural 

Ir-191 0.37 
Ir-193 0.63 

Pt 109.4 metal foil natural 

Pt-192 0.01 
Pt-194 0.33 
Pt-195 0.34 
Pt-196 0.25 
Pt-198 0.07 

Ti 177.3 metal foil natural 

Ti-46 0.08 
Ti-47 0.07 
Ti-48 0.74 
Ti-49 0.05 
Ti-50 0.05 

 

Table 5: Target properties of elements irradiated in run 2 

Target Activation 
Element 

Target Mass (mg) 
Chemical 

Form 
Chemical 

Composition 
Isotopic 

Composition73 
Atom Percent 

Fraction73 
Au 152.5 metal foil natural Au-197 1.00 

Fe 161.7 metal foil natural 

Fe-54 0.06 
Fe-56 0.92 
Fe-57 0.02 
Fe-58 0.00 

Ni 176 metal foil natural 

Ni-58 0.68 
Ni-60 0.26 
Ni-61 0.01 
Ni-62 0.04 
Ni-64 0.01 

Ti 176.8 metal foil natural 

Ti-46 0.08 
Ti-47 0.07 
Ti-48 0.74 
Ti-49 0.05 
Ti-50 0.05 
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Table 6: Target properties of elements irradiated in run 3 

Target Activation 
Element 

Target Mass (mg) 
Chemical 

Form 
Chemical 

Composition 
Isotopic 

Composition73 
Atom Percent 

Fraction73 
Au 152.2 metal foil natural Au-197 1.00 

Ir 
199.0  

(59.8 mg of Ir) 
K2IrCl6 

salt 
natural 

Ir-191 0.37 
Ir-193 0.63 

Pt 142.3 metal foil natural 

Pt-192 0.01 
Pt-194 0.33 
Pt-195 0.34 
Pt-196 0.25 
Pt-198 0.07 

Ti 177.5 metal foil natural 

Ti-46 0.08 
Ti-47 0.07 
Ti-48 0.74 
Ti-49 0.05 
Ti-50 0.05 

 

Table 7: Target properties of elements irradiated in run 4 

Target Activation 
Element 

Target Mass (mg) 
Chemical 

Form 
Chemical 

Composition 
Isotopic 

Composition73 
Atom Percent 

Fraction73 
Au 76.2 metal foil natural Au-197 1.00 
Co 144.4 metal foil natural Co-59 1.00 

Cr 165.5 metal foil natural 

Cr-50 0.04 
Cr-52 0.84 
Cr-53 0.10 
Cr-54 0.02 

Pb 86.5 metal foil natural 

Pb-204 0.01 
Pb-206 0.24 
Pb-207 0.22 
Pb-208 0.52 

W 114.7 metal foil natural 

W-180 0.00 
W-182 0.27 
W-183 0.14 
W-184 0.31 
W-186 0.28 

 

4.3.2 Data Analysis 

A sample calculation with description of assumptions used is shown in appendix A. 
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4.3.2.1 Gamma Spectra Analysis 

The gamma spectra data analysis method used to process gamma spectra on the Genie 2000 

Software is described in section 3.2.2.1.   

4.3.2.2 Flux and Cross Section Determination 

 The general method for flux and cross section determination in greater detail is outlined in 

section 3.2.2.2.   Fission spectra cross section values for the n-2n and n-γ reactions for 196Au, and 

198Au were obtained based on calculations performed using the JENDL-4.0 data library.74  Using 

equation 9, the flux for both isotopes was determined in run 1 using the areal density of Au foil 

irradiated, the time of irradiation, the activity at time zero (determined previously using the gamma 

spectra and Genie 2000 software), and decay constant for each isotope.  The flux determined for 

196Au and 198Au was used to solve for the cross section of each activation product.  Each calculated 

cross section was compared to literature value determined using the JENDL-4.0 or ENDF data 

libraries.  This process was repeated for runs 2, 3, and 4. 

4.4 Results and Discussion 

4.3.1 Activity at Time Zero 

 Specific activities were determined for each activation product at time zero after 

irradiation.  The values for each activation product by run are shown below in tables 8, 9, 10, and 

11.   
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Table 8: Measured activation products for run 1 

Target Activation 
Element 

Activation 
Product 

Activity at Time 
Zero (Bq/gram) 

1 σ 

Au 
Au-196 4.06E+03 9.38E+01 
Au-198 1.58E+06 3.43E+04 

Ir 
Os-191 4.06E+02 1.62E+01 
Ir-192 2.17E+03 4.07E+01 
Ir-194 1.97E+05 3.93E+03 

Pt 
Os-191 2.31E+04 1.15E+03 
Pt-195m 1.94E+05 3.73E+03 
Pt-197 5.15E+05 1.39E+04 

Ti 
Sc-46 6.02E+02 1.71E+01 
Sc-47 4.17E+04 1.70E+03 
Sc-48 4.69E+03 8.15E+01 

 

Table 9: Measured activation products for run 2 

Target Activation 
Element 

Activation 
Product 

Activity at Time 
Zero (Bq/gram) 

1 σ 

Au 
Au-196 5.56E+02 1.53E+01 
Au-198 2.69E+05 5.73E+03 

Fe 
Mn-54 2.10E+02 6.19E+00 
Fe-59 5.82E+00 1.64E-01 

Ni 
Co-57 3.99E+00 1.23E+00 
Co-58 1.01E+04 2.14E+02 

Ti 
Sc-46 6.69E+01 1.33E+00 
Sc-47 5.46E+03 2.23E+02 
Sc-48 7.61E+02 1.10E+01 

 

Table 10: Measured activation products for run 3 

Target Activation 
Element 

Activation 
Product 

Activity at Time 
Zero (Bq/gram) 

1 σ 

Au 
Au-196 9.99E+01 1.90E+00 
Au-198 1.31E+05 2.85E+03 

Ir 

Ir-190 1.55E+00 6.52E-02 
Os-191 2.72E+01 7.80E-01 
Ir-192 1.28E+02 1.86E+00 
Ir-194 5.18E+04 7.13E+02 

Pt 
Os-191 1.82E+03 8.89E+01 
Pt-195m 2.12E+04 5.02E+02 

Ti 
Sc-46 5.92E+01 1.22E+00 
Sc-47 4.88E+03 1.99E+02 
Sc-48 6.30E+02 9.83E+00 
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Table 11: Measured activation products for run 4 

Target Activation 
Element 

Activation 
Product 

Activity at Time 
Zero (Bq/gram) 

1 σ 

Au 
Au-196 1.57E+01 2.51E-01 
Au-198 3.73E+03 7.08E+01 

Co  
Co-58 6.13E+00 2.12E-01 
Fe-59 4.90E+01 1.07E+00 
Co-60 1.24E+01 2.51E-01 

Cr  Cr-51 5.29E+01 2.30E+00 
Pb  Pb-203 2.95E+00 1.33E-01 
W  W-187 6.47E+03 7.68E+01 

 

4.4.2 Flux Determination  

 No information regarding the flux or cross section was provided for each run performed at 

Flattop.  To solve for the cross section of each activation product, the flux would need to be 

determined for each run.  A target of natAu foil has been shown previously to be used to determine 

the fission fractions from tests performed.12  In all runs, the Au foil was positioned in the center of 

Flattop likely to be used for this purpose.  Using this assumption, a neutron flux was calculated for 

196Au and 198Au to be used for determine cross sections for activation products produced in each 

run.  The parameters used to determine a flux for each run are shown below in tables 12, and 13.   
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Table 12: Parameters used to determine the Au-196 flux for all runs 

Parameter Run 1 1 σ Run 2 1 σ Run 3 1 σ Run 4 1 σ 
Fission Spectrum Ave. 

(cm^2/1 atom) 
3.91E-2775 N/A 3.91E-2775 N/A 3.91E-2775 N/A 3.91E-2775 N/A 

Target Density 
(atoms/cm^2) 

1.48E+22 N/A 1.18E+22 N/A 1.18E+22 N/A 9.33E+21 N/A 

Irradiation Time (sec) 7.20E+03 N/A 4.84E+03 N/A 6.72E+03 N/A 7.20E+03 N/A 

λ Decay Constants (1/s) 1.30E-0673 N/A 1.30E-0673 N/A 1.30E-0673 N/A 1.30E-0673 N/A 
Isotope Activity at 

Time Zero (Bq) 
1.24E+03 2.87E+01 8.48E+01 2.34E+00 5.79E+00 3.81E-02 1.20E+00 1.91E-02 

Flux (neutrons/sec) 2.30E+09 5.33E+07 2.95E+08 8.14E+06 1.45E+07 9.57E+04 3.54E+06 5.63E+04 

 

Table 13: Parameters used to determine the Au-198 flux for all runs 

 Parameter Run 1 1 σ Run 2 1 σ Run 3 1 σ Run 4 1 σ 
Fission Spectrum Ave. 

(cm^2/1 atom) 
9.13E-3175 N/A 9.13E-3175 N/A 9.13E-3175 N/A 9.13E-3175 N/A 

Target Density 
(atoms/cm^2) 

1.48E+22 N/A 1.18E+22 N/A 1.18E+22 N/A 9.33E+21 N/A 

Irradiation Time (sec) 7.20E+03 N/A 4.84E+03 N/A 6.72E+03 N/A 7.20E+03 N/A 

λ Decay Constants (1/s) 2.98E-0673 N/A 2.98E-0673 N/A 2.98E-0673 N/A 2.98E-0673 N/A 

Isotope Activity at 
Time Zero (Bq) 

4.84E+05 2.15E+04 4.11E+04 1.83E+03 2.59E+03 1.15E+02 2.84E+02 1.27E+01 

Flux (neutrons/sec) 5.82E+09 2.59E+08 5.82E+09 2.59E+08 5.82E+09 2.59E+08 5.82E+09 2.59E+08 
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The fission spectrum average cross section listed was taken from literature based on the 

JENDL-4.0 data library.  The target density used for each run was calculated using the mass of 

each foil and density of the material.  The length of irradiation times were consistent for each run.  

The isotope activity listed in Bq was determined using the properties of each foil listed in tables 4, 

5, 6, and 7. Using equation 9, the parameters shown were used to solve for the Au-196 and Au-

198 flux values by run.  Note that in the case of a N/A, there was no uncertainty due to a constant, 

assumptions, or lack of information provided from Flattop runs. Additional details for this 

calculations are shown in appendix section A.1.1.  

A comparison of the flux values determined above are shown below in table 14. 

 

Table 14: Comparison of  fluxes determined for Au-196 and Au-198 in each run 

Run # 
Au-196 Flux 

(neutrons/second) 
1 σ 

Au-198 Flux 
(neutrons/second) 

1 σ 198/196 1 σ 

1 2.30E+09 5.33E+07 2.00E+10 4.33E+08 8.67 0.33 
2 2.95E+08 8.14E+06 3.17E+09 6.75E+07 10.74 0.44 
3 3.82E+07 7.26E+05 1.11E+09 2.42E+07 29.19 1.05 
4 3.54E+06 5.63E+04 1.86E+07 3.54E+05 5.27 0.16 

 

 The neutron flux calculated in each run for both isotopes produced shows a decreasing 

trend over time.  This should not be the case as an order of magnitude decrease every few months 

would mean that the critical assembly would need to be replaced every few years when it has been 

used for at least a few decades.  The uncertainties determined for each flux were less than 10%.  

The flux determined for Au-198 is ~one order of magnitude larger for each run than Au-196 due 

to an over assumption through use of the fission spectrum average cross section.  Although both 

cross sections used are within the millibarns range, Au-198 production through the n-2n reaction 
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has an energy threshold of 8.1 MeV that prevents neutrons below that energy from being captured.  

Au-198 has a much lower energy threshold and has a thermal n-capture cross section in barns 

causing greater production as neutron energies decrease.  The ratio comparing 198/196 ideally 

should be consistent between runs.  However, due to assumptions made and lack of information 

provided variation up to a factor of 3 was seen.  

4.4.3 Cross Section Determination 

Cross sections values were determined for each isotope produced through the n-p, n-2n, n-

γ, or n-α reaction.  These values were determined using both flux values in each run.  A comparison 

of each calculated cross section by run to literature values is shown below in tables 15 through 18.  

Note that all literature values were obtained using the JENDL-4.0 library except for Ir and Pt which 

was obtained using the ENDF/B-VII.1 library. 

 

Table 15: Comparison of calculated cross sections for each activation product in run 1 

Target 
Activation 
Element 

Activation 
Product 

Nuclear 
Reaction 

Lit. Fission 
Spectrum 

Ave. (barns) 

Au-196 Au-198 
Calc. Cross 

Section 
(barns) 

Ratio 
(Calc./Lit.) 

Calc. Cross 
Section 
(barns) 

Ratio 
(Calc./Lit.) 

Au  
Au-196 n-2n 3.91E-0375 - - - - 

Au-198 n-γ 7.71E-0275 - - - - 

Ir 

Os-191 n-p 8.92E-0676 1.08E-03 121.12 1.25E-04 13.97 

Ir-192 n-γ 1.85E-0176 2.77E-02 0.15 3.20E-03 0.02 

Ir-194 n-γ 9.15E-0276 2.86E-02 0.31 3.30E-03 0.04 

Pt 

Os-191 n-α 3.31E-0776 2.56E-02 77336.41 2.95E-03 8917.80 

Pt-195m n-γ 4.79E-0276 5.64E-02 1.18 6.50E-03 0.14 

Pt-197 n-γ 4.07E-0276 3.20E-02 0.79 3.69E-03 0.09 

Ti 

Sc-46 n-p 2.66E-0375 3.35E-03 1.26 3.86E-04 0.15 

Sc-47 n-p 2.66E-0375 9.55E-03 3.60 1.10E-03 0.41 

Sc-48 n-p 2.66E-0375 6.00E-04 0.23 6.92E-05 0.03 
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In run 1, the calculated cross sections determined were within two orders of magnitude to 

the literature determined fission spectrum average from the ENDF or JENDL library.  The 

exception was for Os-191 which showed a three order of magnitude difference when produced by 

the n-p reaction of Ir and a five order of magnitude deviation through the n-α reaction of Pt when 

comparing to Au-196 values.  The cross section comparison to Au-198 values was one order of 

magnitude less than either Au-196 values.   The discrepancy seen for Os-191 does not occur for 

other activation products in either foil.  It is possible Os-191 has a larger cross section for lower 

energy neutrons or an energy threshold which was previous shown.  Use of the fission spectrum 

cross sections assumes that an flux distribution is occurring while in each experimental run 

fluctuations occur through scattering and attenuation. Neutron flux information for this run is need 

to potentially correct for this anomaly. 

 

  Table 16: Comparison of calculated cross sections for each activation product in run 2 

Target 
Activation 
Element 

Activation 
Product 

Nuclear 
Reaction 

Lit. Fission 
Spectrum 

Ave. (barns) 

Au-196 Au-198 
Calc. Cross 

Section 
(barns) 

Ratio 
(Calc./Lit.) 

Calc. Cross 
Section 
(barns) 

Ratio 
(Calc./Lit.) 

Au 
Au-196 n-2n 3.91E-0375 - - - - 

Au-198 n-γ 7.71E-0275 - - - - 

Fe 
Mn-54 n-p 5.76E-0375 3.84E-02 6.67 3.58E-03 0.62 

Fe-59 n-γ 3.50E-0375 1.63E-04 0.05 1.52E-05 0.00 

Ni 
Co-57 n-p 1.33E-0475 6.66E-04 5.01 6.20E-05 0.47 

Co-58 n-np  7.36E-0275 4.41E-01 6.00 4.11E-02 0.56 

Ti 

Sc-46 n-p 2.66E-0375 2.72E-03 1.02 2.53E-04 0.10 

Sc-47 n-p 2.66E-0375 9.10E-03 3.43 8.48E-04 0.32 

Sc-48 n-p 2.66E-0375 7.08E-04 0.27 6.60E-05 0.02 
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In run 2, the calculated cross sections to literature cross sections were within two orders of 

magnitude for all activation products.  The calculated values for Au-196 were about one order of 

magnitude larger than each cross section ratio determined for Au-198.  

  

Table 17: Comparison of calculated cross sections for each activation product in run 3 

Target 
Activation 
Element 

Activation 
Product 

Nuclear 
Reaction 

Lit. Fission 
Spectrum 

Ave. (barns) 

Au-196 Au-198 
Calc. Cross 

Section 
(barns) 

Ratio 
(Calc./Lit.) 

Calc. Cross 
Section 
(barns) 

Ratio 
(Calc./Lit.) 

Au 
Au-196 n-2n 3.91E-0375 - - - - 

Au-198 n-γ 7.71E-0275 - - - - 

Ir 

Ir-190 n-2n 6.42E-0376 1.85E-04 20.76 6.35E-06 0.71 

Os-191 n-p 8.92E-0676 4.26E-03 477.12 1.46E-04 16.35 

Ir-192 n-γ 1.85E-0176 9.60E-02 0.52 3.29E-03 0.02 

Ir-194 n-γ 9.15E-0276 4.41E-01 4.82 1.51E-02 0.17 

Pt 
Os-191 n-α 3.31E-0776 1.55E-01 470001.68 5.32E-03 16104.15 

Pt-195m n-γ 4.79E-0276 4.75E-01 9.92 1.63E-02 0.34 

Ti 

Sc-46 n-p 2.66E-0375 2.13E-02 8.03 7.30E-04 0.27 

Sc-47 n-p 2.66E-0375 7.22E-02 27.21 2.48E-03 0.93 

Sc-48 n-p 2.66E-0375 5.21E-03 1.96 1.79E-04 0.07 

 

In run 3, the calculated cross sections determined were within two orders of magnitude to 

the literature values using either flux value except for Os-191.  This run repeated the same target 

materials used in run 1 showing similar deviation for each activation product.  The discrepancy in 

the Os-191 ratio was again larger for production through the n-α reaction of  Pt opposed to the n-

p reaction using Ir.  The ratio values for Au-196 were one order of magnitude larger relative to 

Au-198 in both cases similar to run 1.  
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Table 18: Comparison of calculated cross sections for each activation product in run 4 

Target 
Activation 
Element 

Activation 
Product 

Nuclear 
Reaction 

Lit. Fission 
Spectrum 

Ave. (barns) 

Au-196 Au-198 
Calc. Cross 

Section 
(barns) 

Ratio 
(Calc./Lit.) 

Calc. Cross 
Section 
(barns) 

Ratio 
(Calc./Lit.) 

Au 
Au-196 n-2n 3.91E-0375 - - - - 

Au-198 n-γ 7.71E-0275 - - - - 

Co  

Co-58 n-2n 1.69E-0475 1.34E-02 79.01 2.54E-03 14.99 

Fe-59 n-p 1.48E-0375 6.71E-02 45.24 1.27E-02 8.58 

Co-60 n-γ 5.58E-0575 7.33E-01 13143.21 1.39E-01 2493.96 

Cr  Pb-203 n-2n 5.18E-0375 5.03E-02 9.71 9.54E-03 1.84 

Pb  Cr-51 n-2n 1.45E-0475 4.15E-04 2.87 7.88E-05 0.54 

W  W-187 n-γ 4.76E-0275 3.27E-01 6.86 6.20E-02 1.30 

 

In run 4, the calculated cross sections determined using either flux were within two orders 

of magnitude relative to the literature values.  The only exception was Co-60 produced through 

the n-γ reaction of Co with a three order of magnitude increase relative to other isotopes produced 

from Co.  This is similar to what was seen with Os-191 and is likely caused by a sensitivity to 

lower energy neutrons or energy threshold which was not accounted for when using the ideal 

fission spectrum average.     

4.5 Conclusion  

 Calculated cross sections in each run showed a ~two order of magnitude difference when 

comparing to literature values.  This was seen in Au-196 which consistently had a 1 to 2 order of 

magnitude larger cross section while Au-198 generally had a 1-2 order of magnitude smaller cross 

section.  The variation seen between the two fluxes was due to the energy reaction threshold for 

Au-196 decreasing the total flux determined while Au-198 had a slightly higher flux based on a 

sensitivity to thermal neutrons.  The only discrepancies seen were in the production of Os-191 

from natural Ir or Pt or Co-60 produced from natural Co.  In both fluxes, the ratio of cross sections 

determined was off by at least three orders of magnitude likely due to use of the fission spectrum 
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average cross sections from literature.  The fission spectrum cross section used was based on an 

ideal neutron spectra which did not take correct for attenuation and neutron scattering caused by 

the surrounding environment outside of the fission source.  Improvement of these cross sections 

could be performed by using the actual neutron spectra for each run to adjust each cross section 

from literature.  However, this information is not available to the public.  
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CHAPTER 5: BATCH CONTACT STUDIES OF SCANDIUM AND TITANIUM ON 

EXTRACTION CHROMATOGRAPHY RESINS FOR SEPARATION METHOD 

DEVELOPMENT  

5.1 Introduction 

 In this chapter, batch contact studies were performed to determine the retention of stable 

scandium and titanium to different extraction chromatography resins.  These studies are used to 

determine a separation factor based on differing retention of each analyte determined in different 

acid conditions.  In chapter 4, it was shown that small quantities of 46Sc, 47Sc, and 48Sc was 

produced from natTi through the n-p reaction.  In this work, strong acid systems will be employed 

to separate scandium and titanium based on their differing oxidation states in solution.   Optimal 

parameters will be developed based on the extraction of trivalent scandium from tetravalent 

titanium.  In chapter 6, the optimal conditions determined will be adapted to column separation 

studies. 

 Extraction chromatography resins Ln 1  and DGA normal (unbranched) produced from 

Eichrom technologies, described in section 2.3, have been shown previously to preferentially 

extract trivalent species such as lanthanides and actinides.35,36,77–79   Batch contact studies based on 

the method outlined in chapter 3 will be performed in hydrochloric and nitric acid.     

5.2 Materials 

 All materials used in this chapter are listed in Section 3.1.    
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5.3 Experimental Procedure 

5.3.1 Stock Solution Preparation 

All stock solutions were prepared by adding a aliquot of ICP-MS grade analyte standard 

into a glass scintillation vials filled with concentrated nitric acid.  Each vial was dried down on a 

hot plate (105-110 C) to produce a reside of analyte followed by the addition of concentrated nitric 

acid to redissolve the sample.  This process was repeated twice more where the final solution was 

brought up in the desired concentration of hydrochloric or nitric acid used for the study.  A 1000 

ppm stock solution of Sc, Ti, and combination solution at each concentration was produced unless 

otherwise noted. 

5.3.2 Ln 1 Resin  

5.3.2.1 Batch Contact Studies 

 The general procedure for batch studies is described in section 3.4.1.  Single and dual 

analyte (interference) batch studies were performed in 0.1 to 8 M HCl and 0.1 to 11 M HNO3.  A 

resin mass of 50 ± 2% mg Ln 1 resin was weighed into a 2 mL microcentrifuge vial and 

preconditioned using 1 mL of acid. Vials were mixed for 1 hour and left upright overnight to allow 

the interstitial space between each resin been to expand.  Each vial was spiked with 0.5 mL of a 

matching acid solution containing of 1000 ± 1% ppm Sc followed by 1 hour of mixing. This spike 

solution was produced prior to the experiment using the method outline in section 5.3.1. Each 

solution was transferred into a syringe connected to a PTFE tip and filtered into a clean 2 mL 

microcentrifuge vial.  An aliquot from each vial was diluted and analyzed on an ELAN DRC II 

ICP-MS per the method described in section 3.6.2.2.   Four replicates were performed for each 
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acid concentration.  This method was repeated using 1000 ± 1% ppm Ti, and a combination of 

1000 ± 1% ppm Ti and Sc. 

5.3.2.2 Data Analysis 

 The weight distribution Dw followed by conversion to k’ was using equation 8 described in 

section 3.4.1.2 with the physical constants for Ln 1 resin shown below in table 19.   

5.3.3 DGA Normal Resin  

5.3.3.1 Batch Contact Studies 

The general procedure for batch studies is described in section 3.4.1.  Single and dual 

analyte (interference) batch studies were performed using in 0.01 to 8 M HCl and 0.01 to 10.5 M 

HNO3. Three variations of the batch contact studies were performed using DGA (normal) resin. 

All stock solutions were prepared previously using the method outline in section 5.3.1. 

In variation 1 (the UNLV method), the Ln 1 resin procedure in section 5.3.1.1 was 

duplicated using DGA normal resin.  In this method, analysis was performed using an Optima 

8000 ICP-AES described in section 3.6.1.2.   

In variation 2 (the CSU method), the Ln resin procedure in section 5.3.1.1 was duplicated 

using DGA resin at analyte concentrations of 750 ± 1% ppb for single and dual analyte studies. In 

this method, analysis was performed using a NexION 350 ICP-MS described in section 3.6.2.2.  

Solutions were produced by diluting ICP-MS grade Sc and Ti stock solutions due to issues with 

Ti precipitation during the dry down process described in section 5.3.1.  A lower analyte 

concentration was used due to a reduced upper limit of detection for the ICP-MS opposed to the 

ICP-OES.  This method was performed in an attempt to replicate the UNLV data using equipment 

available at CSU. 
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In variation 3 (LANL method), a single analyte batch study was performed using Sc in HCl 

and HNO3.  Stock solutions were prepared using ACS grade Sc2O3 using the method outline in 

5.3.1.   

A 50 ± 2% mg sample of resin was weighed into a 1.2 mL Bio-Spin® chromatography 

column followed by preconditioned using 0.9 mL of acid. Vials were capped followed by mixing 

for 1 hour and left upright overnight to swell.  Each column was spiked with a 0.3 mL matching 

acid solution containing ~1000 ppm Sc followed by 1 hour of mixing.  Each columns tip was 

removed and solutions were drained into glass scintillation vials.  Three replicates were performed 

for each acid concentration. At each acid concentration, two additional samples with different 

compositions were prepared.  The first sample followed the procedure above but used 1.2 mL of 

clean acid in resin without the addition of the Sc spike.  The second sample used 0.9 mL of clean 

acid and 0.3 mL of Sc spike without any resin.  An aliquot of each sample diluted and analyzed 

using the ICAP 6500 DUO ICP-AES described in section 3.6.1.2. This method was performed to 

replicate previous work performed at LANL in an attempt to determine discrepancies between 

batch study results. 

5.3.3.2 Data Analysis 

 The weight distribution Dw followed by conversion to k’ was calculated using equation 8 

per section 3.4.1.2 using the physical constants for DGA resin shown below in table 19.  Volume 

corrections for DGA resin in each acid were determined based on the volumes used in the UNLV 

batch study.  Description of the method is shown in section 3.4.3 and the values are listed below 

in table 20.  These were used to correct for the volume lost in each UNLV and CSU study as the 

method is based on using microcentrifuge vials followed by filtration.   
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Table 19: Physical constants of slurry-packed columns 

Physical Properties HDEHP33 TODGA34 

Extractant Density (g/mL) 0.96 0.88 
Bed Density (g/mL) 0.38 0.38 
Resin Density (g/mL) 1.15 1.13 
Vs (mL) 0.16 0.17 
Vm (mL) 0.67 0.66 
Vs/Vm 0.24 0.26 
Dv Conversion Factor (C1) 0.239 2.2 
K’ Conversion Factor (C2) 0.57 0.57 
Capacity (mg Eu/g resin) 50 10.6 
      

 

Table 20: DGA resin volume corrections 

  HCl Volume Lost (%) 1 σ HNO3 Volume Lost (%) 1 σ 
0.1 M 7.63 0.02 8.45 0.06 
1 M 7.97 0.01 8.69 0.02 

10 M 8.57 0.03 8.77 0.04 

 

5.3.3.3 Kinetic Batch Contact Study 

 The UNLV single analyte study method was replicated using a mixing time of 2.5 hours 

instead of 1 hour after addition of the spike solution.  This was performed in hydrochloric acid 

using Sc and Ti.  Three replicated were performed at each acid concentration.     

5.3.3.4 Data Analysis 

 The data was analyzed in the same manner as the previous batch contact studies described 

in section 5.3.2.2.  
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5.4 Results and Discussion  

5.4.1 Ln 1 Resin  

 The results for single analyte batch contact studies of scandium and titanium using Ln 1 

resin in a nitric acid system in figures 13 and in a hydrochloric acid system in figure 14. 

 

 

Figure 13: Single analyte batch contact studies using Ln 1 resin in nitric acid 

 

In nitric acid, the scandium concentration measured was below the detection limit from 

0.01 to 11 M nitric acid.  This is likely due to Sc predominantly forming Sc(NO3)38 in solution 

allowing the HDEHP ligands on the Ln 1 resin to compete for coordination of the metal pushing 

each nitrate group off.  The value for the detection limit of 0.01 ppb (k’ of 8500) was substituted 
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for purposes of determining a separation factor.  A k’ of ~30 for titanium was determined from 0.1 

to 6 M which is equivalent ~60% sorption to the resin.  The retention of Ti seen is likely due to 

formation of Ti(NO3)4 which will similarly extract by HDEHP coordinating to the metal center 

and pushing the three of the nitrate off.  The lower overall extraction may be due to a mixture of 

the Ti(NO3)4, and TiO2 species.  It is possible that the lower extraction is due to the inability of the 

ligand to bind to TiO2 causing the lower overall retention.   From 6 M to 11 M, a slight increase in 

retention occurred up to a  k’ of ~110 or 85% sorption which is likely caused by an increase in 

Ti(NO3)4 species. The separation factor fluctuated around ~300 until 6 M followed by a slight 

decrease to ~80 at 11 M.   

 

 

Figure 14: Single analyte batch contact studies using Ln resin in hydrochloric acid 
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In hydrochloric acid, the retention of Sc and Ti was consistent compared to previous nitric 

acid batch studies.  Scandium was highly retained over the entire range from a k’ of ~2600 up to 

8500 which is equivalent to greater than 99% sorption.  The increase in retention is likely due to a 

rise in chloride anions complexing to form ScCl3.
38,40

  Similar to the nitric system, HDEHP ligands 

in the Ln resin likely coordinated to the metal center pushing off chloride species so as to extract 

the neutral Sc into the stationary phase.  The value for the detection limit of 0.01 ppb (k’ of 8500) 

was substituted for 2, 4, and 8 M hydrochloric acid as the scandium concentration measured was 

below the detection limit.  Similarly, Ti retention slowly increased with a k’ of ~10 at 0.1 M up to 

90 at 8 M likely due a slight complexation with chloride anions to form a mixture of TiO2, and 

TiCl2-4.41  It is likely that titanium chloride species became predominant after 5 M when the 

retention surpassed 50.     The separation factor gradually decreased from ~280 at 3 M to ~100 at 

8 M as Sc retention did not change while Ti retention increased. 

In both studies, scandium was retained at or above ~99% to Ln 1 resin.  Titanium was 

retained from ~35 to 85% in hydrochloric and ~60 to 85% in nitric acid which is high for a 

separation.  Overall, the retention of scandium was good but the even at titanium lowest retention 

point (0.1 M HCl) ~35%  was retained giving an overall separation factor of ~300.  This might be 

a reasonable separation factor if the intended solution contained a 1 to 1 ratio of scandium to 

titanium but based on the few measurements of scandium produced by the n-p reaction of titanium 

in chapter 4, less than 1% of the target converted to scandium.     
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5.4.2 DGA Resin 

5.4.2.1 Single Analyte Batch Studies 

The results for the UNLV variant single analyte batch contact studies using DGA resin in 

nitric acid are shown in figure 15, and in hydrochloric acid in figure 16 below. 

 

 

Figure 15: UNLV single analyte batch contact study DGA resin in nitric acid 

 

Each element was contacted separately to determine the sorption potential on DGA resin 

in nitric acid.  Scandium retention increased ~24 to ~350 or in terms of percent sorption from ~45 

to ~90% as the nitric acid concentration increased from 0.1 to 1 M.  Similar to previous nitric acid 
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work in Ln resin, Sc retention increased with anion concentration forming Sc(NO3) which was 

extracted by DGA coordinating to the metal center.   The retention of titanium remained below 1 

across the entire range varying in sorption from ~0.7 to 3.5%.  The lower trend seen in Ti is likely 

due to the mechanism of extraction.  In Ln resin, the ligand is unidentate while in DGA the ligand 

bidentate likely making it more difficult to coordinate to Ti due to steric hindrance.  This may also 

account for the slightly lower retention of Sc to DGA resin across the entire range relative to the 

Ln resin study.  The separation factor of scandium to titanium increased from ~ 20 to 2000 by 3 

M finally reaching ~8400 at 10.5 M.  

 

 

Figure 16: UNLV single analyte batch contact study using DGA resin in hydrochloric acid 
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Each element was contacted separately to determine the sorption potential on DGA resin 

in hydrochloric acid.  Similar to the Ln resin studies, Sc retention increased with a rise in chloride 

anion concentration.  The significant change in retention from low to high acid is likely due to the 

inability of the ligand to extract Sc(OH)3 while able to extract the ScCl3 which slowly became the 

dominant species as the chloride concentration increased.  This is shown through Sc retention 

increasing from ~1 to ~1400 or a percent sorption of ~6 to ~99% from 0.1 to 4 M.  As in the case 

of nitric acid studies, titanium retention remained low and stagnant due to inability of the DGA 

ligand to extract Ti in either the oxide or nitrate form.   

Overall, Ti retention was higher in hydrochloric acid for the DGA studies fluctuating 

around a k’ of ~2 to 3 with a percent sorption varying from ~8 to 16% over the range.  The 

separation factor of Sc to Ti increased from ~0.5 at 0.1 M up to a maximum of 583.41 at 8 M.  

However, this was lower than separation factors determined in nitric acid which ranged from 

~8000 to 25000 at high nitric acid concentration.  

5.4.2.2 Kinetic Batch Study 

The results for single analyte kinetic batch contact studies of scandium and titanium DGA 

resin shown below in figure 17. 
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Figure 17: UNLV single analyte kinetic study using DGA resin in hydrochloric acid 

 

A kinetic study was performed to confirm whether the batch study method had allowed 

sufficient time for extraction of scandium and titanium in hydrochloric acid.  Each element was 

contacted separately to determine the sorption potential of DGA resin in hydrochloric acid at 2.5 

hours to compared to previous batch study data.  The difference between at each data point relative 

to the average retention at each acid concentration showed a variance of ~9% at 0.1 up to 0.3 M, 

decreasing to ~2.5% between 0.3 up to 1 M, finally decreasing to ~0.1% variation between 1 and 

8 M hydrochloric acid.  Little variation was seen between the two sets of data.   
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5.4.2.3 Dual Analyte Batch Studies  

The results for the dual analyte batch contact studies otherwise known as interference 

studies using DGA resin in nitric acid are shown below in figure 18 and in hydrochloric acid in 

figure 19. 

 

 

Figure 18: UNLV dual analyte batch contact study using DGA resin in nitric acid 

 

Scandium and titanium were contacted simultaneously to determine any significant 

variation in sorption on DGA resin in nitric acid.  Similar to the single analyte study, scandium 

showed an increasing k’ of ~17 to ~4000 from 0.1 to 1 M.  Scandium retention was shown to be 

significantly lower than the single analyte study below 0.3 M while increasing at a larger slope 

above 0.3 M.   Scandium concentration from 3 to 10.5 M was below the detection limit so a value 
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was substituted based on the instruments LOD of 0.01 ppm giving a ~99% retention or k’ of 

~28,000. 

 Titanium retention remained stagnant around a k’ of 1 with slight fluctuations likely due 

random processes such as sorption to the container walls.  A slight decreasing trend was shown  

up to 5 M followed by a slight increase up to 10.5 M.  The entire retention range shifted from 0.48 

to 2.01 with 2.01 at 0.1 M down to 1.56 at 10.5 M.   

Overall, titanium retention to the resin was slight larger but not very significant with a 

percent sorption range of ~3 to 10%.  The separation factor of Sc to Ti showed an increasing trend 

due to the significant increase in Sc extraction as the nitrate concentration increased from ~2 at 0.1 

M to ~15,000 at 10.5 M. Similar to the single analyte studies, a large separation factor of 8000 or 

more was seen at high nitric acid concentration.  
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Figure 19: UNLV dual analyte batch contact study using DGA resin in hydrochloric acid 

 

The UNLV interference method was employed to determine any significant variation in 

sorption of scandium and titanium to DGA resin in hydrochloric acid.    Unlike the previous single 

analyte studies, the interference study was performed below 0.1 M which showed a decrease in 

retention from ~20% to 6% at 0.1 M.   This slight decrease may be due to mechanisms such as 

retention to the wall of the container causing a slightly higher retention at 0.3 M HCl.  Additional 

studies need to be performed to determine if this is a data processing, instrument or chemistry 

issue.  From 0.1 to 4 M, there is a gradually increasing slope in scandium retention to a value 

below the LOD from 4 to 10 M.  The value for the LOD of 0.01 ppm was substituted equivalent 

to ~99% retention or a k’ of 28,000. 
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 As in the other studies, titanium remained stagnant around ~1 likely due to the inability of 

the bidentate TODGA ligand to coordinate Ti.  A slight titanium retention of ~2 to 4% was 

observed across the acid range which may be due to other processes occurring such as adsorption 

to the container walls or inert resin support.  The separation factor of Sc to Ti increased from ~5 

at 0.3 M up to ~70,000 at 8 M.  Note again that the separation factor was significantly higher due 

to use of the LOD value for the instrument used. 

5.4.2.4 Comparison of Scandium Retention Studies  

 A comparison between published studies and batch studies performed for this dissertation 

are shown below in hydrochloric and nitric acid.  Comparison plots of these studies to the UNLV 

single batch studies are shown in figures 20, and 21.  Each set of data was converted from Dw to 

k’ using the conversion factor shown in table 19 in attempt to compare different methods.  The 

retention values determined from the UNLV single analyte, Roman, and Dirks studies were 

determined using a batch contact study method.  The Alliot retention values were determined using 

a column study.  
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Figure 20: Comparison of multiple scandium retention studies using DGA resin in nitric acid.                                
The Roman, Alliot, and Dirks data was extracted from published papers16,80,81 

 

All of the data sets show an increasing trend of scandium retention in DGA resin as the 

nitric acid concentration increased.  This was previously discussed to occur based on the increase 

in  Sc(NO3)3 species as the nitrate concentration increased.  The work by Alliot and the UNLV 

single analyte study showed the closest similarity across the range with fairly close k’ values from 

0.1 to 6 M nitric acid.  The difference between the Alliot and the UNLV values are under an order 

of magnitude varying from ~1.3 to 6.5 while the Roman and Dirks data are consistently 2 to 3 

orders of magnitude higher.  The Dirks data show a low scandium retention at 0.01 M but swiftly 
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increases with a slope of ~2 and a k’ 2.5 orders of magnitude higher relative to the UNLV data at 

0.1 M.  Similarly, the Roman data increases with a slope of ~2 from 0.1 to 2 M.   

Looking at the different methods, the UNLV, Dirks, and Roman methods were all very 

similar using ppm quantities of Sc in 50 mg of resin.  The volume of acid for each varied from 1.2 

to 1.5 mL with mixing times from 30 minutes to 1 hour.  Analytes were measured using a ICP-

AES for Roman and the UNLV data while a ICP-MS was used to analyte the Dirks data.  The only 

significant difference between the three procedures was the filtration method.  In the UNLV study, 

a PTFE filter and syringe was used while a 2 mL biospin column was drained in the Roman study, 

and a centrifuge was used to separate the two phases in the Dirks study.  It is unclear as to why 

these methods should differ significantly as the Alliot method using column studies showed the 

closest retention values to the UNLV data across the acid range.  It should be noted that the Alliot 

method used multiple analytes at unknown concentrations to achieve this distribution.   

Based on the UNLV study, a scandium sorption of 99% is equivalent to a k’ value of 1000 

which is still below majority of Roman and Dirks data.  Their data seems to continuously increase 

purely on their ability to detect signal.   This is clearly shown at very high acid concentrations in 

the Dirks study where retention values fluctuated significantly while maintaining sorption above 

99%. 
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Figure 21: Comparison of multiple scandium retention studies using DGA resin in hydrochloric acid.  The Roman, 
Alliot, and Dirks data was extracted from published papers16,80,81 

 

All of the data sets show an increasing scandium retention trend from 1 to 10 M with minor 

variations at high acid in the Dirks data likely due to a lower limit of detection through 

measurement using a ICP-MS.  This is likely due to increased formation of ScCl3 as the anion 

concentration increased.  Similar to the nitric acid comparison, the Alliot data was similar to the 

UNLV study data in terms of slope with a slightly higher k’ overall.  In the Dirks data, a slight 

decrease in retention was shown from 0.001 to 0.1 M followed similar data to the Alliot and UNLV 

data from 0.1 to 10 M.   

The Roman data showed significantly higher sorption across the entire acid range similar 

to the previous comparison in nitric acid.  In hydrochloric acid, the data decreased by an order of 

magnitude from 0.1 to 1 M followed by an increase in k’ retention similar to Dirks and the UNLV 
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study up to 2 M.    The decrease shown for Dirks and Roman at low acid may be caused by a 

sorption to the container wall or additional mechanism not clearly explained in their procedures.   

 Although, there was some discrepancy in the retention values determined in each study, all 

of the different studies came to the same conclusion that  0.1 M hydrochloric acid would be optimal 

for stripping Sc from DGA resin.  With large discrepancies in data, an attempt was made to 

replicate the results from the Dirks and Roman studies.   

In the Roman study, batch contact studies were performed used biospins columns noted in 

the LANL method listed in 5.3.2.1 to measure single analyte Sc retention using ICP-AES.  The 

Dirks method utilized batch studies using a low ppm concentration of Sc in 1.4 mL of acid followed 

by mixing for thirty minutes.81  Dirks used the method of separating samples using a centrifuge 

which was hard to replicate as no experimental instructions were included.  Samples from the 

Dirks study were analyzed using ICP-MS which could explain why the retention values were 

significantly higher due to a limit of detection  In this work, the CSU interference method was 

employed to replicate the Dirks data using a lower concentration of Sc and measured using a ICP-

MS.  No attempt was made to replicate the Alliot method as it involved multiple additional 

elements at concentrations not listed.   Comparison plots of the UNLV single analyte, UNLV 

interference, CSU interference, and LANL biospin data sets are shown below in figures 22, and 

23.  
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Figure 22: Comparison of UNLV, CSU, and LANL methods for scandium retention on DGA resin in nitric acid 

 

Each set of data follows a similar trend of scandium retention increasing with acid 

concentration.  The LANL and UNLV interference methods show a steeper increase in slope from 

0.1 to 1 M reaching greater than ~ 90% sorption by ~0.5 M while the CSU interference and UNLV 

single analyte data reached ~90% sorption by 1 M.  From 1 M onward, the CSU and UNLV 

interference studies reached their detection limits by ~3 M while the LANL data decreased slightly 

due to human error in performing manipulating the biospin columns.  In each of the studies, the 

uncertainty between replicates at any acid concentration was under 20% while in the LANL study 

uncertainties up to 75% were determined at k’ values at 1 M or higher.  However, at these values 

the sorption was significantly higher than 99%.   The UNLV single analyte study slowly increased 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.01 0.1 1 10

k'

Nitric Acid Concentration (M)

UNLV Single Analyte
UNLV Interference
CSU Interference
LANL Biospin



 
 

81 
 

reaching full retention near 10.5 M.  Although, there was some discrepancy in retention between 

the four runs, UNLV interference and LANL methods were consistently 1 order of magnitude 

lower from 1 M onward compared to the Dirks and Roman data in figure 20. Replication of the 

Roman method shown as LANL Biospin and the CSU interference method instead showed a 

confirmation of the UNLV studies at up to 1 M followed by variation in retention values 

representing sorption greater than 99% for all studies from 1 to 10 M nitric acid. 

 

 

Figure 23: Comparison of UNLV, CSU, and LANL batch contact study methods for scandium using DGA resin in 
hydrochloric acid 

 

Similar to the comparison in figure 22, each set of data shows a gradual increase in 

scandium sorption up to ~95% or a k’ ~1400 at 3 M.   The slight variations between the UNLV 
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single analyte, LANL, and CSU interference studies are likely due to slight variations in 

experimental reproducibility, instrumental drift, and data processing.   

The significant decrease in retention shown in UNLV interference study is a bit harder to 

determine as there is a sorption decrease of 15% from 0.03 to 0.1 M followed by a comparatively 

steeper slope up from 1 to 4 M.  It is possible that the CSU and LANL data may match closer to 

the UNLV interference data if additional batch studies were performed between 0.1 and 1 M 

hydrochloric acid.  Both of these methods show a similar rising slope compared to the UNLV 

studies below 1 M unlike the previous Roman data in figure 21.  An additional replicate study 

using the UNLV interference procedure and analysis method should be performed in an attempt 

to deduce the deviation between data sets. 

5.4.2.5 Comparison of Titanium Retention Studies  

 A comparison of titanium retention from the UNLV studies, CSU study, and previous work 

by Pourmand82 are show below in figures 24, and 25. 
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Figure 24: Comparison of multiple titanium retention studies using DGA resin in nitric acid.                        
Pourmand’s data was extrapolated from previously published work82 

 

Each data set shows a decreasing retention of titanium from very low to ~5 M nitric acid 

and increase in retention from 5 M onward.  The sorption of Ti in the UNLV and CSU studies 

from 0.01 to 9 M is under 10% or a k’ of ~2 while the Pourmand data fluctuated slight higher at 

~20 to 25% sorption.  It is unclear why there is a slight decreasing trend in titanium sorption from 

0.1 to 6 M in the UNLV and CSU studies followed by a rapid increase up to 10 M.   The rapid 

increase shown at very high nitric acid may be explained by a speciation threshold where the 

dominant species in the solution is Ti(NO3)4 allowing for small but significant increase in 

extraction by DGA resin.  Additional batch contact studies up to 16 M nitric acid should be perform 

to determine if this increase is a fluke.    
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Figure 25: Comparison of multiple titanium retention studies using DGA resin from in hydrochloric acid.  
Pourmand’s data was extrapolated from previously published work82 

 

There does not seem to an increasing or decreasing trend when comparing all of the UNLV 

and CSU studies up to 2 M hydrochloric acid.  After 2 M, there is a fairly steep increase in retention 

for Pourmand and in the CSU interference data.  The UNLV batch study and UNLV interference 

study stay fairly stagnant from 2 to 8 M.  For each the UNLV and CSU studies, Ti is only sorbed 

from a few percent up to ~15% at any acid concentration.  Similar to the nitric acid work, there 

does not seem to be much extraction by DGA resin across the acid concentration except by 

Pourmand at 10 M.  However, replication of the Pourmand study wouldn’t be possible as the 

number of analytes and concentrations used were not expressed for the batch studies.  The only 

concentrations expressed were for the column elution studies performed.   
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5.5 Conclusions 

 The single analyte studies performed using Ln 1 resin showed a reasonable but not optimal 

separation method for Sc and Ti.  In both acid system, separation factors of ~100 to 300 were 

achievable but significant retention of titanium was seen in nitric and hydrochloric acid at ~60 and 

~85%.  The UNLV single analyte studies using DGA resin showed a Sc retention of ~1000 or 

higher as the acid concentration increased from 3 M in both acid systems.  Although, the Sc 

retention decreased by one order of magnitude on average DGA resin, Ti retention decreased by 

at least two orders of magnitude with a retention around 1 in both acid systems at all 

concentrations.  A slightly larger SF of ~600 was observed in hydrochloric acid while the SF factor 

in nitric acid at least ~8000 up to 25,000 at high acid concentration. The reason for this is likely 

due to the coordination mechanism of each resin ligand.  Ln 1 resin uses a monodentate ligand that 

could coordinate to Ti allowing significant retention, while DGA resin used a bidentate ligand 

which did not seem to in acid solution.  The reason for this is likely due to steric hindrance 

preventing extraction of Ti as a greater number of ligands would be required to extract a tetravalent 

species (Ti) opposed to a trivalent (Sc).  The difference in Sc retention between the resins is likely 

due to the HDEHP ligand acting as a stronger electron donor than the TODGA ligand.  The dual 

analyte studies replicated similar results to the single analyte studies. The kinetic study showed 

less than 10% difference in retention between 1 and 2.5 hour mixing time in hydrochloric acid.  

The difference in extraction is likely due to the coordination mechanism of each resin ligand.   

 Comparison of the different DGA methods by Dirks, Roman, Alliot and studies performed 

in this dissertation showed a general increase in Sc retention with acid concentration for both nitric 

and hydrochloric acid.  However, in nitric acid, the Dirks and Roman data showed Sc retention 

values a few order of magnitude greater across the acid range.  Additionally, a decrease in Sc 
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retention was shown at very low (0.001 to 0.1 M) to 1 M hydrochloric acid in the Roman and Dirks 

data.  Attempts to discern these issues by replicating the LANL method and repeating a slight 

adaption of the UNLV method (the CSU method) showed retention values closer to those  

determined from the UNLV single and dual analyte studies.   

 Based on the batch contact studies data, an optimal separation method was developed using 

a nitric acid system to sorb Sc to DGA resin while separating Ti.  This could be followed by a 

stripping step using a low concentration of hydrochloric acid.  Adaptation of this method to column 

studies using 5 M nitric acid and 0.1 M hydrochloric acid is shown in chapter 6.   
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CHAPTER 6: SEPARATION OF TITANIUM AND SCANDIUM USING DGA RESIN 

COLUMN STUDIES   

6.1 Introduction 

 Using the separation parameters determined from batch contact studies in chapter 5, 

column studies were performed to separate scandium from titanium.  In this chapter, column 

studies were performed using a wet slurry of DGA resin to determine the analyte distribution or 

elution profile of Sc and Ti in smaller quantities.  This method will be scaled up in mass loading 

similar to the quantities used in chapter 4.  If the gravity flow columns show a clean separation, 

then the method will be converted to vacuum column studies using prepacked resin cartridges at 

significantly faster flow rates.  These faster flow rates through use of vacuum pressure is necessary 

to push the solution through a smaller interstitial space in these more tightly packed resin 

cartridges.   In addition, these experiments at higher flow rates will be used to test if a high rate of 

extraction is still possible while significantly reducing the time needed for each extraction.   

 In these column studies, a significantly larger mass of resin will be used to ensure sufficient 

capacity while maintaining fast extraction kinetics.  A 1:1 ratio of Sc to Ti is used initially for the 

elution profile proof of concept followed by substantial increased in Ti mass.   A ratio of 1:100 Sc 

to Ti will be used in the later experiments with a two orders of magnitude mass loading increase 

up to 100 mg based on the mass of each Ti foil (~80-100 mg) used in the Flattop irradiation.  Only 

1 mg of Sc was used at the highest mass loading based on measurements of Ti foil showing less 

than 1% conversion to Sc.  

   6.2 Materials 

 All materials used are for these column studies are described in section 3.1 
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6.3 Experimental Procedure 

6.3.1 Gravity Column Studies  

 The general procedure for gravity column studies including FCV determination using a 

wet slurry of resin is described in 3.5.1.  Two variations of the gravity column study using 500 mg 

DGA resin were performed based on the concentration of analyte separated.  For three replicates 

using 500 mg of DGA resin, 10 ± 0.2 drops of DI water was measured before 1 M hydrochloric 

acid eluted from the column.  One FCV was determined to be equivalent to ~0.5 mL.  Each 

Eichrom cartridge used has a column volume of 2 mL. 

 In the first or elution profile study, a 5 mL load solution containing 5 ± 1% mg Sc and 10 

± 1% mg Ti in 5 M nitric acid was prepared from stock standards referenced in section 3.1. A mass 

of 500 ± 1% mg of DGA resin was weighed in a 20 mL glass scintillation vial followed by the 

addition of ~1-2 M nitric acid.  The resin solution was mixed on a shaker table for at least 2 hours 

to allow time for swelling.  The resin was added to a 2 mL Eichrom chromatography column 

followed by the addition of glass wool.  The column was conditioned using 5 FCVs of 5 M nitric 

acid (2.5 mL) and the number of drops per minute was measured to determine a flow rate.  Acid 

was eluted until the solution level dropped to top of the resin bed. The 5 mL load solution was 

added in 1 mL intervals as the solution flowed down to the level of the resin bed.    The column 

was washed with 5 FCVs of 5 M nitric acid (2.5 mL) to ensure complete Ti removal.  A aliquot 

containing 5 FCVs of 6 M hydrochloric acid was then added to the column to convert the acid 

matrix without desorbing Sc.  Finally, 15 FCVs of 0.1 M hydrochloric acid was added to strip Sc 

from the resin.  Fraction were collected in 2 mL microcentrifuge every 2 minutes or ~1 FCV.      
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 In the second or elution fraction study, the method for preparing resin and the column 

remained the same while the mass of analyte, volumes of acid, and fraction collection method 

differed.  In this method, a 15 mL load solution containing 1 ± 1% mg Sc and 100 ± 1% mg Ti in 

5 M nitric acid was prepared from stock standards referenced in section 3.1. The column was 

condition using 5 FCVs of 5 M nitric acid prior to addition of the load solution.  After the load 

solution was added, an addition 30 FCVs (15 mL) of 5 M nitric acid was used to wash the column 

any residual Ti.  After the Ti elution step, the column was conditioned using 20 FCVs of 6 M 

hydrochloric acid (10 mL).  Finally, the column was stripped of Sc using 60 FCVs of 0.1 M 

hydrochloric acid.  Three separate fractions were collected instead of a fraction for every FCV.  

The first fraction or Ti elution step consisted of the 5 M nitric acid load and wash.  The second 

fraction or column conversion step consisted of the 6 M hydrochloric acid elution.  The third 

fraction or Sc stripping step consisted of the 0.1 M hydrochloric acid elution. 

For each study, an aliquot from each fraction was diluted and analyzed using an Optima 

8000 ICP-AES described in section 3.6.1.2.  Each column study was replicated three times.      

6.3.1.1 Data Analysis 

The data analysis method used for the Optima 8000 ICP-AES is shown in section 3.5.1.2. 

6.3.2 Vacuum Column Studies 

The general procedure for the vacuum column studies including vacuum box set up is 

described in section 3.5.2.1.  A vacuum box from Eichrom was set up using the associated pressure 

regulator, and tubing connected to a vacuum spout.  A 15 mL load solution containing 1 ± 1% mg 

Sc and 100 ± 1% mg Ti in 5 M nitric acid was prepared from stock standards referenced in section 

3.1.  A 2 mL prepacked DGA resin cartridge was connected to a 20 mL syringe and attached to an 
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open spout on top of the vacuum box.  The resin was wet by adding 10 mL of 5 M nitric to a 

syringe attached to the resin cartridge allowing the vacuum to pull the acid through the cartridge.  

The flow rate was measured at a rate of ~1 mL per minute.  Next, the 15 mL stock solution was 

added to syringe followed by an additional 15 mL of clean 5 M nitric.  The solution eluted off the 

column was collected in the Ti fraction vial.  Next, 10 mL of 6 M hydrochloric was added to 

convert the resin prior to the Sc stripping step.  The solution eluted off the column was collected 

in a separate fraction.  Finally, 30 mL of 0.1 M hydrochloric acid was added to strip Sc and was 

collected in a separate fraction. This method was repeated at a flow rate of 3, and 5 mL per minute.  

For each study, an aliquot from each fraction was diluted and analyzed using an Optima 8000 ICP-

AES per section 3.6.1.2.  Each column study was replicated three times.      

6.3.2 Data Analysis 

The data analysis method used for the Optima 8000 ICP-AES is shown in section 3.5.1.2. 

6.4 Results and Discussion 

6.4.1 Gravity Column Studies 

 The results for the 1:2 Sc to Ti gravity column study using wet slurry DGA resin is shown 

below in figure 26.  The percent recovery of each analyte by elution phase is shown in table 21 

while the decontamination factor for each phase is shown in table 22.  
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Figure 26: Elution profile for the 1:2 ratio of Sc to Ti gravity column study using wet slurry DGA resin.  Analyte 
recoveries of 98.62 ± 1.25% for Sc and 99.51 ± 2.22% for Ti.   

 

Table 21: Percent analyte recovery for each elution phase of the 1:2 ratio Sc to Ti elution profile in figure 6.1 

Elution Phase FCV Range Sc Recovery (%) 1 σ Ti Recovery (%) 1 σ 

5 M HNO3 Condition 1 to 5 <LOD <LOD <LOD <LOD 

Load + 5 M HNO3 Wash 6 to 20 0.04 0.01 99.51 2.22 

6 M HCl Conversion 21 to 25 0.26 0.01 0.01 0.01 

0.1 M HCl Strip 26 to 40 98.62 1.25 0.02 0.01 
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Table 22: Decontamination factors for each elution phase of the 1:2 ratio Sc to Ti elution profile in figure 6.1 

Elution Phase DF (Sc/Ti) 1 σ DF (Ti/Sc) 1 σ 

5 M HNO3 Condition  N/A N/A N/A N/A 

Load + 5 M HNO3 Wash  3.52E-04 1.01E-04 2.84E+03 8.15E+02 

6 M HCl Conversion  3.94E+01 5.96E+01 2.54E-02 3.85E-02 

0.1 M HCl Strip  5.36E+03 2.91E+03 1.87E-04 1.01E-04 

 

The elution profile above shows the column elution spread between four phases or 

fractions.  The first (condition) phase was measured to determine if any residual Sc or Ti was 

dissolved in the acid solution or part of the resin column.  Recovery of both analytes were below 

the detection limit of 0.01 ppb or 0.01% relative to the feed stock.  The second (load plus wash 

phase) shows 99.51 ± 2.22% of the Ti eluting off the column while nearly all of the Sc remained 

sorbed to the column.  In this phase, the decontamination factor (DF) of Ti was 2.84E3 as only 

0.04% of the Sc eluted off.  The third (conversation) phase shows less than 1% elution of Ti or Sc 

as shown in table 13.  This phase was important to determine if there would be any bleed over of 

Ti from the 2nd phase.  In the fourth (stripping) phase,  98.62 ± 1.25% of the Sc was eluted off the 

column with less than 1% of the Ti stock.  The DF for Sc was 5.36E3 for this phase as only 0.02% 

of Ti was eluted.  Overall, 98.62 ± 1.25% of the Sc was recovered during the strip step and 99.51 

± 2.22% of the Ti was recovered during the load plus wash step.  Less than 0.3% of the Sc was 

shown to elute during the condition step which is likely due to the dilution of added 6 M 

hydrochloric acid to the resin bed volume of 5 M nitric acid in the column from step 2.     
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The results for the for the 1:100 Sc to Ti gravity column study using wet slurry DGA resin 

is shown below in figure 27.  Note that neither the wash phase or conversion phase is shown as the 

Sc and Ti recoveries were below 1%.  The percent recovery of each analyte by elution phase is 

shown in table 23 while the decontamination factor for each phase is shown in table 24. 

 

 

Figure 27: Gravity column elution fraction study for the 1:100 ratio of Sc to Ti using wet slurry DGA resin 

 

Table 23: Percent analyte recovery for each elution phase using a 1:100 ratio of Sc to Ti 

Elution Phase Sc Recovery % 1 σ Ti Recovery % 1 σ 

Load + 5 M HNO3 Wash 2.23E-03 4.45E-05 99.82 1.30 

6 M HCl Conversion 5.56E-04 1.11E-05 0.063 0.001 

0.1 M HCl Strip  96.79 1.94 3.61E-03 7.21E-05 
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Table 24: Decontamination factors for each elution phase using a 1:100 ratio of Sc to Ti 

Elution Phase DF (Sc/Ti) 1 σ DF (Ti/Sc) 1 σ 

Load + 5 M HNO3 Wash  2.23E-05 5.32E-07 4.49E+04 1.07E+03 

6 M HCl Conversion  8.90E-03 2.52E-04 1.12E+02 3.18E+00 

0.1 M HCl Strip  2.68E+04 7.59E+02 3.73E-05 1.05E-06 

 

 

 Adaption of first gravity column study using a higher mass loading of titanium at a 1:100 

ratio of Sc to Ti showed high recoveries for both analytes.  In this method, the Ti mass was 

increased by a factor of 10 while Sc was lowered from 5 to 1 mg.  In the load plus wash fraction, 

99.82 ± 1.30% Ti was recovered with a DF for Ti of 4.49E4.  In the conversion phase, less than 

1% of either analyte was measured.  In the strip phase, 96.79 ± 1.94% of Sc was recovered with a 

DF for Sc of 2.68E4.  

6.4.2 Vacuum Column Studies 

The results for the vacuum column studies using a 1:100 Sc to Ti ratio solution in DGA 

resin cartridges at varying flow rates are shown below in figure 28. Similar, to figure 27, the 

conversion phase is not shown as the measured concentration of either analyte was less than 1% 

in each study.  The decontamination factors for each elution phase in each study are shown below 

in tables 25, 26, and 27.   
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Figure 28: Vacuum column studies separating Sc from Ti at a 1:100 ratio using prepacked DGA resin cartridges at 
various flow rates 

   

Table 25: Decontamination factors for each elution phase using a 1:100 ratio of Sc to Ti at a flow rate 1 mL/min  

Elution Phase DF (Sc/Ti) 1 σ DF (Ti/Sc) 1 σ 

Load + 5 M HNO3 Wash  1.88E-05 1.31E-05 5.32E+04 3.71E+04 

6 M HCl Conversion  4.90E-02 2.63E-02 2.04E+01 1.09E+01 

0.1 M HCl Strip  6.03E+04 4.57E+04 1.66E-05 1.26E-05 
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Table 26: Decontamination factors for each elution phase using a 1:100 ratio of Sc to Ti at a flow rate 3 mL/min 

Elution Phase DF (Sc/Ti) 1 σ DF (Ti/Sc) 1 σ 

Load + 5 M HNO3 Wash  6.45E-06 1.72E-06 1.55E+05 4.14E+04 

6 M HCl Conversion  1.17E+00 1.02E+00 8.57E-01 7.50E-01 

0.1 M HCl Strip  6.51E+04 4.08E+04 1.54E-05 9.61E-06 

 

Table 27: Decontamination factors for each elution phase using a 1:100 ratio of Sc to Ti at a flow rate 5 mL/min  

Elution Phase DF (Sc/Ti) 1 σ DF (Ti/Sc) 1 σ 

Load + 5 M HNO3 Wash  2.10E-05 1.20E-05 4.77E+04 2.72E+04 

6 M HCl Conversion  1.07E-01 5.62E-02 9.37E+00 4.93E+00 

0.1 M HCl Strip  6.36E+03 4.76E+03 1.57E-04 1.18E-04 

 

Adaption of the 1:100 Sc to Ti gravity column study to vacuum column studies at flow 

rates of 1, 3, and 5 mL/min showed high recoveries.  An average ~99 ± ~3% Sc was recovered in 

the stripping phase between the flow rates.  An average ~95 ± ~3% Ti was recovered in the load 

phase between the flow rates.  The DF for Ti in each load plus wash phase showed at least 104 at 

all three flow rates while the DF for Sc in each strip phase showed at least 103 at all three flow 

rates.  Recovery of Sc remained consistent between each run while Ti decreased a few percent as 

the flow rate increased from 1 to 5 mL/min.  At a flow rate of 1 mL/min, 97.56 ± 3.53% of the Ti 

was recovered in the load/wash phase which decreased to 94.07 ± 3.21% at rate of 5 mL/min.  This 

decrease seen may be due to the loss to the walls of the column or trapped in the resin bed.  This 

issue was likely seen only in Ti due to the significantly higher mass loading. 
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6.5 Conclusion 

 Conversion of the batch contact studies to wet slurry studies show a successful separation 

at low concentrations of Sc (5 mg) and Ti (10 mg).  The elution profile shown in figure 26, showed 

a clean separation between phases with  99.51 ± 2.22% of the Ti eluting in the load plus wash 

phase and 98.62 ± 1.25% of the Sc eluting in the strip phase.  An increase in mass loading of Ti 

(100 mg) at a ratio of 1:100 Sc to Ti showed a similar recovery.  This ratio was determined in 

chapter 4 based on the Flattop irradiation of Ti foil.  Similar results were shown for the elution 

fraction study showing 99.82 ± 1.30% Ti recovery with a DF for Ti of 4.49E4 in the load plus 

wash phase while showing 96.79 ± 1.94% of Sc recovery in with a DF for Sc of 2.68E4 in the strip 

phase.  

Adaption of the gravity column studies to vacuum column studies using prepacked resin 

cartridges showed similar recovery and decontamination factors at flow rates of 1, 3, and 5 mL/min 

opposed to a flow rate of 0.25 mL/min.  The average recovery between the flow rates for Sc was 

~99 ± ~3% and ~95 ± ~3%  for Ti. At the highest flow rate of 5 mL/min, Sc had a recovery of 98.4 

± 3.1% with a DF of 6.36E3 in the strip phase while Ti had a recovery of 94.07 ± 2.7% with a DF 

of 4.77E4 in the load plus wash phase.   

Overall, the scale up from gravity column studies at flow rates of 0.25 mL/min and resin 

precondition times of a few hours required at least 4 hours to separate the 1:2 Sc to Ti solution 

while at least 5 hours to separate the 1:100 Sc to Ti solution.  Successful scale up in mass and use 

of gravity columns up to flow rates of 5 mL/min would allow for significantly faster separation 

times by conditions resin cartridges in less than 5 minutes followed by separating the stock solution 

in less than 30 minutes.  The next step in this research would be the application of the vacuum 
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column method to a sample of activated titanium foil to attempt purification of 46-48Sc for future 

use in artificial glass production.  Application of this method shown should be successful as the 

chemistry properties of this separation should not change based on the use radioactive isotopes of 

Sc and Ti. 
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CHAPTER 7: DEVELOPMENT OF A SOLVENT EXTRACTION SYSTEM USING 

TRIOCYTLAMINE FOR SEPARATION OF MANGANESE FROM CHROMIUM 

7.1 Introduction 

 As described previously in chapter 1, 52Mn has the potential application for use in positron 

emission tomography (PET) as a positron emitter due to its comparable energy and longer half-

life of ~5.6 days.    Commonly used positron emitters such as 19F or 13C have similar decay energies 

but half-lives shorter than a few hours requiring medical cyclotrons and separation laboratory in 

or near each hospital using these isotopes for medical diagnostics.  

The method for producing 52Mn requires separation from 52Cr or natCr (~83% 52Cr) that has 

been activated using the p-n reaction.  In this chapter, the solvent extraction studies performed in 

this chapter will use stable Mn and Cr as the chemical separation technique utilized will not differ 

based on which isotope was used. Based on previous work, a solvent extraction was performed on 

Mn and Cr using trioctylamine (TOA) in cyclohexane at varying strong acid concentrations.61  

Additionally studies were performed testing the kinetics of extraction followed by determination 

and reduction of the third phase formation in each system.   

 In these studies, a separate analysis method was developed for to measure Cr in solution.  

Stock solutions used in this research were prepared from ICP-MS grade standards containing NatCr 

(83.8% 52Cr).  In these studies organics and hydrochloric acid were used causing isobaric 

interferences through the formation of 40Ar12C+ and 35Cl16OH+ when measured on a ICP-MS.  

Complexes formed in the instrument filter through and create a false signal requiring a separate 

measurement method using a discrete reaction cell.  To reduce false signal, the system is purged 

with a reactive gas forming stable known compounds which can be filtered from detection.83 Based 
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on initial measurements using a standard quadrupole without reaction cell, at ppb quantities of Cr, 

interferences of 5 to 50 times the standard concentration were measured. 

7.2 Materials 

 All materials used in this chapter are shown in section 3.1. 

7.3 Experimental Procedure 

7.3.1 Solvent Extraction Study 

The general solvent extraction method used is described in section 3.3.1.  Two variants of 

the general method were employed to test the extractability of Mn and Cr from acid solutions.   

In the first variant, the organic ligand concentration was kept static based on previous work 

performed by Lahiri61.  A stock solution of 0.8 M TOA ligand dissolved in cyclohexane and 2% 

(v/v) 1-octanol was produced.  Multiple stock solutions containing 250 ppb of Cr and Mn in 0.01-

10 M hydrochloric acid were produced using certified standards.  In a 2 mL vial at each acid 

concentration, 0.75 mL of 250 ± 1% ppb Cr and Mn stock solution was added followed by 0.75 

mL of the 8 M TOA stock solution so the total volume was 1.5 mL.  Each vial was placed on a 

Labquake shaker table for 1 hour.  After mixing, the vials were placed upright to allow immiscible 

phases to reform.  An aliquot was taken from the aqueous layer, diluted, and measured on the 

NexION ICP-MS described below in 7.3.1.2.  This method was duplicated using stock solutions 

in 0.01-10 M nitric acid.  However, TOA stock solutions contained 3% (v/v) octanol in the nitric 

acid method.   

In the second variant,  In the second variant, the acid concentration was kept static while 

the ligand concentration was variable.  The same procedure was performed as above using 9 M 

hydrochloric or nitric acid and a range of 0.01 to 0.8 M TOA ligand.  An aliquot was taken from 
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the aqueous layer, diluted, and measured on the NexION ICP-MS described below in 7.3.1.2. 

Determination of the octanol volume used was determined in section 7.3.3 below.  Both 

experiments were replicated in triplicate at each varied acid or TOA concentration.   

7.3.1.1 NexION 350 ICP-MS Method 

 The general measurement procedure for the NexION 350 ICP-MS was used and is 

described in section 3.3.1.2.  Additionally, studies performed in hydrochloric acid were diluted by 

a factor of 100 to reduce chloride interference before introduction into the reaction cell.  Ammonia 

gas was used to react and filter out isobaric interferences caused by 40Ar12C+ and 35Cl16OH+ prior 

to analysis.  This method was repeated in nitric acid to reduce the 40Ar12C+ isobaric interference 

and for consistency between measurement methods.  

7.3.1.2 Data Analysis 

The data was analyzed using the method shown in section 3.3.1.2.  

7.3.2 Kinetic Study  

 The kinetic study method duplicated the solvent extraction procedure described in section 

7.3.1.1 using only 0.8 M TOA, 9 M nitric, and 9 M hydrochloric acid.  Samples were mixed for 

10, 30, or 60 minutes followed by 5 minutes to allow phase reformation.  An aliquot of 0.5 mL 

was taken from the aqueous phase of each sample, diluted to 15 mL using 2% nitric acid and 

measured on the NexION 350 ICP-MS using the method described in 7.3.1.2 above.  The study 

was performed in triplicate. 

7.3.2.2 Data Analysis 

 The data was analyzed by the same method shown in section 7.3.1.3. 
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7.3.3 Third Phase Formation Study 

 The third phase formation procedure was adapted from the solvent extraction procedure in 

section 7.3.1.1 without the use of Cr or Mn in the aqueous phase and only TOA ligand and 

cyclohexane in the organic phase.  This method was used to determine the quantity of 1-octanol 

needed for the solvent extraction phase above in 7.3.1.1.  A solution of 0.01, 0.1 and 0.8 M TOA 

in cyclohexane was produced.  A stock of 0.1, and 10 M hydrochloric and nitric acid was produced.  

In a 15 mL centrifuge vial, 7 mL of 0.01 M TOA stock and 7 mL of 0.1 M hydrochloric acid was 

added.  This was repeated for using 0.01 M TOA with 10 M hydrochloric acid followed by 0.1 and 

0.8 M TOA with both acid concentrations.  Each solution was mixed for 30 minutes on a shaker 

table to determine if a third phase would form.  In solutions where one formed, a single drop of 1-

octanol was added a pasteur pipette followed by vigorous mixing by hand for 30 seconds.  The 

vial was set upright to see if the two or three phases would reform.  This process was repeated until 

the third phase was disappeared.  This entire method duplicated using 0.1 and 10 M nitric acid.  

For each acid/ligand concentration, the process was repeated in triplicate.  The number of drops 

were recorded for each ligand/acid concentration in each run.  Using the same Pasteur pipette, the 

average mass of one drop of 1-octanol was weighed on a laboratory scale by averaging the mass 

of 10 drops.   

7.3.3.2 Data Analysis 

 The data was analyzed using the method described in section 3.3.2. 
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7.4 Results and Discussion 

7.4.1 Solvent Extraction Studies 

7.4.1.1 Varied Acid Concentration Studies 

 The distribution ratio results of solvent extraction studies using 0.8 M TOA at varied nitric 

and hydrochloric acid concentration are shown below in figures 29, and 31.  The results of these 

studies in percent extraction are shown below in figures 30 and 32.  

 

 

Figure 29: Solvent extraction study of Mn and Cr using 0.8 M TOA at varied nitric acid concentrations 
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In figure 29, both analytes showed little to no distribution with ratios under 0.1 at any 

concentration of nitric acid.  In low acidic solution,  Mn2+ will form Mn(OH2) or MnO with an 

increasing shift to Mn(NO3)2 as the nitrate concentration increases.38,56  The formation of the 

Mn(NO3)2 is weakly bound and should likely be extracted by the amine electron donor.  This is 

not case as the distribution ratio in nitric acid is low across the entire range possibly due to 

additional competing interacting.  Trivalent Cr3+ at low nitric acid concentration forms Cr2O3  due 

to a strong binding to water molecules which prevents extraction into the organic phase due to the 

hydrophobic nature of water.41  This strong binding to water continues to prevent extraction as the 

nitrate concentration increases.  At nitric concentrations above 10 M, a significant quantity of 

Cr(NO3)3
38

 may form and potentially extract although this was not studied here. Significant overlap 

occurred between both analytes across the entire range.   In nitric acid, neither analyte was 

extracted as the separation factors varied from 0.1 to 2 with larger uncertainties than the value in 

most cases.  Ideally, the separation factor should be at least in the hundreds based the purity 

required. 
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Figure 30: Percent analyte extraction of Mn and Cr using 0.8 M TOA at varied nitric acid concentrations 

 

In figure 30, percent extraction values for Mn and Cr are shown based on the distribution 

values determined for figure 7.1.  Less than 5% of either analyte was extracted at any nitric acid 

concentration.  Any extraction shown does not follow a trend is likely due to human error or data 

processing as the uncertainty shown for each acid concentration are less than 3% which is 

determined by comparing replicates in the same experiment.  The fluctuations seen seem to be due 

to statistical drift of all replicates at each acid concentration. 
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Figure 31: Solvent extraction study of Mn and Cr using 0.8 M TOA at varied hydrochloric acid concentrations 
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could not be extracted.  The trend seen showing the Cr distribution slightly increasing may be due 
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to other mechanisms at low acid such as adherence to the container while from 1 M up the 

dominant species was Cr2O3.  However, across the entire range, a distribution of 0.1 is not very 

significant and may be due to human error.     The separation factor of Mn to Cr show little change 

from 0.01 to 1 M followed by a rapid increase up to 616.7 ± 15.4 at 9 M.     

  

 

Figure 32:  Percent analyte extraction of Mn and Cr using 0.8 M TOA at varied hydrochloric acid concentrations 

 

In figure 32, percent analyte extraction for Mn and Cr are shown based on the distribution 

values from figure 31.  The single extraction of Mn showed a slight increase in  from 0.01 to 2.5 

M hydrochloric acid followed by a rapid increase up to ~85% at 8 to 10 M.  Alternatively, Cr 

increased from ~5 to 15% extraction up to 1 M followed by a rapid decrease to 2.5 M where percent 
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extraction remained below 3% up to 10 M.  The slight increase in Cr extraction shown from 0.1 to 

1 M hydrochloric acid is likely due to an alternative mechanism such as sorption to the contain 

walls through hydrogen bonding.  This mechanism is corrected once the chloride concentration 

increases from 1 M up to 10 M hydrochloric acid. 

7.4.1.2 Varied TOA Concentration Studies 

The distribution ratio results of the solvent extraction study using 9 M hydrochloric or 

nitric acid at varied TOA ligand concentration are shown below in figures 33, and 35.  Percent 

extraction results for Mn and Cr based on these distribution ratio values are shown in figures 34, 

and 36. 
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Figure 33: Solvent extraction study of Mn and Cr using 9 M nitric acid at varied TOA ligand concentrations 

 

 In figure 33, a very low distribution ratio was shown for Mn and Cr across the entire TOA 

concentration range in nitric acid.    This is similar to what was shown in figure 29, Mn(NO3)2 did 

not extract at any concentration of ligand.  Similarly, Cr did not extract due to a strong bonding to 

water molecules across the acid range.  The distribution trend shows a slight increase occurred for 

both analytes from 0.01 to 0.1 M meaning that there might be a slight extraction occurring based 

on the order of magnitude increase in ligand concentration.  This increase becomes flat from 0.1 

to 0.8 M TOA meaning that a further increase in TOA ligand may not change the extraction.  The 

lack of extraction for both species is likely due to the species formed in nitric acid.  
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Figure 34: Percent analyte extraction of Mn and Cr using 9 M nitric acid at varied TOA ligand concentrations 

 

In figure 34, the distribution ratios from figure 33 were converted to percent extraction 

showing less than 5% extraction of either analyte at any concentration of ligand.  This similar to 

what was shown in figure 30, showing a slight extracting once the TOA concentration reaches 0.1 

M.  However, this extraction plateaus at 0.1 M so it is unlikely that a further increase in ligand 

concentration would affect extraction.      
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Figure 35: Solvent extraction study of Mn and Cr using 9 M hydrochloric acid at varied TOA ligand concentrations 

 

In figure 35, the distribution ratio of Cr and Mn showed a similar extraction from 0.01 to 

0.1 M TOA in 9 M hydrochloric acid.  From 0.1 up to 0.8 M TOA, the distribution ratio for Mn 

increased up to a distribution ratio of 5.35 at 0.8 M TOA similar to ~6 in figure 31.   Alternatively, 

Cr showed a steady decreased down to 0.01 at 0.8 M TOA.  Similar to plot 34, it seems that greater 

than 0.1 M TOA ligand is need to begin extraction of MnCl2.  The mechanism is ligand that of two 

unidentate amine ligands donates electron density to the Mn center while pushing off the weak 

chloride anions.  Cr does not show extraction due to strong binding with water molecules 

preventing migrating to the hydrophobic organic layer.  The separation factor showed little change 

from 0.01 to 0.1 M followed by a rapid increase up to ~800 at 0.5 M TOA due to a lower Cr 
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distribution relative to the study shown in figure 31.  At 0.8 M, the separation factor was 536.2 ± 

16.2 which was only slightly smaller than 616.7 ± 15.4 shown previously.  The deviation between 

these values is only 13.9 ± 3.6% and would likely be reduced through repetition of each study. 

 

 

Figure 36: TOA ligand to Mn coordination determination using a 9 M hydrochloric acid solvent extraction system 

 

 In figure 36, the Mn distribution relative to the TOA concentration was compared using 

the data from figure 35 to determine the number of TOA ligands coordinating to each Mn analyte 

in 9 M hydrochloric acid.  As the distribution between the two phases increases, the slope in the 

log fit equation determined that the complexation occurs at a ratio of 2.64 TOA ligands to 1 Mn 

atom as the ligand concentration increases.  This value is the empirical value based on the 

y = 2.64 ln(x) + 5.78
R² = 0.98
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complexation of multiple species.  As the ratio is larger than 2, Mn would likely be extracted as a 

neutral species through additional mechanism in addition to coordination of two unidentate tertiary 

amines (TOA) for each metal center.  It is possible that dimer is being formed between two metal 

centers and more than two unidentate ligands pushing off the chloride species.  This proposed 

dimer species may explain why little extraction occurred in the nitric acid system as a nitrate dimer 

system may be more strongly bound sharing five NO3- groups in addition to having have greater 

steric hindrance preventing coordination.   

  

 

Figure 37: Percent analyte extraction of Mn and Cr using 9 M hydrochloric at varied TOA ligand concentrations 
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In figure 37, percent analyte extraction for Mn and Cr are shown based on the distribution 

values from figure 32.  Mn showed little extraction from 0.01 to 0.1 M TOA followed by a rapid 

increase up to ~85 like in figure 31.  Similarly, less than 5% of Cr was extracted across the entire 

range.  This differs from figure 32, where Mn and Cr showed ~15% extraction from 0.01 to 0.1 M 

hydrochloric acid.  The difference is likely that at low acid concentration a mixed species is formed 

causing an alternative mechanism for loss.  This may be due to sorption to the container walls or 

slight precipitation of either analytes oxide form followed by dissolution as the chloride 

concentration increases. 

7.4.2 Kinetic Solvent Extraction Studies 

 The results of the kinetic extraction studies for 1 and 10 M nitric and hydrochloric acid are 

shown below in tables 28 and 29.   

 

Table 28: Kinetic solvent study of Mn and Cr in HNO3 

HNO3 Time (Minutes) DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 

1 M 10 0.02 0.02 0.01 0.02 1.23 2.01 
1 M 30 0.01 0.01 0.02 0.01 0.75 0.93 
1 M 60 0.01 0.01 0.01 0.02 1.18 1.68 

10 M 10 0.01 0.01 0.01 0.01 0.58 0.84 
10 M 30 0.004 0.005 0.01 0.01 0.51 0.77 
10 M 60 0.01 0.01 0.003 0.005 2.45 4.22 

 

 In table 28, there was little to no change in distribution ratio and separation factor across 

based on the amount of time mixed on the shaker table.  The distribution ratios measured had 

extremely high uncertainty based on the initial measurements.  The uncertainty on each value 
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increased significantly higher due to error propagation during the data analysis.  The kinetic data 

shown follows what was shown in the previous nitric acid studies shown in the previous section. 

 

Table 29: Kinetic solvent study of Mn and Cr in HCl 

HCl Time (Minutes) DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 

1 M 10 0.25 0.06 0.24 0.04 1.02 0.29 

1 M 30 0.23 0.08 0.22 0.08 1.03 0.32 

1 M 60 0.18 0.17 0.20 0.12 0.95 0.39 

10 M 10 5.39 0.06 0.010 0.001 544.67 53.39 

10 M 30 5.70 0.12 0.010 0.001 570.58 70.92 

10 M 60 5.97 0.03 0.010 0.002 590.79 95.82 

 

 In table 29, the distribution ratio of both analytes did not change significantly as mixing 

time increased from 10 to 60 minutes.  In 1 M hydrochloric acid, the separation factor fluctuated 

around ~1.  This is due to lack of chloride concentration causing formation of the weakly anionic 

MnCl2.  In the low acid system, the MnO or Mn(OH2) seems to be more strongly bound preventing 

extraction.  At 10 M hydrochloric acid, Cr shows a strong distribution of 5.39 to 5.97 while Cr 

shows a decrease in distribution relative to the 1 M study.  It is likely that this decrease occurs due 

to lack of mixed species where at low acid concentration, partial loss or extraction of Cr is possible.  

The SF at 10 M hydrochloric acid shows a slight increase from 544.67 at 10 minutes to 590.79  at 

60 minutes.  The deviation between these values is 8.12 ± 1.54% which may decrease by repetition 

of the kinetic studies.  In further studies, the kinetics of mixing for lengths of time greater than one 

hour to determine if a larger SF is possible.  An increase in SF would potentially increase the  

percent extracted from each solvent extraction requiring fewer additional extractions to acquire 

greater than 90% recovery.  Based on this data, 10 minute mixing time is likely sufficient for 
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qualitative or semi quantitative extraction while one or more hours should be used to for a 

quantitative separation.    

7.4.3 Third Phase Studies 

 The results of the third phase studies are shown below in tables 30 and 31.  In both acid 

matrices, no third phase formation occurred at 0.01 M TOA at any acid concentration.   

 

Table 30: Percent octanol needed to reduce third phase formation in HCl 

HCl 0.01 M TOA  1 σ 0.1 M TOA  1 σ 0.8 M TOA 1 σ 

0.1 M N/A N/A 1.43 0.12 2.01 0.19 

10 M N/A N/A 1.87 0.13 2.09 0.20 

 

 In hydrochloric acid, the percent octanol (v/v) needed for third phase removal increased 

from 1.43 ± 0.12% for a 1:1 mixture of 0.1 M TOA to 0.1 M hydrochloric acid to 2.09 ± 0.20% 

for 1:1 mixture of 0.8 M TOA to 10 M acid.   For ease in the experimental solvent extraction 

method, an average of 2% octanol (v/v) was used for all studies using a TOA concentration of 0.1 

M and 0.1 M or higher  hydrochloric acid.  No octanol was used for solvent extraction studies 

under 0.1 M TOA.   
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Table 31: Percent octanol needed to reduce third phase in HNO3 

HNO3 0.01 M TOA  1 σ 0.1 M TOA 1 σ 0.8 M TOA 1 σ 

0.1 M N/A N/A 2.19 0.11 2.81 0.21 

10 M N/A N/A 2.75 0.16 3.06 0.19 

 

In nitric acid, the percent octanol (v/v) needed for third phase removal was slightly higher 

than hydrochloric acid at 0.1 and 10 M.  For a 1:1 mixture of 0.1 M TOA to 0.1 M nitric acid, 2.19 

± 0.11% was determined up to 3.06 ± 0.19% for a 1:1 mixture of 0.8 M TOA to 10 M acid.   For 

ease in the experimental method, an average of 3% octanol (v/v) was used for all studies at 0.1 M 

TOA concentration and 0.1 M or higher acid concentration.  No octanol was used for solvent 

extraction studies under 0.1 M TOA.   

7.5 Conclusion  

The solvent extraction method used in this chapter showed increasing distribution ratio in 

hydrochloric acid using the TOA ligand as either variable was increased.    In 0.8 M TOA, the 

distribution ratio of Mn increased as the chloride concentration increased.  This is likely due to the 

formation of weakly bound MnCl2 at concentrations above 1 M56 or MnCl3
- at hydrochloric acid 

concentrations above 6 M.  This is due to the electron donating nitrogen on the tertiary amine 

coordinating to the metal center and pushing off the weak chlorides.   At lower acid concentrations, 

Mn oxide and hydroxide species were dominant preventing extraction.  In figure 31, the 

distribution ratio of Mn was ~0.1 from 0.01 to 1 M, followed by an increase to ~6 from 8 to 10 M.  

Cr does not form significant complexes hydrochloric acid due to a strong binding to water 

molecules.41  The distribution of Cr remained between 0.1 and 0.01 across the acid range.  An 

optimal SF of ~580 was determined in a system using 0.8 M TOA and 9 M hydrochloric acid.  In 
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one separation, the percent extraction recovered for Mn was ~85% from 8 to 10 M. Less than 5% 

of the Cr was extracted from 1 to 10 M while a slight increase to ~15% extraction was seen below 

1 M likely due to other mechanisms extracting Cr such as sorption to the container wall. 

A similar trend was seen for both analytes at 9 M hydrochloric acid and a varied TOA 

ligand concentration.  The distribution ratio of Mn increased from 0.04 to 5.35 as the chloride 

concentration increased from 0.1 to 0.8 M TOA.  Below 0.1 M, there was likely insufficient ligand 

to extract.  The distribution rate for Cr ranged from less than 0.1 to 0.01 showing little extraction 

as the TOA concentration increased.  A SF of 536.28 was determined at 0.8 M TOA which is 

slightly less than the previous study due to a slight decrease in the Mn distribution ratio from ~6 

to 5.35.  Mn and Cr extracted similarly to before with ~ 85% Mn and less than 5% Cr at 0.8 M 

TOA. In addition to determining the SF and percent extraction, the distribution ratio of Mn to the 

TOA ligand concentration from 0.1 to 0.8 M was shown in figure 36.  Although, Mn is divalent in 

solution at these acid conditions, the ligand ratio determined through a log regression showed that 

a ratio of 2.64:1 TOA ligand to Mn atom was extracted.  This may explain why Mn was not 

extracted in nitric due to other extracted species such a dimer which may be steric hindered 

preventing extraction.  A further explanation is shown above in the discussion. 

In a varied nitric acid system using 0.8 M TOA, the distribution ratio of Mn and Cr 

fluctuated below 0.1 as the nitric acid concentration increased.  This was confounding as Mn 

should have formed nitrate species as the nitric concentration increased extracting at higher acid. 

It is possible that the competition between the nitrates in solution is stronger than the complex 

formation between the tertiary amine or that Mn complexes with water preventing extracting into 

the hydrophobic phase.    Also, it is possible that the extraction mechanism differs from a 2 to 1 

TOA ligand to Mn metal center but may extract in a dimer form.  This is explained further in the 
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results sections.  Similar to in hydrochloric acid, Cr forms strong bonds in water making it difficult 

to extract in nitric acid at any concentration.   

Kinetic studies were performed using 0.8 M TOA in 1 or 10 M nitric or hydrochloric acid.  

In the nitric acid system, little to no extraction occurred for either analyte in varied acid or mixing 

conditions.  The SF of Mn to Cr was determined to fluctuate between 0.5 and 2.5 with uncertainties 

higher than each SF factor in many cases.  In the hydrochloric acid system, at 1 M acid, the SF 

varied around ~1 regardless of the mixing time.  At 10 M acid, the distribution ratio of Mn 

increased by a factor of ~20 while the distribution ratio decreased by a factor of ~5.  The SF based 

on time showed  an from 544.7 at 10 minutes to 590.8 at 60 minutes which is an improvement of 

~8%.  Further kinetic studies using longer mixing times should be performed to determine where 

the equilibrium threshold. 

Additionally, the effect of third phase formation was measured using different TOA and 

acid concentrations.  It was found that no octanol was needed below 0.1 M TOA concentration in 

either acid but an average of ~2% and ~3% octanol (v/v) was required to reduce formation at 0.1 

M TOA in hydrochloric and nitric acid.  Further work need to be performed to determine a upper 

limit for use of octanol as previous work has shown large quantities of diluent such as octanol or 

TBP used for third phase formation can reduce the extraction potential.29   

The data presented in this chapter showed that Mn can be separated from Cr using 0.8 M 

TOA in 8 to 10 M hydrochloric acid.  The purpose of this work was to develop a solvent extraction 

method to be used for production of extraction chromatography resins. This will be explored in 

the next chapter.   

  



 
 

120 
 

CHAPTER 8: BATCH CONTACT STUDIES OF MANGANESE AND CHROMIUM 

ON EXTRACTION CHROMATOGRAPHY RESINS FOR SEPARATION METHOD 

DEVELOPMENT 

8.1 Introduction 

 In chapter 8, batch contact studies were performed to characterize Mn and Cr retention on 

a series of extraction chromatography resins produced by Triskem International based on the TOA 

ligand solvent extraction studies performed in chapter 7.  Adaption of the liquid-liquid solvent 

extraction system to a extraction chromatography resin system was performed in an attempt to 

develop a streamlined commercial method reducing  organic or mixed organic waste produced.  

These resins were tested to determine a weight distribution and separation factor using stable Mn 

and Cr.  If successful, this process will be converted to column studies with increased mass loading 

to separate 52Mn produced from activated nat,52Cr.  

Five different resins were produced using a varied loading of TOA ligand in various 

solvents, on either Amberchrom or polystyrene divinyl benzene inert support beads.  The 

shorthand name, Triskem name, and resin composition are shown below in table 32.  No additional 

information was provided for any resin due to proprietary reasons.    

 

Table 32: Triskem extraction chromatography resins using trioctylamine (TOA) ligand 

Shorthand 
Name 

Triskem Resin Name Resin Composition 

Resin 1 TOA in Cyclohexane 40% 0.8M nTOA in Cyclohexane / 60 % Amberchrom CG71 
Resin 2 TOA on PS-DVB 40% nTOA / 60 % PS-DVB (Pure TOA used) 
Resin 3 TOA in Toluene 40% 0.8M nTOA in toluene / 60 % Amberchrom CG71 
Resin 4 TK201A 170201 70% Amberchrom CG71 / 29% n-TriOctylAmine / 1% 1-Decanole 
Resin 5 TK201S 170202 60% Amberchrom CG71 / 37,5% n-TriOctylAmine / 2,5% 1-Decanole 

 



 
 

121 
 

Batch contact studies were performed using each resin in hydrochloric acid in an attempt 

to replicate the separation factors determined from the solvent extraction studies in chapter 7.  An 

additional batch contact study was performed on resin 1 using nitric acid to ensure that little to no 

retention occurred for manganese or chromium.   

8.2 Materials 

 All materials used for the work in this chapter are listed in section 3.1.   Each extraction 

chromatography resin used will be referred to by the shorthand name listed in table 32 above. 

8.3 Experimental Procedure 

8.3.1 Batch Contact Studies 

The general procedure for batch studies is described in section 3.4.1.  Single and dual 

analyte (interference) batch studies were performed in 0.01 to 10 M HCl and 0.01 to 10 M HNO3.  

An mass of 25 ± 2% mg of resin 1 was weighed into a 2 mL microcentrifuge vial and 

preconditioned using 1 mL of acid. Vials were mixed for 1 hour and left upright overnight to permit 

resin swelling.  Each vial was spiked with 0.5 mL of a matching acid solution containing 750 ± 

1% ppb Mn followed by 1 hour of mixing.  Each solution was transferred into a syringe with PTFE 

tip and filtered into a clean 2 mL microcentrifuge vial.  An aliquot from each vial was diluted and 

analyzed on a NexION 350 ICP-MS per section 7.3.1.2.   Four replicates were performed for each 

acid concentration.  This method was repeated using 750 ± 2% ppb Cr and using a solution 

containing Mn and Cr at 750 ± 2% ppb.  The experiment was repeated using nitric acid on resin 1 

only.  The hydrochloric batch contact study method was repeated using resins 2 through 5. 
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8.3.1 Data Analysis 

The weight distribution Dw was determined in each study using equation 7 per section 

3.4.1.2.  Each weight distribution Dw was volume corrected using tables 33 and 34 below. 

 

Table 33: Resin 1 volume corrections in hydrochloric and nitric acid 

Resin 1 HCl Volume Lost (%) 1 σ HNO3 Volume Lost (%) 1 σ 
0.1 M 7.67 0.80 8.93 0.53 
1 M 7.78 0.41 7.75 0.74 

10 M 8.09 0.55 6.13 0.65 

 

Table 34: Volume corrections for resins 2, 3, 4, and 5 in hydrochloric acid 

HCl 
Resin 2 Volume 

Lost (%) 
1 σ 

Resin 3 Volume 
Lost (%) 

1 σ 
Resin 4 Volume 

Lost (%) 
1 σ 

Resin 5 Volume 
Lost (%) 

1 σ 

0.1 M 7.21 0.67 8.14 0.06 8.81 0.39 6.74 0.65 
1 M 7.85 0.53 8.23 0.17 8.53 0.41 7.32 0.37 

10 M 8.03 0.87 8.93 0.24 9.11 0.47 8.00 0.37 

 

8.4 Results and Discussion 

The results of the batch contact study for resin 1 in hydrochloric and nitric acid are shown 

below in figure 37, and 38. The results of batch contact studies using resins 2, 3, 4, and 5 in 

hydrochloric acid are further below in figures 39, 40, 41, and 42. 
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Figure 38: Single and dual analyte batch contact studies using resin 1 in nitric acid 

 

 A batch contact study using Mn and Cr was performed using nitric acid to determine if any 

change in extraction occurred compared to the solvent extraction study performed in chapter 7.  

The weight distribution Dw of Mn and Cr overlapped while fluctuating below a value of 10 

equivalent to less than ~7.5% retention across the acid range.  This was similar to what was seen 

in the solvent extraction studies for both analytes.  No significant variation could be discerned 

comparing the single and dual analyte weight distributions.  The separation factor determined for 

the single and dual analyte studies ranged from ~0.3 to 3, which is not sufficient to separate Mn 

from Cr. Ideally, a separation factor of at least 100 if not 1000 is necessary to purify one element 

from another. 
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Figure 39: Single and dual analyte batch contact studies using resin 1 in hydrochloric acid 

 

In figure 39, the Dw of each analyte overlapped significantly showing little retention at any 

point.  The weight distribution and separation fraction for analytes in all studies ranged from ~2 to 

~8 which is equivalent to a sorption of ~3 to ~11%. Based on the previous solvent extraction 

studies, Mn distribution should increase as the chloride concentration increased.  Below 1 M, low 

retention is possible due to a mixture of hydroxide and oxide species.  Above 1 M, MnCl2 and 

MnCl3
- should form followed by extraction by the TOA ligand.  Alternatively, it is unlikely that 

Cr would be extracted into the organic or stationary phase as it preferential binds with water over 

chloride anions.41  
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Resin 1 produced for this study is composed of 40% 0.8 M TOA ligand in cyclohexane to 

60% Amberchrom CG71.   Based on previous experience with DGA and Ln resin by Eichrom, 

40% loading on Amberchrom CG71 seems like a common choice for resin production.  Although, 

different particle and pore size35,84 can effect sorption of the resin during production, it is unlikely 

that significant bleeding occurred when using such a standard method.  Additional, studies were 

performed to weigh out a known quantity of resin 1 into concentrated nitric and hydrochloric acid.  

These were left out for at least a week to see if any phases would form due to loss of extractant in 

acid.  In addition, no change in retention either increasing or decreasing was seen at higher acids 

which makes it unlikely that each unidentate ligand was being protonated.  The most likely solution 

is that the quantity of resin used for each resin bead was insufficient for extraction.  In resin 

production, the number of carbons on each ligand in addition to the volume of stationary phase in 

each pore can decrease extraction if low and potential sterically interact with itself if high.  With 

a similar distribution for Mn and Cr it is unlikely that any extraction was occurring through 

complexation with the ligand.  It is likely that these fluctuations seen are due to another mechanism 

such as adherence to the container or occlusion within the interstitial space in the form of a neutral 

species.  Additional information is needed about the production to decipher the reason by the lack 

of extraction.    
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Figure 40: Single and dual analyte batch contact studies using resin 2 in hydrochloric acid 

 

Similar to figure 40, the Dw and SF for each analyte in each study showed very low 

retention with significant overlap while staying below ~5 across the acid range.  A weight 

distribution of ~5 is equivalent to a sorption of ~7.5% which is very low.   Resin 2 produced for 

this study using the same loading ratio of 40 to 60% TOA to inert support but used polystyrene 

divinyl benzene as the support with a unknown pore and particle size.  Additionally, no solvent 

was used in the production method to sorb the ligand to the support.  Similar to resin 1, the 

speciation of the reaction should show Mn extracting as the chloride concentration increases.  It is 

hard to discern if there is a similar issues such as steric hindrance proposed for resin 1, or if there 

was a production issue caused by bleed off of extractant due to small particle or pore size.  It is 
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feasible that the lack of solvent prevented sorption of the TOA ligand to the inert support. 

Repetition of these batch contact studies using the exact variation of PS-DVB could potentially 

determine if the retention seen is due to adherence to the container or the support.  Like resin 1, a 

sample of bulk resin was left in concentrated nitric or hydrochloric acid for a week to see if phases 

formed due to loss of extractant.  However, no phases were seen to form in solution. 

 

 

Figure 41: Single and dual analyte batch contact studies using resin 3 in hydrochloric acid 
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Similar to resin 1 and 2, the Dw and SF for each analyte in single and dual analyte studies 

showed significant overlap while staying ~6.5 across the acid range.  A weight distribution of ~6.5 

is equivalent to a sorption of ~9.5% although most of the measured weight distribution fluctuated 

even lower below ~5 equivalent to a sorption of 7.5%.     Resin 3 produced is composed of 40% 

0.8 M TOA ligand in toluene to 60% Amberchrom CG71.  Potentially, this resin should act nearly 

identical to resin 1 as the only difference in the information given was the choice of solvent.  In 

the process for producing resin, the solvent used should not contribute significantly to production 

of the resin unless the concentration of ligand used is above the solubility of the solvent.  The 

method involves evaporating off the solvent while sorbing the extractant to each porous support 

particle.  Resin 3 like resin 1 should have worked based on the extraction method developed in 

chapter 7 assuming that the none of the 0.8 M TOA added to the resin was lost.  Like the previous 

analysis of resin 1, it is likely that steric hindrance between ligands caused the lack of Mn 

extraction.   
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Figure 42: Single and dual analyte batch contact studies using resin 4 in hydrochloric acid 

 

In figure 42, a higher weight distribution was seen for Mn and Cr in both studies with 

significant overlap over the acid range.  At 0.01 M, retention by Cr and Mn was between ~8.5 and 

21.3 representing a range in sorption equivalent to ~12 to 25%.  All of the measured distribution 

ratios show a slight decrease to ~12 at 0.1 through 2.5 M.  A decrease in weight distribution to ~3 

is shown as the acid concentration from 2.5 to 10 M.  The SF for single and dual analyte studies 

fluctuated at or slightly below 1 across the entire range.   

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.01 0.1 1 10

D
w

 (
W

ei
gh

t D
is

tr
ib

ut
io

n)

Hydrochloric Acid Concentration (M)

Mn Single Analyte

Cr Single Analyte

SF Mn/Cr Single Analyte

Mn Dual Analyte

Cr Dual Analyte

SF Mn/Cr Dual Analyte



 
 

130 
 

Resin 4 produced for these studies was composed of 29 to 1 to 70% TOA to decanole to 

Amberchrom CG71.  The higher distribution seen at low acid showing a decreasing trend is likely 

due to an increase in sorption to the inert support.  Overall a higher distribution was shown across 

the range relative to previous studies using only 60% Amberchrom CG71.  The loading for this 

resin of extracting ligand was decreased by 11% while the inert support was increased by 10% 

which could account for small but significant increase in retention seen.  It is likely that this is the 

case as the retention was higher at low acids when oxide and hydroxide species would likely form 

and have been known to adhere the container.  As the chloride concentration increased, the 

dominant species changed for Mn and Cr causing this decline.  However, it is difficult to discern 

why Cr has a slightly larger retention than Mn across the entire the acid range.  Use of decanole in 

this resin likely used as a slight diluent to help solvate the TOA ligand to promote sorption to the 

inert support in production.  
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Figure 43: Single and dual analyte batch contact studies using resin 5 in hydrochloric acid 

 

In figure 43, a lower weight distribution relative to resin 4 but similar to resins 1, 2, and 3 

is shown for Mn and Cr in both studies with significant overlap over the acid range. The weight 

distribution  for both analytes was below ~5.7 equivalent to a sorption of ~8% while the separation 

factor fluctuated slight above 1 across the entire range.  

Resin 5 produced for these studies was composed of 37.5 to 2.5 to 60% TOA to decanole 

to Amberchrom CG71.  The return to a sorption less than 10% shows that the relative amount of 

support used may dictate the sorption mechanism for at least low acids concentrations.  From 5 M 
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up to 10 M the weight distribution measured for both acids is similar to resins 1 through 4 and 

likely means that majority of the retention being seen in each resin may be due to other mechanism 

aside from ligand extraction.  This is likely as in none of the resins does extraction of Mn increase 

as the chloride concentration increase which was shown to occur in chapter 7.  Additionally, a 

slight increase from 1 to 2.5% of decanole in addition to a 8.5% increase in ligand loading showed 

less retention so it is likely that decanole was used for the purpose of improvement sorption of the 

TOA ligand to the inert Amberchrom support.  Similar to each of the previous resin studies, it 

seems that either insufficient ligand was used to extract Mn from the hydrochloric acid matrix or 

excessive ligand was used to causing steric hindrance.  Alternatively, steric hindrance issue could 

be causing lack of extraction for all these ligands due to excessively long carbon chains.  The TOA 

ligands relies on three R groups containing 8 carbons.  Reduction in the number of carbons may 

help promote extract by allowing less overlap and a larger volume in the stationary phase for Mn 

to be extracted.  

8.5 Conclusion  

Overall, the weight distribution ratio of Mn and SF of Mn to Cr was not shown to occur 

for any of the resins produced through Triskem.  A weight distribution of less than ~10% was 

shown for Mn and Cr in hydrochloric acid for resin 1, 2, 3, and 5.  Resin 4 showed a higher 

distribution ratio up to 25% at low acid followed by a decrease as the chloride concentration 

increased.  The SF of Mn to Cr was shown to fluctuate around 1 for each resin regardless of the 

acid concentration.  Additionally, the nitric acid studies using resin 1 replicated the lack of 

extraction seen in the solvent extraction work for Mn and Cr.   
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There are a large number of issues that affect the lack of extraction being shown based on 

the materials and production method.  With limited information given, only the composition of 

each resin could be compared to discern why little to retention was seen in all resins but 4.  Many 

factors influence the extraction potential such as pore size, particle size, inert support type, 

concentration of ligand, and ability of solvent or diluent to sorb the ligand to the support.  Between 

resin 1, 2, 3, and 5, variations in solvent, inert support, and ligand concentration were adjusted 

with little to no change in retention.  The only resin with any retention was resin 4 which was 

likely due to increase in the inert support relative to extracting ligand concentration.  The 

distribution of both analytes were retained ~20 at 0.01 M decreasing down to ~3 at 10 M which 

seems to show that an increase in chloride concentration inhibition retention to the resin.  The 

likely mechanism is by occlusion or sorption to the inert support as it seems likely that the TOA 

ligand was sterically hindered preventing extraction of Mn as the chloride concentration increased 

and MnCl2 became the dominant species in solution.  Further work needs to be performed by 

replicating these batch studies using only the Amberchrom CG71 in an attempt to quantify the loss 

of analyte based on the hydrochloric acid concentration.   Further discussion with Triskem is 

necessary to discern more information regarding this extraction and these resins.  In the future, 

additional extraction chromatography studies may be performed using DGA, Ln1, and or actinide 

resin from Eichrom Technologies shown previously to preferentially extract trivalent species.  

Although, extraction of trivalent Cr while eluting off divalent Mn would require larger quantities 

of resin for a column separation to be performed.    
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 

9.1 Introduction 

 In this research, three separate projects were performed for nuclear forensic and medicinal 

application.  The nuclear forensics research was divided into two projects.  The purpose of the 1st 

project to increase post detonation forensic knowledge through cross section determination of 

nuclear reactions occurring from a nuclear detonation.  This was performed through measurements 

of activation products followed by calculation of cross sections using literature available to the 

public.  The purpose of the 2nd project was to develop separation methods using commercial 

available materials for use in separating activation products.  Separation of these activation 

products important for use in doping artificial urban debris melt glass at higher specific activity 

for further experimental studies.  The purpose of the 3rd project was to develop a separation method 

for separation long lived positron emitting radioisotopes.  In partnership with Triskem 

International, commercially available resins were produced based on separation method.  

Characterization of these resins were performed to determine usability.  A summation of the 

different projects performed, their outcomes, and future work are described below in sections 9.2, 

9.3, and 9.4.    

9.2 Flattop Irradiations 

 In chapter 4, activity measurements were taken of fast neutron activated elements 

commonly found in the urban environment and used in nuclear device materials. Individual 

twenty-four hour measurements were taken using a HPGe well detector for each of the four runs 

using the Flattop benchmark critical assembly.   Samples in the critical assembly were irradiated 

using a neutron spectra produced from highly enriched uranium surrounded by natural uranium to 
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simulate the effect of a nuclear detonation.  Each target sample contained one of the elements Au, 

Co, Cr, Fe, Ir, Ni, Pb, Pt, Ti, or W in a metal foil or salt form. Different elements were irradiated 

in different runs with the only constant being Au foil which was placed at the center of the 

assembly in each run.  Previously, Au-196 and Au-198 produced from Au foil have been used to 

measure fission fractions accurately.12 Based on this idea, and the knowledge that the power level 

kept consistent between each run,64 neutron flux values for Au-196 and Au-198 were determined 

through use of fission spectra average cross sections obtained from the JENDL-4.0 nuclear library.  

These flux values were used to calculate cross section values for each activation product based on 

each specific nuclear reaction.  The calculated values were then compared to literature values in 

an attempt to validate assumptions made during calculations.  Literature cross sections for each 

specific reaction were obtained through the JENDL-4.0 or ENDF nuclear data libraries.   

 In all four runs, the deviation between either calculated cross section and literature cross 

sections was less than two orders of magnitude.  The uncertainty of each cross section determined 

was less than 5% as the uncertainty was based only on the deviation in the activity measurement 

taken of each foil solution.  In three of the runs, calculated cross sections for Os-191 (produced 

from natural Ir or Pt) or Co-60 (produced from natural Co) was found deviate by at least three and 

up to six orders of magnitude relative to literature value.  This was likely due to a sensitivity to 

thermal neutrons or an energy threshold that was not accounted for when using the fission spectra 

average cross section to determine flux values.  The fission spectra average values determined 

were based on an ideal neutron spectra which was not likely seen in these runs due to attenuation 

or scattering of neutrons in the assembly.  Comparing the ratio of Au-198 to Au-196 flux values 

showed a factor of ~5 to 30 variation when comparing runs.  This was likely caused by the same 

deviation from ideal conditions seen previously when comparing calculated cross section.  A 
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correction would need to be made as Au-198 has a three order of magnitude increase for thermal 

neutrons relative to the ideal fission spectra average while Au-196 has energy threshold of 8.1 

MeV lowering the total production of Au-196 relative to Au-198.  Deviations in the calculated 

cross sections could be improved if the actual neutron energy spectra was made available for each 

run.   

9.3 Extraction of Scandium from Titanium 

 In chapter 5, multiple batch contact studies were performed to measure the retention of Sc 

and Ti in hydrochloric and nitric acid at varying concentrations.  The extraction chromatography 

resins Ln 1 and DGA normal resin produced from Eichrom Technologies were characterized to 

determine optimal conditions for separating Sc from Ti.  Batch studies using Ln 1 resin 

demonstrated retention of both analytes in hydrochloric and nitric acid with an optimal separation 

factor of ~300.  However, at low acid concentrations in hydrochloric and nitric acid, a sizable 

portion of Ti (30%) was still retained to the resin.  Retention of Ti increased with acid 

concentration up to ~85% near concentrated nitric and hydrochloric acid.  Batch contact studies 

using DGA normal resin showed strong retention of Sc at nitric and hydrochloric acid 

concentrations above 2 M while minimal retention of Ti occurred.  Single and dual analyte studies 

were performed using ppm quantities of analyte on DGA resin demonstrating a larger separation 

factor of ~8000 up to 25,000.  Based on these SFs, a separation method was developed for column 

chromatography where a mixed solution of Sc and Ti could be separated on DGA resin in 5 M 

nitric acid.  At high nitric acid, Sc would adsorb strongly to the stationary phase while Ti eluted 

through the column.  Conversion of the resin to 0.1 M hydrochloric acid would allow for Sc to be 

stripped and recovered. Subsequent studies were performed at Colorado State University and Los 

Alamos National Laboratory showing similar results.   
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 In chapter 6, gravity column studies were performed using ppm quantities of each analyte 

to test the separation conditions determined from the batch contact studies determined in chapter 

5.  A solution containing a 1:1 ratio of Ti to Sc in 5 M nitric acid was loaded onto a column filled 

with wet slurry resin.  A elution profile was produced through collection of sequential free column 

volumes (FCV) at a flow rate of 0.25mL/min (1 FCV is equivalent to 0.5 mL).  Fractions collected 

showed a clean distribution of Ti in the load plus wash phase (5 M nitric acid) while Sc was 

recovered in the strip phase (0.1 M hydrochloric acid).  Decontamination factors of at least 103 

were determined for each fraction with a recovery of at least 98.6% for each analyte.  The gravity 

column study method was adapted to vacuum column studies for the purpose of increasing the 

flow rate while separating a higher mass loading of Ti and Sc at a ratio of 1:100 which mimicked 

the ratio produced in chapter 4.  These studies were performed at higher flow rates of 1, 3, and 5 

mL/min with an average Sc recovery of ~99% and Ti recovery of ~95%.  In these studies, stable 

Sc and Ti were used so further work should be performed to separate 46-48Sc from activated Ti foil 

for the purpose of doping artificial melt glass at higher specific activity.   

9.4 Extraction of Manganese from Chromium 

 In chapter 7, a separation method was developed using solvent extraction to test the 

distribution of Mn from a mixed aqueous solution containing Mn and Cr in varied concentrations 

of hydrochloric or nitric acid.  Two sets of studies were performed using ppb quantities of Mn and 

Cr to determine the distribution ratios based on varied trioctylamine (TOA) ligand and acid 

concentrations.  In the 1st set of studies sets of studies, the acid concentration was varied while the 

ligand concentration remained static.  This was reversed for the second set of studies.  An 

increasing trend in distribution  ratio of Mn between the organic and aqueous phases as the TOA 

and hydrochloric acid concentration was increased.  Alternatively, Cr showed distribution ratios 
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less than 5 in both acids at any ligand concentration.  At optimal conditions of 0.8 M TOA, and 8 

to 10 hydrochloric acid, a distribution ratio of ~6 for Mn and ~0.01 for Cr was shown which is 

equivalent to a separation factor of ~600.  Using the distribution ratios and SF, ~85% of Mn and 

less than 5% of Cr was extracted at these conditions. Alternatively, less than 5% extraction was 

shown Mn in any concentration of ligand and nitric acid.  Further work need to be performed to 

test if Mn could be extracted by replacing the hydrochloric aqueous phase with nitric  acid. 

Additional kinetic and third phase formation studies were performed based on the initial 

solvent extraction studies.  Each kinetic study involved repeating previous solvent extraction 

studies at mixing times of 10, 30, and 60 minutes to compare the distribution and SF of both 

analytes.  The distribution ratio for Mn  and Cr was shown be consistent for most acid and ligand 

conditions.  The main difference seen was in 0.8 M TOA and 10 M hydrochloric acid which 

showed an increase in SF from ~544 at 10 minutes to 590 at 60 minutes demonstrating a ~8% 

change.  In the third phase formation studies, the same TOA/acid concentrations as the kinetic 

studies were used to determine third phase formation.  All studies performed used a 1:1 ratio of 

organic to aqueous phase with a total volume of 15 mL. Additionally, reduction studies were 

performed by adding the diluent 1-octanol until the emulsion disperses and two phases reformed.  

Third phase formation was found to occur in TOA concentrations of 0.1 M or higher in either acid 

at any concentration.  Reduction studies using octanol found that ~2% (v/v) was sufficient to 

remove third phase formation in all hydrochloric acid systems while ~3% (v/v) was sufficient for 

nitric acid.  Further work should be performed to determine an upper limit for octanol addition, as 

it has been shown that excessive use of diluents such as octanol or tri butyl phosphate (TBP) for 

third phase reduction can decrease analyte extraction.    Although the purpose of this work was to 

develop a method for producing commercially available resins, this solvent extraction method 
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would be suitable for separating 52Mn produced from nat,52Cr.  Additional work is required to test 

the capacity of the extraction based on the ligand concentration followed by scale up to match the 

concentration of each isotope produced from irradiation.  

In chapter 8, extraction chromatography resins were produced by Triskem International 

based on the separation method developed in chapter 7.  Each of these resins were composed of 

~30-40% TOA ligand in solvent on 60-70% inert support.  Cyclohexane and toluene were tested 

as solvents while Amberchrom CG71 and polystyrene divinyl benzene were used as inert supports.  

These resins were characterized for the retention of Mn and Cr at varying acid concentrations.  

Batch contact studies were performed using ppb concentrations of Mn and Cr in an attempt to 

replicate separation factors seen in chapter 7.  Single analyte and dual analyte studies were 

performed using a slight variation of the method used in chapter 5.  In each of the studies 

performed, a weight distribution Dw of less than 20 was determined equivalent to a less than 25% 

sorption to the resin.  In resins 1, 2, 3, and 5, the retention was consistently below 10% in each 

acid system at any concentration.  Limited information was provided due to proprietary reasons 

for each resin characterized.  Additional information regarding the physical properties of each resin 

in addition to the production method used is necessary to discern why the solvent extraction 

method did not transfer to extraction chromatography. Further reasoning is outline in chapter 8 for 

reasons each of the resins would not work in addition to discussion of the speciation in 

hydrochloric and nitric acid at varied concentrations.  Further attempts may be performed using 

Actinide (Ac), DGA, and Ln 1 resin from Eichrom in nitric and hydrochloric acid to alternatively 

extract trivalent Cr from divalent Mn.  

 



 
 

140 
 

APPENDIX A: FLATTOP CALCULATIONS 

A.1 Sample Calculation with Assumptions for Chapter 4  

A.1.1 Activity Determination for 198Au 

 A sample calculation for 198Au in run 1 (March 3rd, 2014 irradiation) is shown below using 

equation 9 and 10.  A description of each variable unit is listed below each equation. 

 

ܣ ൌ ሾ1ߪ݊ߔ െ ݁ሺିఒ௧ሻሿ        (9)63 

 

n = Target areal density (# of atoms/cm2) 

σ = Cross section (cm2/1 atom) 

Φ = Flux (neutrons/seconds) 

t = Time of irradiation (seconds) 

A = Activity at time zero/end of irradiation (Bq) 

 

௙ܣ ൌ  ሺିఒ௧ሻ       (10)63݁ܣ

 

A = Activity at time zero/end of irradiation (Bq) 

Af  = Activity of individual foil solution (μCi) 

t = Time since end of irradiation plus detector measurement time (seconds) 

  



 
 

141 
 

 The activated Au foil solution was measured and processed using the Genie 2000 software 

method described in section 3.2.2.1.  All chemical or nuclear data used to process each gamma 

spectra or in subsequent calculations was taken from the Lund/LBNL isotope library.73,85 

 A value of 3.23E-01 ± 7.01E-03 μCi/total solution was measured for 198Au.  The irradiation 

end time was given as March 3rd, 2014 at 14:34:45.  The measurement start time was March 5th, 

2014 at 15:43:45 while the actual time of measurement was 3989.8 seconds.  The difference 

between the end of irradiation and start of measurement time equaled 176,940 seconds.  The decay 

constant value of 2.98E-06 (1/s) was plugged into equation 10 shown below.   

 

௙ܣ ൌ  ሺିఒ௧ሻ       (10)63݁ܣ

 

To solve for A using equation 10: 

Af  = 3.23E-01 ± 7.01E-03 μCi/5 mL vial solution 

t = 176,940 + 3989.8 = 180920.8 seconds 

λ = 2.98E-06 seconds-1 

A = 5.54E-01 μCi/5 mL vial solution 

 

Converting to Bq using 1 μCi = 3.70E+04 Bq 

A = (5.54E-01 μCi / 1 μCi) * (3.70E+04 Bq) = 2.05E+05 Bq/5 mL vial solution 
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For all calculations in this work it was assumed that 0.25 mL of foil solution was brought 

up to 5 mL using a unknown acid in each vial measured for every run.86  For simplicity, the density 

of water (1 mL/gram) was used to convert the total activity to units of Bq per gram. 

 

A = (2.05E+05 Bq / 0.25 mL) * (1 mL / 1 gram) * 4 = 1.58E+06 Bq/gram  

  

Error was propagated through based on mainly on the uncertainty of the activity as no error 

was provided for the end of irradiation time, and insignificant uncertainty occurred for the elapsed 

measurement time.  

 

A or the activity at the end of irradiation (time zero) = 1.58E+06 ± 3.43E+04 Bq/gram  

 

A.1.2 Flux Determination for 198Au  

 Using equation 9, the flux was calculated with an explanation of how each parameter was 

determined below. The target areal density was determined using the mass value of Au foil 

irradiated64 and the assumption that the geometry of the metal foil target was a cube.  This 

assumption was made due to a lack of geometric data for each foil in any run.86  

The total mass of the naturally abundant 197Au foil was 305.90 mg with a assumed purity 

of 100% for ease of calculation and lack of knowledge.  No uncertainty was provided for the mass 

of foil given.  The standard atomic mass unit density of 196.97 (g/mole) and Avogadro’s number 

was used to determine the total number of  atoms.  The surface area was determined using the 

density of 197Au (19.32 g/cm3) based on the cube geometry stated previously.   
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To determine n or the target areal density (# of atoms/cm2): 

The # of atoms of 197Au =  

(305.90 mg / 1000 mg) * (1 gram / 196.97 grams) * (1 mole / 1 mole) * (6.023E+23 atoms) 

= 9.35E20 atoms of 197Au 

 

The surface area for the Au foil = 

(305.90 mg / 1000 mg) * (1 gram / 19.32 gram) * (1 cm3) = 0.02 cm3 

(0.02 cm3)^(2/3) = 0.06 cm2 

n or target areal density = (9.35E20 atoms of 197Au) / (0.06 cm2) = 1.48E+22 atoms of 197Au/cm2 

 

 The time of irradiation was assumed to be 2 hours or 7,200 seconds for run 1 based on 

previously information given stating that all runs occurred for 2 hours.64  However, it should be 

noted that in other communications, a different length of time was provided for runs 2 and 3 at 

4,836 and 6,720 seconds.   Two hours was used for runs 1 and 4 while these specific times were 

used for runs 2 and 3.  No uncertainty was used for the irradiation time value in any runs due to 

lack of information.  The decay constant for 198Au is 2.98E-06 seconds-1 and the fission spectrum 

average cross section value of 7.71E-26 cm2/atom was obtained from JENDL-4.074 for the n(197Au, 

198Au)γ reaction.   

To solve for the flux, the activity at time zero in Bq/gram must be converted to Bq using 

the mass of 197Au used to produce 198Au which is 305.90 mg.   

 

A = (1.58E+06 Bq/gram) * (1 gram / 1000 mg) * (305.90 mg 197Au) = 4.84E+05 ± 1.05E4 Bq 
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ܣ ൌ ሾ1ߪ݊ߔ െ ݁ሺିఒ௧ሻሿ        (9)57 

 

To solve for Φ: 

n = Target areal density (# of atoms/cm2) = 1.48E+22 atoms of 197Au/cm2 

σ = Cross section (cm2/1 atom)  = 7.71E-26 cm2/atom 

t = Time of irradiation (seconds) = 7,200 seconds 

A = Activity at time zero/end of irradiation (Bq) = 4.84E+05 ± 1.05E4 Bq 

λ = decay constant (1/s) = 2.98E-06 seconds-1 

Φ = 2.00E+10 neutrons/second 
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APPENDIX B: RAW DATA FOR FIGURES 

Table 35: Raw data used for figure 13 (values in italics means LOD) 

HNO3 M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.1 24.9 0.8 8532.9 <LOD 342.4 11.5 

0.3 36.1 0.8 8532.9 <LOD 236.5 5.2 

0.5 19.0 2.2 8532.9 <LOD 449.3 53.2 

0.7 44.8 1.4 8532.9 <LOD 190.4 6.0 

1 30.2 3.2 8532.9 <LOD 283.0 30.1 

3 21.6 2.5 8532.9 <LOD 394.9 45.2 

5 36.6 3.8 8532.9 <LOD 232.8 24.0 

7 33.1 2.3 8532.9 <LOD 257.6 17.7 

9 79.2 8.9 8532.9 <LOD 107.7 12.2 

11 109.5 10.3 8532.9 <LOD 78.0 7.3 

 

Table 36: Raw data used for figure 14  

HCl M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.1 9.3 1.1 2600.8 309.3 279.4 47.5 

0.3 10.9 1.5 2552.0 607.9 234.3 64.7 

0.5 13.0 1.1 3563.3 608.6 274.8 52.0 

0.7 11.6 1.6 1501.6 228.3 129.4 26.4 

1 28.5 3.9 2587.6 722.9 90.7 28.2 

3 35.0 3.7 8532.9 <LOD 243.9 25.6 

5 54.3 6.3 8532.9 <LOD 157.2 18.2 

8 90.2 5.5 8532.9 <LOD 94.6 5.8 

 

Table 37: Raw data used for figures 15, 20, 22, and 24 

HNO3 M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.1 0.62 0.02 14.65 2.48 23.55 4.04 
0.3 0.40 0.01 55.36 8.25 138.56 21.27 
0.5 0.52 0.01 120.13 21.04 231.35 40.96 
0.7 0.30 0.01 143.77 15.11 476.07 53.22 
1 0.45 0.01 155.79 26.04 347.63 58.83 
3 0.12 0.00 257.07 41.57 2180.47 353.67 
5 0.11 0.01 424.93 36.40 3783.23 473.35 
7 0.19 0.01 757.33 103.91 4056.02 613.58 
9 0.25 0.01 872.58 145.14 3497.50 601.91 

10.5 0.40 0.01 3331.37 94.61 8405.54 357.43 
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Table 38: Raw data used for figures 16, 17, 21, 23, and 25 

HCl M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.1 2.42 0.01 1.12 0.01 0.46 0.00 
0.3 2.15 0.03 2.21 0.01 1.03 0.02 
0.5 1.57 0.04 6.39 0.11 4.07 0.13 
0.7 1.75 0.07 9.12 1.35 5.23 0.80 
1 2.19 0.02 38.35 1.41 17.53 0.66 
2 2.87 0.01 488.76 20.72 170.32 7.23 
4 3.17 0.02 1429.15 9.14 451.34 4.19 
6 3.07 0.01 1459.12 3.54 474.60 1.74 
8 2.51 0.03 1462.84 1.89 583.41 6.05 

 

Table 39: Raw data used for figure 17 

HCl M Ti k’ 2.5 hours 1 σ Sc k’ 2.5 hours 1 σ SF (Ti k’/Sc k’) 2.5 hours 1 σ 
0.1 2.57 0.05 0.92 0.01 0.36 0.01 
0.3 2.82 0.03 1.72 0.01 0.61 0.01 
0.5 2.53 0.02 6.65 0.04 2.63 0.03 
0.7 2.70 0.01 8.44 0.03 3.13 0.02 
1 2.43 0.11 41.15 0.88 16.96 0.85 
2 2.35 0.01 530.07 24.38 225.48 10.38 
4 3.27 0.06 1430.45 13.25 437.13 9.42 
6 2.86 0.04 1462.46 2.70 511.34 7.51 
8 2.43 0.01 1465.47 1.43 603.56 2.81 

 

Table 40: Raw data used for figures 18, 22, and 24 

HNO3 M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.1 1.8 0.0 3.7 0.2 2.0 0.1 
0.3 1.4 0.0 40.9 0.6 30.2 0.5 
0.5 1.1 0.0 167.4 2.1 151.0 3.5 
0.7 1.0 0.0 533.9 11.0 537.7 12.2 
1 0.9 0.0 3565.8 105.3 3892.5 116.5 
3 0.8 0.0 23574.5 <LOD 31257.2 162.1 
5 0.5 0.0 23560.0 <LOD 49399.2 719.6 
7 0.7 0.0 23550.4 <LOD 32291.4 163.3 
9 0.8 0.0 23543.3 <LOD 27863.8 390.6 

10.5 1.6 0.0 23538.9 <LOD 15043.0 65.1 

 

 



 
 

147 
 

Table 41: Raw data used for figures 19, 23, and 25 

HCl M Ti k’ 1 σ Sc k’ 1 σ SF (Ti k’/Sc k’) 1 σ 

0.033 0.60 0.01 4.18 0.41 7.01 0.69 
0.1 0.80 0.01 1.05 0.02 1.32 0.02 
0.3 0.88 0.04 0.97 0.04 1.10 0.07 
0.5 0.55 0.01 1.24 0.03 2.26 0.06 
0.7 0.57 0.01 1.77 0.02 3.08 0.04 
1 0.39 0.01 1.91 0.04 4.86 0.12 
2 0.34 0.01 55.56 2.02 161.94 6.00 
4 0.55 0.01 27870.15 <LOD 50432.40 331.54 
6 0.67 0.01 27885.31 <LOD 41536.44 811.12 
8 0.39 0.01 27896.07 <LOD 72127.98 453.50 

 

Table 42: Raw data used for figures 22, and 24 

HNO3 M  Ti k’ 1 σ  Sc k’ 1 σ 
0.01 0.54 0.01 9.6 0.7 
0.1 0.53 0.01 20.7 1.7 
1 0.41 0.01 301.5 58.0 

2.5 0.223 0.002 128232.9 <LOD 
5 0.29 0.02 128232.9 <LOD 

7.5 0.19 0.00 128232.9 <LOD 
10 5.33 0.14 128232.9 <LOD 

 

Table 43: Raw data used for figures 23, and 25 

HCl M  Ti k’ 1 σ  Sc k’ 1 σ 

0.01 0.65 0.02 4.77 0.46 
0.1 0.284 0.001 2.26 0.12 

1 0.33 0.01 21.48 2.53 

2.5 0.34 0.01 356.25 60.22 
5 1.27 0.01 1427.73 347.31 

7.5 1.70 0.03 128233 <LOD 

10 3.45 0.04 128233 <LOD 
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Table 44: Raw data used for figure 22 

HNO3 M  Sc k’ 1 σ 

0.01 11.33 2.00 
0.1 8.52 0.30 
1 7759.23 6298.86 

2.5 5658.00 1194.28 
5 2213.27 1702.24 

7.5 26184.32 19712.18 
10 26085.05 29897.76 

 

Table 45: Raw data used for figure 23 

HCl M  Sc k’ 1 σ 

0.01 1.86 0.48 
0.1 1.97 0.36 
1 12.32 2.08 
2 321.17 31.34 
4 9400.29 2329.99 
6 12363.36 5816.61 
8 6238.64 3267.13 
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Table 46: Raw data used for figure 26 

FCV # 
Sc Recovered 

(%) 
1 σ 

Ti Recovered 
(%) 

1 σ 

1 <LOD <LOD <LOD <LOD 
2 <LOD <LOD <LOD <LOD 
3 <LOD <LOD <LOD <LOD 
4 <LOD <LOD <LOD <LOD 
5 <LOD <LOD <LOD <LOD 
6 <LOD <LOD 0.01 <LOD 
7 <LOD <LOD 2.07 0.04 
8 <LOD <LOD 4.94 0.11 
9 <LOD <LOD 7.82 0.17 

10 <LOD <LOD 9.45 0.20 
11 <LOD <LOD 12.27 0.27 
12 <LOD <LOD 13.21 0.29 
13 <LOD <LOD 12.77 0.28 
14 <LOD <LOD 12.26 0.27 
15 <LOD <LOD 11.75 0.25 
16 <LOD <LOD 8.10 0.18 
17 <LOD <LOD 4.15 0.09 
18 <LOD <LOD 0.71 0.02 
19 <LOD <LOD <LOD <LOD 
20 <LOD <LOD <LOD <LOD 
21 0.02 <LOD <LOD <LOD 
22 0.09 <LOD <LOD <LOD 
23 0.10 <LOD <LOD <LOD 
24 0.05 <LOD <LOD <LOD 
25 0.10 <LOD <LOD <LOD 
26 0.29 <LOD <LOD <LOD 
27 1.60 0.02 <LOD <LOD 
28 2.41 0.03 <LOD <LOD 
29 5.60 0.07 <LOD <LOD 
30 8.73 0.11 <LOD <LOD 
31 11.92 0.15 <LOD <LOD 
32 14.91 0.19 <LOD <LOD 
33 13.20 0.17 <LOD <LOD 
34 12.43 0.16 <LOD <LOD 
35 9.53 0.12 <LOD <LOD 
36 8.32 0.11 <LOD <LOD 
37 6.28 0.08 <LOD <LOD 
38 2.41 0.03 <LOD <LOD 
39 0.70 0.01 <LOD <LOD 
40 0.19 <LOD <LOD <LOD 

 

Table 33: Raw data used for figure 27 

Elution Fraction Sc Recovered (%) 1 σ Ti Recovered (%) 1 σ 

Load + Wash Phase <LOD <LOD 99.82 1.30 

Conversion Phase <LOD <LOD 0.06 <LOD 

Stripping Phase 96.79 1.94 <LOD <LOD 
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Table 47: Raw data used for figure 28 

Flow Rate (ml/min) Sc Recovered (%) 1 σ Ti Recovered (%) 1 σ 
1 98.42 3.26 97.56 3.53 
3 99.22 3.45 94.99 2.71 
5 98.84 3.16 94.07 3.21 

 

Table 48: Raw data used for figure 29 

HNO3 M DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 
0.01 0.03 0.02 0.01 0.02 2.41 4.20 
0.1 0.03 0.01 0.02 0.01 1.39 0.47 
1 0.01 0.02 0.04 0.04 0.31 1.49 

2.5 0.02 0.01 0.01 0.01 1.68 1.32 
5 0.01 0.01 0.01 0.01 0.84 3.08 
7 0.003 0.01 0.06 0.01 0.05 0.29 
8 0.002 0.01 0.04 0.01 0.06 0.48 
9 0.03 0.04 0.03 0.01 1.12 1.34 

10 0.01 0.02 0.01 0.02 2.01 8.63 
 

Table 49: Raw data used for figure 30 

HNO3 M Mn Extracted (%) 1 σ Cr Extracted (%) 1 σ 
0.01 2.47 1.78 1.04 1.62 
0.1 2.52 0.62 1.82 0.65 
1 1.14 1.66 3.53 3.59 

2.5 2.38 1.13 1.43 1.03 
5 0.67 1.09 0.79 1.03 
7 0.27 1.33 5.23 1.19 
8 0.24 1.38 3.77 1.34 
9 3.28 3.70 2.93 0.79 

10 1.44 1.60 0.72 1.83 
 

Table 50: Raw data used for figure 31 

HCl M DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 
0.01 0.04 0.01 0.04 0.01 1.01 0.24 
0.1 0.08 0.02 0.13 0.01 0.60 0.15 
1 0.12 0.04 0.17 0.02 0.71 0.23 

2.5 0.28 0.17 0.02 0.04 13.37 10.81 
5 1.27 0.01 0.02 0.02 53.97 1.24 
7 4.47 0.12 0.02 0.02 288.70 9.43 
8 5.89 0.16 0.03 0.02 191.72 5.62 
9 6.16 0.12 0.01 0.02 616.73 15.40 

10 5.44 0.08 0.01 0.01 554.81 7.98 
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Table 51: Raw data used for figure 32 

HCl M Mn Extracted (%) 1 σ Cr Extracted (%) 1 σ 
0.01 4.22 0.83 4.20 0.82 
0.1 7.20 1.61 11.43 1.18 
1 10.64 3.24 14.39 1.87 

2.5 11.96 0.64 1.25 2.07 
5 55.94 0.60 2.30 1.88 
7 81.70 2.28 1.52 1.78 
8 85.49 2.25 2.98 2.26 
9 86.03 1.62 0.99 1.93 

10 84.48 1.17 2.39 1.34 
 

Table 52: Raw data used for figure 33 

TOA M  DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 
0.01 0.00 0.01 0.02 0.01 0.13 0.64 
0.1 0.03 0.02 0.04 0.02 0.67 0.63 
0.2 0.03 0.02 0.02 0.01 1.28 1.15 
0.5 0.03 0.02 0.02 0.02 1.42 1.57 
0.8 0.03 0.04 0.03 0.01 1.12 1.34 

 

Table 53: Raw data used for figure 34 

TOA M  Mn Extracted (%) 1 σ Cr Extracted (%) 1 σ 
0.01 0.22 0.84 1.65 0.61 
0.1 2.88 1.84 4.23 1.90 
0.2 2.85 1.72 2.24 1.38 
0.5 3.23 2.19 2.29 1.78 
0.8 3.28 3.70 2.93 0.79 

 

Table 54: Raw data used for figure 35 and 36 

TOA M  DMn 1 σ DCr 1 σ SF (Mn/Cr) 1 σ 
0.01 0.04 0.04 0.05 0.03 0.91 1.15 
0.1 0.04 0.02 0.02 0.02 1.87 1.80 
0.2 1.00 0.02 0.01 0.01 88.26 2.42 
0.5 3.95 0.05 0.00 0.01 848.24 13.53 
0.8 5.35 0.12 0.01 0.02 536.28 16.24 

 

 



 
 

152 
 

Table 55: Raw data used for figure 37 

TOA M  Mn Extracted (%) 1 σ Cr Extracted (%) 1 σ 
0.01 4.25 3.89 4.67 2.65 
0.1 3.70 1.56 2.01 2.02 
0.2 50.08 1.05 1.12 0.84 
0.5 79.81 1.10 0.46 0.63 
0.8 84.26 1.96 0.99 1.93 

 

Table 56: Raw data used for figure 38 

HNO3 M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 4.73 0.11 5.39 0.09 0.88 0.04 2.05 0.02 1.84 0.02 1.11 0.02 

0.1 2.33 0.13 6.34 0.10 0.37 0.07 2.70 0.05 2.08 0.03 1.30 0.03 

1 3.43 0.08 2.60 0.09 1.32 0.06 4.35 0.07 4.79 0.07 0.91 0.03 

2.5 2.26 0.03 4.13 0.03 0.55 0.02 3.32 0.05 3.20 0.04 1.04 0.03 

5 4.93 0.06 1.80 0.03 2.73 0.03 1.75 0.01 0.72 0.01 2.42 0.02 

7.5 1.42 0.03 3.54 0.07 0.40 0.04 2.41 0.01 2.28 0.02 1.05 0.01 

10 1.55 0.01 1.96 0.02 0.79 0.02 1.41 0.03 2.36 0.10 0.60 0.06 

 

Table 57: Raw data used for figure 39 

HCl M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 6.59 0.19 3.62 0.02 1.82 0.03 5.71 0.42 4.84 0.07 1.18 0.09 

0.1 7.91 0.26 3.06 0.06 2.59 0.05 4.03 0.19 3.91 0.22 1.03 0.10 

1 5.81 0.30 1.80 0.05 3.22 0.08 5.74 0.32 8.76 0.39 0.66 0.10 

2.5 2.64 0.12 3.52 0.14 0.75 0.08 2.94 0.06 2.08 0.03 1.41 0.03 

5 3.72 0.09 3.34 0.19 1.11 0.08 8.65 0.09 2.94 0.04 2.94 0.03 

7.5 6.52 0.31 4.80 0.09 1.36 0.07 7.18 0.21 3.24 0.09 2.21 0.06 

10 5.26 0.21 1.91 0.09 2.75 0.09 4.39 0.08 4.60 0.09 0.95 0.04 
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Table 58: Raw data used for figure 40 

HCl M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 1.95 0.01 4.42 0.04 0.44 0.01 6.47 0.32 4.95 0.02 1.31 0.05 

0.1 2.05 0.02 3.86 0.08 0.53 0.03 1.64 0.04 4.81 0.09 0.34 0.04 

1 2.76 0.01 0.56 0.02 4.88 0.04 1.30 0.01 4.79 0.03 0.27 0.01 

2.5 2.65 0.03 0.62 0.02 4.28 0.04 1.39 0.02 4.02 0.07 0.35 0.04 

5 4.49 0.08 5.50 0.11 0.82 0.04 4.62 0.03 4.13 0.06 1.12 0.02 

7.5 3.74 0.03 3.46 0.28 1.08 0.09 4.35 0.10 4.20 0.10 1.04 0.05 

10 2.89 0.02 3.92 0.04 0.74 0.02 5.14 0.09 4.23 0.02 1.21 0.02 

 

Table 59: Raw data used for figure 41 

HCl M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 1.95 0.01 4.42 0.04 0.44 0.01 6.47 0.32 4.95 0.02 1.31 0.05 

0.1 2.05 0.02 3.86 0.08 0.53 0.03 1.64 0.04 4.81 0.09 0.34 0.04 

1 2.76 0.01 0.56 0.02 4.88 0.04 1.30 0.01 4.79 0.03 0.27 0.01 

2.5 2.65 0.03 0.62 0.02 4.28 0.04 1.39 0.02 4.02 0.07 0.35 0.04 

5 4.49 0.08 5.50 0.11 0.82 0.04 4.62 0.03 4.13 0.06 1.12 0.02 

7.5 5.09 0.04 3.46 0.28 1.47 0.09 4.35 0.10 4.20 0.10 1.04 0.05 

10 5.33 0.03 3.92 0.04 1.36 0.02 5.14 0.09 4.23 0.02 1.21 0.02 

 

Table 60: Raw data used for figure 42 

HCl M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 9.61 0.15 11.31 0.07 0.85 0.02 8.55 0.08 21.27 0.14 0.40 0.02 

0.1 7.13 0.13 9.08 0.15 0.79 0.03 9.59 0.24 12.43 0.25 0.77 0.05 

1 8.37 0.05 9.20 0.20 0.91 0.03 9.33 0.18 14.05 0.13 0.66 0.03 

2.5 5.88 0.29 8.71 0.12 0.67 0.06 10.51 0.18 14.19 0.56 0.74 0.06 

5 3.17 0.10 2.58 0.04 1.23 0.05 1.99 0.02 4.96 0.03 0.40 0.02 

7.5 3.26 0.03 4.09 0.10 0.80 0.04 2.93 0.02 5.62 0.06 0.52 0.02 

10 1.83 0.02 3.86 0.03 0.47 0.02 2.86 0.04 4.41 0.05 0.65 0.03 
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Table 61: Raw data used for figure 43 

HCl M 
Single Analyte Study Dual Analyte Study 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

Dw 
Mn 

1 σ 
Dw 
Cr 

1 σ 
SF 

Mn/Cr 
1 σ 

0.01 3.61 0.10 2.98 0.06 1.21 0.05 4.08 0.06 3.08 0.03 1.33 0.02 

0.1 2.80 0.02 3.56 0.02 0.79 0.01 5.65 0.03 4.02 0.03 1.41 0.01 

1 3.48 0.05 4.25 0.20 0.82 0.06 3.96 0.10 1.42 0.05 2.80 0.06 

2.5 3.45 0.02 2.83 0.06 1.22 0.03 3.23 0.07 2.23 0.04 1.45 0.04 

5 2.41 0.07 2.83 0.02 0.85 0.04 3.11 0.04 0.97 0.02 3.22 0.03 

7.5 3.59 0.04 3.34 0.02 1.07 0.02 2.63 0.05 2.59 0.06 1.02 0.04 

10 2.97 0.08 0.82 0.02 3.61 0.05 1.74 0.02 1.47 0.01 1.18 0.02 
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