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Abstract

As the demand for energy continues to increase, the need to develop alternative en-

ergy sources to complement (and one day replace) conventional fossil fuels is becoming

increasingly important. One such energy source is nuclear fusion, which has the po-

tential to provide a clean source of energy and possesses an abundant fuel supply.

However, due to the technological difficulty in creating the conditions necessary for

controlled fusion to occur, nuclear fusion is not yet commercially viable. The toka-

mak is a device that utilizes magnetic fields to confine the reactants, which are in

the plasma state, and it is one of the most promising devices capable of achieving

controlled fusion. The ITER tokamak project is the next phase of tokamak develop-

ment and will be the first tokamak reactor to explore the burning plasma (one with

a significant amount of fusion reactions) operating regime.

In order for ITER to meet its demanding goals, extensive research has been con-

ducted to develop advanced tokamak operating scenarios characterized by a high

fusion gain, good plasma confinement, magnetohydrodynamic stability, and a signifi-

cant fraction of noninductively driven plasma current to maximize the plasma perfor-

mance and potentially enable steady-state operation. As the dynamics of the tokamak

plasma magnetic and kinetic states are highly coupled, distributed, nonlinear systems

that exhibit many instabilities, it is extremely difficult to robustly achieve advanced

operating scenarios. Therefore, active control of the plasma dynamics has significant

potential to improve the ability to access advanced operating regimes. One of the
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key plasma properties investigated in the development of advanced scenarios is the

plasma current profile because of its intimate relationship to plasma energy/particle

transport and to plasma stability limits that are approached by increasing the plasma

pressure. The plasma density and temperature profiles are also important parameters

due to their close relationship to the amount of generated fusion power, to the total

plasma stored energy, and to the amount of noninductive current drive. In tokamaks,

the current and electron temperature profiles are coupled through resistive diffusion,

noninductive current drive, and plasma energy/particle transport. As a result, inte-

grated algorithms for current profile and electron temperature profile control will be

necessary to maintain plasma stability, optimize plasma performance, and respond

to changing power demand in ITER, and eventually a commercial, power producing

tokamak reactor.

In this work, model-based feedforward and feedback algorithms are developed

to control the plasma current profile and thermal state dynamics with the goal of

improving the ability to achieve robust tokamak operation. A first-principles-driven

(FPD), physics-based approach is employed to develop models of the plasma response

to the available actuators, which provides the freedom to handle the trade-off between

the physics accuracy and the tractability for control design of the models. A numer-

ical optimization algorithm to synthesize feedforward trajectories for the tokamak

actuators that steer the plasma through the tokamak operating space to achieve a

predefined target scenario (characterized by a desired current profile and total stored

energy), subject to the plasma dynamics (described by the developed physics-based

model), actuator constraints, and plasma state constraints, is developed. Addition-

ally, robust feedback control algorithms for current profile, combined current profile +

total stored energy, and simultaneous current profile + electron temperature profile

control are synthesized for various tokamaks by embedding a FPD model into the

control design process.
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Examples of the performance of the controllers in simulations (DIII-D, ITER,

and TCV tokamaks) and DIII-D experiments are presented to illustrate the potential

and versatility of the employed control methodology. The DIII-D experimental tests

demonstrate the potential physics-model-based profile control has to provide a sys-

tematic approach for the development and robust sustainment of advanced scenarios.

The ITER simulations demonstrate the ability to drive the current profile to a sta-

tionary target while simultaneously modulating the amount of fusion power that is

generated. Finally, the TCV simulations demonstrate the ability to drive the current

and electron temperature profiles to a self consistent target, as well as to maintain the

current profile in a stationary condition while simultaneously modulating the electron

temperature profile between equilibrium points.
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Chapter 1

Introduction

As a result of more countries becoming industrialized and the world population rising,

the demand for energy continues to increase. Several energy sources will be employed

to help society as a whole meet this growing energy demand, such as fossil fuels,

renewable energies, and nuclear energy. Currently, the major source of the world’s

energy is produced by burning fossil fuels, such as coal, natural gas, and oil. These

conventional energy sources are becoming more environmentally friendly through the

development of technologies to capture and store greenhouse gases (such as carbon

dioxide) that are produced by burning the fossil fuels. However, even though the

sources are becoming cleaner and their availability is not expected to be depleted for

several hundred years, it is predicted that there will be an energy shortfall in the near

future (possibly in less than 50 years) at the world’s current rate of energy consump-

tion [16,17]. As a result, the need to develop alternative energy sources to complement

(and one day replace) conventional fossil fuels is becoming increasingly important.

Solar, wind, hydroelectric, and geothermal power are examples of renewable en-

ergy sources that possess many attractive options to complement fossil fuel energy

production. These energy sources do not generate potentially harmful greenhouse
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gases to produce electricity, which makes them attractive from an environmental per-

spective. Also, the fuel supply for renewable sources is theoretically unlimited, which

makes them attractive from a sustainability point-of-view. However, despite these

advantages, there are also several hurdles that limit the applicability of renewable

energy sources to completely make up for the predicted energy shortfall. Renewable

energy sources can only be installed where their respective fuel sources (sun, wind,

falling water, etc.) are plentiful, which may result in difficulties in redistributing the

produced power from the generation site to the consumer. Also, since these energy

sources rely on the availability of sunlight, wind, etc., there may not be a constant

supply of electricity from renewable power plants. Therefore, enhancements to the

electrical power grid need to be developed to cope with this inconsistent supply, such

as integration of energy storage technologies into the power grid. Finally, renewable

energy sources currently lack a sufficient power density (power produced divided by

the land area needed to generate the power) compared to other energy generation

sources.

Nuclear energy, generated from the processes of nuclear fission (splitting of heavy

nuclei) or nuclear fusion (combining of light nuclei), on the other hand provides a

larger power density comparable with conventional fossil fuel energy sources. As a

result, nuclear fission and fusion have a significant potential to help meet growing

energy demands. Nuclear fission is currently a mature commercial technology that

supplies a significant portion of the world’s energy needs. However, despite the ad-

vantages that nuclear fission possesses, such as being an alternative energy source

that can produce a constant supply of electricity while not generating any greenhouse

gases, there are several aspects of this energy source that may limit its ability to

continue growing. Some of the disadvantages of nuclear fission reactors are related to

proliferation issues and the possibility of a nuclear accident characterized by a large,

uncontrolled release of energy, as well as the fact that they produce long-lasting (can
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be on the order of 1000’s of years) radioactive waste that must be properly stored to

avoid detrimental environmental effects.

Like nuclear fission, nuclear fusion does not produce any greenhouse gases, but

in contrast to nuclear fission, nuclear fusion poses no threat of a nuclear accident.

Additionally, fusion possess an abundant fuel supply1 that can potentially last for

thousands of years and produces radioactive waste that can be properly disposed

of on a much shorter timescale (on the order to 10’s to 100’s of years) compared

to fission. Research towards developing controlled nuclear fusion reactors has been

ongoing for the past 60 years. However, due to the extreme technological difficulty

in creating the conditions necessary for controlled fusion to occur, nuclear fusion is

not yet a commercially viable energy source. The work in this dissertation focuses on

developing control solutions to improve the performance of and the ability to robustly

operate nuclear fusion tokamak devices.

1.1 Introduction to nuclear fusion

Nuclear fusion is the process by which two light nuclei “fuse” together to form one

heavier nucleus, and in the process, energy is released according to the relation

Ep − Er = (mr −mp) c
2, (1.1)

where E denotes energy, m denotes mass, c denotes the speed of light in a vacuum, and

(·)i, for i ∈ [r, p], defines quantities related to the reactants (i = r) and products (i =

p) of the reaction, respectively. Presently, the two nuclei most often considered for the

fusion reaction are deuterium (D) and tritium (T ), which are isotopes of hydrogen,

1The most often considered reactants for the fusion reaction are deuterium and tritium, which
are isotopes of hydrogen. Deuterium naturally occurs in seawater, and tritium, which is radioactive,
can be produced from lithium, which is found in the Earth’s crust.
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Figure 1.1: Reactivity versus temperature for various fusion reactions calculated using the
results obtained in [1].

because the D − T reactivity is higher at lower temperatures than other possible

fusion reactions (see Fig. 1.1). The D − T fusion reaction is shown schematically in

Fig. 1.2 and can be expressed mathematically as

2
1D +3

1 T →4
2 He+1

0 n+QDT , (1.2)

where He denotes a helium nucleus, n denotes a neutron, and QDT is the amount

of energy produced in the reaction. In the notation a
bC, a denotes the atomic mass

number, b denotes the atomic number, and C denotes the element. The helium

nucleus produced in this reaction (4
2He) is commonly referred to as an alpha particle

(α), i.e., 4
2He ≡ α, in the fusion community. The amount of energy that is released in

this reaction is 17.6 mega electron volts (MeV)2, i.e., QDT = 17.6 MeV. The energy

generated in the reaction is divided amongst the products according to the inverse

proportion of their masses, i.e.,

Eα =
mn

mn +mα

QDT = 3.5 MeV,

En =
mα

mn +mα

QDT = 14.1 MeV. (1.3)

21 electron volt (eV) is equal to 1.60217646× 10−19 Joules (J).
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Figure 1.2: Schematic of the deuterium (2
1D) tritium (3

1T ) nuclear fusion reaction. The
products are a helium nucleus (4

2He), which carries 3.5 MeV of energy and a
neutron (1

0n), which carries 14.1 MeV of energy.

This relation is obtained by applying the principles of conservation of linear momen-

tum and conservation of energy (assuming the reactants are stationary) to the reaction

(1.2). Conservation of linear momentum applied to the reaction (1.2) results in

0 = mαvα +mnvn ⇒ vn = −mα

mn

vα ⇒

v2
n =

(
mα

mn

)2

v2
α ⇒ v2

n = 2
mα

m2
n

Eα ⇒ En =
mα

mn

Eα, (1.4)

where mi, vi, and Ei = (1/2)miv
2
i , for i ∈ [α, n], denote the mass, velocity, and kinetic

energy of the α particle and neutron, respectively. Conservation of energy applied to

the reaction (1.2) results in

QDT = Eα + En = Eα

(
1 +

mα

mn

)
, (1.5)

where we have utilized (1.4). The relations shown in (1.3) are then obtained from

(1.4) and (1.5).

Due to the Coulombic repulsion force that exists between the positively charged

nuclei, the fusion reactants must be kept under high pressure and heated to a high

8



temperature (on the order of 100 million degrees Kelvin) so that the nuclei possess

enough kinetic energy to overcome this repulsive force and get close enough together

where the strong nuclear force dominates, resulting in the nuclei fusing. The reactivity

of the reactant nuclei is dependent on the nuclei velocity distribution, which is a

bounded nonlinear function of the nuclei temperature, and only becomes significant

when the temperature is higher than 10 million degrees Kelvin. By examining Fig. 1.1,

we see that at around 100 million degrees Kelvin, the D − T reactivity is larger

than one order of magnitude higher than other possible fusion reactions. At these

high temperatures, the reactant gas mixture is in the plasma state, which means

the positively charged nuclei and negatively charged electrons disassociate from one

another and are free to move about independently of one another.

There are three ways to confine the nuclei in the environment necessary for fusion

reactions to occur: gravitational confinement, inertial confinement, and magnetic

confinement. Gravitational confinement is only possible in stars because the mass

needed to generate the required gravitational force is extremely large. The second

confinement approach is inertial confinement, where a rapid pulse of energy is directed

onto the surface of a fuel pellet which causes the pellet to implode, thus generating

the required high pressures and temperatures needed for fusion to occur. Finally, as

the reactant mixture is in the plasma state, it can conduct electricity and therefore

interact with magnetic fields which can be used to confine the plasma, as shown in

Fig. 1.3, in various magnetic configurations to create the conditions necessary for

fusion to occur. Arguably, the magnetic confinement technique is the most promising

approach for achieving controlled fusion on Earth, and one of the most promising

magnetic confinement devices is the tokamak3 [18].

3Russian acronym which translates to toroidal chamber with magnetic coils.
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Figure 1.3: Charged particles confined by an applied magnetic field. Due to the Lorentz
force F = q(E+v×B), where q is the particle charge, v is the particle velocity,
E is the electric field, and B is the magnetic field, the charged particles are
confined in the direction perpendicular to the magnetic field lines but are free
to move in the direction parallel to the magnetic field lines.

1.2 Magnetic confinement: The tokamak

If the magnetic configuration shown in Fig. 1.3 is used to attempt to confine the

plasma in a fixed volume (tube where the magnetic field lines run the length of the

tube), plasma confinement would eventually be lost due to the particles escaping

through the ends of the tube. Therefore, to eliminate these end losses, the tokamak

device [18] closes the tube in on itself to obtain a doughnut structure. A schematic of

the various coil systems used to generate the magnetic fields in a tokamak machine

is shown in Fig. 1.4. The long way around the device is denoted as the toroidal

direction, and the short way around the device is denoted as the poloidal direction.

The tokamak employs various coil systems to generate the total helical magnetic

field (red line in Fig. 1.4) to confine the plasma in a fixed toroidal volume. The main

confining toroidal magnetic field (purple arrow in Fig. 1.4) is generated by the toroidal

field coils (purple D shaped coils in Fig. 1.4). The toroidal magnetic field decreases
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Figure 1.4: Schematic of the tokamak machine for confining a plasma.

as the distance from the center of the machine increases. This radial gradient results

in the plasma particles drifting vertically inside the machine, and the drift direction

is charge dependent, i.e., the ions and electrons drift in opposite directions. This

charge separation consequently generates a vertical electric field in the plasma. The

interaction of this electric field with the toroidal magnetic field results in the plasma

particles drifting horizontally outward towards the tokamak walls. Thus, the toroidal

magnetic field alone can not completely confine the plasma. Therefore, a poloidal

magnetic field (green arrow in Fig. 1.4 that wraps around the tube) is also needed to

completely confine the plasma in a fixed volume. The combination of the toroidal and

poloidal magnetic fields generates a total confining helical magnetic field structure

(red line in Fig. 1.4). As the plasma particles travel along this helical path, they

continuously drift vertically in the machine due to the toroidal magnetic field radial

gradient as previously discussed. However, as the particles travel along the helical

path, they spend some time above and some time below the horizontal mid-plane of

the machine. Therefore, averaged over many transits around the torus, the plasma
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particles tend to stay at a given spatial location relative to the center of the plasma.

Thus the total helical magnetic field produces an averaging of the plasma particle

vertical drifts such that the total net vertical drift is almost exactly zero. Therefore,

there is no charge separation, and consequently, no vertical electric field is produced.

As a result the plasma is confined in a fixed toroidal volume. In the tokamak, the

poloidal magnetic field is primarily generated by exploiting the ability of the plasma

to conduct electrical current. The plasma electric current (green arrow in Fig. 1.4) is

traditionally driven through a transformer action, where the ohmic poloidal field coil

(green coils in the center of the machine in Fig. 1.4) acts as the primary circuit and

the plasma acts as the secondary circuit. Finally, the position and shaping poloidal

field coils (green coils on the exterior of the machine in Fig. 1.4) are used to push and

pull on the plasma to control its position and shape within the device.

In a well confined tokamak plasma, the plasma kinetic pressure (density multiplied

by temperature) is a maximum at the center of the plasma (red region of the plasma

in Fig. 1.4). An important property of the tokamak plasma is referred to as the

plasma beta (β), which is defined as

β =
plasma kinetic pressure

magnetic pressure
. (1.6)

The plasma β is a measure of how efficiently the applied magnetic pressure is being

utilized to confine the plasma kinetic pressure. Naturally, the higher β is, the better.

Different regimes of tokamak operation exist with different levels of plasma confine-

ment and are characterized by the pressure profile that is present in the machine.

A schematic of the pressure profiles observed in low confinement (L-mode) and high

confinement (H-mode) operating regimes are shown in Figs. 1.5(a-b). In L-mode,

the pressure gradient is limited over the whole plasma cross section and is governed

by a high level of turbulence which enhances the radial transport. A region with a
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Figure 1.5: Schematic of the pressure profiles observed (a) in L-mode, (b) in H-mode, and
(c) with an internal transport barrier (ITB) [2]. The variable ρ̂ is used to
denote the spatial coordinate (left = center of plasma (red region of plasma
in Fig. 1.4) and right = boundary of plasma (purple region of plasma in Fig.
1.4)). Regions of reduced radial transport (gray-shaded areas) are observed
where large pressure gradients are present, i.e., at the plasma edge in H-mode
and in the plasma core for an ITB.

large pressure gradient at the edge of the plasma, which is associated with a local

reduction of the turbulent transport, is a characteristic of an H-mode plasma. Simi-

larly, an internal transport barrier (ITB) is characterized by a large pressure gradient

in the plasma core as shown in Fig. 1.5(c) [2]. As the product of the pressure and

the volume encapsulated by the region of higher pressure increases, larger amounts

of stored energy in the plasma are produced. This results in higher values of β which

is advantageous for the development of a power producing reactor.

There are multiple devices around the world studying various aspects of tokamak

research, from plasma physics, to plasma control, to technological issues, such as

plasma-material interaction, with the goal of building the scientific and technological

basis needed to develop a commercial fusion reactor. Some examples are JET in

the United Kingdom, ASDEX-Upgrade in Germany, Tore Supra in France, TCV in

Switzerland, EAST in China, JT-60U in Japan, KSTAR in South Korea, and DIII-D,

NSTX-U, and Alcator C-Mod in the United States. As all modern day tokamaks

rely on induction (transformer action) to drive current in the plasma (necessary to

maintain plasma confinement), tokamaks are inherently pulsed devices. The process

of creating, forming, and terminating the plasma is commonly referred to as a plasma
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discharge, or shot, in the tokamak community. The tokamak discharge can roughly

be divided up into four phases:

1. Breakdown phase: During this phase, the plasma is created by ionizing the

reactant gas inside the tokamak vacuum vessel chamber.

2. Ramp-up phase: During this phase, the plasma current is brought from its

initial value of zero up to its desired steady-state value. Additionally, other

quantities that characterize the plasma, for example density and temperature,

are brought to their desired values.

3. Flattop phase: This is the most important phase of the tokamak discharge and

is the phase where the production of energy should happen. During this phase,

all of the quantities that characterize the plasma should remain as constant as

possible.

4. Ramp-down phase: During this phase, the plasma current is driven to zero and

the plasma is terminated.

Modern tokamak devices are at the point where they can produce almost as much

energy as is required to heat the plasma. The next phase of tokamak development

is the ITER tokamak project [3], which will be the first tokamak device to produce

a significant amount of fusion power and hence be the first machine to explore the

burning plasma operating regime. The products of the D − T fusion reaction are a

charged α particle (carries 3.5 MeV, or 20%, of the generated energy) and a neutron

(carries 14.1 MeV, or 80%, of the generated energy) as shown in (1.2). As fusion

reactions occur, the deuterium and tritium fuel will need to be replenished inside

the reactor and subsequently heated to the temperatures where further reactions can

occur. As the alpha particle product of the D− T reaction is charged, it will remain

confined by the magnetic field in the tokamak. Therefore, as the α particle collides
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Figure 1.6: Schematic of the ITER tokamak [3]. Note the size of the person in the lower
left hand side of the figure.

with particles already present in the plasma, it will impart some of its energy to these

particles. This is referred to as plasma self-heating. A burning plasma is one in which

a significant portion of the power needed to sustain the fusion reaction is generated

by the α particle heating. As the neutron product of the D − T reaction has no

charge, it will not be confined by the magnetic field in the tokamak and therefore

leave the plasma. As the neutron interacts with the confining structure, its energy

will be converted into heat, which can be utilized in a conventional Rankine cycle to

produce electricity. A schematic of ITER is shown in Fig. 1.6.

1.3 Control problems in tokamaks

In order for the ITER project to meet its demanding project goals, extensive re-

search has been conducted to find advanced tokamak operating scenarios [19] that
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are characterized by a high fusion gain, good plasma confinement, magnetohydrody-

namic (MHD) stability, and a noninductively driven plasma current4. The ability

to drive the plasma current in the tokamak through completely noniductive means

could potentially lead to the realization of a “steady-state” tokamak reactor. If these

performance objectives are achieved, the cost and size of fusion reactors could be

greatly reduced. The dynamics of the tokamak plasma are highly coupled, dis-

tributed, nonlinear systems that exhibit many instabilities. Therefore, active control

to stabilize/suppress these plasma instabilities and to optimize the performance of

the plasma has significant potential improve the ability to access advanced operating

regimes. A complete description of the various control problems in tokamaks is be-

yond the scope of this dissertation, however, a few of the most relevant problems are

briefly highlighted in the following. See [20, 21] for an introduction to many of these

control problems.

The first class of control problems are typically referred to as magnetic control

problems, and consist of employing the tokamak poloidal field coils (green coils in Fig.

1.4) to control the location of the plasma inside the machine (for vertically elongated

plasmas, ones that are taller than they are wide, the plasma vertical position is unsta-

ble), the value of the plasma current, as well as the shape (boundary) of the plasma.

Advances in plasma position, current, and shape control are described in [22–31]. A

second class of control problems are related to the stabilization/suppression of plasma

MHD instabilities. These instabilities are usually triggered in high performance plas-

mas and limit the achievable plasma β. If these instabilities are triggered, they result

in a reduction of the plasma confinement, which lowers the plasma stored energy.

While not normally catastrophic, if left uncontrolled, these instabilities can lead to

4The ratio between the amount of fusion power (Pfus) produced to the amount of external
power (Pext) that is needed to heat the plasma is defined as the fusion gain (Q) of a scenario, i.e.,
Q = Pfus/Pext. Two of the ITER project goals are to demonstrate operation at Q = 10 with
an inductively driven plasma current and operation at Q = 5 with a largely noninductivley driven
plasma current.
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plasma-terminating disruptions5. Some examples of plasma MHD instabilities are:

resistive wall modes (RWMs), edge localized modes (ELMs), and neoclassical tearing

modes (NTMs). Advances in RWM control can be found in [32–41], and advances in

NTM stabilization can be found in [42–48].

Finally, as the tokamak plasma is a distributed system, the spatial distribution of

the plasma toroidal current density, particle density, particle temperature, etc., plays

an important role in the stability, as well as the performance, of a given operating

condition. The spatial distribution of these plasma quantities are typically referred

to as profiles, e.g., current profile, density profile, temperature profile, in the tokamak

community. Current profile control is usually referred to as magnetic profile control

and kinetic profile control refers to the control of the plasma kinetic quantities (den-

sity, temperature, etc.). The work in this dissertation focuses on developing strategies

for current profile control, combined current profile + total stored energy control, and

simultaneous current profile + electron temperature profile control.

The various control algorithms on any given machine are integrated together to

form the machine’s Plasma Control System (PCS). A schematic of the various com-

ponents of a tokamak PCS, and how a machine operator would interact with this

system, is shown in Fig. 1.7. The work in this dissertation focuses on developing

components (specifically the Actuator Trajectory Optimizer and Model-based Feed-

back Controller in Fig. 1.7) of the PCS relevant to control of the plasma current

profile and thermal state dynamics. Also in this work, physics-based, control-oriented

models of the plasma current profile and thermal state dynamics are developed that

can be used to simulate the evolution of these plasma quantities. Subsequently, these

models are interfaced with the PCS, i.e., they replace the Tokamak in Fig. 1.7, to test

the implementation and performance of, and ensure effective interaction between, the

5A plasma disruption is a condition where the plasma current is extinguished and the energy of
the plasma particles is rapidly lost to the surrounding structure.
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Figure 1.7: Schematic of the various components of a tokamak Plasma Control System
(PCS), how a machine operator would interface with the PCS, and how the
PCS would interface with the tokamak.

developed control components through simulations prior to experimental testing.

In an fully operational, power producing tokamak reactor, the PCS will need to be

able to maintain the plasma state in a predefined operational space ensuring stability

and safety limits are not violated, stabilize numerous plasma instabilities, optimize the

evolution of average plasma parameters and plasma profiles, avoid or mitigate plasma

disruptions, and be able to respond to any abnormal event requiring a change in the

control action in a seamless fashion. This will require the development of optimized,

yet robust, integrated algorithms that can coordinate the sharing of the available

actuation capabilities to control multiple strongly coupled plasma parameters [49].

The development of this overarching PCS architecture, as well as the development

of the individual control algorithms, is an active area of research, and many of the

solutions will be needed for ITER.
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Figure 1.8: Actuators that can be used for plasma profile control [4].

1.4 Current profile control

There are several actuators that can be used to manipulate the plasma current profile

evolution in the tokamak (shown in Fig. 1.8). The first actuator is the total plasma

current, which is controlled by the poloidal field coil system through induction. By

controlling the total current inside the plasma, the internal current profile can be

modified through resistive diffusion. Also, since the plasma is slightly resistive, some

of the plasma current is dissipated into heat. The plasma resistivity scales inversely

with the plasma electron temperature, therefore, at high temperatures the resistive

diffusion is low, which tends to freeze the current profile evolution. The second ac-

tuator is neutral beam injection (NBI). Injecting beams of highly energetic neutral

particles into the plasma provides a source of noninductive current as well as plasma

heating through collisions. The third actuator is radio-frequency heating/current-

drive. The frequency can be tuned to excite the electrons or ions by power from

electron cyclotron and ion cyclotron launchers, respectively. The radio frequency

waves can be injected into the plasma in a variety of ways, and various combina-

tions of electron/ion cyclotron heating (ECRH/ICRH) and electron/ion cyclotron

current drive (ECCD/ICCD) can be obtained. The neutral beam injectors and radio
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frequency wave launchers comprise a given machine’s auxiliary heating and current

drive (H&CD) system. The final actuator is the plasma electron density, which is

controlled by gas-feed and pellet launchers. However, tight control of the electron

density in experiments is challenging due to large recycling at the tokamak walls.

Recent work towards the development of advanced tokamak operating scenarios

is described in [50–59]. The goal in these works is to study the formation of advanced

scenarios with a high bootstrap current fraction so as to minimize the necessary

amount of auxiliary current drive needed to maintain the plasma at the desired op-

erating point [53]. The bootstrap current is a self-generated, noninductive current

in the plasma that is associated with particles that cannot complete their helical or-

bit around the machine. These particles are therefore called trapped particles. In

the presence of the radial pressure gradient that is produced by the magnetic con-

finement, more trapped particles move in one toroidal direction than in the other.

As a result, a net current is produced which is called the bootstrap current [60]. A

key plasma property that is investigated in the development of advanced scenarios

is the safety factor profile (q profile) [18] because of its close relationship to plasma

energy/particle transport [61,62], which affect both the magnitudes and gradients of

the plasma temperature and density profiles, and to plasma stability limits that are

approached by increasing the plasma pressure [63, 64]. The temperature and density

gradients are important due to their relationship to the bootstrap current, and the

temperature and density profiles themselves are important due to their relationship

to the fusion gain of a scenario and to the amount of current that can be driven by

auxiliary sources [53, 65,66].

The safety factor is defined as the ratio between number of times (n) a magnetic

field line goes toroidally (the long way) around tokamak to number of times (m) it

goes around poloidally (the short way) before it closes in on itself, i.e., it reaches the

same point in space that it originated from. Mathematically, the local q value at a
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specific location in the plasma can be expressed as

q =
n

m
. (1.7)

During a tokamak discharge, the toroidal field coils produce an approximately con-

stant toroidal magnetic field. As a result, n is approximately constant at a given

spatial location in the plasma. If the shape of the plasma boundary is controlled at a

steady-state equilibrium, the poloidal field coil currents are nearly constant as well.

Therefore, changes in the poloidal magnetic field, and hence the value of m at a given

spatial location in the plasma, are dominated by changes in the spatial distribution

of the toroidal current density in the machine. Therefore, the q profile is seen to be

dependent on the toroidal current profile and vice versa. As a result, the current

profile and the q profile are often utilized interchangeably in the tokamak community

to describe the magnetic state of the plasma.

Finally, advanced scenarios aim to operate at high values of the plasma β to

maximize the bootstrap current fraction, however, MHD instabilities, such as NTMs,

can be triggered in these regimes [67], which in turn limit the plasma performance

and can lead to plasma-terminating disruptions. Obtaining a suitable target current

profile in the plasma may provide sufficiently stabilizing effects near rational q surfaces

to mitigate NTM formation and contribute to maximizing the bootstrap current [59].

This complex set of interactions makes the problems of predicting (using models)

and achieving (in experiments) advanced scenarios extremely challenging. Also, as

advanced scenarios operate close to operational boundaries, variations in the plasma

evolution can lead to difficulties with reproducibility. These factors motivate the

design of controllers to regulate the plasma current profile to improve the ability to

access advanced modes of operation. This is the main focus of this dissertation.

Algorithms to control the plasma parameters can be developed by employing either
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non-model-based or model-based control techniques. Most likely, non-model-based

single-input-single-output (SISO) control loops will not be able to satisfy the plasma

profile control performance requirements needed for ITER because the SISO control

loops cannot account for the multiple effects a given actuator has on the plasma

evolution. Additionally, non-model-based controllers require trial-and-error tuning

and are not conducive to developing integrated algorithms to control coupled plasma

parameters, which requires coordinated actuator sharing, both of which are imprac-

tical for use on ITER. Model-based control is motivated by the coupled, nonlinear,

multivariable, distributed parameter dynamics of the plasma. In the development of

model-based controllers, the dominant physics of the system is embedded into the

control design process through a multi-input-multi-output (MIMO) control-oriented

dynamic model. Therefore, the developed controllers know in which direction to actu-

ate to generate a desired response in the plasma state evolution and can be designed

to share the available actuation capabilities. As a result, model-based control design

inherently reduces the need for trial-and-error tuning of the algorithm and has the

potential to meet the demanding control requirements of ITER.

To develop model-based controllers (control algorithms), control-oriented models

that describe the plasma response to the actuators, i.e., poloidal field coil voltages,

electron cyclotron heating/current-drive, etc., must first be developed. These mod-

els can be obtained by employing either data-driven or first-principles-driven (FPD),

physics-based modeling techniques. Data-driven models are developed by mainly

considering the response of the system output, i.e., the plasma parameters to be

controlled, around a specified reference state due to modulations in the system ac-

tuators, and little if any physical understanding is incorporated into the model. As

a result of the model identification process, most data-driven models are inherently

linear, and are only valid around the reference plasma state adopted during the data

identification process. This in turn may limit the effectiveness of controllers designed
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by utilizing these models when the plasma state deviates from the adopted reference

state. Also, as the data-driven models are strongly dependent on system input-output

data, dedicated identification experiments are needed on each device, and potentially

for each operating scenario, to develop the models.

A substantial physics effort has been ongoing for several years to develop predic-

tive models for the evolution of the magnetic and kinetic plasma profiles in toroidal

plasmas. The core of these first-principles models are the fundamental physical laws

that govern the behavior of the plasma, such as conservation equations (mass, mo-

mentum, energy, charge) and Maxwell’s equations, for instance. These physics models

have been incorporated into complex simulation codes utilized to model the plasma

dynamics and predict the evolution of the plasma in existing and future tokamak

devices, with some examples being TRANSP [12], ONETWO [68], CORSICA [69],

ASTRA [70], DINA-CH&CRONOS [5–9], and FASTRAN [71]. The goal in devel-

oping FPD, control-oriented models is the conversion of these physics models into

a form suitable for control design. Where first-principles knowledge of a particular

plasma parameter is either to complex for control design or not fully understood,

such as the plasma thermal conductivity, general physical observations, which are

not unique to any one machine, and experimental/simulated data are used to close

the first-principles model by developing a simplified model of the plasma parameter

in question, thereby obtaining a first-principles-driven model.

It is important to note that FPD, physics-based models are developed with control

design in mind. Consequently, the models need only capture the dominant physics

of the plasma dynamics that are relevant to the control objective since one of the

main characteristics of feedback control is the ability to deal with model uncertain-

ties, such as unmodeled dynamics that have a relatively small influence on the plasma

state evolution from a control design point-of-view. Additionally, FPD models have

the advantages of being (i) extendable to various MHD equilibrium configurations
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and operating scenarios, (ii) able to incorporate the nonlinear coupling between the

various plasma parameters, and (iii) able to explicitly describe the temporal and spa-

tial evolution of the plasma profiles in response to nonlinear control actuation. As

these models mainly rely on fundamental physical laws, they can readily be adapted

to a given operating scenario (characterized by a specified magnetic configuration,

heating/current-drive scheme, etc.) in a given tokamak, as preexisting experimental

data from the machine of interest, or in the case of ITER, simulated data from an

advanced simulation code, is all that is needed to close the model. Finally, FPD

modeling provides the freedom of arbitrarily handling the trade-off between the sim-

plicity of the model and both its physics accuracy and its range of validity, which will

of course be reflected in the model-based controller’s performance and capability. In

this dissertation, the focus is on employing FPD, physics-based models to control the

plasma dynamics.

1.4.1 Prior work

Advances in current profile control at the JET, DIII-D, Tore Supra, and JT-60U

tokamaks are described in [72–82]. Experiments at the DIII-D tokamak focus on

creating the desired current profile during the ramp-up and early flattop phases of

the discharge with the goal of actively maintaining this target profile throughout

the remainder of the discharge. During the initial phase of the discharge, feedback

control of the value of q at the center of the plasma and the minimum q value across the

spatial domain has been demonstrated at DIII-D by changing the plasma conductivity

through electron heating [75] . The employed controller requests a power level to the

actuator, either ECRH or NBI, that is equal to a preprogrammed feedforward value

plus the error in q times a proportional gain. The q profile is obtained in real-time

from the motional Stark effect (MSE) diagnostic measurement. If the sampling rate

of the q profile is reduced, because the MSE beam is modulated rather than run
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continuously, the non-model-based controller has been observed to become unstable

causing the q profile to oscillate. This behavior, along with the strong coupling

between the magnetic and kinetic plasma profiles and the high dimensionality of the

problem, motivates the design of a model-based controller that takes into account the

dynamics of the q profile in response to the available actuators and has the potential

for improved performance.

By following a data-driven modeling approach, linear, dynamic, plasma profile

response models were obtained from experimental data by performing system identi-

fication experiments in JET [74], JT-60U, and DIII-D [76]. The models were identified

by exploiting the different time scales of the magnetic and kinetic variables and were

subsequently used to design controllers to control the plasma current profile. The

designed controllers use the heating and current drive systems to regulate the plasma

profiles around desired target profiles during the flattop phase of the plasma dis-

charge [74, 77, 78]. However, as the identified models are linear, they are only valid

around the reference plasma state adopted during the system identification experi-

ment. Therefore, the effectiveness of the controllers designed based on these models

may be limited when the plasma state moves away from the reference state.

Alternatively, a first-principles-driven, physics-based approach can be employed

to design control algorithms to regulate plasma conditions. Progress towards physics-

based, control-oriented modeling of the magnetic and kinetic plasma profile evolutions

in L-mode scenarios has been recently reported in [13,83,84]. Advances in developing

physics-model-based algorithms to control the plasma dynamics in various tokamaks

can be found in [85–94].

1.4.2 Results of this work

The control strategy we employ to control the current profile dynamics is a feed-

forward + feedback control scheme, where the feedforward control commands are
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computed off-line and the feedback control commands are computed on-line. The

objective of the feedforward controller is to achieve a target plasma state evolution

throughout the discharge while taking into account actuator constraints, such as the

maximum available amount of auxiliary heating and current-drive power and total

plasma current ramp-up rate, and plasma state constraints. The objective of the feed-

back controller is to reject the effects that external disturbances have on the plasma,

overcome the uncertainties in the model used for the control design, and regulate the

plasma state around the target.

In this work, firstly, a general physics-based modeling approach is developed to

convert the physics model that describes the current profile evolution in the tokamak

into a form suitable for control design by developing physics-based, control-oriented

models of the electron density, the electron temperature, the plasma resistivity, and

the noninductive current drives in response to the available control actuators. Subse-

quently, the FPD, physics-based model is tailored to L-mode and H-mode scenarios in

DIII-D, to H-mode burning plasma scenarios in ITER, and L-mode scenarios in TCV,

demonstrating the flexibility of the developed approach. The model prediction is then

compared to the evolution of experimentally-achieved/advanced-simulation-predicted

plasma parameters.

Secondly, a model of the plasma dynamics is embedded into a numerical opti-

mization algorithm to synthesize feedforward trajectories for the tokamak actuators

that steer the plasma through the tokamak operating space to a predefined target

scenario. In this way, actuator trajectories can be designed by exploiting the ac-

cumulated knowledge gained by the plasma physics community regarding both the

multivariable, coupled, nonlinear, distributed plasma dynamics and plasma stabil-

ity limits. Ideally, one would like to embed the complex simulation codes described

in [5–9,12,68–71] into the numerical optimization algorithm. However, as these codes
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contain highly sophisticated models of the plasma dynamics, they require a sub-

stantial amount of computational time to simulate a plasma discharge. As many

state-of-the-art optimization algorithms use an iterative approach to find the optimal

solution to a problem [95], a more computationally efficient model of the plasma dy-

namics is needed in practice. Therefore, we utilize the developed FPD, physics-based

model, as models of this complexity can be used to simulate a tokamak discharge

with a computational time on the order of seconds, and as a result, are ideal candi-

dates for the models that can be embedded in an iterative optimization algorithm.

Advances in actuator trajectory optimization in L-mode scenarios at the DIII-D and

TCV tokamaks that employ physics-based models of the plasma dynamics can be

found in [14, 96, 97]. In this work, the developed optimization algorithm is employed

to design feedforward actuator trajectories to achieve various different target plasma

conditions in L-mode and H-mode scenarios in the DIII-D tokamak, and the optimized

trajectories are subsequently tested in DIII-D experiments.

Finally, feedback control algorithms to control the current profile evolution in

L-mode and H-mode scenarios in the DIII-D and TCV tokamaks are designed by

embedding a FPD, physics-based model of the plasma dynamics into the control

design process. The effectiveness of the controllers in tracking a desired current

profile evolution is demonstrated in simulations and in DIII-D experiments. In order

to experimentally test the feedback controllers in DIII-D, a general framework for

real-time feedforward + feedback control of magnetic and kinetic plasma profiles

was implemented in the DIII-D PCS. A valuable result of the experimental tests

is an investigation into the minimum number of variables that must be controlled

to achieve robust scenario execution. The L-mode DIII-D experiments represent

the first successful demonstration of FPD, physics-model-based, closed-loop full q

profile control in a tokamak device. In conjunction with the work presented in this

dissertation, the work described in [98, 99] was also part of this initial experimental
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campaign. Subsequently, the control philosophy described in [98,99] was extended to

actively control the q profile in DIII-D H-mode scenarios [100,101] through feedback.

1.5 Combined current and kinetic profile control

The current profile and the electron temperature profile are intimately coupled in

tokamaks through resistive diffusion, auxiliary current-drive efficiency, bootstrap cur-

rent drive, ohmic heating, and plasma energy/particle transport. In reactor relevant

high confinement scenarios, particle and energy transport barriers just inside the

plasma boundary are formed, which improve the plasma performance and result in

the formation of large gradients in both the plasma density and temperature. These

gradients increase the complexity of the coupling between the magnetic and kinetic

plasma parameters via the increase of the plasma self-generated bootstrap current in

H-mode scenarios compared to L-mode scenarios, where the bootstrap effects are rela-

tively small because of the lower plasma temperature and density gradients in this op-

erating mode [2] (see Fig. 1.5). To optimize the fusion power, the plasma density and

temperature profiles must also simultaneously be controlled. The volume-averaged

plasma stored energy is related to these kinetic plasma profiles and can alternatively

be controlled to regulate the fusion power. As the current and electron temperature

profiles are intimately coupled (particularly in reactor relevant scenarios), integrating

methodologies for current profile control with strategies to control the kinetic state of

the plasma is crucial to developing the ability to robustly achieve and maintain high

performance plasma targets, in particular on long-pulse devices such as ITER where

the resistive current diffusion time constant is comparable to the discharge time. This

capability can enable the study of desired regimes, control the proximity to stability

limits, and maximize the physics output of the executed plasma discharges.
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1.5.1 Prior work

Algorithms for simultaneous control of the current profile and a volume average rep-

resentation of the plasma thermal state (plasma β, total fusion power) following a

data-driven approach have recently been developed. These controllers have been

tested in H-mode DIII-D experiments [102–105] and in advanced tokamak ITER op-

erating scenarios [103] through simulations with the simplified plasma transport code

METIS [106]. Additionally, following a data-driven approach, an algorithm for si-

multaneous control the current profile and the gyro-normalized electron temperature

gradient profile was designed for JET and tested through simulations [74]. Finally

an algorithm for simultaneous control of the current and electron temperature pro-

files based on real-time estimation of linearized static plasma profile response models

is described in [107]. This algorithm was subsequently tested in advanced tokamak

ITER operating scenarios through simulations with the CRONOS code [7].

1.5.2 Results of this work

In this work, feedback algorithms for simultaneous current profile + total stored en-

ergy control in H-mode scenarios in the DIII-D and ITER tokamaks are designed by

embedding a FPD, physics-based model of the plasma dynamics into the control de-

sign process. The effectiveness of the controllers in tracking a desired current profile

+ total stored energy evolution is demonstrated in DIII-D and ITER based on simu-

lations with the FPD, physics-based model developed in this work. In particular, the

ITER simulations demonstrate the ability of the feedback controller to maintain the

current profile at a stationary target while simultaneously modulating the amount

of fusion power that is generated. Additionally, a feedback algorithm for simultane-

ous current + electron temperature profile control in L-mode scenarios in the TCV

tokamak is designed by following a FPD, physics-based approach. The effectiveness
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of the feedback controller is demonstrated through simulations with the RAPTOR

code [13–15], which is a simplified physics-based code (similar to one developed in

this work), where the current profile is maintained at a stationary target while simul-

taneously modulating the electron temperature profile between equilibrium points.

The ability to maintain the current profile at a stationary target (to maintain plasma

stability) while modulating the thermal state of the plasma (to respond to changing

power demand) is an essential capability that will be needed for a commercial, power

producing tokamak reactor.

1.6 Dissertation outline

The organization of this dissertation is as follows.

Chapter 2

In this chapter, a general physics-based modeling approach is developed to convert

the physics model that describes the current profile evolution in the tokamak into a

form suitable for control design. This is accomplished by developing physics-based,

control-oriented models of the electron density, the electron temperature, the plasma

resistivity, and the noninductive current drives in response to the available control

actuators. Subsequently, the FPD model is tailored to L-mode and H-mode operating

scenarios in multiple tokamaks, demonstrating the flexibility of the employed method-

ology. The model’s predictive capabilities are demonstrated through comparison to

the evolution of experimentally-achieved/advanced-simulation-predicted plasma pa-

rameters.

This work was presented at the 54th Annual Meeting of the APS Division of

Plasma Physics [108] and the 52nd IEEE Conference on Decision and Control [109].
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Chapter 3

In this chapter, a robust feedback controller for current profile control in L-mode sce-

narios in the DIII-D tokamak is designed by employing the FPD, physics-based model

described in [83]. A general framework for real-time feedforward + feedback control of

magnetic and kinetic plasma profiles is implemented in the DIII-D PCS. A tokamak

simulation model (Simserver) that can interface with the control algorithm imple-

mented in the DIII-D PCS is developed, which enables closed-loop simulations with

the real-time code to be executed to debug the algorithm prior to experimental test-

ing. The effectiveness of the feedback controller is demonstrated through simulations

and DIII-D experiments. These experiments, along with those described in [98, 99],

represent the first demonstration of FPD, physics-based, closed-loop control of the

entire current profile in a tokamak.

This feedback control design, control algorithm implementation in the DIII-D

PCS, and experimental testing of the controller was presented at the 53rd Annual

Meeting of the APS Division of Plasma Physics [110], the 2012 American Control

Conference (best student paper award finalist) [111], the 24th IAEA Fusion Energy

Conference [112], and published in Nuclear Fusion [113].

The Simserver development work was presented at the 52nd Annual Meeting of

the APS Division of Plasma Physics [114] and published in Fusion Engineering and

Design [115].

Chapter 4

In this chapter, a FPD, physics-model-based algorithm is developed to optimize

plasma startup conditions in L-mode scenarios in the DIII-D tokamak by achieving a

specified target q profile at the end of the current ramp-up phase of the discharge. A

feedforward + feedback scheme is utilized to control the q profile. The physics-based
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model developed in chapter 2 is embedded in a numerical optimization algorithm to

design feedforward trajectories for the available actuators. A unique characteristic

of the feedforward trajectories obtained by solving the optimization problem is the

regulation of the plasma current ramp-up rate to achieve the target q profiles. The

feedback controller is employed to add robustness to the control scheme and account

for drifts due to external plasma disturbances. Additionally, the feedback controller

is designed to be robust to uncertainties in the electron density, electron tempera-

ture, and plasma resistivity profiles, respectively. Experimental results in DIII-D are

presented to demonstrate the potential of the feedforward + feedback controller to

improve the ability to robustly achieve various different target q profile at the end of

the current ramp-up phase of the discharge.

This work was presented at the 56th Annual Meeting of the APS Division of

Plasma Physics [116].

Chapter 5

In this chapter, the feedforward and feedback controllers designed in chapter 4 are

extended to H-mode scenarios in the DIII-D tokamak. The physics-based model de-

veloped in chapter 2 is embedded in a numerical optimization algorithm to design

feedforward trajectories for the available actuators that steer the plasma through the

tokamak operating space to reach a target plasma state (characterized by the current

profile and plasma stored energy) in such a way that the achieved state is as station-

ary in time as possible. Additionally, feedback controllers for current profile and for

simultaneous current profile and plasma stored energy control are designed follow-

ing the approach presented in chapter 4. The feedforward and feedback controllers

are tested in DIII-D experiments. The experimental tests demonstrate the potential

physics-model-based profile control has to provide a systematic approach for the de-

velopment and robust sustainment of advanced scenarios, as well as provide insight
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into physics aspects important to robust scenario execution. The current profile (not

including energy control) feedback controller is shown to be able to effectively control

the current profile when the plasma stored energy is relatively close to the target. This

indicates the need for integrated current profile and stored energy control to further

enhance the ability to achieve robust scenario execution. Through simulations with

the physics-based model developed in chapter 2, the ability of the combined current

profile and stored energy feedback controller to track a desired target is demonstrated.

This work was presented at the 55th Annual Meeting of the APS Division of

Plasma Physics [117], the 19th IFAC World Congress [118, 119], and the 25th IAEA

Fusion Energy Conference [120].

Chapter 6

In this chapter, a feedback controller for simultaneous q profile and plasma stored

energy control in H-mode burning plasma scenarios in the ITER tokamak is designed.

The controller is designed with a two-loop structure, where the total plasma current

and the auxiliary sources that heat and drive noninductive current in the plasma are

employed to the control the q profile, and the auxiliary sources that only heat the

plasma are employed to control the plasma stored energy. The q profile controller is

designed to be robust to uncertainties in the electron density, electron temperature,

and plasma resistivity profiles, respectively. The ability of the two control loops to

interact together effectively is demonstrated through simulations with the physics-

based model developed in chapter 2 by first tracking a nominal target, and then

modulating the generated fusion power while maintaining the current profile in a

stationary condition.

This work was presented at the 52nd IEEE Conference on Decision and Con-

trol [121].
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Chapter 7

In this chapter, feedback algorithms for q profile control in L-mode scenarios in the

TCV tokamak are synthesized. The controllers are designed to put emphasis on

achieving the target q profile in different spatial regions, to respond differently to

errors in the q profile, and to be robust to uncertainties in the plasma electron tem-

perature and plasma resistivity profiles. The performance of each controller is tested

though simulations with the RAPTOR code, where the ability of each controller to

track multiple different target profiles is demonstrated.

This work was presented at the 53rd IEEE Conference on Decision and Con-

trol [122].

Chapter 8

In this chapter, a feedback controller for simultaneous current and electron tempera-

ture profile control in L-mode scenarios in the TCV tokamak is designed following a

FPD, physics-based approach. The electron thermal conductivity profile is modeled

as an uncertainty, and the controller is designed to be robust to an expected uncer-

tainty range. The RAPTOR code is used to test the capabilities of the controller.

The performance of the integrated profile controller is demonstrated by first track-

ing a nominal target, and then modulating the electron temperature profile between

equilibrium points while maintaining the current profile in a stationary condition.

This work was submitted to the 2015 American Control Conference [123].

Chapter 9

In this chapter, the contributions of this dissertation are summarized, and some

possible directions of future research are discussed.
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Chapter 2

Physics-based modeling of the

plasma current profile dynamics

2.1 Introduction

Towards the goal of developing control algorithms to achieve and maintain a de-

sired plasma magnetic state in the tokamak, in this chapter, a general control-

oriented physics-based modeling approach is developed to obtain a first-principles-

driven (FPD) model of the plasma current profile dynamics in tokamaks. We be-

gin the model development process by considering the well known one-dimensional

poloidal magnetic flux diffusion equation [124,125], which describes the resistive diffu-

sion of the poloidal magnetic flux in the tokamak in response to the electric field due

to induction, the noninductive current driven by the auxiliary heating and current-

drive (H&CD) system, and the neoclassical bootstrap effect. This physics model is

subsequently converted into a form suitable for control design by developing simplified

control-oriented versions of physics-based models of the electron density, the electron

temperature, the plasma resistivity, and the noninductive current-drives (auxiliary

and bootstrap). The objective in developing the simplified physics-based models of
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the plasma parameters is to capture the dominant physics that describe how the

control actuators affect the plasma parameters.

The approach employed to develop the control-oriented models is inspired by the

approach presented in [83], where a FPD model of the poloidal magnetic flux dy-

namics valid for low confinement (L-mode) scenarios in the DIII-D tokamak was

developed. The approach developed in this work extends the work described in [83]

in many critical areas. Firstly, the effects of the auxiliary H&CD actuators are mod-

eled independently to exploit the full capabilities of a given machine’s H&CD system.

Additionally, the ability to include various kinds of auxiliary current drive sources,

such as electron cyclotron current drive and neutral beam injection current drive, is

included in the model. Secondly, the bootstrap current and fusion power are included

in the model. This allows the developed FPD model to be applied to reactor rel-

evant, high confinement (H-mode) operating scenarios where the bootstrap current

provides a significant fraction of the total current density, and in the case of ITER,

to burning plasma scenarios where a significant portion of the plasma heating power

is provided by the α power. Finally, the developed approach (and corresponding

numerical simulation code) is readily tailored to different machines of interest.

This chapter is organized as follows. We begin by providing a derivation of the

Grad–Shafranov equation [126], which is a two-dimensional, nonlinear, elliptic partial

differential equation (PDE) that describes the magnetohydrodynamic (MHD) equi-

librium distribution of the poloidal magnetic flux at any given time in the tokamak

plasma, in section 2.2. The derivation provided follows the one described in [127].

In section 2.3, a deviation of the the poloidal magnetic flux diffusion equation is

provided. The derivation provided follows the one described in [124]. The control-

oriented, physics-based models of the plasma parameters in response to the control

actuators are discussed in section 2.4. In section 2.5, the, nonlinear FPD model of the

plasma poloidal magnetic flux dynamics is obtained by coming the magnetic diffusion
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equation with the control-oriented models, and various parameters that are utilized

to characterize tokamak operating scenarios (and their relationship to the poloidal

magnetic flux), such as the current profile and the safety factor profile (q profile),

are defined in section 2.6. In sections 2.7 through 2.10, the FPD model is tailored to

L-mode and H-mode scenarios in the DIII-D, ITER, and TCV tokamaks, respectively,

demonstrating the flexibility of the developed approach. The model prediction is then

compared to the evolution of experimentally-achieved/advanced-simulation-predicted

plasma parameters. Finally, conclusions are discussed in section 2.11.

2.2 Tokamak plasma MHD equilibrium

A tokamak plasma magnetohydrodynamic equilibrium is governed by the static, time

independent form of the full MHD equations:

j×B = ∇p, (Momentum Equation) (2.1)

∇×B = µ0j, (Ampere’s Law) (2.2)

∇ ·B = 0, (Gauss’s Law) (2.3)

where B is the magnetic field, j is the current density, p is the fluid pressure, and µ0

is the vacuum magnetic permeability. We begin by defining the cylindrical coordinate

system (R, φ, Z) shown in Fig. 2.1, where R denotes the radial direction, Z denotes

the vertical direction, and φ denotes the angle necessary to obtain a right-handed

system. We use the quantities eR, eφ, and eZ to denote unit vectors along the

appropriate directions. At each point in space, the direction parallel to the unit

vector eφ is called the toroidal direction and the plane perpendicular to this direction

is called the poloidal direction. In this coordinate system, a generic vector A, with
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Figure 2.1: Coordinate systems employed to describe plasma quantities: cylindrical sys-
tem (R,φ, Z) and flux surface system (ρ, φ, θ). The geometric major radius
of the tokamak is denoted by R0 and ρb denotes the value of ρ at the plasma
boundary.

components AR, Aφ, and AZ , is defined as

A = AReR + Aφeφ + AZeZ .

Finally, as the geometric configuration of the tokamak is symmetric about the Z-axis,

we assume that all relevant physical quantities are independent of the toroidal angle

φ, which implies for a general quantity A

∂

∂φ
A = 0.

We begin by defining the total magnetic field as

B = BReR +Bφeφ +BZeZ , (2.4)
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and from Gauss’s Law (2.3), the magnetic field components must satisfy

∇ ·B =
1

R

∂(RBR)

∂R
+

1

R

∂Bφ

∂φ
+
∂BZ

∂Z
= 0 ⇒ 1

R

∂(RBR)

∂R
+
∂BZ

∂Z
= 0. (2.5)

Next, we define the poloidal stream function ψ as the flux per unit radian of magnetic

field passing through a disk SZ of radius R that is perpendicular to eZ , which is

expressed as

ψ(R,Z) =
1

2π

∫
B · dSZ =

1

2π

∫ 2π

0

∫ R

0

BZ(τ, Z)dφτdτ =

∫ R

0

τBZ(τ, Z)dτ. (2.6)

Differentiating (2.6) with respect to R, we obtain

∂ψ

∂R
= RBZ ,

and differentiating (2.6) with respect to Z and using (2.5), we obtain

∂ψ

∂Z
=

∫ R

0

τ
∂BZ

∂Z
dτ = −

∫ R

0

τ
1

τ

∂(τBR)

∂τ
dτ = −RBR.

Therefore, the magnetic field components BR and BZ depend on the poloidal stream

function ψ through the relations

BR = − 1

R

∂ψ

∂Z
,

BZ =
1

R

∂ψ

∂R
. (2.7)

By employing (2.7), the magnetic field (2.4) can be written as

B = Bφeφ + Bθ, (2.8)
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where the poloidal magnetic field Bθ is defined as

Bθ =
1

R
∇ψ × eφ =

1

R

(
∂ψ

∂R
eR +

1

R

∂ψ

∂φ
eφ +

∂ψ

∂Z
eZ

)
× eφ

= − 1

R

∂ψ

∂Z
eR +

1

R

∂ψ

∂R
eZ . (2.9)

Finally, in a well confined tokamak plasma, nested surfaces of constant ψ are obtained

as shown in Fig. 2.2, and these surfaces are referred to as magnetic flux surfaces. By

noting that

∇ψ ·B =

(
∂ψ

∂R
eR +

1

R

∂ψ

∂φ
eφ +

∂ψ

∂Z
eZ

)
·
(
− 1

R

∂ψ

∂Z
eR +Bφeφ +

1

R

∂ψ

∂R
eZ

)

= − 1

R

∂ψ

∂R

∂ψ

∂Z
+

1

R

∂ψ

∂R

∂ψ

∂Z
= 0, (2.10)

we see that the helical magnetic field lines lie on the magnetic flux surfaces. The

limiting magnetic flux surface, which approaches a single magnetic field line, is called

the magnetic axis. The definition of the function ψ given in (2.6) results in ψ having

the same sign as the physical poloidal magnetic flux and ψ is related to the poloidal

magnetic flux Ψ via the relation Ψ = 2πψ. Additionally with this definition, the

function ψ is a maximum at the magnetic axis for a positive plasma current (flowing

in the counter-clockwise direction when looking down on the tokamak).

By utilizing Ampere’s Law (2.2), we can obtain an expression for the electrical

current density. Substituting (2.8) into (2.2) we obtain

µ0j = ∇×B =

(
1

R

∂BZ

∂φ
− ∂Bφ

∂Z

)
eR +

(
∂BR

∂Z
− ∂BZ

∂R

)
eφ +

1

R

(
∂(RBφ)

∂R
− ∂BR

∂φ

)
eZ

= −∂Bφ

∂Z
eR +

(
− 1

R

∂2ψ

∂Z2
− 1

R

∂2ψ

∂R2
+

1

R2

∂ψ

∂R

)
eφ +

1

R

(
R
∂Bφ

∂R
+Bφ

)
eZ . (2.11)
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Figure 2.2: Toroidal magnetic flux surfaces (defined by a constant poloidal magnetic flux)
in a tokamak. The coordinates (R,Z) define the radial and vertical coordi-
nates in the poloidal plane. The total helical magnetic field ( ~B) is composed
of a toroidal component ( ~Bφ) and a poloidal component ( ~Bθ), respectively.

The poloidal component is in turn composed of a radial component ( ~BR) and
vertical component ( ~BZ). The limiting flux surface at the plasma core is called
the magnetic axis. The quantity ρ is any arbitrary quantity that is constant
on each magnetic flux surface within the plasma and can be used to index the
magnetic flux surfaces.

By defining the differential elliptic operator ∆∗ψ as

∆∗ψ = R2∇ · ∇ψ
R2

= R2∇ ·
(

1

R2

[
∂ψ

∂R
eR +

1

R

∂ψ

∂φ
eφ +

∂ψ

∂Z
eZ

])

= R2

[
1

R

∂

∂R

(
R

1

R2

∂ψ

∂R

)
+

1

R

∂

∂φ

(
1

R3

∂ψ

∂φ

)
+

∂

∂Z

(
1

R2

∂ψ

∂Z

)]

= R2

[
1

R

∂

∂R

(
1

R

∂ψ

∂R

)
+

1

R2

∂2ψ

∂Z2

]

= R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
, (2.12)

we can express (2.11) as

µ0j =

(
− 1

R
∆∗ψ

)
eφ +

1

R
∇(RBφ)× eφ, (2.13)
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where

− 1

R
∆∗ψ = − ∂

∂R

(
1

R

∂ψ

∂R

)
− 1

R

∂2ψ

∂Z2
= − 1

R

∂2ψ

∂Z2
− 1

R

∂2ψ

∂R2
+

1

R2

∂ψ

∂R

and

1

R
∇(RBφ)× eφ =

1

R

[
∂(RBφ)

∂R
eR +

1

R

∂(RBφ)

∂φ
eφ +

∂(RBφ)

∂Z
eZ

]
× eφ

=
1

R

[(
R
∂Bφ

∂R
+Bφ

)
eR +R

∂Bφ

∂Z
eZ

]
× eφ

= −∂Bφ

∂Z
eR +

1

R

(
R
∂Bφ

∂R
+Bφ

)
eZ .

The final condition that the electrical currents and magnetic fields inside the

plasma must satisfy so that the plasma is in MHD equilibrium is given by the mo-

mentum equation (2.1). The momentum equation (2.1) can be decomposed into 3

components, along B, j, and ∇ψ (normal to the magnetic flux surfaces). By noting

that B · ∇p = 0 and j · ∇p = 0, we see that the pressure gradient is orthogonal to

both the magnetic field and electrical current density. Evaluating the component of

(2.1) parallel to B results in

B · ∇p = 0 ⇒
(

1

R
∇ψ × eφ

)
· ∇p = 0 ⇒ eφ ·

(
1

R
∇ψ ×∇p

)
= 0. (2.14)

Evaluating the component of (2.1) parallel to j results in

j · ∇p = 0 ⇒
(

1

µ0R
∇(RBφ)× eφ

)
· ∇p = 0

⇒ 1

µ0R
eφ ·

(
∇(RBφ)×∇p

)
= 0. (2.15)

From (2.14), we see that ∇p is parallel to ∇ψ, which implies p is constant on a

magnetic flux surface, i.e., p = p(ψ). From (2.15), we see that ∇(RBφ) is parallel
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to ∇p (and therefore ∇ψ), which implies RBφ is also constant of a magnetic flux

surface, i.e., RBφ = F = F (ψ). Finally, evaluating the component of (2.1) parallel

to ∇ψ results in

∇ψ · (j×B) = ∇ψ · ∇p. (2.16)

By employing (2.13) and (2.8), the term ∇ψ · (J×B) is evaluated as

∇ψ · (j×B) = ∇ψ ·
(
− 1

µ0R
∆∗ψeφ +

1

µ0R
∇F × eφ

)
×
(
F

R
eφ +

1

R
∇ψ × eφ

)

= ∇ψ ·
(
− 1

µ0R2
∆∗ψ

[
eφ ×

(
−∂ψ
∂Z

eR +
∂ψ

∂R
eZ

)]

+
1

µ0R2
F
∂F

∂ψ

[(
−∂ψ
∂Z

eR +
∂ψ

∂R
eZ

)
× eφ

])

= −∇ψ ·
(

1

µ0R2
∆∗ψ∇ψ +

1

µ0R2
F
dF

dψ
∇ψ
)

= −(∇ψ · ∇ψ)

(
1

µ0R2
∆∗ψ +

1

µ0R2
F
dF

dψ

)
, (2.17)

where we have used the definition ∇F (ψ) = [∂F/∂ψ]∇ψ. The term ∇ψ · ∇p is

evaluated as

∇ψ · ∇p = (∇ψ · ∇ψ)
dp

dψ
, (2.18)

where we have used the definition ∇p(ψ) = [∂p/∂ψ]∇ψ.

The Grad–Shafranov equation [126] is then obtained by combining (2.16)-(2.18)

and is expressed as

∆∗ψ + µ0R
2 dp

dψ
+ F

dF

dψ
= 0. (2.19)

Note that the poloidal stream function ψ is both a dependent and an independent

variable in (2.19). The Grad–Shafranov equation is a two-dimensional, nonlinear,

elliptic partial differential equation that describes the equilibrium distribution of ψ

(in the poloidal plane) at any given time in the tokamak plasma. A typical distribution

of the poloidal magnetic flux in a tokamak plasma is shown in Fig. 2.3. The magnetic
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Figure 2.3: Magnetic flux surface geometry in the ITER tokamak (computed by the
DINA-CH&CRONOS [5–9] free-boundary tokamak simulation code). The
individual magnetic flux surfaces are shown in blue, the plasma boundary is
shown in red and the first wall is shown in black.

field (2.8) and current density (2.13) written in terms of ψ and F are expressed as

B =
1

R
∇ψ × eφ +

F

R
eφ, (2.20)

j =
1

µ0R

dF

dψ
∇ψ × eφ −

1

µ0R
∆∗ψeφ. (2.21)
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2.3 Plasma poloidal magnetic flux diffusion equa-

tion

We now introduce the poloidal magnetic flux diffusion equation, which describes the

resistive diffusion of the poloidal magnetic flux in the plasma. Any arbitrary quantity

that is constant on each magnetic flux surface within the plasma can be used to index

the magnetic flux surfaces. In this work, we choose the mean effective minor radius,

ρ, of the magnetic flux surface, i.e.,

Φ(ρ) = πBφ,0ρ
2, (2.22)

as the indexing variable, where Φ is the toroidal magnetic flux and Bφ,0 is the vac-

uum toroidal magnetic field at the geometric major radius R0 of the tokamak. The

normalized effective minor radius is defined as ρ̂ = ρ/ρb, where ρb is the normalized

mean effective minor radius of the last closed magnetic flux surface.

We begin by noting that some physical quantities are constant on a magnetic flux

surface, such as ψ, p, and F as shown in the previous section, while other physical

quantities are not constant on a magnetic flux surface. Therefore, to derive equations

for physical quantities that are not constant on a magnetic flux surface, we introduce

the concept of a flux-surface average. The flux-surface average of a generic quantity

A is defined as

〈A〉 =
∂

∂V

∫

V

AdV, (2.23)

where V is the volume enclosed by a magnetic flux surface and the differential volume

is defined as dV = RdRdφdZ. The toroidal magnetic flux is defined as the magnetic

field passing through the surface Sφ (dSφ = dRdZ) that is perpendicular to eφ

Φ =

∫
B · dSφ =

∫
BφdSφ =

1

2π

∫

V

F

R
|∇φ|dV =

1

2π

∫

V

F

R2
dV. (2.24)
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Therefore, we can define the quantities ∂Φ/∂V and ∂V/∂ρ as

∂Φ

∂V
=

1

2π

∂

∂V

∫

V

F

R2
dV =

F

2π

〈
1

R2

〉
(2.25)

and

V ′ =
∂V

∂ρ
=
∂V

∂Φ

∂Φ

∂ρ
=

2π

F

〈
1

R−2

〉
2πBφ,0ρ =

4π2ρBφ,0

F

〈
1

R−2

〉
, (2.26)

which will be useful in the derivation of the poloidal magnetic flux diffusion equation.

The poloidal magnetic flux diffusion equation is a statement of Ohm’s Law pro-

jected along the direction parallel to the magnetic field lines and then averaged over

a flux surface. Ohm’s Law describes the evolution of the inductive component of the

plasma current density and is stated as

E + v ×B = η(j− jni), (2.27)

where E is the electric field, v is the average velocity of the particles in the plasma, η is

the plasma resistivity, and jni is the total noninductive current density. Evaluating the

component of (2.27) parallel to B and flux-surface averaging the resulting equation

results in

〈E ·B〉+ 〈(v ×B) ·B〉 = η〈(j− jni) ·B〉 ⇒ ηj|| = E|| + ηjni, (2.28)

where

j|| = 〈j ·B〉/Bφ,0,

E|| = 〈E ·B〉/Bφ,0,

jni = 〈jni ·B〉/Bφ,0.
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The poloidal magnetic flux diffusion equation is obtained by rewriting the terms j||

and E|| in terms of ψ. By employing (2.20) and (2.21), the term 〈j · B〉/Bφ,0 is

evaluated as

〈j ·B〉
Bφ,0

=
1

Bφ,0

∂

∂V

∫

V

(
1

µ0R

dF

dψ
∇ψ × eφ −

1

µ0R
∆∗ψeφ

)
·
(

1

R
∇ψ × eφ +

F

R
eφ

)
dV

=
1

Bφ,0

∂

∂V

∫

V

(
− F

µ0R2
∆∗ψ +

1

µ0R2

∂F

∂ψ
∇ψ · ∇ψ

)
dV

=
1

Bφ,0

∂

∂V

∫

V

(
− F
µ0

∇ · ∇ψ
R2

+
1

µ0R2

∂F

∂ψ
∇ψ · ∇ψ

)
dV

= − F

µ0Bφ,0

〈
∇ · ∇ψ

R2

〉
+

1

µ0Bφ,0

∂F

∂ψ

〈
1

R2
∇ψ · ∇ψ

〉
,

= − F

µ0Bφ,0

∂

∂V

〈∇ψ
R2
· ∇V

〉
+

1

µ0Bφ,0

∂F

∂ρ

∂ψ

∂ρ

〈
1

R2
∇ρ · ∇ρ

〉

= − F

µ0Bφ,0

∂

∂V

{〈∇ρ
R2
· ∇V

〉
∂ψ

∂ρ

}
+

1

µ0Bφ,0

∂F

∂ρ

∂ψ

∂ρ

〈
1

R2
∇ρ · ∇ρ

〉

= − F

µ0Bφ,0V ′
∂

∂ρ

{
V ′
〈 |∇ρ|2

R2

〉
∂ψ

∂ρ

}
+

1

µ0Bφ,0

∂F

∂ρ

∂ψ

∂ρ

〈 |∇ρ|2
R2

〉

= − F 2

µ0Bφ,0V ′

[
1

F

∂

∂ρ

{
V ′
〈 |∇ρ|2

R2

〉
∂ψ

∂ρ

}
− V ′

F 2

∂F

∂ρ

∂ψ

∂ρ

〈 |∇ρ|2
R2

〉]

= − F 2

µ0Bφ,0V ′
∂

∂ρ

{
V ′

F

〈 |∇ρ|2
R2

〉
∂ψ

∂ρ

}
, (2.29)

where we have used (2.12), the property

〈∇ ·A〉 =
∂

∂V
〈A · ∇V 〉,

and the definitions ∇ρ(ψ) = [∂ρ/∂ψ]∇ψ and ∇V (ψ) = [∂V/∂ψ]∇ψ. By employing

Faraday’s Law, which is stated as

−∂B

∂t
= ∇× E, (2.30)
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where t is the time, it can be shown that [124,125]

∂ψ

∂t
= − 〈E ·B〉

F 〈R−2〉 . (2.31)

The term 〈E ·B〉/Bφ,0 is then evaluated as

〈E ·B〉
Bφ,0

= − F

Bφ,0〈R2〉
∂ψ

∂t
. (2.32)

A derivation of (2.31) following the one described in [124] is now discussed. Firstly,

we consider a magnetic flux surface (Sψ) defined by ψ = constant that is moving with

a constant velocity uψ, which is defined by the relation

d

dt
(ψ) =

∂ψ

∂t
+ uψ · ∇ψ = 0. (2.33)

The toroidal magnetic flux enclosed by a magnetic flux surface is defined by (2.24),

and the time rate of change of toroidal flux Φ that is enclosed by the surface Sψ is

evaluated as

∂Φ

∂t

∣∣∣∣
ψ=constant

=
∂

∂t

∫
B · dSψ =

1

2π

∂

∂t

∫
B · ∇φdV

=
1

2π

∫
∂B

∂t
· ∇φdV +

1

2π

∮

Sψ

(B · ∇φ) uψ · dSψ (see (2.35))

=
1

2π

∫
∂B

∂t
· ∇φdV +

1

2π

∮

Sψ

(B · ∇φ) uψ ·
∇ψ
|∇ψ|dSψ, (2.34)

where we have used the relation dSψ = (∇ψ/|∇ψ|)dSψ and the theorem

∂C

∂t
=

∫
∂A

∂t
dV +

∮

Sψ

Auψ · dSψ, (2.35)

where A(R, φ, Z, t) is a general scalar field and C(t) =
∫
AdV is a scalar. By em-

ploying Faraday’s Law (2.30), the first term of (2.34) can be expressed as a surface
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integral by employing the Divergence Theorem as

1

2π

∫
∂B

∂t
· ∇φdV = − 1

2π

∫
(∇× E) · ∇φdV (Faraday’s Law)

= − 1

2π

∫
[∇ · (E×∇φ) + E · (∇×∇φ)] dV (Vector Identity)

= − 1

2π

∫
∇ · (E×∇φ) dV (Vector Identity)

= − 1

2π

∮

Sψ

(E×∇φ) · ∇ψ|∇ψ|dSψ (Divergence Theorem)

= − 1

2π

∮

Sψ

E · (∇φ×∇ψ)
1

|∇ψ|dSψ (Vector Identity)

= − 1

2π

∮

Sψ

E ·
(

1

R

∂ψ

∂Z
eR −

1

R

∂ψ

∂R
eZ

)
1

|∇ψ|dSψ

=
1

2π

∮

Sψ

E ·Bθ
1

|∇ψ|dSψ, (2.36)

where we have used (2.9). Evaluating the component of (2.30) parallel to∇ψ results in

∇ψ · ∂B

∂t
= −∇ψ · (∇× E) . (2.37)

The left-hand-side of (2.37) can be evaluated as follows. Since the magnetic field lines

lie on the magnetic flux surfaces, we know from (2.10) that ∇ψ · B = 0. Therefore,

we can write

∂

∂t
(∇ψ ·B) = ∇ψ · ∂B

∂t
+ B · ∂

∂t
(∇ψ) = 0,

which implies that

∇ψ · ∂B

∂t
= −B · ∂

∂t
(∇ψ) = −B · ∇∂ψ

∂t
. (2.38)
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The right-hand-side of (2.37) is evaluated as

−∇ψ · (∇× E) = −∇ · (E×∇ψ)− E · (∇×∇ψ) (Vector Identity)

= −∇ · (E×∇ψ) (Vector Identity)

= −∇ ·
(

[EReR + Eφeφ + EZeZ ]×
[
∂ψ

∂R
eR +

1

R

∂ψ

∂φ
eφ +

∂ψ

∂Z
eZ

])

= −∇ ·
(
∂ψ

∂Z
EφeR +

[
∂ψ

∂R
EZ − ER

∂ψ

∂Z

]
eφ −

∂ψ

∂R
EφeZ

)

= −∇ ·
(
∂ψ

∂Z
EφeR −

∂ψ

∂R
EφeZ

)
as ∇ ·

([
∂ψ

∂R
EZ − ER

∂ψ

∂Z

]
eφ

)
= 0

= ∇ · (RBθEφ)

= ∇ · (BREφ) as ∇ · (RBφEφeφ) = 0

= REφ(∇ ·B) + B · ∇(REφ) (Vector Identity)

= B · ∇(REφ) (Gauss’s Law (2.3)), (2.39)

where we have used (2.9). Therefore, combining (2.37)-(2.39), we obtain

∂ψ

∂t
= −REφ = −uψ · ∇ψ, (2.40)

where we have used (2.33). Combining (2.34) with (2.36) and (2.40), we obtain

∂Φ

∂t

∣∣∣∣
ψ=constant

=
1

2π

∮

Sψ

E ·Bθ
1

|∇ψ|dSψ +
1

2π

∮

Sψ

(B · ∇φ)REφ
1

|∇ψ|dSψ

=
1

2π

∮

Sψ

(E ·Bθ +BφEφ)
1

|∇ψ|dSψ

=
1

2π

∮

Sψ

(E ·B)
1

|∇ψ|dSψ

=
1

2π

∂V

∂ψ
〈E ·B〉, (2.41)

where the last equivalence relation follows from the definition of the flux-surface
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average operation [124]. Finally, from the relation

∂Φ

∂t

∣∣∣∣
Φ=constant

=
∂Φ

∂t

∣∣∣∣
ψ=constant

+
∂Φ

∂V

∂V

∂ψ

∂ψ

∂t

∣∣∣∣
Φ=constant

≡ 0,

we obtain (2.31) by solving for ∂ψ/∂t, which is evaluated as

∂ψ

∂t

∣∣∣∣
Φ=constant

= −∂V
∂Φ

∂ψ

∂V

∂Φ

∂t

∣∣∣∣
Φ=constant

= − 1

2π

∂V

∂Φ
〈E ·B〉 = − 〈E ·B〉

F 〈R−2〉 , (2.42)

where we have used (2.25) and (2.41).

By combining (2.28), (2.29), and (2.32) we obtain

−η F 2

µ0Bφ,0V ′
∂

∂ρ

{
V ′

F

〈 |∇ρ|2
R2

〉
∂ψ

∂ρ

}
= − F

Bφ,0〈R2〉
∂ψ

∂t
+ ηjni,

which can be rearranged to obtain

∂ψ

∂t
=
ηF 〈R2〉
µ0V ′

∂

∂ρ

{
V ′

F

〈 |∇ρ|2
R2

〉
∂ψ

∂ρ

}
+
ηBφ,0〈R2〉

F
jni. (2.43)

We now rewrite (2.43) by using (2.26), the definition of the normalized mean effective

minor radius of the magnetic flux surface (ρ̂ = ρ/ρb), and the geometric factors

F̂ (ρ̂) =
R0Bφ,0

F
Ĝ(ρ̂) =

〈
R2

0

R2
|∇ρ|2

〉
Ĥ(ρ̂) =

F̂〈
R2

0/R
2
〉 , (2.44)

to obtain the poloidal magnetic flux diffusion equation [124,125], which is expressed as

∂ψ

∂t
=

η

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥηjni. (2.45)

The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ(1)Ĥ(1)
Ip(t), (2.46)
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where Ip(t) is the total plasma current. The model (2.45)-(2.46) makes the simplifying

assumption that the magnetic geometry is fixed in time, which excludes two potential

sources of flux: (i) a change in ρb, either by a change in the shape of the last closed flux

surface or in Bφ,0 and (ii) a change in location of the geometric center of the interior

flux surfaces relative to that of the last closed flux surface, such as changes in the

Shafranov shift that occur during a plasma energy or internal inductance change. The

assumption that the plasma surface can be considered fixed assumes that a separate

poloidal field (PF) coil controller, which is not considered, provides this fixed surface

on a faster timescale than the energy confinement.

2.4 Physics-based modeling of plasma parameters

In this section, we develop simplified physics-based, control-oriented models of the

electron density, the electron temperature, the plasma resistivity, and the noninduc-

tive current drives in response to the available control actuators (total plasma current,

auxiliary heating and current-drive system, electron density) to convert the physics

model (2.45)-(2.46) into a form suitable for control design, hence obtaining a first-

principles-driven model of the poloidal magnetic flux dynamics. In this work, physical

quantities are used as actuators, although they are quantities which are themselves

controlled by feedback loops. Thus, quantities such as the total plasma current and

electron density are considered as actuators since they appear as control inputs in the

physics models. In other words, the control algorithms developed in this work will

generate references for the respective physical quantities that are sent to the dedi-

cated feedback control loops that command the physical actuators on the tokamak.

Additionally, we exploit the fact that the dynamics of the physical actuator feedback

control loops are faster than that of the system we are controlling, i.e., we assume that
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the dedicated control loops are able to instantaneously follow the references gener-

ated by the controllers developed in this work. As a result, the fact that the physical

quantities have power supplies and gas valves is not taken into account here.

The objective in developing simplified physics-based models of the plasma pa-

rameters is to capture the dominant physics that describe how the control actuators

affect the plasma parameters, and hence the ψ profile evolution. We emphasize the

models developed are not designed for physical understanding, rather they are meant

to capture the dominant physics which affect the overall system dynamics that are

relevant for control design, i.e., the input-output relationship of the system. This

implies that a controller synthesized by employing the control-oriented model only

needs to know about the physics that are relevant to its design objective. The control-

oriented models (and hence the first-principles-driven model) can then be tailored to

a given operating scenario in a given machine of interest by employing experimental

and simulated (from an advanced physics simulation code TRANSP [12], DINA-

CH&CRONOS [5–9], etc.) data.

2.4.1 Electron density modeling

In the formulation of the electron density model, we assume the control action em-

ployed to regulate the electron density only weakly affects the radial distribution of

the electrons. Therefore, the electron density evolution ne(ρ̂, t) is modeled as

ne(ρ̂, t) = nprofe (ρ̂)n̄e(t), (2.47)

where nprofe is a reference electron density profile and n̄e is the line average electron

density, which is typically utilized to specify the electron density in present tokamak

operation. Note that nprofe is obtained by evaluating the experimental/simulated ne

at a reference time trne , i.e., nprofe (ρ̂) = ne(ρ̂, trne )/n̄e(trne ).
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2.4.2 Electron temperature modeling

In the formulation of the model of the electron temperature (Te) evolution, we assume

a tight coupling between the electron and ion species in the plasma, i.e., Te(ρ̂, t) ≈
Ti(ρ̂, t) and ne(ρ̂, t) ≈ ni(ρ̂, t), where Ti(ρ̂, t) and ni(ρ̂, t) are the ion temperature and

density profiles, respectively.

Physics model approach: Electron heat transport equation

Under the simplifying assumption of a fixed magnetic geometry (both the plasma

boundary as well as the orientation of the internal magnetic flux surfaces), and as-

suming diffusion is the dominant heat transport mechanism in the tokamak plasma,

the electron temperature dynamics are given by the electron heat transport equa-

tion [7]

3

2

∂

∂t
[neTe] =

1

ρ2
bĤ

1

ρ̂

∂

∂ρ̂

[
ρ̂
ĜĤ2

F̂

(
χene

∂Te
∂ρ̂

)]
+Qe, (2.48)

with boundary conditions

∂Te
∂ρ̂

∣∣∣∣
ρ̂=0

= 0 Te
∣∣
ρ̂=1

= Te,bdry, (2.49)

where χe(ρ̂, t) is the electron thermal conductivity, Qe(ρ̂, t) is the total electron heat-

ing power density, and Te,bdry is the electron temperature at the plasma boundary,

which is assumed constant. Typically, the electron temperature is specified in units

of kilo-electron-volts (keV) in the plasma physics community.

The total electron heating power density is expressed as

Qe(ρ̂, t) =
1

kJkeV

[
Qohm(ρ̂, t) +

naux∑

i=1

Qauxi(ρ̂, t)−Qrad(ρ̂, t) + ηfusQfus(ρ̂, t)

]
, (2.50)

whereQohm is the ohmic heating power density, Qauxi is the power density produced by
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the individual auxiliary sources, Qrad is the radiated power density, Qfus is the fusion

power density, naux is the total number of individual auxiliary heating sources, ηfus

represents the effectiveness of the fusion power in heating the plasma, and kJkeV = e×
1V×1000, where e is the elementary charge. Due to the assumption of a tight coupling

between the electron and ion species in the plasma, we have neglected the explicit

electron-ion equilibration power density. The ohmic power density is modeled as

Qohm(ρ̂, t) = jtor(ρ̂, t)
2η(ρ̂, t), (2.51)

where the total toroidal current density is expressed as [70]

jtor(ρ̂, t) = − 1

µ0ρ2
bR0Ĥ

1

ρ̂

∂

∂ρ̂

(
ρ̂ĜĤ

∂ψ

∂ρ̂

)
.

The individual auxiliary power densities are modeled as

Qauxi(ρ̂, t) = kqauxiQ
dep
auxi

(ρ̂)ηauxiPauxi(t)

= Qref
auxi

(ρ̂)ηauxiPauxi(t), (2.52)

where kqauxi is a normalizing constant, Qdep
auxi

is a reference power density deposition

profile for each auxiliary source, the effectiveness each respective source has on heat-

ing the plasma is captured through the efficiency constant ηauxi , Paux,i is the power

injected through the i-th auxiliary source, and Qref
aux,i = kqauxiQ

dep
auxi

. Note that Qdep
aux,i

is obtained by evaluating the experimental/simulated Qaux,i at a reference time trTe ,

i.e., Qdep
aux,i(ρ̂) = Qaux,i(ρ̂, trTe ). The constant kqauxi is also evaluated at the time trTe

and is expressed as kqauxi = 1/[ηauxiPauxi(trTe )]. The radiated power density is com-

prised of Bremsstrahlung, line, and cyclotron radiation losses. In modern tokamaks,
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the dominant radiative power density losses are due to Bremsstrahlung radiation1,

which is modeled as [18]

Qrad(ρ̂, t) = kbremZeffne(ρ̂, t)
2
√
Te(ρ̂, t), (2.53)

where kbrem = 5.5 × 10−37 Wm3/
√

keV is the Bremsstrahlung radiation coefficient

and Zeff is the effective average charge of the ions in the plasma, which is defined as

Zeff =
1

ne

∑

all ions

njZ
2
j ,

where nj and Zj are the density and charge of the j-th ion species. In this work,

we assume Zeff to be constant in space and time. The fusion power density (for a

deuterium (D) and tritium (T ) fuel) is expressed as

Qfus(ρ̂, t) = QDTnD(ρ̂, t)nT (ρ̂, t)
〈
σv
〉
DT

(ρ̂, t)kJeV , (2.54)

where QDT = 17.6 MeV is the energy released in each D − T reaction, nD(ρ̂, t)

and nT (ρ̂, t) are the density of the deuterium and tritium ions, respectively, and

kJeV = e×1V. The deuterium-tritium reactivity
〈
σv
〉
DT

is dependent on the velocity

distribution of the deuterium and tritium ions, which is a bounded nonlinear function

of the deuterium and tritium temperature TDT (ρ̂, t). From [1],
〈
σv
〉
DT

is given in units

of cm3·s−1 by

〈
σv
〉
DT

(ρ̂, t) = exp

(
a1

T rDT
+ a2 + a3TDT + a4T

2
DT + a5T

3
DT + a6T

4
DT

)
, (2.55)

where TDT is in keV, the constants ai and r are given in Table I of [1], and we have

1Whenever a charged particle experiences an acceleration/deceleration, i.e., a change in veloc-
ity, it will radiate electromagnetic energy, which is referred to as Bremsstrahlung radiation. In a
plasma, coulomb scattering collisions will cause acceleration/deceleration of charged particles and
will therefore result in the emission of Bremsstrahlung radiation.
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neglected non-thermal ions which might enhance the reactivity.

Singular perturbation approach: Exploiting characteristic time scale dif-

ference between energy confinement and resistive current diffusion

Ideally, one would like to model the evolution of the electron temperature profile using

the electron heat transport equation (2.48)-(2.49). However, due to the complexity of

modeling the local thermal transport, i.e., χe, it is difficult to model the electron tem-

perature dynamics in this way. The local thermal transport is intimately dependent

on the local magnetic and kinetic state of the plasma [61,62], and closed-form expres-

sions, i.e., explicit first-principles knowledge, that represent this complex interaction

do not exist. There are multiple computationally intensive numerical simulation codes

that calculate plasma transport coefficients, under some approximations, for a given

plasma state, with some examples being GLF [128] and GLF23 (a linearized version

of GLF) [129]. Alternatively, closed-form expressions for plasma transport can be

derived from empirical scalings, with some examples being Coppi–Tang [130] and

Bohm–Gyrobohm [131]. Finally, expressions for how the electron temperature re-

sponds to changes in the control actuators can be obtained from scaling laws [83,84].

In this work, we utilize the scaling law approach.

Under the assumption of a tight coupling between the electron and ion species in

the plasma, the plasma kinetic pressure (p) and total stored thermal energy density

(Ed) are expressed as

p(ρ̂, t) = kJkeV [ne(ρ̂, t)Te(ρ̂, t) + ni(ρ̂, t)Ti(ρ̂, t)]

= 2kJkeV ne(ρ̂, t)Te(ρ̂, t), (2.56)

Ed(ρ̂, t) = kJkeV

[
3

2
ne(ρ̂, t)Te(ρ̂, t) +

3

2
ni(ρ̂, t)Ti(ρ̂, t)

]

= 3kJkeV ne(ρ̂, t)Te(ρ̂, t). (2.57)
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The expression for Ed given in (2.57) results from the assumption that the distribution

of the plasma particles in energy is given by a Maxwell-Boltzmann distribution, which

is derived from statistical mechanics. Note that the Maxwell-Boltzmann distribution

only strictly applies to systems of particles that are in thermodynamic equilibrium,

i.e., a system that possesses no strong sinks/sources of particles or energy. In fusion

relevant plasmas, this is generally not the case as there are strong sinks (particle

and energy loss from the plasma) and sources (particle fueling, auxiliary and fusion

heating). Nevertheless, it is observed that many phenomena in fusion plasmas are

well represented by assuming a Maxwell-Boltzmann distribution. The stored thermal

energy (E) in the plasma is expressed as

E(t) =

∫ 1

0

Ed(ρ̂, t)
∂V

∂ρ̂
dρ̂ = 3kJkeV 〈ne〉V 〈Te〉V Vp, (2.58)

where 〈·〉V denotes the volume-average operation 1/Vp
∫
V

(·)dV and Vp denotes the

total plasma volume. Additionally, under the fixed magnetic geometry assumption,

the plasma power balance equation is given by the ordinary differential equation

dE

dt
= −Ploss(t) + Pohm(t) + Paux(t)− Prad(t) + ηfusPfus(t),

= − E

τE(t)
+ Ptot(t), (2.59)

where Ploss = E/τE is the total power crossing the plasma boundary, τE is the global

energy confinement time, Pohm is the ohmic power, Paux is the total auxiliary heating

and current-drive power, Prad is the radiated power, Pfus is the fusion power, and

Ptot = Pohm + Paux − Prad + ηfusPfus (2.60)

is the total power injected into the plasma.

The characteristic energy confinement time in the plasma is much faster than the
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characteristic resistive current diffusion time. Therefore, the temperature is always

in quasi-equilibrium on the time-scale of the poloidal magnetic flux evolution. As

a result, we neglect the temporal dynamics of the electron temperature in the de-

velopment of the electron temperature evolution model, as we are mainly concerned

with capturing the dominant physical effects that the electron temperature has on the

poloidal magnetic flux profile evolution. Evaluating (2.59) at steady state (d/dt = 0),

we obtain

3kJkeV 〈ne〉V 〈Te〉V Vp
τE

= Ptot. (2.61)

Various energy confinement scaling expressions have been developed over the years to

fit experimentally observed plasma behavior, such as the IPB98(y,2) [132] and Gold-

ston scaling expressions [133]. Typically, these scaling expressions are proportional

to the actuators utilized for plasma control, i.e., τE ∝ Iγsp P
εs
totn

ζs
e , where γs, εs, and ζs

depend on the scaling expression utilized. If, as with the IPB98(y,2) and Goldston

scaling expressions, τE is not an explicit function of the temperature, we can solve

(2.61) for the temperature to obtain

〈Te〉V ∝ Iγsp P
(1+εs)
tot 〈ne〉(ζs−1)

V . (2.62)

Utilizing the results of this analysis, we model the slowly evolving (on the resistive

current diffusion time scale) electron temperature evolution Te(ρ̂, t) as a static map

of the control actuators, which is expressed as

Te(ρ̂, t) = kTe(ρ̂)T profe (ρ̂)Ip(t)
γPtot(t)

εne(ρ̂, t)
ζ , (2.63)

where kTe is a normalizing profile and T profe (ρ̂) is a reference electron temperature

profile. The constants γ, ε, and ζ describe how the temperature scales with the various

parameters. Note that T profe is obtained by evaluating the experimental/simulated Te
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at a reference time trTe , i.e., T profe (ρ̂) = Te(ρ̂, trTe ). The constant kTe is also evaluated

at the time trTe and is expressed as

kTe(ρ̂) =
[
Ip(trTe )

γPtot(trTe )
εne(ρ̂, trTe )

ζAγ ·Wε ·m(−3)ζ
]−1

. (2.64)

In low performance (L-mode) tokamak operating scenarios (characterized by low en-

ergy confinement) there are no abrupt changes in particle and energy transport across

the spatial domain. As a result, the plasma density and temperature exhibit a smooth

behavior across the entire spatial domain in this regime. Therefore, the electron tem-

perature model (2.63) is applicable across the entire spatial domain. In contrast, high

performance (H-mode) tokamak operating scenarios are characterized by particle and

energy transport barriers [18] just inside the plasma boundary. These transport bar-

riers improve the plasma performance (a higher energy confinement compared to L-

mode) and result in the formation of large gradients in both the plasma density and

temperature. Therefore, the plasma density and temperature may exhibit a different

behavior in the plasma core (inside of the transport barriers) and near the plasma

boundary (outside of the transport barriers) in this regime. This behavior can be

incorporated into the formulation of the electron temperature model by modeling the

electron temperature evolution as

Te(ρ̂, t) = k1
Te(ρ̂)

[
T profe (ρ̂)− T profe (ρ̂tb)

]
Ip(t)

γPtot(t)
εne(ρ̂, t)

ζ

+k2
Te(ρ̂tb)

ωT profe (ρ̂tb)Ip(t)
λPtot(t)

νne(ρ̂tb, t)
ξ (2.65)

in the plasma core (0 ≤ ρ̂ < ρ̂tb) and as

Te(ρ̂) = k2
Te(ρ̂)ωT profe (ρ̂)Ip(t)

λPtot(t)
νne(ρ̂, t)

ξ (2.66)

outside of the edge energy transport barrier (ρ̂tb ≤ ρ̂ ≤ 1), where k1
Te

and k2
Te

are
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normalizing profiles and ρ̂tb is the spatial location of the edge energy transport barrier.

The constants γ, ε, and ζ describe how the temperature in the plasma core scales

with the various parameters. The constants λ, ν, and ξ describe how the temperature

outside of the edge energy transport barrier scales with the various parameters. Note

that the constant ω is 1 if the temperature outside of the edge energy transport barrier

scales with the various parameters and is 0 otherwise. The constants k1
Te

and k2
Te

are

evaluated at the time trTe and are expressed as

k1
Te(ρ̂) =

[
Ip(trTe )

γPtot(trTe )
εne(ρ̂, trTe )

ζAγ ·Wε ·m(−3)ζ
]−1

,

k2
Te(ρ̂) =

[
Ip(trTe )

λPtot(trTe )
νne(ρ̂, trTe )

ξAλ ·Wν ·m(−3)ξ
]−1

, (2.67)

where k1
Te

is defined on the interval 0 ≤ ρ̂ < ρ̂tb and k2
Te

is defined on the interval

ρ̂tb ≤ ρ̂ ≤ 1.

We now describe the models of the individual plasma heating sources in (2.59).

The ohmic power can be obtained from (2.51) and is expressed as

Pohm(t) =

∫ 1

0

Qohm(ρ̂, t)
∂V

∂ρ̂
dρ̂ ≈ Rp(t)Ip(t)

2, (2.68)

where Rp is the global plasma resistance, which is expressed as

Rp(t) ≈ 2πR0

/∫ 1

0

[
1

η(ρ̂, t)

∂S

∂ρ̂
dρ̂

]
,

where S is the poloidal cross-sectional area enclosed by a magnetic flux surface within

the plasma. The auxiliary heating and current-drive actuators considered in this

work are electron cyclotron (ec) sources, ion cyclotron (ic) sources, and neutral beam

injection (nbi) sources. Therefore, the total auxiliary heating and current-drive power
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is expressed as

Paux(t) =
nec∑

i=1

ηeciPeci(t) +

nic∑

i=1

ηiciPici(t) +

nnbi∑

i=1

ηnbiiPnbii(t), (2.69)

where Peci is the power injected through the individual electron cyclotron (gyrotron)

launchers, Pici is the power injected through the individual ion cyclotron launchers,

Pnbii is the power injected through the individual neutral beam injectors, and nec,

nic, and nnbi are the total number of gyrotron, ion cyclotron, and neutral beam

launchers, respectively. The effectiveness each respective source has on heating the

plasma is captured through the efficiency constants ηeci , ηici , and ηnbii , respectively.

The radiated power can be obtained from (2.53) and is expressed as

Prad(t) =

∫ 1

0

Qrad(ρ̂, t)
∂V

∂ρ̂
dρ̂. (2.70)

Finally, the fusion power can be obtained from (2.54) and is expressed as

Pfus(t) =

∫ 1

0

Qfus(ρ̂, t)
∂V

∂ρ̂
dρ̂. (2.71)

Under our working assumption of an approximately equal electron and ion tempera-

ture we evaluate (2.55) with TDT = Te.

2.4.3 Plasma resistivity modeling

The plasma resistivity η scales inversely with the electron temperature. In this work,

we model the plasma resistivity by utilizing a simplified Spitzer resistivity model,

which we express as

η(ρ̂, t) =
ksp(ρ̂)Zeff
Te(ρ̂, t)3/2

. (2.72)
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The profile ksp is obtained from the experimental/simulated η at a reference time trη

and is expressed as

ksp(ρ̂) =
η(ρ̂, trη)Te(ρ̂, trη)

3/2

Zeff
Ωm(keV)3/2. (2.73)

Neoclassical corrections to this formula exist in the literature [134, 135], however, in

this work, we neglect these corrections, which can nonetheless be significant, to retain

the main temperature dependence.

2.4.4 Noninductive current drive modeling

The total noninductive current drive is produced by the combination of the auxiliary

sources and the bootstrap current [60] and is expressed as

jni(ρ̂, t) = jtotaux(ρ̂, t) + jbs(ρ̂, t), (2.74)

where jtotaux is the total current density driven by the auxiliary sources and jbs is the

current density driven by the bootstrap current. The total auxiliary current drive

is generated by the electron cyclotron and neutral beam injection sources and is

expressed as

jtotaux(ρ̂, t) =
nec∑

i=1

jeci(ρ̂, t) +

nnbi∑

i=1

jnbii(ρ̂, t), (2.75)

where jeci is the current density generated by the individual gyrotron launchers and

jnbii is the current density generated by the individual neutral beam injectors. In the

operating scenarios considered in this work, the ion cyclotron launchers are configured

to provide only heating power to the plasma.
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Electron cyclotron and neutral beam injection current drive

We model each auxiliary current-drive source as the time varying power injected

through each actuator multiplied by a constant deposition profile in space. The

current density provided by each auxiliary source is modeled as

ji(ρ̂, t) = ki(ρ̂)jdepi (ρ̂)
Te(ρ̂, t)

δ

ne(ρ̂, t)
ηiPi(t)

= jrefi (ρ̂)
Te(ρ̂, t)

δ

ne(ρ̂, t)
ηiPi(t), (2.76)

where i ∈ [ec1, . . . , ecnec , nbi1, . . . , nbinnbi ], ki is a normalizing profile, jdepi is a reference

current density deposition profile for each auxiliary source, the term T δe /ne represents

the current-drive efficiency, and jrefi = kij
dep
i . Note that jdepi is obtained by evaluating

the experimental/simulated ji at a reference time traux , i.e., jdepi (ρ̂) = ji(ρ̂, traux). The

constant ki is also evaluated at the time traux and is expressed as

ki(ρ̂) =
ne(ρ̂, traux)

Te(ρ̂, traux)
δηiPi(traux)

m−3

keVδ ·W
. (2.77)

The auxiliary neutral beam heating and current-drive models, (2.69) and (2.76), re-

spectively, neglect the slowing down time (τs) of the fast ions (injected neutral parti-

cles) [18] and assume the particles and their energy are instantaneously thermalized

(deposited) in the plasma. If this physical mechanism is determined to be significant

based on the analysis of experimental data, a first-order filter could straightforwardly

be included in the models to describe this physical mechanism, i.e.,

Ṗnbi = − 1

τs
Pnbi +

1

τs
P inj
nbi , (2.78)

where P inj
nbi is the power injected through the neutral beam source and Pnbi (input

to (2.69) and (2.76)) is the absorbed power. Finally, for electron cyclotron current
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Figure 2.4: Normalized neutral beam driven current (2.79) as a function of temperature
for a specific plasma composition and various values of the injected neutral
particle energy (from 40 keV to 1 MeV). The green arrow denotes increasing
injected particle energy. Note Ebeam = 40 keV (black line + circle) and
Ebeam = 1 MeV (black line + square).

drive, δ = 1 [66] and for neutral beam current drive, δ is dependent on the energy

of the injected particles [65]. From [65] the normalized neutral beam driven current

(I∗cd) is expressed as a function of the temperature as

I∗cd(Te) = c1

(
Te
Tc

)3/2
(Tc/Te)

3/2

c1 + c2 (Tc/Te) + (Tc/Te)
3/2
, (2.79)

where c1, c2, and Tc are constants related to the composition of the plasma and the

characteristics of the injected neutral particles (type and energy of particles). Note

that Tc ∝ Ebeam, where Ebeam is the energy of the injected neutral particles. A

comparison of I∗cd as a function temperature for various values of the injected neutral

particle energy is shown in Fig. 2.4. As shown in the figure, the behavior of the

neutral beam driven current changes as the energy of the injected particles increases.

For low injected particle energies, the behavior can be approximated as I∗cd ∝
√
Te,

and for high injected particle energies, the behavior can be approximated as I∗cd ∝ Te.
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Bootstrap current drive

The bootstrap current is a self-generated current in the plasma that is associated

with particles that cannot complete a helical orbit around the magnetic axis. These

particles are therefore called trapped particles. In the presence of the radial pressure

gradient that is produced by the magnetic confinement, more trapped particles move

in one toroidal direction than in the other. As a result, a net current is produced

which is called the bootstrap current [60]. From [134, 135], we write the bootstrap

current as

jbs(ρ̂, t) =
RBφ

Bφ,0

pe

[
L31

{
1

pe

∂pe
∂ψ

+
1

pe

∂pi
∂ψ

}
+L32

1

Te

∂Te
∂ψ

+L34α
1−Rpe

Rpe

1

Ti

∂Ti
∂ψ

]
, (2.80)

where pe denotes the electron pressure, pi denotes the ion pressure, and Rpe = pe/p.

Under the assumption of a tight coupling between the electron and ion species in the

plasma, we rewrite (2.80) as

jbs(ρ̂, t) =
kJkeVR0

F̂ (ρ̂)

(
∂ψ

∂ρ̂

)−1 [
2L31(ρ̂)Te(ρ̂, t)

∂ne
∂ρ̂

+ {2L31(ρ̂) + L32(ρ̂) + α(ρ̂)L34(ρ̂)}ne(ρ̂, t)
∂Te
∂ρ̂

]
, (2.81)

where the coefficients L31, L32, L34, and α depend on the magnetic configuration of

a particular plasma equilibrium and on particle collisionality in the plasma. As the

bootstrap current is driven by the radial pressure gradient (the terms Te [∂ne/∂ρ̂] and

ne [∂Te/∂ρ̂] in (2.81)), we note that in L-mode operating scenarios, jbs will be relatively

small as the plasma density and temperature profiles exhibit a smooth behavior across

the spatial domain. However, in H-mode operating scenarios, large gradients in the

plasma density and temperate result from the formation of edge particle and energy

transport barriers. Therefore, jbs represents a significant portion of the total current

density in these operating scenarios, and as a result the complexity of the coupling
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between the magnetic and kinetic states is increased.

2.5 First-principles-driven physics-based model of

plasma poloidal magnetic flux dynamics

By combining the physics-based models of the electron density (2.47), electron tem-

perature (2.65)-(2.66), plasma resistivity (2.72), and noninductive current-drives (2.74)-

(2.76) and (2.81) with the magnetic diffusion equation model (2.45)-(2.46), we ob-

tain our desired first-principles-driven, physics-based, control-oriented model of the

poloidal magnetic flux profile evolution. At this time, we stress that we have included

the dominant physics properties of the tokamak plasma that are critical to the evo-

lution of the poloidal magnetic flux profile in response to the various actuators used

for control, and have neglected others. An example of this is illustrated by including

Zeff for plasma resistivity (2.72) and Bremsstrahlung radiation (2.53), but not for

fuel dilution. Our purpose is to include the dominant features, which will ultimately

be verified by modeling as well as the performance of control algorithms designed by

employing the developed model.

By defining the control input vector as

u =
[
Pec1 , . . . , Pecnec , Pic1 , . . . , Picnic , Pnbi1 , . . . , Pnbinnbi , n̄e, Ip

]
,

the first-principles-driven, nonlinear, partial differential equation (PDE) model is ex-

pressed as

∂ψ

∂t
= fη (ρ̂, u(t))

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+

nec∑

i=1

feci (ρ̂, u(t))Peci(t)

+

nnbi∑

i=1

fnbii (ρ̂, u(t))Pnbii(t) + fbs (ρ̂, u(t))

(
∂ψ

∂ρ̂

)−1

, (2.82)
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with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −kIpIp(t), (2.83)

where the parameters fη, feci , fnbii , and fbs are functions of the model parame-

ters, the diffusion coefficient Dψ is defined as Dψ(ρ̂) = F̂ (ρ̂)Ĝ(ρ̂)Ĥ(ρ̂), and kIp =

[µ0R0] /
[
2πĜ(1)Ĥ(1)

]
. In the case where the electron temperature scales with the

control actuators in the same way across the entire spatial domain, i.e., the electron

temperature is expressed as (2.63), the spatial and temporal dependence in the model

parameters fη, feci , fnbii , and fbs can be separated, and (2.82) can be expressed as

∂ψ

∂t
= fη (ρ̂)uη(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+

nec∑

i=1

feci (ρ̂)ueci(t)

+

nnbi∑

i=1

fnbii (ρ̂)unbii(t) + fbs (ρ̂)ubs(t)

(
∂ψ

∂ρ̂

)−1

, (2.84)

where

fη(ρ̂) =
ksp(ρ̂)Zeff

µ0ρ2
bF̂ (ρ̂)2

[
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

]−3/2
,

feci(ρ̂) = R0Ĥ(ρ̂)ksp(ρ̂)Zeff
[
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

]−1/2 jrefeci
(ρ̂)

nprofe (ρ̂)
,

fnbii(ρ̂) = R0Ĥ(ρ̂)ksp(ρ̂)Zeff
[
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

](−3/2+δ) j
ref
nbii

(ρ̂)

nprofe (ρ̂)
,

fbs(ρ̂) =
kJkeVR

2
0Ĥ(ρ̂)ksp(ρ̂)Zeff

F̂ (ρ̂)

[
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

]−3/2

×
[
{2L31(ρ̂) + L32(ρ̂) + α(ρ̂)L34(ρ̂)}nprofe (ρ̂)

d

dρ̂

(
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

)

+2L31(ρ̂)
[
kTe(ρ̂)T profe (ρ̂)nprofe (ρ̂)ζ

] d
dρ̂

(
nprofe (ρ̂)

) ]
, (2.85)
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and the control inputs are defined as

uη(t) =
[
Ip(t)

γPtot(t)
εn̄e(t)

ζ
]−3/2

,

ueci(t) =
[
Ip(t)

γPtot(t)
εn̄e(t)

ζ
]−1/2

n̄e(t)
−1Peci(t),

unbii(t) =
[
Ip(t)

γPtot(t)
εn̄e(t)

ζ
](−3/2+δ)

n̄e(t)
−1Pnbii(t),

ubs(t) =
[
Ip(t)

γPtot(t)
εn̄e(t)

ζ
]−1/2

n̄e(t). (2.86)

From (2.84), we see that the magnetic diffusion equation admits actuation not only

through interior control (ueci , unbii , ubs) and boundary control (Ip), but also through

uη, which we name diffusivity control in this work. Simulated and experimental

data can now be utilized to tailor the control-oriented models (and hence the first-

principles-driven model (2.82)-(2.83)) to a given operating scenario in a given machine

of interest.

In order to simulate the FPD, physics-based model, we spatially discretize the infi-

nite dimensional PDE (2.82)-(2.83) by employing a finite difference method, where the

non-dimensional spatial domain of interest (ρ̂ ∈ [0, 1]) is represented by mψ discrete

nodes. By utilizing the finite difference method, a general function f(ρ̂) is approxi-

mated as f̂ = [f1, . . . , fi, . . . , fmψ ], where fi is the value of f at the discrete node i,

for i ∈ [1, . . . ,mψ]. This representation yields spatial derivative approximations of

order (∆ρ̂)2 at the evenly spaced interior nodes (i ∈ [2, . . . ,mψ − 1]) of

(
∂f

∂ρ̂

) ∣∣∣∣
i

≈ fi+1 − fi−1

2∆ρ̂

(
∂2f

∂ρ̂2

) ∣∣∣∣
i

≈ fi+1 − 2fi + fi−1

(∆ρ̂)2
,

where ∆ρ̂ = 1/ [mψ − 1]. After spatially discretizing (2.82) and taking into account

the boundary conditions (2.83), we obtain a nonlinear finite dimensional ordinary
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differential equation model defined by

˙̂
ψ = fψ(ψ̂, u),

where ψ̂ = [ψ2, . . . , ψi, . . . , ψmψ−1]T ∈ Rnψ is the magnetic state vector, ψi is the value

of ψ at the discrete nodes, fψ ∈ Rnψ is a nonlinear function of the magnetic states

and control inputs, and nψ = mψ−2. The boundary conditions (2.83) are discretized

as

0 = −3ψ1 + 4ψ2 − ψ3,

0 = kIpIp(t) +
(
−3ψmψ + 4ψmψ−1 − ψmψ−2

)
/ (−2∆ρ̂) .

By defining the augmented state vector as

x =


ψ̂

E


 ∈ R(nψ+1),

we can write the magnetic and thermal system dynamics as

ẋ =




fψ(ψ̂, u)

− E
τE

+ Ptot(x, u)


 = Fψ,E(x, u) ∈ R(nψ+1), (2.87)

where the energy confinement scaling expression employed is the IPB98(y,2) scaling

law [132]

τE = 0.0562HH98(y,2)Ip(MA)0.93R0(m)1.39a(m)0.58n̄e(1019m−3)0.41

×Bφ,0(T)0.15A0.19
eff κ

0.78Ptot(MW)−0.69, (2.88)

where HH98(y,2) is the energy confinement enhancement factor, a is the plasma minor
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radius, Aeff is the effective mass number of the hydrogenic ion species in the plasma,

and κ is the plasma elongation. We then integrate (2.87) in time by employing a fully

implicit numerical scheme, i.e.,

xk+1 − xk
∆t

= Fψ,E(xk+1, uk), (2.89)

where xk and uk denote the plasma state and control input, respectively, at the

time step tk, xk+1 denotes the plasma state at the next time step, and ∆t denotes

the simulation time step. The plasma magnetic and thermal state evolution can be

obtained by iteratively solving (2.89) at each simulation time step from a given initial

condition x0 = x(t0), where t0 is the simulation starting time.

2.6 Physics parameters utilized to define plasma

scenarios

There are many plasma parameters related to the plasma magnetic and thermal

states, ψ and E, respectively, that will be of interest in determining the type of op-

erating scenarios that are or can be achieved and their performance. The parameters

considered in this work are the safety factor profile (q profile), the total toroidal cur-

rent density (jtor), the normalized plasma beta (βN), and the plasma loop voltage

profile (Up). The safety factor profile is related to the spatial gradient of the poloidal

magnetic flux profile and is defined as

q(ρ̂, t) = −dΦ

dΨ
= − dΦ

2πdψ
= −

∂Φ

∂ρ

∂ρ

∂ρ̂

2π
∂ψ

∂ρ̂

= −Bφ,0ρ
2
b ρ̂

∂ψ/∂ρ̂
, (2.90)
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where we have utilized the definitions of the mean effective minor radius of the mag-

netic flux surfaces Φ(ρ) = πBφ,0ρ
2 and the normalized mean effective minor radius

ρ̂ = ρ/ρb. The toroidal current density is also related to the poloidal magnetic flux

spatial gradient and is defined as [70]

jtor(ρ̂, t) = − 1

µ0ρ2
bR0Ĥ

1

ρ̂

∂

∂ρ̂

(
ρ̂ĜĤ

∂ψ

∂ρ̂

)
. (2.91)

By examining (2.90) and (2.91), we see that the local safety factor value is roughly

inversely related to the local toroidal current density amplitude in tokamaks as q ∝
(∂ψ/∂ρ̂)−1 and jtor ∝ (∂ψ/∂ρ̂)2 + (∂ψ/∂ρ̂). The normalized plasma beta is related to

the plasma stored energy and is defined as

βN = βt[%]
aBφ,0

Ip[MA]
βt =

〈p〉V
B2
φ,0/(2µ0)

=
(2/3)(E/Vp)

B2
φ,0/(2µ0)

, (2.92)

where βt is the toroidal plasma beta [18] and we have utilized (2.56)-(2.57). The

plasma loop voltage profile is related to the temporal derivative of the poloidal mag-

netic flux profile and is defined as

Up(ρ̂, t) = −∂Ψ

∂t
= −2π

∂ψ

∂t
. (2.93)

2.7 Tailoring physics-based model to L-mode sce-

narios in DIII-D

We now employ DIII-D experimental data, and data computed by the TRANSP

advanced tokamak simulation code [12] configured to the DIII-D geometry, to tailor

the FPD, physics-based model to L-mode plasma scenarios in DIII-D. In section

2.7.1, the model parameters tailored to the DIII-D tokamak are presented and in
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Figure 2.5: Model parameters tailored to L-mode scenarios in the DIII-D tokamak: (a)
magnetic equilibrium configuration parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂), (b)
bootstrap current coefficients L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂), (c) reference

electron density profile nprofe (ρ̂), (d) reference electron temperature profile

T profe (ρ̂) (keV), (e) electron temperature coefficient kTe (1010 m−3A−1W−1/2)
and plasma resistivity coefficient ksp (10−8 Ω m keV3/2), (e) normalized aux-

iliary neutral beam injection (jrefnbii
), for i ∈ [30L/R,150L/R,210L/R,330L/R],

current-drive reference profiles (1018 m−3keV−1/2W−1A m−2).

sections 2.7.2 and 2.7.3 simulation studies that compare the evolution of the plasma

parameters predicted by the FPD, physics-based model to the plasma parameters

experimentally achieved in the DIII-D tokamak are discussed.

2.7.1 Model parameters tailored to DIII-D

As we are modeling L-mode scenarios in DIII-D, there are no abrupt changes in par-

ticle and energy transport in the plasma, and the temperature exhibits a smooth
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Figure 2.6: Control inputs applied during FPD, physics-based model simulation and DIII-
D experimental discharge #146411 (current in MA, power in MW, and density
in 1019 m−3).

behavior across the entire spatial domain. Therefore, we model the electron temper-

ature evolution as in (2.63), and we choose the constants in this model as γ = 1,

ε = 0.5, and ζ = −1. This choice qualitatively describes the slowly evolving electron

temperature in response to the control actuators, i.e., the observation of (i) an in-

crease in plasma confinement, and hence an increase in temperature, with increasing

plasma current, and (ii) a decrease in plasma confinement with increasing total in-

jected power [133]. Also, by changing the electron density, the electron temperature

is modified for a given electron pressure.

The parameters related to the magnetic configuration of the plasma equilibrium,

the reference profiles for the various models, and the normalizing profiles are shown

in Fig. 2.5. The auxiliary heating and current-drive actuators on DIII-D considered

in this work are 8 individual neutral beam injection sources, referred to by the names

30L/R, 150L/R, 210L/R, and 330L/R, respectively, where L and R denoted left and

right beam lines, respectively. The current-drive deposition profiles for each source

are shown in Fig. 2.5(f). The 30L/R and 330L/R neutral beams inject power into the

plasma in the co-current direction (same direction as the total plasma current) with

deposition profiles that are peaked at the magnetic axis (referred to as on-axis neutral
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(f) ρ̂ = 0.95

Figure 2.7: Time trace of poloidal magnetic flux Ψ at various normalized effective minor
radii for the model comparison simulation test in section 2.7.2.

beam injection). The 150L/R neutral beams inject power into the plasma in the co-

current direction with deposition profiles that are peaked away from the magnetic

axis in the spatial region ρ̂ ∈ [0.3, 0.5] (referred to as off-axis neutral beam injection).

Finally, the 210L/R neutral beams inject power into the plasma in the counter-current

direction (opposite direction as the total plasma current) with deposition profiles

that are peaked at the magnetic axis (referred to as counter-current neutral beam

injection). The energy of the injected neutral particles on DIII-D is 80 keV, therefore,

the constant in the neutral beam current-drive model (2.76) is chosen as δ = 1/2 [65]

(see Fig. 2.4). The heating efficiency constants for the auxiliary heating and current-

drive actuators are taken as ηnbii = 1 for i ∈ [30L/R,150L/R,210L/R,330L/R]. The

hydrogenic ion species in the considered DIII-D plasmas are solely deuterium (Aeff =

2). As the plasma temperature in DIII-D is not hot enough to produce a significant

probability of deuterium-deuterium fusion reactions occurring, we choose the fusion

heating constant as ηfus = 0. Finally, the other model constants are Bφ,0 = 2.0 T,

R0 = 1.6955 m, ρb = 0.82 m, and Zeff = 1.5.
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(d) t = 3.0 s
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(f) t = 5.0 s
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(g) t = 1.0 s
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(h) t = 1.98 s
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(i) t = 2.5 s
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(k) t = 4.0 s
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Figure 2.8: (a-f) Poloidal magnetic flux profile Ψ(ρ̂) at various times and (g-l) safety
factor profile q(ρ̂) at various times for the model comparison simulation test
in section 2.7.2.
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2.7.2 Comparison between model predicted and experimen-

tally achieved (#146411) plasma parameters

We now describe a simulation study that compares the evolution of the plasma param-

eters predicted by the first-principles-driven, physics-based model to the experimen-

tally achieved plasma parameters in DIII-D shot 146411. The control inputs (total

plasma current, total neutral beam injection power, and line average electron density)

applied during both the simulation and the experiment are shown in Fig. 2.6. The

plasma magnetic state evolution predicted by the FPD, physics-based model is now

compared to the experimentally achieved magnetic state evolution. Figure 2.7 shows

the evolution of the poloidal magnetic flux Ψ at various normalized effective minor

radii, Figs. 2.8(a-f) show a comparison of the FPD, physics-based model predicted

and experimentally achieved poloidal magnetic flux Ψ(ρ̂) profiles at various times,

and Figs. 2.8(g-l) show a comparison of the FPD, physics-based model predicted

and experimentally achieved safety factor q(ρ̂) profiles at various times. As shown

in the figures, the FPD, physics-based model predicted plasma magnetic state evo-

lution shows good agreement with the experimentally achieved plasma parameters.

The FPD, physics-based model predicted poloidal magnetic flux diffuses at a slightly

slower rate in the plasma core compared to the experimentally achieved poloidal mag-

netic flux during the time interval t ∈ [3.0, 5.0] s (see Figs. 2.7(a-c) and 2.8(d-f)).

This indicates that the physics-based model predicted plasma resistivity is slightly

lower than the experimentally achieved plasma resistivity.
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Figure 2.9: Control inputs applied during FPD, physics-based model simulation and DIII-
D experimental discharge #145477 (current in MA, power in MW, and density
in 1019 m−3).

2.7.3 Comparison between model predicted and experimen-

tally achieved (#145477) plasma parameters

We now describe a simulation study that compares the evolution of the plasma pa-

rameters predicted by the first-principles-driven, physics-based model to the exper-

imentally achieved plasma parameters in DIII-D shot 145477. The control inputs

(total plasma current, total neutral beam injection power, and line average electron

density) applied during both the simulation and the experiment are shown in Fig. 2.9.

The plasma magnetic state evolution predicted by the FPD, physics-based model is

now compared to the experimentally achieved magnetic state evolution. Figure 2.10

shows a comparison of the FPD, physics-based model predicted and experimentally

achieved safety factor q(ρ̂) profiles at various times. As shown in the figures, the

FPD, physics-based model predicted plasma magnetic state evolution shows good

agreement with the experimentally achieved plasma parameters.
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(a) t = 1.0 s
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(b) t = 1.98 s
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(c) t = 3.0 s
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(d) t = 3.5 s
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(e) t = 4.0 s
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(f) t = 5.0 s

Figure 2.10: Safety factor profile q(ρ̂) at various times for the model comparison simula-
tion test in section 2.7.3.

2.8 Tailoring physics-based model to H-mode sce-

narios in DIII-D

We now employ DIII-D experimental data, and data computed by the TRANSP

advanced tokamak simulation code [12] configured to the DIII-D geometry, to tailor

the FPD, physics-based model to H-mode plasma scenarios in DIII-D that have energy

and particle transport barriers just inside the plasma boundary. In section 2.8.1, the

model parameters tailored to the DIII-D tokamak are presented and in sections 2.8.2

and 2.8.3 simulation studies that compare the evolution of the plasma parameters

predicted by the FPD, physics-based model to the plasma parameters experimentally

achieved in the DIII-D tokamak and analyzed by the TRANSP code are discussed.

2.8.1 Model parameters tailored to DIII-D

Based on the TRANSP analyzed electron temperature profile evolution, we first note

that the electron temperature exhibits a similar behavior across the entire spatial
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Figure 2.11: Model parameters tailored to H-mode scenarios in the DIII-D tokamak: (a)
magnetic equilibrium configuration parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂),(b)
bootstrap current coefficients L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂), (c) ref-

erence electron density profile nprofe (ρ̂), (d) reference electron tempera-

ture profile T profe (ρ̂) (keV), (e) electron temperature coefficient kTe (1010

m−3A−1W−1/2), (f) plasma resistivity coefficient ksp (10−8 Ω m keV3/2), (g)

normalized auxiliary electron cyclotron (jrefeci ), for i ∈ [1, 2, 3, 4, 5, 6], current-
drive reference profiles (1018 m−3 keV −1W−1 A m−2), and (h) normalized

auxiliary neutral beam injection (jrefnbii
), for i ∈ [30L/R,150L/R,330L/R],

current-drive reference profiles (1018 m−3keV−1/2W−1A m−2).
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Figure 2.12: Control inputs applied during FPD, physics-based model simulation and
DIII-D experimental discharge #147634 (current in MA, power in MW, and
density in 1019 m−3).

domain (both inside and outside the transport barrier). Therefore, we model the elec-

tron temperature evolution as in (2.63), and we choose the constants in this model

as γ = 1, ε = 0.5, and ζ = −1. This choice qualitatively describes the slowly evolv-

ing electron temperature in response to the control actuators, i.e., the observation of

(i) an increase in plasma confinement, and hence an increase in temperature, with

increasing plasma current, and (ii) a decrease in plasma confinement with increas-

ing total injected power [133]. Also, by changing the electron density, the electron

temperature is modified for a given electron pressure.

The parameters related to the magnetic configuration of the plasma equilibrium,

the reference profiles for the various models, and the normalizing profiles are shown

in Fig. 2.11. The auxiliary heating and current-drive actuators on DIII-D considered

in this work are 6 individual electron cyclotron sources, which are grouped together

to form 1 effective source for control, and 6 individual neutral beam injection sources,

which are referred to by the names 30L/R, 150L/R, and 330L/R, respectively. The

current-drive deposition profiles for each source are shown in Fig. 2.11(g-h). The

30L/R and 330L/R neutral beams inject power into the plasma in the co-current

direction (same direction as the total plasma current) with deposition profiles that
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Figure 2.13: Electron density profile evolution computed via: (a) physics-based control-
oriented model and (b) TRANSP, and electron temperature profile evolution
computed via: (c) physics-based control-oriented model and (d) TRANSP
for the model comparison simulation test in section 2.8.2.

are peaked at the magnetic axis (referred to as on-axis current drive). The elec-

tron cyclotron sources and the 150L/R neutral beams inject power into the plasma

in the co-current direction with deposition profiles that are peaked away from the

magnetic axis (referred to as off-axis current drive). Note that counter-current injec-

tion neutral beam sources (210L/R sources in section 2.7.1) are not utilized in these

scenarios as they have been observed to increase the possibly of triggering MHD

instabilities in DIII-D H-mode scenarios. The energy of the injected neutral parti-

cles on DIII-D is 80 keV, therefore, the constant in the neutral beam current-drive

model (2.76) is chosen as δ = 1/2 [65] (see Fig. 2.4). The heating efficiency con-

stants for the auxiliary heating and current-drive actuators are taken as ηeci = 1

for i ∈ [1, 2, . . . , 6] and as ηnbii = 1 for i ∈ [30L/R,150L/R,330L/R]. The hydrogenic

ion species in the considered DIII-D plasmas are solely deuterium (Aeff = 2). As the
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(c) Control model: jnbi150L
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(d) Control model: jnbi150R
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(e) Control model: jnbi330L
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(f) Control model: jnbi330R
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(g) TRANSP: jnbi30L
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(i) TRANSP: jnbi150L
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(j) TRANSP: jnbi150R
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(k) TRANSP: jnbi330L
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Figure 2.14: Neutral beam injection current-drive evolution computed via: (a-f) physics-
based control-oriented model and (g-l) TRANSP for the model comparison
simulation test in section 2.8.2.
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(a) Control-oriented model: jec
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(b) TRANSP: jec
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(c) Control-oriented model: jbs
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(d) TRANSP: jbs

Figure 2.15: Total electron cyclotron current-drive evolution computed via: (a) physics-
based control-oriented model and (b) TRANSP, and bootstrap current-drive
evolution computed via: (c) physics-based control-oriented model and (d)
TRANSP for the model comparison simulation test in section 2.8.2.

plasma temperature in DIII-D is not hot enough to produce a significant probabil-

ity of deuterium-deuterium fusion reactions occurring, we choose the fusion heating

constant as ηfus = 0. Based on the experimentally measured energy confinement

time (during the high performance phase of the discharge), the energy confinement

enhancement factor is chosen as HH98(y,2) = 1.4. Finally, the other model constants

are Bφ,0 = 1.65 T, R0 = 1.6955 m, a = 0.6 m, ρb = 0.82 m, κ = 1.8, and Zeff = 1.75.
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(d) ρ̂ = 0.5
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(f) ρ̂ = 0.9
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(g) t = 1.0 s
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(h) t = 2.0 s
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(i) t = 2.5 s
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(j) t = 3.0 s
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(k) t = 4.0 s
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(l) t = 5.0 s

Figure 2.16: (a-f) Time trace of poloidal magnetic flux Ψ at various normalized effective
minor radii and (g-l) safety factor profile q(ρ̂) at various times for the model
comparison simulation test in section 2.8.2.
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Figure 2.17: (a) Plasma stored energy E versus time and (b) plasma normalized beta βN
versus time for the model comparison simulation test in section 2.8.2.

2.8.2 Comparison between model predicted and experimen-

tally achieved (#147634) plasma parameters

We now describe a simulation study that compares the evolution of the plasma pa-

rameters predicted by the first-principles-driven, physics-based model to the exper-

imentally achieved plasma parameters in DIII-D shot 147634. The control inputs

(total plasma current, total electron cyclotron power, total neutral beam injection

power, and line average electron density) applied during both the simulation and

the experiment are shown in Fig. 2.12. We begin the analysis of the FPD model’s

prediction capabilities by first comparing the prediction of the physics-based models

of the electron density, electron temperature, and noninductive current-drive source

evolutions to the TRANSP analyzed plasma parameter evolutions. Figures 2.13(a-

b) show the electron density profile, Figs. 2.13(c-d) show the electron temperature

profile, Fig. 2.14 shows the individual neutral beam injection noninductive current

drive, and Fig. 2.15 shows the total electron cyclotron and bootstrap noninductive

current-drive sources at various times computed by both the physics-based models

and TRANSP. The trends of the physics-based model predicted plasma parameters

show good agreement with the TRANSP results. As shown in Figs. 2.14(g-l) and

2.15(b), TRANSP predicts that the spatial noninductive current deposition location
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Figure 2.18: Control inputs applied during FPD, physics-based model simulation and
DIII-D experimental discharge #154358 (current in MA, power in MW, and
density in 1019 m−3).

of the neutral beam injectors and gyrotron launchers remains reasonably constant

throughout the experiment. Therefore, the physics-based model assumption of con-

stant neutral beam injection and gyrotron current deposition profiles appears appro-

priate for the scenarios considered.

We now compare the plasma magnetic and thermal state evolution, ψ and E, as

well as the plasma parameters related to these plasma states, the q profile and the

normalized plasma beta (βN), predicted by the FPD, physics-based model to the ex-

perimentally achieved plasma parameters. Figure 2.16(a-f) shows the evolution of the

poloidal magnetic flux Ψ at various normalized effective minor radii, Figs. 2.16(g-l)

shows a comparison of the FPD, physics-based model predicted and experimentally

achieved safety factor q(ρ̂) profiles at various times, and Fig. 2.17 shows a compari-

son of the FPD, physics-based model predicted and experimentally achieved plasma

stored energy E and normalized plasma beta βN . As shown in the figures, the FPD,

physics-based model predicted plasma magnetic and thermal state evolution shows

good agreement with the experimentally achieved plasma parameters. The plasma

stored energy (and hence plasma βN) is slightly over predicted by the physics-based

model during the time interval t ∈ [0.5, 2.5] s because a constant energy confinement
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(f) ρ̂ = 0.9

Figure 2.19: Time trace of poloidal magnetic flux Ψ at various normalized effective minor
radii for the model comparison simulation test in section 2.8.3.

enhancement factor is employed throughout the simulation. In actuality, the thermal

transport evolves during the discharge (from a value characterized by HH98(y,2) ≈ 0.9

during the time interval t ∈ [0.5, 2.5] s to a value characterized by HH98(y,2) ≈ 1.4

during the time interval t ∈ [3.0, 6.0] s) based on the magnetic and kinetic state of the

plasma [61,62] as discussed in section 2.4.2. However, as closed-form expressions that

represent this complex interaction do not exist, we chose to employ a constant en-

ergy confinement enhancement factor throughout the simulation. Finally, the plasma

stored energy (and hence plasma βN) is slightly under predicted by the physics-based

model during the time interval t ∈ [3.0, 6.0] s because the plasma power balance equa-

tion (2.59)-(2.60) neglects the contribution that the fast ions (particles that have not

thermalized) in the plasma have to the total plasma stored energy2.

2E-mail correspondence with Dr. John R. Ferron at General Atomics, San Diego, CA, USA.
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(b) t = 2.0 s
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(f) t = 5.9 s
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(g) t = 1.0 s
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(h) t = 2.0 s
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(i) t = 2.5 s
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(j) t = 3.0 s
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(k) t = 4.0 s
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(l) t = 5.9 s

Figure 2.20: (a-f) Poloidal magnetic flux profile Ψ(ρ̂) at various times and (g-l) safety
factor profile q(ρ̂) at various times for the model comparison simulation test
in section 2.8.3.
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Figure 2.21: (a) Plasma stored energy E versus time and (b) plasma normalized beta βN
versus time for the model comparison simulation test in section 2.8.3.

2.8.3 Comparison between model predicted and experimen-

tally achieved (#154358) plasma parameters

We now describe a simulation study that compares the evolution of the plasma pa-

rameters predicted by the first-principles-driven, physics-based model to the exper-

imentally achieved plasma parameters in DIII-D shot 154358. The control inputs

(total plasma current, total electron cyclotron power, total neutral beam injection

power, and line average electron density) applied during both the simulation and

the experiment are shown in Fig. 2.18. The plasma magnetic and thermal state

evolution predicted by the FPD, physics-based model is now compared to the ex-

perimentally achieved magnetic and thermal state evolution. Figure 2.19 shows the

evolution of the poloidal magnetic flux Ψ at various normalized effective minor radii,

Figs. 2.20(a-f) show a comparison of the FPD, physics-based model predicted and

experimentally achieved poloidal magnetic flux Ψ(ρ̂) profiles at various times, Figs.

2.20(g-l) show a comparison of the FPD, physics-based model predicted and exper-

imentally achieved safety factor q(ρ̂) profiles at various times, and and Fig. 2.21

shows a comparison of the FPD, physics-based model predicted and experimentally

achieved plasma stored energy E and normalized plasma beta βN . As shown in the

figures, the FPD, physics-based model predicted plasma magnetic and thermal state
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evolution shows good agreement with the experimentally achieved plasma parame-

ters. The physics-based model predicted plasma stored energy (and hence plasma

βN) exhibits the same behavior in comparison to the experimentally achieved plasma

stored energy as observed in section 2.8.2.

2.9 Tailoring physics-based model to H-mode sce-

narios in ITER

We now employ the DINA-CH&CRONOS free-boundary simulation code [5–9] con-

figured to the ITER geometry to obtain simulated data of the plasma state evolution

to tailor the FPD, physics-based model to H-mode burning plasma (one with a sig-

nificant number of fusion reactions) scenarios in ITER that have energy and particle

transport barriers just inside the plasma boundary. This advanced simulation code

couples the free-boundary plasma equilibrium and current diffusion solver DINA-

CH [6] with the plasma heat and particle transport solver CRONOS [7] and employs

complex physics models to predict the plasma magnetic and thermal state evolution

in the tokamak through exhaustive consumption of computational resources. DINA-

CH&CRONOS is currently configured to execute with a prescribed electron density

evolution and calculates anomalous heat conductivity profiles using a global trans-

port model, KIAUTO [136]. The radial heat conductivity profile dependence for the

core plasma is computed using a Gyrobohm-like formula. Additionally, the auxiliary

H&CD source profiles are recomputed by DINA-CH&CRONOS on a one second time

interval, and the plasma evolves with constant auxiliary powers in-between these aux-

iliary source profile updates. In section 2.9.1, the model parameters tailored to the

ITER tokamak are presented and in section 2.9.2 a simulation study that compares

the evolution of the plasma parameters predicted by the FPD, physics-based model
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Figure 2.22: Model parameters tailored to the ITER tokamak: (a) magnetic equilibrium
configuration parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂),(b) bootstrap current coeffi-
cients L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂), (c) reference electron density profile

nprofe (ρ̂), (d) reference electron temperature profile T profe (ρ̂) (keV), (e) elec-
tron temperature coefficient kTe = k1

Te
(108 m−3A−1W−1/2), note k2

Te
= 1,

and plasma resistivity coefficient ksp (10−8 Ω m keV3/2), (e) normalized aux-

iliary neutral beam injection (jrefnbi ) and electron cyclotron (jrefec1 , jrefec2 , jrefec3 )
current-drive reference profiles (1017 m−3keV−1W−1A m−2).

and DINA-CH&CRONOS is discussed.

2.9.1 Model parameters tailored to ITER

Based on the DINA-CH&CRONOS predicted electron temperature profile evolution,

we first note that the electron temperature exhibits a different behavior in the plasma

core (inside of the transport barrier) and near the plasma boundary (outside of the

transport barrier). Therefore, we model the electron temperature evolution as in
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(2.65)-(2.66), and we choose the constants in this model as γ = 1, ε = 0.5, ζ = −1

and λ = ν = ξ = ω = 0, which models the temperature outside of the edge energy

transport barrier as stiff. This choice qualitatively describes the slowly evolving elec-

tron temperature in the core of the plasma in response to the control actuators, i.e.,

the observation of (i) an increase in plasma confinement, and hence an increase in tem-

perature, with increasing plasma current, and (ii) a decrease in plasma confinement

with increasing total injected power [133]. Also, by changing the electron density, the

electron temperature is modified for a given electron pressure. The auxiliary heating

and current-drive actuators on ITER considered in this work are 3 independently

configurable gyrotron launchers, 1 ion cyclotron launcher, and co-current-injection

neutral beam launchers. In the considered operating scenarios, (i) the ion cyclotron

launcher is configured to provide only heating power to the plasma and (ii) the neutral

beam launchers are configured to inject particles at the same off-axis radial location,

therefore, we group them together to form 1 total neutral beam launcher. The energy

of the injected neutral particles on ITER is 1 MeV, therefore, the constant in the

neutral beam current-drive model (2.76) is chosen as δ = 1 [65] (see Fig. 2.4).

The parameters related to the magnetic configuration of the plasma equilibrium,

the reference profiles for the various models, and the normalizing profiles are shown

in Fig. 2.22. The heating efficiency constants for the auxiliary heating and current-

drive actuators are taken as the ratio between the power absorbed by the plasma

(calculated by DINA-CH&CRONOS) and the power requested for each individual

actuator, and the efficiency constants are ηeci = 1 for i = 1, 2, 3, ηic = 0.85, and

ηnbi = 1. Neglecting the alpha particle and impurity densities, the charge neutrality

condition in the plasma is approximated as ne(ρ̂, t) ≈ nD(ρ̂, t)+nT (ρ̂, t) ≈ 2nDT (ρ̂, t),

where we assume a 50:50 mix of deuterium and tritium ions and nDT is the deuterium-

tritium density. Under these assumptions, we approximate the fusion power density
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(g) Control-oriented model: jec
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(i) Control-oriented model: jbs
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(k) DINA-CH&CRONOS: jnbi
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(l) DINA-CH&CRONOS: jbs

Figure 2.23: (a) Control inputs applied during FPD, physics-based model and DINA-
CH&CRONOS simulations (current in MA, power in MW and density in
1019 m−3), electron density profile evolution computed via: (b) physics-based
control-oriented model and (c) DINA-CH&CRONOS, electron temperature
profile evolution computed via: (d) physics-based control-oriented model
and (e) DINA-CH&CRONOS, (f) ion temperature evolution computed via
DINA-CH&CRONOS, noninductive current-drive evolution computed via
physics-based control-oriented model: (g) total gyrotron, (h) neutral beam
injection, and (i) bootstrap, and noninductive current-drive evolution com-
puted via DINA-CH&CRONOS: (j) total gyrotron, (k) neutral beam injec-
tion, and (l) bootstrap for the model comparison simulation test in section
2.9.2.
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(2.54) as

Qfus(ρ̂, t) ≈ QDT

(
ne(ρ̂, t)

2

)2 〈
σv
〉
DT

(ρ̂, t)kJeV , (2.94)

and we chose the heating efficiency constant related to fusion heating in (2.60) as

ηfus = 0.15 so that the plasma stored energy predicted by the simplified physics-based

model (2.58) matches the plasma stored energy simulated by DINA-CH&CRONOS.

Employing these heating efficiency constants, the energy confinement enhancement

factor is chosen as HH98(y,2) = 1.3 [8], so that the power balance equation (2.59)

predicts the same energy confinement enhancement, and hence plasma stored energy,

as DINA-CH&CRONOS. Finally, the other model constants are Bφ,0 = 5.3 T, R0 =

6.2 m, a = 2.0 m, ρb = 2.62 m, ρ̂tb = 0.95, κ = 1.7, Zeff = 1.7, and Aeff = 2.5

(results from a 50:50 mix of deuterium (A = 2) and tritium (A = 3)).

2.9.2 Comparison between model and DINA-CH&CRONOS

predicted plasma parameters

We now describe a simulation study that compares the evolution of the plasma pa-

rameters predicted by the first-principles-driven, physics-based model and by the

DINA-CH&CRONOS free-boundary simulation code [5–9]. We emphasize the sce-

nario studied is not meant to be representative of any one specific standard ITER

operating scenario but is meant to determine the ability of the FPD, physics-based

model to predict the plasma magnetic and thermal state evolution in response to

changes in the control actuators. As the FPD, physics-based model is designed for

the high performance phase of the discharge, we start the simulations just after the

plasma transitions from L-mode to H-mode in this particular simulated scenario at

the time t = 45 s, which is still in the plasma current ramp-up phase. The control

inputs (total plasma current, individual gyrotron launcher, ion cyclotron launcher,

and neutral beam injection powers, and line average electron density) applied during
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Figure 2.24: Time trace of poloidal magnetic flux Ψ at various normalized effective minor
radii (top to bottom ρ̂ = 0.1, 0.2, . . . , 0.8, 0.9) for the model comparison
simulation test in section 2.9.2.

both simulations are shown in Fig. 2.23(a). We begin the analysis of the FPD model’s

prediction capabilities by first comparing the prediction of the physics-based models

of the electron density, electron temperature, and noninductive current-drive source

evolutions to the DINA-CH&CRONOS predicted plasma parameter evolutions. Fig-

ures 2.23(b-c) show the electron density profile, Figs. 2.23(d-f) show the electron and

ion temperature profiles, and Figs. 2.23(g-l) show the total gyrotron, neutral beam in-

jection, and bootstrap noninductive current-drive sources at various times during the

simulations computed by both the physics-based models and DINA-CH&CRONOS.

The trends of the physics-based model predicted plasma parameters show good

agreement with the DINA-CH&CRONOS predicted results. Firstly, as shown in

Figs. 2.23(e-f), DINA-CH&CRONOS predicts the electron and ion temperature pro-

files evolve in a similar fashion, which suggests the physics-based model assumption

of an approximately equal electron and ion temperature appears appropriate for the

scenarios considered. Secondly, as shown in Figs. 2.23(j-k), DINA-CH&CRONOS

predicts that the spatial noninductive current deposition location of the gyrotron

launchers and neutral beam injectors remains reasonably constant throughout the

simulation. Therefore, the physics-based model assumption of constant gyrotron and
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Figure 2.25: Safety factor profile q(ρ̂) at various times for the model comparison simula-
tion test in section 2.9.2.

neutral beam injection current deposition profiles also appears appropriate for the sce-

narios considered. Finally, as shown in Figs. 2.23(h) and 2.23(k), the physics-based

model prediction of the noninductive current driven by the neutral beam injectors

agrees reasonably well with the neutral beam driven noninductive current predicted by

DINA-CH&CRONOS. However, the physics-based model neglects the slowing down

time of the fast ions, assuming the particles and their energy are instantaneously ther-

malized, but this physical mechanism is taken into account by DINA-CH&CRONOS.

This effect can be seen at the time t = 50 s during the simulations. A first-order filter

could straightforwardly be included in the simplified model to describe this physical

mechanism as discussed in section 2.4.4 (see (2.78)).

We now compare the plasma magnetic and thermal state evolution, ψ and E,

respectively, as well as the plasma parameters related to these plasma states, the q

profile, the toroidal current density (jtor), the plasma loop voltage profile (Up), and

the normalized plasma beta (βN) predicted by the FPD, physics-based model and

DINA-CH&CRONOS. Figure 2.24 shows the evolution of the poloidal magnetic flux
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(a) Control-oriented model: jtor
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(b) DINA-CH&CRONOS: jtor
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(c) Control-oriented model: Up
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(d) DINA-CH&CRONOS: Up

Figure 2.26: Toroidal current density evolution computed via: (a) FPD, physics-based,
control-oriented model and (b) DINA-CH&CRONOS, and loop voltage pro-
file evolution computed via: (c) FPD, physics-based, control-oriented model
and (d) DINA-CH&CRONOS for the model comparison simulation test in
section 2.9.2.

Ψ at various normalized effective minor radii, Figs. 2.25 and 2.26 show a compari-

son of the FPD, physics-based model predicted and DINA-CH&CRONOS predicted

safety factor q(ρ̂), toroidal current density jtor(ρ̂), and loop voltage Up(ρ̂) profiles,

respectively, at various times, and Fig. 2.27 shows a comparison of the FPD, physics-

based model predicted and DINA-CH&CRONOS predicted plasma stored energy E,

normalized plasma beta βN , and fusion power Pfus.

The scenario studied can be broken into four time sections: (i) 45−85 s, (ii) 85−200

s, (iii) 200− 250 s, and (iv) 250− 400 s, as shown in Fig. 2.23(a). During section (i)

of the simulation, the control inputs are modified in time from their initial values

to a first set of constant values and during section (ii) of the simulation, the control

inputs remain stationary. During section (iii) of the simulation, the control inputs are
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Figure 2.27: (a) Plasma stored energy E versus time, (b) plasma normalized beta βN
versus time, and (c) fusion power Pfus versus time for the model comparison
simulation test in section 2.9.2.

again modified to a second set of constant values and again remain stationary during

section (iv) of the simulation. This sequence of actuator waveforms provides the

opportunity to determine the ability of the FPD, physics-based model to predict the

plasma magnetic and thermal state evolution during both transient and stationary

conditions in plasma actuation. Figures 2.24-2.27 show that the trends of the FPD,

physics-based model predicted plasma magnetic and thermal state evolution, as well

as the other parameters related to these plasma states, show good agreement with the

DINA-CH&CRONOS predicted results during both transient and stationary plasma

actuation conditions. The discontinuity in the plasma stored energy, normalized beta,

and fusion power predicted by DINA-CH&CRONOS at 300 s, shown in Fig. 2.27, is

a numerical artifact in the plasma evolution that results from a slight inconsistency

between the plasma state in a simulation that is restarted from a previously executed

simulation.

2.10 Tailoring physics-based model to L-mode sce-

narios in TCV

We now employ the RAPTOR code [13–15], which is a simplified physics-based code

(similar to one developed in this work) that simulates the plasma Ψ and Te profile
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Figure 2.28: Model parameters tailored to the TCV tokamak: (a) magnetic equilibrium
configuration parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂), (b) bootstrap current coeffi-
cients L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂), (c) reference electron density profile

nprofe (ρ̂), (d) reference electron temperature profile T profe (ρ̂) (keV), (e) elec-
tron temperature coefficient kTe (1010 m−3A−1W−1/2) and plasma resistivity
coefficient ksp (10−8 Ω m keV3/2), and (f) normalized auxiliary electron cy-

clotron (jrefeci ), for i ∈ [1a,2a,1b,2b], current-drive reference profiles (1020

m−3keV−1W−1A m−2).

evolution, configured to the TCV geometry to obtain simulated data of the plasma

state evolution to tailor the FPD, physics-based model to L-mode plasma scenarios

in TCV. In section 2.10.1, the model parameters tailored to the TCV tokamak are

presented and in section 2.10.2 a simulation study that compares the evolution of

the plasma parameters predicted by the FPD, physics-based model and RAPTOR is

discussed.
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(b) Control-oriented model: Te
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(c) RAPTOR: Te

Figure 2.29: (a) Control inputs applied during simulations (current in MA and power in
MW) and electron temperature profile evolution computed via: (b) physics-
based control-oriented model and (c) RAPTOR for the model comparison
simulation test in section 2.10.2.

2.10.1 Model parameters tailored to TCV

As we are modeling L-mode scenarios in TCV, there are no abrupt changes in particle

and energy transport in the plasma, and the temperature exhibits a smooth behavior

across the entire spatial domain. Therefore, we model the electron temperature evo-

lution as in (2.63), and we choose the constants in this model as γ = 1, ε = 0.5, and

ζ = −1. This choice qualitatively describes the slowly evolving electron temperature

in response to the control actuators, i.e., the observation of (i) an increase in plasma

confinement, and hence an increase in temperature, with increasing plasma current,

and (ii) a decrease in plasma confinement with increasing total injected power [133].

Also, by changing the electron density, the electron temperature is modified for a

given electron pressure.

The parameters related to the magnetic configuration of the plasma equilibrium,

the reference profiles for the various models, and the normalizing profiles are shown

in Fig. 2.28. The auxiliary heating and current-drive actuators on TCV considered in

this work are 4 electron cyclotron launchers that are grouped into 2 clusters (denoted

as a and b). The current-drive deposition profiles for each source are shown in Fig.

2.28(f). The gyrotrons in cluster a are configured as follows: 1 on-axis co-current-

injection source (jrefec1a
in Fig. 2.28(f)) and 1 off-axis counter-current-injection source
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(a) Control-oriented Model: jaux
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(b) RAPTOR: jaux
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(c) Control-oriented model: jbs
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(d) RAPTOR: jbs

Figure 2.30: Auxiliary noninductive current-drive evolution computed via: (a) physics-
based control-oriented model and (b) RAPTOR, and bootstrap current-drive
evolution computed via: (c) physics-based control-oriented model and (d)
RAPTOR for the model comparison simulation test in section 2.10.2.

(jrefec2a
in Fig. 2.28(f)), and the gyrotrons in cluster b are configured as follows: 1 on-

axis counter-current-injection source (jrefec1b
in Fig. 2.28(f)) and 1 off-axis co-current-

injection source (jrefec2b
in Fig. 2.28(f)). In this work, the heating efficiency constants

for the auxiliary heating and current-drive actuators are taken as ηeci = 1 for i ∈
[1a,2a,1b,2b]. The hydrogenic ion species in the considered TCV plasmas are solely

deuterium (Aeff = 2). As the plasma temperature in TCV is not hot enough to

produce a significant probability of deuterium-deuterium fusion reactions occurring,

we choose the fusion heating constant as ηfus = 0. Also, the electron density profile

is assumed constant in the considered scenarios. Finally, the other model constants

are Bφ,0 = 1.44 T, R0 = 0.88 m, ρb = 0.3013 m, and Zeff = 3.5.
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(f) ρ̂ = 0.9
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(k) t = 0.5 s

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

(l) t = 0.998 s

Figure 2.31: (a-f) Time trace of poloidal magnetic flux Ψ at various normalized effective
minor radii and (g-l) safety factor profile q(ρ̂) at various times for the model
comparison simulation test in section 2.10.2.
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2.10.2 Comparison between model and RAPTOR predicted

plasma parameters

We now describe a simulation study that compares the evolution of the plasma pa-

rameters predicted by the first-principles-driven, physics-based model and the RAP-

TOR code [13–15]. The control inputs (total plasma current and gyrotron cluster

powers) applied during both simulations are shown in Fig. 2.29(a). We begin the

analysis of the FPD model’s prediction capabilities by first comparing the prediction

of the physics-based models of the electron temperature and noninductive current-

drive source evolutions to the RAPTOR predicted plasma parameter evolutions. Fig-

ures 2.29(b-c) show the electron temperature profiles and Fig. 2.30 shows the total

gyrotron and bootstrap noninductive current-drive sources at various times during the

simulations computed by both the physics-based models and RAPTOR. The trends

of the physics-based model predicted plasma parameters show good agreement with

the RAPTOR predicted results. We now compare the plasma magnetic state evo-

lution predicted by the FPD, physics-based model and RAPTOR. Figures 2.31(a-f)

show the evolution of the poloidal magnetic flux Ψ at various normalized effective

minor radii and Figs. 2.31(g-l) show a comparison of the FPD, physics-based model

predicted and RAPTOR predicted safety factor q(ρ̂) profiles at various times. As

shown in the figures, the FPD, physics-based model predicted plasma magnetic evo-

lution shows good agreement with the RAPTOR predicted results. The constant

offset that develops between the FPD, physics-based model predicted and RAPTOR

predicted Ψ profile evolution (shown in Figs. 2.31(a-f)) is due to the slight mismatch

between the physics-based model predicted and RAPTOR predicted Te profile evolu-

tion (shown in Figs. 2.29(b-c)) during the initial phase of the simulations (t ∈ [0, 0.2]

s). The electron temperature predicted by the physics-based model is slightly higher

than the RAPTOR predicted electron temperature during that time interval. As
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a result, the physics-based model predicted plasma resistivity is slightly lower than

the RAPTOR predicted plasma resistivity. This results in the FPD, physics-based

model predicted poloidal magnetic flux diffusing slower than the RAPTOR predicted

poloidal magnetic flux.

2.11 Conclusion

A derivation of the plasma poloidal magnetic flux diffusion equation was provided.

This equation describes the resistive diffusion of the poloidal magnetic flux in the

tokamak in response to the electric field due to induction, the noninductive current

driven by the auxiliary H&CD system, and the bootstrap effect. This physics model

was subsequently converted into a form suitable for control design by developing

simplified control-oriented versions of physics-based models of the electron density,

electron temperature, plasma resistivity, and the noninductive current-drives in re-

sponse to the available control actuators. The FPD, physics-based model was tailored

to L-mode and H-mode scenarios in the DIII-D, ITER, and TCV tokamaks, respec-

tively, demonstrating the flexibility of the developed approach. Finally, the model

prediction was shown to be in good agreement with the evolution of experimentally-

achieved/advanced-simulation-predicted plasma parameters in the studied operating

scenarios. For the remainder of this dissertation, the developed model will be em-

ployed to 1.) optimize feedforward trajectories for the tokamak actuators that steer

the plasma through the tokamak operating space to reach target plasma scenarios,

2.) design feedback controllers to regulate plasma conditions to maintain desired op-

erating scenarios, and 3.) verify the ability of the designed algorithms to drive the

plasma to desired targets through simulations.
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Chapter 3

Current profile control in low

confinement scenarios in the

DIII-D tokamak

3.1 Introduction

In this chapter, a first-principles-driven (FPD), physics-model-based, robust feedback

algorithm for current profile control in low confinement (L-mode) operating scenar-

ios in the DIII-D tokamak is designed. The choice of L-mode operating scenarios

rather than high confinement (H-mode) operating scenarios is based on the fact that

the coupling between the magnetic and kinetic plasma parameters is not as strong

in this operating regime. As a result, the dynamics of the current profile evolution

in L-mode are simplified, which reduces the complexity of the model-based control

design process. Therefore, L-mode operating scenarios are more attractive for initial

demonstration of the technical feasibility of controlling the current profile evolution in

closed-loop experiments with controllers synthesized from first-principles-driven mod-

els. Once the methodology is validated, the focus will be on extending the approach
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to high performance scenarios by incorporating the effects of the bootstrap current in

the FPD model of the system and synthesizing closed-loop controllers for this more

complex operating mode.

The robust feedback controller is synthesized by embedding the control-oriented

model of the poloidal magnetic flux evolution developed in [83] into the control de-

sign process. In this particular model of the poloidal magnetic flux evolution, the

magnetic diffusion equation is combined with empirical correlations for the electron

density, the electron temperature, the plasma resistivity, and the auxiliary current

drive developed from physical observations and experimental data from L-mode dis-

charges in DIII-D. Secondly, the auxiliary current drive actuators are lumped into a

single input, and the noninductive bootstrap current is neglected due to its effects

being relatively small in L-mode discharges, in this model. The actuators employed

for current profile control are the total plasma current, the total average neutral beam

injection power, and the line average electron density. Finally, the feedback controller

is tested in simulations and experiments in the DIII-D tokamak. These experiments,

along with those described in [98, 99], represent the first successful demonstration of

FPD, physics-based, closed-loop control of the entire current profile in a tokamak.

This chapter is organized as follows. In section 3.2, the control-oriented, partial

differential equation (PDE) model for the evolution of the poloidal flux profile valid

for L-mode discharges is introduced. The governing infinite dimensional PDE is

approximated by a finite dimensional system of ordinary differential equations to

facilitate the synthesis of a feedback controller by employing a truncated Taylor series

expansion in space. While the state of the reduced-order model is linearized around a

given feedforward operating trajectory, the control input nonlinearities are preserved

through a nonlinear transformation, and a time varying state-space representation of
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the deviation dynamics is derived in section 3.3. In section 3.4, the time varying state-

space system is represented as an uncertain state-space model, i.e., a nominal time-

invariant model plus a bounded uncertain component, which is then formulated into

a robust control framework. The part of the plant output we can effectively control is

determined by employing a singular value decomposition of the static gain matrix of

the nominal plant model in section 3.5, which is combined with the dynamic response

of the system around the given feedforward trajectory to synthesize a robust feedback

controller. In section 3.6, the feedback controller is synthesized by first considering

the nominal model and then analyzing the stability of the closed-loop system in the

presence of the model uncertainty. A general framework for real-time feedforward +

feedback control of the magnetic and kinetic plasma profiles is implemented in the

DIII-D Plasma Control System (PCS), and a simulation simserver (Simserver) that

can interface with the DIII-D PCS is developed in section 3.7. In section 3.8 we test

the feedback controller in Simserver simulations with the real-time code utilized in the

DIII-D PCS, and in section 3.9 the feedback controller is tested in reference tracking

and disturbance rejection experiments in the DIII-D tokamak. Finally, conclusions

are discussed in section 3.10.

3.2 Partial differential equation model of system

dynamics

The control-oriented model of the poloidal magnetic flux evolution derived in [83] is

given in normalized cylindrical coordinates by the magnetic diffusion equation

∂ψ

∂t
= f1(ρ̂)u1(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ

∂ρ̂

)
+ f2(ρ̂)u2(t) (3.1)
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with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −k3u3(t), (3.2)

where the functions f1(ρ̂), f2(ρ̂), f4(ρ̂), and the geometrical constant k3 are defined

in [83], and the control inputs are expressed as

u1(t) =

(
n̄e(t)

Ip(t)
√
Ptot(t)

)3/2

u2(t) =

√
Ptot(t)

Ip(t)
u3(t) = Ip(t). (3.3)

The poloidal stream function is denoted by ψ, which is closely related to the poloidal

magnetic flux Ψ (Ψ = 2πψ), t is the time, n̄e(t) is the line average electron density,

Ptot(t) is the total average neutral beam injection power, and Ip(t) is the total plasma

current. The normalized effective minor radius ρ̂ = ρ/ρb is the spatial variable em-

ployed to index the magnetic flux surfaces, where ρ is the mean effective minor radius

of the magnetic flux surface, i.e., Φ(ρ) = πBφ,0ρ
2, Φ is the toroidal magnetic flux,

Bφ,0 is the vacuum toroidal magnetic field at the geometric major radius R0 of the

tokamak, and ρb is the mean effective minor radius of the last closed magnetic flux

surface.

The control inputs u1(t), u2(t), and u3(t) of the magnetic diffusion equation have

large order of magnitude differences which is not conducive to developing a feed-

back control algorithm that uses all of the available actuators to their fullest extent.

Therefore, we normalize (3.1) by determining the maximum feedforward values of

the three control inputs, which are denoted as u1norm , u2norm , and u3norm respec-

tively. The control inputs are scaled as us1(t) = u1(t)/u1norm , us2(t) = u2(t)/u2norm ,

and us3(t) = u3(t)/u3norm , and the parameters in the governing PDE (3.1) are scaled

as f s1 (ρ̂) = u1normf1(ρ̂), f s2 (ρ̂) = u2normf2(ρ̂), and ks3 = u3normk3, where (·)s denotes a

scaled quantity. Now each control input can vary between the same magnitude range,
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i.e., zero to one, and a feedback controller can be designed to use the full range of each

actuator. The superscript s used to denote the scaled control inputs and equation

parameters is dropped for the remainder of this chapter in order to simplify notation.

In the plasma physics community, the toroidal current profile in tokamaks (jtor)

is usually specified in terms of the safety factor profile (q profile) as this quantity is

intimately related to the stability and performance of a tokamak plasma operating

scenario [61, 62] (see section 2.6 for the explicit relationship these quantities have

to the poloidal magnetic flux). In particular, the q profile is defined in (2.90) and

repeated here for convenience as

q(ρ̂, t) = −dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
. (3.4)

Because the q profile is inversely dependent on the gradient of the poloidal stream

function ∂ψ/∂ρ̂, it is chosen to be the controlled variable and is denoted by

θ(ρ̂, t) ≡ ∂ψ/∂ρ̂(ρ̂, t). (3.5)

In order to obtain a PDE for θ(ρ̂, t), (3.1) is expanded using the chain rule as

∂ψ

∂t
= f1u1(t)

1

ρ̂

[
ρ̂
∂ψ

∂ρ̂

df4

dρ̂
+ f4

∂ψ

∂ρ̂
+ ρ̂f4

∂2ψ

∂ρ̂2

]
+ f2u2(t). (3.6)

Inserting (3.5) into (3.6) results in the following PDE

∂ψ

∂t
= f1(ρ̂)u1(t)

1

ρ̂

[
ρ̂θf ′4(ρ̂) + f4(ρ̂)θ + ρ̂f4(ρ̂)

∂θ

∂ρ̂

]
+ f2(ρ̂)u2(t), (3.7)

where (·)′ = d/dρ̂. By differentiating (3.7) with respect to ρ̂, the PDE governing the
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evolution of θ(ρ̂, t) is found to be

∂θ

∂t
=

[
h0(ρ̂)

∂2θ

∂ρ̂2
+ h1(ρ̂)

∂θ

∂ρ̂
+ h2(ρ̂)θ

]
u1(t) + h3(ρ̂)u2(t), (3.8)

with boundary conditions

θ(0, t) = 0 θ(1, t) = −k3u3(t), (3.9)

where

h0(ρ̂) = f1(ρ̂)f4(ρ̂),

h1(ρ̂) = f ′1(ρ̂)f4(ρ̂) + f1(ρ̂)f4(ρ̂)/ρ̂+ 2f1(ρ̂)f ′4(ρ̂),

h2(ρ̂) = f ′1(ρ̂)f ′4(ρ̂) + f ′1(ρ̂)f4(ρ̂)/ρ̂+ f1(ρ̂)f ′4(ρ̂)/ρ̂

−f1(ρ̂)f4(ρ̂)/ρ̂2 + f1(ρ̂)f ′′4 (ρ̂),

h3(ρ̂) = f ′2(ρ̂). (3.10)

The model (3.8)-(3.10) is the starting point for the development of the feedback

controller design. This first-principles-driven, control-oriented, PDE model contains

the physics information of how the dynamics of the poloidal flux gradient profile

are influenced by the control actuators. The goal is to now convert the physics

information contained in the model into a form suitable to synthesize a feedback

controller, thus allowing the physics contained in the model to be embedded into the

feedback controller.

3.3 Model reduction via spatial discretization

In order to facilitate the design of a feedback controller, the governing infinite di-

mensional PDE (3.8) is approximated by a finite dimensional system of ordinary
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differential equations (ODEs). This is accomplished by discretizing (3.8) in space by

using a truncated Taylor series expansion to approximate the spatial derivatives while

leaving the time domain continuous [137]. The non-dimensional spatial domain of in-

terest (ρ̂ ∈ [0, 1]) is represented by mθ nodes, and the spacing between the nodes (∆ρ̂)

is defined as ∆ρ̂ = 1/(mθ − 1). Central finite difference spatial derivative approxi-

mations of order (∆ρ̂)2 are used in the interior node region, 2 ≤ i ≤ (mθ − 1). After

applying the spatial derivative approximations to (3.8) and taking into account the

boundary conditions (3.9), we obtain a matrix representation for the reduced-order

model

α̇(t) = Γα(t)v1(t) + Ωv2(t) + Πv3(t), (3.11)

where the vector α = [θ2, . . . , θmθ−1] ∈ Rnθ is the state of the system at the interior

discrete nodes, the vector

[v1(t), v2(t), v3(t)] = [u1(t), u2(t), u1(t)u3(t)] ∈ R3 (3.12)

is the control input, Γ ∈ Rnθ×nθ , Ω ∈ Rnθ , and Π ∈ Rnθ are the system matrices, and

nθ = mθ − 2. The system matrices for the interior node i = 2 are defined as

Γ1,1 = h2(∆ρ̂)− 2h0(∆ρ̂)

(∆ρ̂)2
,

Γ1,2 =
h0(∆ρ̂)

(∆ρ̂)2
+
h1(∆ρ̂)

2∆ρ̂
,

Ω1 = h3(∆ρ̂),

Π1 = 0. (3.13)
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The system matrices for the interior node region, 3 ≤ i ≤ (mθ − 2), are defined as

Γi−1,i−2 =
h0(∆x)

(∆ρ̂)2
− h1(∆x)

2∆ρ̂
,

Γi−1,i−1 = h2(∆x)− 2h0(∆x)

(∆ρ̂)2
,

Γi−1,i =
h0(∆x)

(∆ρ̂)2
+
h1(∆x)

2∆ρ̂
,

Ωi−1 = h3(∆x),

Πi−1 = 0, (3.14)

where ∆x = (i − 1)∆ρ̂. The system matrices for the interior node i = mθ − 1 are

defined as

Γmθ−2,mθ−2 = h2(∆x∗)− 2h0(∆x∗)

(∆ρ̂)2
,

Γmθ−2,mθ−3 =
h0(∆x∗)

(∆ρ̂)2
− h1(∆x∗)

2∆ρ̂
,

Ωmθ−2 = h3(∆x∗),

Πmθ−2 = −k3

(
h0(∆x∗)

(∆ρ̂)2
+
h1(∆x∗)

2∆ρ̂

)
, (3.15)

where ∆x∗ = (mθ − 2)∆ρ̂. All other entries in the Γ system matrix are zero. The

values of θ at the boundary nodes i = 1 and i = mθ are known from (3.10) and are

therefore not included in the reduced-order model (3.11).

Let αFF (t) and vFF (t) be the feedforward trajectories of the states and control

inputs respectively with initial condition αFF (0). These feedforward trajectories sat-

isfy

α̇FF (t) = ΓαFF (t)v1FF (t) + Ωv2FF (t) + Πv3FF (t). (3.16)

By defining the perturbation variables x(t) = α(t)−αFF (t) and vFB(t) = v(t)−vFF (t),

where x(t) is the deviation away from the feedforward state trajectories and vFB(t) is
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the output of the to-be-designed feedback controller, we can obtain a model suitable

for tracking control design. Inserting the perturbation variables into (3.11) results in

α̇FF + ẋ = Γ
(
αFF + x

)(
v1FF + v1FB

)
+ Ω

(
v2FF + v2FB

)
+ Π

(
v3FF + v3FB

)
. (3.17)

By using (3.16), we can express (3.17) as

ẋ = Γv1FFx+ Γ
(
αFF + x

)
v1FB + Ωv2FB + Πv3FB . (3.18)

Due to the term Γxv1FB , equation (3.18), which describes the behavior of the deviation

dynamics, is bilinear (nonlinearity resulting from the product between the control

input and the state). In addition, the control inputs v1FB , v2FB , and v3FB are nonlinear

functions of the real actuators as shown by the nonlinear transformations (3.3) and

(3.12). While we neglect in this work the bilinear state behavior by assuming that

the feedback control input vFB is able to keep the deviation of the system state away

from the feedforward state trajectory small, i.e., αFF >> x, we preserve the dominant

control input nonlinearities through the nonlinear transformations (3.3) and (3.12).

An approximate linearization of the state dynamics can therefore be obtained by

neglecting the nonlinear term, i.e.,

(
αFF + x

)
≈ αFF , (3.19)

and rewriting (3.18) as

ẋ = Γv1FFx+ ΓαFFv1FB + Ωv2FB + Πv3FB . (3.20)

Simulations and experiments show the closed-loop system to be robust to this approx-

imation and indicate no need for the extra burden of taking into account the bilinear
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state behavior during the control synthesis, which is indeed possible. The deviation

dynamics (3.20) can be written as a linear time-variant (LTV), dynamic, state-space

model, i.e.,

ẋ = A(t)x+B(t)vFB

y = Cx+DvFB (3.21)

where A(t) = Γv1FF (t) ∈ Rnθ×nθ , B(t) = [ΓαFF (t),Ω,Π] ∈ Rnθ×3, C = Inθ ∈ Rnθ×nθ

where Inθ is an nθ × nθ identity matrix, D = 0 ∈ Rnθ×3, x ∈ Rnθ , y ∈ Rnθ , and

vFB = [v1FB , v2FB , v3FB ]T ∈ R3. Here α, and therefore x, is assumed measurable. A

linear control law for the inputs v1FB(t), v2FB(t), and v3FB(t) can now be determined

and combined with the nonlinear inverse transformations resulting from (3.3) and

(3.12) to produce an overall nonlinear control law for Ip(t), Ptot(t), and n̄e(t).

The first-principles-driven linear model for the deviation dynamics (3.21) is simi-

lar in structure to the linear plasma response models obtained by performing system

identification experiments. However, there are some subtle differences between the

two types of models. Firstly, the first-principles-driven deviation model can be ob-

tained around any feedforward reference trajectory of the system while the data-driven

deviation model can only be obtained around the reference plasma state adopted dur-

ing the identification process. Secondly, the first-principles-driven deviation model is

time varying, therefore, it provides information on how the deviation dynamics evolve

throughout the discharge while the data-driven deviation model is time invariant. Fi-

nally, the first-principles-driven deviation model is able to capture the nonlinear effect

the control actuators have on the current profile evolution through the transforma-

tions (3.3) and (3.12), while the data-driven deviation model can only capture the

linear effect the control actuators have on the current profile evolution.
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3.4 Manipulation of dynamic model into robust

control framework

We now have a LTV model describing the dynamic behavior of the system around any

given feedfoward operating trajectory that we can use to synthesize a feedback con-

troller. However, most linear control design techniques are suited for time-invariant

model dynamics, i.e., the state-space matrices A, B, C, D of the model are not a

function of time. Therefore, we choose to model the time-varying system (3.21) as

a nominal time-invariant model plus a bounded uncertain component. We then seek

to design a feedback controller to stabilize the closed-loop system for all allowable

uncertain perturbations.

The control inputs vFF (t) are chosen to produce a desired trajectory of the system

αFF (t) [96, 97], therefore, both time varying quantities are bounded. We choose to

model the time varying parameters v1FF (t) and αFF (t) in the definition of the system

matrices of (3.21) as a nominal value plus a bounded uncertain component, i.e.,

v1FF (t) ∈ γv
(

1 + βvδv

)
αiFF (t) ∈ γiα

(
1 + βiαδ

i
α

)
, (3.22)

where γv = (v1FFmax
+ v1FFmin

)/2, γiα = (αiFFmax + αiFFmin )/2, βv = (v1FFmax
−

v1FFmin
)/(2γv), and βiα = (αiFFmax − αiFFmin )/(2γiα) with |δv| ≤ 1 and |δiα| ≤ 1 where

i = 1, 2, . . . , nθ. Since the vector αFF contains the value of θ at the nθ nodes and

the parameter v1FF is a scalar, this method of modeling the time varying parameters

produces nθ + 1 uncertain parameters. By inserting the models (3.22) into (3.21) and

defining the total uncertainty vector δ as δ = [δ1
α, . . . , δ

nθ
α , δv] ∈ Rnθ+1, the state-space
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matrices A(t), B(t), C, D in (3.21) are expressed as

A(t) = A0 +

nθ+1∑

m=1

δmA
∗
m B(t) = B0 +

nθ+1∑

m=1

δmB
∗
m,

C = C0 +

nθ+1∑

m=1

δmC
∗
m D = D0 +

nθ+1∑

m=1

δmD
∗
m, (3.23)

where

A0 = γvΓ B0k =

[
nθ∑

i=1

γiαΓk,i,Ωk,Πk

]
C0 = Inθ D0 = 0, (3.24)

and

A∗1,2,...,nθ = 0 A∗nθ+1 = γvβvΓ,

B∗mk =
[(
γmα β

m
α

)
Γk,m, 0, 0

]
for m = 1, 2, . . . , nθ B∗nθ+1 = 0,

C∗1,2,...,nθ+1 = 0 D∗1,2,...,nθ+1 = 0, (3.25)

where k = 1, 2, . . . , nθ, Γk,i denotes the k-th row i-th column component of Γ, B0k

and B∗mk denote the k-th component of B0 and B∗m, respectively, and Inθ denotes

the nθ × nθ identity matrix. The state-space matrices A0, B0, C0, D0 represent the

nominal system, δm denotes the m-th component of δ, and the state-space matrices

A∗m, B∗m, C∗m, D∗m represent the influence that each uncertain parameter δm has on

the system.

A linear system with state-space matrices A, B, C, D has a transfer function

representation G(s) = C(sInθ − A)−1B + D that describes the relationship between

the system’s inputs and outputs, i.e., y = G(s)vFB, where s denotes the Laplace

variable and nθ is the number of states of the system. If we insert the representation

of the state-space matrices (3.23) into the transfer function representation of the

system, the nominal model will be coupled with the uncertain parameters δm for
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Figure 3.1: General P −∆ control configuration with model uncertainty.

m = 1, . . . , nθ + 1. By exploiting the structure of the state matrices in (3.23), we

can separate the uncertain parameters from the nominal parameters by grouping the

uncertain parameters into a structured uncertainty matrix ∆ = diag{δ} to express

the feedback system in the conventional P − ∆ robust control framework shown in

Fig. 3.1 by employing the method outlined in [138], where P (s) is the generalized

transfer function of the system. If the transfer function P ∈ R(qT+nθ)×(qT+3), where

qT is the rank of the uncertainty matrix ∆, is partitioned as

P =


P11 P12

P21 P22


 , (3.26)

the input-output equations of the generalized transfer function are

y∆ = P11u∆ + P12vFB,

y = P21u∆ + P22vFB, (3.27)

where P11 ∈ RqT×qT , P12 ∈ RqT×3, P21 ∈ Rnθ×qT , P22 ∈ Rnθ×3, y∆ ∈ RqT , u∆ ∈ RqT ,

y ∈ Rnθ , and vFB ∈ R3. The relationship between the system transfer function G(s)

and the generalized transfer function P (s) and the uncertainty matrix ∆ is expressed
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as

G(s) = P22(s) + P21(s)∆
[
IqT − P11(s)∆

]−1
P12(s), (3.28)

where IqT is a qT × qT identity matrix. An overview of the employed technique is

provided in Appendix A.

By examining (3.27), it can be seen that the transfer function P contains informa-

tion on how both the nominal system and the uncertain parameters affect the output

of the system y. The output of the system is driven by the feedback control input

vFB and the uncertain input perturbation u∆ through the transfer functions P22 and

P21, respectively. The uncertain input perturbation is driven by the uncertain output

perturbation y∆ through the uncertain matrix ∆ (see Fig. 3.1). Finally, the output

perturbation is driven by the feedback control input vFB and the uncertain input

perturbation u∆ through the transfer functions P12 and P11, respectively. If there

were no uncertain perturbations, i.e., ∆ = 0, the input-output equation of the system

would be reduced to

y = P22vFB. (3.29)

Therefore, the transfer function P22 describes the nominal response of the system,

and the transfer functions P11, P12, and P21 describe how the uncertain parameters

affect the output of the system.

3.5 Evaluation of relevant control channels

It is desired that the controlled output y(t) be able to track a reference value r(t),

therefore, we define the tracking error e(t) as

e(t) = r(t)− y(t). (3.30)

119



The conditions to bring the tracking error exactly to zero are typically not met because

the number of controlled outputs (nθ) is larger than the number of controlled inputs

(3). As a result, we can only independently control 3 linear combinations of the output

of the system. Therefore, in order to synthesize an effective feedback controller, it is

necessary to determine which output directions are the most controllable and which

input directions are the most influential. If these directions are not identified, the

feedback controller could actuate in a direction that the system does not respond to

and a lot of control energy could be spent for a marginal improvement in the value

of the tracking error. The technique we employ to evaluate and decouple the most

relevant control channels is based on a singular value decomposition (SVD) of the

static (steady-state) gain matrix of the nominal state-space system A0, B0, C0, D0.

The relationship between the outputs y and the inputs vFB of the nominal system

is expressed in terms of the nominal transfer function G0(s) which is defined as

y = G0(s)vFB where G0(s) = C0(sInθ − A0)−1B0 +D0. (3.31)

The nominal input-output relation in steady state (i.e., s→ 0) is expressed as

ȳ = Ḡ0v̄FB =
(
− C0(A0)−1B0 +D0

)
v̄FB, (3.32)

where ȳ denotes the steady-state output, v̄FB denotes the steady-state input, and Ḡ0

denotes the steady-state gain of the plant G0(s) (i.e., s → 0). We next define the

“weighted” transfer function G̃0 and its economy size SVD as

G̃0 = Q1/2Ḡ0R
−1/2 = UΣV T , (3.33)

where Σ = diag{σ1, σ2, σ3} ∈ R3×3 is a diagonal matrix of steady-state singular

values with σ1 > σ2 > σ3 > 0 and U ∈ Rnθ×3 and V ∈ R3×3 are matrices that
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possess the following properties V TV = V V T = I, UTU = I. We have introduced the

positive definite matrices Q ∈ Rnθ×nθ and R ∈ R3×3 to weight the relative tracking

performance and control effort. Using (3.33), the input-output relation (3.32) is

expressed as

ȳ = Ḡ0v̄FB = Q−1/2G̃0R
1/2v̄FB = Q−1/2UΣV TR1/2v̄FB. (3.34)

We note that the columns of the matrix Q−1/2UΣ define a basis for the subspace of

obtainable steady-state output values. Therefore, any obtainable steady-state output

can be written as a linear combination ȳ∗ ∈ R3 of the basis vectors, and we can write

ȳ = Q−1/2UΣȳ∗ ⇐⇒ ȳ∗ = Σ−1UTQ1/2ȳ. (3.35)

As the obtainable steady-state outputs are given by (3.35), this implies that only the

component of the reference vector that lies in the subspace Q−1/2UΣ will be able to

be tracked in steady state, and we can define the quantity

r̄∗ = Σ−1UTQ1/2r̄ ∈ R3, (3.36)

which represents the trackable components of the reference. By defining

v̄∗FB = V TR1/2v̄FB ⇐⇒ v̄FB = R−1/2V v̄∗FB, (3.37)

where v̄∗FB ∈ R3, and by employing (3.35) and (3.34), a decoupled relationship be-

tween the outputs ȳ∗ and the inputs v̄∗FB is obtained as

ȳ∗ = Σ−1UTQ1/2ȳ = Σ−1UTQ1/2Q−1/2UΣV TR1/2v̄FB = v̄∗FB. (3.38)
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Figure 3.2: Steady-state (a) reference output singular vectors and (b) input singular vec-
tors for θ profile control in DIII-D L-mode scenarios.

We note that some of the singular values σi may have a small magnitude relative to

others and may be chosen to be neglected in the control synthesis to avoid poten-

tially spending a significant amount of control effort for only a marginal improve-

ment in the tracking error (3.30). We therefore partition the singular values into ks

significant singular values Σs and 3 − ks negligible singular values Σns. The signifi-

cant components of the reference, output, and input vectors can then be defined as

r̄∗s = Σ−1
s UT

s Q
1/2r̄ ∈ Rks , ȳ∗s = Σ−1

s UT
s Q

1/2ȳ ∈ Rks , and v̄∗FBs = V T
s R

1/2v̄FB ∈ Rks ,

respectively, where Us ∈ Rnθ×ks and Vs ∈ R3×ks are the components of U and V asso-

ciated with the significant singular values. A detailed overview of the SVD technique

employed evaluate the relevant control channels is provided in Appendix B.

The singular vectors of the basis for the subspace of obtainable steady-state output

valuesQ−1/2U are shown in Fig. 3.2(a). The corresponding singular vectors associated

with the steady-state input values R−1/2V are shown in Fig. 3.2(b). The associated

singular values are σ1 = 7.9360, σ2 = 0.2738, and σ3 = 0.0015, which are the result of

the dynamic model assumptions, the actuator configuration, and the input scaling.

As evidenced by the magnitude of the first singular value relative to the others,

the first output singular vector is the dominant shape of an achievable steady-state

profile, according to the model. In order to generate this profile shape, the feedback
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controller can actuate in the direction associated with the first input singular vector,

which contains a strong contribution from the boundary feedback control component

v3FB . As the value of the singular value decreases, a larger amount of control effort

is needed along the direction of the associated input singular vector to produce a

significant contribution to the steady-state profile in the direction of the associated

output singular vector.

3.6 Feedback control problem formulation

The control goal is to design a feedback controller that can minimize the tracking error

(3.30) while using as little feedback control effort as possible, achieve a set of specified

performance objectives, and robustly stabilize the system by controlling the significant

portion of the output of the system (3.27). A schematic of this control problem is

shown in Fig. 3.3. The blocks Σ−1
s UT

s Q
1/2 and R−1/2Vs are used to obtain a one-to-

one relationship between the outputs and the inputs of the system, which provides

us the ability to synthesize a square feedback controller K. The block Σ−1
s UT

s Q
1/2

extracts the significant component of the tracking error e∗s from the error signal e. The

feedback controller is driven by the error e∗s and outputs the significant component

of the feedback control input v∗FBs . Finally, the block R−1/2Vs is used to compute

the feedback control input vFB that is applied to the system from the control signal

v∗FBs . The outputs of the closed-loop system Z1 and Z2 are defined as Z1 = Wpe
∗
s

and Z2 = Wuv
∗
FBs

, where Wp and Wu are frequency dependent functions that will

be used to optimize the closed-loop performance of the system during the controller

design process by minimizing the frequency-weighted tracking error (Z1) and control

effort (Z2).

The feedback system is expressed in the conventional ∆− P ∗ −K robust control

design framework shown in Fig. 3.4, where P ∗ is the generalized plant and r∗s =
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Figure 3.3: Schematic of control problem formulation for θ profile feedback control design
in DIII-D L-mode scenarios.

Σ−1
s UT

s Q
1/2r. By defining the transfer functions

GDC = Σ−1
s UT

s Q
1/2P22R

−1/2Vs,

Ty∆v = P12R
−1/2Vs,

Tyu∆
= Σ−1

s UT
s Q

1/2P21, (3.39)

the input-output equations of the generalized plant P ∗ are




y∆

Z1

Z2

e∗s




=




P ∗11 P ∗12 P ∗13

P ∗21 P ∗22 P ∗23

P ∗31 P ∗32 P ∗33

P ∗41 P ∗42 P ∗43







u∆

r∗s

v∗FBs




=


 P̃ ∗11 P̃ ∗12

P̃ ∗21 P̃ ∗22







u∆

r∗s

v∗FBs



, (3.40)

where

P ∗11 = P11 P ∗21 = −WpTyu∆
P ∗31 = 0

P ∗12 = 0 P ∗22 = Wp P ∗32 = 0

P ∗13 = Ty∆v P ∗23 = −WpGDC P ∗33 = Wu

P ∗41 = −Tyu∆
P ∗42 = I P ∗43 = −GDC .
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Figure 3.4: Model in conventional ∆− P ∗ −K robust control design framework.

The system (3.40) can be written in the conventional N − ∆ closed-loop control

analysis configuration shown in Fig. 3.5 by using the definition of the lower linear

fractional transformation (LFT), which is denoted as Fl, between P ∗ and K, i.e.,

N = Fl(P
∗, K) = P̃ ∗11 + P̃ ∗12K(I − P̃ ∗22K)−1P̃ ∗21. (3.41)

By using the definitions

SDCO = (I +GDCK)−1,

TDCO = GDCK(I +GDCK)−1,

I = SDCO + TDCO , (3.42)

where SDCO is the decoupled output sensitivity function and TDCO is the decoupled

output complementary sensitivity function, the system (3.40) is expressed in theN−∆
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Figure 3.5: General N −∆ closed-loop control analysis configuration with model uncer-
tainty.

framework as




y∆

Z1

Z2


 = N


u∆

r∗s


 N =




N11 N12

N21 N22

N31 N32


 =




P11 − Ty∆vKSDCOTyu∆
Ty∆vKSDCO

−WpSDCOTyu∆
WpSDCO

−WuKSDCOTyu∆
WuKSDCO


 .

(3.43)

One possible approach to designing a feedback controller K is to directly take the

uncertainty ∆ into account during the design process by employing the µ-synthesis

technique [10]. This technique aims to synthesize a feedback controller that robustly

stabilizes the system by iterating between controller design and robust stability anal-

ysis in a systematic sequence of steps. This approach would guarantee that the

designed controller would robustly stabilize the system, however, the computational

complexity of this design technique is high, and the iterations may not converge to

the best solution. Therefore, we adopt a different approach to synthesize a feedback

controller. The technique we employ is to design a nominal controller K to achieve

the specified control goals for the nominal closed-loop system, i.e., we assume ∆ = 0.

We then take the uncertainty ∆ into account by analyzing the robust stability of the

system with this nominal controller. If the controller successfully robustly stabilizes
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the system, we have achieved all of our control goals. If the controller does not ro-

bustly stabilize the system, we must repeat the process of designing a controller for the

nominal system while relaxing the performance objectives of the closed-loop system.

With this purpose in mind, the nominal performance condition of the closed-loop

system (3.43) and the control problem are expressed as


Z1

Z2


 =


 WpSDCO

WuKSDCO



[
r∗s

]
⇒ min

K

∣∣∣∣
∣∣∣∣
WpSDCO

WuKSDCO

∣∣∣∣
∣∣∣∣
∞
, ∀ω, (3.44)

where || · ||∞ denotes the H∞ norm. The frequency dependent weight functions Wp(s)

and Wu(s) are chosen to shape (place upper bounds on the magnitude of) the closed-

loop transfer functions and are parameterized as [10]

Wp(s) =

(
s/
√
Mp + ωp

)2

(
s+ ωp

√
H∗p
)2 Wu(s) =

(
s/
√
Mu + ωu

)2

(
s+ ωu

√
H∗u
)2 , (3.45)

where Mp = 1, H∗p = 10−6, ωp = 1, Mu = 1, H∗u = 100.1, and ωu = 10. If we are

able to find a controller K that minimizes the stacked norm of the transfer functions

WpSDCO and WuKSDCO , we will have minimized the effect a change in the reference

r∗s has on the error e∗s while using as little feedback control effort v∗FBs as possible and

achieved a desired performance in the response of the nominal closed-loop system to

changes in the reference r∗s . Therefore, by solving the minimization problem (3.44),

we have synthesized a controller that minimizes (3.30) while using as little control

effort as possible and produces a desired closed-loop response of the system. An

introduction to the design of feedback controllers by employing the H∞ closed-loop

shaping technique is provided in Appendix C.

The feedback controller K found by solving (3.44) is written in state-space form
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as

ẋfb = Afbxfb +Bfbe
∗
s,

v∗FBs = Cfbxfb +Dfbe
∗
s, (3.46)

where the vector xfb ∈ Rnfb is the internal controller states, Afb ∈ Rnfb×nfb , Bfb ∈
Rnfb×ks , Cfb ∈ Rks×nfb , and Dfb ∈ Rks×ks are the controller system matrices, and

nfb is the number of controller states. For this controller design, the significant

singular values are chosen as Σs = σ1, and the negligible singular values are chosen as

Σns = diag{σ2, σ3}, i.e., ks = 1. By neglecting the second and third singular values,

the feedback controller will be able to actuate the system in the direction associated

with the first input singular vector shown in Fig. 3.2(b) to produce the dominate

shape of an achievable steady-state profile associated with the first output singular

vector shown in Fig. 3.2(a). To analyze the closed-loop performance of the nominal

system, the frequency response of the magnitude of the maximum singular value of
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Figure 3.7: Structured singular value µ versus frequency.

the upper bounds 1/Wp and 1/Wu along with the achieved transfer functions SDCO

and KSDCO computed with the nominal controller (3.46) are shown in Fig. 3.6. As

can be seen from the figure, the desired shapes of the transfer functions SDCO and

KSDCO are achieved, and the control goals for the nominal closed-loop system are

therefore achieved. To analyze the robust stability of the closed-loop system, the

structure of the uncertainty in the N − ∆ control analysis framework is now taken

into account. Because the uncertainty has a defined structure, ∆ = diag{δ}, we can

define the structured singular value µ as

µ
(
N11(jω)

)
=

1

min{km| det(I − kmN11∆) = 0} , (3.47)

where N11 is the closed-loop transfer function between y∆ and u∆, i.e., y∆ = N11u∆

(see (3.43)). The closed-loop system is robustly stable for all allowable perturbations

if and only if µ
(
N11(jω)

)
< 1, ∀ω [10]. A plot of µ versus frequency is shown in

Fig. 3.7, and as can be seen from the figure, the robust stability condition is satisfied

with the nominal controller (3.46). Therefore, the controller (3.46) achieves all of our

closed-loop control specifications.

The inputs that are applied to the system P are the control signals vFB and the
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measurements that are available from the system P are the error signals e. There-

fore, we must convert the input and output of the controller (3.46) to these sig-

nals. This is accomplished by substituting the relationships e∗s = Σ−1
s UT

s Q
1/2e and

vFB = R−1/2Vsv
∗
FBs

into (3.46). Finally, the multi-input-multi-output feedback con-

troller K̂ ∈ R3×nθ is expressed in state-space form as

ẋfb = Afbxfb +BfbΣ
−1
s UT

s Q
1/2e,

vFB = R−1/2VsCfbxfb +R−1/2VsDfbΣ
−1
s UT

s Q
1/2e. (3.48)

3.7 Control algorithm implementation in the DIII-

D Plasma Control System

In this section we describe the implementation of a real-time feedforward + feedback

algorithm for magnetic and kinetic profile control in the DIII-D Plasma Control Sys-

tem (PCS). We provide in section 3.7.1 an overview of the algorithm designed in this

chapter. In section 3.7.2, we describe the generalized framework for real-time feed-

forward + feedback control of magnetic and kinetic plasma profiles implemented in

the DIII-D PCS. Finally, in section 3.7.3 we present a simulation simserver that can

interface with the DIII-D PCS to test the correctness of the real-time implementation

of the control framework and to determine the effectiveness of proposed controllers.

3.7.1 Overview of feedforward + feedback control algorithm

The overall feedforward + feedback control algorithm synthesized from the first-

principles-driven model of the poloidal flux profile evolution can be summarized as
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follows. The feedforward control inputs are computed as

u1FF (t) =

(
n̄eFF (t)

IpFF (t)
√
PtotFF (t)

)3/2

,

u2FF (t) =

√
PtotFF (t)

IpFF (t)
,

u3FF (t) = IpFF (t), (3.49)

where IpFF (t), PtotFF (t), and n̄eFF (t) are determined off-line [96, 97]. In accordance

with (3.11), the feedforward control inputs are modified as

v1FF = u1FF v2FF = u2FF v3FF = u1FFu3FF . (3.50)

Finally, the closed-loop control inputs are computed as

v1 = v1FF + v1FBu1norm ,

v2 = v2FF + v2FBu2norm ,

v3 = v3FF + v3FBu1normu3norm , (3.51)

where (·)FF denotes a feedforward quantity and (·)FB denotes a feedback quantity

computed on-line via (3.48). The closed-loop signals for the control actuators Ip(t),

Ptot(t), and n̄e(t) are computed as

Ip(t) =
v3

v1

Ptot(t) =

(
v2v3

v1

)2

n̄e(t) =
v2v

2
3

v
4/3
1

. (3.52)
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3.7.2 Generalized framework for real-time plasma profile con-

trol

A general framework for real-time feedforward + feedback control of magnetic and

kinetic plasma profiles + a scalar quantity has been implemented in the DIII-D PCS.

The magnetic profiles that can be controlled are: the safety factor (q), the rotational

transform (ι = 1/q), the poloidal magnetic flux (Ψ), or the poloidal magnetic flux

gradient (θ). The kinetic profiles that can be controlled are: the electron temperature

(Te), the ion temperature (Ti), or the toroidal rotation velocity (Vφ). The scalar

quantities that can be controlled are: the normalized plasma beta (βN), the minimum

value of q (qmin), or the plasma internal inductance (li). The selected magnetic profile

can be controlled at 21 evenly spaced points on the domain ρ̂ ∈ [0, 1], and the selected

kinetic profiles can be controlled at 11 evenly spaced points on the domain ρ̂ ∈
[0, 1]. The feedback portion of the controller was interfaced with the real-time EFIT

(rtEFIT) equilibrium reconstruction code [11] for magnetic profile control and with

the real-time charge-exchange recombination (rtCER) code [139] for kinetic profile

control. The control scheme in this chapter has only been designed to control the

magnetic poloidal flux gradient profile, therefore, only the magnetic profile portion of

the control algorithm implemented in the DIII-D PCS is described below.

The diagnostics provided to the PCS by rtEFIT are: a measured value of the

total plasma current Imeasp , the poloidal stream function at the magnetic axis ψaxis

and at the plasma boundary ψbdry, and the safety factor q on a normalized flux spatial

domain ψn where

ψn =
ψ − ψaxis

ψbdry − ψaxis
. (3.53)

The safety factor q(ψrtn ) is provided by rtEFIT at 64 evenly spaced points

ψrtnk = 0, 1/64, 2/64, . . . , 63/64. (3.54)
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Figure 3.8: Configuration between the DIII-D tokamak and the DIII-D PCS real-time
code for magnetic profile control.

The feedback portion of the controller is implemented as a discrete time state-space

system with a sampling time of 20 milliseconds. This sampling time is set based

on the modulation of the neutral beam injector utilized to acquire Motional Stark

Effect (MSE) diagnostic data that is used to obtain measurements of the q profile in

real-time. In this case the MSE beam is modulated on for 10 milliseconds then off

for 10 milliseconds.

The configuration between the generalized real-time code running in the DIII-D
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PCS and the DIII-D tokamak is shown in Fig. 3.8. The Coordinate Transformation

block in the PCS is an algorithm that is executed to construct the selected magnetic

profile yM(ρ̂), either q, ι, Ψ, or θ, controlled by the Feedback Controller from the data

provided by the rtEFIT algorithm q(ψrtn ), ψaxis, ψbdry, and Imeasp . See Appendix D for

a detailed description of this algorithm. By implementing the Feedback Controller

with separate input signals, rM−yMff
and yM−yMff

, where rM represents the target

(desired system output) and yMff
represents a reference output (for example a value of

the system output around which a linear model of the system dynamics is obtained),

controllers designed with different tracking error definitions can be employed with

the same implementation configuration. The Feedback Controller outputs a general

feedback control signal (ufb) that is added to a general feedfoward control signal

(uff ) to produce a general total control signal (u). Here, the variable u is employed

to denote any general control input, i.e., it is not to be misinterpreted as the value of

the intermediate control signals (3.49) for the algorithm designed in this chapter. In

the case of control algorithm designed in this chapter (see section 3.7.1), the signal

u in Fig. 3.8 would correspond to the control inputs v defined in (3.50)-(3.51). The

nonlinear transformation switch (NL Trans. Switch) is used to indicate whether or

not post processing of the signals generated by the overall controller is required. If

post processing is required, the NL Trans. Switch is set to the left position and the

Nonlinear Transformation block in the PCS converts the control signals prescribed by

the feedforward + feedback controller to the signals for the physical control variables.

If the Feedback Controller directly generates signals for the physical control variables,

the NL Trans. Switch is set to the right position and the control signal u is directly sent

to the Magnitude Saturation block in the PCS. In the case of the control algorithm

designed in this chapter (see section 3.7.1), post processing of the control signals

is required (NL Trans. Switch set to the left), and the Nonlinear Transformation

block represents the conversion (3.52) of the outputs prescribed by the feedforward
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+ feedback controller to the physical control variables Ip(t), Ptot(t), and n̄e(t).

If the feedfoward + feedback controller drives the physical control actuators to sat-

uration, causing any integral component of the feedback controller to wind up, unde-

sirable oscillations in the system could develop. Therefore, some type of anti-windup

design is necessary to ensure that the closed-loop system remains well behaved in the

presence of actuator saturation. The approach taken here is to augment the feed-

forward + feedback controller with a separate anti-windup compensation feedback.

The Anti-windup Compensator outputs a signal uaw that is designed to mitigate the

effect that actuator magnitude saturation has on the closed-loop performance. Var-

ious methods exist to design anti-windup compensators that achieve this goal [140].

The anti-windup switch (AW Switch) is used to indicate whether the output of the

Anti-windup Compensator is designed to affect the input (right position) or the out-

put (left position) of the feedback portion of the combined controller. In the case of

control algorithm designed in this chapter, an anti-windup scheme that affects the

input of the Feedback Controller (AW Switch set to the right) is employed. See [141]

for an example of the employed anti-windup augmentation.

Finally, it is important to note that the requests made by the combined feedfor-

ward + feedback controller are the references to the Dedicated Control Loops com-

manding the physical actuators on DIII-D. For example, in the case of the plasma

current, a proportional-integral-derivative (PID) loop regulates the ohmic poloidal

field coil voltage so the plasma current (Ip), which is measured by a Rogowski loop

and includes both inductive and noninductive current components, follows the de-

sired waveform requested by the feedforward + feedback algorithm (Irefp ). Similarly

to the case of the plasma current, a PID loop regulates gas puffing to make the line

average electron density measured by a CO2 interferometer (n̄e) follow the combined

controller requested density (n̄refe ). Finally, the neutral beam and electron cyclotron

control loops manage the individual neutral beam and gyrotron modulation (Pnbi and
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Pec) to follow the average neutral beam and electron cyclotron power requests made

by the feedforward + feedback controller (P ref
nbi and P ref

ec ). Experiments in DIII-D

have shown the possibility of controlling both the plasma current and the neutral

beam and electron cyclotron powers very accurately. However, the control of the line

average electron density appears more challenging.

3.7.3 Simserver architecture for validating implemented al-

gorithms

The simulation simserver (Simserver) architecture is a valuable simulation environ-

ment which is used for testing algorithms running in the DIII-D PCS, and its archi-

tecture is shown in Fig. 3.9. It incorporates a tokamak simulation model that is used

to test the PCS in realistic closed-loop simulations. The simulation model accepts

control inputs from the PCS and then generates simulated diagnostics. A test switch

connects the PCS (left) to either the DIII-D tokamak (upper right) or the DIII-D

simulated tokamak (bottom right) depending on which mode of operation is selected.

The Matlab/Simulink modeling environment is used to model the major features of

the tokamak, and the only restriction on the Simulink models is that their inputs and

outputs must be consistent with the input and output channels in the PCS. This type

of simulation is used to determine the effectiveness of controllers and correctness of

their real-time implementation before experimental tests are conducted [142].

In order to carry out a Simserver simulation, a Simulink model of the magnetic

diffusion equation (3.1) was developed and integrated into a Simserver that can in-

terface with the DIII-D PCS [115]. To construct the model, the governing infinite

dimensional PDE (3.1)-(3.2) is approximated by a finite dimensional system of ODEs.

The process used to obtain the reduced-order model is the same one used in section

3.3, where the non-dimensional spatial domain is represented as mψ nodes while the
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Figure 3.9: Simserver architecture for validating control algorithms in the DIII-D PCS.

time domain is left continuous. This discretization process results in mψ−2 ordinary

differential equations that can be integrated in time to simulate the the poloidal mag-

netic flux profile evolution in response to the control actuator signals. In order to be

compatible with the diagnostics provided to the PCS by rtEFIT, the Simulink model

of the magnetic diffusion equation is required to output the plasma current Ip(t), the

poloidal stream function at the magnetic axis ψaxis and at the plasma boundary ψbdry,

and the safety factor q(ψrtn ).

3.8 Simserver simulation testing of control algo-

rithm

In this section, we show results from a Simserver simulation used to test the implemen-

tation of the control algorithm (3.49)-(3.52) in the DIII-D PCS and to demonstrate

the effectiveness of the proposed control algorithm. In order to test the feedback

controller in a realistic tokamak operating scenario, we need to generate simulation

conditions where there is a mismatch (i) between the actual and the assumed initial
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Figure 3.10: (Simulation reference tracking): Initial poloidal flux gradient profile θ(ρ̂) at
time t = 0.5 s.

conditions and (ii) between the actual plant and the model used for the control design.

The nominal initial poloidal flux gradient profile θ(ρ̂) is shown in Fig. 3.10, which is

extracted from DIII-D shot 129412 at an experimental time of t = 0.5 s. In order to

satisfy the first simulation condition requirement, we perturb the initial θ profile as

shown in Fig. 3.10. We denote as the nominal model the PDE model of the θ profile

evolution in a tokamak presented in section 3.2 and described in detail in [83]. This

nominal model is used to design both the feedforward and the feedback controllers. In

order to satisfy the second simulation condition requirement, we perturb the nominal

electron temperature and noninductive current density models (described in [83]) by

10 % in order to produce a plant (disturbed model) that is different from the nominal

model used to synthesize the control algorithm. These simulation conditions provide

the means to test the feedback controller in a realistic operating scenario where there

is a mismatch between the actual and the assumed initial conditions and between the

plant and the model.

We now describe the setup for a test conducted to determine the reference track-

ing capabilities of the feedback controller through simulation with the real-time code

utilized in the DIII-D PCS. We begin by producing a target poloidal flux gradient

profile evolution θtar(ρ̂, t) by executing a feedfoward-control-only simulation with the
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optimal feedforward control inputs vFFOpt [96,97]. For this simulation, the Simserver

simulates the nominal model with the nominal initial condition. Next, we produce

a second poloidal flux gradient profile evolution θFF (ρ̂, t) that is different from the

target evolution θtar(ρ̂, t). This is accomplished by generating a non-optimal set of

feedfoward control trajectories vFF by perturbing the optimal feedfoward control in-

puts and then executing another feedfoward-control-only simulation with these per-

turbed control inputs. For this simulation, the Simserver simulates the disturbed

model (plant) with the perturbed initial condition. Finally, we determine the ability

of the feedback controller to track the target profile evolution θtar(ρ̂, t) by executing

a feedforward + feedback control simulation. For this simulation, the Simserver sim-

ulates the disturbed model (plant) with the perturbed initial condition. The setup of

the feedforward + feedback simulation is as follows. The feedback controller is on for

the duration of the simulation, the non-optimal feedforward control inputs vFF are

used, and the reference vector is set according to rM(ρ̂, t) = θtar(ρ̂, t). The tracking

error e is defined at any time t during the simulation as

e = (rM − yMFF
)− (yM − yMFF

)

=
[
θtar(ρ̂)− θFF (ρ̂)

]
−
[
θ(ρ̂)− θFF (ρ̂)

]
= θtar(ρ̂)− θ(ρ̂), (3.55)

which in turn implies the feedback controller is trying to drive the θ profile to the

desired target profile.

The ramp-up phase of the simulated discharges corresponds to an experimental

time t = [0.5, 1.7] s, and the early flattop phase of the simulated discharges is asso-

ciated with the experimental time t = [1.7, 2.9] s. A comparison between the target

profile, the θ profile achieved by the plant (disturbed model) with feedforward +

feedback control, and the θ profile achieved by the plant with feedforward-only con-

trol at the times t = 1.7 s, t = 2.3 s, and t = 2.9 s is shown in Figs. 3.11(a-c).
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Figure 3.11: (Simulation reference tracking): Poloidal flux gradient profile θ(ρ̂) at time (a)
t = 1.7 s, (b) t = 2.3 s, and (c) t = 2.9 s and control trajectory comparison:
(d) plasma current (MA), (e) total noninductive power (MW), and (f) line
average electron density (1019 m−3).

During the ramp-up phase, the feedback controller reacts to the initial tracking error

and begins to drive the plant towards the target. At the end of the ramp-up phase,

the modification of the θ profile of the plant towards the target profile is evident as

shown in Fig. 3.11(a). As the feedforward + feedback simulation progresses into the

beginning of the flattop phase, the feedback controller is able to successfully drive

the plant to the target profile and then regulate the θ profile evolution around the

target trajectory as shown in Figs. 3.11(b-c). A comparison of the feedforward and

feedforward + feedback control trajectories for Ip(t), Ptot(t), and n̄e(t) is shown in

Figs. 3.11(d-f). In order to (i) track the target profile evolution, (ii) overcome the

disturbance in the initial θ profile, and (iii) overcome the uncertainty in the plant, the

feedback component of the combined controller modifies the non-optimal feedforward

control trajectories throughout the feedforward + feedback simulation.
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3.9 Experimental testing of control algorithm

The actuators used to manipulate the poloidal flux gradient profile evolution θ(ρ̂, t)

have a limited ability to drive the system towards a desired target profile based on

the physical design of the DIII-D tokamak. As a result, there are a limited num-

ber of target profiles that are physically achievable by the machine no matter what

type of profile control strategy is employed. The control actuators themselves are

also physically constrained in magnitude as well as rate of change, which further re-

duces the range of target profiles achievable for a given initial θ profile. The goal of

the experimental tests was to verify that the feedback controller synthesized from a

first-principles-driven model of the poloidal flux profile evolution is able to drive the

system to a target profile that is physically achievable by the machine. Towards this

goal, we first sought a target poloidal flux gradient profile evolution θtar(ρ̂, t) that

was physically achievable by the machine. We executed a feedfoward-control-only

discharge with a nominal set of feedforward control inputs vFFNom in DIII-D shot

145477, and from this discharge we extracted a physically achievable target profile

evolution that we employed to test the feedback controller in reference tracking and

disturbance rejections experiments.

3.9.1 Reference tracking

In this section we describe the results of a test designed to determine the reference

tracking capabilities of the feedback controller in the DIII-D tokamak during the

ramp-up and early flattop phases of the discharge. We first produced a poloidal

flux gradient profile evolution θFF (ρ̂, t) that was different from the target evolution

θtar(ρ̂, t). This profile evolution was obtained by perturbing the nominal feedfoward

control inputs to obtain a second set of feedfoward control inputs vFFPtrb and executing

a feedfoward-control-only discharge in DIII-D shot 146411. Next, we determined the
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Figure 3.12: (Experiment reference tracking (DIII-D shot 146458)): Time trace of
poloidal flux gradient θ at normalized radii (a) ρ̂ = 0.3, (b) ρ̂ = 0.4, (c)
ρ̂ = 0.6, (d) ρ̂ = 0.7, (e) ρ̂ = 0.8, and (f) ρ̂ = 0.9.

ability of the feedback controller to track the target profile evolution θtar(ρ̂, t) by

executing a feedforward + feedback control discharge in DIII-D shot 146458. During

this discharge, the feedback controller was on for the duration of the experiment,

the feedforward control inputs vFFPtrb were used as the feedforward component of the

combined controller, and the reference vector was set according to rM(ρ̂, t) = θtar(ρ̂, t).

As seen in (3.55), this choice of the reference vector implies the feedback controller

was trying to drive the θ profile to the desired target profile.

In the reference tracking experiment, the ramp-up phase was associated with the

time t = [0.5, 1.2] s, and the early flattop phase corresponded to the time t = (1.2, 2.25]

s. Time traces of the poloidal flux gradient θ at normalized radii ρ̂ = 0.3, 0.4, 0.6,

0.7, 0.8, and 0.9 achieved during the target discharge, the feedforward + feedback

controlled discharge, and the feedforward controlled discharge are shown in Fig. 3.12.

The feedback controller can manipulate the θ profile evolution through diffusivity,

interior, and boundary actuation. Due to the fact that the boundary actuation is one

of the more influential actuators as shown in Fig. 3.2(b), the feedback controller can
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Figure 3.13: (Experiment reference tracking (DIII-D shot 146458)): Poloidal flux gradient
profile θ(ρ̂) at time (a) t = 0.538 s, (b) t = 1.218 s, (c) t = 1.618 s, and (d)
t = 2.258 s.

more effectively control the θ profile near the plasma boundary because of the spatial

proximity of the actuator and the controlled quantity. Therefore, a tracking error in

the interior of the plasma will take longer to be eliminated because the control action

applied at the plasma boundary will have to diffuse towards the center of the plasma.

This behavior is shown in Figs. 3.12(c-f) for the time traces of the θ at normalized

radii ρ̂ = 0.6, 0.7, 0.8, and 0.9 achieved in the feedforward + feedback controlled

discharge. During this discharge, the θ evolution at ρ̂ = 0.6 and 0.7 was initially

below the desired target evolution. Therefore, the feedback controller caused θ at

ρ̂ = 0.8 and 0.9 to overshoot the desired target evolution at these spatial locations

in order to cause the θ evolution at ρ̂ = 0.6 and 0.7 to increase towards the target

evolution through diffusion. Once the target θ evolution was achieved at ρ̂ = 0.6 and

0.7 at the time t = 2.0 s as shown in Figs. 3.12(c-d), the feedback controller began
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Figure 3.14: (Experiment reference tracking (DIII-D shot 146458)): Control trajectory
comparison: (a) plasma current (MA), (b) total noninductive power (MW),
and (c) line average electron density (1019 m−3).

to reduce the tracking error at the normalized radii ρ̂ = 0.8 and 0.9 during the time

interval t = [2.0, 2.25] s as shown in Figs. 3.12(e-f).

A comparison between the target profile, the θ(ρ̂) profile achieved in the feedfor-

ward + feedback controlled discharge, and the θ(ρ̂) profile achieved in the feedforward

controlled discharge at various times is shown in Fig. 3.13. Due to the nonlinear

behavior of the tokamak plasma and the physical limitations of the actuators to ma-

nipulate the θ profile evolution, there was no guarantee that the feedback controller

would be able to drive the θ profile evolution in the feedforward + feedback con-

trolled discharge to the target profile evolution from the perturbed initial condition

shown in Fig. 3.13(a). During the ramp-up phase of the feedforward + feedback

controlled discharge, the feedback controller began to drive the plasma towards the

target profile by modifying the perturbed feedforward actuator trajectories as shown

in Figs. 3.13(b-c). At the end of the early flattop phase of the feedforward + feedback

controlled discharge, the feedback controller was able to drive the θ profile as close

as possible to the target profile as shown in Fig. 3.13(d).

A comparison of the actuator trajectories during the feedforward controlled dis-

charge and during the feedforward + feedback controlled discharge is shown in Fig.

3.14. In order to track the target profile evolution, the feedback component of the

combined controller modified the actuator trajectories throughout the feedforward +
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feedback controlled discharge. Also shown in Fig. 3.14 is the ability of the dedicated

control loops commanding the physical actuators to follow the requests made by the

control algorithm. The control loops commanding the total plasma current and the

total average neutral beam power were able to follow the requests very well, and

the control loop commanding the line average electron density was able to follow the

request reasonably well.

3.9.2 Disturbance rejection

In this section we describe the results of a test designed to determine the disturbance

rejection capabilities of the feedback controller in the DIII-D tokamak during the

flattop phase of the discharge. To determine the ability of the feedback controller

to reject an artificial input disturbance, a feedforward + disturbance + feedback

controlled discharge was executed in DIII-D shot 146153. During this discharge,

the nominal feedforward control inputs vFFNom were used during the time interval

t = [0.5, 2) s (ramp-up and early flattop phases) with the feedback controller off.

During the time interval t = [2, 5] s (flattop phase), a disturbance was added to the

nominal feedforward actuator trajectories. The disturbance was added according to

v1FFDis
= u1FFNom

,

v2FFDis
= u2FFNom

,

v3FFDis
= u1FFNom

[
u3FFNom

− 0.1
]
, (3.56)

to produce a feedforward + disturbance set of control inputs vFFDis . By examining

(3.52) it can be seen that this disturbance will propagate into each of the three

control actuators Ip(t), Ptot(t), and n̄e(t). The feedback controller was turned on and
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off throughout this discharge according to

vFB =





0.5 to 2.2 s OFF

2.2 to 2.7 s ON

2.7 to 3.2 s OFF

3.2 to 5.0 s ON

, (3.57)

to see the effect the disturbance had on the plasma and to determine the ability

of the feedback controller to reject the disturbance and regulate the θ profile evolu-

tion around the target profile evolution. The reference vector was set according to

rM(ρ̂, t) = θtar(ρ̂, t), which implies the feedback controller was trying to regulate the

θ profile around the desired target profile.

A comparison between the target profile and the θ(ρ̂) profile achieved during DIII-

D shot 146153 (FF + Dist. + FB) at several times throughout the discharge is shown

in Figs. 3.15(a-f). When the disturbance was initially introduced to the plasma at

the time t = 2.0 s, the θ profile was close to the desired target profile as shown in

Fig. 3.15(a). During the time interval t = [2.0, 2.2] s, the disturbance slightly moved

the θ profile away from the target profile as shown in Fig. 3.15(b). At the time

t = 2.2 s, the feedback controller was turned on and it was able to reject the effects

of the disturbance. This resulted in the target profile being successfully achieved

when the feedback controller was turned off at the time t = 2.7 s as shown in Fig.

3.15(c). During the time interval t = [2.7, 3.2] s, the θ profile again drifted away

from the target profile due to the disturbance as shown in Fig. 3.15(d). Finally,

the feedback controller was turned on for the remainder of the discharge at the time

t = 3.2 s, and it was once again able to reject the effects the disturbance had on the

θ profile evolution. This resulted in the θ profile evolution being driven to and then

successfully regulated around the target profile evolution as shown in Figs. 3.15(e-f).

146



0.0 0.2 0.4 0.6 0.8 1.0
−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Normalized Minor Radius

θ
 (

W
b
 /
 r

a
d
)

 

 

Target

FF + Dist. + FB

(a) t = 1.998 s {FB − OFF}

0.0 0.2 0.4 0.6 0.8 1.0
−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

Normalized Minor Radius

θ
 (

W
b
 /
 r

a
d
)

(b) t = 2.198 s {FB − OFF}
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(c) t = 2.698 s {FB − ON}
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(d) t = 3.158 s {FB − OFF}
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(e) t = 3.998 s {FB − ON}
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(f) t = 4.958 s {FB − ON}
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Figure 3.15: (Experiment disturbance rejection (DIII-D shot 146153)): Poloidal flux gra-
dient profile θ(ρ̂) at time (a) t = 1.998 s, (b) t = 2.198 s, (c) t = 2.698 s, (d)
t = 3.158 s, (e) t = 3.998 s, and (f) t = 4.958 s, and time trace of poloidal
flux gradient θ at normalized radii (g) ρ̂ = 0.3, (h) ρ̂ = 0.4, (i) ρ̂ = 0.6, (j)
ρ̂ = 0.7, (k) ρ̂ = 0.8, and (l) ρ̂ = 0.9. Gray-shaded region denotes when
feedback controller is off.
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Figure 3.16: (Experiment disturbance rejection (DIII-D shot 146153)): Control trajectory
comparison: (a) plasma current (MA), (b) total noninductive power (MW),
and (c) line average electron density (1019 m−3). Gray-shaded region denotes
when feedback controller is off.

Time traces of θ at normalized radii ρ̂ = 0.3, 0.4, 0.6, 0.7, 0.8, and 0.9 achieved

during the target discharge and DIII-D shot 146153 are shown in Figs. 3.15(g-l). The

effect the uncontrolled disturbance had on the θ profile evolution can be seen in the

time traces of θ at normalized radii ρ̂ = 0.6, 0.7, 0.8, and 0.9 as shown in Figs. 3.15(i-

l). During the time intervals t = [2.0, 2.2] s and t = (2.7, 3.2] s when the feedback

controller was off, the disturbance caused θ to drift away from the target. Also

shown in these time traces of θ is the ability of the feedback controller to reject the

effects of the disturbance and regulate θ around the target during the time intervals

t = (2.2, 2.7] s and t = (3.2, 5.0] s when the feedback controller was on.

A comparison of the actuator trajectories during the target discharge and during

the feedforward + disturbance + feedback controlled discharge is shown in Fig. 3.16.

In order to regulate the θ profile around the target profile and reject the effects of the

disturbance, the feedback component of the combined controller modified the actuator

trajectories throughout the discharge. The actuator limits during this control test
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were

0.3 MA ≤ Ip(t) ≤ 1.5 MA,

2.24 MW ≤ Ptot(t) ≤ 4.4275 MW,

2× (10)19 m−3 ≤ n̄e(t) ≤ 10× (10)19 m−3. (3.58)

As can be seen in Fig. 3.16(c), the combined control algorithm drove the line average

electron density request to saturation, however, the line average electron density

requested by the control algorithm was around 1.9 × (10)19 m−3. Therefore, the

level of actuator saturation was small, and the anti-windup compensator was able to

successfully keep the closed-loop system well behaved in the presence of the actuator

saturation. Also shown in Fig. 3.16 is the ability of the dedicated control loops

commanding the physical actuators to follow the requests made by the combined

control algorithm. The control loops commanding the total plasma current and the

total average neutral beam power were able to follow the requests very well, but the

control loop commanding the line average electron density was not able to follow

the request very well. This resulted in an additional, unintentional disturbance the

feedback controller needed to overcome.

3.10 Conclusion

A robust feedback controller was synthesized to control the poloidal flux gradient

profile evolution in the DIII-D tokamak from a first-principles-driven model of the

poloidal flux profile evolution. A general framework for real-time feedforward + feed-

back control of magnetic and kinetic plasma profiles was successfully implemented in

the DIII-D PCS. The feedback component of the control algorithm was interfaced with

the available real-time measurements and successfully tested experimentally during
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both the ramp-up and flattop phases of L-mode discharges. Even though the model

used to synthesize the feedback controller neglected the effects of the bootstrap cur-

rent, the adequate performance of the feedback controller during the flattop phase of

the discharge can be attributed to the facts that the effects of the bootstrap current

on the θ profile evolution are typically small in L-mode plasmas and the feedback

controller is robust against the unmodeled bootstrap current dynamics in this oper-

ating regime. These experiments, along with those described in [98, 99], mark the

first time ever a first-principles-driven, model-based, closed-loop full magnetic profile

controller was successfully implemented and tested in a tokamak device.
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Chapter 4

Optimization of plasma startup

conditions in the DIII-D tokamak

4.1 Introduction

Advanced tokamak scenarios operate close to operational boundaries in terms of both

proximity to stability limits (to maximize plasma performance) and available actua-

tion capabilities. As a result, variations in the plasma evolution due to drifts caused

by external plasma disturbances, such as variability in the condition of the tokamak

walls, plasma impurities, the plasma response to the actuators, and actuator faults,

can lead to difficulties with reproducibility of target plasma conditions. The initial

creation and formation of the plasma is a particularly sensitive phase of the discharge

to plasma variation. In this chapter, a first-principles-driven (FPD), physics-model-

based control algorithm is developed to remove residual variability in the plasma state

at the end of the initial creation and formation phase of the discharge (defined here

at the time t = 0.4 s). This is accomplished by developing a feedforward + feedback

scheme to optimize plasma startup conditions in low confinement (L-mode) scenarios

in the DIII-D tokamak by achieving a specified target safety factor profile (q profile)
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at the end of the current ramp-up phase of the discharge.

The physics-based model developed in chapter 2 is embedded in a numerical opti-

mization algorithm to design feedforward trajectories for the available actuators (total

plasma current, auxiliary heating and current-drive (H&CD) system, line average elec-

tron density) that steer the plasma through the tokamak operating space to reach a

target q profile, subject to actuator, plasma state, and operating scenario constraints.

The auxiliary H&CD actuators on DIII-D considered in this chapter are 8 individ-

ual neutral beam injection (NBI) sources, referred to by the names 30L/R,150L/R,

210L/R, 330L/R, where L and R denoted left and right beam lines, respectively. The

30L/R and 330L/R neutral beams inject power into the plasma in the co-current di-

rection (same direction as the total plasma current) with deposition profiles that are

peaked in the center of the plasma (referred to as on-axis NBI). The 150L/R neutral

beams inject power into the plasma in the co-current direction with deposition pro-

files that are peaked away from the plasma core (referred to as off-axis NBI). Finally,

the 210L/R neutral beams inject power into the plasma in the counter-current di-

rection (opposite direction as the total plasma current) with deposition profiles that

are peaked in the center of the plasma (referred to as counter-current NBI). The

feedback controller is synthesized by following a FPD approach and is employed to

add robustness to the control scheme and account for drifts due to external plasma

disturbances. For feedback control design, we chose to model the kinetic plasma pa-

rameters (electron density, electron temperature, and plasma resistivity) as a nominal

model plus a bounded uncertain model. These uncertain models are then combined

with the physics model that describes the poloidal magnetic flux profile evolution

in the tokamak (the magnetic diffusion equation) to obtain the FPD model of the

system dynamics that is embedded into the feedback control design process. The

feedback controller is synthesized by employing robust control techniques [10] and

is designed to achieve a desired closed-loop system performance while guaranteeing
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that the controller maintains closed-loop system stability for the range of the kinetic

plasma parameters captured by the uncertain models.

This chapter is organized as follows. In section 4.2, the actuator trajectory opti-

mization problem is formulated. The optimization problem is solved by employing the

sequential quadratic programming (SQP) technique [95], and the optimized actuator

trajectories are tested in DIII-D experiments in section 4.3. A unique characteristic

of the feedforward trajectories obtained by solving the optimization problem is the

regulation of the plasma current ramp-up rate to achieve the target q profiles. In

section 4.4, a robust feedback algorithm to control the rotational transform profile (ι

profile), which is defined as ι = 1/q, is designed. Experimental results in DIII-D are

presented to demonstrate the potential of the feedforward + feedback controller to

improve the ability to robustly achieve various different target q profiles at the end

of the current ramp-up phase of the discharge in section 4.5. Finally, conclusions are

discussed in section 4.6.

4.2 Plasma startup optimization by feedforward

actuator trajectory design

The toroidal current profile in tokamaks (jtor) is usually specified in terms of the

safety factor profile, or its inverse the rotational transform profile, as this quantity is

intimately related to the stability and performance of a tokamak plasma operating

scenario [61, 62] (see section 2.6 for the explicit relationship these quantities have to

the poloidal magnetic flux (Ψ)). In particular, the q profile is defined in (2.90) and

repeated here for convenience as

q(ρ̂, t) =
1

ι(ρ̂, t)
= −dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (4.1)
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where t is the time, ψ is the poloidal stream function, which is closely related to the

poloidal magnetic flux (Ψ = 2πψ). The normalized effective minor radius ρ̂ = ρ/ρb

is the spatial variable employed to index the magnetic flux surfaces, where ρ is the

mean effective minor radius of the magnetic flux surface, i.e., Φ(ρ) = πBφ,0ρ
2, Φ is the

toroidal magnetic flux, Bφ,0 is the vacuum toroidal magnetic field at the geometric

major radius R0 of the tokamak, and ρb is the mean effective minor radius of the last

closed magnetic flux surface.

4.2.1 Target plasma state: Cost functional definition

The optimization problem goal is to design startup actuator trajectories that steer

the plasma from an assumed initial condition through the tokamak operating space

to reach a target q profile (qtar(ρ̂)) at the end of the current ramp-up phase of the

discharge. We denote the time that coincides with the end of the current ramp-up as

tf . Therefore, the proximity of the achieved q profile to the target at the time tf can

be described by the cost functional

J(tf ) =

∫ 1

0

Wq(ρ̂)
[
qtar(ρ̂)− q(ρ̂, tf )

]2
dρ̂, (4.2)

where Wq(ρ̂) is a positive function used to weight which portions of the q profile are

more important relative to the others.

4.2.2 Plasma state dynamics

In chapter 2, a general first-principles-driven, physics-based model of the poloidal

magnetic flux profile (and hence the q profile) evolution was derived. The model was

subsequently tailored to L-mode operating scenarios in the DIII-D tokamak in section

2.7. The nonlinear, physics-based partial differential equation (PDE) model of the
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poloidal flux evolution tailored to DIII-D L-mode scenarios is expressed as

∂ψ

∂t
= fη (ρ̂)uη(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ(ρ̂)

∂ψ

∂ρ̂

)
+

nnbi∑

i=1

fnbii (ρ̂)unbii(t) + fbs (ρ̂)ubs(t)

(
∂ψ

∂ρ̂

)−1

,

(4.3)

with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −kIpuIp(t), (4.4)

where fη, fnbii , and fbs are defined in (2.85), Dψ is a parameter pertaining to the

magnetic configuration of a particular plasma equilibrium, nnbi is the number of indi-

vidual neutral beam injectors, and kIp is a geometrical constant defined in (2.83). The

diffusivity (uη), interior (unbii , ubs), and boundary (uIp) control terms are expressed as

uη(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−3/2

,

unbii(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−1

n̄e(t)
−1Pnbii(t),

ubs(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−1/2

n̄e(t),

uIp(t) = Ip(t), (4.5)

where Ip(t) is the total plasma current, Ptot(t) is the total power injected into the

plasma, which is defined as

Ptot(t) = Pohm(t) +

nnbi∑

i=1

Pnbii(t)− Prad(t), (4.6)

where Pohm(t) is the ohmic power (defined in (2.68)), Pnbii(t) are the individual neutral

beam injection powers, Prad(t) is the radiated power (defined in (2.70)), and n̄e(t) is

the line average electron density.
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To simulate the physics-based model, we spatially discretize the infinite dimen-

sional PDE (4.3)-(4.4) by employing a finite difference method, where the spatial

domain (ρ̂ ∈ [0, 1]) is represented by mψ discrete nodes. After spatially discretizing

(4.3) and taking into account the boundary conditions (4.4), we obtain a nonlinear

finite dimensional ordinary differential equation (ODE) model defined by

ẋ = fψ(x, u), (4.7)

where x = [ψ2, . . . , ψmψ−1]T ∈ Rnψ is the magnetic state vector, ψi, for i = 2, . . . ,mψ−
1, is the value of ψ at the i-th node, u = [Pnbi1 , . . . , Pnbinnbi , n̄e, Ip]

T ∈ Rnact is the

control input vector, nact = nnbi + 2, fψ ∈ Rnψ is a nonlinear function of the plasma

magnetic states and control inputs, and nψ = mψ − 2. We then integrate (4.7) in

time by employing a fully implicit numerical scheme, i.e.,

xk+1 − xk
∆t

= fψ(xk+1, uk), (4.8)

where xk and uk denote the state and control input, respectively, at the time step

tk, xk+1 denotes the state at the next time step tk+1, and ∆t is the simulation time

step. The magnetic state evolution can be obtained by iteratively solving (4.8) at

each time step from a given initial condition at time t0, i.e., x0 = x(t0).

4.2.3 Control actuator trajectory parameterization

We parameterize the trajectories of the i-th control actuator (ui) by a finite number of

parameters (npi) at discrete points in time (tpi), i.e., tpi = [t0, t1, . . . , tk, . . . , tk = tf ] ∈
Rnpi . During the time interval t ∈ (tk, tk+1) the i-th control input is determined by
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linear interpolation as

ui(t) = ui(tk) + [ui(tk+1)− ui(tk)]
t− tk

tk+1 − tk
. (4.9)

By combining all of the parameters utilized to represent each individual actuator

trajectory into a vector

θ̃ =
[
u1

1, . . . , u
np1
1 , . . . , u1

i , . . . , u
npi
i , . . . , u1

nact , . . . , u
npnact
nact

]
, (4.10)

where θ̃ ∈ Rntotp and ntotp =
∑nact

i=1 npi , we can write the parameterized control actuator

trajectories as

u(t) = Π(t)θ̃, (4.11)

where Π(t) ∈ Rnact×ntotp is a piecewise linear function of time. Some of the parameters

in the vector (4.10) may be chosen to be fixed due to the desire to obtain an operating

condition at the time tf with a specific set of characteristics (for example a final plasma

current (Ip(tf ))), or to provide the ability to acquire diagnostic data (for example

requiring a constant power in a neutral beam injector). Therefore, the subset of free

parameters in the vector (4.10) can be combined into a vector of to-be-optimized

parameters which we define as θ ∈ Rnopt where nopt ≤ ntotp .

4.2.4 Actuator constraints

The actuator magnitude constraints are given by

Iminp ≤ Ip(t) ≤ Imaxp , (4.12)

Pmin
nbi ≤ Pnbii(t) ≤ Pmax

nbi , i = 1, . . . , nnbi, (4.13)
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where (·)min and (·)max represent the minimum and maximum limits, respectively.

The actuator rate constraints are given by

−Id′p,max ≤
dIp
dt
≤ Iu

′

p,max, (4.14)

where Id
′
p,max and Iu

′
p,max are the maximum total plasma current ramp-down and ramp-

up rates, respectively. The actuator constraints (4.12)-(4.14) can be combined to-

gether and written in terms of the to-be-optimized parameters θ in a compact matrix

form as

Alimu θ ≤ blimu . (4.15)

4.2.5 Plasma state and operating scenario constraints

The magnetohydrodynamic (MHD) stability limit related to the plasma magnetic

states considered in this work is expressed as

qmin(t) ≥ qlimmin, (4.16)

where qmin(t) = min{q(ρ̂, t)} and qlimmin is a constant chosen to be slightly greater than

one to avoid the onset of sawtooth oscillations1 [18]. In order for the plasma to remain

in the L-mode operating regime, the net power across the plasma surface, Pnet, must

be lower than a threshold power [143,144], Pthreshold, i.e.,

Pnet(t) ≤ Pthreshold(t). (4.17)

1Sawtooth oscillations are periodic reconnections of the magnetic flux surfaces which degrade the
plasma confinement and can be the precursor to more serious MHD instabilities that can lead to
plasma-terminating disruptions.
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In this chapter, the net power across the plasma surface is approximated as

Pnet(t) ≈ Paux(t) =

nnbi∑

i=1

Pnbii(t), (4.18)

where Paux is the total auxiliary power injected into the plasma. The threshold power

is determined by analyzing data from DIII-D experiments in which the plasma tran-

sitioned from the low confinement to the high confinement (H-mode) regime during

the discharge, and the threshold power was found to follow the expression given by2

Pthreshold(t) = 2 [n̄e19(t)]3/4 , (4.19)

where n̄e19 is the line average electron density in units of 1019 m−3. We next chose

to formulate the constraint (4.16) as an integral constraint [145]. This provides us

the ability to reduce the number of constraints imposed on the optimization problem

solution. The constraint (4.16) is expressed as an integral constraint as

climmhd(x(t)) =

∫ tf

t0

max{0, qlimmin − qmin(t)}dt ≤ 0. (4.20)

The operating mode constraint (4.17)-(4.19), depends directly on the to-be-optimized

parameters θ, but in a nonlinear manner. Therefore, we chose to also formulate this

constraints as a integral constraint as

climlh (θ) =

∫ tf

t0

max{0, Pnet(t)− Pthreshold(t)}dt ≤ 0. (4.21)

4.2.6 Optimization problem statement and solution method

The nonlinear, constrained, actuator trajectory optimization problem is now to de-

termine the to-be-optimized parameters θ that minimize the cost functional (4.2)

2Analysis performed by Dr. Tim C. Luce at General Atomics, San Diego, CA, USA.
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subject to the plasma dynamics (4.7), the control actuator trajectory parameteriza-

tion (4.11), the actuator and operating scenario constraints (4.15) and (4.21), and

the plasma state constraint (4.20). This optimization problem is written mathemat-

ically as

min
θ

J(tf ) = J(x(tf )), (4.22)

such that

ẋ = fψ(x, u),

u(t) = Π(t)θ̃,

Alimu θ ≤ blimu ,

climlh (θ) ≤ 0,

climmhd(x(t)) ≤ 0. (4.23)

We solve this optimization problem by employing a method called sequential quadratic

programming (SQP) [95]. The SQP solution method is predicated on determining a

local minimizer of the nonlinear program (NLP) (4.22)-(4.23) by iteratively solving a

sequence of quadratic programs (QP). At each iteration we have a current estimate of

a local minimizer of the NLP and a QP which minimizes a quadratic approximation

of the original system Hamiltonian subject to a linear approximation of the system

constraints around the current estimate. The solution of each QP then yields a step

toward the solution of the original NLP. An overview of the SQP technique is provided

in Appendix E.
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Figure 4.1: Safety factor profiles specified as to-be-achieved targets at the end of the
current ramp-up phase of DIII-D plasma discharges. Target 1 is characterized
by a minimum q-value of qmin = 1.3 and a q-value at 95% of the poloidal flux
of q95 = 4.4. Target 2 is characterized by qmin = 1.65 and q95 = 5.0. Target
3 is characterized by qmin = 2.1 and q95 = 6.2.

4.3 Design and experimental testing of optimized

startup trajectories

We now solve the actuator trajectory optimization problem (4.22)-(4.23) to reach a

target safety factor profile at the end of the current ramp-up phase of the plasma

discharge by employing the SQP solution method. Three different monotonically in-

creasing q profiles (shown in Fig. 4.1) where specified as targets. The optimization is

carried out over the time interval topt = t ∈ [t0, tf ] = [0.4, tf ] s, where tf is the time

that corresponds to the end of the current ramp-up phase and is employed as a design

parameter. We begin by parameterizing the i-th actuator trajectory by npi discrete

parameters at the time points tpi = [0.4, 0.5, 0.75, 1.0, . . . , tf ] s. Next, the components

of the total parameter vector (4.10) that are fixed, or not-to-be optimized, are chosen

as discussed in section 4.2.3. Firstly, in order to acquire diagnostic data utilized by

the real-time EFIT (rtEFIT) equilibrium reconstruction code [11] to reconstruct the

plasma q profile, the 30L neutral beam injector is required to be on for 10 ms with

the 30R neutral beam injector off. Therefore, we choose to modulate the 30L neutral
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beam injector on for 10 ms and then off for 10 ms, which results in a constant average

power of 1.1 MW being delivered to the plasma, i.e., Pnbi30L
= 1.1 MW. Addition-

ally, as the total amount of auxiliary power injected into the plasma is limited so

that the plasma remains in the L-mode operating regime (see (4.17)-(4.19)) and the

30R neutral beam injector cannot actively be utilized for plasma control3, we choose

to fix the 30R neutral beam power at Pnbi30R
= 0.0 MW. Secondly, it was decided

prior to the execution of the plasma startup optimization experiments that after the

L-mode current ramp-up phase of the discharge was complete (the phase of the dis-

charge that the startup optimization experiments focused on), a significant amount of

neutral beam power would be injected into the plasma to trigger the plasma to tran-

sition to the H-mode operating regime. This was done in order to keep the machine

walls clean and free of impurities that may recycle into the plasma on subsequent

experiments. As the co-current injection neutral beams (150L/R and 330L/R) were

to be employed to transition the plasma to the H-mode operating regime, we choose

to fix the 210L/R neutral beam powers at Pnbi210L/R
= 0.0 MW. This choice was

made to avoid the potential of triggering a plasma disruption by transitioning from

a strong counter-rotating plasma (one with a significant amount of counter-current

neutral beam injection) to a strong co-rotating plasma4. Thirdly, density control is

challenging in experiments due to large particle recycling at the tokamak wall and

to the difficulty of pumping particles out of the machine. Therefore, the line average

electron density trajectory is chosen to not be optimized. As the particle confinement

in the plasma is strongly dependent on the value of the total plasma current, the line

average electron density trajectory is chosen to be proportional to the total plasma

3The 30R neutral beam injector could be modulated on for 10 ms and off for 10 ms out of phase
with the 30L neutral beam injector and still satisfy the requirements needed to acquire diagnostic
data. However, this would result in an additional constant average power of 1.1 MW being delivered
to the plasma that cannot be manipulated to achieve the control objective.

4E-mail correspondence with Dr. Tim C. Luce and Dr. John R. Ferron at General Atomics, San
Diego, CA, USA.
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current trajectory following the expression5

n̄e(t)[1019m−3] = 2.5Ip(t)[MA]. (4.24)

Finally, all of the actuator values at the initial time t0 = 0.4 s and the value of the

total plasma current at the time tf are chosen to be fixed. Therefore, the vector of

to-be-optimized parameters is then given by

θ =
[
Pnbii(0.5), Pnbii(0.75), . . . , Pnbii(tf ), Ip(0.5), Ip(0.75), . . . , Ip(tf − 0.25)

]
, (4.25)

where i ∈ [150L/R,330L/R], respectively. The value and shape of the q profile in

the center of the plasma (typically in the spatial domain ρ̂ ∈ [0, 0.4]) is important to

achieving and maintaining high performance plasmas [61,62]. As a result, the weight

function Wq(ρ̂) in (4.2) is chosen to place more emphasis on achieving the target q

profile in the inner region of the plasma (ρ̂ ∈ [0, 0.4]) relative to the outer region.

The optimized parameters (4.25) (and associated actuator trajectories) deter-

mined by solving the optimization problem (4.22)-(4.23) are shown in Fig. 4.2 (qtar(ρ̂)

chosen as target 1 in Fig. 4.1), Fig. 4.3 (qtar(ρ̂) chosen as target 2 in Fig. 4.1), and

in Fig. 4.4 (qtar(ρ̂) chosen as target 3 in Fig. 4.1), respectively. For the various

targets, the time that corresponds to the end of the current ramp-up phase is chosen

as t = 1.5 s (target 1), t = 1.25 s (target 2), and t = 1.0 s (target 3), respectively.

The optimized actuator trajectories exhibit a similar behavior for all of the targets.

Firstly, a unique characteristic of the total plasma current trajectory is the regula-

tion of the ramp-up rate, which is traditionally not done in tokamak experiments6.

The plasma current trajectory is characterized by an initial ramp-up rate near the

maximum allowable rate (t ∈ [0.4, 0.5] s) followed by a gradual ramp-up rate near

5E-mail correspondence with Dr. Tim C. Luce at General Atomics, San Diego, CA, USA.
6Traditionally, the total plasma current is ramped up at fixed rate until the desired flattop value

is reached.
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Figure 4.2: Optimized and physically achieved (DIII-D shot 157947) actuator trajectories
for q profile target 1 in Fig. 4.1: (a) total plasma current, (b) line average
electron density, (c) total amount of neutral beam injection power, and (d-
f) individual neutral injection powers. The optimized 150R and 330L neutral
beam injection powers are 0 MW (not shown). The optimization is carried out
over the time interval topt = t ∈ [0.4, 1.5] s. Additionally, the actuator mag-
nitude (solid green) and rate (dash green) limits applied on the optimization
problem solution are also shown (L-H power limit in (c) is given by (4.19)).
The solid-orange and solid-purple lines indicate the time when the error be-
tween the achieved q profile and the target is at a minimum, i.e., when (4.2)
is minimized, for the simulation and experimental tests, respectively.

the minimum allowable rate (t ∈ [0.5, tf − 0.25] s). During the last optimization time

interval (t ∈ [tf − 0.25, tf ] s), the plasma current is again ramped-up at a rate near

the maximum allowable rate, which is set to avoid triggering tearing modes due to

a loss of magnetic shear near the plasma boundary, to the specified flattop value.

This rapid ramp-up of the plasma current not only drives the system to the desired

q profile near the plasma boundary, but also enhances the plasma confinement which

raises the electron temperature and hence lowers the plasma resistivity. This in turn

slows the penetration of the current density, which contributes to achieving the target

q profile in the plasma core. Secondly, the auxiliary heating scheme is characterized

by initially very little, if any, injected neutral beam power (other than the power

injected in the 30L injector to acquire diagnostics). The off-axis neutral beam power

(Pnbi150L
for targets 1 and 2 and Pnbi150L/R

for target 3) is rapidly injected late in

164



0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) Ip(t)

Time (sec.)

P
la

s
m

a
 C

u
rr

e
n

t 
(M

A
)

 

 

Optimized Feedforward

Physically Achieved (157952)

0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

2

3

4

(b) n̄e(t)

Time (sec.)

L
in

e
 A

v
e

ra
g

e
 D

e
n

s
it
y
 (

1
0

1
9
 m

−
3
)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3

4

5

6

(c) Paux(t)

Time (sec.)

T
o

ta
l 
A

u
x
. 

P
o

w
e

r 
(M

W
)

 

 

L−H Power Limit

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3
(d) Pnbi30L

(t)

Time (sec.)

3
0

L
 N

B
I 

P
o

w
e

r 
(M

W
)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3
(e) Pnbi150L

(t)

Time (sec.)

1
5

0
L

 N
B

I 
P

o
w

e
r 

(M
W

)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3
(f ) Pnbi330R

(t)

Time (sec.)

3
3

0
R

 N
B

I 
P

o
w

e
r 

(M
W

)

Figure 4.3: Optimized and physically achieved (DIII-D shot 157952) actuator trajectories
for q profile target 2 in Fig. 4.1: (a) total plasma current, (b) line average
electron density, (c) total amount of neutral beam injection power, and (d-
f) individual neutral injection powers. The optimized 150R and 330L neutral
beam injection powers are 0 MW (not shown). The optimization is carried out
over the time interval topt = t ∈ [0.4, 1.25] s. Additionally, the actuator mag-
nitude (solid green) and rate (dash green) limits applied on the optimization
problem solution are also shown (L-H power limit in (c) is given by (4.19)).
The solid-orange and solid-purple lines indicate the time when the error be-
tween the achieved q profile and the target is at a minimum, i.e., when (4.2)
is minimized, for the simulation and experimental tests, respectively.

the plasma current ramp-up phase (t ∈ [tf − 0.25, tf ] s) to set up a plasma state

with off-axis auxiliary current drive, which is needed to achieve the target q profile

in the plasma core. Additional neutral beam power is also rapidly injected during

this phase (Pnbi330R
for targets 1 and 2) up to the maximum allowable total value (set

to maintain the plasma in the L-mode operating regime (see (4.17)-(4.19))) to raise

the electron temperature (lower the plasma resistivity) to contribute to achieving

the target q profile in the plasma core (slows the penetration of the current density

into the plasma core). Finally, it is worth noting, that if a mixed solution (one in

which both co-current (150L/R and 330L/R) and counter-current (210L/R) neutral

beam injection is allowed), the optimized auxiliary heating scheme solely employs the

counter-current neutral beam power (Pnbi210L/R
) late in the plasma current ramp-up

phase for all of the targets. An example of this is shown in Fig. 4.5 where the target
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Figure 4.4: Optimized and physically achieved (DIII-D shot 157949) actuator trajectories
for q profile target 3 in Fig. 4.1: (a) total plasma current, (b) line average
electron density, (c) total amount of neutral beam injection power, and (d-f)
individual neutral injection powers. The 30L neutral beam injection power is
at a constant 1.1 MW and the optimized 330L neutral beam injection power
is 0 MW (not shown). The optimization is carried out over the time interval
topt = t ∈ [0.4, 1.0] s. Additionally, the actuator magnitude (solid green)
and rate (dash green) limits applied on the optimization problem solution are
also shown (L-H power limit in (c) is given by (4.19)). The solid-orange and
solid-purple lines indicate the time when the error between the achieved q
profile and the target is at a minimum, i.e., when (4.2) is minimized, for the
simulation and experimental tests, respectively.

q profile is chosen as target 2 in Fig. 4.1.

The actuator trajectories shown in Figs. 4.2-4.5 were tested through simulation

with the physics-based model of the plasma dynamics tailored to DIII-D L-mode sce-

narios (described in section 2.7) and experimentally during DIII-D discharges 157947

(target 1), 157948, 157952, 158058 (target 2), and 157949 (target 3). The actuator

values were held constant after the end of the plasma current ramp-up phase was

complete, i.e., after the time tf . It is important to note that the optimized trajecto-

ries represent the references to the dedicated control loops that command the DIII-D

physical actuators. As shown in Fig. 4.2-4.5, the dedicated control loops were able

to follow the requested trajectories reasonably well (note that the physically achieved

neutral beam injection powers were not archived by the data acquisition system for
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Figure 4.5: Optimized and physically achieved (DIII-D shot 158058) actuator trajectories
for q profile target 2 in Fig. 4.1: (a) total plasma current, (b) line average
electron density, (c) total amount of neutral beam injection power, and (d-f)
individual neutral injection powers. Note that the physically achieved neutral
beam injection powers were not archived by the data acquisition system for
this discharge. The optimized 150L/R and 330L/R neutral beam injection
powers are 0 MW (not shown). The optimization is carried out over the
time interval topt = t ∈ [0.4, 1.25] s. Additionally, the actuator magnitude
(solid green) and rate (dash green) limits applied on the optimization problem
solution are also shown (L-H power limit in (c) is given by (4.19)). The solid-
orange and solid-purple lines indicate the time when the error between the
achieved q profile and the target is at a minimum, i.e., when (4.2) is minimized,
for the simulation and experimental tests, respectively.

discharge 158058).

A comparison of the target, physics-based model predicted, and experimentally

achieved q profiles at the time when the error between the achieved q profile and

the target is at a minimum, i.e., when (4.2) is minimized, is shown in Fig. 4.6.

Also shown in the figures is a comparison of the assumed initial q profile that was

employed to design the optimized startup trajectories and of the initial q profile

achieved experimentally. Firstly, we see that a large discrepancy between the assumed

(red dashed line + triangle in Fig. 4.6) and achieved (black dash-dotted line + circle

in Fig. 4.6) initial q profile (at t = t0 = 0.4 s) can occur due to the initial generation

and formation of the plasma during the time interval t ∈ [0, 0.4] s, the condition of

the tokamak walls, and plasma impurities. Secondly, through simulation with the
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Figure 4.6: Best q profile target matching during the simulation and experimental testing
of the optimized feedforward startup actuator trajectories to achieve the target
profiles shown in Fig. 4.1: (a) target 1 (actuator trajectories shown in Fig.
4.2), (b-c) target 2 (actuator trajectories shown in Fig. 4.3), (d) target 2
(actuator trajectories shown in Fig. 4.5) and (e) target 3 (actuator trajectories
shown in Fig. 4.4). DIII-D shot numbers are indicated in the figures.

physics-based model, it was shown that the optimized startup trajectories were able

to steer the simulated plasma (red dashed line in Fig. 4.6) from the assumed initial

condition through the tokamak operating space to achieve all of the target q profiles

(blue line in Fig. 4.6) at the desired end time of the current ramp-up phase (tf = 1.5

s for target 1, tf = 1.25 s for target 2, tf = 1.0 s for target 3). Finally, as shown

in Fig. 4.6, the optimized startup trajectories were able to drive the experimental

plasma (black dash-dotted line in Fig. 4.6) as close as possible to the all of the
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Figure 4.7: Simulated and experimental (DIII-D shot 157952) testing of optimized feed-
forward startup actuator trajectories to achieve target q profile 2 in Fig. 4.1
with co-current neutral beam injection (actuator trajectories shown in Fig.
4.3): Time traces of q at ρ̂ = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.95. The solid-orange
and solid-purple lines indicate the time when the error between the achieved
q profile and the target is at a minimum, i.e., when (4.2) is minimized, for the
simulation and experimental tests, respectively.

target q profiles at a time slightly after the desired end time of the current ramp-

up phase. The delay in the best experimental target matching time is a result of

the dedicated loops not exactly following the requested trajectories, particularly the

total plasma current trajectory (shown in Figs. 4.2(a), 4.3(a), 4.4(a), and 4.5(a)).

The experimentally achieved q profiles show an excellent match to the desired target

profiles in the approximate spatial region ρ̂ ∈ [0.3, 1] and exhibit a value below the

desired target value in the plasma core. Note that the experimental q profile can not

evolve much lower than a value of one due to the development of sawtooth oscillations

(see section 4.2.5).

In order to gain some insight into the physical mechanism that results in the opti-

mized startup trajectories not being able to achieve the target q profiles in the plasma

core, time traces of q at various radial locations for DIII-D shots 157952 and 158058

(the discharges where the experimentally achieved and assumed initial q profiles ex-

hibit the closest matching) are shown in Figs. 4.7 and 4.8, respectively. Firstly, as
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Figure 4.8: Simulated and experimental (DIII-D shot 158058) testing of optimized feed-
forward startup actuator trajectories to achieve target q profile 2 in Fig. 4.1
with counter-current neutral beam injection (actuator trajectories shown in
Fig. 4.5): Time traces of q at ρ̂ = 0.1, 0.2, 0.3, 0.5, 0.7, and 0.95. The solid-
orange and solid-purple lines indicate the time when the error between the
achieved q profile and the target is at a minimum, i.e., when (4.2) is mini-
mized, for the simulation and experimental tests, respectively.

shown in the figures, the experimentally achieved q profile evolution agrees well with

the physics-based model predicted q profile evolution in the spatial region ρ̂ ∈ [0.3, 1].

Secondly, the experimentally achieved q profile evolution agrees reasonably well with

the physics-based model predicted q profile evolution in the plasma core during the

approximate time interval t ∈ [0.4, 0.75) s. However, after this time, the experimental

q profile evolves to a lower value than the physics-based model predicted q profile (see

Figs. 4.7(a-b) and 4.8(a-b)). This indicates that the experimental current density dif-

fuses towards the plasma core at a faster rate than predicted by the model7. Finally,

as shown in the figures, there is no appreciable difference between the performance

(in terms of driving the system to q profile target 2 in Fig. 4.1) of the optimized

startup trajectories that utilized co-current neutral beam injection (Fig. 4.7) and

counter-current neutral beam injection (Fig. 4.8), respectively.

As a result of the variability in the initial formation of the plasma as well as the

7In tokamaks, the local q-value is roughly inversely related to the local current density amplitude.
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difference between the model predicted and experimentally observed current density

diffusion rate during the experimental tests of the optimized startup trajectories, the

target q profiles were unable to be achieved in the plasma core (ρ̂ ∈ [0, 0.3)) at the

end of the current ramp-up phase of the discharge. Therefore to compensate for

external disturbances (such as perturbed initial conditions and model uncertainty)

and actuation limitations (either in regulation or faults), the feedforward trajectories

need to be integrated together with a feedback control scheme, as discussed in the

next section, to improve the ability to robustly achieve plasma target conditions.

4.4 Feedback control design

4.4.1 Partial differential equation model of system dynamics

We begin the design process by converting the physics model that describes the

poloidal magnetic flux profile evolution in the tokamak (the magnetic diffusion equa-

tion) into a form suitable for feedback control design. The magnetic diffusion equation

is given in (2.45) and restated here for convenience as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)(jaux + jbs), (4.26)

with boundary conditions given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −kIpIp(t), (4.27)

where η(ρ̂, t) is the plasma resistivity, Te(ρ̂, t) is the electron temperature, µ0 is the

vacuum magnetic permeability, jaux(ρ̂, t) is the noninductive current density provided

by the auxiliary sources, and jbs(ρ̂, t) is the noninductive current density provided by

the bootstrap current [60]. The parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are geometric
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spatial factors pertaining to the magnetic configuration of a particular plasma MHD

equilibrium (defined in (2.44)). The total auxiliary current drive is defined as

jaux =
∑

j

jnbij , (4.28)

where j ∈ [30L/R,150L/R,210L/R,330L/R], and the individual auxiliary neutral

beam current drives are modeled as (see (2.76) and section 2.7)

jnbij(ρ̂, t) = jrefnbij
(ρ̂)

√
Te(ρ̂, t)

ne(ρ̂, t)
Pnbij(t), (4.29)

where jrefnbij
is a normalized reference current density deposition profile for each of

the sources, ne is the electron density, and Pnbij is the power injected through the

individual neutral beam injectors. The bootstrap current is proportional to the inverse

of the poloidal flux gradient profile multiplied by the kinetic plasma profile gradients

(see (2.81)), i.e.,

jbs(ρ̂, t) =
kJkeVR0

F̂

(
∂ψ

∂ρ̂

)−1 [
2L31Te

∂ne
∂ρ̂

+ {2L31 + L32 + αL34}ne
∂Te
∂ρ̂

]
, (4.30)

where kJkeV = 1.602× 10−16 J/keV and the coefficients L31, L32, L34, and α depend

on the magnetic configuration of a particular plasma equilibrium and on particle

collisionality in the plasma. For feedback control design, we chose to model the kinetic

plasma parameters (electron density, electron temperature, and plasma resistivity) as

a nominal model plus a bounded uncertain model. The feedback controller is then

designed by employing robust control techniques [10] to achieve a desired closed-loop

performance and ensure the closed-loop system remains stable for the range of the

kinetic plasma parameters captured by the uncertain models.

Towards this goal, we define ranges in which the electron density and temperature

profiles are expected to be in typical DIII-D L-modes scenarios, which are shown in
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Figure 4.9: Plasma parameter uncertainty ranges in DIII-D L-mode scenarios: (a) electron
density, (b) electron temperature, and (c) plasma resistivity. Note: nominal
values (solid) and minimum/maximum values (dash).

Figs. 4.9(a-b). For feedback control design, we model these kinetic plasma parameters

as a nominal profile plus a bounded uncertain profile, i.e.,

ne(ρ̂) = nnome (ρ̂) + nunce (ρ̂)δne , (4.31)

Te(ρ̂) = T nome (ρ̂) + T unce (ρ̂)δTe , (4.32)

where

nnome (ρ̂) =
[
nmaxe (ρ̂) + nmine (ρ̂)

]
/2,

T nome (ρ̂) =
[
Tmaxe (ρ̂) + Tmine (ρ̂)

]
/2,

nunce (ρ̂) =
[
nmaxe (ρ̂)− nmine (ρ̂)

]
/2,

T unce (ρ̂) =
[
Tmaxe (ρ̂)− Tmine (ρ̂)

]
/2, (4.33)

and δTe and δne are uncertain parameters that satisfy |δTe| ≤ 1 and |δne| ≤ 1. The

plasma resistivity decreases as the electron temperature increases, therefore, the min-

imum plasma resistivity is defined by the maximum electron temperature, and the

maximum plasma resistivity is defined by the minimum electron temperature, which

are shown in Fig. 4.9(c). Additionally, the parameters
√
Te and 1/ne are related to

the electron temperature and density, respectively. For feedback control design, these
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parameters are modeled as

η(ρ̂) = ηnom(ρ̂) + ηunc(ρ̂)δTe , (4.34)

√
Te(ρ̂) = T nom

′

e (ρ̂) + T unc
′

e (ρ̂)δTe , (4.35)

1/ne(ρ̂) = nnom
′

e (ρ̂) + nunc
′

e (ρ̂)δne , (4.36)

where

ηnom(ρ̂) =
[
ηmax(ρ̂) + ηmin(ρ̂)

]
/2,

T nom
′

e (ρ̂) =
[√

Tmaxe (ρ̂) +
√
Tmine (ρ̂)

]
/2,

nnom
′

e (ρ̂) =
[
nmaxe (ρ̂) + nmine (ρ̂)

]
/
[
2nmaxe (ρ̂)nmine (ρ̂)

]
,

ηunc(ρ̂) =
[
ηmin(ρ̂)− ηmax(ρ̂)

]
/2,

T unc
′

e (ρ̂) =
[√

Tmaxe (ρ̂)−
√
Tmine (ρ̂)

]
/2,

nunc
′

e (ρ̂) =
[
nmine (ρ̂)− nmaxe (ρ̂)

]
/
[
2nmaxe (ρ̂)nmine (ρ̂)

]
. (4.37)

Note that the plasma resistivity and
√
Te dependence on the electron temperature is

modeled to first order to simplify the control design process.

Combining the magnetic diffusion equation (4.26) with the noninductive current-

drive models (4.28)-(4.30) and the uncertain models (4.31)-(4.37), we obtain the PDE
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governing the evolution of ψ that is used for feedback control design, which is ex-

pressed as

∂ψ

∂t
=

(ηnom + ηuncδTe)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥ(ηnom + ηuncδTe)

×
(
T nom

′

e + T unc
′

e δTe

){
nnom

′

e + nunc
′

e δne

}(∑

j

jrefnbij
(ρ̂)Pnbij(t)

)

+
kJeVR

2
0Ĥ(ηnom + ηuncδTe)

F̂

(
∂ψ

∂ρ̂

)−1

×
[
2L31 (T nome + T unce δTe)

∂

∂ρ̂
{nnome + nunce δne}

+ {2L31 + L32 + αL34} {nnome + nunce δne}
∂

∂ρ̂
{T nome + T unce δTe}

]
. (4.38)

By defining the quantities,

fη1(ρ̂) =
ηnom

µ0ρ̂2
bF̂

2
fη2(ρ̂) =

ηunc

µ0ρ̂2
bF̂

2
Dψ(ρ̂) = F̂ ĜĤ,

gnbij(ρ̂) = R0Ĥj
ref
nbij

ηnomT nom
′

e nnom
′

e hnbij(ρ̂) = R0Ĥj
ref
nbij

ηnomT nom
′

e nunc
′

e ,

knbij(ρ̂) = R0Ĥj
ref
nbij

[
ηnomT unc

′

e nnom
′

e + ηuncT nom
′

e nnom
′

e

]
,

lnbij(ρ̂) = R0Ĥj
ref
nbij

[
ηnomT unc

′

e nunc
′

e + ηuncT nom
′

e nunc
′

e

]
,

mnbij(ρ̂) = R0Ĥj
ref
nbij

ηuncT unc
′

e nnom
′

e pnbij(ρ̂) = R0Ĥj
ref
nbij

ηuncT unc
′

e nunc
′

e , (4.39)
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and

gbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31η

nomT nome

d

dρ̂
(nnome )

+ {2L31 + L32 + αL34} ηnomnnome

d

dρ̂
(T nome )

]
,

hbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31η

nomT nome

d

dρ̂
(nunce )

+ {2L31 + L32 + αL34} ηnomnunce

d

dρ̂
(T nome )

]
,

kbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31

[
ηnomT unce

d

dρ̂
(nnome ) + ηuncT nome

d

dρ̂
(nnome )

]

+ {2L31 + L32 + αL34}
[
ηnomnnome

d

dρ̂
(T unce ) + ηuncnnome

d

dρ̂
(T nome )

] ]
,

lbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31

[
ηnomT unce

d

dρ̂
(nunce ) + ηuncT nome

d

dρ̂
(nunce )

]

+ {2L31 + L32 + αL34}
[
ηnomnunce

d

dρ̂
(T unce ) + ηuncnunce

d

dρ̂
(T nome )

] ]
,

mbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31η

uncT unce

d

dρ̂
(nnome )

+ {2L31 + L32 + αL34} ηuncnnome

d

dρ̂
(T unce )

]
,

pbs(ρ̂) =
kJeVR

2
0Ĥ

F̂

[
2L31η

uncT unce

d

dρ̂
(nunce )

+ {2L31 + L32 + αL34} ηuncnunce

d

dρ̂
(T unce )

]
, (4.40)

we can express (4.38) as

∂ψ

∂t
= fη1

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+ fη2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
δTe

+
∑

j

[
gnbij + hnbijδne + knbijδTe + lnbijδTeδne +mnbijδ

2
Te + pnbijδ

2
Teδne

]
Pnbij(t)

+
[
gbs + hbsδne + kbsδTe + lbsδTeδne +mbsδ

2
Te + pbsδ

2
Teδne

](∂ψ
∂ρ̂

)−1

. (4.41)

From (4.1), we see that the rotational transform profile is inversely proportional to the
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q profile (the variable we are ultimately interested in controlling) and proportional to

the spatial gradient of the poloidal stream function. Therefore, we define the poloidal

flux gradient profile as

θ(ρ̂, t) ≡ ∂ψ

∂ρ̂
. (4.42)

Inserting (4.42) into (4.41) and differentiating the resulting equation with respect to

ρ̂, we obtain the following model of the θ profile dynamics

∂θ

∂t
= [qη1 + qη4δTe ]

∂2θ

∂ρ̂2
+ [qη2 + qη5δTe ]

∂θ

∂ρ̂
+ [qη3 + qη6δTe ] θ

+
∑

j

[
g′nbij + h′nbiiδne + k′nbijδTe + l′nbijδTeδne +m′nbijδ

2
Te + p′nbijδ

2
Teδne

]
Pnbij(t)

−
[
gbs + hbsδne + kbsδTe + lbsδTeδne +mbsδ

2
Te + pbsδ

2
Teδne

](1

θ

)2
∂θ

∂ρ̂

+
[
g′bs + h′bsδne + k′bsδTe + l′bsδTeδne +m′bsδ

2
Te + p′bsδ

2
Teδne

](1

θ

)
, (4.43)

where (·)′ = d/dρ̂ and

qη1(ρ̂) = fη1(ρ̂)Dψ(ρ̂),

qη2(ρ̂) = f ′η1
(ρ̂)Dψ(ρ̂) + 2fη1(ρ̂)D′ψ(ρ̂) + fη1(ρ̂)Dψ(ρ̂)/ρ̂,

qη3(ρ̂) = f ′η1
(ρ̂)Dψ(ρ̂)/ρ̂+ f ′η1

(ρ̂)D′ψ(ρ̂)− fη1(ρ̂)Dψ(ρ̂)/ρ̂2

+fη1(ρ̂)D′ψ(ρ̂)/ρ̂+ fη1(ρ̂)D′′ψ(ρ̂),

qη4(ρ̂) = fη2(ρ̂)Dψ(ρ̂),

qη5(ρ̂) = f ′η2
(ρ̂)Dψ(ρ̂) + 2fη2(ρ̂)D′ψ(ρ̂) + fη2(ρ̂)Dψ(ρ̂)/ρ̂,

qη6(ρ̂) = f ′η2
(ρ̂)Dψ(ρ̂)/ρ̂+ f ′η2

(ρ̂)D′ψ(ρ̂)− fη2(ρ̂)Dψ(ρ̂)/ρ̂2

+fη2(ρ̂)D′ψ(ρ̂)/ρ̂+ fη2(ρ̂)D′′ψ(ρ̂). (4.44)
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The boundary conditions are given by

θ(0, t) = 0 θ(1, t) = −kIpIp(t). (4.45)

4.4.2 Model reduction via spatial discretization

We now approximate the governing infinite dimensional PDE (4.43) by a finite dimen-

sional system of ordinary differential equations (ODEs) to obtain a model suitable

for tracking feedback control design. This is achieved by discretizing (4.43) in space

by using a truncated Taylor series expansion to approximate the spatial derivatives

where the non-dimensional spatial domain (ρ̂ ∈ [0, 1]) is represented by mθ nodes.

The spacing between the nodes (∆ρ̂) is defined as ∆ρ̂ = 1/(mθ− 1). We employ cen-

tral finite difference spatial derivative approximations of order (∆ρ̂)2 in the interior

node region, 2 ≤ i ≤ (mθ − 1). After applying the spatial derivative approximations

to (4.43) for the interior nodes i = [2, . . . ,mθ − 1], we obtain

θ̇i = [qη1(ρ̂i) + qη4(ρ̂i)δTe ]
θi+1 − 2θi + θi−1

(∆ρ̂)2

+ [qη2(ρ̂i) + qη5(ρ̂i)δTe ]
θi+1 − θi−1

2∆ρ̂
+ [qη3(ρ̂i) + qη6(ρ̂i)δTe ] θi

+
∑

j

[
g′nbij(ρ̂i) + h′nbij(ρ̂i)δne + k′nbij(ρ̂i)δTe + l′nbij(ρ̂i)δTeδne

+m′nbij(ρ̂i)δ
2
Te + p′nbij(ρ̂i)δ

2
Teδne

]
Pnbij(t)

−
[
gbs(ρ̂i) + hbs(ρ̂i)δne + kbs(ρ̂i)δTe + lbs(ρ̂i)δTeδne +mbs(ρ̂i)δ

2
Te

+pbs(ρ̂i)δ
2
Teδne

]( 1

θi

)2
θi+1 − θi−1

2∆ρ̂

+
[
g′bs(ρ̂i) + h′bs(ρ̂i)δne + k′bs(ρ̂i)δTe + l′bs(ρ̂i)δTeδne +m′bs(ρ̂i)δ

2
Te

+p′bs(ρ̂i)δ
2
Teδne

]( 1

θi

)
, (4.46)

where θi and ρ̂i are the values of θ and ρ̂ at the discrete nodes, for i = [2, . . . ,mθ−1].

The values of θ at the boundary nodes i = 1 and i = mθ are obtained from the
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boundary conditions (4.45) and are expressed as

θ1 = 0 θmθ = −kIpIp(t). (4.47)

The discretized model can be written in a compact form as

ẋ = fθ(x, u, δ), (4.48)

ιi = − 1

Bφ,0ρ2
b ρ̂i

xi, (4.49)

where x = [θ2, . . . , θmθ−1] ∈ Rnθ is the state vector, ιi is the value of ι at the discrete

nodes, for i = 2, . . . ,mθ−1, u = [Pnbi30L/R
, Pnbi150L/R

, Pnbi210L/R
, Pnbi330L/R

, Ip] ∈ R9 is the

input vector, the uncertain parameter vector is δ =
[
δTe , δne , δTeδne , δ

2
Te
, δ2
Te
δne
]
∈ R5,

fθ ∈ Rnθ is a nonlinear function of the states, inputs, and uncertain parameters, and

nθ = mθ − 2. The output vector is defined as y = [ι2, . . . , ιmθ−1] ∈ Rnθ .

We define a nominal equilibrium point of the system (4.48) as

ẋeq = fθ(xeq, ueq, 0) = 0. (4.50)

We can obtain a model suitable for tracking control design by defining the perturba-

tion variables x̃(t) = x(t) − xeq and ufb(t) = u(t) − ueq, where x̃(t) is the deviation

away from the equilibrium state and ufb(t) is the output of the to-be-designed feed-

back controller. Linearizing (4.48) with respect to the state and control input around

an equilibrium point defined by (4.50), we obtain

ẋeq + ˙̃x = fθ(xeq, ueq, δ) +
∂fθ
∂x

∣∣∣∣
(xeq ,ueq ,δ)

x̃+
∂fθ
∂u

∣∣∣∣
(xeq ,ueq ,δ)

ufb, (4.51)

where ∂fθ/∂x ∈ Rnθ×nθ and ∂fθ/∂u ∈ Rnθ×9 are the Jacobians of the system. By
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employing (4.50), we express (4.51) as

˙̃x =
∂fθ
∂x

∣∣∣∣
(xeq ,ueq ,δ)

x̃+
∂fθ
∂u

∣∣∣∣
(xeq ,ueq ,δ)

ufb + dδ, (4.52)

where dδ = fθ(xeq, ueq, δ) is a disturbance. Finally, (4.52) is written as an explicit

uncertain state-space system as

˙̃x = Ax̃+Bufb + dδ,

y = Cx̃+Dufb, (4.53)

where the state-space matrices have a structure of the form

A = A0 +
5∑

m=1

δmAm B = B0 +
5∑

m=1

δmBm,

C = C0 +
5∑

m=1

δmCm D = D0 +
5∑

m=1

δmDm, (4.54)

where A and B are the Jacobians ∂fθ/∂x and ∂fθ/∂u evaluated at (xeq, ueq, δ), re-

spectively, Ai and Bi, for i = 0, . . . , 5, are the components of the matrices A and

B, respectively, C0 = diag{−1/(Bφ,0ρ
2
b ρ̂i)}, D0 = 0, and Cj = 0 and Dj = 0, for

j = 1, . . . , 5.

4.4.3 Manipulation of dynamic model into robust control

framework

We now exploit the structure of the state matrices in (4.54) to write the system

(4.53) in the conventional P −∆ robust control framework (shown in the little purple

box in Fig. 4.10), where P is the generalized transfer function of the system and

∆ = diag{δ} is a structured uncertainty matrix. The transfer function of a linear
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Figure 4.10: Schematic of control problem formulation for ι profile feedback control design
in DIII-D L-mode scenarios.

system with state-space matrices A, B, C, and D can be written as an upper linear

fractional transformation (LFT) as

G(s) = Fu

(
Ma,

1

s
Inθ

)
= D + C(sInθ − A)−1B,

where Fu is the upper LFT, the matrix Ma is defined as

Ma =


A B

C D


 ,

Inθ is an nθ × nθ identity matrix, and s denotes the Laplace variable. The nominal

model will be coupled with the uncertain parameters in the transfer function repre-

sentation of (4.53). By employing the method outlined in [138], we can separate the

uncertain parameters from the nominal parameters to write the system (4.53) in the

P −∆ robust control framework. The input-output equations of the system in this

framework are expressed as

y∆ = P11u∆ + P12ufb,

y = P21u∆ + P22ufb + d, (4.55)
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where P11, P12, P21, and P22 are the component transfer functions of P that describe

how the system inputs (u∆, ufb) affect the system outputs (y∆, y) and d represents

the effect that the disturbance dδ has on the system outputs. An overview of the

employed technique is provided in Appendix A.

4.4.4 Evaluation of relevant control channels

In order to acquire diagnostic data that is needed by the real-time EFIT (rtEFIT)

equilibrium reconstruction code [11] to reconstruct the plasma q profile for feedback

control, the 30L/R neutral beam powers need to be constant, and we do not utilize

them for feedback control, i.e., ufb = 0 for Pnbi30L/R
. As a result, we have seven

actuators to utilize in feedback, which implies we can independently control at most

seven linear combinations of the system output. To evaluate the relevant control

channels, we employ a singular value decomposition (SVD) of the nominal state-space

system

y = G0(s)ufb = (C0 (sInθ − A0)−1B0 +D0)ufb (4.56)

at a particular frequency. The real approximation of the nominal input-output rela-

tion at a particular frequency jωdc is expressed as

ŷ = Ĝ0ûfb, (4.57)

where Ĝ0 denotes the real approximation of the complex matrix G0(jωdc) [10, 146].

Additionally, to weight the relative tracking performance and control effort, we in-

troduce the positive definite weighting matrices Q ∈ Rnθ×nθ and R ∈ R7×7. We next

define the economy size SVD of the weighted matrix G̃0 as G̃0 = Q1/2Ĝ0R
−1/2 =

UΣV T , where Σ = diag(σ1, σ2, . . . , σ7) ∈ R7×7 is a diagonal matrix of singular values

and U ∈ Rnθ×7 and V ∈ R7×7 are matrices that possess the following properties
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Figure 4.11: Relevant control channels for ι profile control in DIII-D L-mode scenarios:
(a) output and (b) input. The components of the control input vector are
defined as ufb = [Pnbi150L/R

, Pnbi210L/R
, Pnbi330L/R

, Ip]|fb where ufb = 0 for
Pnbi30L/R

.

V TV = V V T = I, UTU = I, where I is a 7× 7 identity matrix, and (·)T denotes the

matrix transpose. The input-output relation (4.57) is now expresses as

ŷ = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV TR1/2ûfb. (4.58)

The relevant control channels are then obtained from (4.58) and are shown in

Fig. 4.11. The singular vectors for the obtainable outputs values are defined as

ŷ = Q−1/2UΣŷ∗, and the corresponding input singular vectors are defined as ûfb =

R−1/2V û∗fb, where ŷ∗ and û∗fb are the decoupled output and input, respectively, i.e.,

ŷ∗ = û∗fb. By selecting the frequency as ωdc = 25 rad/s, the total plasma current (Ip)

is exclusively utilized to control the ι profile near the plasma boundary (1st singular

vector in Fig. 4.11) and the neutral beam injectors are employed to control the ι

profile in the plasma core (second through seventh singular vectors in Fig. 4.11).

By examining the second singular vector, we see that increasing all of the neutral

beam powers (ûfb > 0 in Fig. 4.11(b)) results in the ι profile decreasing (and hence

the q profile increasing) in the plasma core (ŷ < 0 in Fig. 4.11(a)). Intuitively,

increasing the off-axis, co-current (150L/R) and counter-current (210L/R) neutral

beam injection power would result in a corresponding decrease in the total toroidal
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Figure 4.12: Normalized total toroidal current density (defined in (2.91)) and normalized
330L neutral beam injection current density in DIII-D L-mode scenarios.

current density in the plasma core (for a fixed value of the total plasma current),

which agrees with the control input directions in Fig. 4.11. However, increasing the

on-axis, co-current (330L/R) neutral beam injection power would intuitively result in

an increase of the total toroidal current density in the plasma core (for a fixed value

of the total plasma current), which does not agree with the control input directions

in Fig. 4.11. See sections 2.6 and 4.3 for the relationship the local current density

amplitude has to the local q-value in tokamaks. To understand this, the normalized

total toroidal current density and the normalized 330L neutral beam injection current

density in the considered DIII-D L-mode scenarios is shown in Fig. 4.12. As shown

in the figure, the normalized current density deposition profile for the 330L neutral

beam source exhibits a wider distribution than the normalized total toroidal current

density. Therefore, the on-axis neutral beam sources have a similar effect to the

one that the off-axis neutral beam sources have on the ι profile in the considered

scenarios, i.e., increasing the on-axis neutral beam power will result in an decrease

of the total toroidal current density in the plasma core (for a fixed value of the total

plasma current), which agrees with the control input directions in Fig. 4.11.

We note that some of the singular values σi may have a small magnitude relative

to the others and may be chosen to be neglected in the control synthesis to avoid
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potentially spending a significant amount of control effort. Therefore, the singular

values are partitioned into ks significant singular values Σs and 7 − ks negligible

singular values Σns. We then define the significant components of the output and

input vectors as ŷ∗s = Σ−1
s UT

s Q
1/2ŷ ∈ Rks and û∗fbs = V T

s R
1/2ûfb ∈ Rks , respectively,

where Us ∈ Rnθ×ks and Vs ∈ R7×ks are the components of U and V associated with

the significant singular values. A detailed overview of the SVD technique employed

to evaluate the relevant control channels is provided in Appendix B.

4.4.5 Feedback control problem formulation

It is desired that the output y be able to track a reference value r, therefore, we define

the tracking error as e = r − y. The feedback control objectives are to maintain a

small tracking error for any reference, reject the effects of the external disturbance,

utilize as little feedback control effort as possible, and robustly stabilize the system

by controlling the relevant channels of the system (4.55). This feedback control

problem is formulated as shown in Fig. 4.10, where K is the to-be-designed feedback

controller. The closed-loop system outputs are Z1 = Wp(s)e
∗
s and Z2 = Wu(s)u

∗
fbs

,

and the frequency dependent weight functions Wp and Wu are utilized to optimize the

feedback performance. The nominal performance condition of the closed-loop system

is expressed as


Z1

Z2


 =


 WpSDCO −WpSDCO

WuKSDCO −WuKSDCO




r
∗
s

d∗s


 = Tzw


r
∗
s

d∗s


 , (4.59)

where Tzw is the closed-loop transfer function from the inputs (r∗s , d
∗
s) to the outputs

(Z1, Z2), d∗s = Σ−1
s UT

s Q
1/2d, and SDCO = (Iks + Σ−1

s UT
s Q

1/2P22R
−1/2VsK)−1. See

section 3.6 for an example of how this nominal performance condition is derived.

Therefore, to achieve the closed-loop performance objectives (minimize tracking error,
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reject effects of disturbance, utilize as little feedback as possible), the control problem

is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω, (4.60)

where || · ||∞ denotes the H∞ norm. See Appendix C for an introduction to the design

of feedback controllers by employing the H∞ closed-loop shaping technique.

The feedback controller K obtained by solving (4.60) is written in state-space

form as

ẋfb = A∗fbxfb +B∗fbe
∗
s,

u∗fbs = C∗fbxfb +D∗fbe
∗
s, (4.61)

where xfb ∈ Rnfb is the internal controller state vector, A∗fb ∈ Rnfb×nfb , B∗fb ∈ Rnfb×ks ,

C∗fb ∈ Rks×nfb and D∗fb ∈ Rks×ks are the controller system matrices, and nfb is the

number of controller states. For this controller design, the significant singular values

are chosen as Σs = diag{σ1, σ2, σ3}, which allows the feedback controller to actuate

the total plasma current to control ι near the plasma boundary and the neutral beam

injectors to control ι in the plasma core (see Fig. 4.11). Additionally, the value of the

ι profile in the center of the plasma (typically in the spatial domain ρ̂ ∈ [0, 0.3]) and

near the plasma boundary (typically in the spatial domain ρ̂ ∈ [0.85, 1.0]) is important

to achieving high plasma performance and maintaining plasma stability [61,62]. As a

result, the weight matrix Q utilized in the evaluation of the relevant control channels

is chosen to place more emphasis on achieving the target ι profile in these spatial

regions. By exploiting the block-diagonal structure of the uncertainty matrix, i.e.,

∆ = diag{δ}, we can analyze the the robust stability of the closed-loop system with

the nominal controller. The block-diagonal uncertainty matrix structure allows us to
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Figure 4.13: Singular value diagrams: (a) 1/Wp and SDCO and (b) 1/Wu and KSDCO
and (c) structured singular value µ(N11(jω)) versus frequency. The robust
stability condition is defined as µ(N11(jω)) < 1 ∀ω [10].

compute the structured singular value

µ (N11(jω)) =
1

min{km|det (I − kmN11∆) = 0} ,

where N11 = P11 − P12R
−1/2VsKSDCOΣ−1

s UT
s Q

1/2P21 (see section 3.6 for an example

of how this transfer function is derived) is the closed-loop transfer function between

the signals y∆ and u∆ shown in Fig. 4.10. To analyze the performance and robust

stability of the closed-loop system, the singular value diagrams of the inverse of the

performance weight functions and the achieved transfer functions SDCO and KSDCO

are shown in Figs. 4.13(a-b) and a plot of the structured singular value µ(N11(jω))

versus frequency is shown in Fig. 4.13(c).

4.4.6 Anti-windup compensator design

In order to keep the closed-loop system well-behaved in the presence of actuator

saturation, the feedback controller is augmented with an anti-windup compensator

[140] that is designed to keep the controller request from significantly deviating from

the range of physically achievable actuator values. The anti-windup compensator is
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expressed as

ẋaw = Aawxaw +Baw [sat(u)− u] ,

uaw = Cawxaw +Daw [sat(u)− u] , (4.62)

where the vector xaw ∈ Rnaw is the internal anti-windup compensator states, Aaw ∈
Rnaw×naw , Baw ∈ Rnaw×9, Caw ∈ R9×naw , and Daw ∈ R9×9 are the anti-windup com-

pensator system matrices, naw is the number of anti-windup compensator states, uaw

is the output of the anti-windup compensator, sat(u) denotes the saturated output

of the controller, the output of the controller is given by

u(t) = uff (t) + ufb(t) + uaw(t), (4.63)

and uff is the feedforward control input. The number of anti-windup compensator

states is chosen as naw = 9, and the anti-windup compensator system matrices are

chosen as Aaw = 0, Baw = diag{1}, Caw = diag{λi}, Daw = 0, where λi, for i =

{1, . . . , 9}, is the anti-windup gain for each individual actuator.

4.5 Optimized feedforward + feedback control al-

gorithm performance testing in DIII-D exper-

iments

In this section, we test the ability of the optimized feedforward (described in section

4.3) + feedback (4.61) control algorithm augmented with the anti-windup compen-

sator (4.62) to reach a target safety factor profile at the end of the current ramp-up

phase of the discharge in experiments in the DIII-D tokamak. We employ the general

framework for real-time feedforward + feedback control of magnetic plasma profiles
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implemented in the DIII-D Plasma Control System (PCS) described in section 3.7.2 to

test the combined control algorithm. The feedback control algorithm designed in this

chapter directly generates signals for the physical control variables. Therefore the NL

Trans. Switch is set to the right position in Fig. 3.8. Also, the employed anti-windup

scheme is designed to affect the output of the feedback portion of the feedforward

+ feedback controller. Therefore, the AW Switch is set to the left position in Fig.

3.8. Finally, the feedback control algorithm is implemented with a sampling time of

20 ms based on the modulation of the 30L neutral beam source utilized to acquire

diagnostic data to reconstruct the q profile (see sections 3.7.2 and 4.3, respectively).

In order for the plasma to remain in the L-mode operating regime, the net power

across the plasma surface needs to be lower than a threshold power (see (4.17)-(4.19)).

Therefore, to ensure the combined optimized feedforward + feedback controller does

not request a total amount of auxiliary power that exceeds the threshold power (4.19),

we implement an additional saturation (after the Magnitude Saturation block in Fig.

3.8) on the individual neutral beam injection power requests. First, the expected

threshold power (P lim
lh ) is calculated according to (4.19) as

P lim
lh (t) = 2

[
n̄opte19

(t)
]3/4

, (4.64)

where n̄opte19
is the optimized feedforward line average electron density (shown in Figs.

4.2(b), 4.3(b), 4.4(b), and 4.5(b)) in units of 1019 m−3. Second, the total controller

requested auxiliary power (P req
aux) is computed as

P req
aux(t) =

∑

i

P req
nbii

(t), (4.65)

where i ∈ [30L/R, 150L/R, 210L/R, 330L/R] and P req
nbii

is the controller requested

individual neutral beam injection power (feedforward + feedback + anti-windup)
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after the Magnitude Saturation block in Fig. 3.8. Thirdly, if the total controller

requested auxiliary power (4.65) is greater than the expected threshold power (4.64),

i.e., P req
aux > P lim

lh , a scale factor is computed as

Pscale(t) =
P lim
lh (t)−

[
P req
nbi30L

+ P req
nbi30R

]

P req
aux(t)−

[
P req
nbi30L

+ P req
nbi30R

] , (4.66)

and the controller requested individual neutral beam injection powers are scaled ac-

cording to

P ref
nbi30L

= P req
nbi30L

,

P ref
nbi30R

= P req
nbi30R

,

P ref
nbii

(t) = Pscale(t)P
req
nbii

(t), (4.67)

where i ∈ [150L/R, 210L/R, 330L/R] to determine the individual neutral beam injec-

tions power references sent to the Dedicated Control Loops commanding the physical

actuators in Fig. 3.8. If the total controller requested auxiliary power (4.65) is less

than the expected threshold power (4.64), i.e., P req
aux < P lim

lh , the individual neutral

beam injections power references sent to the Dedicated Control Loops are computed

as

P ref
nbii

(t) = P req
nbii

(t), (4.68)

where i ∈ [30L/R, 150L/R, 210L/R, 330L/R]. Finally, we set the reference for the

feedback controller to follow (the vector rM in Fig. 3.8) as the physics-based model

predicted q profile evolution (qFPD(ρ̂, t)) achieved with the optimized feedforward

trajectories designed in section 4.3 (for example see red dash-dotted lines in Figs.

4.6, 4.7, and 4.8, respectively) during the time interval t ∈ [0.4, tf ], where tf = 1.5 s

for target 1, tf = 1.25 s for target 2, and tf = 1.0 s for target 3. After the time tf ,

the reference is held constant at the physics-based model predicted q profile achieved
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Figure 4.14: Best q profile target matching during experimental testing of optimized feed-
forward + feedback control algorithm to achieve q profile target 1. The target
(green circle) is q profile target 1 shown in Fig. 4.1 and the reference q profile
(Cntrl. Ref.) that the feedback controller was attempting to follow at the
time t = 0.439 s is shown by the blue line + triangle and at the time t = 1.519
s is shown by the blue line. The best q profile matching to the reference (at
the time tf , i.e., rM (ρ̂, tf )) with feedforward + feedback control is shown
by the red dashed line and the best q profile matching to the reference (at
the time tf , i.e., rM (ρ̂, tf )) with feedforward control is shown by the black
dash-dotted line. DIII-D shot numbers are indicated in the figures.

at the time tf , i.e.,

rM(ρ̂, t) = qFPD(ρ̂, t) over t ∈ [0.4, tf ] s,

rM(ρ̂, t) = qFPD(ρ̂, tf ) over t > tf s.

We now test the ability of the optimized feedforward + feedback control algorithm

to achieve q profile target 1 (shown in Fig. 4.1) at the end of the current ramp-up

phase in DIII-D shots 157950 and 157951. The feedforward actuator trajectories

shown in Fig. 4.2 are used during these discharges. A comparison of the target, feed-

forward + feedback controlled, and feedforward controlled q profiles at the time when

the error between the achieved q profile and the reference at the time tf (rM(ρ̂, tf ))

is at a minimum, i.e., when (4.2) is minimized, is shown in Fig. 4.14. Also shown in

the figures is a comparison of the reference initial q profile and of the initial q profile

achieved experimentally. For both of the discharges, the initial q profile (red dashed

line + circle in Fig. 4.14) is below the initial reference (blue line + triangle in Fig.
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Figure 4.15: Experimental testing of optimized feedforward + feedback control algorithm
to achieve q profile target 1 during DIII-D shot 157950: (a-c) time traces
of q at ρ̂ = 0.1, 0.2, and 0.95, (d) total plasma current, (e) line average
electron density, (f) total auxiliary power, and (g-i) neutral beam injection
powers (Pnbioff = Pnbi150L

+ Pnbi150R
, Pnbicntr = Pnbi210L

+ Pnbi210R
, Pnbion =

Pnbi330L
+ Pnbi330R

). In (a-c) the target (green circle) is q profile target 1
shown in Fig. 4.1 and the reference q profile evolution (Cntrl. Ref.) that the
feedback controller was attempting to follow is shown by the blue line. In (f),
the applied L-H power limit (green X) is given by (4.64) and the predicted L-
to-H transition power (gold circle) is calculated according to (4.19) by using
the physically achieved line average electron density (red dashed line in (e)).

4.14) in the plasma core. As shown in the figures, the feedback controller is able to

reject the effects of the perturbed initial condition and drive the q profile (red dashed

line in Fig. 4.14) as close to the reference (blue line in Fig. 4.14), and hence the

target (green circle in Fig. 4.14), as possible across the entire spatial domain at the

end of the current ramp-up phase. Also by examining the figures, we see that a very

similar tracking performance is achieved (in terms of the achieved q profile and target

matching) in both of the discharges, which shows that the addition of the feedback

controller is able to improve the ability to robustly achieve the target compared with
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feedforward-only control. To study how the feedback controller tracks the reference

q profile evolution, time traces of q at various radial locations and a comparison of

the actuator trajectories for DIII-D shot 157950 are shown in Fig. 4.15. Firstly, in

response to the q profile in the plasma core initially being below the reference (Figs.

4.15(a-b)), the feedback controller rapidly increases the total auxiliary neutral beam

injection power (blue line in Fig. 4.15(f)) up to the maximum allowable value (green

X in Fig. 4.15(f)). This results in the q profile in the plasma core being driven

from the low initial value to the reference during the time interval t ∈ [1.0, 1.519] s.

Also shown in the figures is how the feedback controller employs the various neutral

beam groups (Figs. 4.15(g-i)) to track the reference q profile evolution in the plasma

core. Finally, the feedback controller regulates the total plasma current to track the

reference q profile evolution near the plasma boundary (Figs. 4.15(c-d)).

We now test the ability of the optimized feedforward + feedback control algorithm

to achieve q profile target 2 (shown in Fig. 4.1) at the end of the current ramp-up

phase in DIII-D shots 157958 and 158051. The feedforward actuator trajectories

shown in Fig. 4.3 are used during these discharges. A time trace of q at ρ̂ = 0.1, a

comparison of the total auxiliary neutral beam injection power, and a comparison of

the target, feedforward + feedback controlled, and feedforward controlled q profiles at

the time when the error between the achieved q profile and the reference at the time

tf (rM(ρ̂, tf )) is at a minimum, i.e., when (4.2) is minimized, is shown in Fig. 4.16.

For both of the discharges, the initial q profile (red dashed line + circle in Figs.

4.16(c)/(f)) is relatively close to the initial reference (blue line + triangle in Figs.

4.16(c)/(f)). Firstly, once the q profile in the plasma core evolves below the reference

(Figs. 4.16(a)/(d)) at the approximate times of t = 0.7 s (157958) and t = 0.55 s

(158051), the feedback controller rapidly increases the total auxiliary neutral beam

injection power (blue line in Fig. 4.16(b)/(e)) up to the maximum allowable value

(green X in Figs. 4.16(b)/(e)). This results in the q profile in the plasma core being
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Figure 4.16: Experimental testing of optimized feedforward + feedback control algorithm
to achieve q profile target 2 during DIII-D shots 157958 (top row) and 158051
(bottom row): (a)/(d) time trace of q at ρ̂ = 0.1, where the target (green
circle) is q profile target 2 shown in Fig. 4.1 and the reference q profile evo-
lution (Cntrl. Ref.) that the feedback controller was attempting to follow is
shown by the blue line, (b)/(e) total auxiliary power, where the applied L-H
power limit (green X) is given by (4.64) and the predicted L-to-H transition
power (gold circle) is calculated according to (4.19) by using the physically
achieved line average electron density, and (c)/(f) best q profile target match-
ing, where the reference q profile (Cntrl. Ref.) that the feedback controller
was attempting to follow at the time t = 0.439 s is shown by the blue line
+ triangle and at the time t = 1.319 s is shown by the blue line, the best q
profile matching to the reference (at the time tf , i.e., rM (ρ̂, tf )) with feed-
forward + feedback control is shown by the red dashed line, and the best q
profile matching to the reference (at the time tf , i.e., rM (ρ̂, tf )) with feedfor-
ward control is shown by the black dash-dotted line. DIII-D shot numbers
are indicated in the figures.

driven closer to the reference in the feedforward + feedback controlled discharges

relative to the feedforward-controlled discharge. However, the q profile in the plasma

core was not able to be driven all of the way to the reference in the feedback-controlled

discharges, even though the feedback controller requested the maximum allowable

neutral beam injection power, which indicates that more auxiliary power is needed to

achieve this target. Secondly, as shown in the figures, the feedback controller is able

drive the q profile (red dashed line in Figs. 4.16(c)/(f)) as close to the reference (blue

line in Figs. 4.16(c)/(f)), and hence the target (green circle in Figs. 4.16(c)/(f)), as
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possible across the entire spatial domain at the end of the current ramp-up phase.

Finally, we see that a very similar tracking performance is achieved (in terms of the

achieved q profile and target matching) in both of the discharges, which again shows

that the addition of the feedback controller is able to improve the ability to robustly

achieve the target compared with feedforward-only control.

We now test the ability of the optimized feedforward + feedback control algorithm

to achieve q profile target 3 (shown in Fig. 4.1) at the end of the current ramp-up phase

in DIII-D shots 158052, 158055, and 158057. The feedforward actuator trajectories

shown in Fig. 4.4 are used during these discharges. A comparison of the target, feed-

forward + feedback controlled, and feedforward controlled q profiles at the time when

the error between the achieved q profile and the reference at the time tf (rM(ρ̂, tf )) is

at a minimum, i.e., when (4.2) is minimized, and a comparison of the total auxiliary

neutral beam injection power is shown in Fig. 4.17. For all of the discharges, the

initial q profile (red dashed line + circle in Figs. 4.17(a)/(c)/(e)) is relatively close to

the initial reference (blue line + triangle in Figs. 4.17(a)/(c)/(e)). During discharges

158052 and 158055, the feedback controller is able drive the q profile (red dashed line

in Figs. 4.17(a)/(c)) as close to the reference (blue line in Figs. 4.17(a)/(c)) as possible

across the entire spatial domain at the end of the current ramp-up phase. However,

as observed in the previously discussed experiments, the q profile in the plasma core

was not able to be driven all of the way to the reference in the feedback-controlled

discharges even though the feedback controller requested the maximum allowable neu-

tral beam injection power (Figs. 4.17(b)/(d)). Therefore, during discharge 158057,

the maximum allowable total auxiliary power that the feedback controller can request

is increased above the predicted L-to-H transition power (Fig. 4.17(f)). As shown in

Fig. 4.17(e), the ability to request additional neutral beam power results in the ability

to drive the q profile closer the reference across the entire spatial domain at the end

of the current ramp-up phase during discharge 158057 compared to discharges
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Figure 4.17: Experimental testing of optimized feedforward + feedback control algorithm
to achieve q profile target 3 during DIII-D shots 158052 (top row), 158055
(middle row), and 158057 (bottom row): (a)/(c)/(e) best q profile target
matching, where the target (green circle) is q profile target 3 shown in Fig.
4.1, the reference q profile (Cntrl. Ref.) that the feedback controller was
attempting to follow at the time t = 0.439 s is shown by the blue line +
triangle and at the best target matching time is shown by the blue line, the
best q profile matching to the reference (at the time tf , i.e., rM (ρ̂, tf )) with
feedforward + feedback control is shown by the red dashed line, and the
best q profile matching to the reference (at the time tf , i.e., rM (ρ̂, tf )) with
feedforward control is shown by the black dash-dotted line, and (b)/(d)/(f)
total auxiliary power, where the applied L-H power limit (green X) is given by
(4.64) and the predicted L-to-H transition power (gold circle) is calculated
according to (4.19) by using the physically achieved line average electron
density. DIII-D shot numbers are indicated in the figures.
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158052 and 158055. As there is no transition to the H-mode operating regime in

this discharge, this suggests that the threshold power (4.19) is indicative (not a hard

limit) of transition. Finally, we see that a similar tracking performance is achieved

(in terms of the achieved q profile and target matching) in all of the discharges, which

again shows that the addition of the feedback controller is able to improve the ability

to robustly achieve the target compared with feedforward-only control.

4.6 Conclusion

The reported advances demonstrate the potential physics-model-based profile control

has to improve the reproducibility of plasma startup conditions in L-mode scenarios

in the DIII-D tokamak by achieving a specified target q profile at the end of the

current ramp-up phase of the discharge. Firstly, a numerical optimization algorithm

to design feedforward trajectories for the available actuators, subject to the plasma

dynamics as well as actuator, plasma state, and operating scenario constraints, that

steer the plasma through the tokamak operating space to reach a target q profile was

developed. A unique characteristic of the feedforward trajectories obtained by solv-

ing the optimization problem is the regulation of the plasma current ramp-up rate

to achieve the target q profiles. The optimized actuator trajectories were successfully

tested through simulation and subsequently tested in DIII-D experiments. The ex-

perimentally achieved q profiles showed a good match to the desired target profiles in

the outer spatial region of the plasma. The experimental tests also indicated that the

current density diffuses towards the plasma core at a faster rate than predicted by the

model. Secondly, a robust feedback algorithm was synthesized to control the q profile

dynamics to account for drifts due to external plasma disturbances. Experimental

results in DIII-D demonstrated the potential of the combined feedforward + feedback

controller to improve the ability to robustly achieve various different target q profiles
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across the entire spatial domain at the end of the current ramp-up phase of the dis-

charge. The control scheme developed in this chapter is extended to reactor relevant,

high confinement (H-mode) scenarios in the DIII-D tokamak in next chapter.
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Chapter 5

Current profile and stored energy

control for the development and

sustainment of advanced scenarios

in the DIII-D tokamak

5.1 Introduction

A significant research thrust has been ongoing in the tokamak fusion community

to find advanced, high performance operating scenarios with the goal of developing

candidate scenarios for ITER [19]. These scenarios are characterized by a high fu-

sion gain, good plasma confinement, magnetohydrodynamic (MHD) stability, and a

noninductively driven plasma current. The development of these advanced scenarios

is experimentally explored by specifying the device’s actuator trajectory waveforms,

such as the total plasma current and auxiliary heating and current-drive (H&CD)

scheme, and analyzing the resulting plasma state evolution. This is conventionally

referred to as advanced plasma scenario planning. Traditionally, these feedforward
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actuator trajectories are developed through a substantial number of trial-and-error

attempts and based on extensive experience gained during operation of a particu-

lar device. Two plasma profiles/parameters that are often used to define a plasma

scenario are the safety factor profile (q profile), which is related to the stability and

performance of the plasma, and the normalized plasma beta (βN), which is a measure

of the confinement efficiency of a particular plasma equilibrium.

In this chapter, the feedforward and feedback controllers designed in chapter 4

are extended to high confinement (H-mode) scenarios in the DIII-D tokamak. The

physics-based model developed in chapter 2 is embedded in a numerical optimization

algorithm to design feedforward trajectories for the available actuators (total plasma

current, auxiliary H&CD system, line average electron density) that steer the plasma

through the tokamak operating space to reach a target plasma state (characterized

by the q profile and plasma βN) in such a way that the achieved state is as stationary

in time as possible. The proximity of the achieved plasma state to the predefined

target state is formulated into a cost functional to be minimized. Additionally, actu-

ator constraints, such as the maximum amount of auxiliary H&CD power and total

plasma current ramp rate, and plasma state constraints, such as the minimum value

of the q profile (to avoid the onset of MHD instabilities that degrade the performance

of the plasma), are imposed on the solution of the optimization problem. The non-

linear, constrained, optimization problem is then to design actuator trajectories that

minimize the cost functional subject to the plasma dynamics and the actuator and

plasma state constraints. This optimization algorithm is developed to complement

the experimental effort of advanced scenario planning in the DIII-D tokamak.

Additionally, feedback controllers for q profile and for simultaneous q profile and

plasma stored energy control are designed following the approach presented in chap-

ter 4, with the goal of rejecting external plasma disturbances to sustain the developed

advanced scenarios. The auxiliary H&CD actuators on DIII-D considered in this
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chapter are 6 individual electron cyclotron (EC) and 6 individual co-current neutral

beam injection (NBI) sources, which are referred to by the names 30L/R, 150L/R,

and 330L/R, where L and R denote left and right lines, respectively. In the H&CD

scheme considered, the electron cyclotron (gyrotron) sources and the 150L/R NBI

lines are utilized as off-axis H&CD sources, while the 30L/R and 330L/R NBI lines

are utilized as on-axis H&CD sources. In the feedback control design, the individual

EC sources are grouped together to form 1 effective EC source for control. Both

the feedforward and feedback controllers are tested experimentally in DIII-D. The

experimental tests demonstrate the potential physics-model-based profile control has

to provide a systematic approach for the development and robust sustainment of ad-

vanced scenarios, as well as provide insight into physics aspects important to robust

scenario execution. The q profile (not including energy control) feedback controller

is shown to be able to effectively control the q profile when βN is relatively close

to the target, indicating the need for integrated q profile and βN control to further

enhance the ability to achieve robust scenario execution. Through simulations with

the physics-based model developed in chapter 2, the ability of the combined q profile

and stored energy feedback controller to track a desired target is demonstrated.

This chapter is organized as follows. In section 5.2, the actuator trajectory opti-

mization problem is formulated. The optimization problem is solved by employing the

sequential quadratic programming (SQP) technique [95], and the optimized actuator

trajectories are tested in DIII-D experiments in section 5.3. In section 5.4, a robust

feedback algorithm to simultaneously control the q profile and stored energy is de-

signed. Experimental results in DIII-D are presented to demonstrate the potential of

the q profile feedback controller (not including energy control) to improve the ability

to robustly achieve target plasma scenarios, and simulation results are presented to

demonstrate the ability of the combined q profile and stored energy feedback controller

to track a desired target in sections 5.5 and 5.6, respectively. Finally, conclusions are
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discussed in section 5.7.

5.2 Scenario planning by feedforward actuator tra-

jectory optimization

The plasma parameters that characterize a tokamak operating scenario considered

in this chapter are the q profile, the plasma βN and the plasma loop-voltage profile

(Up). The relationship these quantities have to the plasma poloidal magnetic flux (Ψ)

and plasma stored energy (E) are described in section 2.6 and are repeated here for

convenience. The q profile is related to the spatial gradient of the poloidal magnetic

flux and is defined as

q(ρ̂, t) = −dΦ

dΨ
= − dΦ

2πdψ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (5.1)

where t is the time and ψ is the poloidal stream function, which is closely related

to the poloidal magnetic flux (Ψ = 2πψ). The normalized effective minor radius

ρ̂ = ρ/ρb is the spatial variable employed to index the magnetic flux surfaces, where ρ

is the mean effective minor radius of the magnetic flux surface, i.e., Φ(ρ) = πBφ,0ρ
2,

Φ is the toroidal magnetic flux, Bφ,0 is the vacuum toroidal magnetic field at the

geometric major radius R0 of the tokamak, and ρb is the mean effective minor radius

of the last closed magnetic flux surface. The plasma βN is related to the plasma

stored energy and is defined as

βN = βt[%]
aBφ,0

Ip[MA]
βt =

〈p〉V
B2
φ,0/(2µ0)

=
(2/3)(E/Vp)

B2
φ,0/(2µ0)

, (5.2)

where βt is the toroidal plasma beta [18], a is the plasma minor radius, Ip is the total

plasma current, p is the plasma kinetic pressure, 〈·〉V denotes the volume-average
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operation 1/Vp
∫
V

(·)dV , V is the volume enclosed by a magnetic flux surface, Vp is

the total plasma volume, and µ0 is the vacuum magnetic permeability. The loop-

voltage profile is related to the temporal derivative of the poloidal magnetic flux and

is defined as

Up(ρ̂, t) = −∂Ψ

∂t
= −2π

∂ψ

∂t
. (5.3)

5.2.1 Target plasma state: Cost functional definition

The objective of the actuator trajectory optimization algorithm is to design actuator

waveforms that steer the plasma from a particular initial condition through the toka-

mak operating space to reach a target state (defined in terms of the q profile (qtar(ρ̂))

and normalized plasma beta (βtarN )) at some time tf during the plasma discharge in

such a way that the achieved state is as stationary in time as possible. As the poloidal

flux profile evolves with the slowest time constant in the plasma, if it reaches a sta-

tionary condition, i.e., Up(ρ̂, t) = constant, all of the other plasma profiles have also

reached a stationary condition. If Up(ρ̂, t) = 0, the total plasma current is completely

driven by noninductive sources and this is referred to as a “steady-state” scenario.

Therefore, the stationarity of the plasma state can be defined by the profile

gss(ρ̂, t) =
∂Up
∂ρ̂

. (5.4)

A stationary plasma state is reached when gss(ρ̂, t) = 0. Therefore, the proximity of

the achieved plasma state to the target state at the time tf can be described by the

cost functional

J(tf ) = kssJss(tf ) + kqJq(tf ) + kβNJβN (tf ), (5.5)
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where kss, kq, and kβN are used to weight the relative importance of the plasma state

characteristics and

Jq(tf ) =

∫ 1

0

Wq(ρ̂)
[
qtar(ρ̂)− q(ρ̂, tf )

]2
dρ̂, (5.6)

Jss(tf ) =

∫ 1

0

Wss(ρ̂) [gss(ρ̂, tf )]
2 dρ̂, (5.7)

JβN (tf ) =
[
βtarN − βN(tf )

]2
, (5.8)

where Wq(ρ̂) and Wss(ρ̂) are positive functions used to weight which portions of the

respective profiles are more important relative to the others.

5.2.2 Plasma state dynamics

In chapter 2, a general first-principles-driven (FPD), physics-based model of the

poloidal magnetic flux profile (and hence the q profile and Up profile) evolution was

derived. The model was subsequently tailored to H-mode operating scenarios in the

DIII-D tokamak in section 2.8. The nonlinear, physics-based partial differential equa-

tion (PDE) model of the poloidal flux evolution tailored to DIII-D H-mode scenarios

is expressed as

∂ψ

∂t
= fη (ρ̂)uη(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ(ρ̂)

∂ψ

∂ρ̂

)
+

nec∑

i=1

feci (ρ̂)ueci(t)

+

nnbi∑

i=1

fnbii (ρ̂)unbii(t) + fbs (ρ̂)ubs(t)

(
∂ψ

∂ρ̂

)−1

, (5.9)

with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −kIpuIp(t), (5.10)

204



where fη, feci , fnbii , and fbs are defined in (2.85), Dψ pertains to the magnetic con-

figuration of a particular plasma equilibrium, nec and nnbi are the number of electron

cyclotron microwave launchers and neutral beam injectors, respectively, and kIp is a

geometrical constant defined in (2.83). The diffusivity (uη), interior (ueci , unbii , ubs),

and boundary (uIp) control terms are expressed as

uη(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−3/2

,

ueci(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−1/2

n̄e(t)
−1Peci(t),

unbii(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−1

n̄e(t)
−1Pnbii(t),

ubs(t) =
[
Ip(t)Ptot(t)

1/2n̄e(t)
−1
]−1/2

n̄e(t),

uIp(t) = Ip(t), (5.11)

where

Ptot(t) = Pohm(t) +
nec∑

i=1

Peci(t) +

nnbi∑

i=1

Pnbii(t)− Prad(t), (5.12)

is the total power injected into the plasma, Pohm(t) is the ohmic power, Peci(t) and

Pnbii(t) are the individual gyrotron launcher and neutral beam injection powers, re-

spectively, Prad(t) is the radiated power, and n̄e(t) is the line average electron density.

The evolution of the plasma stored energy (and hence the plasma βN) is given by

(2.59) and repeated here for convenience as

dE

dt
= − E

τE(t)
+ Ptot(t), (5.13)

where τE(t) is the global energy confinement time. The energy confinement time

scaling used in this work is the IPB98(y,2) scaling law [132].

We now spatially discretize the infinite dimensional PDE (5.9)-(5.10) by employing

a finite difference method to simulate the physics-based model. The non-dimensional
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spatial domain of interest (ρ̂ ∈ [0, 1]) is represented by mψ discrete nodes. After

spatially discretizing (5.9) and taking into account the boundary conditions (5.10),

we obtain a nonlinear finite dimensional ordinary differential equation (ODE) model

defined by

˙̂
ψ = fψ(ψ̂, u), (5.14)

where ψ̂ = [ψ2, . . . , ψmψ−1]T ∈ Rnψ is the magnetic state vector, ψi, for i = 2, . . . ,mψ−
1, is the value of ψ at the i-th node, u = [Pec1 , . . . , Pecnec , Pnbi1 , . . . , Pnbinnbi , n̄e, Ip]

T ∈
Rnact is the control input vector, nact = nec+nnbi+2, fψ ∈ Rnψ is a nonlinear function

of the plasma magnetic states and control inputs, and nψ = mψ − 2. By defining the

plasma state vector as

x =


ψ̂

E


 ∈ R(nψ+1), (5.15)

we can write the magnetic and kinetic state dynamics as

ẋ =




fψ(ψ̂, u)

− E

τE(t)
+ Ptot(x, u)


 = Fψ,E(x, u) ∈ R(nψ+1). (5.16)

By employing a fully implicit numerical scheme, we can integrate (5.16) in time, i.e.,

xk+1 − xk
∆t

= Fψ,E(xk+1, uk), (5.17)

where xk and uk denote the state and control input, respectively, at the time step

tk, xk+1 denotes the state at the next time step tk+1, and ∆t is the simulation time

step. The magnetic and thermal state evolution can be obtained by iteratively solving

(5.17) at each time step from a given initial condition at time t0, i.e., x0 = x(t0).
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5.2.3 Control actuator trajectory parameterization

The individual control actuator trajectories are parameterized in the same fash-

ion as described in section 4.2.3, and the parameterization is repeated here for

convenience. The trajectories of the i-th control actuator (ui) are parameterized

by a finite number of parameters (npi) at discrete points in time (tpi), i.e., tpi =

[t0, t1, . . . , tk, . . . , tk = tf ] ∈ Rnpi . During the time interval t ∈ (tk, tk+1) the i-th con-

trol input is determined by linear interpolation as ui(t) = ui(tk)+[ui(tk+1)− ui(tk)] (t−
tk)/(tk+1− tk). By combining all of the parameters utilized to represent each individ-

ual actuator trajectory into a vector

θ̃ =
[
u1

1, . . . , u
np1
1 , . . . , u1

i , . . . , u
npi
i , . . . , u1

nact , . . . , u
npnact
nact

]
, (5.18)

where θ̃ ∈ Rntotp and ntotp =
∑nact

i=1 npi , the parameterized control actuator trajectories

are given by

u(t) = Π(t)θ̃, (5.19)

where Π(t) ∈ Rnact×ntotp is a piecewise linear function of time. Some of the parameters

in the vector (5.18) may be chosen to be fixed due to the desire to obtain an operating

condition at the time tf with a specific set of characteristics (a final plasma current

(Ip(tf )) and/or line average electron density (n̄e(tf ))), or to provide the ability to

acquire diagnostic data (constant power in a neutral beam injector). Therefore, the

subset of free parameters in the vector (5.18) can be combined into a vector of to-be-

optimized parameters which we define as θ ∈ Rnopt where nopt ≤ ntotp .
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5.2.4 Actuator constraints

The actuator magnitude constraints are given by

Iminp ≤ Ip(t) ≤ Imaxp , (5.20)

Pmin
ec ≤ Peci(t) ≤ Pmax

ec , i = 1, . . . , nec (5.21)

Pmin
nbi ≤ Pnbii(t) ≤ Pmax

nbi , i = 1, . . . , nnbi, (5.22)

where (·)min and (·)max are the minimum and maximum limits, respectively. The

actuator rate constraints are defined by

− Id′p,max ≤
dIp
dt
≤ Iu

′

p,max, (5.23)

where Id
′
p,max and Iu

′
p,max are the maximum total plasma current ramp-down and ramp-

up rates, respectively. The actuator constraints (5.20)-(5.23) can be combined to-

gether and written in terms of the to-be-optimized parameters θ in a compact matrix

form as

Alimu θ ≤ blimu . (5.24)

5.2.5 Plasma state and MHD stability constraints

The MHD stability limit related to the plasma magnetic states considered in this

work is expressed as

qmin(t) ≥ qlimmin, (5.25)

where qmin(t) = min{q(ρ̂, t)} and qlimmin is a constant chosen to be slightly greater than

one to avoid the onset of sawtooth oscillations [18]. In order for the plasma to remain

in the H-mode operating regime, the net power across the plasma surface, Pnet, must
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be greater than a threshold power, Pthreshold, i.e.,

Pnet(t) ≥ Pthreshold(t), (5.26)

where

Pnet(t) = Ptot(t)−
dE

dt
=

E

τE(t)
, (5.27)

and the threshold power is given in [143,144]. The final MHD stability limit considered

in this work is given by

n̄e20(t) ≤ ng(t), (5.28)

where n̄e20(t) is the line average electron density evaluated in units of 1020 m−3 and

ng(t) =
Ip(t)[MA]

πa2
(5.29)

is referred to as the Greenwald density limit [147]. We next chose to formulate the

constraints (5.25)-(5.26) as integral constraints [145], which provides the ability to

reduce the number of constraints imposed on the optimization problem solution. An

example of this is given for the constraint (5.25) as

climq =

∫ tf

t0

max{0, qlimmin − qmin(t)}dt ≤ 0. (5.30)

The MHD stability constraint (5.26) can be written in the form of (5.30) and combined

together and written in a compact matrix form as

climmhd(x(t)) ≤ 0. (5.31)

As the MHD stability constraint (5.28) depends directly on the to-be-optimized pa-

rameters θ, it is included in the formulation of the actuator constraints (5.24).
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5.2.6 Optimization problem statement and solution method

The nonlinear, constrained, actuator trajectory optimization problem is now to de-

termine the to-be-optimized parameters θ that minimize the cost functional (5.5)

subject to the plasma dynamics (5.16), the control actuator trajectory parameteriza-

tion (5.19), the actuator constraints (5.24), and the plasma state and MHD stability

constraints (5.31). This optimization problem is written mathematically as

min
θ

J(tf ) = J(ẋ(tf ), x(tf )), (5.32)

such that

ẋ = Fψ,E(x, u),

u(t) = Π(t)θ̃,

Alimu θ ≤ blimu ,

climmhd(x(t)) ≤ 0. (5.33)

We solve this optimization problem by employing sequential quadratic programming

(SQP) [95] as in section 4.2.6. An overview of the SQP technique is provided in

Appendix E.

5.3 Design and experimental testing of optimized

feedforward trajectories

We now solve the actuator trajectory optimization problem (5.32)-(5.33) to reach a

target plasma state (such that the achieved state is in a stationary condition) at a

time tf during the plasma discharge by employing the SQP solution method. The
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optimization is carried out over the time interval topt = t ∈ [t0, tf ] = [0.5, 3.0] s. We

begin by parameterizing the i-th actuator trajectory by npi = 6 discrete parameters at

the time points tpi = [0.5, 1.0, . . . , 3.0] s. Next, the components of the total parameter

vector (5.18) that are fixed, or not-to-be optimized, are chosen as discussed in section

5.2.3. Firstly, the total gyrotron power, Pectot(t), is chosen to be evenly distributed

amongst the individual gyrotron launchers. Additionally, as the gyrotrons have a

limited amount of total energy they can deliver in a plasma discharge, they are set

to be inactive during the time interval t ∈ [0.5, 2.5) s so they have the potential to be

used at full power for the remainder of the discharge. Secondly, in order to acquire

diagnostic data to reconstruct the q profile, the 30L/R neutral beam powers are fixed

at a constant 1.1 MW. Thirdly, density control is challenging in experiments due to

large particle recycling at the tokamak wall and to the difficulty of pumping particles

out of the machine. Therefore, the line average electron density trajectory is chosen

to not be optimized and is specified as follows: linearly ramped-up from an initial

value of n̄e(0.5) = 2× 1019 m−3 to a final value of n̄e(2.0) = 4.2× 1019 m−3 and then

held constant. Finally, all of the actuator values at the initial time t0 = 0.5 s and the

value of the total plasma current at the time tf = 3.0 s are chosen to be fixed, i.e.

they are not optimized. The vector of to-be-optimized parameters is then given by

θ =
[
Pectot(2.5), Pectot(3.0), Pnbii(1.0), . . . ,

Pnbii(3.0), Ip(1.0), . . . , Ip(2.5)
]
, (5.34)

where i ∈ [150L/R,330L/R], respectively. The value and shape of the q profile in

the center of the plasma (typically in the spatial domain ρ̂ ∈ [0, 0.4]) is important to

achieving and maintaining high performance plasmas [61,62]. As a result, the weight

function Wq(ρ̂) in (5.6) is chosen to place more emphasis on achieving the target q

profile in the inner region of the plasma (ρ̂ ∈ [0, 0.4]) relative to the outer region.
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Fig. 1. Optimized and physically achieved (DIII-D shot 154684) actuator trajectories: (a) total plasma current, (b) total
gyrotron launcher power, and (c-f) individual neutral beam injection powers. Note: optimized parameter (red ◦)
and magnitude (solid green) and rate (dash green) limits applied on numerical solution of optimization problem.
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Fig. 2. Time trace of safety factor q at various radial locations. safety factor profile q(ρ̂) at various times during
the simulation and experimental tests of the optimized actuator trajectories. Approximate error bars for the
experimentally measured q-profiles (obtained from the real-time EFIT equilibrium reconstruction code (Ferron
et al. (1998))) are shown by the gray-shaded regions.The onset of MHD instabilities after 2.3 sec. during DIII-D
shot 154684 is indicated by the solid green line. The effect the MHD instabilities have on degrading the plasma
performance can be seen from the drop in βN at the onset of the modes

a moderate amount of on-axis neutral beam power is
injected into the plasma during the time interval t ∈ [2, 3]
sec. to set up a stationary plasma state before settling to
a relatively small amount that is needed to achieve the
target βN .

5. SIMULATION AND EXPERIMENTAL TESTING
OF OPTIMIZED ACTUATOR TRAJECTORIES

The optimized actuator trajectories shown in Fig. 1 are
now tested (i) through simulation with the physics-based
model of the poloidal magnetic flux profile evolution
and volume-averaged plasma energy balance discussed in
Section 2 and (ii) experimentally in the DIII-D tokamak
during shot 154684. As the optimized actuator trajectories
are designed to achieve a target plasma state at the time
tf = 3.0 sec. in such a way that the achieved plasma state
is as stationary in time as possible, the actuator values are

held constant from the time tf until the end of the plasma
discharge. It is important to note that the optimized
actuator trajectories represent the references to dedicated
control loops that command the physical actuators. For
example, the total plasma current is controlled by the
poloidal field (PF) coil system on the tokamak, and a
PID loop regulates the voltage on the PF coils so the
total plasma current tracks the reference. A similar PID
loop is employed to regulate the line-averaged electron
density. Finally, the neutral beam and gyrotron control
loops manage the individual neutral beam and gyrotron
modulations, respectively, to follow the average power
references. As shown in Fig. 1, the dedicated control
loops are able to follow the requested actuator trajectories
reasonably well. However, during DIII-D shot 154684, one
of the gyrotrons faulted at approximately 3.8 sec., the
30L/R and 150R neutral beam launchers were saturated
at their upper limits for all or part-of the discharge, and

Gyrotron Faulted 
Poor Regulation 

Saturation 

Figure 5.1: Optimized and physically achieved (DIII-D shot 154684) actuator trajectories:
(a) total plasma current, (b) total electron cyclotron power (set to be inactive
during the time interval t ∈ [0.5, 2.5) s because of the limited amount of total
energy the gyrotrons can deliver in one discharge), and (c-f) individual neutral
beam injection powers. Actuator limitations (either in regulation or faults)
are indicated in the respective figures. Additionally, the actuator magnitude
(solid green) and rate (dash green) limits applied on the optimization problem
solution are also shown. The actuator trajectories are represented by a finite
number of parameters (optimized parameter denoted by red ◦) and the associ-
ated actuator trajectories (red - - line) are determined by linear interpolation
during the time intervals between the individually optimized parameters.

The optimized parameters (5.34) (and associated actuator trajectories) deter-

mined by solving the optimization problem (5.32)-(5.33), with the target plasma

state (qtar(ρ̂) and βtarN ) chosen to be the q profile and βN experimentally achieved at

3.0 s in DIII-D shot 150320, are shown in Fig. 5.1. Firstly, the total plasma current

is ramped up at the maximum allowable rate, which is set to avoid triggering tear-

ing modes due to a loss of magnetic shear near the plasma boundary, and exhibits

a slight overshoot before settling to the specified final value. Secondly, the off-axis

neutral beam power (Pnbi150L/R
) is gradually increased up to the maximum allowable

value during the time interval t ∈ [1.5, 3] s to set up a stationary plasma state with

off-axis auxiliary current drive, which is needed to achieve the target q profile in the

plasma core. Thirdly, the maximum amount of electron cyclotron power is injected

into the plasma with the same objective, as well as to reach the target βN . Finally,
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Figure 5.2: H-mode threshold (5.26) and density limit (5.28) conditions achieved with
the actuator trajectories shown in Fig. 5.1 that are obtained by solving the
optimization problem (5.32)-(5.33).

a moderate amount of on-axis neutral beam power (Pnbi330L/R
) is injected into the

plasma during the time interval t ∈ [2, 3] s to set up a stationary state before settling

to a relatively small amount that is needed to achieve the target βN . As shown in

Fig. 5.2, the optimized actuator trajectories satisfy the H-mode threshold (5.26) and

density limit (5.28) constraints that are imposed on the solution of the optimization

problem (5.32)-(5.33).

The actuator trajectories shown in Fig. 5.1 were tested through simulation with

the physics-based model of the plasma dynamics tailored to DIII-D H-mode scenarios

(described in section 2.8) and experimentally in DIII-D during shot 154684. As the

optimized trajectories were designed to achieve a target plasma state at the time

tf = 3.0 s in such a way that the achieved state is as stationary in time as possible,

the actuator values were held constant from the time tf until the end of the discharge.

It is important to note that the optimized trajectories represent the references to the

dedicated control loops that command the DIII-D physical actuators, and as shown

in Fig. 5.1, the dedicated control loops were able to follow the requested trajectories

reasonably well. However, during DIII-D shot 154684, one of the gyrotrons faulted
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Investigation of robust steady-state scenario execution in the DIII-D tokamak
through the utilization of physics-model-based control techniques
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Figure 1: Optimized and physically achieved (DIII-D shot 154684) actuator trajectories: (a) total plasma
current, (b) total gyrotron launcher power and (c-f) individual neutral beam injection powers. In order to
acquire diagnostic data to reconstruct the plasma q-profile, the 30L/R neutral beam powers are fixed at a
constant 1.1 MW. The line average electron density trajectory is chosen to be fixed (linearly ramped-up from
an initial value n̄e(0.5) = 2 × 1019 m−3 to a final value n̄e(2.0) = 4.2 × 1019 m−3 and then held constant)
because density control is challenging in experiments due to large particle recycling at the tokamak wall.
The actuator trajectories are represented by a finite number of parameters (optimized parameter (red ◦))
and the associated actuator trajectories (red - - line) are determined by linear interpolation during the time
intervals between the individual parameters. Note: actuator magnitude (solid green) and rate (dash green)
limits applied on numerical solution of optimization problem.
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Figure 2: Simulation and experimental (DIII-D shot 154684) testing of optimized actuator trajectories: (a-e)
time trace of q at various radial locations, (f) time trace of βN and (g-i) q-profile at various times. Note
the excellent agreement between the simulated and experimental q-profile evolution during the time interval
t ∈ [0.5, 4.0] sec. The solid green line denotes the onset of MHD instabilities during DIII-D shot 154684. The
effect the MHD instabilities have on degrading the plasma performance can be seen from the drop in βN

at the onset of the modes. Approximate error bars for the measured q-profiles (obtained from the real-time
EFIT equilibrium reconstruction code [82]) are shown by the gray-shaded regions.

Page 6 of 10

Figure 5.3: Simulated and experimental (DIII-D shot 154684) testing of optimized actu-
ator trajectories: (a-e) time traces of q at ρ̂ = 0.1, 0.2, 0.3, 0.4, 0.9, (f) time
trace of βN , and (g-i) q profile at t = 3.0, 4.0, and 6.0 s. The solid green line
denotes the onset of MHD instabilities during DIII-D shot 154684. Approx-
imate error bars for the measured q profiles (obtained from rtEFIT [11]) are
shown by the gray-shaded regions.

at approximately 3.8 s, the 150R neutral beam injector was saturated at its upper

limit after 2.75 s, and the control loop commanding the 150L neutral beam injector

was not able to follow the request after 2.5 s.

Time traces of q at various radial locations, a time trace of βN , and a comparison

of the target, physics-based model predicted, and experimentally achieved q profiles

at various times is shown in Fig. 5.3. As shown, the optimized trajectories were

able to drive the experimental plasma as close as possible to the desired stationary q

profile at 3.0 s. However, at 2.3 s, MHD instabilities developed and persisted for the

remainder of the discharge. The MHD instabilities degraded the plasma confinement

characteristics (shown in the immediate reduction of βN once the modes develop)

and resulted in the inability to experimentally achieve the target βN and maintain
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the target q profile in the plasma core after 4.0 s. However, through simulation with

the physics-based model, it was shown that the optimized trajectories were able to

steer the simulated plasma to the stationary target in the absence of MHD modes.

Finally, note the excellent agreement between the simulated and experimental q profile

evolution during the time interval t ∈ [0.5, 4.0] s, which provides confidence in the

ability of the physics-based model to satisfactorily predict the evolution of the plasma

for control algorithm design purposes.

As a result of the MHD instabilities that developed during the experimental test

of the optimized trajectories, the target βN was not able to be achieved and the

target q profile was unable to be maintained in a stationary condition. Therefore

to compensate for external disturbances (such as a reduction in confinement) and

actuation limitations (either in regulation or faults), the feedforward trajectories need

to be integrated together with a feedback control scheme, as discussed in the next

section, to improve the ability to robustly achieve plasma target conditions.

5.4 Feedback control design

5.4.1 Partial differential equation model of system dynamics

We begin the design process by converting the physics model that describes the

poloidal magnetic flux profile evolution in the tokamak (the magnetic diffusion equa-

tion) into a form suitable for control design. The magnetic diffusion equation is given

in (2.45) and restated here for convenience as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)(jaux + jbs), (5.35)
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with boundary conditions given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −kIpIp(t), (5.36)

where η(ρ̂, t) is the plasma resistivity, Te(ρ̂, t) is the electron temperature, jaux(ρ̂, t)

is the noninductive current density provided by the auxiliary sources, and jbs(ρ̂, t)

is the noninductive current density provided by the bootstrap current [60]. The

parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are geometric spatial factors pertaining to the

magnetic configuration of a particular plasma MHD equilibrium (defined in (2.44)).

The total auxiliary current drive is generated by the gyrotron launchers and neutral

beam injectors. The auxiliary gyrotron and neutral beam current drives are pro-

portional to the current-drive efficiencies Te/ne and
√
Te/ne, respectively, where ne

is the electron density. The bootstrap current is proportional to the inverse of the

poloidal flux gradient profile multiplied by the kinetic plasma profile gradients, i.e.,

jbs ∝ (∂ψ/∂ρ̂)−1[ne
∂Te
∂ρ̂

+ Te
∂ne
∂ρ̂

]. We chose to model the kinetic plasma parameters

(electron density, electron temperature, and plasma resistivity) as a nominal model

plus a bounded uncertain model. We then employ robust control techniques [10] to

design a feedback controller that achieves a desired closed-loop performance while

guaranteeing that the controller maintains closed-loop system stability for the range

of the kinetic plasma parameters captured by the uncertain models.

Towards this goal, we define ranges in which the electron density and temperature

profiles are expected to be in typical DIII-D advanced scenarios, which are shown

in Figs. 5.4(a-b). For feedback control design, these parameters are modeled as a

nominal profile plus a bounded uncertain profile, i.e.,

ne(ρ̂) = nnome (ρ̂) + nunce (ρ̂)δne , (5.37)

Te(ρ̂) = T nome (ρ̂) + T unce (ρ̂)δTe , (5.38)
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Figure 5.4: Plasma parameter uncertainty ranges in DIII-D H-mode scenarios: (a) elec-
tron density, (b) electron temperature, and (c) plasma resistivity. Note: nom-
inal values (solid) and minimum/maximum values (dash).

where the nominal (nnome , T nome ) and uncertain profiles (nunce , T unce ) are defined in

terms of the maximum and minimum profiles shown in Figs. 5.4(a-b), with |δTe| ≤ 1

and |δne| ≤ 1. The plasma resistivity is inversely related to the electron temperature

(minimum resistivity is defined by the maximum electron temperature), and the re-

sistivity range is shown in Fig. 5.4(c). Additionally, the parameters
√
Te and 1/ne

(note that jnbi ∝
√
Te/ne and jec ∝ Te/ne) are related to the electron temperature

and density, respectively. For feedback control design, these parameters are modeled

as

η(ρ̂) = ηnom(ρ̂) + ηunc(ρ̂)δTe , (5.39)

√
Te(ρ̂) = T nom

′

e (ρ̂) + T unc
′

e (ρ̂)δTe , (5.40)

1/ne(ρ̂) = nnom
′

e (ρ̂) + nunc
′

e (ρ̂)δne , (5.41)

where the nominal (ηnom, T nom
′

e , nnom
′

e ) and uncertain (ηunc, T unc
′

e , nunc
′

e ) profiles are

defined in terms of the maximum and minimum profiles shown in Fig. 5.4.

From (5.1), we see that the q profile is inversely related to the spatial gradient of

the poloidal stream function, which we define as

θ(ρ̂, t) ≡ ∂ψ

∂ρ̂
. (5.42)
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By combining the magnetic diffusion equation (5.35) with the noninductive current-

drive models (auxiliary and bootstrap) and the models (5.37)-(5.41), and after some

mathematical manipulations, we obtain the PDE governing the evolution of θ that is

used for feedback control design, which is expressed as

∂θ

∂t
= [qη1 + qη4δTe ]

∂2θ

∂ρ̂2
+ [qη2 + qη5δTe ]

∂θ

∂ρ̂
+ [qη3 + qη6δTe ] θ

+
∑

i

[
g′i + h′iδne + k′iδTe + l′iδTeδne +m′iδ

2
Te + p′iδ

2
Teδne

]
Pi(t)

−
[
gbs + hbsδne + kbsδTe + lbsδTeδne +mbsδ

2
Te + pbsδ

2
Teδne

](1

θ

)2
∂θ

∂ρ̂

+
[
g′bs + h′bsδne + k′bsδTe + l′bsδTeδne +m′bsδ

2
Te + p′bsδ

2
Teδne

](1

θ

)
, (5.43)

with boundary conditions

θ(0, t) = 0 θ(1, t) = −kIpIp(t), (5.44)

where i ∈ {ectot, nbi30L/R, nbi150L/R, nbi330L/R}, the parameters qηj(ρ̂), for j = 1, . . . , 6,

gi(ρ̂), hi(ρ̂), ki(ρ̂), li(ρ̂), mi(ρ̂), pi(ρ̂), gbs(ρ̂), hbs(ρ̂), kbs(ρ̂), lbs(ρ̂), mbs(ρ̂), pbs(ρ̂) are

functions of space, (·)′ = d/dρ̂, and Pi(t) is the total gyrotron launcher power and the

individual neutral beam injection powers, respectively. See section 4.4.1 for an exam-

ple of how (5.43) is derived. Additionally, for feedback control design, we approximate

the plasma stored energy dynamics (5.13) as

dE

dt
= − E

τE
+ Paux(t) = − E

τE
+
∑

i

Pi(t), (5.45)

where Paux is the total auxiliary heating power. In (5.45), we have neglected the ohmic

and radiated power to simplify the feedback control design as they are typically small

compared to the auxiliary heating power in the scenarios considered.
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5.4.2 Model reduction via spatial discretization

We spatially discretize the governing PDE (5.43) by employing a finite difference

method, where the spatial domain of interest (ρ̂ ∈ [0, 1]) is represented as mθ nodes,

to obtain a model suitable for tracking control design. After spatially discretizing

(5.43) and taking into account the boundary conditions (5.44), we obtain a nonlinear,

finite dimensional, ordinary differential equation model defined by

˙̂
θ = fθ(θ̂, u, δ), (5.46)

where θ̂ = [θ2, . . . , θmθ−1]T ∈ Rnθ is the magnetic state vector, θi, for i = 2, . . . ,mθ−1,

is the value of θ at the i-th node, u = [Pectot , Pnbi30L/R
, Pnbi150L/R

, Pnbi330L/R
, Ip]

T ∈ R8 is

the input vector, the uncertain parameter vector is δ =
[
δTe , δne , δTeδne , δ

2
Te
, δ2
Te
δne
]T ∈

R5, fθ ∈ Rnθ is a nonlinear function of the plasma magnetic states, control inputs,

and uncertain parameters, and nθ = mθ − 2. By defining the plasma state vector as

x = [θ̂, E] ∈ R(nθ+1), we can write the magnetic and kinetic state dynamics as

ẋ =




fθ(θ̂, u, δ)

− E

τE(t)
+
∑7

i=1 ui


 = Fθ,E(x, u, δ) ∈ R(nθ+1). (5.47)

Linearizing (5.47) with respect to the state and control input around a nominal equi-

librium point (xeq, ueq, 0), we obtain a linear time-invariant (LTI) model given by

˙̃x = Ax̃+Bufb + dδ,

y = Cx̃+Dufb, (5.48)
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Figure 5.5: Schematic of control problem formulation for simultaneous θ profile + E feed-
back control design in DIII-D H-mode scenarios.

with

A = A0 +
5∑

m=1

δmAm B = B0 +
5∑

m=1

δmBm,

C = C0 +
5∑

m=1

δmCm D = D0 +
5∑

m=1

δmDm, (5.49)

where x̃(t) = x(t)−xeq, ufb(t) = u(t)−ueq is the output of the to-be-designed feedback

controller, dδ = Fθ,E(xeq, ueq, δ), A and B are the Jacobians ∂Fθ,E/∂x ∈ R(nθ+1)×(nθ+1)

and ∂Fθ,E/∂u ∈ R(nθ+1)×8, respectively, evaluated at (xeq, ueq, δ), Ai and Bi, for

i = 0, . . . , 5, are the components of the matrices A and B, respectively, C0 is an

(nθ + 1)× (nθ + 1) identity matrix, D0 = 0, and Cj = 0 and Dj = 0, for j = 1, . . . , 5.

5.4.3 Manipulation of dynamic model into robust control

framework

By exploiting the structure of the of the state matrices in (5.49), the feedback system

(5.48) can be written in the conventional P − ∆ control framework (shown in the

light purple box in Fig. 5.5), where P is the generalized plant and ∆ = diag{δTe , δne}
is a structured uncertainty matrix, by employing the method outlined in [138]. The
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system input-output equations in this framework are

y∆ = P11u∆ + P12ufb,

y = P21u∆ + P22ufb + d, (5.50)

where P11, P12, P21, and P22 are the component transfer functions of the generalized

plant P that are related to the system outputs (y∆, y) and inputs (u∆, ufb), respec-

tively, and d represents the effect that the disturbance dδ has on the system outputs.

An overview of the employed technique is provided in Appendix A.

5.4.4 Evaluation of relevant control channels

In order to acquire diagnostic data that is needed by the real-time EFIT (rtEFIT)

equilibrium reconstruction code [11] to reconstruct the plasma q profile for feedback

control, the 30L/R neutral beam powers need to be constant, and we do not utilize

them for feedback control, i.e., ufb = 0 for Pnbi30L/R
. As a result, we have six actuators

to utilize in feedback, which implies we can independently control at most six linear

combinations of the system output. Therefore, we obtain the most relevant control

channels from the nominal input-output relation at a particular frequency jωdc, which

is expressed as

ŷ = Ĝ0ûfb = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV TR1/2ûfb. (5.51)

The decoupled output and input are denoted by ŷ∗ = Σ−1UTQ1/2ŷ and û∗fb =

V TR1/2ûfb, i.e., ŷ∗ = û∗fb. The nominal system transfer function is expressed as

G0(s) = C0 (sInθ − A0)−1B0 +D0 and Ĝ0 denotes the real approximation of the com-

plex matrix G0(jωdc) [10,146]. The positive definite matrices Q ∈ R(nθ+1)×(nθ+1) and

R ∈ R6×6 are utilized to weight the relative tracking performance and control effort.
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Figure 5.6: Relevant control channels for θ profile + E control in DIII-D H-mode scenar-
ios: (a-b) output and (c) input. The decoupled output is defined as ŷ = [ŷθ, ŷE ]
where ŷθ are the outputs associated with the magnetic states and ŷE is the
output associated with the kinetic states. The feedback vector components
are ufb = [Pectot , Pnbi150L/R

, Pnbi330L/R
, Ip]|fb where ufb = 0 for Pnbi30L/R

.

Finally, the “weighted” transfer function G̃0 and its economy size singular value de-

composition (SVD) are defined as G̃0 = Q1/2Ĝ0R
−1/2 = UΣV T , where Σ ∈ R6×6 is

a diagonal matrix of singular values and U ∈ R(nθ+1)×6 and V ∈ R6×6 are matrices

that possess the following properties V TV = V V T = I, UTU = I, where I is a 6× 6

identity matrix. Some of the singular values may have a small magnitude relative

to the others and may be chosen to be neglected in the control synthesis. Quanti-

ties associated with the significant singular values are denoted by a subscript s for

the remainder of this chapter, i.e., (·)s. A detailed overview of the SVD technique

employed to evaluate the relevant control channels is provided in Appendix B.

The relevant control channels are shown in Fig. 5.6. The frequency to evaluate

the relevant control channels at is selected as ωdc = 25 rad/s, which results in the

ability to exclusively utilize the total plasma current (Ip) to control the q profile near

the plasma boundary (2nd singular vector in Figs. 5.6(a) and 5.6(c)). Additionally,

by examining the third singular vector, we see that increasing the off-axis, co-current

electron cyclotron (Pectot) and neutral beam injection (150L/R) powers (ûfbi > 0 for

i = 1, 2, 3 in Fig. 5.6(c)) and decreasing the on-axis, co-current (330L/R) neutral

beam injection power (ûfbi < 0 for i = 4, 5 in Fig. 5.6(c)) results in the θ profile

increasing (and hence the q profile increasing) in the plasma core (ŷ > 0 for ρ̂ ∈
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Figure 5.7: Normalized total toroidal current density (defined in (2.91)) and normalized
330L neutral beam injection current density in DIII-D H-mode scenarios.

[0, 0.5) in Fig. 5.6(a)).1 Intuitively, the effect that increasing the off-axis, co-current

and decreasing the on-axis, co-current auxiliary current drive has on the q profile

agrees with the control input directions in Fig. 5.6 as opposed to the nonintuitive

behavior observed in section 4.4.4. To further study this, the normalized total toroidal

current density and the normalized 330L neutral beam injection current density in

the considered DIII-D H-mode scenarios is shown in Fig. 5.7. As shown in the figure,

the normalized current density deposition profile for the 330L neutral beam source

exhibits a narrower distribution than the normalized total toroidal current density.

Therefore, increasing the on-axis, co-current (330L/R) neutral beam injection power

would result in an increase of the total toroidal current density in the plasma core (for

a fixed value of the total plasma current), which in turn would result in a decrease

in the q-value (and hence the θ-value decreasing) in the plasma core. This behavior

agrees with the control input directions in Fig. 5.6. See sections 2.6 and 4.3 for the

relationship the local current density amplitude has to the local q-value in tokamaks.

1The employed coordinate system results in the θ profile having a negative magnitude. Therefore,
a positive perturbation to this profile will result in a θ profile with a smaller magnitude in absolute
value, i.e., the resulting θ profile will be less negative. This perturbation results in the q profile
increasing as q ∝ −θ−1.
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5.4.5 Feedback control problem formulation

It is desired that the output y be able to track a reference value r, therefore, we

define the tracking error as e = r− y. The feedback control problem is formulated as

shown in Fig. 5.5, where K is the feedback controller, the closed-loop system outputs

are Z1 = Wpe
∗
s and Z2 = Wuu

∗
fbs

, and Wp and Wu are frequency dependent weight

functions used to optimize the closed-loop performance. The nominal performance

condition of the closed-loop system is expressed as


Z1

Z2


 =


 WpSDCO −WpSDCO

WuKSDCO −WuKSDCO




r
∗
s

d∗s


 , Tzw


r
∗
s

d∗s


 ⇒ min

K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω,

(5.52)

where SDCO = (I + Σ−1
s UT

s Q
1/2P22R

−1/2VsK)−1, d∗s = Σ−1
s UT

s Q
1/2d, and || · ||∞ de-

notes the H∞ norm. See section 3.6 for an example of how this nominal performance

condition is derived, and see Appendix C for an introduction to the design of feed-

back controllers by employing the H∞ closed-loop shaping technique. The feedback

controller written in terms of the tracking error e and control input ufb is expressed

as

ẋfb = Afbxfb +BfbΣ
−1
s UT

s Q
1/2e,

ufb = R−1/2VsCfbxfb +R−1/2VsDfbΣ
−1
s UT

s Q
1/2e, (5.53)

where xfb is the internal controller state vector and Afb, Bfb, Cfb, Dfb are the state-

space matrices of the controller K that are determined by solving (5.52). The weight

matrix Q utilized in the evaluation of the relevant control channels is chosen to place

more emphasis on achieving the target q profile in the spatial regions ρ̂ ∈ (0, 0.3] and

ρ̂ ∈ [0.85, 1.0) as the q-value in these spatial regions intimately affects the stability

and performance of the plasma. To analyze the performance and robust stability of
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Figure 5.8: Singular values: (a) 1/Wp and SDCo and (b) 1/Wu and KSDCo and (c)
µ(N11(jω)) versus frequency. The closed-loop robust stability condition is
defined as µ(N11(jω)) < 1, ∀ω [10].

the closed-loop system, the singular value diagrams of the inverse of the performance

weight functions and the achieved transfer functions SDCO and KSDCO are shown

in Figs. 5.8(a-b) and a plot of the structured singular value µ(N11(jω)), which can

be computed due to the block-diagonal structure of the uncertainty matrix ∆, versus

frequency is shown in Fig. 5.8(c), where N11 = P11−P12R
−1/2VsKSDCOΣ−1

s UT
s Q

1/2P21

is the closed-loop transfer function between y∆ and u∆ in Fig. 5.5.

5.5 Performance testing of q profile feedback con-

trol algorithm in DIII-D experiments

In this section, we test the ability of the q profile feedback control algorithm (not

including E feedback control) to reach, and subsequently maintain, a target safety

factor profile in H-mode experiments in the DIII-D tokamak. The q profile controller

is designed by solely focusing on (5.46). To ensure the closed-loop system remains well

behaved in the presence of actuator magnitude saturation, the controller is augmented

with an anti-windup compensator [140]. See section 4.4.6 for an example of the

employed anti-windup scheme.

We employ the general framework for real-time feedforward + feedback control of

magnetic plasma profiles implemented in the DIII-D Plasma Control System (PCS)
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described in section 3.7.2 to test the control algorithm. The feedback control al-

gorithm designed in this chapter directly generates signals for the physical control

variables. Therefore the NL Trans. Switch is set to the right position in Fig. 3.8.

Also, the employed anti-windup scheme is designed to affect the output of the feed-

back portion of the controller. Therefore, the AW Switch is set to the left position

in Fig. 3.8. Finally, the feedback control algorithm is implemented with a sampling

time of 20 ms based on the modulation of the 30L/R neutral beam sources utilized

to acquire diagnostic data to reconstruct the q profile (see sections 3.7.2 and 4.3,

respectively).

5.5.1 Reference tracking experimental testing of q profile

controller

In a DIII-D discharge, robust tracking of a stationary target q profile was obtained

in the presence of external plasma disturbances. In DIII-D shot 154359, the q profile

feedback controller (not including E feedback control) was tested in a feedforward

+ feedback target tracking experiment. The target q profile (qtar(ρ̂, t)) was obtained

from the q profile achieved in DIII-D shot 150320 (q320(ρ̂, t)) as follows:

qtar(ρ̂, t) = q320(ρ̂, t) over t ∈ [0.5, 2.0] s,

qtar(ρ̂, t) = q320(ρ̂, 2) +
[
q320(ρ̂, 5)− q320(ρ̂, 2)

] (t− 2)

(5− 2)
over t ∈ (2.0, 4.0) s,

qtar(ρ̂, t) = q320(ρ̂, 5.0) over t ∈ [4.0, 6.0] s.

The feedforward component of the control input was chosen to be the actuator tra-

jectories achieved in DIII-D shot 150320. A key physics goal of plasma profile control

is to be able to robustly reproduce target scenarios and enable controlled variation of

specific characteristics of the profiles through feedback to better elucidate physics.
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Fig. 8. Experimental testing of q-profile feedback controller during DIII-D shot 154692: (a-c) safety factor profile q(ρ̂)
at various times, (d-f) time trace of q at various spatial locations, (g) time trace of plasma βN , and (h-i) control
actuator trajectory comparison (actuator limits denoted by green X). Approximate error bars for the experimentally
measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.

Figure 5.9: Experimental testing of q profile feedback controller during DIII-D shot
154359: (a-c) q profile at t = 2.5, 4.5, and 5.5 s, (d-f) time traces of
q at ρ̂ = 0.1, 0.3, and 0.9, and (g-i) comparison of actuator trajectories
(Pnbioff = Pnbi150L

+ Pnbi150R
). Approximate error bars for the measured q

profiles (obtained from rtEFIT [11]) are shown by the red-shaded regions.
Note: actuator limits denoted by green X.

A comparison of the target and experimentally achieved q profiles at various times,

time traces of q at various radial locations, and a comparison of the actuator trajec-

tories is shown in Fig. 5.9. As shown, the controller was able to drive the q profile

to the target (specifically in the spatial regions where the tracking performance was

more heavily weighted (ρ̂ ∈ (0, 0.3] and ρ̂ ∈ [0.85, 1.0))) and achieve a relatively

stationary condition in the presence of perturbations in the initial conditions and ac-

tuator regulation disturbances. During the feedback-controlled discharge, the 30L/R

neutral beam injectors were utilized at a constant power (total of 2 MW) to acquire

diagnostic data while during the target discharge the power in these beams was in-

creased from a low value (total of 1.2 MW) to a high value (total of 3.2 MW) at

3.0 s. Also, during the feedback-controlled discharge, the 330L neutral beam injector
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and the gyrotron launchers were unavailable for feedback control due to errors in

the setup. The 330L NBI delivered a constant 1.9 MW of power in the feedback-

controlled discharge, and a constant 1.7 MW of power in the target discharge, during

the time interval t ∈ [2.5, 6.0] s. In the feedback-controlled discharge, the gyrotrons

delivered a constant 1.6 MW of power during the time interval t ∈ [2.5, 3.0] s and a

constant 1.2 MW during the time interval t ∈ (3.0, 6.0) s. In the target discharge, the

gyrotrons delivered a constant 2.8 MW of power during the time interval t ∈ [2.5, 6.0]

s. Additionally, the flattop line average electron density in the feedback-controlled

discharge was approximately 5% lower than in the target discharge during the ap-

proximate time interval t ∈ (3.7, 5.4) s. The local q-value is roughly inversely related

to the local current density amplitude in tokamaks, i.e., a low q profile is characterized

by a high current profile and vice versa. The controller utilized the total plasma cur-

rent to regulate the q profile near the plasma boundary (Figs. 5.9(f) and 5.9(g)) and

modulated the mix of the on-and-off axis auxiliary current drives that were available

for feedback control to track the target q profile in the plasma core (Figs. 5.9(d-e)

and 5.9(h-i)). Firstly, during the time intervals t ∈ [0.5, 2.0] s and t ∈ (4.0, 5.0) s,

the q-value in the plasma core is above the target. In response to this tracking error,

the feedback controller decreases the off-axis neutral beam injection power (Pnbioff )

and increases the on-axis neutral beam power (Pnbi330R
) to track the target q profile

in plasma core. Secondly, during the time intervals t ∈ (2.0, 4.0] s and t ∈ [5.0, 6.0] s,

the q-value in the plasma core is below the target. In response to this tracking error,

the feedback controller increases the off-axis neutral beam injection power (Pnbioff )

and decreases the on-axis neutral beam power (Pnbi330R
) to track the target q profile

in plasma core. Finally, as shown in Fig. 5.10(a), the achieved βN was relatively close

to the target even though it was not feedback-controlled. This resulted in a simi-

lar bootstrap current profile in both the target and feedback-controlled discharges as

shown in Fig. 5.10(b).

228



1 2 3 4 5 6
0

1

2

3

4

Time (sec.)

N

 

 

Target
Achieved

0 0.2 0.4 0.6 0.8 1

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Normalized Effective Minor Radius
S

a
fe

ty
 F

a
ct

o
r

 

 

Target
Feedforward + Feedback

(a) q(ρ̂, 2.5) #154359

0 0.2 0.4 0.6 0.8 1

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

ct
o

r

(b) q(ρ̂, 4.5)

0 0.2 0.4 0.6 0.8 1

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

ct
o

r

(c) q(ρ̂, 5.5)

1 2 3 4 5 6
0

1

2

3

4

Time (sec.)

β
N

 

 

Target
Achieved

(d) βN (t)

1 2 3 4 5 6
0

2

4

6

Time (sec.)

O
ff

−
a

xi
s 

N
B

I 
P

o
w

e
r 

(M
W

)

 

 

Feedforward + Feedback Requested
Feedforward + Feedback Achieved
Feedforward (150320)

(e) Pnbioff
(t)

1 2 3 4 5 6
0

1

2

3

Time (sec.)

3
3

0
R

 N
B

I 
P

o
w

e
r 

(M
W

)

 

 

Feedforward + Feedback Requested
Feedforward + Feedback Achieved
Feedforward (150320)

(f) Pnbi330R
(t)

1 2 3 4 5 6
0

2

4

6

Time (sec.)

D
ia

g
n

o
st

ic
 N

B
I 

P
o

w
e

r 
(M

W
)

 

 

Feedforward + Feedback Requested
Feedforward + Feedback Achieved
Feedforward (150320)

(g) Pnbidiag
(t)

1 2 3 4 5 6
0

1

2

3

Time (sec.)

3
3

0
L

 N
B

I 
P

o
w

e
r 

(M
W

)

 

 

Feedforward + Feedback Requested
Feedforward + Feedback Achieved
Feedforward (150320)

(h) Pnbi330L
(t)

1 2 3 4 5 6
0

1

2

3

4

5

Time (sec.)

T
o

ta
l G

yr
o

tr
o

n
 P

o
w

e
r 

(M
W

)

 

 

Feedforward + Feedback Requested
Feedforward + Feedback Achieved
Feedforward (150320)

(i) Pectot (t)
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measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.
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Fig. 9. Experimental testing of q-profile feedback controller during DIII-D shot 154692: (a-c) safety factor profile q(ρ̂)
at various times, (d-f) time trace of q at various spatial locations, (g) time trace of plasma βN , and (h-i) control
actuator trajectory comparison (actuator limits denoted by green X). Approximate error bars for the experimentally
measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.

Figure 5.10: Comparison of (a) βN and (b) bootstrap current profile jbs (computed by
TRANSP [12]) at 4.0 s. The bootstrap fraction in the target discharge was
fbs = 38% and in the feedback-controlled discharge was fbs = 39% at 4.0 s.
The bootstrap fraction is defined as fbs = Ibs/Ip, where Ibs =

∫ 1
0 jbs(ρ̂)∂S∂ρ̂ dρ̂

and S is the poloidal cross-sectional area enclosed by a magnetic flux surface.

5.5.2 Disturbance rejection experimental testing of q profile

controller

In another DIII-D discharge, rejection of a disturbance purposely introduced in the

initial q profile was obtained exclusively through feedback actuation. In DIII-D shot

154692, the q profile feedback controller (not including E feedback control) was tested

in a pure feedback disturbance rejection experiment. The q profile evolution achieved

in DIII-D shot 154358 was chosen as the target. A significant disturbance (low relative

to the target) in the q profile at 0.5 s (when the feedback controller was turned on) was

introduced to the plasma by delaying the time at which the plasma transitioned from

the low confinement (L-mode) to the high confinement operating regime. This delay

resulted in the inductive component of the plasma current profile diffusing in towards

the center of the plasma at a faster rate than in the target shot. The feedforward
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Fig. 8. Experimental testing of q-profile feedback controller during DIII-D shot 154692: (a-c) safety factor profile q(ρ̂)
at various times, (d-f) time trace of q at various spatial locations, (g) time trace of plasma βN , and (h-i) control
actuator trajectory comparison (actuator limits denoted by green X). Approximate error bars for the experimentally
measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.

Figure 5.11: Experimental testing of q-profile feedback controller during DIII-D shot
154692: (a-c) q profile at t = 0.5, 3.5, and 5.5 s, (d-f) time trace of
q at ρ̂ = 0.1, 0.3, and 0.9, and (g-i) comparison of actuator trajectories
(Pnbion = Pnbi330L

+ Pnbi330R
). Approximate error bars for the measured q

profiles (obtained from rtEFIT [11]) are shown by the red-shaded regions.
Note: actuator limits denoted by green X.

component of the control input was frozen after 1.6 s, therefore, the achieved profile

regulation was obtained exclusively through feedback. Another important goal of

profile control experiments is to investigate the minimum number of variables that

must be controlled to achieve robust scenario execution.

A comparison of the target and experimentally achieved q profiles at various times,

time traces of q at various radial locations, and a comparison of the actuator trajec-

tories is shown in Fig. 5.11. As shown in the figures, the controller was able to reject

the effects of the initial condition error and drive the q profile to the target during the

time interval t ∈ [0.5, 3.5] s in the presence of actuator regulation disturbances. In

the feedback-controlled discharge, the gyrotrons were unavailable for feedback control

due to errors in the setup and did not deliver any power to the plasma, while in the
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Fig. 8. Experimental testing of q-profile feedback controller during DIII-D shot 154692: (a-c) safety factor profile q(ρ̂)
at various times, (d-f) time trace of q at various spatial locations, (g) time trace of plasma βN , and (h-i) control
actuator trajectory comparison (actuator limits denoted by green X). Approximate error bars for the experimentally
measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.
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Fig. 9. Experimental testing of q-profile feedback controller during DIII-D shot 154692: (a-c) safety factor profile q(ρ̂)
at various times, (d-f) time trace of q at various spatial locations, (g) time trace of plasma βN , and (h-i) control
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measured q-profiles are shown by the red-shaded regions. Note that the plasma βN was not feedback-controlled.

Figure 5.12: Comparison of (a) βN and (b) bootstrap current profile (computed by
TRANSP [12]) at 4.0 s. The bootstrap fraction in the target discharge was
fbs = 39% and in the feedback-controlled discharge was fbs = 27% at 4.0 s.

target discharge, the gyrotrons delivered a constant 3 MW of power during the time

interval t ∈ [2.5, 6.0] s. Additionally, the flattop line average electron density in the

feedback-controlled discharge was approximately 5-10% lower than in the target dis-

charge during the approximate time interval t ∈ (3.0, 5.0) s. The controller utilized

the actuators to regulate the q profile across the spatial domain in the same way as in

the previously discussed feedback experiment (Figs. 5.11(d-i)). However, even though

the controller requested the maximum amount of off-axis auxiliary current drive dur-

ing the time interval t ∈ [4.0, 6.0] s, the q profile in the plasma core was unable to be

maintained at the target. As shown in Fig. 5.12(a), the achieved βN was relatively far

away from the target during the time interval t ∈ (3.0, 5.5] s. This resulted in a lower

bootstrap current profile in the feedback-controlled discharge relative to the target

as shown in Fig. 5.12(b). As the bootstrap current is an off-axis source of current,

a lower bootstrap current may have contributed to the inability to maintain the q

profile in the plasma core at the target during the feedback-controlled experiment.
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5.6 Simulation testing of integrated q profile + E

controller

In the previous section, the q profile feedback controller was shown to be able to

effectively control the q profile when βN is relatively close to the target. This indi-

cates that an important aspect of achieving robust scenario execution is the need to

simultaneously achieve a target q profile and βN . In this section, the q profile + E

feedback controller (5.53) is tested through simulations based on the physics-based

model of the plasma poloidal magnetic flux profile and stored energy dynamics tai-

lored to DIII-D H-mode scenarios described in section 2.8. First, a target q profile

and βN evolution is obtained by executing a feedforward-only simulation with the

control input trajectories and initial conditions (q(ρ̂, 0.5) and βN(0.5)) achieved in

DIII-D shot 150318. Second, a nominal q profile and βN evolution is obtained by

executing a feedforward-only simulation with a nominal set of input trajectories and

initial conditions. Finally, the ability of the algorithm to track the target evolutions

that are obtained from the first simulation is determined by executing a feedforward

+ feedback simulation with the nominal input trajectories and initial conditions that

are used in the second simulation. During the feedback-controlled simulation, the

controller is inactive during the time interval t = [0.5, 2.0] s. Simulated white noise is

added to both the feedforward + feedback and feedforward simulations, respectively,

to approximately replicate the noise level observed in the rtEFIT measurements dur-

ing DIII-D operations.

A comparison of the target, feedforward + feedback controlled, and feedforward

controlled q profiles at various times, time traces of q at various spatial locations,

and a time trace of the plasma βN is shown in Fig. 5.13. A comparison of the

control inputs is shown in Fig. 5.14. As shown in the figures, the controller is able to

drive the q profile and plasma βN to the target evolutions once it becomes active at
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Figure 5.13: Simulation testing of q profile + E feedback controller: (a-c) q profile at
various times, (d-h) time trace of q at various spatial locations, and (i) time
trace of plasma βN . The gray-shaded region indicates when the feedback
controller is inactive.

2.0 s in the presence of perturbations in the initial conditions and actuator regulation

disturbances. During the feedback-controlled simulation, the 30L/R neutral beam

injectors were utilized at a constant power while during the target simulation the

power in these beams was increased from a low value to a high value at 3.0 s (see Figs.

5.14(d-e)). Additionally, the flattop line average electron density was approximately

5-10% higher than in the target simulation (see Fig. 5.14(b)). In the feedback-

controlled simulation, firstly, the controller decreases the total plasma current to

eliminate the error in q near the plasma boundary (see Figs. 5.13(g-h) and 5.14(a)).

Secondly, at approximately 2.5 s, the value of q in the plasma core evolves below the
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Figure 5.14: Simulation testing of q profile + E feedback controller: Actuator trajectory
comparison (actuator limits in solid green). The shaded gray region denotes
when the feedback controller is not active. Note that the gyrotrons become
available at 2.5 s and the line average electron density and the 30L/R neutral
beam lines are not feedback controlled.

target value. In response, the controller decreases the on-axis auxiliary current drive

(Pnbi330L/R
) and increases the off-axis auxiliary current drive (Pectot and Pnbi150L/R

) to

track the target q profile in the plasma core (see Figs. 5.13(d-f), 5.14(c), and 5.14(f-

i)). Finally, in order to track the target plasma βN while maintaining good tracking

of the q profile in the plasma core, the controller slowly increases the on-axis auxiliary

heating (specifically Pnbi330R
) beginning at approximately 3.25 s.
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5.7 Conclusion

The reported advances demonstrate the potential physics-model-based profile control

has to provide a systematic approach for the development and robust sustainment

of advanced scenarios in DIII-D. These control algorithms also enable detailed study

of the accuracy and validity of the relevant models themselves and can help clarify

physics aspects important to robust scenario execution. A numerical optimization

algorithm was developed to complement the experimental effort of advanced scenario

planning in the DIII-D tokamak. At the core of the optimization algorithm is a non-

linear, physics-based, control-oriented model of the plasma dynamics. One direction

of future work is to extend the physics-based model by coupling the poloidal mag-

netic flux profile dynamics together with the distributed dynamics of the electron

temperature profile in order to better represent the effect the q profile has on plasma

transport [59]. The optimized actuator trajectories were successfully tested through

simulation, and an experimental test in DIII-D demonstrated the ability of the opti-

mized trajectories to steer the plasma to a target stationary q profile. However, as

observed in the experimental test, access to advanced scenarios can be limited by trig-

gering MHD instabilities. Therefore, another direction of future work is to formulate

additional plasma state constraints that can be imposed on the optimization problem

solution to maintain distance from critical MHD stability limits, such as classical and

neoclassical tearing modes.

As a result of the MHD instabilities that developed during the experimental test,

the optimized feedforward trajectories were not able to achieve the target βN and

maintain a stationary q profile for the entirety of the plasma discharge. Therefore to

account for external plasma disturbances (such as a reduction in confinement) and

actuation limitations (either in actuator regulation or actuator faults), a feedback

control scheme was developed to control the q profile. The ability of the q profile
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feedback controller (not including energy control) to improve the ability to robustly

achieve plasma target conditions was tested in DIII-D experiments. The q profile

controller was shown to be able to effectively control the q profile when βN is relatively

close to the target. Therefore, these experiments indicate that another important

aspect of achieving robust scenario execution is the need to simultaneously achieve a

target q profile and βN . Through simulations, the ability of an integrated q profile and

stored energy feedback controller to track a desired target was demonstrated. Another

direction of future work is to experimentally test the performance of the combined q

profile and stored energy controller in DIII-D experiments. The development of these

profile control capabilities may not only help achieve physics objectives on DIII-D,

but will also help evaluate a control scheme that potentially can be utilized in future

experiments and fusion power plants. The control scheme developed in this chapter

is readily adaptable to a given operating scenario in a given machine of interest, as

discussed in the following chapters, due to the strong first-principles dependence of

the modeling and design approach used to synthesize controllers.
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Chapter 6

Simultaneous closed-loop control of

the safety factor profile and stored

energy in burning plasma scenarios

in the ITER tokamak

6.1 Introduction

The next phase of tokamak development is the ITER tokamak project [3]. ITER

will be the first tokamak device to produce a significant amount of fusion power

and hence be the first machine to explore the burning plasma operating regime.

The current profile in the tokamak is intimately related to the plasma stability and

energy/particle transport, and the plasma stored energy is intimately related to the

amount of generated fusion power. As the current profile and the kinetic state of the

plasma are tightly coupled, integrating methodologies for current profile control with

strategies to control the kinetic state of the plasma is crucial to enabling stable plasma

operation and maintaing a desired level of produced power. With this objective in
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mind, in this chapter, an integrated physics-model-based feedback control algorithm

is designed to track target safety factor profile (q profile) and stored energy evolutions

in high confinement (H-mode) burning plasma scenarios in ITER.

The auxiliary heating and current-drive (H&CD) actuators on ITER considered

in this chapter are three independently configurable electron cyclotron (gyrotron)

launchers, one ion cyclotron launcher, and co-current-injection neutral beam launch-

ers. In the considered operating scenarios, the neutral beam launchers are configured

to inject particles at the same off-axis radial location, therefore, we group them to-

gether to form 1 effective neutral beam launcher for control. Additionally, the ion

cyclotron launcher is configured to provide only heating power to the plasma. As

a result, we design the feedback algorithm with a two loop structure. The first

loop utilizes the total plasma current and exclusively the current-drive capabilities

of the gyrotron and neutral beam launchers to control the q profile, and the second

loop utilizes the ion cyclotron launcher to control the stored energy. This approach

does not take into account the physical effects the actuators have on the q profile

dynamics through plasma heating, which specifically affects the q profile evolution

through resistive diffusion, auxiliary current-drive efficiency, and bootstrap current

drive. Therefore, we employ the first-principles-driven (FPD), physics-based model

of the plasma magnetic profile and stored energy evolution developed in chapter 2 to

study the effect this unutilized control direction (pure plasma heating) has on the q

profile dynamics in the considered H-mode ITER scenarios.

This chapter is organized as follows. In section 6.2, the effect that pure plasma

heating has on the q profile is investigated. An integrated feedback algorithm to

control the q profile and plasma stored energy is designed in section 6.3. The q pro-

file portion of the feedback algorithm is designed to be robust to uncertainties in

the electron density, electron temperature, and plasma resistivity. In section 6.4 the
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feedback control algorithm is successfully tested in both reference tracking and dis-

turbance rejection simulations with the physics-based model developed in chapter 2.

The ability of the two control loops to interact together effectively is demonstrated

by first tracking a nominal target, and then modulating the generated fusion power

while maintaining the q profile in a stationary condition. Finally, a summary and

discussion of some of the key practical issues investigated in this chapter for plasma

profile control in ITER are presented in section 6.5.

6.2 Plasma heating effect on the safety factor pro-

file

We first investigate the effect that pure plasma heating has on the safety factor profile

in H-mode ITER scenarios using the physics-based model described in section 2.9. In

order to illustrate the effect that the electron temperature, and hence the effect pure

plasma heating, has on the q profile dynamics, we briefly describe the physics-based

model. See chapter 2 for a detailed derivation/discussion of the models. The q profile

is related to the plasma poloidal magnetic flux profile and is defined in (2.90) and

repeated here for convenience as

q(ρ̂, t) = −dΦ

dΨ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (6.1)

where t is the time and ψ is the poloidal stream function, which is closely related to

the poloidal magnetic flux Ψ (Ψ = 2πψ). The spatial coordinate ρ̂ = ρ/ρb is used to

index the magnetic flux surfaces in the plasma, where ρ is the mean effective minor

radius of a magnetic flux surface, i.e., Φ(ρ) = πBφ,0ρ
2, Φ is the toroidal magnetic

flux, Bφ,0 is the vacuum toroidal magnetic field at the geometric major radius R0

of the tokamak, and ρb is the mean effective minor radius the last closed magnetic
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flux surface.

The evolution of the poloidal magnetic flux in a tokamak plasma is given by the

magnetic diffusion equation (2.45) and is restated here for convenience as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)jni, (6.2)

with boundary conditions

∂ψ

∂ρ̂
(0, t) = 0

∂ψ

∂ρ̂
(1, t) = −kIpIp(t), (6.3)

where η is the plasma resistivity, Te is the electron temperature, µ0 is the vacuum

magnetic permeability, jni is the total noninductive current density, kIp is a geometric

constant defined in (2.83), and Ip is the total plasma current. The parameters F̂ ,

Ĝ, and Ĥ are geometric spatial factors pertaining to the magnetic configuration of

a particular plasma equilibrium (defined in (2.44)). The plasma resistivity scales

inversely with the electron temperature as

η(ρ̂, t) ∝ Te(ρ̂, t)
−3/2. (6.4)

The total noninductive current is generated by the auxiliary sources and the bootstrap

current (a self-generated noninductive source of plasma current) [60], i.e.,

jni(ρ̂, t)=jtotaux(ρ̂, t) + jbs(ρ̂, t)=
naux∑

i=1

jaux,i(ρ̂, t) + jbs(ρ̂, t), (6.5)

where jtotaux is the total current density driven by the auxiliary sources, jbs is the

current density driven by the bootstrap current, jaux,i is the current density driven

by the individual auxiliary sources, and naux is the number of auxiliary sources. The

individual auxiliary current drives (electron cyclotron and neutral beam) are modeled
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as

jaux,i(ρ̂, t) = jrefaux,i(ρ̂)
Te(ρ̂, t)

ne(ρ̂, t)
Paux,i(t), (6.6)

where jrefaux,i is a normalized reference current deposition profile for the i-th auxiliary

source, the term Te/ne represents the current-drive efficiency, ne is the electron den-

sity, and Paux,i is the i-th auxiliary power. The bootstrap current arises from the

plasma radial pressure gradient that is produced by the magnetic confinement and is

modeled as [134,135]

jbs(ρ̂, t) =
kJkeVR0

F̂

(
∂ψ

∂ρ̂

)−1 [
2L31Te

∂ne
∂ρ̂

+ {2L31 + L32 + αL34}ne
∂Te
∂ρ̂

]
, (6.7)

where L31, L32, L34, and α depend on the magnetic configuration of a particular

plasma equilibrium and kJkeV = 1.602× 10−16 J/keV.

We investigate the effect that auxiliary heating has on the q profile in the presence

of constant auxiliary current drive using the model described in section 2.9 by allowing

the plasma to evolve to a stationary state with physical actuator quantities of Ip = 11

MA, Pec1 = Pec2 = Pec3 = 4 MW (Peci denotes the power injected through the

individual electron cyclotron sources), Pnbi = 20 MW (Pnbi denotes the total power

injected through the neutral beam injectors), and n̄e = 7.35 × 1019 m−3 (n̄e denotes

the line average electron density) under low ion cyclotron heating conditions (Pic = 5

MW) and high ion cyclotron heating conditions (Pic = 20 MW). Note that the power

injected through the ion cyclotron launcher in ITER is constrained to the range

0 MW ≤ Pic ≤ 20 MW. A comparison of the electron temperature and plasma

resistivity before and after the heating power is increased is shown in Figs. 6.1(a-b).

The increased heating power raises the electron temperature and lowers the plasma

resistivity as expected from (6.4). A comparison of the auxiliary, bootstrap, and

toroidal current density before and after the injected heating power into the plasma is

increased is shown in Figs. 6.1(c-e). The effect of increasing the electron temperature
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Figure 6.1: Comparison of stationary state plasma parameters in ITER at Ip = 11 MA
with Pec1 = Pec2 = Pec3 = 4 MW, Pnbi = 20 MW, n̄e = 7.35× 1019 m−3, and
Pic = 5 MW (solid) and Pic = 20 MW (dash): (a) electron temperature, (b)
plasma resistivity, (c) auxiliary current density, (d) bootstrap current density,
(e) toroidal current density, and (f) q profile.

through plasma heating increases both the auxiliary and bootstrap current drives

as expected from (6.6) and (6.7). The decrease in the plasma resistivity and the

increases in both off-axis auxiliary co-current-drive and off-axis bootstrap co-current-

drive results in the toroidal current density decreasing in the spatial region ρ̂ ∈ [0, 0.2)

and slightly increasing in the spatial region ρ̂ ∈ [0.2, 0.4]. Note that as the total

plasma current remains constant, the increase in off-axis current density requires a

corresponding decrease in on-axis current density. The effect this shift in equilibrium
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Figure 6.2: Plasma parameter uncertainty ranges in ITER H-mode scenarios: (a) electron
density, (b) electron temperature, and (c) plasma resistivity. Note: nominal
values (solid) and minimum/maximum values (dash).

toroidal current density has on the q profile is shown in Fig. 6.1(f), which shows

that pure plasma heating in the considered H-mode scenarios in ITER results in

approximately a 5% increase in the q profile in the spatial region ρ̂ ∈ [0, 0.2] with

a negligible change outside this spatial region. Therefore, the actuators used for q

profile control will attempt to counteract any q profile disturbance that results from

plasma heating effects.

6.3 Feedback control design

6.3.1 Partial differential equation model of system dynamics

We begin by defining ranges in which the electron density and temperature profiles

are expected to be in typical ITER high performance scenarios, which are shown in

Figs. 6.2(a-b). We model these kinetic plasma parameters as a nominal profile plus

a bounded uncertain profile, i.e.,

ne(ρ̂, t) = nnome (ρ̂) + nunce (ρ̂)δne(t), (6.8)

Te(ρ̂, t) = T nome (ρ̂) + T unce (ρ̂)δTe(t), (6.9)
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where the nominal (nnome , T nome ) and uncertain (nunce , T unce ) profiles are defined in

terms of the maximum and minimum profiles shown in Figs. 6.2(a-b) and δTe and δne

are uncertain parameters that satisfy |δTe| ≤ 1 and |δne| ≤ 1. As shown in (6.4), the

plasma resistivity is inversely related to the electron temperature, and the resistivity

range is shown in Fig. 6.2(c). Additionally, the parameter 1/ne is related to the

electron density. These kinetic plasma parameters are modeled as

η(ρ̂, t) = ηnom(ρ̂) + ηunc(ρ̂)δTe(t), (6.10)

1/ne(ρ̂, t) = nnom
′

e (ρ̂) + nunc
′

e (ρ̂)δne(t), (6.11)

where the nominal (ηnom, nnom
′

e ) and uncertain (ηunc, nunc
′

e ) profiles are defined in

terms of the maximum and minimum profiles shown in Figs. 6.2(a) and 6.2(c), and

the plasma resistivity dependence on the electron temperature is modeled to first

order to simplify the control design process.

By combining the poloidal magnetic flux diffusion equation (6.2) with the models

of the noninductive current-drive sources (6.5)-(6.7) and the models (6.8)-(6.11), the

poloidal magnetic flux profile evolution is given by

∂ψ

∂t
=

(ηnom + ηuncδTe)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)

+R0Ĥ(ηnom + ηuncδTe) (T nome + T unce δTe)
{
nnom

′

e + nunc
′

e δne

}

×
{
jrefec1

Pec1(t) + jrefec2
Pec2(t) + jrefec3

Pec3(t) + jrefnbi Pnbi(t)
}

+
kJkeVR

2
0Ĥ(ηnom + ηuncδTe)

F̂

(
∂ψ

∂ρ̂

)−1

×
[
2L31 (T nome + T unce δTe)

∂

∂ρ̂
{nnome + nunce δne}

+ {2L31 + L32 + αL34} {nnome + nunce δne}
∂

∂ρ̂
{T nome + T unce δTe}

]
. (6.12)

From (6.1), we see that the safety factor profile is related to the spatial gradient of the
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poloidal magnetic flux. Therefore, if we are able to control the poloidal flux gradient

profile, which we define as

θ(ρ̂, t) ≡ ∂ψ/∂ρ̂(ρ̂, t), (6.13)

we will be able to control the q profile, assuming the system is indeed controllable.

By grouping like terms, expanding (6.12) using the chain rule, inserting (6.13) into

this expanded equation, and differentiating the resulting equation with respect to ρ̂,

the partial differential equation (PDE) governing the evolution of θ is expressed as

∂θ

∂t
= [qη1 + qη4δTe ]

∂2θ

∂ρ̂2
+ [qη2 + qη5δTe ]

∂θ

∂ρ̂
+ [qη3 + qη6δTe ] θ

+
∑

i

[
g′i + h′iδne + k′iδTe + l′iδTeδne +m′iδ

2
Te + p′iδ

2
Teδne

]
Pi(t)

−
[
gbs + hbsδne + kbsδTe + lbsδTeδne +mbsδ

2
Te + pbsδ

2
Teδne

](1

θ

)2
∂θ

∂ρ̂

+
[
g′bs + h′bsδne + k′bsδTe + l′bsδTeδne +m′bsδ

2
Te + p′bsδ

2
Teδne

](1

θ

)
, (6.14)

with boundary conditions

θ(0, t) = 0 θ(1, t) = −kIpIp(t), (6.15)

where i ∈ {ec1, ec2, ec3, nbi}, the parameters qηj(ρ̂), for j = 1, . . . , 6, gi(ρ̂), hi(ρ̂),

ki(ρ̂), li(ρ̂), mi(ρ̂), pi(ρ̂), gbs(ρ̂), hbs(ρ̂), kbs(ρ̂), lbs(ρ̂), mbs(ρ̂), pbs(ρ̂) are functions of

space, and (·)′ = d/dρ̂(·). See section 4.4.1 for an example of how (6.14) is derived.

The first-principles-driven model (6.14)-(6.15) contains the physics information of

how the control actuators, as well as the uncertain parameters δne and δTe , influence

the poloidal flux gradient profile dynamics, and the goal is to embed the physics into

the feedback controller by converting the physics information into a form suitable to

synthesize a feedback controller.
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6.3.2 Model reduction via spatial discretization

We next seek a finite dimensional ordinary differential equation (ODE) model of the

poloidal magnetic flux gradient profile dynamics to facilitate the synthesis of a feed-

back controller. An approximate ODE model is obtained by spatially discretizing the

governing infinite dimensional PDE (6.14) using a truncated Taylor series expansion

while leaving the time domain continuous [137]. The non-dimensional spatial domain

of interest (ρ̂ ∈ [0, 1]) is represented as mθ discrete nodes, and the spacing between the

nodes (∆ρ̂) is defined as ∆ρ̂ = 1/(mθ− 1). Central finite difference spatial derivative

approximations of order (∆ρ̂)2 are used in the interior node region, 2 ≤ i ≤ (mθ− 1).

After applying the spatial derivative approximations to (6.14) and taking into account

the boundary conditions (6.15), we obtain a nonlinear approximate finite dimensional

ODE model defined by

ẋ = fθ(x, uq, δ), (6.16)

where x = [θ2, θ3, . . . , θmθ−1]T ∈ Rnθ is the state vector, θi is the value of θ at the

discrete spatial nodes, uq = [Pec1 , Pec2 , Pec3 , Pnbi, Ip]
T ∈ R5 is the control input vector,

δ =
[
δTe , δne , δTeδne , δ

2
Te
, δ2
Te
δne
]
∈ R5 is the uncertain parameter vector, fθ ∈ Rnθ is

a nonlinear function of the model parameters, the system states, the control inputs

and the uncertain parameters, nθ = mθ − 2 and

θ1(t) = 0 θmθ(t) = −kIpIp(t). (6.17)

Let xff (t), uffq(t), and δff (t) be a set of feedforward system trajectories, which

satisfy

ẋff = fθ(xff , uffq , δff ). (6.18)

We can obtain a model suitable for tracking control design by defining the pertur-

bation variables x̃(t) = x(t) − xff (t) and ufbq(t) = uq(t) − uffq(t), where x̃(t) is the

246



10
−4

10
−2

10
0

10
2

10
4

−40

−20

0

20

Frequency (rad / s)

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 6.3: Magnitude of maximum singular value versus frequency of the linear model
(6.19) along the nonlinear feedforward state and control input trajectories
xff (t) and uff (t) for δ = 0 and dδ = 0.

deviation away from the feedforward state trajectories and ufbq(t) is the output of the

to-be-designed feedback controller. Linearizing (6.16) with respect to the state and

control input and using (6.18), we obtain a linear time-variant (LTV) system given

by

˙̃x =
∂fθ
∂x

∣∣∣∣
(xff ,uffq ,δ)

x̃+
∂fθ
∂uq

∣∣∣∣
(xff ,uffq ,δ)

ufbq + dδ, (6.19)

where ∂fθ/∂x ∈ Rnθ×nθ and ∂fθ/∂uq ∈ Rnθ×5 are the system Jacobians, which de-

pend on the uncertain parameters δ as well as the feedforward state and control input

trajectories, and dδ = fθ(xff , uffq , δ) − fθ(xff , uffq , δff ). Figure 6.3 shows the max-

imum singular value versus frequency of the linear model (6.19) along the nonlinear

feedforward state and control input trajectories for δ = 0 and dδ = 0. As shown in the

figure, the dynamic response of the system is weakly dependent on the feedforward

state and input trajectories. Therefore, we evaluate the Jacobians at a specific feed-

forward state and input to obtain a linear time-invariant (LTI) model of the deviation

dynamics given by

˙̃x = Ax̃+Bufbq + dδ,

y = Cx̃+Dufbq , (6.20)
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with

A = A0 +
5∑

m=1

δmAm B = B0 +
5∑

m=1

δmBm,

C = C0 +
5∑

m=1

δmCm D = D0 +
5∑

m=1

δmDm, (6.21)

where A and B are the Jacobians evaluated at a specific feedforward state and control

input, Ai and Bi, for i = 0, . . . , 5 are the component matrices of A and B, respectively,

C0 is an nθ × nθ identity matrix, D0 = 0, and Cj = 0 and Dj = 0 for j = 1, . . . , 5.

In this chapter, we assume the plasma magnetic state is measurable and available

for feedback control. The state-space system (6.20)-(6.21) is referred to as a linear

uncertain system in the control theory literature, where A0, B0, C0, and D0 represent

the nominal system and Am, Bm, Cm, and Dm represent the influence each uncertain

parameter δm has on the system.

6.3.3 Manipulation of dynamic model into robust control

framework

The relationship between the inputs and outputs of a linear state-space system is given

by the transfer function of the system G(s), i.e., y = G(s)ufbq where G(s) = C(sInθ−
A)−1B+D, Inθ is an nθ×nθ identity matrix, and s denotes the Laplace variable. We

note that the nominal model will be coupled with the uncertain parameters in the

transfer function representation of the uncertain system (6.20)-(6.21). As a result, we

group the uncertain parameters into a block-diagonal structured uncertainty matrix

∆ = diag{δTe , δne} and write the system in the conventional P −∆ control framework

(shown in the light purple box in Fig. 6.4) by employing the method outlined in [138],

where P (s) is the generalized transfer function of the system, in order to separate

the uncertain parameters from the nominal parameters. If the transfer function P ∈
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Figure 6.4: Schematic of control problem formulation for θ profile feedback control design
in ITER H-mode scenarios. The uncertain state-space system (6.23) is shown
in the light purple box. The blocks Σ−1

s UTs Q
1/2 and R−1/2Vs are used to

obtain a decoupled relationship between the outputs and inputs of the system,
which allows us to design a square feedback controller K ∈ Rks×ks . The
outputs of the closed-loop system are defined as Z1 = Wp(s)e

∗
s ∈ Rks and

Z2 = Wu(s)u∗fbqs ∈ Rks , where Wp ∈ Rks×ks and Wu ∈ Rks×ks are frequency-
dependent weight functions.

R(qT+nθ)×(qT+5), where qT is the rank of the uncertainty matrix ∆, is partitioned as

P =


P11 P12

P21 P22


 , (6.22)

the input-output equations of the system are

y∆ = P11u∆ + P12ufbq ,

y = P21u∆ + P22ufbq + d, (6.23)

where P11 ∈ RqT×qT , P12 ∈ RqT×5, P21 ∈ Rnθ×qT , P22 ∈ Rnθ×5, y∆ ∈ RqT , u∆ ∈
RqT , y ∈ Rnθ , d ∈ Rnθ , and ufbq ∈ R5. The parameter d represents the effect the

disturbance dδ has on the system outputs. The relationship between the generalized

transfer function P (s), the uncertainty matrix ∆ and the transfer function G(s) is

given by

G(s) = P22(s) + P21(s)∆ [IqT − P11(s)∆]−1 P12(s), (6.24)
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where IqT is a qT × qT identity matrix. By examining (6.24), we see the transfer func-

tion P22 describes the nominal response of the system and the transfer functions P11,

P12, and P21 describe how the uncertain parameters affect the system. An overview

of the employed technique is provided in Appendix A.

6.3.4 Evaluation of relevant control channels

The target plasma state evolution is prescribed by a reference vector r(t) and the

control objective is the drive the system output y(t) to the target evolution. Therefore,

we define the tracking error e(t) as

e(t) = r(t)− y(t). (6.25)

As the number of outputs (nθ) is larger than the number of inputs (5), the con-

ditions to bring the tracking error exactly to zero are typically not met. As a re-

sult, only five linear combinations of the output of the system can be independently

controlled, and we employ a singular value decomposition (SVD) of the nominal

state-space system A0, B0, C0, D0 at a particular frequency to evaluate and decou-

ple the most relevant input-output control channels. The relationship between the

outputs y and inputs ufbq of the nominal linear state-space system is given by the

transfer function of the nominal system which is expressed as y = G0(s)ufbq , where

G0(s) = C0 (sInθ − A0)−1B0 +D0 is the nominal transfer function.

The real approximation of the nominal input-output relation at a particular fre-

quency jωdc is expressed as

ŷ = Ĝ0ûfbq , (6.26)

where ŷ denotes the relevant output, ûfbq denotes the relevant input, and Ĝ0 denotes

the real approximation of the complex matrixG0(jωdc) [10,146]. In order to weight the
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Figure 6.5: Relevant control channels for θ profile control in ITER H-mode scenarios: (a)
output and (b) input. Note the components of the control input vector are
defined as uq = [Pec1 , Pec2 , Pec3 , Pnbi, Ip].

tracking performance and control effort, we introduce the positive definite weighting

matrices Q ∈ Rnθ×nθ and R ∈ R5×5, and we define the “weighted” transfer function G̃0

and its economy size singular value decomposition as G̃0 = Q1/2Ĝ0R
−1/2 = UΣV T ,

where Σ = diag(σ1, σ2, σ3, σ4, σ5) ∈ R5×5 is a diagonal matrix of singular values

and U ∈ Rnθ×5 and V ∈ R5×5 are matrices that possess the following properties

V TV = V V T = I, UTU = I, where I is a 5× 5 identity matrix, and (·)T denotes the

matrix transpose. The input-output relation (6.26) is now expressed as

ŷ = Q−1/2G̃0R
1/2ûfbq = Q−1/2UΣV TR1/2ûfbq . (6.27)

The singular vectors of the basis for the subspace of obtainable output values

(ŷ = Q−1/2UΣŷ∗), and hence the trackable components of the reference vector r̂, as

well as the corresponding input singular vectors (ûfbq = R−1/2V û∗fbq) are shown in

Fig. 6.5, where ŷ∗ and û∗fbq denote the decoupled input and output, respectively, i.e.,

ŷ∗ = û∗fbq . It is reasonable to consider evaluating the relevant channels at a stationary

state, i.e., ωdc = 0 rad/s. Figure 6.6 shows the response of the nominal system

y = G0(s)ufbq to a 1 MA step input in the total plasma current. As shown in the

figure, the response of the system is much slower in the plasma core compared to the

response of the system near the plasma boundary. Therefore, evaluating the relevant

control channels at a stationary state, i.e., using the total plasma current to control
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Figure 6.6: Response of the nominal state-space system y = G0(s)ufbq to a 1 MA step
input in the plasma current. The system response is much faster near the
plasma boundary compared to the response in the plasma core.

the q profile across the entire spatial domain, could lead to an undesirable transient

closed-loop system response. As a result, we select the frequency as ωdc = 10−1 rad/s,

which allows us to utilize the total plasma current to control the q profile near the

plasma boundary (1st singular vector in Fig. 6.5) and the gyrotron launchers and

the neutral beam injectors to control the q profile near the center of the plasma (2nd

singular vector in Fig. 6.5 is related to the neutral beams and the 3rd-5th singular

vectors in Fig. 6.5 are related to the gyrotrons). Also, we note that the neutral beam

injectors have a broad influence on the q profile while the gyrotron launchers have

a more localized effect on the q profile, which is consistent with the noninductive

current source profiles shown in Figs. 2.22(f).

As the magnitude of the singular value σi decreases, a larger amount of con-

trol effort is needed to produce a significant contribution to the profile. To avoid

spending a lot of control effort for only a small improvement in the value of the

tracking error
(
ê = r̂ − ŷ = Q−1/2UΣ(r̂∗ − ŷ∗)

)
, where r̂∗ = Σ−1UTQ1/2r̂ ∈ R5 rep-

resents the trackable components of the reference, we can partition the singular val-

ues into ks significant singular values Σs and 5 − ks negligible singular values Σns

and define the significant components of the reference, output, and input vectors as

r̂∗s = Σ−1
s UT

s Q
1/2r̂ ∈ Rks , ŷ∗s = Σ−1

s UT
s Q

1/2ŷ ∈ Rks , and û∗fbqs = V T
s R

1/2ûfbq ∈ Rks ,
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where Us ∈ Rnθ×ks and Vs ∈ R5×ks are the components of U and V associated with

the significant singular values. A detailed overview of the SVD technique employed

to evaluate the relevant control channels is provided in Appendix B.

6.3.5 Integrated feedback control synthesis

The feedback control objectives are to (i) maintain a small tracking error for any

external reference input, (ii) reject the effects of any external disturbance input, (iii)

utilize as little feedback control effort as possible, and (iv) ensure the closed-loop

system remains stable for all allowable perturbations ∆, i.e., the ranges of the kinetic

plasma parameters shown in Fig. 6.2, which is referred to as robust stabilization of

the system in the control theory literature. We aim to achieve these control goals

by controlling the relevant input-output channels of the system (6.23). This control

problem is shown in Fig. 6.4, where K is the feedback controller, Z1 = Wpe
∗
s, Z2 =

Wuu
∗
fbqs

, and Wp and Wu are frequency dependent weight functions used to optimize

the closed-loop performance. The nominal performance condition of the closed-loop

system is expressed as


Z1

Z2


 =


 WpSDCO −WpSDCO

WuKSDCO −WuKSDCO




r
∗
s

d∗s


 = Tzw


r
∗
s

d∗s


 , (6.28)

where SDCO = (Iks + Σ−1
s UT

s Q
1/2P22R

−1/2VsK)−1 is the transfer function from the

reference signal r∗s to the error signal e∗s, the function KSDCO is the transfer function

from the reference signal r∗s to the feedback control signal u∗fbqs , and d∗s = Σ−1
s UT

s Q
1/2d.

See section 3.6 for an example of how this nominal performance condition is derived.

The frequency dependent weight functions Wp(s) = diag{Wpi} ∈ Rks×ks and Wu(s) =

diag{Wui} ∈ Rks×ks are used to shape the closed-loop transfer functions and are
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parameterized as

Wpi(s) =

(
s/
√
Mpi + ωpi

)2

(
s+ ωpi

√
H∗pi
)2 Wui(s) =

(
s/
√
Mui + ωui

)2

(
s+ ωui

√
H∗ui
)2 , (6.29)

where i = 1, . . . , ks, and Mpi , H
∗
pi

, ωpi , Mui , H
∗
ui

, and ωui are design parameters.

Therefore, to achieve the performance conditions of the nominal closed-loop system,

the control problem is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω, (6.30)

where || · ||∞ denotes the H∞ norm. See Appendix C for an introduction to the

design of feedback controllers by employing the H∞ closed-loop shaping technique.

The feedback controller K found by solving (6.30) is written in state-space form as

ẋfbq = A∗fbqxfbq +B∗fbqe
∗
s,

u∗fbqs = C∗fbqxfbq +D∗fbqe
∗
s, (6.31)

where the vector xfbq ∈ Rnfbq is the internal controller states, A∗fbq ∈ Rnfbq×nfbq ,

B∗fbq ∈ Rnfbq×ks , C∗fbq ∈ Rks×nfbq , and D∗fbq ∈ Rks×ks are the controller system matri-

ces, and nfbq is the number of q profile controller states. As the uncertainty has a

block-diagonal structure, i.e., ∆ = diag{δ}, we can compute the structured singular

value µ
(
N11(jω)

)
to determine the robust stability of the closed-loop system with the

nominal controller (6.31), where N11 is the transfer function between y∆ and u∆ in

Fig. 6.4. The closed-loop system is robustly stable for all allowable perturbations if

and only if µ
(
N11(jω)

)
< 1, ∀ω [10]. To analyze the performance and robust stability

of the closed-loop system, the singular value diagrams of the inverse of the perfor-

mance weight functions and the achieved transfer functions SDCO and KSDCO are

shown in Figs. 6.7(a-b) and a plot of µ versus frequency is shown in Fig. 6.7(c).
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Figure 6.7: Singular value diagrams: (a) 1/Wp (dash-dotted) and SDCo (solid) and (b)
1/Wu (dash-dotted) and KSDCo (solid), and (c) µ versus frequency.

In the operating scenarios considered in this work, the ion cyclotron launcher is

configured to provide only heating power to the plasma. Therefore, we employ the ion

cyclotron launcher in a feedforward + feedback scheme, i.e., Pic = Picff +Picfb , where

Picff and Picfb are the feedforward and feedback components, respectively, to control

the plasma stored energy (E). The stored energy feedback controller is expressed in

state-space form as

ẋfbE = eE,

Picfb = kIicxfbE + kPiceE, (6.32)

where xfbE ∈ R1 is the internal controller state, kPic and kIic are the controller pro-

portional and integral gains, eE = Etar−E is the error in the stored energy, and Etar

is the desired stored energy reference.

6.3.6 Control algorithm structure

A schematic of the closed-loop control system structure is shown in Fig. 6.8. Due to

limited actuation capabilities, such as the available amount of auxiliary heating and

current-drive power, the integrated feedback control algorithm may drive the actua-

tors to saturation, which could cause undesirable oscillations in the system to develop.

Therefore, the feedback algorithm is complemented by and integrated together with
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an anti-windup scheme [140] to ensure the closed-loop system remains well-behaved

in the presence of actuator magnitude saturation. The anti-windup compensator is

designed to keep the total control request

u = uff + ufb + uaw, (6.33)

where the components of the control input vector are defined as

u = [Pec1 , Pec2 , Pec3 , Pnbi, Ip, Pic]
T ∈ R6, (6.34)

and uaw is the output of the anti-windup compensator, from significantly deviating

from the range of physically achievable actuator values. See section 4.4.6 for an

example of the employed anti-windup scheme.

6.4 Simulation testing of integrated feedback con-

trol algorithm performance

In this section, we test the integrated feedback control algorithm (6.31) and (6.32)

augmented with the anti-windup compensator through simulation with the FPD,

physics-based model of the poloidal magnetic flux profile evolution and the volume-

averaged energy balance equation described in section 2.9. As the feedback algorithm

is designed for the high performance phase of the discharge, all of the simulations are

started just after the plasma transitions from the low confinement (L-mode) to the

high confinement regime in these particular simulated scenarios during the current

ramp-up phase at the time t0 = 45 s. Additionally, in each simulation, the line average

electron density evolution is linearly ramped up from an initial value of n̄e(t0) =

2.75× 1019 m−3 to a final value of n̄e(86) = 7.35× 1019 m−3 and then held constant.
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Figure 6.8: Schematic of closed-loop control system structure for simultaneous θ profile
+ E control for the ITER tokamak.. The coordinate transformation block
converts the simulated plasma parameters to the parameters controlled by the
feedback controller (θ = ∂ψ/∂ρ̂ and E). The feedback controller reacts to the
tracking error and outputs a feedback control request that drives the system in
a direction to minimize the tracking error and reject the effects of any external
disturbances. The anti-windup compensator reacts to the difference between
the saturated and unsaturated actuator requests and outputs an anti-windup
control request that minimizes the effects that actuator saturation has on the
closed-loop system performance.

The integrated feedback control algorithm is implemented with a sampling time of

1 s in all of the feedback-controlled simulations, which is on the order of the energy

confinement time and significantly smaller than the resistive current diffusion time in

ITER. We now test the reference tracking and disturbance rejection capabilities of

the feedback control algorithm, respectively. We emphasize the scenarios studied are

not meant to be representative of any one specific standard ITER operating scenario

but are meant to determine the ability of the feedback control algorithm to drive the

plasma state evolution to a specified physically achievable target evolution.

257



6.4.1 Reference tracking

We now describe the setup for a test conducted to determine the reference tracking

capabilities of the integrated feedback algorithm. First, a nominal q profile and stored

energy evolution (qnom(ρ̂, t) and Enom(t)) is obtained by executing a feedforward-only

simulation with a nominal set of input trajectories (total plasma current, individual

gyrotron launcher, ion cyclotron launcher, and neutral beam injection powers) and

initial conditions. The final nominal plasma state is characterized by a slightly re-

versed shear q profile with qmin slightly greater than one, a total plasma current of

Ip = 11 MA, a normalized plasma beta of βN ≈ 2.2, a fusion power of Pfus ≈ 390 MW,

and a total injected auxiliary heating power of P inj
aux = 43 MW. Second, a perturbed q

profile and stored energy evolution (qpert(ρ̂, t) and Epert(t)) is obtained by executing

a feedforward-only simulation with a perturbed set of input trajectories and initial

conditions. Finally, the ability of the feedback algorithm to track a target plasma

state evolution is determined by executing a feedforward + feedback simulation with

the perturbed set of input trajectories and initial conditions. The target q profile and

stored energy evolution (qtar(ρ̂, t) and Etar(t)) is obtained from the nominal evolution

as follows: qtar(ρ̂, t) = qnom(ρ̂, t) during the time interval t ∈ [45, 1600] s and

Etar(t) =





Enom(t) 45 to 1000 s

275 MJ (βN ≈ 2.1, Pfus ≈ 360 MW) 1000 to 1300 s

297 MJ (βN ≈ 2.25, Pfus ≈ 410 MW) 1300 to 1600 s

. (6.35)

This target plasma state evolution provides the opportunity to test the ability of the

feedback controller to both track a nominal plasma state evolution (t ∈ [45, 1000] s)

258



0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

 

 

Target

Feedforward + Feedback

Feedforward

(a) t = 45 s

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

(b) t = 300 s

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

(c) t = 400 s

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

(d) t = 1000 s

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius
S

a
fe

ty
 F

a
c
to

r

(e) t = 1300 s

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

(f) t = 1600 s

200 400 600 800 1000 1200 1400 1600
0.5

1.0

1.5

2.0

2.5

3.0

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

 

 

Target

Feedforward + Feedback

Feedforward

(g) ρ̂ = 0.1

200 400 600 800 1000 1200 1400 1600
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

(h) ρ̂ = 0.2

200 400 600 800 1000 1200 1400 1600
0.8

1.0

1.2

1.4

1.6

1.8

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

(i) ρ̂ = 0.3

200 400 600 800 1000 1200 1400 1600
1.1

1.3

1.5

1.7

1.9

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

(j) ρ̂ = 0.5

200 400 600 800 1000 1200 1400 1600
1.8

2.0

2.2

2.4

2.6

2.8

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

(k) ρ̂ = 0.7

200 400 600 800 1000 1200 1400 1600
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Time (sec.)

S
a

fe
ty

 F
a

c
to

r

(l) ρ̂ = 0.9

200 400 600 800 1000 1200 1400 1600
50

100

150

200

250

300

350

Time (sec.)

E
n

e
rg

y
 (

M
J
)

 

 

Target

Feedforward + Feedback

Feedforward

(m) E(t)

200 400 600 800 1000 1200 1400 1600

0.5

1.0

1.5

2.0

2.5

Time (sec.)

β
N

(n) βN (t)

200 400 600 800 1000 1200 1400 1600

0

100

200

300

400

500

Time (sec.)

F
u

s
io

n
 P

o
w

e
r 

(M
W

)

(o) Pfus(t)

Figure 6.9: (a-f) Comparison of target, feedforward + feedback, and feedforward con-
trolled q profiles at various times, (g-l) time traces of q at various radial loca-
tions, and (m-o) time traces of plasma stored energy, normalized β, and fusion
power for the simulation in section 6.4.1. The solid-orange line denotes when
the target q profile is maintained in a stationary condition while modifying
the generated fusion power.
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Figure 6.10: Control actuator trajectory comparison for the simulation in section 6.4.1:
(a-c) individual gyrotron launcher powers, (d) neutral beam injection power,
(e) total plasma current, and (f) ion cyclotron launcher power. The actuator
magnitude limits are shown in solid-green. The solid-orange line denotes the
time when the target q profile is maintained in a stationary condition while
modifying the generated fusion power.

and maintain a stationary q profile while changing the generated fusion power (t ∈
[1000, 1600] s).

A comparison of the FPD model predicted target, feedforward + feedback con-

trolled, and feedforward controlled q profiles at various times, time traces of q at

various normalized effective minor radii, and a comparison of the target, feedforward

+ feedback controlled, and feedforward controlled plasma stored energy, normalized

beta, and fusion power as a function of time are shown in Fig. 6.9. The control inputs

as a function of time are shown in Fig. 6.10. By examining the target plasma state

evolution, we see that the time necessary for the plasma to reach an approximately

stationary state is about 1000 s. During the feedback-controlled simulation, the ini-

tial q profile was lower than the target profile. As shown in the figures, the feedback

controller is able to reject the effects of the perturbed initial condition and drive the

plasma state evolution to the target evolution during the time interval t ∈ [45, 1000] s
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(nominal phase of simulation), which is not accomplished with feedforward-only con-

trol. The controller utilizes the neutral beam launchers and the total plasma current

to react quickly to q profile tracking errors in the plasma core and near the plasma

boundary, respectively. For example, during the feedback-controlled simulation dur-

ing the time interval t ∈ [150, 300] s, the q profile in the plasma core (Fig. 6.9(g))

evolves below the target, and in response, the controller increases the off-axis neutral

beam power (Fig. 6.10(d)). Then during the time interval t ∈ [300, 600] s, the q

profile in the plasma core (Fig. 6.9(g)) evolves above the target, and in response, the

controller decreases the off-axis neutral beam power (Fig. 6.10(d)). The controller

utilizes the gyrotron launchers more subtly to eliminate more localized q profile track-

ing errors in the plasma core and the ion cyclotron launcher to eliminate plasma stored

energy tracking errors. Additionally, the feedback controller is able to drive (i) the q

profile to the target evolution with a control time constant of approximately 400 s in

the core region of the plasma (roughly ρ̂ ∈ [0, 0.4]) and approximately 200 s in the

outer region of the plasma (roughly ρ̂ ∈ [0.4, 1]), and (ii) the thermal plasma state

to the target evolution with a control time constant of approximately 75 s. Finally

during the time interval t ∈ [1000, 1600] s, the controller is able to maintain the target

stationary q profile while simultaneously changing the generated fusion power. The

total plasma current and gyrotron launcher powers reach stationary values during this

phase of the simulation. Therefore, the controller utilizes the neutral beam power to

counteract the effect the changing ion cyclotron power (pure plasma heating to track

the target thermal plasma state) has on the q profile, i.e., a lower ion cyclotron power

results in a lower bootstrap current and a lower total auxiliary current (shown in

section 6.2), and as a result a higher neutral beam power is needed to maintain a

stationary q profile and vice versa.
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6.4.2 Disturbance rejection

We now describe the setup for a test conducted to determine the disturbance rejection

capabilities of the integrated feedback algorithm. First, a nominal q profile and stored

energy evolution (qnom(ρ̂, t) and Enom(t)) is obtained by executing a feedforward-only

simulation with a nominal set of input trajectories (total plasma current, individual

gyrotron launcher, ion cyclotron launcher, and neutral beam injection powers) and

initial conditions. The final nominal plasma state is characterized by a moderately

reversed shear q profile with qmin slightly greater than one, a total plasma current of

Ip = 10.5 MA, a normalized plasma beta of βN ≈ 2.3, a fusion power of Pfus ≈ 410

MW, and a total injected auxiliary heating power of P inj
aux = 62 MW. Second, a

perturbed q profile and stored energy evolution (qpert(ρ̂, t) and Epert(t)) is obtained

by executing a feedforward-only simulation with a perturbed set of input trajectories

and initial conditions. Finally, the ability of the algorithm to track a target plasma

state evolution is determined by executing a feedforward + feedback simulation with

the perturbed set of input trajectories and initial conditions. The target q profile and

stored energy evolution (qtar(ρ̂, t) and Etar(t)) is obtained from the nominal evolution

as follows: qtar(ρ̂, t) = qnom(ρ̂, t) during the time interval t ∈ [45, 1600] s and

Etar(t) =





Enom(t) 45 to 1000 s

275 MJ (βN ≈ 2.2, Pfus ≈ 370 MW) 1000 to 1300 s

297 MJ (βN ≈ 2.35, Pfus ≈ 420 MW) 1300 to 1600 s

. (6.36)

This target plasma state evolution provides the opportunity to test the ability of

the feedback controller to both track a different nominal plasma state evolution (t ∈
[45, 1000] s) and maintain a different stationary q profile while changing the generated

fusion power (t ∈ [1000, 1600] s). During the feedback-controlled simulation, the
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feedback controller is turned on and off during the simulation according to

ufb =





45 to 300 s ON

300 to 500 s OFF

500 to 1600 s ON

, (6.37)

to see the effect the disturbance has on the plasma state evolution and to determine

the ability of the feedback controller to reject the disturbance and regulate the plasma

state evolution around the target trajectories.

A comparison of the FPD model predicted target, feedforward + feedback con-

trolled, and feedforward controlled q profiles at various times, time traces of q at

various normalized effective minor radii, and a comparison of the target, feedforward

+ feedback controlled, and feedforward controlled plasma stored energy, normalized

beta, and fusion power as a function of time are shown in Fig. 6.11. The con-

trol inputs as a function of time are shown in Fig. 6.12. By examining the target

plasma state evolution, we see that the time necessary for the plasma to reach an

approximately stationary state is again about 1000 s. During the feedback-controlled

simulation, the initial q profile was higher than the target profile. As shown in the

figures, the feedback controller is able to reject the effects of the perturbed initial

condition and drive the q profile and plasma stored energy evolutions towards the

desired target evolutions before the feedback controller is turned off at 300 s. Dur-

ing the time interval when the feedback controller is off in the feedback-controlled

simulation (t ∈ [300, 500] s), the plasma state evolves away from the target evolution

towards the feedforward-only-controlled plasma state evolution. Once the feedback

controller is turned on again at 500 s, it is once again able to drive the plasma state

evolution towards the target evolution, which is not accomplished with feedforward-

only control. The controller utilizes the actuators to control the plasma state in the

same manner as observed in section 6.4.1, i.e., the neutral beam launchers and total
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(f) t = 1600 s {FB − ON}
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Figure 6.11: (a-f) Comparison of target, feedforward + feedback, and feedforward con-
trolled q profiles at various times, (g-l) time traces of q at various radial
locations, and (m-o) time traces of plasma stored energy, normalized β, and
fusion power for the simulation in section 6.4.2. The shaded gray region
denotes when the feedback controller is not active. The solid-orange line de-
notes when the target q profile is maintained in a stationary condition while
modifying the generated fusion power.
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Figure 6.12: Control actuator trajectory comparison for the simulation in section 6.4.2:
(a-c) individual gyrotron launcher powers, (d) neutral beam injection power,
(e) total plasma current, and (f) ion cyclotron launcher power. The shaded
gray region denotes when the feedback controller is not active. The actuator
magnitude limits are shown in solid-green. The solid-orange line denotes the
time when the target q profile is maintained in a stationary condition while
modifying the generated fusion power.

plasma current to react quickly to q profile tracking errors in the plasma core and near

the plasma boundary, respectively, the gyrotron launchers more subtly to eliminate

localized q profile tracking errors in the plasma core, and the ion cyclotron launcher to

eliminate plasma stored energy tracking errors. Additionally, the feedback controller

is able to drive the plasma state to the target evolution with approximately the same

control time constants observed in section 6.4.1. Finally, during the time interval

t ∈ [1000, 1600] s, the controller is able to maintain the target stationary q profile

while simultaneously changing the generated fusion power in the same manner as

observed in section 6.4.1.
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6.5 Conclusion

An integrated model-based feedback control algorithm was designed to track target q

profile and stored energy evolutions in H-mode burning plasma scenarios in ITER. The

feedback controller was designed by embedding a FPD model of the plasma magnetic

profile evolution into the control design process and to be robust to uncertainties

in the electron density, electron temperature, and plasma resistivity profiles, which

provides some additional confidence the algorithm can maintain closed-loop system

stability in a variety of operating conditions. Additionally, the feedback controller is

a computationally robust and efficient algorithm as it can be computed by a simple

matrix multiplication of the controller matrices with the respective tracking errors,

which is also advantageous for application in ITER from a computational point-of-

view relative to other profile control algorithms that require real-time computation of

various plasma profiles [107]. The feedback control algorithm was then successfully

tested in reference tracking and disturbance rejection simulations with the FPD model

of the plasma magnetic profile and stored energy evolution developed in chapter 2.

The demonstrated ability of the feedback controller to (i) drive the system to multiple

different operating points and (ii) maintain the q profile at a stationary target (to

maintain plasma stability) while modulating the thermal state of the plasma (to

respond to changing power demand) is an essential capability that will be needed for

ITER, and eventually a commercial, power producing tokamak reactor.

As shown by the feedback-controlled simulations, the feedback controller aug-

mented with the anti-windup compensator is able to drive the q profile and plasma

stored energy to the target evolutions during both the transient and stationary-state

phases of the simulations. The feedback control algorithm uses (i) the gyrotron

launchers and the neutral beam injectors to control the q profile near the center

of the plasma and the total plasma current to control the q profile near the plasma
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boundary, as well as account for the effects the ion cyclotron launcher has on the

electron temperature profile, which couples to the q profile evolution through the

plasma resistivity, the auxiliary current-drive efficiency, and the bootstrap current

drive, and (ii) the ion cyclotron launcher to control, and account for the effects the

other actuators have on, the stored energy evolution. The integrated feedback con-

trol algorithm could be implemented in existing tokamak experiments by interfacing

it with real-time measurements of the q profile and stored energy, respectively. These

quantities can be obtained from a real-time Grad-Shafranov equation solver, such as

real-time EFIT [11]. An example of how these measurements can be interfaced with

the feedback controller can be found in chapter 3. Additionally, the control algorithm

designed in this work represents a second layer of control in the overall scheme utilized

to control the tokamak plasma, i.e., the actuator requests generated by the controller

represent the reference values to the dedicated control loops commanding the physical

actuators. Therefore, the control algorithm would also need to be interfaced with the

dedicated control loops, for example a dedicated poloidal field coil controller that is

designed to track a desired total plasma current request.

The time necessary for the plasma to reach an approximately stationary state in

the simulations is about 1000 s, which represents a significant portion of (or even

greater than in some cases) the total discharge length for many of the proposed

ITER scenarios [148]. Therefore, active feedback control of the q profile evolution

will be crucial to reject the effects any external disturbances have on the plasma

evolution, maintain the plasma in a stable magnetohydrodynamic state, and maximize

the plasma performance in ITER. As demonstrated, the feedback controller is able to

drive the q profile to the target evolution in approximately 400 s in the plasma core and

approximately 200 s in the outer region of the plasma, which represents a reasonable

control time constant relative to the time necessary to reach a stationary plasma

state. In the scenarios considered in this work, the auxiliary current-drive sources
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(gyrotron and neutral beam launchers) are configured to inject power into the plasma

away from the magnetic axis as shown in Fig. 2.22(f). Therefore, there is no direct

way to control the q profile near the magnetic axis, which consequently contributes to

the longer control time constant in the core region of the plasma relative to the outer

region. Configuring the neutral beam launchers to inject power into the plasma both

on-and-off axis would allow the q profile feedback controller to moderate the relative

location of the noninductively-driven current in the plasma. This additional degree

of control freedom may possibly allow for tighter control of the q profile, as well as

reduce the control time constant, in the core region of the plasma.

As the q profile portion of the integrated feedback controller is designed to be

robust to a range of kinetic plasma parameters, detailed real-time knowledge of these

kinetic plasma profile evolutions may not be needed to actively control the q profile

evolution, which is also advantageous for application in ITER and future reactors by

requiring a smaller number of real-time diagnostics relative to other profile control

algorithms [91, 93, 107]. Therefore, a separate dedicated control algorithm to control

the thermal state of the plasma can be integrated together with the q profile feedback

controller, as long as the electron density, electron temperature, and plasma resistivity

profiles remain inside the ranges for which the q profile feedback controller ensures

the closed-loop system remains stable. In this work, a proportional-integral feedback

controller that utilizes the ion cyclotron launcher was designed to control the plasma

stored energy evolution. However, if the ion cyclotron power request is driven to

saturation by the feedback controller, the thermal state of the plasma is no longer

controllable using this lone actuator. A subject of future work will be to (i) interface

the q profile controller with a nonlinear burn controller [4] that utilizes not only

auxiliary heating, but also the concept of isotopic fuel tailoring [149] and impurity

injection to control the thermal state of the plasma, and (ii) test the control algorithms

in closed-loop simulations with DINA-CH&CRONOS [5–9].
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Finally, we have investigated many key practical issues for plasma profile control

in ITER, which will be useful for the development of the ITER Plasma Control

System that has recently been initiated. One of the more critical issues is whether

plasma control can be achieved through the integration of separate individual control

algorithms or whether a more fully integrated approach is required. As shown in

the feedback-controlled simulations, it appears the integration of separate controllers

may be able to achieve the plasma control performance requirements in ITER as

long as the algorithms are robust to changes in the plasma parameters they are not

specifically designed to control, and the target plasma state is physically achievable.
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Chapter 7

Closed-loop control of the safety

factor profile in the TCV tokamak

7.1 Introduction

In this chapter, feedback algorithms for safety factor profile (q profile) control in low

confinement (L-mode) scenarios in the TCV tokamak are synthesized by embedding

a first-principles-driven (FPD), physics-based model of the plasma dynamics into the

control design process. As the current diffusion time constant in TCV (approximately

150 milliseconds in the scenarios studied) is much shorter than the plasma discharge

length (approximately 2 seconds), TCV is an ideal machine to study the ability to

actively control the q profile in tokamaks. The total plasma current, the auxiliary

heating and current-drive (H&CD) system, and the line average electron density are

the actuators that can be utilized to control the q profile in tokamaks. In this chapter,

we first investigate the effect that the control input direction associated with pure

plasma heating has on the q profile in L-mode operating scenarios in the TCV tokamak

by utilizing the RAPTOR code [13–15]. This study indicates that pure auxiliary

heating has a small effect on the q profile in the examined scenarios. Therefore, we
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design feedback controllers that utilize the total plasma current, and exclusively the

current-drive capabilities of the auxiliary sources, to control the q profile in TCV. The

controllers are designed to put emphasis on achieving the target q profile in different

spatial regions, to respond differently to errors in the q profile, and to be robust

to uncertainties in the plasma electron temperature and plasma resistivity profiles.

The performance of each controller is tested though simulations with the RAPTOR

code, where the ability of each controller to track multiple different target profiles is

demonstrated. The comparison of the closed-loop performance of these controllers is

done in preparation for future q profile control experiments in TCV.

This chapter is organized as follows. In section 7.2, the effect that pure plasma

heating has on the q profile is investigated. The feedback control problem formulation

is presented in section 7.3. Three feedback controllers are designed, where the em-

phasis is placed on achieving the target in only the plasma core or both in the plasma

core and near the plasma boundary. Additionally, the controllers are designed to

either utilize the available actuators to control the q profile across the entire spatial

domain or to utilize the auxiliary current drive actuators to control the q profile in

the plasma core and the total plasma current to control the q profile near the plasma

boundary. In section 7.4, the feedback controllers are tested in one target and two

target simulations with the RAPTOR code. Finally, conclusions are discussed in

section 7.5.
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7.2 Plasma heating effect on the safety factor pro-

file

The evolution of the poloidal magnetic flux in a tokamak plasma is given by the

magnetic diffusion equation (2.45) and is restated here for convenience as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)jni, (7.1)

with boundary conditions

∂ψ

∂ρ̂
(0, t) = 0

∂ψ

∂ρ̂
(1, t) = −kIpIp(t), (7.2)

where ψ is the poloidal stream function, which is closely related to the poloidal

magnetic flux Ψ (Ψ = 2πψ), t is the time, η is the plasma resistivity, Te is the electron

temperature, µ0 is the vacuum magnetic permeability, jni is the total noninductive

current density, kIp is a geometric constant defined in (2.83), and Ip is the total

plasma current. The spatial coordinate ρ̂ = ρ/ρb is used to index the magnetic flux

surfaces in the plasma, where ρ is the mean effective minor radius of a magnetic flux

surface, i.e., Φ(ρ) = πBφ,0ρ
2, Φ is the toroidal magnetic flux, Bφ,0 is the vacuum

toroidal magnetic field at the geometric major radius R0 of the tokamak, and ρb is

the mean effective minor radius the last closed magnetic flux surface. The parameters

F̂ , Ĝ, and Ĥ are geometric spatial factors pertaining to the magnetic configuration

of a particular plasma equilibrium (defined in (2.44)). The q profile is related to the

poloidal magnetic flux and is defined in (2.90) and repeated here for convenience as

q(ρ̂, t) = −dΦ

dΨ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
. (7.3)

In the development of the RAPTOR code [13–15], the magnetic diffusion equation

272



(7.1) is combined with physics-based models of varying degrees of complexity for the

electron density, the electron temperature, the plasma resistivity, and the noninduc-

tive current sources to yield a model of the q profile dynamics suitable for control

design. To illustrate the effect that the electron temperature, and hence pure plasma

heating, has on these plasma properties, we briefly describe the physics-based models.

The plasma resistivity scales inversely with the electron temperature as

η(ρ̂, t) ∝ Te(ρ̂, t)
−3/2. (7.4)

The total noninductive current is generated by the auxiliary sources and the bootstrap

current (a self-generated noninductive source of plasma current) [60], i.e.,

jni(ρ̂, t)=jtotaux(ρ̂, t) + jbs(ρ̂, t)=
naux∑

i=1

jaux,i(ρ̂, t) + jbs(ρ̂, t), (7.5)

where jtotaux is the total current density driven by the auxiliary sources, jbs is the

current density driven by the bootstrap current, jaux,i is the current density driven

by the individual auxiliary sources, and naux is the number of auxiliary sources. The

individual auxiliary current drives are modeled as

jaux,i(ρ̂, t) = jrefaux,i(ρ̂)
Te(ρ̂, t)

ne(ρ̂, t)
Paux,i(t), (7.6)

where jrefaux,i is a normalized reference deposition profile for the i-th auxiliary source,

the term Te/ne represents the current-drive efficiency, ne is the electron density, and

Paux,i is the i-th auxiliary power. The bootstrap current arises from the plasma

radial pressure gradient that is produced by the magnetic confinement and is modeled

as [134,135]

jbs(ρ̂, t) =
kJkeVR0

F̂

(
∂ψ

∂ρ̂

)−1 [
2L31Te

∂ne
∂ρ̂

+ {2L31 + L32 + αL34}ne
∂Te
∂ρ̂

]
, (7.7)
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in TCV.

where L31, L32, L34 and α depend on the magnetic configuration of a particular

plasma equilibrium, kJkeV = 1.602× 10−16 J/keV, and we have assumed the electron

and ion densities and temperatures, respectively, are equal.

The auxiliary H&CD actuators on TCV considered in this work are 4 electron

cyclotron (gyrotron) launchers that are grouped into 2 clusters (denoted as a and

b). The normalized reference current deposition profiles for each source are shown

in Fig. 7.1. The gyrotrons in cluster a are: 1 on-axis co-current-injection source

(jrefec1a
in Fig. 7.1) and 1 off-axis counter-current-injection source (jrefec2a

in Fig 7.1).

The gyrotrons in cluster b are: 1 on-axis counter-current-injection source (jrefec1b
in

Fig. 7.1) and 1 off-axis co-current-injection source (jrefec2b
in Fig. 7.1). As a result,

there are two limiting auxiliary H&CD conditions that can be achieved with this

configuration. The first condition is related to plasma heating power (P h
aux) and

is associated with the sum of the powers injected through the gyrotron clusters,

i.e., P h
aux = 2(Peca + Pecb). The second condition is related to plasma current-drive

power (P cd
aux) and is associated with the difference of the powers injected through the

gyrotron clusters, i.e., P cd
aux = Peca − Pecb . Note that if Peca = Pecb , the auxiliary

current drive would be zero as jrefec1b
= −jrefec1a

and jrefec2b
= −jrefec2a

, i.e., pure plasma

heating. If this change of coordinates is employed, the total auxiliary current drive
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would be expressed as

jtotaux(ρ̂, t) =
(
jrefec1a

(ρ̂) + jrefec2a
(ρ̂)
) Te(ρ̂, t)
ne(ρ̂, t)

P cd
aux(t). (7.8)

7.2.1 Auxiliary heating in presence of auxiliary current drive

We investigate the effect that auxiliary heating has on the q profile in the presence

of constant auxiliary current drive using RAPTOR by allowing the plasma to evolve

to a stationary state with a constant current-drive power P cd
aux = −0.1 MW under

moderate heating conditions (P h
aux = 1.0 MW) and high heating conditions (P h

aux =

1.6 MW) at two values of plasma current, Ip = 140 kA and Ip = 185 kA, respectively.

The power injected through either of the clusters in TCV is constrained to the range

0.2 MW ≤ Peci ≤ 0.45 MW, for i ∈ [a,b]. A comparison of the electron temperature

and plasma resistivity before and after the heating power is increased is shown in Figs.

7.2(a-b). The increased heating power raises the electron temperature (Fig. 7.2(a))

and lowers the plasma resistivity (Fig. 7.2(b)) at both values of total plasma current

as expected from (7.4). A comparison of the auxiliary and bootstrap current densities

before and after the heating power is increased is shown in Figs. 7.2(c-d). At both

values of total plasma current, increasing the electron temperature through heating

increases (in magnitude) both the auxiliary (Fig. 7.2(c)) and bootstrap (Fig. 7.2(d))

current drives as expected from (7.6)-(7.7). The increases in both on-axis auxiliary

counter-current-drive (in negative direction) and off-axis bootstrap co-current-drive

(in positive direction), and decrease in the plasma resistivity, results in the toroidal

current density (Fig. 7.2(e)) decreasing in the spatial region ρ̂ ∈ [0, 0.2]. The effect

that this shift in equilibrium toroidal current density has on the q profile is shown

in Fig. 7.2(f), which shows the inverse relationship that exists between the current

density and the q profile. From Fig. 7.2(f), we see that auxiliary heating in the

presence of constant auxiliary current drive results in approximately a 5% increase

275



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Te(ρ̂)

Normalized Effective Minor Radius

E
le

c
tr

o
n

 T
e

m
p

e
ra

tu
re

 (
k
e

V
)

 

 

Ip (140 kA), P h
aux (1.0 MW)

Ip (140 kA), P h
aux (1.6 MW)

Ip (185 kA), P h
aux (1.0 MW)

Ip (185 kA), P h
aux (1.6 MW)

0.0 0.2 0.4 0.6 0.8 1.0
10

−8

10
−7

10
−6

10
−5

10
−4

(b) η(ρ̂)

Normalized Effective Minor Radius

P
la

s
m

a
 R

e
s
is

ti
v
it
y
 (

Ω
 m

)

0.0 0.2 0.4 0.6 0.8 1.0
−30

−25

−20

−15

−10

−5

0

5
(c) j tot

aux(ρ̂)

Normalized Effective Minor Radius

C
u

rr
e

n
t 

D
e

n
s
it
y
 (

1
0

5
 A

 m
−

2
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

5.0
(d) jbs(ρ̂)

Normalized Effective Minor Radius

C
u

rr
e

n
t 

D
e

n
s
it
y
 (

1
0

5
 A

 m
−

2
)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40

45
(e) jtor(ρ̂)

Normalized Effective Minor Radius

C
u

rr
e

n
t 

D
e

n
s
it
y
 (

1
0

5
 A

 m
−

2
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.75

1.00

1.25

1.50

1.75

2.00
(f ) q(ρ̂)

Normalized Effective Minor Radius

S
a

fe
ty

 F
a

c
to

r

Figure 7.2: Comparison of stationary state plasma parameters under low and high plasma
heating conditions with P cdaux = −0.1 MW.

in the q profile in the region ρ̂ ∈ [0, 0.2] with a negligible change outside this spatial

region. This is also the region where the auxiliary current drive has increased in

magnitude (Fig. 7.2(c)).

7.2.2 Auxiliary heating in absence of auxiliary current drive

To study the relative importance of the current drive mechanisms (auxiliary and

bootstrap), we investigate the effect that auxiliary heating has on the q profile in the

absence of auxiliary current drive using RAPTOR by allowing the plasma to evolve

to a stationary state with no current drive power P cd
aux = 0 MW under low heating

conditions (P h
aux = 0.8 MW) and high heating conditions (P h

aux = 1.8 MW) at two

values of plasma current, Ip = 140 kA and Ip = 185 kA, respectively. A comparison

of the electron temperature and plasma resistivity before and after the heating power

is increased is shown in Figs. 7.3(a-b). The increased heating power again raises the

electron temperature (Fig. 7.3(a)) and lowers the plasma resistivity (Fig. 7.3(b)) at

both values of total plasma current as expected from (7.4). A comparison of the aux-

iliary and bootstrap current densities before and after the heating power is increased

is shown in Figs. 7.3(c-d). Since P cd
aux = 0 MW, there is no auxiliary current drive
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Figure 7.3: Comparison of stationary state plasma parameters under low and high plasma
heating conditions with P cdaux = 0 MW.

(Fig. 7.3(c)). Again, at both values of total plasma current, increasing the electron

temperature through heating increases the bootstrap current (Fig. 7.3(d)) as expected

from (7.7). By comparing Fig. 7.2(d) and Fig. 7.3(d), we see that the bootstrap cur-

rent drive behaves in a similar fashion in response to auxiliary heating independent

of the presence or absence of auxiliary current drive. However, the increase in off-axis

bootstrap co-current-drive and the decrease in plasma resistivity results in a small

change in the toroidal current density (Fig. 7.3(e)), and correspondingly in a small

change in the q profile as shown in Fig. 7.3(f), when auxiliary heating is applied

without auxiliary current drive.

7.3 Feedback control design

As shown in the previous section, auxiliary heating has a small effect on the q profile

in the absence of auxiliary current drive in the considered TCV scenarios. As a result,

a q profile feedback controller that utilizes the total plasma current and exclusively

the current-drive capabilities of the auxiliary sources is designed by employing the

method utilized in chapters 4-6, and the controller will attempt to counteract any q
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Figure 7.4: Plasma parameter uncertainty ranges in TCV L-mode scenarios: (a) electron
density, (b) electron temperature, and (c) plasma resistivity. Note: nominal
values (solid) and minimum/maximum values (dash).

profile disturbance that results from plasma heating effects.

7.3.1 Partial differential equation model of system dynamics

We begin by defining ranges in which the electron density profile, the electron tem-

perature profile, and the plasma resistivity are expected to be in typical TCV L-mode

scenarios, which are shown in Fig. 7.4. These parameters are modeled as

ne(ρ̂) = nnome (ρ̂), (7.9)

Te(ρ̂) = T nome (ρ̂) + T unce (ρ̂)δTe , (7.10)

η(ρ̂) = ηnom(ρ̂) + ηunc(ρ̂)δTe , (7.11)

where the nominal (nnome , T nome , ηnom) and uncertain (T unce , ηunc) profiles are defined

in terms of the maximum and minimum profiles and |δTe| ≤ 1. Note that the de-

pendence of the plasma resistivity on the electron temperature is modeled to first

order to simplify the control design. Also, note that an uncertainty in the electron

density profile can readily be incorporated in the formulation of the model, but for

the scenarios considered, the electron density profile is assumed constant. By combin-

ing the magnetic diffusion equation (7.1) with the noninductive current-drive models
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(7.5)-(7.7) and the uncertain models (7.9)-(7.11), we obtain

∂ψ

∂t
=

(ηnom + ηuncδTe)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)

+
R0Ĥ(ηnom + ηuncδTe) (T nome + T unce δTe)

nnome

×
{ (
jrefec1a

+ jrefec2a

)
Peca(t) +

(
jrefec1b

+ jrefec2b

)
Pecb(t)

}

+
kJeVR

2
0Ĥ(ηnom + ηuncδTe)

F̂

(
∂ψ

∂ρ̂

)−1

×
[
2L31 (T nome + T unce δTe)

∂

∂ρ̂
{nnome }

+ {2L31+L32+αL34}nnome

∂

∂ρ̂
{T nome +T unce δTe}

]
. (7.12)

7.3.2 Model reduction via spatial discretization

From (7.3), we see that the rotational transform profile (ι = 1/q) is dependent on

the poloidal flux gradient profile, which we define as θ(ρ̂, t) ≡ [∂ψ/∂ρ̂(ρ̂, t)]. After

some mathematical manipulations, a partial differential equation (PDE) model of the

θ profile dynamics can be obtained from (7.12). Spatially discretizing this model by

employing a finite difference method results in an ordinary differential equation model

defined by

ẋ = fθ(x, u, δ),

yi = − 1

Bφ,0ρ2
b ρ̂i

xi, (7.13)

where x = [θi] ∈ Rnθ is the state vector, y = [ιi] ∈ Rnθ is the output vector, θi,

ιi, and ρ̂i are the values of θ, ι, and ρ̂ at the discrete nodes, for i = [2, . . . ,mθ − 1],

u = [Peca , Pecb , Ip] ∈ R3 is the control input vector, δ =
[
δTe , δ

2
Te

]
∈ R2 is the uncertain

parameter vector, fθ ∈ Rnθ is a nonlinear function, nθ = mθ − 2, and mθ is the

number of nodes utilized to represent the spatial domain. After linearizing (7.13)
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with respect to the state and control input around a nominal operating point (xeq, ueq)

characterized by δ = 0, i.e., f(xeq, ueq, 0) = 0, we obtain

˙̃x = A(δ)x̃+B(δ)ufb + dδ,

y = Cx̃+Dufb, (7.14)

where x̃ = x − xeq, ufb = u − ueq is the output of the to-be-designed feedback

controller, dδ = f(xeq, ueq, δ), A(δ) and B(δ) are the Jacobians ∂fθ/∂x ∈ Rnθ×nθ and

∂fθ/∂u ∈ Rnθ×3 evaluated at (xeq, ueq, δ), C = diag{−1/(Bφ,0ρ
2
b ρ̂i)} ∈ Rnθ×nθ and

D = 0.

7.3.3 Evaluation of relevant control channels

As there are only three control inputs, we can at most independently control three

linear combinations of the system output. Therefore, we obtain the most relevant

control channels from the nominal input-output relation at a particular frequency

jωdc, which is expressed as ŷ = Ĝ0ûfb = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV TR1/2ûfb.

The decoupled output and input are denoted by ŷ∗ = Σ−1UTQ1/2ŷ and û∗fb =

V TR1/2ûfb, i.e., ŷ∗ = û∗fb. The nominal system transfer function is expressed as

G0(s) = C (sInθ − A(0))−1B(0), where s denotes the Laplace variable and Inθ de-

notes an nθ × nθ identity matrix, and Ĝ0 denotes the real approximation of the

complex matrix G0(jωdc) [10, 146]. The positive definite matrices Q ∈ Rnθ×nθ and

R ∈ R3×3 are utilized to weight the relative tracking performance and control ef-

fort. Finally, the “weighted” transfer function G̃0 and its economy size singular value

decomposition are defined as G̃0 = Q1/2Ĝ0R
−1/2 = UΣV T , where Σ ∈ R3×3 is a

diagonal matrix of singular values and U ∈ Rnθ×3 and V ∈ R3×3 are matrices that

possess the following properties V TV = V V T = I, UTU = I. Some of the singular

values may have a small magnitude relative to the others and may be chosen to be
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Figure 7.5: Schematic of control problem formulation for ι profile feedback control design
in TCV L-mode scenarios.

neglected in the control synthesis. Quantities associated with the significant singular

values are denoted by a subscript s for the remainder of this chapter, i.e., (·)s. A

detailed overview of the singular value decomposition technique employed to evaluate

the relevant control channels is provided in Appendix B.

7.3.4 Feedback control problem formulation

The feedback control problem is formulated as shown in Fig. 7.5, where r is the

reference value, the tracking error is defined as e = r−y, and K is the to-be-designed

feedback controller. The feedback system (7.14) is written in the conventional P −∆

robust control framework, where P is the generalized transfer function and ∆ =

diag{δTe} is a structured uncertainty matrix, by employing the method described in

[138]. An overview of the employed technique is provided in Appendix A. The closed-

loop system outputs are Z1 and Z2 and the frequency dependent weight functions Wp

and Wu are utilized to optimize the feedback performance. The control problem is

formulated as (see Fig. 8.3)

min
K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω Tzw =


 WpSDCO −WpSDCO

WuKSDCO −WuKSDCO


 , (7.15)
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Figure 7.6: Schematic of closed-loop control system structure for ι profile control for the
TCV tokamak.

where Tzw is the closed-loop transfer function from the inputs (r∗s , d
∗
s) to the outputs

(Z1, Z2), d∗s = Σ−1
s UT

s Q
1/2d, SDCO = (I + Σ−1

s UT
s Q

1/2P22R
−1/2VsK)−1, P22 is the

component transfer function of P from ufb to y, and || · ||∞ denotes the H∞ norm.

See section 3.6 for an example of how this nominal performance condition is derived.

The feedback controller K is obtained by solving (7.15) and is designed such that the

closed-loop system is stable for all allowable perturbations (checked by computing

the structured singular value [10]). See Appendix C for an introduction to the design

of feedback controllers by employing the H∞ closed-loop shaping technique.

A schematic of the closed-loop control system structure is shown in Fig. 7.6.

To ensure the closed-loop system remains well-behaved in the presence of actuator

magnitude saturation, the feedback controller is augmented by an anti-windup com-

pensator [140]. See section 4.4.6 for an example of the employed anti-windup scheme.
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Figure 7.7: Relevant control channels for ι profile control in TCV L-mode scenarios: (a-c)
output (ŷ = Q−1/2UΣŷ∗) and (d-f) input (ûfb = R−1/2V û∗fb). The feedback
vector components are defined as ufb = [Peca , Pecb , Ip] |fb.

7.4 Control algorithm performance testing in TCV

RAPTOR simulations

In this section, the closed-loop performances of three feedback controllers are com-

pared in TCV L-mode scenarios using RAPTOR [13–15]. The value and shape of

the q profile in the plasma core is important due to its close relationship to both

plasma performance [61, 62] and stability limits [63, 64]. Additionally, it may also

be desirable to achieve a q profile with a specific value near the plasma boundary

to obtain plasmas with a desired total plasma current. The weight matrix Q uti-

lized in the evaluation of the relevant control channels can be utilized to place more

emphasis on achieving the target q profile in different spatial regions. The relevant

control channels of the first controller (denoted as K1) are evaluated at a frequency

of ωdc = 0 rad/s with emphasis placed on achieving the target q profile in the spatial

region ρ̂ ∈ [0, 0.4]. The second controller (denoted as K2) is designed in the same

way as controller K1 but with emphasis placed on achieving the target q profile in

the spatial regions ρ̂ ∈ [0, 0.4] and ρ̂ ∈ [0.7, 0.8]. Finally, the relevant control channels

of the third controller (denoted as K3) are evaluated at a frequency of ωdc = 1500
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Figure 7.8: (a-f) Nominal performance (tracking and control effort) and (g-i) structured
singular value versus frequency for the three controllers. The closed-loop
robust stability condition is defined as µ(N11(jω)) < 1, ∀ω [10], where N11 is
the transfer function between y∆ and u∆ in Fig. 7.5.

rad/s with emphasis placed on achieving the target q profile in the spatial regions

ρ̂ ∈ [0, 0.4] and ρ̂ ∈ [0.7, 0.8].

The relevant control channels of the three controllers are shown in Fig. 7.7. First,

we note that the third actuation direction (�) for all of the controllers (Figs. 7.7(d-

f)) is associated with auxiliary heating (equal contributions from Peca and Pecb in the

same direction and no contribution from Ip), which is negligible in this control design

approach. Second, we see that the control inputs are coupled for controllers K1 and

K2, i.e., the first (◦) and second (×) input singular vectors have contributions from all

three actuators (Figs. 7.7(d-e)). In contrast, the gyrotron and total plasma current

actuation directions are decoupled for controller K3 (Fig. 7.7(f)), i.e., the first singular

vector only has contributions from Peca and Pecb and the second singular vector only

has a contribution from Ip. The bandwidth of the gyrotron control direction for
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Figure 7.9: Time traces of outputs (q) and inputs (Ip, Peca , Pecb) for simulation in section
7.4.1. Gray-shaded region denotes when feedback controller is off. Actuator
limits (solid brown).

controller K3 is set at a slightly higher value relative to the other control directions.

This is enabled because the actuation directions are decoupled in controller K3. To

analyze the performance and robust stability of the closed-loop system with the three

controllers, the singular value diagrams of the inverse of the performance weight

functions and the achieved transfer functions SDCO and KSDCO are shown in Figs.

7.8(a-f) and a plot of µ versus frequency is shown in Fig. 7.8(g-i) for the three

controllers. As shown in the figures, all of the controllers achieve nominal performance

and are able to robustly stabilize the closed-loop system (marginal stability is reached

with controller K1 at the approximate frequency of 10 rad/s).

7.4.1 One target simulation

In this section the feedback controllers are tested in a one target simulation with

RAPTOR. A q profile achieved in TCV with a total plasma current of 140 kA and
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Figure 7.10: Comparison of target, feedforward + feedback controlled, and feedforward
controlled q profiles at various times for simulation in section 7.4.1.

counter-current-injection auxiliary power is chosen as the target. First, a nominal

q profile evolution is obtained by executing a feedforward-only simulation with a

nominal set of input trajectories. Next, the ability of each of the controllers to track

the target is determined by executing feedforward + feedback simulations with the

nominal inputs. During the feedback-controlled simulations, the controller is inactive

during the time interval t ∈ [0, 0.1] s.

Time traces of q at various spatial locations and a comparison of the control inputs

as a function of time are shown in Fig. 7.9. A comparison of the target, feedforward

+ feedback controlled, and feedforward controlled q profiles at various times is shown

in Fig. 7.10. Once the controllers become active at 0.1 s, they are able to drive the q

profile towards the target. In tokamaks, the local q-value is roughly inversely related

to the local current density amplitude. In the feedback-controlled simulations, all

of the controllers decrease the total plasma current and the auxiliary power in the

cluster a gyrotrons and increase the auxiliary power in the cluster b gyrotrons to track

the target. The controller K3 is able to respond to the error in the plasma core faster

than controllers K1 and K2 due to the slightly higher bandwidth of the gyrotron

control direction for controller K3. Additionally, the error near the plasma boundary

is eliminated by controller K3, whereas there is a small tracking error obtained with

controllers K1 and K2. However, the error near the plasma boundary obtained with

controller K2 is smaller than the error obtained with controller K1 due to the higher
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Figure 7.11: Time traces of outputs (q) and inputs (Ip, Peca , Pecb) for simulation in section
7.4.2. Gray-shaded region denotes when feedback controller is off. Actuator
limits (solid brown).

weight placed on achieving the target in this spatial region for controller K2.

7.4.2 Two target simulation

In this section the feedback controllers are tested in a two target simulation with

RAPTOR. A q profile achieved in TCV with a total plasma current of 140 kA and

co-current-injection auxiliary power is chosen as the target during the time interval

t ∈ [0, 0.9] s. During the time interval t ∈ [1.0, 1.75] s, a q profile achieved in TCV

with a total plasma current of 190 kA and counter-current-injection auxiliary power

is chosen as the target. The target during the time interval t ∈ (0.9, 1.0) s is obtained

by linear interpolation. First, a nominal q profile evolution is obtained by executing a

feedforward-only simulation with a nominal set of input trajectories. Next, the ability

of each of the controllers to track the target is determined by executing feedforward

+ feedback simulations with the nominal inputs. During the feedback-controlled
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Figure 7.12: Comparison of target, feedforward + feedback controlled, and feedforward
controlled q profiles at various times for simulation in section 7.4.2.

simulations, the controller is inactive during the time interval t ∈ [0, 0.1] s.

Time traces of q at various spatial locations and a comparison of the control inputs

as a function of time are shown in Fig. 7.11. A comparison of the target, feedforward

+ feedback controlled, and feedforward controlled q profiles at various times is shown

in Fig. 7.12. Once the controllers become active at 0.1 s, they are able to drive the

q profile towards the first target. In the feedback-controlled simulations, all of the

controllers decrease the total plasma current and the cluster a gyrotron power, while

increasing the cluster b gyrotron power, to track the first target. For controllers K1

and K2 the actuators are utilized to control the q profile across the entire spatial

domain (Figs. 7.7(a-b)). Therefore, in response to the q-value being above the target

at ρ̂ = 0.2, 0.3 (current density to low), the controllers K1 and K2 increase the total

plasma current (relative to controller K3) to lower the q-value at these locations

(the current density at these locations will increase as the current applied at the

plasma boundary propagates towards the plasma core). As a result of the increased

current density, a tracking error at ρ̂ = 0.4, 0.7, 0.8 is obtained with controllers K1

and K2. However, the error obtained with controller K2 is smaller than the error

obtained with controller K1 (see section 7.4.1). In contrast, for controller K3, the

gyrotrons are utilized to control the q profile in the plasma core and the total plasma

current is utilized to control the q profile near the plasma boundary (Fig. 7.7(c)).

Therefore, controller K3 does not increase the total plasma current to decrease the
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error at ρ̂ = 0.2, 0.3, and as a result, good tracking control performance is achieved at

ρ̂ = 0.4, 0.7, 0.8. When the target profile is switched, a similar tracking performance

is achieved in the plasma core (ρ̂ = 0.1, 0.2, 0.3) with all of the controllers. Finally,

with controllers K1 and K2 a smaller error at ρ̂ = 0.4 is obtained at the expense of

achieving a larger error at ρ̂ = 0.7, 0.8 (relative to controller K3).

7.5 Conclusion

Auxiliary heating was shown to have a relatively small effect on the q profile in the

absence of auxiliary current drive in the studied TCV scenarios. As a result, we

designed feedback controllers that exclusively utilized the current-drive capabilities

of the auxiliary sources to control the q profile in TCV. The algorithms were designed

to put emphasis on achieving the target q profile in different spatial regions and to

respond differently to errors in the q profile. The closed-loop performance of each

controller was tested and compared through simulations with the RAPTOR code.

Our future work includes testing the controllers experimentally in TCV by utilizing

the closed-loop plasma state observer developed in [150] to reconstruct the q profile

in real-time.
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Chapter 8

Simultaneous closed-loop current

and electron temperature profile

control in the TCV tokamak

8.1 Introduction

The current profile and the electron temperature profile are intimately coupled in

tokamak plasmas through resistive diffusion, auxiliary current-drive efficiency, boot-

strap current drive, ohmic heating, and plasma energy/particle transport. As these

physical mechanisms play a critical role in the fusion gain, plasma confinement, mag-

netohydrodynamic (MHD) stability, and fraction of noninductively driven current of

a tokamak operation scenario, developing integrated strategies for current profile and

electron temperature profile control is crucial to developing the ability to robustly

achieve and maintain desired plasma targets. In this chapter, we extend the method-

ology developed in chapter 7 for safety factor profile (q profile) control in the TCV

tokamak to synthesize a feedback algorithm for simultaneous safety factor and elec-

tron temperature profile control in TCV following a FPD, physics-based approach.
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The plasma poloidal magnetic flux (Ψ) and electron temperature (Te) dynamics

are governed by an infinite dimensional nonlinear, coupled physics model that is

described by the magnetic diffusion equation [124] and the electron heat transport

equation [7]. The rotational transform (ι) profile, defined as ι = 1/q, is proportional

to the spatial gradient of Ψ, and therefore represents a natural plasma property

conducive for feedback control. In this chapter, an integrated feedback controller

is designed to track target ι and Te profiles by embedding the partial differential

equation (PDE) models of the Ψ and Te dynamics into the control design process.

We model the electron thermal conductivity profile as an uncertainty and design the

controller to be robust to an expected uncertainty range. The actuators used to

control the ι and Te profiles are the total plasma current and the auxiliary heating

and current-drive (H&CD) system. The performance of the integrated controller is

demonstrated though simulations with the RAPTOR code [13–15] by first tracking a

nominal target, and then modulating the Te profile between equilibrium points while

maintaining the ι profile in a stationary condition.

This chapter is organized as follows. In section 8.2, the physics model that governs

the evolution of the current and electron temperature profiles is converted into a form

suitable for control design. The PDE model is spatially discretized by employing a

finite difference method in section 8.3, and in section 8.4, the discretized model is

formulated into a robust control design framework. In section 8.5, the part of the plant

output that we can effectively control is determined by employing a singular value

decomposition of the nominal plant model, and in section 8.6, the integrated feedback

controller is synthesized by first considering the nominal model and then analyzing the

stability of the closed-loop system in the presence of the model uncertainty. Closed-

loop simulations with the RAPTOR code are presented in section 8.7 to demonstrate

the ability of the controller to drive the system to multiple different operating points.

Finally, conclusions are discussed in section 8.8.
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8.2 Model of system dynamics

A well confined tokamak plasma MHD equilibrium is characterized by the formation

of nested toroidal surfaces of constant poloidal magnetic flux. Any quantity that is

constant on these magnetic flux surfaces can be used to index them. In this work, the

spatial coordinate ρ̂ = ρ/ρb is used to index the magnetic flux surfaces, where ρ is the

mean effective minor radius of a magnetic flux surface, i.e., Φ(ρ) = πBφ,0ρ
2, Φ is the

toroidal magnetic flux, Bφ,0 is the vacuum toroidal magnetic field at the geometric

major radius R0 of the tokamak, and ρb is the mean effective minor radius of the last

closed magnetic flux surface.

The rotational transform is related to the spatial gradient of the poloidal magnetic

flux and is defined as

ι(ρ̂, t) =
1

q(ρ̂, t)
= −dΨ

dΦ
= − ∂ψ/∂ρ̂

Bφ,0ρ2
b ρ̂
, (8.1)

where t is the time and ψ(ρ̂, t) is the poloidal stream function, which is closely related

to the poloidal magnetic flux Ψ(ρ̂, t), i.e., (Ψ = 2πψ). The poloidal magnetic flux

dynamics in a tokamak plasma are given by the magnetic diffusion equation in (2.45)

and restated here for convenience as

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)jni, (8.2)

with boundary conditions

∂ψ

∂ρ̂
(0, t) = 0

∂ψ

∂ρ̂
(1, t) = −kIpIp, (8.3)

where η(ρ̂, t) is the plasma resistivity, Te(ρ̂, t) is the electron temperature, µ0 is the

vacuum magnetic permeability, jni(ρ̂, t) is the total noninductive current density, kIp
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is a geometrical constant defined in (2.83), and Ip(t) is the total plasma current.

The parameters F̂ (ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are geometric spatial factors pertaining to the

magnetic configuration of a particular plasma MHD equilibrium (defined in (2.44)).

Assuming diffusion is the dominant heat transport mechanism in the tokamak

plasma, the electron temperature dynamics are given by the electron heat transport

equation in (2.48) and restated here for convenience as

3

2

∂

∂t
[neTe] =

1

ρ2
bĤ

1

ρ̂

∂

∂ρ̂

[
ρ̂
ĜĤ2

F̂

(
χene

∂Te
∂ρ̂

)]
+Qe, (8.4)

with boundary conditions

∂Te
∂ρ̂

(0, t) = 0 Te(1, t) = Te,bdry, (8.5)

where ne(ρ̂, t) is the electron density, χe(ρ̂, t) is the electron thermal conductivity,

Qe(ρ̂, t) is the total electron heating power density, and Te,bdry is the electron temper-

ature at the plasma boundary, which is assumed constant.

In order to convert the physics models of the plasma poloidal magnetic flux and

electron temperature dynamics (8.2) and (8.4) into a form suitable to design a feed-

back controller, we develop simplified physics-based models of the plasma resistivity,

noninductive current sources, electron heating sources, and electron thermal con-

ductivity. See chapter 2 for a detailed derivation/discussion of the models, and in

particular, section 2.10 where the models are tailored to the TCV tokamak.

8.2.1 Plasma resistivity modeling

The plasma resistivity scales inversely with the electron temperature as

η(ρ̂, t) =
ksp(ρ̂)Zeff
Te(ρ̂, t)3/2

, (8.6)
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where ksp is a spatial profile and Zeff is the effective average charge of the ions in the

plasma, which is assumed constant in space and time.

8.2.2 Noninductive current drive modeling

The total noninductive current density is generated by the combination of the auxil-

iary sources and the bootstrap current [60], i.e.,

jni(ρ̂, t) =
naux∑

i=1

jaux,i(ρ̂, t) + jbs(ρ̂, t), (8.7)

where jaux,i is the current density driven by the individual auxiliary sources, jbs is the

current density driven by the bootstrap current, and naux is the number of auxiliary

sources. The individual auxiliary current drives are modeled as

jaux,i(ρ̂, t) = jrefaux,i(ρ̂)
Te(ρ̂, t)

ne(ρ̂, t)
Paux,i(t), (8.8)

where jrefaux,i is a normalized reference current density deposition profile for the i-th

auxiliary source, Te/ne represents the current-drive efficiency (for electron cyclotron

current-drive [66]), and Paux,i is the i-th auxiliary power. The bootstrap current is

a self-generated current in the plasma which arises from the radial pressure gradient

that is produced by the magnetic confinement [60], and is modeled as [134,135]

jbs(ρ̂, t) =
kJkeVR0

F̂

(
∂ψ

∂ρ̂

)−1 [
2L31Te(ρ̂, t)

∂ne
∂ρ̂

(ρ̂, t)

+ {2L31 + L32 + αL34}ne(ρ̂, t)
∂Te
∂ρ̂

(ρ̂, t)

]
, (8.9)

where L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂) depend on the magnetic configuration of a

particular plasma equilibrium, kJkeV = 1.602 × 10−16 J/keV, and we have assumed

the electron and ion densities and temperatures, respectively, are equal.
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8.2.3 Electron heating power density modeling

The total electron heating power density is expressed as

Qe(ρ̂, t) =
1

kJkeV

[
Qe,ohm(ρ̂, t) +

naux∑

i=1

Qe,auxi(ρ̂, t)−Qe,rad(ρ̂, t)

]
, (8.10)

where Qe,ohm is the ohmic heating power density, Qe,auxi is the power density produced

by the individual auxiliary sources, and Qe,rad is the radiated power density. The

ohmic power density is modeled as

Qe,ohm(ρ̂, t) = jtor(ρ̂, t)
2η(ρ̂, t), (8.11)

where the total toroidal current density is expressed as [70]

jtor(ρ̂, t) = − 1

µ0ρ2
bR0Ĥ

1

ρ̂

∂

∂ρ̂

(
ρ̂ĜĤ

∂ψ

∂ρ̂

)
. (8.12)

The individual auxiliary power densities are modeled as

Qe,auxi(ρ̂, t) = Qref
auxi

(ρ̂)Pauxi(t), (8.13)

where Qref
aux,i is a normalized reference power density deposition profile for the i-

th auxiliary source. The radiated power density (for Bremsstrahlung radiation) is

modeled as [18]

Qe,rad(ρ̂, t) = kbremZeffne(ρ̂, t)
2
√
Te(ρ̂, t), (8.14)

where kbrem = 5.5× 10−37 Wm3/
√

keV is the Bremsstrahlung radiation coefficient.
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Figure 8.1: (a) Cubic spline basis functions used to model χe and (b) the χe uncertainty
range (gray-shaded region) captured by the model (8.15)-(8.16). The nominal
model (characterized by δα = 0) is shown by the solid black line, and the max-
imum/minimum values (characterized by δα = 1 and δα = −1, respectively)
are shown by the dashed black lines. The multicolored lines show the various
χe profiles that are achieved during a typical TCV simulated discharge using
RAPTOR [13–15].

8.2.4 Electron thermal conductivity modeling

From (8.6), (8.8), and (8.9), we see that the electron temperature is coupled to the

poloidal magnetic flux dynamics through resistive diffusion, auxiliary current-drive

efficiency, and bootstrap current drive. From (8.11)-(8.12), we see that the poloidal

magnetic flux is coupled to the electron temperature dynamics through ohmic heating.

Additionally, the local thermal transport, i.e., χe, is intimately dependent on the local

magnetic state of the plasma [61, 62]. However, it is extremely difficult to develop

closed-form expressions that accurately represent this complex interaction. Therefore,

in this work we model the thermal conductivity as a nominal model plus a bounded

uncertainty. We represent the thermal conductivity by a finite number of elements

nα as

χe(ρ̂) ≈
nα∑

α=1

Λα(ρ̂)γα, (8.15)

where Λα(ρ̂) are basis functions and

γα = γnomα + γuncα δα, (8.16)
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where γnomα and γuncα are constants that define the range for each γα such that each

uncertainty δα satisfies the condition |δα| ≤ 1. The basis functions Λα(ρ̂) are chosen as

cubic splines and are shown in Fig. 8.1(a). The evolution of the thermal conductivity

profile during a typical TCV simulated discharge using RAPTOR [13–15] is shown in

Fig. 8.1(b). Based on this data, we can obtain values for γnomα and γuncα in (8.16) by

projecting (8.15) onto a set of trial functions Λβ(ρ̂) and integrating over the spatial

domain, i.e., ∫ 1

0

Λβ(ρ̂)χe(ρ̂)dρ̂ ≈
nα∑

α=1

∫ 1

0

Λβ(ρ̂)Λα(ρ̂)dρ̂γ∗α. (8.17)

By choosing β = α, (8.17) can be written in matrix form as

AβαΓ∗α = bβ, (8.18)

where

Aβα =




∫ 1

0
Λ1(ρ̂)Λ1(ρ̂)dρ̂ . . .

∫ 1

0
Λ1(ρ̂)Λnα(ρ̂)dρ̂

...
. . .

...
∫ 1

0
Λnα(ρ̂)Λ1(ρ̂)dρ̂ . . .

∫ 1

0
Λnα(ρ̂)Λnα(ρ̂)dρ̂




Γ∗α =




γ∗1
...

γ∗nα


 bβ =




∫ 1

0
Λ1(ρ̂)χe(ρ̂)dρ̂

...
∫ 1

0
Λnα(ρ̂)χe(ρ̂)dρ̂


 . (8.19)

For each RAPTOR simulated χe, we solve (8.18) for Γ∗α, and the parameters γnomα

and γuncα in (8.16) are then calculated as

γnomα = [max(γ∗α) + min(γ∗α)] /2,

γuncα = [max(γ∗α)−min(γ∗α)] /2. (8.20)
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Figure 8.2: Normalized auxiliary electron cyclotron (a) current drive
(

1020 m−3

keV·W · A
m2

)

and (b) power density
(
m−3

)
in the TCV tokamak.

The thermal conductivity uncertainty range captured by the model (8.15)-(8.16) with

the parameters γnomα and γuncα defined by (8.20) is shown in Fig. 8.1(b). As shown

in the figure, the majority of the thermal conductivity profiles fall within the range

captured by the model.

8.2.5 Partial differential equation model of system dynamics

The auxiliary H&CD actuators on TCV considered in this work are 4 electron cy-

clotron (gyrotron) launchers that are grouped into 2 clusters (denoted as a and b).

The respective current drive and power density deposition profiles for each source are

shown in Fig. 8.2. The gyrotrons in cluster a are configured as follows: 1 on-axis heat-

ing and co-current-injection source (jrefec1a
and Qref

ec1a
in Fig. 8.2) and 1 off-axis heating

and counter-current-injection source (jrefec2a
and Qref

ec2a
in Fig. 8.2), and the gyrotrons

in cluster b are configured as follows: 1 on-axis heating and counter-current-injection

source (jrefec1b
and Qref

ec1b
in Fig. 8.2) and 1 off-axis heating and co-current-injection

source (jrefec2b
and Qref

ec2b
in Fig. 8.2). Also, note that the electron density could be

utilized as an actuator, but for the scenarios considered in this work the electron

density profile is assumed constant.

By combining the magnetic diffusion equation (8.2) with the resistivity model
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(8.6), the noninductive current drive models (8.7)-(8.9), and defining the quantities

fη(ρ̂) =
kspZeff

µ0ρ2
bF̂

2
Dψ(ρ̂) = F̂ ĜĤ,

geci(ρ̂) =
R0ĤkspZeffj

ref
eci

ne
fbs1(ρ̂) =

kJkeVR
2
0kspZeffĤ

F̂
,

fbs2(ρ̂) = 2L31
dne
dρ̂

fbs3(ρ̂) = {2L31 + L32 + αL34}ne,

for i ∈ [1a,2a,1b,2b], we obtain

∂ψ

∂t
= fη

1

T
3/2
e

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)

+
1

T
1/2
e

([gec1a + gec2a ]Peca(t) + [gec1b + gec2b ]Pecb(t))

+fbs1

(
∂ψ

∂ρ̂

)−1
1

T
3/2
e

(
fbs2Te + fbs3

∂Te
∂ρ̂

)
. (8.21)

By combining the electron heat transport equation (8.4) with the electron heat source

models (8.10)-(8.14), the thermal conductivity model (8.15)-(8.16), and defining the

quantities

fTe(ρ̂) =
2

3

1

ρ2
bĤne

DTe(ρ̂) =
ĜĤ2ne

F̂
,

fjtor(ρ̂) =
2

3

kspZeff
kJkeV ne

(
1

µ0ρ2
bR0Ĥ

)2

Djtor(ρ̂) = ĜĤ,

frad(ρ̂) =
2

3

kbremZeffn
2
e

kJkeV ne
meci(ρ̂) =

2

3

Qref
eci

kJkeV ne
,
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for i ∈ [1a,2a,1b,2b], we obtain

∂Te
∂t

= fTe
1

ρ̂

∂

∂ρ̂

[
ρ̂DTe

(
nα∑

α=1

Λα {γnomα + γuncα δα}
)
∂Te
∂ρ̂

]

+fjtor
1

ρ̂2

[
∂

∂ρ̂

(
ρ̂Djtor

∂ψ

∂ρ̂

)]2
1

T
3/2
e

− fradT 1/2
e

+ [mec1a +mec2a ]Peca(t) + [mec1b +mec2b ]Pecb(t). (8.22)

From (8.1), we see that the rotational transform is related to the spatial gradient of

the poloidal flux, which we define as

θ(ρ̂, t) ≡ [∂ψ/∂ρ̂(ρ̂, t)]. (8.23)

By inserting (8.23) into (8.21)-(8.22) and after copious application of the chain rule,

we obtain PDE models of the θ and Te profile dynamics that are expressed as

∂θ

∂t
=

1

T
3/2
e

[
qη1

∂2θ

∂ρ̂2
+ qη2

∂θ

∂ρ̂
+ qη3θ

]
− 3

2

1

T
5/2
e

∂Te
∂ρ̂

[
qη1

∂θ

∂ρ̂
+ qη4θ

]

+
1

T
1/2
e

{[
g′ec1a + g′ec2a

]
Peca(t) +

[
g′ec1b + g′ec2b

]
Pecb(t)

}

−1

2

1

T
3/2
e

∂Te
∂ρ̂
{[gec1a + gec2a ]Peca(t) + [gec1b + gec2b ]Pecb(t)}

+
1

θ

1

T
3/2
e

[
f ′bs1 − fbs1

1

θ

∂θ

∂ρ̂
− 3

2
fbs1

1

Te

∂Te
∂ρ̂

](
fbs2Te + fbs3

∂Te
∂ρ̂

)

+fbs1
1

θ

1

T
3/2
e

(
f ′bs2Te +

{
fbs2 + f ′bs3

} ∂Te
∂ρ̂

+ fbs3
∂2Te
∂ρ̂2

)
(8.24)
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and

∂Te
∂t

= fTe

[{
1

ρ̂
DTe +D′Te

}( nα∑

α=1

Λα {γnomα + γuncα δα}
∂Te
∂ρ̂

)

+DTe

(
nα∑

α=1

Λ′α {γnomα + γuncα δα}
∂Te
∂ρ̂

)

+DTe

(
nα∑

α=1

Λα {γnomα + γuncα δα}
∂2Te
∂ρ̂2

)]

+fjtor
1

ρ̂2

[{
Djtor + ρ̂D′jtor

}
θ + ρ̂Djtor

∂θ

∂ρ̂

]2
1

T
3/2
e

− fradT 1/2
e

+ [mec1a +mec2a ]Peca(t) + [mec1b +mec2b ]Pecb(t), (8.25)

where (·)′ = d/dρ̂ and

qη1(ρ̂) = fη(ρ̂)Dψ(ρ̂),

qη2(ρ̂) = f ′η(ρ̂)Dψ(ρ̂) + 2fη(ρ̂)D′ψ(ρ̂) + fη(ρ̂)Dψ(ρ̂)/ρ̂,

qη3(ρ̂) = f ′η(ρ̂)Dψ(ρ̂)/ρ̂+ f ′η(ρ̂)D′ψ(ρ̂)− fη(ρ̂)Dψ(ρ̂)/ρ̂2

+fη(ρ̂)D′ψ(ρ̂)/ρ̂+ fη(ρ̂)D′′ψ(ρ̂),

qη4(ρ̂) = fη(ρ̂)Dψ(ρ̂)/ρ̂+ fη(ρ̂)D′ψ(ρ̂).

8.3 Model reduction via spatial discretization

To obtain a model suitable for tracking feedback control design, the governing infi-

nite dimensional PDEs (8.24) and (8.25) are approximated by a finite dimensional

system of ordinary differential equations (ODEs). This is achieved by representing

the spatial domain (ρ̂ ∈ [0, 1]) as m discrete nodes and approximating the spatial

derivatives using a finite difference method of order (∆ρ̂)2, where ∆ρ̂ = 1/(m− 1) is

the spacing between the evenly distributed nodes. After applying the spatial deriva-

tive approximations to (8.24) and (8.25) for the interior nodes i = [2, . . . ,m− 1], we
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obtain

θ̇i=
1

T
3/2
ei

[
qη1(ρ̂i)

θi+1 − 2θi + θi−1

(∆ρ̂)2
+ qη2(ρ̂i)

θi+1 − θi−1

2∆ρ̂
+ qη3(ρ̂i)θi

]

−3

2

1

T
5/2
ei

Tei+1
− Tei−1

2∆ρ̂

[
qη1(ρ̂i)

θi+1 − θi−1

2∆ρ̂
+ qη4(ρ̂i)θi

]

+
1

T
1/2
ei

{[
g′ec1a(ρ̂i) + g′ec2a(ρ̂i)

]
Peca(t) +

[
g′ec1b(ρ̂i) + g′ec2b(ρ̂i)

]
Pecb(t)

}

−1

2

1

T
3/2
ei

Tei+1
− Tei−1

2∆ρ̂
{[gec1a(ρ̂i) + gec2a(ρ̂i)]Peca(t) + [gec1b(ρ̂i) + gec2b(ρ̂i)]Pecb(t)}

+
1

θi

1

T
3/2
ei

[
f ′bs1(ρ̂i)− fbs1(ρ̂i)

1

θi

θi+1 − θi−1

2∆ρ̂
− 3

2
fbs1(ρ̂i)

1

Tei

Tei+1
− Tei−1

2∆ρ̂

]

×
(
fbs2(ρ̂i)Tei + fbs3(ρ̂i)

Tei+1
− Tei−1

2∆ρ̂

)

+fbs1(ρ̂i)
1

θi

1

T
3/2
ei

(
f ′bs2(ρ̂i)Tei +

{
fbs2(ρ̂i) + f ′bs3(ρ̂i)

} Tei+1
− Tei−1

2∆ρ̂

+fbs3(ρ̂i)
Tei+1

− 2Tei + Tei−1

(∆ρ̂)2

)
(8.26)

and

Ṫei = fTe(ρ̂i)

[{
1

ρ̂i
DTe(ρ̂i) +D′Te(ρ̂i)

}( nα∑

α=1

Λα(ρ̂i) {γnomα + γuncα δα}
Tei+1

− Tei−1

2∆ρ̂

)

+DTe(ρ̂i)

(
nα∑

α=1

Λ′α(ρ̂i) {γnomα + γuncα δα}
Tei+1

− Tei−1

2∆ρ̂

)

+DTe(ρ̂i)

(
nα∑

α=1

Λα(ρ̂i) {γnomα + γuncα δα}
Tei+1

− 2Tei + Tei−1

(∆ρ̂)2

)]

+fjtor(ρ̂i)
1

ρ̂2
i

[{
Djtor(ρ̂i) + ρ̂iD

′
jtor(ρ̂i)

}
θi + ρ̂iDjtor(ρ̂i)

θi+1 − θi−1

2∆ρ̂

]2
1

T
3/2
ei

−frad(ρ̂i)T 1/2
ei

+ [mec1a(ρ̂i) +mec2a(ρ̂i)]Peca(t) + [mec1b(ρ̂i) +mec2b(ρ̂i)]Pecb(t),

(8.27)

where θi, Tei , and ρ̂i are the values of θ, Te, and ρ̂ at the discrete nodes, for i =

[2, . . . ,m − 1]. The values of θ and Te at the boundary nodes i = 1 and i = m are
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obtained from the boundary conditions (8.3) and (8.5) and are expressed as

θ1 = 0 Te1 =
4Te2 − Te3

3
, (8.28)

θm = −kIpIp(t) Tem = Te,bdry. (8.29)

The discretized model can be written in a compact form as

˙̂
θ = Fθ(θ̂, T̂e, u), (8.30)

˙̂
Te = FTe(θ̂, T̂e, u, δ), (8.31)

ιi = − 1

Bφ,0ρ2
b ρ̂i

θi, (8.32)

where θ̂ = [θ2, . . . , θm−1] ∈ Rn, T̂e = [Te2 , . . . , Tem−1 ] ∈ Rn, ιi is the value of ι at

the discrete nodes, for i = [2, . . . ,m − 1], u = [Peca , Pecb , Ip] ∈ R3 is the control

input vector, δ = [δ1, . . . , δnα ] ∈ Rnα is the uncertain parameter vector, Fθ ∈ Rn and

FTe ∈ Rn are nonlinear functions, and n = m − 2. By defining the state vector as

x = [θ̂, T̂e] ∈ R2n, we can write the state dynamics as

ẋ =


 Fθ(θ̂, T̂e, u)

FTe(θ̂, T̂e, u, δ)


 = Fθ,Te(x, u, δ) ∈ R2n. (8.33)

The output vector is defined as y = [ι̂, T̂e] ∈ R2n, where ι̂ = [ι2, . . . , ιm−1] ∈ Rn.

We define an equilibrium point of the system (8.33) as

ẋeq = Fθ,Te(xeq, ueq, 0) = 0. (8.34)

We can obtain a model suitable for tracking control design by defining the perturba-

tion variables x̃(t) = x(t) − xeq and ufb(t) = u(t) − ueq, where x̃(t) is the deviation
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away from the equilibrium state and ufb(t) is the output of the to-be-designed feed-

back controller. Linearizing (8.33) with respect to the state and control input around

an equilibrium point defined by (8.34), we obtain

ẋeq + ˙̃x = Fθ,Te(xeq, ueq, δ) +
∂Fθ,Te
∂x

∣∣∣∣
(xeq ,ueq ,δ)

x̃+
∂Fθ,Te
∂u

∣∣∣∣
(xeq ,ueq ,δ)

ufb, (8.35)

where ∂Fθ,Te/∂x ∈ R2n×2n and ∂Fθ,Te/∂u ∈ R2n×3 are the Jacobians of the system.

By employing (8.34), we express (8.35) as

˙̃x =
∂Fθ,Te
∂x

∣∣∣∣
(xeq ,ueq ,δ)

x̃+
∂Fθ,Te
∂u

∣∣∣∣
(xeq ,ueq ,δ)

ufb + dδ, (8.36)

where dδ = Fθ,Te(xeq, ueq, δ) is a disturbance. Finally, (8.36) is written as an explicit

uncertain state-space system as

˙̃x = A(δ)x̃+Bufb + dδ,

y = Cx̃+Dufb, (8.37)

where A(δ) and B are the Jacobians ∂Fθ,Te/∂x ∈ R2n×2n and ∂Fθ,Te/∂u ∈ R2n×3

evaluated at (xeq, ueq, δ),

C =


Cι 0

0 CTe


 ,

where Cι = diag{−1/(Bφ,0ρ
2
b ρ̂i)} ∈ Rn×n, CTe = diag{1} ∈ Rn×n, and D = 0. The

structure of the matrix A(δ) is of the form

A(δ) = A0 +
nα∑

i=1

δiAi, (8.38)

where A0 represents the nominal system response and Ai represents the influence that

the uncertain parameter δi has on the system response.
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8.4 Manipulation of dynamic model into robust

control framework

We now exploit the structure of the matrix A(δ) in (8.38) to write the system (8.37)

in the conventional P −∆ robust control framework (shown in the little purple box in

Fig. 8.3), where P is the generalized transfer function of the system and ∆ = diag{δ}
is a structured uncertainty matrix. The transfer function of a linear system with

state-space matrices A, B, C, and D can be written as an upper linear fractional

transformation (LFT) as

G(s) = Fu

(
Ma,

1

s
I

)
= D + C(sI − A)−1B, (8.39)

where Fu is the upper LFT, the matrix Ma is defined as

Ma =


A B

C D


 , (8.40)

I is an identity matrix with the appropriate dimensions, and s denotes the Laplace

variable. The nominal model will be coupled with the uncertain parameters in the

transfer function representation of (8.37). By employing the method outlined in [138],

we can separate the uncertain parameters from the nominal parameters to write the

system (8.37) in the P −∆ robust control framework. The input-output equations of

the system in this framework are expressed as

y∆ = P11u∆ + P12ufb,

y = P21u∆ + P22ufb + d, (8.41)
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Figure 8.3: Schematic of control problem formulation for simultaneous ι + Te profile feed-
back control design in TCV L-mode scenarios.

where P11, P12, P21, and P22 are the component transfer functions of P that describe

how the system inputs (u∆, ufb) affect the system outputs (y∆, y) and d represents

the effect that the disturbance dδ has on the system outputs. An overview of the

employed technique is provided in Appendix A.

8.5 Evaluation of relevant control channels

The feedback system (8.41) is an underactuated system, i.e., there are 2n outputs

but only 3 inputs. Therefore, at most 3 linear combinations of the system output can

be controlled. In this work, we employ a singular value decomposition (SVD) of the

nominal input-output relation

y = G0(s)ufb where G0(s) = C (sI − A(0))−1B +D

at a particular frequency to choose the output directions (and associated input direc-

tions) to control. The real approximation of the nominal input-output relation at a

particular frequency jωdc is expressed as

ŷ = Ĝ0ûfb, (8.42)
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Figure 8.4: Relevant control channels for ι and Te profile control in TCV L-mode scenarios:
(a-b) output and (c) input. The output is defined as ŷ = [ŷι, ŷTe ], where ŷι
are the system outputs associated with the rotational transform, and ŷTe are
the system outputs associated with the electron temperature. The feedback
vector components are ufb = [Peca , Pecb , Ip] |fb.

where Ĝ0 denotes the real approximation of the complex matrix G0(jωdc) [10, 146].

We next define the “weighted” transfer function G̃0 and its economy size singular

value decomposition as G̃0 = Q1/2Ĝ0R
−1/2 = UΣV T , where Σ ∈ R3×3 is a diagonal

matrix of singular values, and U ∈ R2n×3 and V ∈ R3×3 are matrices that possess

the following properties V TV = V V T = I, UTU = I. We have introduced the

positive definite matrices Q ∈ R2n×2n and R ∈ R3×3 to weight the relative tracking

performance and control effort. The input-output relation (8.42) is now expressed as

ŷ = Ĝ0ûfb = Q−1/2G̃0R
1/2ûfb = Q−1/2UΣV TR1/2ûfb.

The singular vectors of the basis for the subspace of obtainable output values

(ŷ = Q−1/2UΣŷ∗) and the corresponding input singular vectors (ûfb = R−1/2V û∗fb)

are shown in Fig. 8.4, where ŷ∗ and û∗fb are the decoupled output and input, i.e.,

ŷ∗ = û∗fb. A detailed overview of the SVD technique employed to evaluate the relevant

control channels is provided in Appendix B. In this work, the frequency to evaluate

the relevant channels at is chosen as ωdc = 250 rad/s. By examining Fig. 8.4, we see

that this choice allows us to utilize the gyrotrons (Peca and Pecb in opposite directions)

to control the ι profile in the plasma core through auxiliary current drive, the total

plasma current to control the ι profile near the plasma boundary, and the gyrotrons

(Peca and Pecb in the same direction) to control the electron temperature profile. Also
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by examining Fig. 8.4, we can see the difference in time scales between the rotational

transform and electron temperature dynamics. From Figs. 8.4(a) and (c), we see

that at a frequency of 250 rad/s the effect of modifying the total plasma current

at the plasma boundary has not had time to propagate to the core of the plasma,

whereas from Fig. 8.4(b), we see that the effects of the actuators on the electron

temperature have fully propagated across the entire spatial domain. As a result, we

see that the electron temperature dynamics are governed by a faster time constant

than the rotational transform dynamics.

8.6 Feedback control problem formulation

The feedback control problem is formulated as shown in Fig. 8.3, where r is the

reference value, e = r− y is the tracking error, and K is the to-be-designed feedback

controller. The closed-loop system outputs are Z1 and Z2, and the frequency depen-

dent weight functions Wp and Wu are utilized to optimize the feedback performance.

The feedback control objectives are to maintain a small tracking error for any refer-

ence, reject the effects of the external disturbance, utilize as little feedback control

effort as possible, and robustly stabilize the system by controlling the relevant input

and output channels of the system (8.41). The control problem is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣
∞, ∀ω Tzw =


 WpSDCO −WpSDCO

WuKSDCO −WuKSDCO


 , (8.43)

which represents the closed-loop nominal performance condition. The function Tzw

is the closed-loop transfer function from the inputs (r∗, d∗) to the outputs (Z1, Z2),

d∗ = Σ−1UTQ1/2d, and SDCO = (I + Σ−1UTQ1/2P22R
−1/2V K)−1. See section 3.6

for an example of how this nominal performance condition is derived. See Appendix

C for an introduction to the design of feedback controllers by employing the H∞
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closed-loop shaping technique. The feedback controller K obtained by solving (8.43)

is written in state-space form as

ẋfb = A∗fbxfb +B∗fbe
∗,

u∗fb = C∗fbxfb +D∗fbe
∗,

where xfb ∈ Rnfb is the internal controller state vector, A∗fb ∈ Rnfb×nfb , B∗fb ∈ Rnfb×3,

C∗fb ∈ R3×nfb and D∗fb ∈ R3×3 are the controller system matrices, and nfb is the

number of controller states. Equivalently, the controller can be written in terms of

the tracking error e and control input ufb as

ẋfb = Afbxfb +Bfbe,

ufb = Cfbxfb +Dfbe, (8.44)

where

Afb = A∗fb,

Bfb = B∗fbΣ
−1UTQ1/2,

Cfb = R−1/2V C∗fb,

Dfb = R−1/2V D∗fbΣ
−1UTQ1/2.

To analyze the performance of the closed-loop system, the singular value diagrams

of the inverse of the performance weight functions and the achieved transfer functions

SDCO and KSDCO are shown in Fig. 8.5(a-b). As shown in the figure, the controller

achieves nominal performance. The robust stability of the closed-loop system with

the nominal controller is analyzed by exploiting the block-diagonal structure of the

uncertainty matrix, i.e., ∆ = diag{δ}, which allows us to compute the structured
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Figure 8.5: (a) Nominal performance (tracking), (b) nominal performance (control effort),
(c) structured singular value versus frequency for physically relevant (solid)
and all possible (dashed) uncertainties according to the model (8.15)-(8.16),
and (d) the corresponding χe that results in the largest µ-value at a frequency
of 100 rad/s for each respective case in (c). The robust stability condition is
defined as µ(N11(jω)) < 1 ∀ω [10].

singular value

µ (N11(jω)) =
1

min{km|det (I − kmN11∆) = 0} ,

where N11 = P11 − P12R
−1/2V KSDCOΣ−1UTQ1/2P21 (see section 3.6 for an example

of how this transfer function is derived) is the closed-loop transfer function between

the signals y∆ and u∆ shown in Fig. 8.3. A plot of µ versus frequency is shown

in Fig. 8.5(c). As shown in the figure, for all possible uncertainties (dashed line in

Fig. 8.5(c)) according to the model (8.15)-(8.16), the nominal controller does not

achieve robust stability. However, by comparing the thermal conductivity profile

that results in the largest µ-value for this case (dashed line in Fig. 8.5(d)) to the

thermal conductivity profiles predicted by RAPTOR in Fig. 8.1(b), we see that the

model (8.15)-(8.16) can allow unphysical thermal conductivity profiles. Therefore, we

restrict the uncertainties in the model (8.15)-(8.16) by requiring that the resulting
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thermal conductivity profile should satisfy

∂χe
∂ρ̂

< 0 for ρ̂ ∈ [0, 0.35] and
∂χe
∂ρ̂

> 0 for ρ̂ ∈ [0.45, 0.85].

We then recompute µ, and as shown by the solid line in Fig. 8.5(c), the nominal

controller achieves robust stability for this subset of uncertainties (marginal stability

is reached at a frequency of 100 rad/s).

8.7 Control algorithm performance testing in TCV

RAPTOR simulations

We now test the closed-loop performance of the integrated ι + Te profile feedback

controller (8.44) in TCV RAPTOR [13–15] simulations. In order to the ensure a fair

assessment of the controller performance, the target plasma state must be physically

achievable, i.e., the ι and Te profiles that are specified as targets in the simulations

must be compatible with each other. In this work, we obtain Te profiles that are

compatible with specific ι profiles by executing RAPTOR simulations with ι profile

control only (see chapter 7) and taking the resulting Te profile as a nominal compatible

target.

The controller is tested with two different sets of ι and Te profile targets to assess

the ability of the controller to drive the system to multiple different operating points.

In all cases the target profiles are specified in the same way. The ι profile target

is held constant for the duration of the simulation, and the nominal compatible Te

profile is chosen as the target during the time interval t ∈ [0, 1) s. During the time

interval t ∈ [1, 1.4) s, the nominal compatible Te profile is scaled down by 10%, and

the resulting profile is specified as the target. Finally, the nominal compatible Te

profile is scaled up by 10%, and the resulting profile is specified as the target during
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Figure 8.6: Schematic of closed-loop control system structure for simultaneous ι + Te
profile control for the TCV tokamak.

the time interval t ∈ [1.4, 2] s. Specifying the target evolution in this way provides

the opportunity to (i) test the ability of the controller to track a nominal ι and Te

profile evolution (t ∈ [0, 1) s) and (ii) assess the ability of the controller to modulate

individual quantities (Te profile) while simultaneously maintaining other quantities (ι

profile) in a stationary condition (t ∈ [1, 2] s).

The sequence of simulations to test the controller performance are also executed

in the same way. First, a nominal ι and Te profile evolution is obtained by executing

a feedforward-only simulation with a nominal set of input trajectories. Next, the

ability of the controller to track the target is determined by executing a feedforward

+ feedback simulation with the nominal input trajectories. During the feedback-

controlled simulations, the controller is inactive during the time interval t ∈ [0, 0.1]

s. The simulation results are presented in terms of the achieved q profile (q = 1/ι) as

this is the quantity most often utilized in the literature to specify the magnetic state

of the plasma.

A schematic of the closed-loop control system structure is shown in Fig. 8.6.

To ensure the closed-loop system remains well-behaved in the presence of actuator
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magnitude saturation, the feedback controller is augmented by an anti-windup com-

pensator [140]. See section 4.4.6 for an example of the employed anti-windup scheme.

8.7.1 Broad Te profile with q(0, t) = 1.05 and q(0.8, t) = 3.3

In this section, a q profile achieved in the TCV tokamak with a total plasma current

of 190 kA and counter-current-injection auxiliary power is chosen as the target. The

corresponding nominal electron temperature profile that is specified as the target ex-

hibits a broad profile shape. Time traces of q and Te at various spatial locations, a

comparison of the target, feedforward + feedback controlled, and feedforward con-

trolled q and Te profiles, and a comparison of the control inputs is shown in Fig. 8.7.

Once the controller becomes active at 0.1 s, it is able to drive the ι and Te profiles to

the target during the nominal phase of the simulation (t ∈ [0, 1) s) by increasing the

total plasma current and the cluster b gyrotron power and decreasing the cluster a

gyrotron power. During the time interval t ∈ [1, 2] s, the controller is able to modulate

the Te profile between equilibrium points while maintaining the q profile in a rela-

tively stationary condition by rejecting the effects the changing electron temperature

has on the magnetic profile dynamics (see (8.6), (8.8), and (8.9)).

8.7.2 Narrow Te profile with q(0, t) = 1.17 and q(0.8, t) = 4.5

In this section, a q profile achieved in the TCV tokamak with a total plasma current

of 140 kA and counter-current-injection auxiliary power is chosen as the target. The

corresponding nominal electron temperature profile that is specified as the target ex-

hibits a narrow profile shape. Time traces of q and Te at various spatial locations,

a comparison of the target, feedforward + feedback controlled, and feedforward con-

trolled q and Te profiles, and a comparison of the control inputs is shown in Fig. 8.8.

When the controller becomes active at 0.1 s, it is again able to drive the ι and Te
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Figure 8.7: (a-f) Time traces of outputs (q, Te) at various radial locations, (g-l) compar-
ison of target, feedforward + feedback, and feedforward controlled outputs
(q(ρ̂) and Te(ρ̂)) at various times, and (m-o) comparison of control inputs
(Ip, Peca , Pecb) for the simulation in section 8.7.1. The solid-orange line de-
notes when the target q profile is maintained in a stationary condition while
modifying the Te profile. Feedback controller off (gray-shaded region) and
actuator limits (solid brown).
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Figure 8.8: (a-f) Time traces of outputs (q, Te) at various radial locations, (g-l) compar-
ison of target, feedforward + feedback, and feedforward controlled outputs
(q(ρ̂) and Te(ρ̂)) at various times, and (m-o) comparison of control inputs
(Ip, Peca , Pecb) for the simulation in section 8.7.2. The solid-orange line de-
notes when the target q profile is maintained in a stationary condition while
modifying the Te profile. Feedback controller off (gray-shaded region) and
actuator limits (solid brown).
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profiles to the target during the nominal phase of the simulation (t ∈ [0, 1) s) by

decreasing the total plasma current and the cluster a gyrotron power and increasing

the cluster b gyrotron power. Once again, the controller is able to modulate the

Te profile between equilibrium points while maintaining the q profile in a relatively

stationary condition during the time interval t ∈ [1, 2] s.

8.8 Conclusion

An integrated feedback algorithm for ι and Te profile control in tokamaks was de-

veloped following a FPD, physics-based modeling approach. The electron thermal

conductivity profile was modeled as a nominal profile plus a bounded uncertainty,

and the controller was designed to be robust to an expected range of uncertainty.

The performance of the controller was demonstrated through RAPTOR simulations

of the TCV tokamak plasma dynamics. One direction of future work is to develop

a model of χe that naturally predicts physically relevant profiles. Additionally, our

future work includes utilizing the closed-loop plasma state observer developed in [150]

to reconstruct the ι and Te profiles in real-time to experimentally test the controller

in TCV.
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Chapter 9

Conclusions and future work

The work in this dissertation has focused on developing algorithms for current pro-

file and combined current profile + thermal state control in nuclear fusion tokamak

reactors. In this chapter, the contributions of this dissertation are summarized, and

some possible directions of future research are discussed.

9.1 Contributions

The contributions of this dissertation are as follows:

1. A general physics-based modeling approach was developed to convert the physics

model that describes the current profile evolution in the tokamak into a form

suitable for control design. This was accomplished by developing physics-based,

control-oriented models of the electron density, the electron temperature, the

plasma resistivity, and the noninductive current drives in response to the avail-

able control actuators. This first-principles-driven (FPD) model (as well as the

accompanying numerical simulation code) is readily tailored to a given operat-

ing scenario in a given machine of interest. In this dissertation, the model was

317



tailored to low confinement (L-mode) and high confinement (H-mode) scenar-

ios in DIII-D, H-mode burning plasma scenarios in ITER, and L-mode scenar-

ios in TCV, demonstrating the flexibility of the employed methodology. The

model’s predictive capabilities were demonstrated through comparison to the

evolution of experimentally-achieved/advanced-simulation-predicted plasma pa-

rameters. In addition to the control applications developed in this dissertation,

the physics-based modeling approach and numerical simulation code were em-

ployed to develop and test other current profile control algorithms for the DIII-D

tokamak [100, 101, 151] and the National Spherical Torus Experiment Upgrade

(NSTX-U) tokamak [152–154], and are currently being extended to the EAST

tokamak.

2. A general framework for real-time feedforward + feedback control of magnetic

and kinetic plasma profiles was implemented in the DIII-D Plasma Control

System (PCS). A tokamak simulation model (Simserver) that can interface with

the control algorithm implemented in the DIII-D PCS was developed, which

enabled closed-loop simulations with the real-time code to be executed to debug

the algorithm prior to experimental testing. In addition to the controllers tested

in this dissertation, the control framework and Simserver were employed to

implement, debug, and experimentally test the controllers developed in [77,78,

98–105] for current profile control in DIII-D.

3. A numerical optimization algorithm to synthesize feedforward trajectories for

the tokamak actuators that steer the plasma through the tokamak operating

space to achieve a predefined target scenario, subject to actuator and plasma

state constraints, was developed. At the core of the optimization algorithm is
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the developed FPD, physics-based model of the plasma dynamics. By exploit-

ing the computational efficiency of the embedded physics-based model, the op-

timization problem was iteratively solved by employing the sequential quadratic

programming technique. The optimization algorithm was utilized to optimize

plasma startup conditions by achieving a target current profile at the end of

the current ramp-up phase in DIII-D L-mode scenarios and to reach a target

plasma state characterized by a desired current profile and stored energy in a

stationary manner in DIII-D H-mode scenarios. In addition, the developed nu-

merical optimization algorithm is currently being employed to develop actuator

trajectories for advanced scenario planning in the NSTX-U tokamak.

4. Following a FPD, physics-based approach, robust feedback algorithms for cur-

rent profile control, combined current profile + stored energy control, and si-

multaneous current profile + electron temperature profile control were designed

for various operating scenarios in multiple tokamaks, which demonstrates the

flexibility of the employed methodology.

5. DIII-D experimental tests demonstrated the potential physics-model-based pro-

file control has to provide a systematic approach for the development and robust

sustainment of tokamak operating scenarios. The ability of the feedforward +

feedback control algorithm to improve the reproducibility of plasma startup

conditions in L-mode scenarios in the DIII-D tokamak was demonstrated by

achieving various target q profiles at the end of the current ramp-up phase of

the discharge. The ability of the optimized feedforward trajetories to steer the

plasma to a target stationary current profile, and the ability of the current pro-

file feedback controller to improve the ability to robustly achieve plasma target

conditions, in DIII-D H-mode scenarios was demonstrated. These experiments,

319



along with those described in [98–101], mark the first time ever FPD, model-

based, closed-loop full magnetic profile control was successfully demonstrated

in a tokamak device.

6. ITER and TCV simulation tests showed the ability to simultaneously control

the magnetic and thermal state dynamics in tokamak plasmas. The ITER sim-

ulations demonstrated the ability to drive the current profile to a stationary

target while simultaneously modulating the amount of fusion power that is gen-

erated. The TCV simulations demonstrated the ability to drive the current and

electron temperature profiles to a self consistent target, as well as to maintain

the current profile in a stationary condition while simultaneously modulating

the electron temperature profile between equilibrium points. The ability to

maintain the current profile at a stationary target (to maintain plasma stabil-

ity) while modulating the thermal state of the plasma (to respond to changing

power demand) is an essential capability that will be needed for a commercial,

power producing tokamak reactor.

9.2 Future work

In order for candidate control solutions to truly be considered for application on ITER,

they need to be developed and routinely used in existing tokamak experiments. The

DIII-D experiments discussed in this dissertation demonstrate the potential physics-

model-based current profile control has to improve the reproducibility of tokamak

operating scenarios. However, current profile control is currently not routinely utilized

in everyday tokamak operation. Therefore additional experimental testing of current

profile controllers, and eventually integrated current profile and electron temperature

profile controllers, in various tokamaks is needed.

The feedback control algorithm developed for combined current profile + stored
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energy control in burning plasma ITER scenarios represents a foundation for inte-

grated current profile and burn condition control in ITER. Additionally, the ability

to simultaneously control the current and electron temperature profiles was demon-

strated in TCV simulations. However, the developed algorithms solely employ auxil-

iary heating to control the plasma thermal state. If the auxiliary heating is driven to

saturation, the thermal state of the plasma is no longer controllable using this lone

actuator. Therefore, integrating the current profile controller with strategies that

utilize not only auxiliary heating, but also the concepts of isotopic fuel tailoring and

impurity injection to control the thermal state of the plasma [4] would be desirable.

Additionally, the control algorithm needs to be more rigorously tested in simulations

with advanced physics-based simulation codes, such as DINA-CH&CRONOS [5–9].

The current profile is not a directly measurable quantity and is reconstructed

for feedback control by combining diagnostic measurements with a real-time Grad-

Shafranov equilibrium solver, which is the case for the rtEFIT algorithm [11] utilized

at the DIII-D tokamak. However, the accuracy of this reconstruction method is

limited by the difficulty of obtaining reliable internal plasma diagnostic measurements

with adequate spatial and temporal resolution to obtain a complete description of the

current profile evolution during the discharge. An alternative approach that warrants

additional exploration is constructing the current profile in real-time by synthesizing

a closed-loop observer following a FPD approach. This approach has recently been

investigated for application in TCV [13,150].

Advanced high performance operating scenarios operate close to operational bound-

aries in terms of proximity to stability limits and actuation capabilities to maximize

plasma performance. In these operating scenarios, magnetohydrodynamic (MHD) in-

stabilities, such as neoclassical tearing modes (NTMs), can be triggered, which limit

the plasma performance and can lead to plasma terminating disruptions. As the

actuators utilized to stabilize these instabilities are also used to control the current
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and electron temperature profiles, integrated algorithms for profile control and MHD

instability stabilization/suppression need to be explored.
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Appendix A

Manipulation of linear uncertain

state-space system into a robust

control framework

In this appendix, we provide an overview of a technique employed to manipulate a

linear uncertain state-space system with a defined structure into a conventional robust

control framework. The derivation follows the one originally described in [138]. We

begin by considering a general linear uncertain state-space system described by

ẋ = Ax+BvFB,

y = Cx+DvFB, (A.1)
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where x ∈ Rn is the system state, vFB ∈ Rm is the control input, y ∈ Rp is the system

output, and the state-space matrices have a structure defined by

A = A0 +

nδ∑

i=1

δiA
∗
i B = B0 +

nδ∑

i=1

δiB
∗
i ,

C = C0 +

nδ∑

i=1

δiC
∗
i D = D0 +

nδ∑

i=1

δiD
∗
i , (A.2)

where δ = [δ1, . . . , δi, . . . , δnδ ] ∈ Rnδ is the uncertain parameter vector, the matrices

A0, B0, C0, D0 represent the nominal response of the system, and the matrices A∗i ,

B∗i , C
∗
i , D∗i represent the influence each uncertain parameter δi has on the system

response.

A linear system with state-space matrices A, B, C, D has a transfer function

representation G(s) = C(sIn −A)−1B +D, where s denotes the Laplace variable, In

denotes an n× n identity matrix, and y = G(s)vFB. By defining the matrix

Ma =


A B

C D


 , (A.3)

the system transfer function G(s) can be written as a linear fractional transformation

(LFT) as

G(s) = D + C(sIn − A)−1B = D + C
1

s
In

(
In − A

1

s
In

)−1

B

= Ma22 +Ma21

1

s
In

(
In −Ma11

1

s
In

)−1

Ma12 = Fu

(
Ma,

1

s
In

)
, (A.4)

where Fu denotes the upper LFT. The block diagram of the system transfer function
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(a) (b)

Figure A.1: Transfer function G(s) (a) represented as a LFT and (b) with uncertainty ∆
pulled out.

G(s) (A.4) is shown in Fig. A.1(a) with equivalent equations

w1 =
1

s
Inz1,

y = Fu

(
Ma,

1

s
In

)
vFB = G(s)vFB. (A.5)

By employing (A.2), the matrix Ma, defined in (A.3), is written in the form of a

general state-space uncertainty as

Ma =



A0 +

nδ∑
i=1

δiA
∗
i B0 +

nδ∑
i=1

δiB
∗
i

C0 +
nδ∑
i=1

δiC
∗
i D0 +

nδ∑
i=1

δiD
∗
i


 . (A.6)

By exploiting the structure of the state matrices in (A.6), the uncertainty is formu-

lated into a LFT by achieving the smallest possible number of repeated blocks [138].

With this purpose in mind, the matrix Ji is formed as

Ji =


A

∗
i B∗i

C∗i D∗i


 ∈ R(n+p)×(n+m). (A.7)
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By using singular value decomposition and grouping terms, the matrix Ji is expressed

as

Ji = UiΣiV
∗
i = (Ui

√
Σi)(

√
ΣiV

∗
i ) =


Li
Wi


 ·


Ri

Zi



∗

, (A.8)

where [·]∗ denotes the complex conjugate transpose. If the rank of the matrix Ji is

qi, then each inner matrix has the following dimensions

Li ∈ Rn×qi Wi ∈ Rp×qi Ri ∈ Rn×qi Zi ∈ Rm×qi . (A.9)

By employing (A.8), the uncertainty is written as

δiJi =


Li
Wi


 [δiIqi ]


Ri

Zi



∗

, (A.10)

where Iqi is a qi × qi identity matrix. Finally the matrix Ma, defined in (A.6), is

expressed as

Ma =


A0 B0

C0 D0


+

nδ∑

i=1

δiJi = F11 + F12∆F21 (A.11)

where

F11 =


A0 B0

C0 D0


 F12 =


L1 . . . Lnδ

W1 . . . Wnδ


 ,

F21 =




R∗1 Z∗1
...

...

R∗nδ Z∗nδ


 ∆ =




δ1Iq1 0

. . .

0 δnδIqnδ


 . (A.12)
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The representation of the matrix Ma, defined in (A.11), is equal to the lower LFT

Ma = Fl(F,∆) = F11 + F12∆(IqT − F22∆)−1F21

= F11 + F12∆F21 (A.13)

where

F =


F11 F12

F21 0


 , (A.14)

qT is the total rank of the ∆ matrix given by

qT =

nδ∑

i=1

qi, (A.15)

IqT denotes a qT × qT identity matrix, and Fl denotes the lower LFT.

The block diagram of the system is now drawn as in Fig. A.1(b) with equivalent

equations

w1 =
1

s
Inz1 w2 = ∆z2,

y = Fu

(
Fl(F,∆),

1

s
In

)
vFB = G(s)vFB. (A.16)

The transfer function G(s) of the uncertain state-space model is next expressed as

G(s) = Fu

(
Ma,

1

s
In

)
= Fu

(
Fl(F,∆),

1

s
In

)

= Fl

(
Fu

(
F,

1

s
In

)
,∆

)
= Fl(P

′,∆). (A.17)

For convention purposes, it is necessary to move the uncertainty to create an upper

LFT by employing the definition

G(s) = Fl(P
′,∆) = Fu(P,∆), (A.18)

346



Figure A.2: Block diagram manipulation to obtain plant P .

where

P ′ =


P22 P21

P12 P11


 P =


P11 P12

P21 P22


 . (A.19)

The corresponding block diagram manipulation is shown in Fig. A.2. The input-

output equations of the system in this robust control framework are given by

z2 = P11w2 + P12vFB,

y = P21w2 + P22vFB, (A.20)

where P11 ∈ RqT×qT , P12 ∈ RqT×m, P21 ∈ Rp×qT , P22 ∈ Rp×m, z2 ∈ RqT , w2 ∈ RqT ,

y ∈ Rp, and vFB ∈ Rm.
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Appendix B

Evaluation of relevant control

channels via singular value

decomposition

In this appendix, we provide an overview of a technique employed to evaluate the

relevant control channels of an underactuated linear system (one that has more to-be-

controlled outputs than available manipulatable inputs) by employing singular value

decomposition (SVD). More details regarding this technique can be found in [155].

We begin by considering a general linear state-space system described by

ẋ = Ax+Bufb,

y = Cx+Dufb, (B.1)

where x ∈ Rn is the system state, ufb ∈ Rm is the control input, y ∈ Rp is the system

output, A, B, C, D are the system state-space matrices, and p > m. The relationship

between the outputs y and the inputs ufb of the system (B.1) is expressed in terms
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of the system transfer function G(s) which is defined as

y = G(s)ufb where G(s) = C(sIn − A)−1B +D, (B.2)

where s denotes the Laplace variable and In is an n× n identity matrix. For a given

set of constant inputs, the system (B.2) will reach a steady-state condition defined

by a constant output, provided that the system is internally stable. These constant

outputs and inputs define a particular equilibrium point of the system. It is desired

that the outputs reach a set point, or reference to-be-tracked, which we denote as

r ∈ Rp, and the tracking error is defined as

e = r − y. (B.3)

A feedback controller can then be designed to manipulate the control inputs ufb

to minimize (B.3). The conditions to bring the tracking error exactly to zero are

typically not met because the number of controlled outputs (p) is larger than the

number of controlled inputs (m). As a result, we can only independently control m

linear combinations of the output of the system. The technique we employ to evaluate

and decouple the most relevant control channels is based on a SVD of the state-space

system (B.1) at a particular frequency jωdc.

The real approximation of (B.2) at a particular frequency jωdc is expressed as

ŷ = Ĝûfb, (B.4)

where Ĝ denotes the real approximation of the complex matrix G(jωdc) [10, 146].

To begin the process of determining the relevant control channels, we consider a
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performance index Ĵ , which is defined as

Ĵ = êTQê = (r̂ − ŷ)TQ(r̂ − ŷ), (B.5)

where Q ∈ Rp×p is a symmetric positive definite matrix that is used to weight which

components of the tracking error, relative to the other components, are more im-

portant to minimize and (·)T denotes the matrix transpose. We introduce another

positive definite matrix R ∈ Rm×m to weight which inputs have more control author-

ity relative to the other inputs. We then define the “weighted” transfer function G̃0

and its “economy” size SVD [156] as

G̃ = QηĜR−η = UΣV T , (B.6)

where Σ = diag{σ1, σ2, . . . , σm} ∈ Rm×m is a diagonal matrix of singular values with

σ1 > σ2 > . . . > σm > 0, U ∈ Rp×m and V ∈ Rm×m are matrices that possess the

following properties

V TV = V V T = Im UTU = Im, (B.7)

where Im is an m×m identity matrix, and η = 1/2 is chosen to enable the performance

index (B.5) to be written as a function of Σ as will be shown below.

By employing (B.6), the input-output relation (B.4) is now expressed as

ŷ = Q−1/2G̃R1/2ûfb = Q−1/2UΣV TR1/2ûfb. (B.8)

We note that the columns of the matrix Q−1/2UΣ define a basis for the subspace of

obtainable output values, and as a result, any obtainable output can be written as a

linear combination ŷ∗ ∈ Rm of the basis vectors, i.e.,

ŷ = Q−1/2UΣŷ∗ ⇐⇒ ŷ∗ = Σ−1UTQ1/2ŷ. (B.9)
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This implies only the component of the reference vector which also lies in this subspace

will be able to be tracked in steady state. As a result, we decompose the reference

vector into a trackable component r̂t and a non-trackable component rnt, i.e., r =

r̂t + rnt. As the trackable component lies in the subspace of obtainable output values

it can also be written as a linear combination r̂∗ ∈ Rm of the basis vectors, i.e.,

r̂t = Q−1/2UΣr̂∗ ⇐⇒ r̂∗ = Σ−1UTQ1/2(r̂t + rnt), (B.10)

where Σ−1UTQ1/2rnt = 0 because the non-trackable component does not lie in the

obtainable output subspace. By defining

û∗fb = V TR1/2ûfb ⇐⇒ ûfb = R−1/2V û∗fb, (B.11)

where û∗fb ∈ Rm, a one-to-one relationship between ŷ∗ and û∗fb is obtained by using

(B.9) and (B.8) as

ŷ∗ = Σ−1UTQ1/2ŷ

= Σ−1UTQ1/2Q−1/2UΣV TR1/2ûfb = û∗fb. (B.12)

By utilizing (B.10) and (B.9), the performance index (B.5) is now written as

Ĵ = êTQê = (r̂ − ŷ)TQ(r̂ − ŷ)

= (r̂∗ − ŷ∗)TΣUTQ−1/2QQ−1/2UΣ(r̂∗ − ŷ∗)

=
(
r̂∗ − ŷ∗

)T
Σ2(r̂∗ − ŷ∗) =

m∑

i=1

σ2
i

(
r̂∗i − ŷ∗i

)2
, (B.13)

where σi denotes the i-th singular value, r̂∗i denotes the i-th component of r̂∗, and ŷ∗i

denotes the i-th component of ŷ∗.

We note that the i-th singular value acts as a weight parameter for the i-th
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component of the tracking error in (B.13). It is possible that two sequential singular

values could exhibit a large difference in magnitude, i.e., σi � σi+1. Therefore, no

matter how large the component of the tracking error associated with σi+1 is, its

contribution to the overall value of performance index will be small compared to the

component of the tracking error associated with σi. As a result, if we take all of the

singular values into account, we could spend a lot of control effort for only a small

improvement in the value of the performance index (B.13). To avoid this penalty,

we partition the singular values into ks significant singular values Σs and m − ks

negligible singular values Σns, and introduce the partitions

U =
[
Us Uns

]
V =

[
Vs Vns

]
Σ =


Σs 0

0 Σns


 , (B.14)

r̂∗ =


 r̂
∗
s

r̂∗ns


 ŷ∗ =


 ŷ
∗
s

ŷ∗ns


 û∗fb =


 û
∗
fbs

û∗fbns


 , (B.15)

where Us ∈ Rp×ks , Σs ∈ Rks×ks , Vs ∈ Rm×ks , r̂∗s ∈ Rks , ŷ∗s ∈ Rks , and û∗fbs ∈ Rks . By

employing the partitions (B.14), the properties (B.7) are expressed as

V TV =


V

T
s

V T
ns



[
Vs Vns

]
=


V

T
s Vs V T

s Vns

V T
nsVs V T

nsVns


 =


Iks 0

0 Im−ks




UTU =


U

T
s

UT
ns



[
Us Uns

]
=


U

T
s Us UT

s Uns

UT
nsUs UT

nsUns


 =


Iks 0

0 Im−ks


 . (B.16)

By employing (B.14)-(B.15), a reduced form of the performance index (B.13) is writ-

ten as

Ĵs =
(
r̂∗s − ŷ∗s

)T
Σ2
s

(
r̂∗s − ŷ∗s

)
=

ks∑

i=1

σ2
i

(
r̂∗i − ŷ∗i

)2
, (B.17)
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where

r̂∗s = Σ−1
s UT

s Q
1/2(r̂t + rnt),

ŷ∗s = Σ−1
s UT

s Q
1/2ŷ. (B.18)

By employing (B.18) and (B.8), a reduced form of the decoupled system ŷ∗ = û∗fb

(B.12) is expressed as

ŷ∗s = Σ−1
s UT

s Q
1/2ŷ = Σ−1

s UT
s Q

1/2Q−1/2UΣV TR1/2ûfb

= Σ−1
s UT

s

[
Us Uns

]

Σs 0

0 Σns




V

T
s

V T
ns


R1/2ûfb

= Σ−1
s

[
Iks 0

]

 ΣsV

T
s

ΣnsV
T
ns


R1/2ûfb = û∗fbs , (B.19)

where we have defined

û∗fbs = V T
s R

1/2ûfb ⇐⇒ ûfb = R−1/2Vsû
∗
fbs . (B.20)
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Appendix C

Fundamentals of feedback control

design by H∞ closed-loop shaping

In this appendix, we provide an overview of the fundamentals of feedback control

design by employing the H∞ closed-loop shaping technique. More details regarding

this technique can be found in [10].

The H∞ norm of any stable transfer function F (s), where s denotes the Laplace

variable, represents the maximum gain in any direction at any frequency between the

outputs and inputs of F (s) and is expressed mathematically as

||F (s)||∞ = max
ω

σ̄(F (jω)), (C.1)

where || · ||∞ denotes the H∞ norm and σ̄(F (jω)) denotes the maximum singular

value of the function F at each frequency ω. For single-input-single-output (SISO)

systems, specifications on the shape of the frequency response of the magnitude of

the transfer function F , which is denoted as |F |, can be captured by an upper bound,

1/|Wf (s)|, on the magnitude of F , where Wf (s) is a weight function. This frequency
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dependent specification is expressed mathematically as

|F (jω)| < 1/|Wf (jω)|, ∀ω

⇔ |WfF | < 1, ∀ω ⇔ ||WfF ||∞ < 1, (C.2)

where the last equivalence relationship follows from the definition of the H∞ norm

(C.1). This method is easily extendable to multi-input-multi-output (MIMO) systems

and yields the same H∞ relationship between the weight function and the transfer

function shown in (C.2).

We begin by considering a general linear state-space system described by

ẋ = Ax+Bu,

y = Cx+Du, (C.3)

where x ∈ Rn is the system state, u ∈ Rm is the control input, y ∈ Rp is the system

output, and A, B, C, D are the system state-space matrices. The relationship between

the outputs y and the inputs u of the system (C.3) can be expressed in terms of the

system transfer function G(s), which is defined as

y = G(s)u where G(s) = C(sIn − A)−1B +D, (C.4)

where s denotes the Laplace variable and In is an n× n identity matrix.

A conventional block diagram of a feedback control system is shown in Fig. C.1,

where G is the system transfer function, K is the feedback controller, r is the desired

reference (set point), d is an uncontrolled disturbance, y is the system output, and

n is the measurement noise. The goal of the feedback control design problem is to

design a controller that outputs a control signal u that drives the system output to

the desired set point, thus minimizing the tracking error e. In order to understand
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Figure C.1: Block diagram of conventional feedback control system.

how the external system inputs (r, d, n) affect the system outputs (y), tracking error

(e), and control signal (u), the closed-loop system transfer functions are expressed as

y =
GK

I +GK
r +

I

I +GK
d− GK

I +GK
n, (C.5)

e =
I

I +GK
r − I

I +GK
d− I

I +GK
n, (C.6)

u = K
I

I +GK
r −K I

I +GK
d−K I

I +GK
n. (C.7)

By employing the definitions

S =
I

I +GK
, (C.8)

T =
GK

I +GK
, (C.9)

I = S + T, (C.10)

where S is the sensitivity function and T is the complementary sensitivity function,

we can express (C.5)-(C.7) as

y = Tr + Sd− Tn, (C.11)

e = Sr − Sd− Sn, (C.12)

u = KSr −KSd−KSn. (C.13)

356



The feedback control objectives are to 1.) stabilize the system, 2.) maintain a

small tracking error for any reference, 3.) reject the effects of any external disturbance,

4.) minimize the effect measurement noise has on the closed-loop system, and 5.)

utilize as little feedback control effort as possible. These control objectives can be

translated into desired values of the closed-loop transfer functions in various frequency

ranges as follows:

1.) For unstable systems, the feedback controller must first stabilize the system.

In the case of the linear system (C.3) considered here, the feedback controller

needs to ensure all of the closed-loop system poles (eigenvalues) lie in the open

left-half plane, i.e., all of the poles have a negative real part.

2.) Typically references are low frequency signals, therefore, for good reference

tracking (y → r), the magnitude of the transfer function S should approach

zero and the magnitude of the transfer function T should approach one at low

frequencies, i.e., |S| → 0 and |T | → 1 as s → 0 (see (C.11) and (C.12)). Note

that both of these conditions can be met by satisfying one of them due to (C.10).

3.) Additionally, disturbances are typically low frequency in nature as well, there-

fore, to reject the effects an external disturbance has on the system output, the

magnitude of the transfer function S should approach zero at low frequencies,

i.e., |S| → 0 as s→ 0 (see (C.11) and (C.12)).

4.) Typically measurement noise is a high frequency signal. In order to minimize

the effect of noise on the closed-loop system, the peak magnitude of the transfer

function S should be suppressed. Additionally, the magnitude of the transfer

function S should approach one and the magnitude of the transfer function T

should approach zero at high frequencies, i.e., |S| → 1 and |T | → 0 as s → ∞
(see (C.11) and (C.12)). Note that both of these conditions can be met by

satisfying one of them due to (C.10).
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5.) In order to minimize the amount of control effort used to achieve good refer-

ence tracking (y → r) and disturbance rejection, the magnitude of the transfer

function KS should be minimized at low frequencies. In addition, the feedback

controller should not react to high frequency noise, so the magnitude of the

transfer function KS should approach zero at high frequencies, i.e., |KS| → 0

as s→∞ (see (C.13)).

By utilizing the results of (C.2), the control design problem can be formulated as

the following stacked H∞ minimization problem

min
K

∣∣∣∣∣

∣∣∣∣∣
WpS

WuKS

∣∣∣∣∣

∣∣∣∣∣
∞

, ∀ω. (C.14)

The functions Wp(s) and Wu(s) are used to place upper bounds 1/σ̄
(
Wp(jω)

)
and

1/σ̄
(
Wu(jω)

)
on the shape of the frequency responses of the magnitude of the closed-

loop transfer functions S and KS, respectively. One possible parameterization of the

the weight functions is Wp = diag{Wpi} ∈ Rp×p and Wu = diag{Wui} ∈ Rm×m where

Wpi(s) =

(
s/
√
Mpi + ωpi

)2

(
s+ ωpi

√
H∗pi
)2 Wui(s) =

(
s/
√
Mui + ωui

)2

(
s+ ωui

√
H∗ui
)2 , (C.15)

where the design parameters Mpi and Mui are related to the high frequency behavior,

the design parameters H∗pi and H∗ui are related to the low frequency behavior, and

the design parameters ωpi and ωui are related to the bandwidth of the upper bounds

1/σ̄
(
Wpi(jω)

)
and 1/σ̄

(
Wui(jω)

)
, respectively [10]. The design parameters can be

chosen so the shape of the frequency response of the upper bounds coincides with the

desired shape of the frequency response of the closed-loop transfer functions previously

described.
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The H∞ closed-loop shaping technique is now applied to the following linear SISO

system

ẋ = −1

τ
x+

1

τ
u,

y = x, (C.16)

where τ is a constant. For τ < 0, the uncontrolled (u = 0) system (C.16) is unstable.

For this example we set τ = −3, therefore, feedback is necessary to stabilize the

closed-loop system. The various design parameters in the weight functions (C.15) are

chosen as Mp = 1, ωp = 100.5, H∗p = 10−3, Mu = 10−3, ωu = 102.5, and H∗u = 1, and

the designed H∞ closed-loop shaping controller is denoted as

Kcls(s) = K(s), (C.17)

where K is obtained by solving (C.14). It is worth noting, that in order to guarantee

that the closed-loop system will be able to track step changes in the reference signal,

the controller should include a pure integrator (1/s). This characteristic could be

captured by selecting the design parameter H∗p = 0, however, this may result in

numerical problems with the algorithm employed to solve (C.14) [10]. Therefore, an

alternative approach is to augment the H∞ closed-loop shaping controller (C.17) with

a compensator as

Kint
cls (s) = Kcls(s)

[
ωint
s

(
s

ωint
+ 1

)]nint
, (C.18)

where nint is the number of integrators to be added. The design parameter ωint

determines the frequency range (ω ∈ [0, ωint]) over which the compensator will affect

the response of the controller Kcls to error signals, i.e., the controller transfer function

Kcls(s) will be unmodified for frequencies in the range ω ∈ (ωint,∞]. For this example

we select nint = 1 and ωint = 0.05.
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The time response of the system (C.16) with the various designed controllers is

shown in Fig. C.2. For comparisons sake, a conventional proportional-integral (PI)

controller is also designed as

KPI(s) =

(
kP + kI

1

s

)
, (C.19)

where kP is the proportional gain and kI is the integral gain. For this example we

select kP = kI = −5. As shown in Figs. C.2(a-b), the response of the system

with the PI controller (C.19) and the loop-shaping controller (C.18) is very similar

when there is no measurement noise, i.e., n = 0 in Fig. C.1, and the controllers

are able to track the desired set point (target). When measurement noise is present,

the controllers are still able to track the desired set point (shown in Fig. C.2(c)),

however, as shown in Fig. C.2(d), the PI controller reacts significantly more to the

noise than the loop-shaping controller. To understand this, the frequency response of

the designed controllers, as well as the frequency response of the various closed-loop

transfer functions, is shown in Fig. C.3. As shown in Fig. C.3(a), the frequency

response of the loop-shaping controllers rolls off at high frequencies, whereas the

frequency response of the PI controller does not. The effect that this has on the closed-

loop transfer function between the control input and noise signals KS (see (C.13)) is

shown in Fig. C.3(c), which results in the PI controller reacting to noise more than

the loop-shaping controllers. Finally, the steady-state response (with no measurement

noise) of the system (C.16) with the various designed controllers is shown in Figs.

C.2(e-f). As the PI (C.19) and augmented loop-shaping (C.18) controllers have a

pure integrator (shown in Figs. C.3(a-b), i.e., |K| → ∞ and |S| → 0 as s → 0),

they are able to track the desired set point with zero steady-state error, while a small

steady-state error is achieved with the loop-shaping controller (C.17).

360



0 5 10 15 20
0

1

2

3

Time (sec.)

O
u

tp
u

t 
(y

)

 

 

Target

Open−loop

PI

Loop−shaping

(a)

0 5 10 15 20
−6

−4

−2

0

2

4

Time (sec.)

In
p

u
t 

(u
)

 

 

Open−loop

PI

Loop−shaping

(b)

0 5 10 15 20
0

1

2

3

Time (sec.)

O
u

tp
u

t 
(y

)

 

 

Target

Open−loop

PI

Loop−shaping

(c)

0 5 10 15 20
−6

−4

−2

0

2

4

Time (sec.)

In
p

u
t 

(u
)

 

 

Open−loop

PI

Loop−shaping

(d)

55 56 57 58 59 60
1.950

1.975

2.000

2.025

2.050

Time (sec.)

O
u

tp
u

t 
(y

)

 

 

Target

PI
Kcls

K int
cls

(e)

55 56 57 58 59 60
1.950

1.975

2.000

2.025

2.050

Time (sec.)

In
p

u
t 

(u
)

 

 

PI
Kcls

K int
cls

(f)

Figure C.2: Time response of the system (C.16) with the various designed controllers:
(a-b) without measurement noise, (c-d) with measurement noise, and (e-f) in
steady state.
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Figure C.3: Singular value diagrams of: (a) feedback controllers, (b) sensitivity function
(and associated weight function 1/Wp for H∞ design) achieved with the con-
trollers in (a), and (c) transfer function KS (and associated weight function
1/Wu for H∞ design) achieved with the controllers in (a).
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Appendix D

Interfacing feedback controller

with available rtEFIT

measurements

In this appendix, we describe the coordinate transformation algorithm implemented in

the DIII-D Plasma Control System (PCS) to construct the magnetic profiles available

for real-time feedback control on the normalized effective minor radius spatial domain

ρ̂ from the data provided by the real-time EFIT (rtEFIT) equilibrium reconstruction

code [11]. The measurements that are available in real-time on the normalized flux

spatial domain ψn are shown in Table D.1. The normalized flux ψn is defined as

ψn =
ψ − ψaxis

ψbdry − ψaxis
. (D.1)

The safety factor q(ψrtn ) is provided by rtEFIT at 64 evenly spaced points

ψrtn = 0, 1/64, 2/64, . . . , 63/64. (D.2)
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Table D.1: Measurements Available in Real-time

Measurement Description Units
q(ψrtn ) Safety factor on normalized flux spatial domain None

ψaxis Poloidal stream function on magnetic axis Wb/rad

ψbdry Poloidal stream function on plasma boundary Wb/rad

Imeasp Plasma current MA

We begin the magnetic profile construction algorithm by determining the normal-

ized effective minor radius coordinates associated with the rtEFIT normalized flux

coordinates (D.2).

D.1 Computing normalized effective minor radius

coordinates

The basic definition of the safety factor is

q = −dΦ

dΨ
= − dΦ

2πdψ
, (D.3)

which we use to calculate the toroidal flux coordinates Φ(ψrtn ) corresponding to the

values of q(ψrtn ) provided by rtEFIT. By using the relationship

dψ =
(
ψbdry − ψaxis

)
dψn, (D.4)

363



we integrate (D.3) to obtain

ψ∫

ψaxis

dΦ = Φ(ψ)− Φ(ψaxis) = −2π

ψ∫

ψaxis

q(ψ)dψ,

Φ(ψn)− Φ(0) = −2π

ψn∫

0

(
ψbdry − ψaxis

)
q(ψn)dψn,

Φ(ψn) = −2π

ψn∫

0

(
ψbdry − ψaxis

)
q(ψn)dψn, (D.5)

where Φ(0) = 0 by definition. By numerically integrating the right hand side of

(D.5) by employing trapezoidal integration, we compute the toroidal flux coordinates

Φ(ψrtn
∣∣
k
), 2 ≤ k ≤ 64, as

Φ(ψrtn
∣∣
k
) =

2π(ψaxis − ψbdry)
2

1

64

k∑

j=2

[
q(ψrtn

∣∣
j−1

) + q(ψrtn
∣∣
j
)

]

= Φ(ψrtn
∣∣
k−1

) +
2π(ψaxis − ψbdry)

2

1

64

[
q(ψrtn

∣∣
k−1

) + q(ψrtn
∣∣
k
)

]
, (D.6)

where Φ(ψrtn |1) = 0. Because the safety factor is not computed at the plasma boundary

by rtEFIT, we employ the approximation q(ψrtn
∣∣
65

) = q(ψrtn
∣∣
64

) to compute Φ at the

plasma boundary. This approximation results in

Φ(ψrtn
∣∣
65

) = Φ(ψrtn
∣∣
64

) + 2π(ψaxis − ψbdry)
1

64
q(ψrtn

∣∣
64

). (D.7)

By using the relationship between the toroidal flux coordinates and the mean effective

minor radius ρ

Φ = πBφ,0ρ
2, (D.8)
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Table D.2: Magnetic Profiles Available in Real-time

Profile Description Units
q(ρ̂) Safety factor on normalized ρ spatial domain None

i(ρ̂) Rotational transform on normalized ρ spatial domain None

Ψ(ρ̂) Poloidal magnetic flux on normalized ρ spatial domain Wb

θ(ρ̂) = ∂ψ/∂ρ̂ Poloidal flux gradient on normalized ρ spatial domain Wb/rad

where Bφ,0 is the the vacuum toroidal magnetic field at the geometric major radius

of the tokamak, we calculate the mean effective minor radius ρ(ψrtn
∣∣
k
), 1 ≤ k ≤ 65, as

ρ(ψrtn
∣∣
k
) =

√
Φ(ψrtn

∣∣
k
)

πBφ,0

. (D.9)

The normalized minor radius ρ̂(ψrtn
∣∣
k
), 1 ≤ k ≤ 65, is then computed as

ρ̂(ψrtn
∣∣
k
) =

ρ(ψrtn
∣∣
k
)

ρ(ψrtn
∣∣
65

)
. (D.10)

We now know the normalized minor radius coordinates associated with the rtEFIT

normalized flux coordinates (D.2), which we use to construct the magnetic profiles

available for real-time control on the desired spatial domain.

D.2 Constructing magnetic profiles available for

real-time control

Due to the unique relationship between the normalized effective minor radius coor-

dinates (D.10) and the rtEFIT normalized flux coordinates (D.2), we can construct

the desired magnetic profiles available for real-time control shown in Table D.2 from

the measurements q(ψrtn ) provided by rtEFIT.
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D.2.1 Safety factor profile: q

The safety factor profile q(ρ̂(ψrtn
∣∣
k
)), 1 ≤ k ≤ 64, is computed as

q(ρ̂(ψrtn
∣∣
k
)) = q(ψrtn

∣∣
k
). (D.11)

As the safety factor is not computed at the plasma boundary by rtEFIT, we employ

the approximation

q(ρ̂(ψrtn
∣∣
65

)) = q(ψrtn
∣∣
64

) (D.12)

to compute the safety factor at the plasma boundary.

D.2.2 Rotational transform profile: i

The rotational transform profile is defined as i = 1/q, therefore, i(ρ̂(ψrtn
∣∣
k
)), 1 ≤ k ≤

64, is computed as

i(ρ̂(ψrtn
∣∣
k
)) =

1

q(ψrtn
∣∣
k
)
. (D.13)

As the safety factor is not computed at the plasma boundary by rtEFIT, we employ

the approximation

i(ρ̂(ψrtn
∣∣
65

)) =
1

q(ψrtn
∣∣
64

)
(D.14)

to compute the rotational transform at the plasma boundary.

D.2.3 Poloidal magnetic flux profile: Ψ

The relationship between the poloidal flux Ψ and the poloidal stream function ψ is

Ψ = 2πψ. (D.15)
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Therefore, we use (D.1) and (D.2) to compute the poloidal flux profile Ψ(ρ̂(ψrtn
∣∣
k
)),

1 ≤ k ≤ 65, as

Ψ(ρ̂(ψrtn
∣∣
k
)) = 2π

(
ψaxis +

k − 1

64
(ψbdry − ψaxis)

)
. (D.16)

D.2.4 Poloidal magnetic flux gradient profile: θ

By using the definition of the safety factor (D.3), the relationship between Φ and ρ

(D.8), and the definition of the normalized effective minor radius (D.10), the safety

factor can be expressed as

q = −Bφ,0ρbρ

θ
. (D.17)

Therefore, the poloidal flux gradient profile θ(ρ̂(ψrtn
∣∣
k
)), 1 ≤ k ≤ 64, is computed as

θ(ρ̂(ψrtn
∣∣
k
)) = −

Bφ,0ρ(ψrtn
∣∣
65

)ρ(ψrtn
∣∣
k
)

q(ψrtn
∣∣
k
)

. (D.18)

If (D.18) is used to compute θ at the plasma boundary, the construction algorithm

will fail because of the approximation q(ψrtn
∣∣
65

) = q(ψrtn
∣∣
64

). In order to overcome this

construction failure at the plasma boundary, the constructed poloidal flux gradient

at the plasma boundary is computed as

θ(ρ̂(ψrtn |65)) = −kIpImeasp . (D.19)

This definition is consistent with the boundary conditions (2.83) of the magnetic

diffusion equation model of the poloidal flux profile evolution in the tokamak.
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D.3 Computing selected magnetic profile

The selected magnetic profile is denoted as yM(ρ̂(ψrtn )). The spatial domain that the

magnetic profile can be controlled on in real-time is 21 evenly spaced points

ρ̂ = 0, 0.05, 0.1, 0.15, . . . , 1. (D.20)

Therefore, to complete the magnetic profile construction algorithm, the selected mag-

netic profile yM(ρ̂(ψrtn )) is interpolated onto the spatial domain (D.20).
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Appendix E

Overview of sequential quadratic

programming

In this appendix, we provide an overview of the sequential quadratic programming

(SQP) solution method for a general nonlinear program (NLP) defined by

min
v

J (z, v), (E.1)

such that

f(z, v) = 0, (E.2)

where J is a scalar-valued function to be minimized, z is the system state, v is

the manipulated control input, and f is a general nonlinear function. More details

regarding this technique can be found in [95]. To simplify the explanation of the SQP

technique, we only consider equality constraints in the form of (E.2). We begin by

defining the system Hamiltonian as

H(z, v, λ) = J (z, v) + λTf(z, v), (E.3)
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where λ is a to-be-determined Lagrange multiplier. An incremental change in the

Hamiltonian with respect to changes in the parameters is given to first order by

dH = Hzdz +Hvdv +Hλdλ, (E.4)

where (·)i = ∂(·)
∂i

for i ∈ [z, v, λ]. At a local minimum (z∗, v∗, λ∗), dH must be zero

for all increments dz, dv, dλ. Therefore, the first-order optimality conditions for the

NLP (E.1)-(E.2) are given by the nonlinear equations

Hz(z
∗, v∗, λ∗) = Jz(z∗, v∗) + (λ∗)Tfz(z

∗, v∗) = 0,

Hv(z
∗, v∗, λ∗) = Jv(z∗, v∗) + (λ∗)Tfv(z

∗, v∗) = 0,

Hλ(z
∗, v∗, λ∗) = f(z∗, v∗) = 0. (E.5)

One approach to solving the NLP (E.1)-(E.2) is to assume we have an iteration

(
z(k+1), v(k+1), λ(k+1)

)
=
(
z(k), v(k), λ(k)

)
+
(
ζ(k), ξ(k), σ(k)

)

that is converging to the solution (z∗, v∗, λ∗) of (E.5), where (ζ(k), ξ(k), σ(k)) are search

directions. Assuming the current estimate (z(k), v(k), λ(k)) is close to (z∗, v∗, λ∗), we

can linearize (E.5) around the current estimate, i.e.,

0 = Hz(z
(k), v(k), λ(k)) +Hzz(z

(k), v(k), λ(k))ζ(k)

+Hzv(z
(k), v(k), λ(k))ξ(k) +Hzλ(z

(k), v(k), λ(k))σ(k),

0 = Hv(z
(k), v(k), λ(k)) +Hvz(z

(k), v(k), λ(k))ζ(k)

+Hvv(z
(k), v(k), λ(k))ξ(k) +Hvλ(z

(k), v(k), λ(k))σ(k),

0 = Hλ(z
(k), v(k), λ(k)) +Hλz(z

(k), v(k), λ(k))ζ(k)

+Hλv(z
(k), v(k), λ(k))ξ(k) +Hλλ(z

(k), v(k), λ(k))σ(k), (E.6)
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where (·)ij = ∂2(·)
∂i∂j

for i ∈ [z, v, λ] and j ∈ [z, v, λ]. From (E.5), we note that

Hzλ = Hλz = fz Hvλ = Hλv = fv Hλλ = 0,

which allows us to write (E.6) in matrix form as




Hzz Hzv fz

Hvz Hvv fv

fz fv 0




∣∣∣∣∣∣∣∣∣
(z(k),v(k),λ(k))




ζ(k)

ξ(k)

σ(k)


 = −




Hz

Hv

f




∣∣∣∣∣∣∣∣∣
(z(k),v(k),λ(k))

. (E.7)

The search directions (ζ(k), ξ(k), σ(k)) can then be obtained by solving (E.7). It can

be shown that the first-order optimality condition of the quadratic program (QP)

min
ξ(k)

L(ζ(k), ξ(k))
∣∣
(z(k),v(k),λ(k))

, (E.8)

such that

f(z(k), v(k)) +
[
fz fv

]∣∣∣
(z(k),v(k))


ζ

(k)

ξ(k)


 = 0, (E.9)

where

L = H +
[
Hz Hv

]

ζ

(k)

ξ(k)


+

1

2

[
ζ(k) ξ(k)

]

Hzz Hzv

Hvz Hvv




ζ

(k)

ξ(k)


 ,

with Lagrange multiplier σ(k), is given by (E.7). Therefore from the sequence of

quadratic programs (E.8)-(E.9) (denoted as QP(k)), which represent a quadratic ap-

proximation of H subject to a linear approximation of f around the current estimate

(z(k), v(k), λ(k)), search directions for the original NLP (E.1)-(E.2) can be obtained.
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