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ABSTRACT 

The reverse osmosis (RO) desalination process has been widely used to overcome 

the fresh water shortages around the globe. Spiral wound membranes are utilized to 

desalinate sea water and brackish water. In a typical spiral wound desalination module, 

the feed channel contains spacers with different arrangements. The membranes are 

semi-permeable which allows the pure water to pass through and hold back the 

dissolved salt ions from passing. In order to model desalination process properly in 

these modules accurate membrane flux model should be employed. The membrane is 

treated as a functional surface where the rate of water permeation is determined by the 

local pressure, osmotic pressure and local concentration. 

The rejection of salt from membrane causes an accumulation of salt near the 

membrane surface. Such phenomena are referred as concentration polarization 

occurring at the surface or near the surface of the membrane. The concentration 

polarization adversely affects the membrane performance and reduces the lifetime of the 

desalination module. The concentration polarization causes an increase in the osmotic 

pressure across the membrane and in turn leads to reduction of water flux through the 

membrane. The fouling potential also increases in regions where high concentration 

polarization occurs. Fouling build ups and scaling are also known as influencing the 

membrane performance adversely. This study demonstrates that membrane mass flux 

performance, concentration polarization and the fouling buildup/scaling are profoundly 

influenced by the flow structures in the feed channel.  
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It has been shown by the present study that the flow inside the feed channel 

containing spacers can be strongly three dimensional and transient. Numerical 

simulations are conducted to characterize three dimensional and transient nature of the 

flows. Navier-Stokes equations and the mass transport equation are solved to determine 

the flow and concentration fields in the feed channel. The laminar flow model is utilized 

at low flow rates while turbulent flow models are utilized at higher flow rates. The 

Shear Stress Transport (SST) 𝑘-𝜔 turbulence model and large eddy simulation (LES) 

methods are employed to characterize the turbulent flow structures. 

The presence of spacers in the feed channel enhances membrane performance 

significantly. The influence of the spacer is more pronounced at higher flow rates. The 

spacing and the arrangement of spacers have strong influence on the membrane 

performance. Spacers also aid in mitigating concentration polarization and fouling in 

these modules. Momentum mixing induced by the presence of spacers is the reason for 

improvement of membrane performance. Modules including the mesh type of spacers 

with 30° angle performs best. This study clearly illustrated that the type, shape and 

arrangements of spacers are integral part of design and optimization of reverse osmosis 

desalination modules. 
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CHAPTER 1: INTRODUCTION 

Synthetic membranes have been widely used in industrial applications. 

Membranes perform separation and purification with the advantage of low energy 

consumption compared to evaporation methods. Separation by membranes is applicable 

in industries such as water desalination, food industry, medical devices and others. 

Species can be separated by membrane from homogeneous and heterogeneous mixtures 

[1,2]. Water purification and desalination processes using membranes have a wide 

range of applications. 

Loeb and Sourirajan synthesized cellulose acetate (CA) membrane to desalinate 

seawater in 1962, and it was commercialized in the 1970’s [3]. Then Cadotte and 

Petersen fabricated polyamide composite membrane in 1978 for reverse osmosis 

applications [4,5]. Now, these two types of membranes are widely used worldwide in 

fresh water production industry. The water industries include different processes such as 

microfiltration, ultrafiltration, nanofiltration and reverse osmosis. Each process 

separates certain type of particles and species from the feed water based on size (see 

Figure 1). The membrane is treated as a microporous medium in the microfiltration, 

ultrafiltration and partially the nanofiltration processes. The pore-flow model governs 

the flow in microporous media, and it is based on Darcy’s law. In reverse osmosis, the 

membrane is modeled by the solution-diffusion model which utilizes the Fick’s 

diffusion law. The nanofiltration process is a transition stage where the flow through the 

membrane is modeled by a combination of the pore-flow and solution-diffusion models. 
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Figure 1: Water purification processes. 

 

1.1. REVERSE OSMOSIS DESALINATION  

Reverse Osmosis (RO) is a process which is used around the globe to produce 

fresh water. This technology is typically used to desalinate seawater or brackish water. 

Reverse Osmosis is capable of producing fresh water by applying high pressure in a 

feed channel surrounded by a semi-permeable membrane. The membrane lets the water 

passes through and holds back the dissolved salt ions. The applied pressure has to be 

greater than the osmotic pressure of the solution. The fresh water production rate is 

dependent on the salt concentration in the feed water and on membrane properties such 

as the selectivity and the permeability. The rate of water permeation increases as values 

of the selectivity and the permeability of the membrane increase. The increase in the 
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water permeation causes an increase in the salt accumulation at or near the membrane 

surface. That in turn increases the probability of the occurrence of salt concentration 

polarization along the membrane surface. The occurrence of concentration polarization 

along the surface of the membrane has two major undesirable effects on the membrane 

performance [6–11]. One is the increase of the osmotic pressure as the salt 

concentration rises so the applied pressure must be increased to keep the water 

production rate the same. The other is the promotion of scaling and fouling along the 

surface of the membrane at the region where the salt concentration polarization occurs. 

In spiral wound membranes, spacers are placed in the feed channel to maintain the gap 

between the membranes and to promote momentum mixing (Figure 2). 

 
Figure 2: Schematic of spiral wound membrane.   

 

 

 

(source: Auxiaqua [12] ) 
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1.2. LITERATURE REVIEW 

 Many investigators have studied the flow and the mass transfer in reverse 

osmosis feed channel [13–17]. Shakaib et al. [18] considered three dimensional 

simulations for flow and mass transfer in feed channel including spacers. They assumed 

that the membrane was impermeable surface along which the concentration was 

constant. They showed that the mass transfer in the feed channel is strongly influenced 

by the spacer geometry. Geraldes et al. [19] studied concentration polarization inside 

the feed channel with ladder-type spacers. They employed momentum and mass transfer 

equations and imposed no-slip, no-penetration conditions at the membrane surface. 

They calculated the salt flux through the membrane by artificially introducing the 

permeate velocity. They concluded that the spiral wound membrane performs better 

when the spacer-filament is adjacent to the membrane surface. Both Shakaib et al [18] 

and Geraldes et al. [19] considered laminar flows. Karode and Kumar [20] conducted 

three-dimensional flow simulations and experiments to examine flow characteristics in 

a feed channel containing different types of commercial spacers. Karode and Kumar 

[20] have concluded that the turbulent flow structures, the degree of pressure drops and 

the characteristics of the wall shear stress were strongly influenced by the spacer’s types 

and arrangements. Fimebers-Weihs and Wiley [21] performed steady three-dimensional 

flows and mass transfer simulations. The membrane was treated as an impermeable 

wall, and the mass transfer coefficient was determined from an empirical relation. They 

reported that the pressure drop and the mass transfer coefficient are influenced by the 

spacer configurations and by the feed flow rate. Koutsou et al. [22] conducted a direct 

numerical simulation to investigate the flow characteristics inside the feed channel 
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bounded by impermeable walls. They reported that the flow inside the feed channel 

containing spacers becomes unsteady for values of Reynolds number greater than about 

40. Their computational study did not consider the mass transfer. Recently, Srivathsan 

et al. [23,24] have investigated the membrane performance by conducting three 

dimensional steady computational fluid dynamics simulations. They utilized periodic 

condition in the streamwise direction by including two crossing spacers in the 

computational cell. They have treated the membrane as a permeable surface and also as 

an impermeable surface and calculated Sherwood number using an empirical relation. 

Saeed et al. [25] has performed a numerical simulations to study the mass transport in 

spacer filled membrane. They solved the Navier-Stokes equations and the mass 

transport equation in a feed channel bounded by an impermeable wall. Quasi three 

dimensional simulations are conducted by using periodic boundary conditions in the 

stream-wise direction. The mass fraction of sodium chloride is assumed to be constant 

along the membrane surface. Both Srivathsan et al. [23] and Saeed et al. [25] concluded 

that the spacing between spacers highly influences the membrane performance and the 

pressure drop. 

The flow in a channel filled with spacers is similar to the flow past cylinders 

confined in a channel. Some of the findings relevant to the present study are 

summarized here. Chakraborty et al. [26] documented that the drag coefficient 

decreases as the Reynolds number (𝑅𝑒) increases, and the drag coefficient increases as 

the blockage ratio increases at fixed 𝑅𝑒. Kanaris et al. [27] reported that the transition 

from two-dimensional to three-dimensional flows occurs at about 180 < 𝑅𝑒 < 210 in 

flows past cylinder with a blockage ratio of 1/5, where 𝑅𝑒 is based on the centerline 
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velocity and cylinder diameter. Rehimi et al. [28] reported that the onset of the vortex 

shedding occur at 𝑅𝑒 = 108 and the onset of transition from two dimensional to three 

dimensional flows occurs at 𝑅𝑒 = 159 in flows past a cylinder with a blockage ratio of 

1/3. Griffith et al. [29] et al. reported that the flow transitions occur at lower value of 𝑅𝑒 

when the blockage ratio is increased to 1/2. The present study focuses on the effect of 

such flow transitions on the membrane performance, concentration polarization, and 

fouling for water desalination process by reverse osmosis. 
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CHAPTER 2: MATHMATICAL MODELING 

2.1. GOVERNING EQUATIONS 

Velocity and pressure fields in the feed channel are governed by the continuity 

and momentum equation, and the concentration field is governed by the mass transport 

equation. The binary solution is assumed to be incompressible with density, 𝜌, and 

viscosity, 𝜇. The diffusion coefficient, 𝐷, is assumed to be constant. The equations 

governing the fluid motions are the Navier-Stokes equations: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
  , (2) 

The equation governing the mass transport in the feed channel 

𝜕𝑐

𝜕𝑡
+ 𝑢𝑗

𝜕𝑐

𝜕𝑥𝑗
= 𝐷

𝜕2𝑐

𝜕𝑥𝑗𝜕𝑥𝑗
 . (3) 

Here 𝑖 and 𝑗 are the summation indices. 𝑥1 = 𝑥 is the stream-wise direction, 𝑥2 = 𝑦 is 

the cross-flow direction, and 𝑥3 = 𝑧 is the span-wise direction. 𝑢1 = 𝑢 is the stream-

wise component, 𝑢2 = 𝑣 is the cross-flow component, and 𝑢3 = 𝑤 is the span-wise 

component of the velocity. 𝑡 is the time, and 𝑐 is the salt concentration of the binary 

solution of  salt and water. 

It is well documented that the flow, temperature and concentration fields in 

channels containing cylinders are predicted accurately by the shear stress transport 

(SST) 𝑘-𝜔 turbulence model [30–33]. It is also well-documented that flows past arrays 

of spacers confined in channels have turbulent-like characteristics for 𝑅𝑒 ≥ 400 

[22,34–36]. The SST 𝑘-𝜔 turbulence model is employed by the present computational 
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study to characterize three-dimensional steady turbulent flow structures in the feed 

channel for 𝑅𝑒 of 400 or above. The SST 𝑘-𝜔 turbulence momentum transport equation 

is given by: 

𝑢𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

1

𝜌

𝜕

𝜕𝑥𝑗
((𝜇 + 𝜇𝑡)

𝜕𝑢𝑖

𝜕𝑥𝑗
)  (4) 

where 𝜇 is the dynamic viscosity and 𝜇𝑡 is the eddy viscosity, 𝜇𝑡 = 𝜌
𝑎1𝑘

max(𝑎1𝜔,𝛺𝐹2)
. The 

equations governing the turbulence kinetic energy, 𝑘, and the specific dissipation rate, 

𝜔, are: 

𝑢𝑖
𝜕(𝜌𝑘)

𝜕𝑥𝑖
= 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
 , (5) 

𝑢𝑖
𝜕(𝜌𝜔)

𝜕𝑥𝑖
=

𝛾

𝜈𝑡
𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 2𝜌(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
  (6) 

where Ω is the vorticity magnitude, 𝑎1, 𝛽, 𝛽∗, 𝜎𝑘, 𝜎𝜔, 𝜎𝜔2
 and 𝛾 are closure coefficients, 

and 𝐹1, 𝐹2 are the blending functions. Detailed description of the model can be found in 

Ref.[37].  

The SST 𝑘-𝜔 turbulence mass transport equation is given by: 

𝑢𝑗
𝜕𝑐

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
((𝐷 +

𝜇𝑡

𝜌 𝑆𝑐𝑡
)

𝜕𝑐

𝜕𝑥𝑗
)  (7) 

where 𝑆𝑐𝑡 is the turbulence Schmidt number. 

2.3. NUMERICAL METHOD 

The idea in the computational fluid dynamics is to convert the governing 

equations of the fluid flow and mass transport to a system of algebraic equations. Flow 

and velocity field can be approximated by solving coupled non-linear set of algebraic 
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equations. There are different approaches to discretize the Navier-Stokes equations and 

mass transport equation. The finite difference, finite element and finite volume are the 

most common methods in the computational fluid dynamics. The finite volume 

performs better than the other two methods in the complex geometries, and it demands 

less computational resources than the finite element method. In addition, the 

conservation laws are satisfied automatically in the finite volume method [38–40]. 

In finite volume method, the conservation laws are applied to the control volume, 

Ω, with control surface, 𝑠 (Figure 3). 𝑽 is the velocity vector, and 𝒏 is the normal vector 

to the control surface. The conservation of mass, momentum and concentration are 

written in the integral form. These integral forms represent a balance between the rate 

of change of flow properties in the control volume, Ω, and the rate of flux of these 

properties through the control surface. For incompressible viscous Newtonian-fluid, the 

conservation laws are as follows. 

The mass conservation 

𝜕

𝜕𝑡
∫ 𝜌 𝑑𝛺

 

𝛺
+ ∫ 𝜌

𝑠
 𝑽 ∙ 𝒏 𝑑𝑠 = 0 (8) 

Here 𝑡 denotes the time and 𝜌 denotes the density of solution. 

The momentum conservation 

𝜕

𝜕𝑡
∫ 𝜌 𝑢𝑖  𝑑𝛺

𝛺
+ ∫ 𝜌𝑢𝑖𝑽 ∙ 𝒏 𝑑𝑠

𝑠
= ∫ [(−𝑝 𝑛𝑖) + ∑ 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 𝑛𝑗𝑗 ] 𝑑𝑠

𝑠
  (9) 

Here 𝑢𝑖  is the 𝑖th velocity components (𝑢1 = 𝑢, 𝑢2 = 𝑣 𝑎𝑛𝑑 𝑢3 = 𝑤). 𝑢, 𝑣 and 𝑤 are 

the stream-wise, cross-flow and the span-wise components of the velocity vector, 

respectively. 𝜇 is the dynamic viscosity. 

The concentration equation  
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𝜕

𝜕𝑡
∫ 𝑐 𝑑𝛺

𝛺
+ ∫ 𝑐 𝑽 ∙ 𝒏 𝑑𝑠

𝑠
= ∫ 𝐷 𝛻𝑐 ∙ 𝑛 𝑑𝑠

𝑠
  (10) 

Here 𝑐 is the concentration, and 𝐷 is the diffusion coefficient. 

The Gauss’s divergence theorem converts an integral over a control surface into an 

integral over a control volume. 

∫ 𝜌 𝑽 ∙ 𝒏
𝑠

 𝑑𝑠 = ∫ 𝛻 ∙ (𝜌 𝑽
𝛺

) 𝑑𝛺 (11) 

By using the equation (11), equations (8-10) become integrals over the control 

volume. 

 
Figure 3: Control volume. 

2.2. MEMBRANE MODELING 

The solution-diffusion model was introduced in 1940’s to model the mass 

transport and concentration gradient at the membrane surface for the gas separation 

process. At that time, the pore-model was used to predict the mass transport at the 

membrane surface in the water desalination by reverse osmosis. In the 1980’s, the 

solution-diffusion became well-accepted model in predicting the membrane 

performance in the field of the water purification by the reverse osmosis [2,41]. The 

solution-diffusion model considers the chemical potential as the driving force of the 

mass transport. On the other hand, the pore-model is based on assuming the driving 
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force is the pressure difference only. Experimental results [42–44] prove that the 

solution-diffusion is more accurate than the pore-model in predicting the membrane 

performance in the water desalination by the reverse osmosis. 

The membrane is considered as a functional surface under the solution-diffusion 

approach. In the solution-diffusion model, the local water flux is determined from the 

trans-membrane pressure difference and the local osmotic pressure between the feed 

and the production sides. Simultaneously, the salt concentration gradient is calculated 

from the local water flux and local salt concentration along the membrane surface 

(Figure 4). The equations for the rate of water permeate and for the local salt 

concentration gradient at the membrane surface are: 

𝑣𝑤 = 𝐴[(𝑝𝑓−𝑝𝑝)−(𝜋𝑓−𝜋𝑝)]

  𝐷
𝜕𝑐

𝜕𝑦
|
𝑓

  = 𝑣𝑤(𝑐𝑓−𝑐𝑝)
     }  (12) 

where 𝑣𝑤 is the water flux through the membrane, 𝐴 is the water permeability through 

the membrane, 𝑝 is the pressure, 𝜋 is the osmotic pressure, and the subscripts 𝑓 and 𝑝 

denote the feed and production sides, respectively. The osmotic pressure,𝜋, is calculated 

from Van’t Hoff’s equation: 

𝜋 = 𝑖𝜙𝑅𝑇𝑐/𝑀  (13) 

where 𝑖 denotes the number of ions produced by disassociation of solute, 𝜙 is the 

osmotic coefficient, 𝑐 is the salt concentration in kg/m3, 𝑀 is the molecular weight of 

the salt in kg/mol, 𝑅 is the universal gas constant (0.0083145 KPa m3/(mol K°)), and 𝑇 

is the absolute temperature in K°. For a solution consists of water and dissolved NaCl, 

the osmotic pressure, equation (13), can be written as:  

𝜋 = 𝜿𝑐  (14) 
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Here 𝜿 is the osmotic pressure coefficient, 𝜿 = 𝑖𝜙𝑅𝑇/𝑀. The value of 𝜿 at the 

temperature of 293 K° is 75 KPa m3/kg. By substituting equation (14) in equations (12), 

the water flux and salt concentration gradient at the membrane surface in the feed side 

can be written as: 

𝑣𝑤 = 𝐴[(∆𝑝)−𝜿(𝑐−𝑐𝑝)]

  𝐷
𝜕𝑐

𝜕𝑦
|
𝑓

  = 𝑣𝑤(𝑐𝑓−𝑐𝑝)
     } (15) 

where ∆𝑝 is the transmembrane pressure difference. 

 
Figure 4: Concentration polarization and water flux at the reverse osmosis membrane surface. 

2.3. DIMENSIONLESS PAPAMETERS 

The results are presented in terms of various dimensionless properties. The drag 

coefficient, 𝐶𝐷, is determined from: 

𝐶𝐷 =
2𝑓𝑥

𝜌𝑈𝑎𝑣𝑒
2 𝐴𝑠

 (16) 

where 𝑓𝑥 is the drag force exerted on the spacer, and 𝐴𝑠 is the projected area of the 

spacer in the direction perpendicular to the stream-wise direction. The lift coefficient of 

a spacer is calculated from: 
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𝐶𝐿 =
2 𝑓𝑦

𝜌 𝑈𝑠𝑝
2 𝐴𝑠

  (17) 

where 𝑓𝑦 is the lift force exerted on the spacer. The dimensionless mass transfer 

coefficient, Sherwood number (𝑆ℎ), is evaluated as:  

𝑆ℎ =
ℎ𝑚 ℎ

𝐷
   ,   ℎ𝑚 =

𝐷 
𝜕𝑐

𝜕𝑦
|
𝑦=ℎ 

 

(𝑐𝑏−𝑐𝑤)
  (18) 

where ℎ𝑚 is the local mass transfer coefficient, ℎ: the channel height, 𝑐𝑏 is the bulk 

concentration. The friction coefficient is obtained from: 

𝑓 =
2ℎ |

𝑑𝑝

𝑑𝑥
|

(1/2 ) 𝜌𝑈𝑎𝑣𝑒
2   (19) 

where 
𝑑𝑝

𝑑𝑥
 is the pressure drop in the channel, and 𝑈𝑎𝑣𝑒 is the average velocity at the 

channel inlet. 
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CHAPTER 3:  TWO DIMENSIONAL ANALYSES 

3.1. CIRCULAR SHAPED SPACERS 

3.1.1. MESH STUDY AND VALIDATION 

The schematic of the computational domain is depicted in Figure 5. The solution 

of salt water is studied for separation of salt from water using a RO membrane. Flow 

inside the channel with turbulators is considered for various arrangements: the inline 

geometry (𝑒 = 1/4 ℎ), the staggered geometry (𝑒 = 1/8 ℎ), and the staggered geometry 

with spacers touching the membrane (𝑒 = 0). Here d is the diameter of the spacer and e 

is the distance between the edge of the spacer and the membrane surface, as shown in 

Figure 5. Simulations are conducted with 𝛼 =
𝑠

𝑑
 of 10 and 20 for each spacer 

arrangement. Here s is the gap between the spacers. The distance 𝑥/ℎ = 10 is assigned 

between the inlet and the first spacer to minimize the effect of the inlet on the flow 

structure inside the spacer bank. Similarly, the distance 𝑥/ℎ = 20 is assigned between 

the last spacer and the outlet to minimize the outlet effect. Steady state simulations were 

conducted for three values of the Reynolds number: 400, 800 and 4000. In addition, a 

transient simulation at Re = 800 is conducted using the large eddy simulation (LES) to 

study the  transient effects on the membrane performance in the inline geometry. 

Reynolds number is defined based on the hydraulic diameter of the channel, 𝑅𝑒 =

𝑈𝑎𝑣𝑒 2ℎ/𝜈. Results presented in this Chapter were documented in Ref. [45]. 
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Figure 5: Schematic of the flow geometry 

Disparity between diffusion coefficient and viscosity of salt-water binary solution 

leads to a large value for Schmidt number (Sc = 667). That results in a thin 

concentration boundary layer. In order to resolve the concentration field near the 

membrane surface very fine mesh elements are needed. Mesh structure near the surface 

of the membrane and the surface of the spacer is shown in Figure 6. A mesh 

optimization study is conducted using three meshes: 1.2×106, 1.8×106, and 2.4×106. 

For the three meshes, the profiles of stream-wise component of the velocity at the wake 

of the 1st spacer obtained by three meshes are nearly the same, as shown in Figure 7. 

Additionally, the drag coefficient is calculated for the 1st spacer using three meshes. The 

drag coefficient is found to be 1.09, 1.10, and 1.08, respectively for the 1.2×106, 

1.8×106, and 2.4×106 meshes. That ensures that the grid independency is satisfactory. 

The 1.8×106 mesh is chosen to carry out both the steady state and the transient 

simulations. 
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Figure 6: Mesh size near membrane and spacer. 
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Figure 7: Profiles of stream-wise component of the velocity calculated using three different 

meshes: 1.2×𝟏𝟎𝟔, 1.8×𝟏𝟎𝟔, and 2.4×𝟏𝟎𝟔  

In order to validate the k-ω SST turbulence model employed in the present work, 

simulations are conducted in an empty channel and in a channel containing square cross 

sectioned spacers with an inline arrangement. The results of these simulations are 

compared to those reported by Ma and Song [36]. The same parameters used in Ref [36] 

are selected: ∆p = 800 psi, 𝑐0= 32000 ppm, A = 7.3×10-12 m/(s Pa), h = 1 mm, 𝑈𝑎𝑣𝑒= 0.1 

m/s, and Re = 149. The spacing between the cylinders is 4.5 mm and the channel length 

is 10 cm. The flow and the concentration field are depicted in Figure 8. Contours of the 

velocity and the salt concentration are very similar to those documented in Ref [36]. On 

the other hand, the wall concentration and the water flux through the membrane exhibit 

slightly different trend. The spacers are expected to redirect the flow toward the 

membrane which results in a thinner boundary layer. In the wake of the spacer, the 

expansion causes a thicker boundary layer and as the boundary layer becomes thicker it 
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leads to the concentration polarizations, as seen in Figure 7(c). Since the pressure in the 

governing equations is treated differently in the present work than in Ref [36], we 

expect to see slightly different concentration and water flux profiles between the two 

works. The pressure drop in the channel without and with spacers is 106 and 1014 Pa, 

respectively. The pressure drop predicted here for each case matches the reported 

pressure drop of corresponding cases in Ref [36]. 
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Figure 8: a) concentration contour of the submerged case. b) velocity contour of the submerged 

case. c) normalized concentration profile along the surface of the upper membrane. d) permeate 

velocity along the surface of the upper membrane 
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3.1.2. RESULTS 

The results of steady flow simulations in the inline and the staggered geometries 

are presented at Re = 400, 800 and 4000 for 𝛼 of 10 and 20. The results of the transient 

flow simulations in the inline geometry for 𝛼 = 20 is presented and compared against 

that of the steady simulations. 

Figure 9 illustrates steady state contours of the stream-wise component of the 

velocity and the normalized salt concentration at various locations along the x-axis for 

Re = 800 and 𝛼 = 20. The cylinders are placed in an inline arrangement. The images are 

acquired between the first and second cylinder, the seventh and eighth cylinder, and 

between eleventh and twelfth cylinder, respectively. The velocity contours show that 

the flow has a repeated pattern following each spacer. Flow past the spacer expands, 

that leads to a thickening of a boundary layer in the wake few diameters away from the 

spacer. Polarization of concentration occurs at the same location where the momentum 

boundary layer thickens. The intensity of the polarization increases further downstream, 

as shown in Figure 9. 
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Figure 9: Steady flow at Re=800, α=20, and e=1/4 h.  a1), a2), and a3) velocity contours and b1), 

b2 and b3) concentration contours at different locations along x-axis. 
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Figure 10 depicts the normalized concentration profiles (c/c0) along the upper 

membrane. The black lines denotes the concentration profiles in the empty channel, the 

blue and the red lines denote the concentration profiles for 𝛼 = 20, and 𝛼 = 10, 

respectively, in various geometries. The same color coding is applied for the water flux 

and the Sherwood number profiles along the membrane surface depicted in Figures 11 

and 12, respectively. The concentration polarization is alleviated at all Re with the 

presence of spacers in the channel. In the inline geometry, the best mitigation of the 

concentration polarization is obtained at Re = 800 when it is compared against to the 

open channel, as shown in Figure 10 (a). It is also noted that at high speed flow, Re = 

4000, the concentration profiles are not influenced significantly as the spacing of the 

cylinders is changed. Figure 10 (b) shows the concentration profiles in the staggered 

geometry with e = 1/8 h. The staggered spacers exhibit significant level of polarization 

mitigation at 𝑅𝑒 = 800 for both 𝛼 = 20 and 𝛼 = 10. The improvement is better with 𝛼 = 

10 than that with 𝛼 = 20, as illustrated in Figure 10 (b). On the other hand, the staggered 

spacers hardly mitigate the concentration polarization at 𝑅𝑒 = 400. Figures 10 (c) and 

10 (d) show the concentration profiles in the staggered geometry when spacers touching 

the membrane surface for 𝛼 = 20 and 10, respectively. In this geometries, 𝑅𝑒 = 800 

shows the maximum level polarization mitigation. There is a spike in the concentration 

distribution at locations where spacers are touching the membrane. These spikes are 

results of the stagnant flow in the region front of spacers, and they might result in the 

formation of surface fouling. 
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Figure 10: Concentration profiles along the surface of the upper membrane  a) e = 1/4 h, α = 20 

and α = 10  b) e = 1/8 h, α = 20 and α = 10  c) e = 0, α = 20 d) e = 0, α = 10 

Figure 11 illustrates the water fluxes along the upper membrane in the inline and 

the staggered geometries for 𝛼 of 10 and 20 at Re = 400, 800 and 4000. The water 

production rate for the membrane system including spacers in all geometries at all flow 

rates increases when it is compared against the open channel. Figure 11(a) shows the 

water fluxes in the inline geometry for 𝛼 = 20 and 10. The largest increase in the water 

 

a) b)

c) d)
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flux through the membrane is obtained at Re = 800. The geometry with 𝛼 = 10 performs 

slightly better than that of 𝛼 = 20. Figure 11(b) depicts the water flux in the staggered 

geometry for e/h = 1/8, 𝛼 of 10 and 20. Similarly, the improvement in the suction rate is 

the highest at Re = 800. Slight or no discernible enhancement is seen in the water flux at 

Re = 400. The nominal value of the permeate rate is very close to that obtained for the 

open channel at Re = 400, as seen in Figure 11(b). Figure 11(c) and 11 (d) illustrate the 

water flux through the membrane at the upper membrane in the staggered geometry 

when spacers touch the membrane surface. The best improvement is again attained at 

Re = 800. 
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Figure 11: Water flux along the surface of the upper membrane  a) e = 1/4 h, α = 20 and α = 10  

b) e = 1/8 h, α = 20 and α = 10  c) e = 0, α = 20 d) e = 0, α = 10 

Figure 12 depicts the Sherwood number, Sh, determined along the surface of the 

upper membrane. The nominal value of the Sherwood number in the inline and the 

staggered geometries is higher than that of the open channel at all values of Re. As 

expected the Sherwood number increases as the Re is increased in all geometries 

including the open channel. The greatest enhancement in the Sherwood number is 

 

a) b)

c) d)
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reached at the highest flow rate, as shown in Figure 12. The local Sherwood exhibits 

strong dependence on the spacers’ configuration. 

 
Figure 12: Local Sherwood number along the surface of the upper membrane  a) e = 1/4 h, α = 20 

and α = 10  b) e = 1/8 h, α = 20 and α = 10  c) e = 0, α = 20 d) e = 0, α = 10 

Table 1 lists the pressure drop in the feed channel, the average value of the water 

flux and the Sherwood number in all geometries at Re of 400, 800 and 4000. In order to 

eliminate the inlet and the outlet effects, the average values of vw and Sh are calculated 

 

a) b) 

c) d) 
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from the local values determined in the region 0.01 m  x  0.2 m. The average values 

of the Sherwood number and the suction rate increase as the flow rate increases in all 

geometries. The Sherwood number for 𝛼 = 10 is higher than that of 𝛼 = 20 at all Re. As 

it is expected the pressure drop increases as the flow rate increases. As it is also 

expected the pressure drop is higher for 𝛼 = 10 in all geometries. Table 1 illustrates that 

the pressure drop in the feed channel is strongly dependent on the spacers’ 

configuration. The highest values of the mass transfer coefficient occurs in the 

geometry of e = 0 for 𝛼 = 10, yet the pressure drop is not the highest in this geometry. It 

is noted that the highest pressure drop occurs in the staggered geometry with e = 1/8 h 

for 𝛼 = 10, as shown in Table 1. 

 

 

Re 

channel 

Channel with inline spacers e=1/4 h Staggered 

spacers e=1/8 h 

𝜶=20 𝜶=10 𝜶=20 

|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

400 106 1.438 26.7 471 1.484 28.6 822 1.547 31.5 456 1.44 

800 204 1.565 31.8 1309 1.732 42.3 2407 1.798 49.6 1337 1.821 

4000 1702 1.965 74.9 22949 2.078 155.1 42398 2.084 161 22461 2.063 

Table 1: The pressure drop , the average water flux and the Sherwood number in inline geometry. 

Re 

Staggered spacers e=1/8 h Staggered spacers e=0 

𝜶=20 𝜶=10 𝜶=20 𝜶=10 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  
|∆𝒑𝒙| 

[Pa] 

𝒗𝒘̅̅ ̅̅  

×𝟏𝟎−𝟓 

[m/s] 

𝑺𝒉̅̅̅̅  

400 27.2 864 1.468 28.5 300 1.632 38.1 467 1.7 49.9 

800 53.4 2637 1.92 73.5 1011 1.833 63.5 1672 1.845 73.9 

4000 139.7 49446 2.078 155.8 20335 2.045 154.8 36763 2.046 167.6 

Table 1: (Continued) 

Figure 13 illustrates images from the transient simulation at t = 0.2078 sec (or at 

dimensionless time, 𝜏 = 148.5). Contours of the stream-wise component of the velocity 

are shown in Figure 13(a), and contours of the normalized salt concentration are shown 
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in Figure 13(b). The simulations are conducted in the inline geometry for 𝛼 = 20 at Re = 

800. The velocity and the concentration field obtained for the transient simulations can 

directly be compared against the results of steady simulations presented in Figure 9 for 

the same conditions. The numbers (1, 2, and 3) in the figure caption denote the location 

where images are acquired and they are identical to those shown in Figure 9. The vortex 

shedding from spacers enhances the momentum mixing in the region near and away 

from the spacers. The flow induced by the Karman vortex street increases the 

concentration mixing as shown in Figure 13(b1), 13 (b2), and 13 (b3). The results 

presented for the steady simulations denote the time average of the transient velocity 

and the concentration fields, as shown in Figure 13. 
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Figure 13: Transient simulation at Re=800, α=20 and e=1/4 h @t=0.2078 [sec] (𝝉 =148.5).  a1), 

a2), and a3) velocity contours, and b1), b2), and b3) concentration contours at different locations 

along x-axis.  
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Vorticity contours shown in Figures 14(a1), 14(a2) and 14 (a3) reveal the 

intensity of the secondary flows induced by the vortex shedding. The vortices shed by 

the spacers dissipate as they are convected away from the cylinders. Figure 14(a) 

illustrates that the flow induced by the vortex shedding in the wake region of spacers is 

strongly influenced by the proximity of the walls. The similar flow structures are 

reported by Singha and Sinhamahapatra [46] and Sahin and Owens [47] in the channel 

containing spacers with the same blockage ratio at the similar flow rates. The lift 

coefficient calculated for the spacer on the first row proves that the flow is nearly 

perfectly periodic at Re = 800. The power spectral density of the lift coefficient signals 

yield the dimensionless frequency, the Strouhal number, St = fd/Uave = 0.252. Here f is 

the frequency of the fluctuations manifested by the vortex street behind the spacers. 

Mettu et al. [48] found the Strouhal number to be 0.25 for a blockage ratio of 0.4 at Re 

= 800. The Sherwood number calculated at three different axial location, P1, P2, and 

P3, from the transient and steady state results are compared, the axial locations selected 

are x = 15, 18, and 22.5 mm, respectively. The solid lines denote the Sh determined 

from the transient simulations and the dashed lines denote the Sh determined for the 

steady state results. Sh calculated from the steady state simulations is not too different 

than that calculated from the transient simulations, as shown in Figure 14(c). These 

results imply that steady state simulations provide an accurate assessment of the 

membrane performance in the geometries considered here. 
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Figure 14: Transient simulation at Re=800, α=20 and e=1/4 h. a1), a2), and a3) are vorticity 

contours at different locations along x-axis @t=0.2078 [sec] (𝝉 =148.5), b) local Sh number at 

three different points, c) lift coefficient of the first spacer vs. non-dimensional time, and d) the 

power spectral density of the lift coefficient signal. 
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3.1.3. CONCLUSION 

Numerical simulations have been conducted to study the performance of Reverse 

Osmosis membrane for a brackish water desalination process. The momentum and mass 

transport equations govern the flow of the brackish water in the feed channel. The mass 

flux of water through the membrane varies with the local pressure and the 

concentration. The SST k-𝜔 turbulence model has been selected to perform the steady 

turbulent flow simulations while the LES has been selected to perform the transient 

turbulent flow simulations. Three flow rates, Re = 400, 800, and 4000, are considered in 

the inline and the staggered geometries. Momentum mixing resulted from turbulators 

improves the performance of the membrane greatly at all flow rates considered. The 

concentration polarization is mitigated in the inline and the staggered geometries at all 

flow rates. The results clearly indicate that the Sherwood number is strongly influenced 

by Re and the arrangement of the spacers. This study proves that, in order to enhance 

the brackish water desalination by the RO membrane, the arrangement and the spacing 

of turbulators must be optimized for a given range of Re. Pressure drop should be 

considered as an important part of the of optimization process. 
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3.2. NON-CIRCULAR SHAPED SPACERS 

3.2.1. GEOMETRY 

Simulations are conducted for three different shaped spacers: circular, diamond 

and triangular. The schematic of the membrane composite is illustrated in Figure 15. 

The gap between the plates, h, is 1.5 mm. The spacing between two successive spacers, 

s, is 7.5 mm. 𝑑/ℎ is the blockage ratio where the span of the spacer in the channel, d, is 

0.75 mm. The inline arrangement of the spacers is used in the present study. e/h = 1/4, 

where e is the distance between the edge of the spacer and the wall. Simulations are 

performed for values of the Reynolds numbers of 100, 300, 1000, and 2000. The results 

in this section were published in Ref. [49]. 

 

 
Figure 15: Schematic of the membrane composite. 

3.2.2. RESULTS 

The present work simulates the flow in the feed channel of a RO membrane for 

desalination of brackish water. The membrane is treated as a functional surface, and the 

flow is considered to be turbulent when 𝑅𝑒 > 400. The simulations are conducted for 
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three different spacer shape: a circular, a diamond, and a triangular. Results are 

presented for 𝑅𝑒 = 100, 300, 1000, and 2000. 

Figure 16 shows the steady state contours of the stream-wise component of 

velocity, 𝑢, and the concentration ,𝑐/𝑐0, in the feed channel containing circular, 

diamond and triangular cross-sectioned spacers in inline arrangement. Velocity and 

concentration contours are displayed between 11th and 12th spacers at 𝑅𝑒 = 300. a) 

images denote the velocity contours and b) images denote the normalized concentration 

contours. The velocity contours show that the spacers disrupt the flow repetitively in the 

feed channel which causes the momentum mixing. The spatial flow structure in the 

wake of spacers differ slightly in these geometries at Re = 300. The momentum mixing 

influences the concentration field as illustrated in Figure 16. The concentration 

boundary layer near the membrane is slightly thinner in the channel with the circular 

spacers than those with the diamond and triangular shaped spacers.  
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Figure 16: Contours of the stream-wise component of the velocity (a1, b1, c1) and contours of the 

normalized concentration (a2, b2, c2) at 𝑹𝒆 = 𝟑𝟎𝟎 for three different shaped spacers. 
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Figure 17 depicts the water flux at the surface of the upper membrane for circular, 

diamond, and triangular shaped spacers at 𝑅𝑒 = 100, 300, 1000, and 2000. In Figure 17, 

the blue solid lines represent Re = 100, the black dashed lines represent Re = 300, the 

red dashed lines represent Re = 1000, and the black dashed lines represent 𝑅𝑒 = 2000 

for the three different shaped spacers. The same legend is used for the concentration 

profiles and the Sherwood number calculated along the surface of the upper membrane, 

as illustrated in Figures 18 and 19, respectively. The water flux through the membrane 

increases significantly as 𝑅𝑒 is increased for all three different shaped spacers used in 

the present study. The level of the water flux is not very sensitive to the shape of the 

spacers. The more noticeable variation in the water flux is attained at Re = 300, as 

shown in Figure 17. 
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Figure 17: Water flux profiles along the surface of the upper membrane for a) circular b) 

diamond, and c) triangular shaped spacers. Profiles are obtained at Re = 100, 300, 1000 and 2000. 

Figure 18 illustrates the normalized concentration profiles along the surface of the 

upper membrane for three different shaped spacers at Re = 100, 300, 1000, and 2000. 

The concentration polarization along the surface of the upper membrane is alleviated at 

higher Re for all geometries employed here. Similar to the water flux profiles, the 

concentration profiles differ only slightly in three geometries.  
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Figure 18: Normalized concentration profiles along the surface of the upper membrane for a) 

circular b) diamond, and c) triangular shaped spacers. Profiles are obtained at Re = 100, 300, 

1000 and 2000 

Figure 19 depicts the local Sherwood number along the surface of the upper 

membrane for three different shaped spacers in the inline arrangement. The local 

Sherwood number is calculated for Re = 100, 300, 1000 and 2000.  The Sherwood 

number displays a periodic dependence along x following the spacers. The Sherwood 

number increases three to four folds as Re is increased to 2000 compared at low flow 
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rate, as shown in Figure 19. The Sherwood number is a good indicator of the membrane 

performance since it eliminates the effects of the concentration conditions at the inlet 

and the length of the computational domain. The average value of the Sherwood 

number increases as the flow rate is increased. This must be attributed to the momentum 

mixing induced by the Karman vortex street. Periodically shedding vortices are 

expected behind the spacers at the flow rates considered here in this study. These 

vortices can only be predicted by the transient simulations using large eddy simulations 

or direct numerical simulations. Such high fidelity simulations are not in the scope of 

this study, but it can be considered as a future work to investigate the transient effects 

on the membrane performance. 
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Figure 19: Local value of the Sherwood number calculated along the surface of the upper 

membrane for a) circular b) diamond, and c) triangular shaped spacers. Profiles are obtained at 

Re = 100, 300, 1000 and 2000. 

3.1.3. CONCLUSION 

This study proves that the velocity and the concentration fields in the feed channel 

have a profound impact on the membrane performance in brackish water desalination. 

The water production rate can be adjusted by controlling the flow rate in the feed 

channel. The placement of the spacers in the feed channel promotes momentum mixing, 
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that in turn enhance the membrane performance. For the range of Re considered and for 

the inline arrangement, the shape of the spacers’ cross-section hardly influences the 

membrane performance. The effect of the flow rate on the membrane performance in 

the feed channel including spacers is profound. This study proves that spacers should be 

an integral part of the membrane design in brackish water desalination. The flow rate is 

one of the very important variables in the optimization process. 
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CHAPTER 4: THREE DIMENSIONAL ANALYSES – LADDER-TYPE 

SPACERS 

4.1. GEOMETRY AND MESH STUDY 

The schematic of computational domain is illustrated in Figure 20. The top and 

the bottom surface is an RO membrane. The gap between membranes is ℎ = 1.5 mm. 

Sixteen uniformly spaced circular cylinders of diameter, 𝑑 =
1

2
ℎ, are placed in the mid-

plane between the membranes to promote mixing in the feed channel. The axes of 

cylinders are parallel to the membranes and perpendicular to the primary flow direction. 

The length of the inlet and the outlet region is selected as 6 ℎ and 15 ℎ, respectively, to 

minimize the effect of the imposed inlet and outlet velocity boundary conditions on the 

characteristics of the flow in the spacer bank region. Flow simulations are conducted for 

𝑅𝑒 = 100, 400, 600 and 800. The Reynolds number is defined as 𝑅𝑒 = 2ℎ𝑈𝑎𝑣𝑒/𝜈, 

where ℎ is the channel height, 𝑈𝑎𝑣𝑒 is the inlet average velocity, and 𝜈 is the kinematic 

viscosity. 

 
Figure 20: Schematic of flow geometry. 
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A mesh optimization study is performed using two mesh sizes: 20 million (M1) 

and 30 million (M2) elements. Profiles of the stream-wise component of the velocity are 

calculated across the gaps between membrane (a) across the first spacer at 𝑥/ℎ = 6 and 

𝑧/ℎ = 2.5 and (b) in the wake of the first spacer at 𝑥/ℎ = 7 and 𝑧/ℎ = 2.5. Velocity 

profiles are shown in Figure 21 for both meshes. The friction coefficient, 𝑓, is also 

calculated for the mesh M1 and mesh M2. The friction coefficient is determined from 

equation (19) using average pressure drop across the part of spacer bank from 𝑥 = 38 ℎ 

to 𝑥 = 77 ℎ. The velocity profiles obtained for M1 and M2 are similar; implying that 

mesh size M2 is enough to ensure mesh independency. The friction coefficient is 

calculated to be 0.320 and 0.323, respectively, for M1 and M2 mesh; confirming that 

the mesh independency might be achieved with M2. Stronger argument could be made 

by refining mesh further. The size of computation and the available computational 

resources make that to be a difficult task. Simulation results presented in the present 

study are obtained using M2 mesh. 

 
Figure 21: Profiles of stream-wise component of the velocity for mesh M1 and M2 a) at x/h = 6 

and b) at x/h = 7. 
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4.2. RESULTS 

The results of steady three dimensional flow simulations are presented for 𝑅𝑒 = 

100, 400, 600 and 800. Comparison between results obtained from three dimensional 

and two dimensional simulations are made to determine the influence of three 

dimensional flow structures on the membrane performance. Two dimensional flow 

modeling consider velocity and concentration field in the z-direction to be uniform. The 

laminar flow model is used for 𝑅𝑒 = 100, and SST k-𝜔 turbulence model is used for 

𝑅𝑒 = 400, 600 and 800 to simulate mass and momentum transports in the feed channel.  

Figure 22 illustrates contours of the stream-wise component velocity at 𝑅𝑒 = 100, 

400, 600 and 800. Images are shown at three 𝑧 planes (𝑧/ℎ = 0.4, 2 and 3.6) for each 

value of 𝑅𝑒. The wake region behind spacers becomes larger as 𝑅𝑒 is increased. High 

speed flow region around the cylinder is also stretched in the stream-wise direction as 

𝑅𝑒 is increased, as shown in Figure 22. Three dimensional flow structures and their 

strength cannot easily be distinguished from these images. Primary flow in the stream-

wise direction dominates the secondary flows induced by the flow transitions. These 

flows transitions are well-documented in the literature and they are expected to onset 

for values of 𝑅𝑒 above the criticality. The secondary flows manifest themselves nearly 

periodic flow structures in the span-wise direction.  
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Figure 22: Contours of the stream-wise component of the velocity acquired at z-planes of 𝒛/𝒉 = 

0.43, 2, and 3.6 for values of the Reynolds number of a) 100, b) 400, c) 600, and d) 800. 
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Figure 22: (Continued) 

 

 

Figure 23 shows contours of the stream-wise components of the velocity at the 

mid-plane (𝑦/ℎ = 0.5) between membranes at 𝑅𝑒 = 100, 400, 600 and 800. The 
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presence of secondary flows is very clear. At 𝑅𝑒 = 100 the flow is nearly uniform in z-

direction and it can be characterized as two dimensional, as shown in Figure 23a. 

Velocity contour depicted in Figure 23b for 𝑅𝑒 = 400 shows vast contrast to the 

velocity contour obtained for 𝑅𝑒 = 100. The flow becomes three dimensional as a 

result of induced secondary flows. It is clear that the critical value of 𝑅𝑒 for the onset of 

three dimensional flow is between 100 and 400. It has been reported that transition to 

the three dimensional flow occurs between 𝑅𝑒 of 100 and 200 for these geometries [27]. 

Velocity contours at 𝑅𝑒 = 600 and 800 exhibit three dimensional flow structures with a 

lesser intensity relative to the primary flow, as shown in Figure 23c and 23d. These 

three dimensional flow structures can have a strong influence on the membrane 

performance, the concentration polarization and the potential fouling along the surface 

of the membrane. 
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Figure 23: Contours of the stream-wise component of the velocity acquired at the mid-plane 

between membranes, y/h= 0.5, for values of the Reynolds number of a) 100, b) 400, c) 600, and d) 

800. 
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Figure 23: (Continued) 

The iso-surface images of the stream-wise component of the velocity are shown in  

Figure 24. The iso-surfaces are consistent with images of the velocity contours shown in 

Figure 23. Uniform iso-surfaces are in the span-wise direction for 𝑅𝑒 = 100 while 

finger-like structures are realized in  Figure 24b, 24c and 24d for 𝑅𝑒 = 400, 600 and 
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800, respectively. Flow structures are more regular for 𝑅𝑒 = 400 compared to those for 

𝑅𝑒 = 600 and 800. Finger-like structures fill almost the entire region between spacers; 

indicating that three dimensional effects caused by flow transitions are strong and do 

not dissipate quickly away from spacers. Flows in the entire spacer bank region become 

three dimensional for 𝑅𝑒 ≥ 400, as shown in Figure 24. 
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 Figure 24: Iso-surfaces of the stream-wise component of the velocity for values of the Reynolds 

number of a) 100, b) 400, c) 600, and d) 800. 

 
Figure 24: (Continued) 
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Figure 25 illustrates the iso-surfaces of 𝑥 and 𝑦 component of the vorticity.  

Images labelled by (a) denote iso-surfaces of 𝑥 component of the vorticity and while 

images labelled by (b) denote 𝑦 component of the vorticity for 𝑅𝑒 = 100, 400, 600 and 

800. The images reveal that there are weak and fragmented vorticities near spacers at 

𝑅𝑒 = 100, as shown in Figure 25a. There is no indication of regular flow structure 

distributed along the span-wise direction. The vortices dissipate rapidly away from 

spacers. Counter rotating five pairs of vortices are uniformly spaced in the span-wise 

direction, as shown in Figure 25a2 and 25b2 at 𝑅𝑒 = 400. Once again, these flow 

images clearly indicate that coherent three dimensional flow structures exist at this flow 

rate. The vortices are attached to the spacer and extend into the region between spacers. 

Flow becomes irregular as 𝑅𝑒 is increased to 600 and 800. Vortices break and form 

smaller eddies in the wake of spacers. The vortices extend longer, and they occupy the 

whole region between the spacers for 𝑅𝑒 = 800, as depicted in Figure 25. These 

vortices lead to the formation of streaks near the wall, as documented by several 

investigators [50–52]. The influence of such streaks can be profound on the membrane 

performance. Concentration polarization and the formation of fouling and scaling will 

be directly influenced by such flow structures. These effects are presented and 

discussed in the present study. 
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Figure 25: Iso-surfaces of x and y component of the vorticity for different values of the Reynolds 

number. a) and b) denote iso-surfaces of the x component of the vorticity and y component of the 

vorticity, respectively. 1, 2, 3 and 4 denote iso-surfaces at Re = 100, 400, 600 and 800, respectively. 



 

 

56 

 
Figure 25: (Continued) 
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Figure 25: (Continued) 
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Figure 25: (Continued) 
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Contours of normalized salt concentration (𝑐/𝑐0) at three z planes, 𝑧/ℎ = 0.4, 2 

and 3.6, are shown in Figure 26 for 𝑅𝑒 = 100, 400, 600 and 800. There is a thin 

concentration boundary layer near membrane surface. The thickness of the boundary 

layer is greater for 𝑅𝑒 = 100 and it decreases as 𝑅𝑒 is increased. The concentration 

boundary layer is disrupted by the presence of the spacer. The boundary layer grows 

away from the spacer. All three planes show similar concentration field at all flow rates. 

The concentration polarization at 𝑅𝑒 = 100 is the highest while it is the lowest at 𝑅𝑒 = 

800, as depicted in Figure 26. 
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Figure 26: Contours of normalized concentration (𝒄/𝒄𝟎) acquired at z-planes of 𝒛/𝒉 = 0.43, 2, 

and 3.6 for values of 𝑹𝒆 a) 100, b) 400, c) 600 and d) 800.  
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Figure 26: (Continued) 
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Contours of the water flux through the membrane and the concentration along the 

surface of the top membrane are shown in Figure 27 for 𝑅𝑒 = 100, 400, 600 and 800. 

Both water flux and the concentration are uniform in the span-wise direction for 𝑅𝑒 = 

100. The water flux through the membrane is profoundly increased by the presence of 

the spacers, as shown in Figure 27a. The water flux is much higher above each spacer. 

The concentration along the membrane is much lower right above the spacers, but it 

increases rapidly away from the spacers. It is also noted that the presence of the spacers 

alleviate the concentration polarization occurring along the surface of the membrane. At 

𝑅𝑒 = 400 the distribution of the water flux and the concentration along the surface of 

the membrane is strikingly different compared to those at 𝑅𝑒 = 100. The effect of three 

dimensional flows in the feed channel influences the water flux and the local 

concentration along the membrane surface. Streaks of high and low regions of water 

flux and concentration are uniformly distributed in the span-wise direction. Streaks are 

more pronounced at 𝑅𝑒 = 400 compared to those at 𝑅𝑒 = 600 and 800; following the 

relative strength of the secondary flows over the primary flows as presented above. The 

water flux is greater and the concentration overall is lower near spacer at all values of 

𝑅𝑒. The intensity of the concentration polarization decreases with increasing flow rate. 

It is important to note that low water flux regions correlates to the high intensity 

concentration polarization regions at all flow rate considered here. Streaks of high 

concentration polarization region between spacers coincide with streaks of low water 

flux regions, as shown in Figure 27. Results of three dimensional simulations confirm 

conclusion drawn from two dimensional simulations reported earlier [45]. The present 
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author documented that the spacers enhance the membrane performance while it helps 

to alleviate concentration polarization in two dimensional flows. 

 
Figure 27: (a) contours of normalized water flux through the top membrane and (b) contours of 

normalized concentration along the surface of the top membrane for different values of 𝑹𝒆. 1, 2, 3 

and 4 denote iso-surfaces at 𝑹𝒆 = 100, 400, 600 and 800, respectively. 
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Figure 27: (Continued) 
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Figure 27: (Continued) 



 

 

66 

 
Figure 27: (Continued) 
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The local value of the Sherwood number is calculated along the surface of 

membranes from 𝑆ℎ = (2ℎ)ℎ𝑚/𝐷. The bulk concentration, 𝑐𝑏, in equation (18) is 

calculated from average of salt concentration at the inlet and the outlet. Contours of the 

local 𝑆ℎ along the surface of the top membrane are depicted in Figure 28. Distribution 

of 𝑆ℎ is very similar to the distribution of the water flux over the membrane surface. 𝑆ℎ 

is distributed uniformly in the span-wise direction at 𝑅𝑒 = 100 while strips of high and 

low regions of 𝑆ℎ are shown at 𝑅𝑒 ≥ 400. Similar to the counter part of two 

dimensional flows presence of the spacers in three dimensional geometry leads to 

significant increase in 𝑆ℎ. Local value of 𝑆ℎ is much greater near spacer and decreases 

rapidly away from spacers. The Sherwood number also increases as the flow rate is 

increased; that is also consistent with the prediction of two dimensional simulations 

documented in [45]. Streaks of high 𝑆ℎ regions coincide with the regions of low 

intensity concentration polarization regions, as depicted in Figure 28 and Figure 27.  
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Figure 28: Contours of the local Sherwood number (Sh) along the surface of the top membrane 

for values of Re a) 100, b) 400, c) 600 and d) 800. 
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Figure 28: (Continued) 
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Contours of the normalized wall shear stress along the surface of the top 

membrane are shown in Figure 29. The local shear stress is normalized by the 

maximum value of the wall shear stress for each flow rate.  The maximum value of the 

wall shear stress is calculated to be 0.9, 4.5, 8.5 and 12.6 Pa for 𝑅𝑒 = 100, 400, 600 and 

800, respectively. Similar to the flow properties presented above the wall shear stress is 

uniform in the span-wise direction at 𝑅𝑒 = 100, but it becomes streaky as the flow 

becomes three dimensional at higher flow rates (𝑅𝑒 = 400, 600 and 800). Streaks 

induces by the secondary flow is not as pronounced as in the case of the water flux, 

concentration or 𝑆ℎ number distribution. At all flow rates, the maximum wall shear 

stress occur right above the spacers where the fluid is accelerated passing through the 

spacers. The intensity of the wall shear stress increases as 𝑅𝑒 is increased. Koutsou et 

al. [53] experimentally determined regions where fouling occurs and showed that the 

fouling sites coincide with the low wall shear stress regions. Based on present results, 

potential fouling sites are situated in the regions between spacers and three dimensional 

flow structures in the feed channel induced by secondary flows help to alleviate 

potential fouling occurring along the surface of the membrane.  
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Figure 29: Contours of the wall shear stress normalized by the maximum value for values of Re a) 

100, b) 400, c) 600 and d) 800. 
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Figure 29: (Continued) 
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The span-wise averages of normalized water flux, concentration and the 

Sherwood number at each 𝑥 location are determined for three dimensional flows in the 

feed channel containing spacers. These span-wised average profiles in the stream-wise 

direction are plotted in Figure 30 and 31 in the spacer bank region for different values 

of 𝑅𝑒. The profiles of the normalized water flux, concentration and local value of 𝑆ℎ 

predicted by two dimensional steady simulations are also plotted in Figure 30 and 31 to 

assess the influence of the three dimensional effects on the span-wise averaged 

membrane performance properties for 𝑅𝑒 = 100, 400, 600 and 800. In both figures, the 

solid lines denote profiles predicted by the three dimensional simulations while the 

dashed lines denote profiles predicted by two dimensional simulations. Overall 

distribution of the two dimensional and span-wised average three dimensional profiles 

is similar for all membrane surface properties. Only the values of the peaks and valleys 

of these quantities differ at each flow rate, as shown in Figure 30 and 31. 
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Figure 30: Span-wised averaged water flux profiles (a1 and a2) and the concentration profiles 

(b1, b2) in the stream-wise direction for different values of 𝑹𝒆. Solid lines denote span-wised 

averaged three dimensional profiles and dashed lines denote two dimensional profiles. 

The averaged three dimensional 𝑆ℎ profiles exhibit nearly the same distribution in 

the stream-wise direction as for the 𝑆ℎ obtained by the two dimensional simulations. 

Only noticeable difference in 𝑆ℎ profiles is observed near wake regions of the spacers. 

Sherwood number drops significantly right behind the spacers in the two dimensional 

geometry and rebound very quickly approaching the following spacers. The values of 
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𝑆ℎ is greater at the peak and is lower at the valley of the two dimensional profiles 

compared those of the span-wise averaged three dimensional profiles, as shown in 

Figure 31. It has to be noted 𝑆ℎ varies greatly in the span-wise direction at 𝑅𝑒 ≥ 400, 

as shown in Figure 28. Membrane flow properties are influenced by the spatial 

characteristics of the flow in the feed channel. 

 
Figure 31: Span-wised averaged Sh profiles) in the stream-wise direction for different values of 

Re. Solid lines denote span-wised averaged three dimensional profiles and dashed lines denote two 

dimensional profiles. 

The average values of 𝑆ℎ and the normalized water flux in both span-wise and 

stream-wise direction in the spacer bank region are determined for 𝑅𝑒 = 100, 400, 600 

and 800. Spacer bank averaged values of 𝑆ℎ and the water flux are plotted in Figure 32 

for three and two dimensional geometry along with the averaged value of 𝑆ℎ and the 

normalized water flux determined in the three dimensional channel without spacers. 

Filled blue squares and hollow red circles denote results predicted by the three-

dimensional and two-dimensional simulations, respectively. Triangles represent the 
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results of three-dimensional flow in a channel without spacers. To minimize the 

influence of the inlet and the outlet conditions averaging is performed in the spacer 

bank region between 𝑥/ℎ = 38 and 𝑥/ℎ = 77. The results reveal that two dimensional 

approximation predicts the total averages of the water flux and the 𝑆ℎ reasonably well. 

Slight over-prediction at low 𝑅𝑒 and high 𝑅𝑒 by the two dimensional simulations are 

seen (see Figure 32). It is proven that presence of spacers enhances the membrane 

performance greatly. Three dimensional effects induced by flow transition do not alter 

averaged membrane properties significantly. This conclusion is specific to the three 

dimensional spacer geometry considered in the present study. This geometry is 

simplified version of the ladder type spacer mesh configuration used in separation 

modules. The influence of the three dimensional flow structures could be profoundly 

different for other spacer mesh configurations (woven and non-woven spacers). It is 

also important to note that transient effects in these flows can also have significant 

influence on the concentration polarization, fouling and the membrane performance. 

Investigating the influence of transient effects in three dimensional geometries is 

worthy of future work, but is not in the scope of the present study. 
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Figure 32: Span-wise and stream-wise averages of normalized water flux (1) and Sh (2) are 

plotted as a function of 𝑹𝒆. Channel averages of membrane properties are shown for three 

dimensional channel with and without of spacers and two dimensional channel with spacers. The 

averages of membrane properties are calculated in the spacer bank region between 𝒙/𝒉 of 38 and 

77. 

4.3. CONCLUSION 

Steady three dimensional simulations have been conducted to study the mass 

transport through the reverse osmosis membrane in the feed channel of a brackish water 

desalination module. The membrane surface is treated as a functional surface where the 

water flux is determined from local salt concentration and local pressure along the 

membrane. The laminar flow model is employed at 𝑅𝑒 = 100 while the SST 𝑘-𝜔 

turbulence flow model is employed to simulate mass and momentum transport in the 

feed channel at 𝑅𝑒 ≥ 400. The flow and concentration field is nearly uniform at 𝑅𝑒 = 

100, but it becomes strongly three dimensional for 𝑅𝑒 ≥ 400. It is shown here that flow 

transition from two dimensional to three dimensional flows in a channel containing 

spacers occur for values of 𝑅𝑒 between 100 and 400. This is consistent with results 

documented previously for flows past arrays of cylinders with blockage ratio of 1/2. 
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Even though two dimensional flow simulations predicts the averaged membrane 

properties reasonably well, the local water flux and 𝑆ℎ along the surface of the 

membrane varies strongly in the span-wise direction. Furthermore the concentration 

polarization is profoundly influenced by the three dimensional secondary flows induced 

by the flow transitions. Velocity and vorticity field indicate spatially periodic flow 

structures present in the feed channel. Streaks along the surface of the membrane for 

local properties such as 𝑆ℎ, concentration, water flux and wall shear stress are results 

from the vortical structures obtained in these three dimensional flows. High water flux 

regions and low concentration regions coincide with the low wall shear regions. The 

high intensity concentration polarization sites correlates directly with the high potential 

fouling sites. Spacers enhance the membrane performance, and it mitigates the 

concentration polarization. Increasing flow rate also enhance the membrane 

performance. This study proves that three dimensional effects have profound influence 

on the membrane performance, especially the polarization and fouling characteristics of 

the reverse osmosis membrane in desalination systems. Further study is needed to 

characterize flows in the feed channel with various mesh configurations of spacers used 

in the desalination processes. 
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CHAPTER 5: THREE DIMENSIONAL ANALYSES – NET-TYPE 

SPACERS 

5.1. GEOMETRY AND MESH STUDY 

The top view of the computational domain is illustrated in Figure 33. The top and 

the bottom surfaces represent the reverse osmosis membranes. The gap between the 

membranes is ℎ = 1.5 mm. Eleven repeated cells are placed along the stream-wise 

direction in the mid-plane of the feed channel to form a mesh of spacers. The spacer 

strands diameter (𝑑) is fixed at 1/2 ℎ, and the distance between two successive 

intersections of strands in the stream-wise direction is also fixed at 6.7 ℎ, as depicted in 

Figure 33. The angle between the strands and the stream-wise direction, 𝜃, is varied — 

30°, 45° and 60° — to create different geometries of spacers. The cells are 

symmetrically placed at the mid-plane with their centers along the stream-wise 

direction, as illustrated in Figure 33. The length of the inlet and the outlet region is 5 ℎ 

and 17.67 ℎ, respectively, in order to minimize the effects of the imposed boundary 

conditions on the velocity and the concentration fields in the desalination module 

containing spacers. Reynolds number (𝑅𝑒) is defined as 𝑅𝑒 = (2ℎ 𝑈𝑎𝑣𝑒)/𝜈. 

Simulations are conducted for values of  𝑅𝑒 100, 400 and 800 for each geometry. Here 

𝑈𝑎𝑣𝑒 is the average velocity at the inlet, and 𝜈 is the kinematic viscosity (𝜈 = 𝜇/𝜌) of 

the binary solution of salt and water. 



 

 

80 

 
Figure 33: Schematic of the computational domain. Top view of the feed channel. 

The mesh elements near walls is shown in Figure 34. The mesh study is 

performed for the channel containing the net of spacers in the 60° arrangement. The 

spatial convergence test employs three mesh sizes: 32 million elements (M1), 48 

million elements (M2) and 60 million elements (M3). For three meshes, the profiles of 

normalized stream-wise velocity component (𝑢/𝑈𝑎𝑣𝑒) as a function of the cross-flow 

direction at 𝑥/ℎ = 8.3 and 𝑧/ℎ = 3.9 are shown in Figure 35a. Figure 35b and 35c 

show profiles of the normalized water flux (𝑣𝑤/(𝐴∆𝑃)) and the normalized 

concentration (𝑐/𝑐0) along the surface of the top membrane in the span-wise direction, 

𝑧. Concentration and water flux profiles are obtained at 𝑥/ℎ = 8.3. Velocity, 

concentration and water flux profiles acquired using M2 and M3 meshes differ only 

slightly (see Figure 35a-35c). This ensures that the spatial convergence is attained with 

48 million elements mesh. Results of simulations presented in the current study are 

obtained by employing M2 mesh. Although, a better spatial resolution can be achieved 

by refining mesh further, limited computational resources would make the task to be 

challenging.  
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Figure 34: Mesh elements size near spacer and membrane. 
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Figure 35: (a) Profiles of stream-wise component of the velocity obtained at 𝒙/𝒉 = 𝟖. 𝟑 and 

𝒛/𝒉 = 𝟑. 𝟗, (b) profiles of the normalized water flux through the top membrane obtained at 𝒙/𝒉 =

𝟖. 𝟑, and (c) profiles of the normalized concentration obtained at 𝒙/𝒉 = 𝟖. 𝟑 along the surface of 

the top membrane. 

5.2. RESULTS 

5.2.1. 𝟑𝟎° GEOMETRY: 

The iso-surfaces of the stream-wise component of the velocity are shown in 

Figure 36a. Along the iso-surfaces 𝑢/𝑈𝑎𝑣𝑒 = 1.5, the region inside the iso-surfaces 

𝑢/𝑈𝑎𝑣𝑒 is greater than 1.5, and the region outside the surfaces 𝑢/𝑈𝑎𝑣𝑒is lower than 1.5. 
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Iso-surfaces of the normalized 𝑦-component of the vorticity are illustrated in Figure 

36b. Images in Figure 36, labeled as 1, 2 and 3, denote iso-surfaces acquired at 𝑅𝑒 of 

100, 400 and 800, respectively. High speed flow is obtained in the middle region of the 

cell, as illustrated in Figure 36a1 for 𝑅𝑒 = 100. Fluid speed is much higher near the 

forward stagnation region of the intersection between strands while the backward 

stagnation region experiences low speed wake flows. Fluid speed becomes much greater 

in the region between spacers and membranes as 𝑅𝑒 is increased. High speed flow 

region in the middle of the cell shrinks, and it extends from the backward stagnation 

area to the forward stagnation area, as shown in Figure 36a2 for 𝑅𝑒 = 400. The high 

speed region inside the cell shrinks further while the high speed region between the 

strands and the membranes grows as 𝑅𝑒 is increased to 800, as depicted in Figure 36a3. 

Low level of vorticity is obtained inside the cell at 𝑅𝑒 = 100, as indicated in Figure 

36b1. Uniform distribution of the vorticity is confined to the boundary layers of the 

strand. This implies that low level of mixing is present inside the cell at low flow rates. 

The vortices spread to the region inside the cell by extending from the rear stagnation 

region to the middle region of the cells, as shown in Figure 36b2 for 𝑅𝑒 = 400. The 

region where high level of vortical activities grows, and the magnitude of the vorticity 

increases as 𝑅𝑒 is raised to 800. This is an indication that mixing is strongly enhanced 

inside the cells as the flow rate is increased. It is anticipated that the presence of the 

spacers in the feed channel influences the membrane performance and the concentration 

polarization. 
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Figure 36: Iso-surfaces of (a) normalized the stream-wise component of the velocity and (b) 

normalized y-component of the vorticity. 1, 2 and 3 denote iso-surfaces at Re = 100, 400 and 800, 

respectively. The images are acquired in a feed channel containing mesh of spacers with an angle 

of 30⁰. 
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Figure 36: (Continued) 
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Figure 36: (Continued) 

 

 

 



 

 

87 

Contours of the normalized local concentration (𝑐/𝑐0) and the normalized local 

water flux (𝑣𝑤/(∆𝑝 𝐴)) along the surface of the top membrane are shown in Figure 37 

for 𝑅𝑒 of 100, 400 and 800. (a) and (b) images denote concentration contours and 

water flux contours, respectively. Images labelled by 1, 2 and 3 denote contours at 𝑅𝑒 

of 100, 400 and 800. Concentration polarization occurs in a repeated pattern along the 

stream-wise direction. For each flow rate, it occurs in the regions away from the 

intersection of strands. The concentration polarization region follows similar patterns at 

all flow rates with a slim alterations at 𝑅𝑒 = 800. The level of concentration 

polarization is the highest at 𝑅𝑒 = 100, and it decreases significantly as 𝑅𝑒 is increased 

to 800, as shown in Figure 37a. The presence of spacers in the feed channel reduces the 

magnitude of concentration polarization significantly at all flow rates. Mitigation of 

concentration polarization is much greater at higher flow rates. This is directly 

attributed to the mixing in the feed channel induced by spacers. The vorticity field 

clearly indicates that mixing in the feed channel is much greater at higher flow rates. 

More than 40% reduction in the maximum concentration along the surface of the 

membrane is obtained as 𝑅𝑒 is increased from 100 to 800. The water flux distributions 

along the surface of membrane follow very similar characteristics as the concentration 

distributions. The lowest rate of water passage through the membrane is obtained in 

regions where concentration polarization occurs, as shown in Figure 37b. The water 

flux increases significantly as the flow rate is increased. The membrane module 

performs much more efficiently at higher flow rate. It is important to note that the 

pressure drop can significantly be higher at higher flow rates. In order to access the 
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membrane performance properly the coefficient of performance including the influence 

of pressure drop should be calculated and compared for different configurations at 

different operating conditions.  

 
Figure 37: (a) Contours of normalized concentration along the surface of the top membrane and 

(b) contours of the normalized water flux through the top membrane. 1, 2 and 3 denote contours 

at Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 30⁰. 
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Figure 37: (Continued) 
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Figure 37: (Continued) 

 

Contours of the local Sherwood number and the normalized local wall shear stress 

along the surface of the top membrane are shown in Figure 38 for 𝑅𝑒 of 100, 400 and 

800. The local Sherwood number is evaluated from 𝑆ℎ = (2ℎ)ℎ𝑚/𝐷. Images labelled 

by (a) denote contours of Sherwood number and while images labelled by (b) denote 

contours of wall shear stress at 𝑅𝑒 of 100 (labeled 1), 400 (labeled 2) and 800 (labeled 
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3). The wall shear stress is normalized by the maximum value of the shear stress for 

each value of 𝑅𝑒. The maximum value of the wall shear stress is 0.7, 3.1 and 7.4 Pa, 

respectively, for 𝑅𝑒 of 100, 400 and 800. Regions where Sherwood number assumes 

low values coincides with regions where the concentration polarization occurs, as 

illustrated in Figure 37a and 38a. The maximum value of Sherwood number is attained 

in the region above the intersection of strands. That region also coincides with the low 

concentration regions of the membrane. Sherwood number increases more than four 

folds as 𝑅𝑒 is increased from 100 to 800, as depicted in Figure 38a. It is previously 

documented that fouling potentially occurs in regions of low wall shear stress [53–55]. 

The low shear region along the membrane coincides with regions of low Sherwood 

number. It is deducted from these results that regions where concentration polarization 

occurs are strongly correlated with regions where potential fouling could occur. The 

intensity of local wall stress increases drastically as 𝑅𝑒 is increased to 800, implying 

the probability of occurrence of fouling is much lower at higher flow rates. It is also 

important to note that the presence of grid of spacers increases the intensity of wall 

shear stress. Therefore, the occurrence of fouling buildup is less likely in the separation 

module containing a net of spacers. In fact, it is documented by Park et al. [56] that the 

spacer arrangement strongly influences the characteristics of the fouling buildup along 

the surface of the membrane in a desalination module. 
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Figure 38: (a) Contours of the Sherwood number along the surface of the top membrane and (b) 

contours of the normalized wall shear stress along the top membrane. 1, 2 and 3 denote contours 

at Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 30⁰. 
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Figure 38: (Continued) 
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Figure 38: (Continued) 
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5.2.2. 𝟒𝟓° GEOMETRY: 

Figure 39 shows the iso-surfaces of the normalized stream-wise component of the 

velocity and the normalized 𝑦-component of vorticity in a feed channel containing a net 

of spacers in the 45° arrangement. The high speed flow is observed in the middle 

section of the cell and above the strands of spacers at low flow rates. As 𝑅𝑒 is increased, 

the high speed flow region in the middle of cell shrinks while the high speed flow 

region above strands grows. The intensity of the vorticity is greater near the forward 

and the backward stagnation regions of strands at 𝑅𝑒 = 100. The intensity of vorticity 

in the middle region of cell increases as 𝑅𝑒 is increased to 800, as shown in Figure 39b. 

Flow structures in the feed channel containing a net spacers in the 45° arrangement are 

similar to those in the feed channel containing a net of spacers in the 30° arrangement. 

The only noticeable difference is that the high vorticity region in the feed channel with 

45° spacer grid is confined to the middle section of the cell. This implies that the 

mixing in this geometry may not be as effective as in the case for spacer grid with 30°. 

In this geometry, strands of spacer face the flow more directly, which results in 

acceleration of fluid toward the center region. That will increase the drag forces exerted 

by the fluid on the strand of the spacers.  
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Figure 39: Iso-surfaces of (a) normalized the stream-wise component of the velocity and (b) 

normalized y-component of the vorticity. 1, 2 and 3 denote iso-surfaces at Re = 100, 400 and 800, 

respectively. The images are acquired in a feed channel containing mesh of spacers with an angle 

of 45⁰. 
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Figure 39: (Continued) 
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Figure 39: (Continued) 
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Figure 40 illustrates contours of the normalized salt concentration and the water 

flux along the surface of the top membrane. The distribution of salt concentration in the 

geometry with 𝜃 = 45° exhibits strikingly different patterns compared to that with 𝜃 =

30° at 𝑅𝑒 = 100, as shown in Figure 40a1 and 37a1. Concentration polarization occurs 

everywhere in the cell except along the centerline and at regions above the strands. This 

is proving that the mixing is not as effective in this geometry at 𝑅𝑒 = 100. As 𝑅𝑒 is 

increased to 400 and 800, distribution of concentration along the surface of the 

membrane becomes similar to that with 30° grid. There is a clear indication that 

enhanced mixing at high flow rates helps reducing the level of concentration 

polarization, as depicted in Figure 40a2 and 40a3. Water flux is lower in the region 

where concentration polarization occurs. In a similar manner, the water flux distribution 

is strongly influenced by the spacer arrangement. Bands of low water flux region extend 

in the stream-wise direction, as depicted in 40b. The rate at which water passes through 

the membrane increases drastically as 𝑅𝑒 is increased from 100 to 800. 
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Figure 40: (a) Contours of normalized concentration along the surface of the top membrane and 

(b) contours of the normalized water flux through the top membrane. 1,2 and 3 denote contours at 

Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 45⁰. 
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Figure 40: (Continued) 
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Figure 40: (Continued) 
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Contours of the local Sherwood number and the normalized local wall shear stress 

are illustrated in Figure 41. The maximum value of the wall shear stress along the 

surface of the top membrane is 0.9, 4.3 and 10.6 Pa, respectively, for 𝑅𝑒 = 100, 400 

and 800. The intensity of wall shear stress is greater in this geometry compared to that 

in the geometry with 30°. Sherwood number overall increases more than five folds as 

𝑅𝑒 is increased from 100 to 800, as shown in Figure 41a. High Sherwood number 

regions correlate directly with regions of low concentration polarization. Regions of low 

wall shear stress also directly correlates with regions of high concentration polarization. 

The probability of occurrence of fouling is greatly reduced as flow rate is increased, as 

illustrated in Figure 40Figure 41. 
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Figure 41: (a) Contours of the Sherwood number along the surface of the top membrane and (b) 

contours of the normalized wall shear stress along the top membrane. 1, 2 and 3 denote contours 

at Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 45⁰. 
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Figure 41: (Continued) 
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Figure 41: (Continued) 
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5.2.3. 𝟔𝟎° GEOMETRY: 

Iso-surfaces of the stream-wise component of the velocity and the 𝑦-component 

of the vorticity are plotted in Figure 42 in a feed channel containing a net of spacers in 

the 60° arrangement. Iso-surfaces of both velocity and vorticity at 𝑅𝑒 = 100 are similar 

to those for geometries with 30° and 45°. At higher flow rates a flow transition occurs. 

Iso-surfaces of the velocity and the vorticity become streaky in the span-wise direction 

as a manifestation of flow transitions. The flow transition observed in this geometry is 

very similar to that observed in the feed channel containing arrays of spacers situated 

perpendicular to primary flows, as documented in Ref [54] and presented in Chapter 4. 

The geometry that was considered in Ref [54] is similar to the geometry contains a net 

of spacer in the 90° arrangement, and it is referred as the ladder-type spacer 

arrangement. The streaks are not perfectly periodic as in the geometry of ladder-type 

spacer. The intensity of vorticity and velocity is greater near the middle of cells. Flow 

field is three-dimensional even at low flow rates unlike the flow structure obtained in 

the feed channel with ladder type spacers, as depicted in Figure 42. 
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Figure 42: Iso-surfaces of (a) normalized the stream-wise component of the velocity and (b) 

normalized y-component of the vorticity. 1, 2 and 3 denote iso-surfaces at Re = 100, 400 and 800, 

respectively. The images are acquired in a feed channel containing mesh of spacers with an angle 

of 60⁰. 
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Figure 42: (Continued) 
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Figure 42: (Continued) 
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Sherwood number is nearly uniform along the surface of the membrane at 𝑅𝑒 =

100. It is slightly elevated in the regions above the strands of spacers. Sherwood 

number becomes streaky at 𝑅𝑒 of 400 and 800, as seen in Figure 44a2 and 44a3. 

Sherwood number increases significantly as 𝑅𝑒 is increased. The intensity of wall shear 

stress is immensely larger in the regions above the strands of spacers compared to the 

center region of cells. The streaky patterns in the wall stress distribution is clearly 

present at 𝑅𝑒 = 800, as depicted in Figure 44b3. These results demonstrate that fouling 

could also occur with a streaky pattern in this geometry inside the cells. It is abundantly 

clear that a grid of spacers in the feed channel creates strong three-dimensional flows. 

That in turn induce robust momentum mixing. As a result the membrane performance 

such as the water flux, concentration polarization and the potential fouling buildup is 

immensely altered. It is also important to note that binary fluid flows studied here could 

be transient. The effects of such transient flows on the membrane performance could 

also be significant. Transient nature of the flows and its influence on the membrane 

performance for few selected geometries and flow rates can be investigated as a future 

study. 
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Figure 43: (a) Contours of normalized concentration along the surface of the top membrane and 

(b) contours of the normalized water flux through the top membrane. 1, 2 and 3 denote contours 

at Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 60⁰. 
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Figure 43: (Continued) 
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Figure 43: (Continued) 
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Figure 44: (a) Contours of the Sherwood number along the surface of the top membrane and (b) 

contours of the normalized wall shear stress along the top membrane. 1, 2 and 3 denote contours 

at Re = 100, 400 and 800, respectively. The contours are determined in a feed channel containing 

mesh of spacers with an angle of 60⁰. 
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Figure 44: (Continued) 
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Figure 43: (Continued) 
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5.2.4. COEFFICIENT OF PERFORMANCE: 

The coefficient of performance, 𝐶𝑃, is introduced to compare performance of 

membrane modules. The friction factor, 𝑓, is averaged over 38 ≤ 𝑥/ℎ ≤ 76.7. The 

coefficient of performance, also referred as the merit number, measures membrane mass 

flux performance for the same pumping power. The coefficient of performance is 

calculated as 𝐶𝑃 = (𝑆ℎ/𝑆ℎ0)(𝑓0/𝑓)1/3. Membrane module containing three different 

spacer grids are evaluated at 𝑅𝑒 of 100, 400 and 800. Table 2 lists the average friction 

coefficient, the average Sherwood number and the coefficient of performance for each 

grid at different flow rates. For all geometries, the friction factor decreases rapidly as 

the flow rate increases. It is also shown that Sherwood number increases with increasing 

flow rates in all channels. As 𝜃 increases, the average friction factor increases and the 

average Sherwood number decreases at all flow rates. The mass flux is greatly 

improved for modules containing a net of spacers at all flow rate considered in this 

study. This enhancement comes with a penalty of increasing pressure drop or increasing 

pumping power. In order to claim that membrane module with a net of spacers is an 

effective design the merit number should be greater than unity. All membrane modules 

considered in the study have the merit number less than unity at 𝑅𝑒 = 100. For 𝑅𝑒 =

400 the merit number is greater than unity in geometries with 30° and 45°, but it is less 

than unity for the geometry with 60°. The net of spacers with 30° is the most effective 

design among all modules studied here at all flow rates. The coefficient of performance 

for all geometries increases as the flow rate is increased, as listed in Table 2. The merit 

number or the coefficient of performance discussed here only considers the mass flux in 
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determining the membrane performance. Concentration polarization and characteristics 

of fouling buildup have to be incorporated in determining the performance 

characteristics of the membrane modules. It is shown above that all these geometries 

help mitigating the concentration polarization and the fouling buildup at all flow rates 

compared to modules without spacers. 

 

Channel 

without 

spacer 
𝜽 = 𝟑𝟎° 𝜽 = 𝟒𝟓° 𝜽 = 𝟔𝟎° 

𝑹𝒆 𝒇𝒔 𝑺𝒉̅̅̅̅
𝒔 𝒇 𝑺𝒉̅̅̅̅  𝑪𝑷 𝒇 𝑺𝒉̅̅̅̅  𝑪𝑷 𝒇 𝑺𝒉̅̅̅̅  𝑪𝑷 

100 0.187 31 0.986 50 0.94 1.007 41 0.76 1.067 39 0.72 

400 0.051 46 0.352 131 1.51 0.386 106 1.18 0.439 82 0.87 

800 0.027 57 0.235 215 1.85 0.274 201 1.64 0.321 155 1.20 

Table 2: Performance parameters. 

5.3. CONCLUSION 

Simulations have been conducted to characterize three-dimensional 

multicomponent fluid flows in a feed channel of a reverse osmosis membrane module. 

The feed channel consists of a net of spacers in different arrangements. Computational 

fluid dynamics simulations are performed for 𝑅𝑒 of 100, 400 and 800 in geometries 

with strand angle of 30°, 45° and 60°. The laminar model is employed to characterize 

flow structures at 𝑅𝑒 = 100, while the SST 𝑘-𝜔 turbulence model is employed to 

determine flow structures at 𝑅𝑒 = 400 and 800. The membrane is treated as a 

functional surface where the water flux and the concentration gradient are determined 

from the local pressure and the concentration. The present study illustrates that three-

dimensional flows induced by the spacers in the feed channel have profound influence 

on the membrane performance. The high concentration polarization regions coincide 
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with low flux regions, and these regions also correlate directly with low shear regions 

where potential fouling buildup occurs. The presence of net of spacers in the feed 

channel aids mitigating the concentration polarization and aids minimizing potential 

fouling buildup. The membranes with all geometries perform much better at higher flow 

rates. The grid of spacers in the 30° arrangement offers the most efficient membrane 

modules at all flow rates considered. The coefficient of performance based on efficient 

mass transfer indicates that the angle of spacer with 30° is very effective at 𝑅𝑒 of 400 

and 800. This study clearly demonstrates that the spacer arrangement should be an 

integral part of the optimization process of membrane modules in desalination systems. 

  



 

 

121 

CHAPTER 6: SUMMARY 

Computational study performed here examines the flow and mass transport in the 

feed channel of a spiral wound membrane in the water desalination. The membrane 

produces fresh water via reverse osmosis process. The membrane flux model employed 

here is the solution-diffusion model that is well-documented. The membrane is treated 

as a functional surface where water mass flux, salt concentration gradient and pressure 

are coupled together. The investigation included two- and three-dimensional flow and 

mass transport simulations. Extensive mesh size studies are carried out to assure that 

results are mesh size independent. The membrane modeling is validated by comparing 

results predicted by the present model against results reported in the literature. The 

validation proves that the membrane flux model employed in this study is reliable and 

that it can accurately predict the membrane performance and the mass transport through 

the membrane. 

The simulations for two-dimensional flow prove that the presence of spacers in 

the feed channel improves the fresh water production and aids in mitigating the 

concentration polarization along the membrane surface. The effects of the spacers on 

the membrane performance are shown to be more pronounced. The staggered 

arrangement of spacers with 𝑒/ℎ = 1/8 leads to the best alleviation of the 

concentration polarization at 𝑅𝑒 = 800 when it is compared with open channel. 

Similarly, the water flux improves the best at 𝑅𝑒 = 800 in the staggered geometry with 

𝑒/ℎ = 1/8. It is noticed that there is a better enhancement of the water flux and 

concentration polarization mitigation when the spacers are placed closer to each other. 
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In all, geometries, the spacers show no significant influence on the concentration 

polarization or on the water flux at 𝑅𝑒 = 4000 when it is compared with open channel. 

The flow in open channel is in the turbulent regime at 𝑅𝑒 = 4000, and momentum 

mixing exists without presence of spacers. The transient large eddy simulation (LES) 

has been conducted to validate predictions obtained by steady flow simulations using 

SST 𝑘-𝜔 turbulence model. The LES transient results are in a good agreement with the 

steady turbulent simulations. The shape of the spacers has no discernible influence on 

the membrane performance at any flow rates. The averaged value of Sherwood number 

and the water flux along the membrane surface increases as the feed flow rate increases. 

It is also noticed that the averaged Sherwood number and water flux are higher when 

the distance between spacers is shorter. However, the pressure drop increases drastically 

by placing the spacers closer to each other. The increase in pressure drop translates an 

increase in pumping power of the feed fluid. That in turn results in an increase in the 

production cost. In order to assess the RO membrane performance properly, the rate of 

water permeate or Sherwood number and the pressure drop should be considered. These 

parameters should be an integral part of the design and optimization of desalination 

modules. 

Flows in a feed channel containing spacers are inherently three dimensional and 

transient in nature. It has been documented in the literature that flows past cylinders 

(even a single cylinder) becomes three dimensional at flow rates above criticality. It is 

also documented in the literature that flows in the feed channel containing spacers 

becomes unsteady at flow rates above criticality. The present study emphasizes that the 

influence of three dimensional flow structures on the membrane performance, 
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concentration polarization and fouling and scaling characteristics in the desalination 

modules. Preliminary analyses are conducted here to study the influence of transient 

nature of the flow on the membrane performance in a desalination module. 

Steady three-dimensional flow simulations have been performed in a channel 

containing circular cross-sectioned spacers. Average properties characterizing 

membrane flux performances and pressure drop or friction factors in the feed channel 

can be predicted accurately by two dimensional modeling and analyses. However, for 

the range of flow rates considered in the present study the flow in the feed channel 

becomes three-dimensional. Three-dimensional flow structures induced by the flow 

transitions strongly influence the characteristics of the concentration polarization along 

the surface of the membrane. Flow structures become streaky and strongly three 

dimensional at higher flow rates. These streaky vortical structures may not influence the 

average mass flux properties of spiral wound membranes, but they have profound 

effects on the concentration polarization characteristics and fouling, especially at higher 

flow rates. Uniformly spaced streaks of high water flux zones occur in the span-wise 

direction along the membrane surface. Uniformly spaced streaks of low concentration 

polarization region coincide with streaks of high water flux regions. Concentration 

polarization is mitigated by three dimensional flows induced by flow transitions. More 

than 30% reduction of the concentration polarization is achieved as 𝑅𝑒  increased from 

100 to 800. Although, it may not be quantified precisely the same level of reduction in 

the probability of fouling reduction can be achieved by three dimensional flows induced 

by flow transitions. Mitigating concentration polarization will improve the membrane 
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performance significantly. The lifetime of the desalination module will be improved by 

the reduction of scaling and fouling build up. 

Simulations have been carried out for the flow and mass transport in a feed 

channel containing net of spacers. The net of spacers is used in the industrial reverse 

osmosis desalination processes. Three dimensional velocity and concentration fields are 

characterized for values of angle of 30°, 45°, and 60°. Simulations are performed for 

values of Reynolds number in the range of 400 to 800. The net of spacers leads to three-

dimensional flow structures and promotes good momentum mixing in the feed channel. 

The intensity of the three dimensional flow structures increases rapidly as the flow rate 

increases. It is demonstrated here that three dimensional flow structured generated by 

the presence of mesh of spacers in the feed channel strongly influence the membrane 

performance. The effect of angle on the three dimensional characteristics of the flow is 

very strong. The presence of net of spacers in the feed channel helps mitigating the 

concentration polarization at membrane surface and helps the membrane to perform 

better. The highest level of concentration polarization alleviation and the best 

enhancement of water flux through the membrane is obtained with a net of spacer with 

30° in the feed channel. This conclusion is drawn from calculated coefficient of 

performance of modules containing the mesh of spacers. The coefficient of performance 

of different modules is determined for the same pumping power used to operate these 

modules. Moreover, the presence of net of spacers helps to reduce the fouling potentials 

along the membrane surface. The fouling potentials can be minimized by creating 

evenly distributed high level of wall shear along the membrane surface. 
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This study can be extended by considering flow and mass transfer modeling in 

both feed and production channel. The velocity and the concentration fields in these 

channels are coupled through the flux through the membrane separating these channels. 

The non-linear interactions between the concentration and the pressure field are 

expected to influence the membrane performance and the water flux through the 

membrane. Such behavior can be especially significant in multistage seawater 

desalination by reverse osmosis. This approach can also be employed to predict the 

performance of corrugated membrane performance. 
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