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ABSTRACT 

Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing 

represents a fundamental class of flow-structure interaction that extends across a range of 

applications. This interaction can give rise to time-averaged loading, as well as unsteady 

loading known as buffeting. The loading is sensitive to parameters of the incident vortex 

as well as the location of vortex impingement on the downstream aerodynamic surface, 

generically designated as a wing. Particle image velocimetry is employed to determine 

patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes 

upstream of and along the wing, which lead to volume representations and thereby 

characterization of the interaction.  

At locations upstream of the leading edge of the wing, the evolution of the 

incident vortex is affected by the presence of the wing, and is highly dependent on the 

spanwise location of vortex impingement. Even at spanwise locations of impingement 

well outboard of the wing tip, a substantial influence on the structure of the incident 

vortex at locations significantly upstream of the leading edge of the wing was observed. 

For spanwise locations close to or intersecting the vortex core, the effects of upstream 

influence of the wing on the vortex are to: decrease the swirl ratio; increase the 

streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal 

vorticity; increase the upwash; decrease the downwash; and increase the root-mean-

square fluctuations of both streamwise velocity and vorticity. The interrelationship 

between these effects is addressed, including the rapid attenuation of axial vorticity in 

presence of an enhanced defect of axial velocity in the central region of the vortex. 
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Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the 

swirl ratio decreases to values associated with instability of the vortex, giving rise to 

enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well 

as relatively large root-mean-square values of streamwise velocity and vorticity. 

Along the chord of the wing, the vortex interaction gives rise to distinct modes, 

which may involve either enhancement or suppression of the vortex generated at the tip 

of the wing. These modes are classified and interpreted in conjunction with computed 

modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction 

is predominantly determined by the dimensionless location of the incident vortex relative 

to the tip of the wing and is generally insensitive to the Reynolds number and 

dimensionless circulation of the incident vortex. The genesis of the basic modes of 

interaction is clarified using streamline topology with associated critical points. Whereas 

formation of an enhanced tip vortex involves a region of large upwash in conjunction 

with localized flow separation, complete suppression of the tip vortex is associated with a 

small-scale separation–attachment bubble bounded by downwash at the wing tip. 

Oscillation of the wing at an amplitude and velocity nearly two orders of 

magnitude smaller than the wing chord and free stream velocity respectively can give rise 

to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on 

the outboard displacement of the incident vortex relative to the wing tip. Moreover, these 

patterns are a strong function of the phase of the wing motion during its oscillation cycle. 

At a given value of phase, the wing oscillation induces upwash that is reinforced by the 

upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when 
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these two origins of upwash counteract, rather than reinforce, one another during the 

oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold 

for regions of maximum and minimum net downwash located outboard of the regions of 

upwash. 

During the oscillation cycle of the wing, the magnitude and scale of the vorticity 

shed from the tip of the wing are directly correlated with the net upwash, which takes 

different forms related to the outboard displacement of the incident vortex. As the 

location of the incident vortex is displaced towards the wing tip, both the maximum 

upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For 

the limiting case where the incident vortex impinges directly upon the tip of the wing, 

there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex 

displacement from the wing tip, the position of the incident vortex varies significantly 

from its nominal position during the oscillation cycle. For all locations of the incident 

vortex, it is shown that, despite the small amplitude of the wing motion, the flow 

topology is fundamentally different at maximum positive and negative values of the wing 

velocity, that is, they are not symmetric.  
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

Interest in vortex-wing interactions has risen in recent years due to a variety of 

applications, which include; the tip vortex from a leading aircraft or biological flier 

impinging on its downstream counterpart; vortices shed from the tips of preceding blades 

of a helicopter rotor incident upon a downstream blade; vortices shed from the forebody 

or canard of an aircraft impinging on a downstream tail or fin; and vortices generated 

from rotor blades interacting with downstream stator blades in turbomachinery. While 

such interactions can lead to positive consequences, such as in formation flight, they are 

generally undesirable, and can cause unsteady loading of the aerodynamic component. 

  

1.2 APPLICATIONS 

1.2.1 Biological Formation Flight 

 Biological formation flight, represented in the photo of Figure 1.1 from Portugal 

et al. (2014) occurs for a variety of reasons, including protection, navigation, feeding, and 

most relevant to the present investigation, flight power reduction. This reduction occurs 

when a downstream flier is located in a region of upwash created by the flight of the 

leader. The existence of this power reduction, and the magnitude of the reduction, was an 

open question well into the start of the twentieth century. Hummel (1983) includes an 
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excellent overview of earlier works which attempted to analyze this question. In his own 

work, Hummel (1983, 1995) calculated the aerodynamic advantages for flocks of birds. 

This was performed by simplifying the wing and its wake as a line vortex, which was 

represented by a vertical velocity field in the crossflow plane. The vertical velocity was 

defined by upwash outside of the wing tips, and downwash inside the tips. By properly 

locating the follower wing in this wake, it is possible to achieve a significant increase in 

the lift to drag ratio, as well as a decrease of drag. 

 This type of analysis is used to find the energy savings of several types of geese 

formations in Hainsworth (1987). A median power savings of 36% was found, which was 

approximately half of the predicted savings for optimum wing tip spacing. The observed 

wing tip spacing varied considerably on both a bird to bird and formation to formation 

basis. Beyond these conclusions, it was also shown that formation leaders experienced 

lower savings. The author did note however that the model used did not take into account 

the flapping motions of the wings, which would most likely change the optimum spacing 

of the wing tips. 

 Weimerskirch et al. (2001) performed an in-depth study of pelicans flying in 

formation utilizing both heart rate monitors and cameras. They found that the largest 

benefit of formation flight was that it allowed individuals to spend a larger portion of 

their time gliding rather than flapping, with most of the calculated total energy savings of 

11.4-14% being due to increased gliding time. Figure 1.2 shows the strain placed on the 

birds for a variety of flight conditions. 
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 Portugal et al. (2014) found that some bird formations take advantage of more 

sophisticated aerodynamics than was previously believed. It was shown that northern 

bald ibises flying in V formation not only positioned themselves in the optimum 

aerodynamic location, but also utilized synchronized flapping to gain the most advantage 

at every phase during each flap cycle, which can be seen in Figure 1.3. An additional 

study of inline flight showed that the follower bird flapped 180° out of phase with the 

leader bird in order to decrease the losses due to flying in the downwash created by the 

leader. 

1.2.2 Aircraft Formation Flight  

Even though traditional aircraft do not mimic the wing motion of birds, flying in 

formation can still lead to achievable savings. Several different aircraft formation flight 

configurations are shown in Figure 1.4 from Bangash et al. (2006), furthermore Figure 

1.5, Thomas 2001, shows a smoke visualization of the interaction between a tip vortex 

and a wing. An initial examination of aircraft formation flight, performed by Schlichting 

(1951), utilized horseshoe vortices to represent the aircraft in formation, and found that 

some benefits could be achieved. A theoretical treatment of aircraft formation flight was 

performed in Maskew (1977) in which the vortex lattice method was used to identify 

possible increases of range for aircraft in formation. This analysis took into account 

complicating factors such as trimming and different formation arrangements. It was 

found that two arrangements, V and double row, both showed increases in potential range 

between 46% and 67%. However, these arrangements did not give equal savings to all 

aircraft, with leading aircraft receiving little advantage during flight. 
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 Wagner et al. (2002) showed experimentally the advantage of formation flight, 

with 9% fuel savings being achieved in the optimum arrangement. They also touched on 

some of the problems of aircraft formation flight, which include: difficulty maintaining 

position; inability to predict tip vortex position; and unsteadiness caused by the incident 

vortex. 

Aircraft formation flight is not limited to a small number of aircraft and wings of 

large or moderate scale, but extends to a large number of very small-scale of micro air 

vehicles in a swarm or flock that may be deployed for atmospheric surveillance (Kroo, 

2004). 

1.2.3 Tail and Fin Buffeting 

 Vortices shed from the forebody or canard of an aircraft have the potential to 

interact with downstream features on the aircraft, most notably tails and fins. This can 

cause unsteady loading and potentially vibration. Wentz (1987) investigated this 

interaction, and showed that the position of downstream fins can cause tip vortices to 

burst well upstream of the obstruction. When bursting occurs, a dominant frequency may 

occur. In the investigation of Wentz (1987), it corresponded to a value of Strouhal 

number St=0.7, thereby giving rise to a coherent loading component of the fin. In 

essence, these experiments showed the possibility of excitation of natural frequencies of 

the structural components of the aircraft due to vortex bursting. Figure 1.6 features an 

image from Moses (1997) that shows how a vortex shed from the forebody can burst 

upstream of a fin, the wake created by this engulfs the fin causing unsteady loading. 
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Moses (1997) used active control to reduce the root mean square values of root strain in 

the fin by 19%. 

1.2.4 Helicopter Rotors  

 A helicopter rotor blade can rotates through the wakes and trailing vortices 

generated by preceding rotor blades. This interaction generates increased noise, which is 

undesirable in both military and civilian applications. Unsurprisingly, the first 

investigations into the interaction between tip vortices and helicopter rotors were 

performed in an attempt to reduce this noise. Figure 1.7 shows an image from Raffel 

(2001) that illustrates these interactions, where the rotor blades can be seen to cut through 

the flow structures shed from the preceding blades. Windall (1970) considered the noise 

generated by a blade which interacts with, but does not cut through, a tip vortex. At low 

Mach number, good agreement was found between the calculated and actual noise 

generated by the vortex-blade interaction, but this agreement was not expected to extend 

to higher Mach numbers. 

 In more recent years, investigations have moved from pure analysis of the 

phenomenon towards study of possible methods for alleviating it. A review of these 

methods is provided by Yu et al. (1997), which found that while noise reduction was 

possible, it was not yet practical. These techniques included higher harmonic pitch 

control, individual blade control, and smart rotor control. While these methods did reduce 

vibration, they came at the cost of decreased power, increased weight, and increased 

complexity. 
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1.2.5 Turbomachinery 

 Similar to the case of a helicopter rotor, vortex-blade interaction causes 

undesirable vibrations in the blade rows of turbomachinery. Simulations performed by 

Dawes (1994) showed that a vortex created from overtip leakage could adversely affect 

the performance of subsequent blade rows. This vortex was shown to have an unsteady 

effect on the blade near the casing, reducing the performance at that location by nearly a 

third. 

In experiments performed by Schlienger et al. (2005) a streamwise-oriented 

vortex created by the rotor hub passage, indicated in Figure 1.8, impinges on a blade. The 

flow field was found to be highly unsteady, and created large levels of time-averaged 

turbulence on the surface of the blade. 

 

1.3 PHYSICS OF VORTEX-WING INTERACTIONS 

1.3.1 Steady Vortex-Wing Interaction 

Steady vortex-wing interaction is the baseline case that must be understood as a 

basis for pursuing the interaction of an unsteady vortex with a wing or, conversely, the 

interaction of a steady vortex with an oscillating wing. The early investigation of Patel 

and Hancock (1974) studied this case, specifically in reference to helicopter blades. They 

employed qualitative visualization to examine the interaction between a streamwise-

oriented vortex and both an airfoil and a flat plate. They showed that the incident vortex 
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exhibited breakdown upstream of the plate and tended to re-form on its underside, and 

that this complex flow interaction caused a load distribution that was too complex for 

theoretical treatment.  

This investigation into the physics of vortex interactions with helicopter blades 

was later continued by Raffel et al. (1998), Wittmer and Devenport (1999), and Kao et al. 

(2013). Raffel et al. (1998) defined, on the basis of quantitative experiments, the overall 

pattern of generation of a tip vortex and its interaction with a given rotor. Wittmer and 

Devenport (1999) showed that a vortex passing close to the surface of a rotor blade was 

not initially affected, but downstream of the blade it decayed more quickly than usual. 

Kao et al (2013) defined quantitative patterns of the interaction of vortices with a given 

rotor blade; such vortices are generated from the tips of preceding rotors.  

  Steady vortex-wing interaction can also be seen in the impingement of tip vortices 

on the downstream feature of an aircraft, such as a fin or tail. Quantitative interpretation 

of the interaction of a broken down vortex with a fin/tail is provided by Wolf et al (1995), 

including the effects of a time-averaged, apparent partitioning of the vortex on either side 

of the fin/tail and the consequences for surface pressure fluctuations. Gordnier and Visbal 

(1999) revealed, via computations, basic physics of the vortex breakdown-plate 

interaction, including interpretation of the spectral content of the surface pressure 

fluctuations in terms of the spiral mode of breakdown. 

Investigations into vortex-wing interaction as it applies to formation flight has 

been undertaken in order to identify any possible aerodynamic advantages. To 

analytically investigate formation flight, Hummel (1983, 1995) used a series of line 
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vortices to calculate the lift and drag experienced by wings in formation. These line 

vortices were represented by upwash outside of the wing tips, and downwash inside the 

tips. By properly locating the follower wing in this wake, a significant increase in the lift 

to drag ratio, as well as a decrease of drag occurred. Blake and Gingras (2004) compare 

formation flight experiments, which utilize delta wings, to calculations using a vortex 

lattice method. It was determined that the vortex lattice method well predicted increases 

in lift, pitching, and rolling moment except when the aircraft overlapped in the spanwise 

direction. In this case the induced drag was less than predicted; this difference is 

presumed to be caused by flow separation on the trailer wing. Bangash et al. (2006) 

performed experiments that examined several different configurations of formation flight, 

including echelon, chevron, and in-line. An increase in the lift-to-drag ratio was found for 

both the echelon and chevron arrangements, with the amount of increase dependent on 

the spatial offset and the angle of attack of the leader wing. 

Ning et al. (2011) assess the advantages of extended formation flight, which they 

define as a streamwise distance between aircraft of at least 10 spans. It is shown that 

many of the effects seen in close formation flight, such as increased lift to drag ratio and 

rolling moment, are also present in extended formation flight. Inasawa et al (2012) 

experimentally determined the lift and drag acting on the follower wing, relative to the 

leader wing, and interpreted these forces in relation to representative cuts of streamwise 

vorticity. Kless et al. (2013) performed an inviscid computational study of extended 

formation flight, with an assessment of different locations of vortex impingement as well 

as different trim arrangements. They show that optimal location for vortex impingement 

is approximately 10% of the span inboard of the wing tip. This location resulted in the 
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largest reduction of induced drag. Slotnick et al. (2014) model the entire airplane in their 

computations of extended formation flight. They found that, for the optimum formation 

flight configuration, a reduction in total drag of approximately 20% could be achieved. 

Recent advances in both high-performance computing and numerical flow solvers 

have allowed numerical investigation into the complete flow field surrounding the 

vortex-wing interaction. Gordnier and Visbal (1999) showed that a vortex, created from a 

delta wing, will exhibit spiral vortex breakdown over the delta wing due to impingement 

upon a plate. The location of this breakdown was shown to be dependent on the degree of 

obstruction created by the plate. More recent computations that feature steady 

interactions are: Garmann & Visbal (2014a, 2015a), in which the effects of spanwise 

impingement location are investigated for a flat plate; Garman & Visbal (2015b), which 

features the interaction between an incident vortex and a NACA 0012 airfoil; Barnes, 

Visbal & Gordnier (2014b), where a flexible wing is used; and Barnes, Visbal & 

Gordnier (2014a), in which an upstream wing, used to generate the incident vortex, is 

included in the computation. These computations are complemented by the experiments 

of McKenna & Rockwell (2017), which showed good agreement with the computations. 

Generally speaking, the incident vortex alters the flow pattern along the plate or 

wing, and can potentially invoke either enhancement or onset of a secondary vortex 

having a sense opposite to that of the incident vortex. The concept of onset of a 

secondary vortex has been well explored for a vortex incident upon a wall of infinite 

extent, as reviewed by Doligalski, Smith and Walker (1994), but has received relatively 

little attention for the case of an incident vortex at or near the tip of a wing. It is expected 
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that the mechanism of onset or enhancement of a secondary vortex will be substantially 

altered and, in some cases, attenuated, in the vicinity of the tip of a wing relative to the 

case of an infinite wall. 

For the foregoing aspects of vortex-wing interaction, Q-Criterion iso-surfaces 

(iso-Q) of the incident vortex along the wing were characterized in conjunction with the 

altered vortex of opposite signed vorticity from the tip of the follower wing, separation 

phenomena along the wing, and the overall loading on the wing. Most relevant to our 

present considerations is the work of Garmann & Visbal (2014a & 2015a), which 

demonstrates that when the incident vortex is located inboard of the tip of the wing, iso-Q 

patterns indicate both detectable distortion and vertical inclination upstream of the 

leading edge. 

For these cases, a spiral distortion, which twists in the opposite sense of rotation 

as the vortex, is present in the iso-surfaces of Q-criterion. As the vortex approaches the 

leading edge, it is reoriented from streamwise to plate normal, at which point it alternates 

between the top and bottom of the plate. Moreover, Barnes et al. (2014a & 2015b) 

examined effects of the swirl ratio q, where q = Γ/(2πrΔu) ≈ 1.567 uθ /Δu according to 

Jacquin & Pantano (2002), in which Γ is circulation, r is the vortex radius, Δu is the 

velocity deficit in the core, and uθ is the maximum azimuthal velocity. They showed that 

the swirl ratio of the impinging vortex is affected by the follower wing; furthermore, the 

dependence of swirl ratio on the spanwise impingement location of the incident vortex 

relative to the tip of the wing is shown by Garmann & Visbal (2015a). It was possible to 

attain low values of swirl ratio lying below the stability criterion of 𝑞 ≥  √2 
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corresponding to amplification of small-wavelength perturbations defined by Leibovich 

& Stewartson (1983). Barnes et al. (2014a & 2015b) show that these changes in swirl 

ratio are due to changes in the axial pressure gradient. Barnes et al. (2014a & 2015b) 

revealed that directly upstream of the leading edge, an adverse pressure gradient is 

present, but outside of the wing tip, Garmann & Visbal (2015a) showed that the pressure 

gradient is favorable. The extent of the upstream influence of the follower wing on the 

incident vortex is addressed in Barnes et al. (2014a & 2015b), which states that the axial 

velocity deficit is enhanced due to the presence of an adverse pressure gradient; it extends 

approximately one chord upstream of the leading edge of the follower wing. 

 The theoretical work of Batchelor (1964) provides the interrelationship between 

the azimuthal and axial components of velocity and the pressure gradient. A decrease in 

azimuthal velocity leads to an adverse axial pressure gradient, which in turn causes an 

increase in axial velocity deficit. To date, interpretation of the internal structure of the 

vortex on this basis has not been addressed using experiments or computations.  

1.3.2 Unsteady Vortex Formation 

A vortex that is created from a non-stationary airfoil has time-dependent 

variations of its properties, relative to a steady vortex shed from a stationary airfoil. 

Unsteady vortex formation involves: changes of effective angle of attack and disruption 

of the boundary layer on the wing and, in some cases, changes in the geometry of the 

wing due to flexing. The unsteady nature of this type of vortex formation has been 

difficult to characterize, but recent advances in both quantitative measurement techniques 

and visualization, as well as computational techniques, have led to new insight. 
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 An early experiment on this topic was performed by Ramaprian and Zheng 

(1998), who examined a NACA 0015 wing oscillating sinusoidally in pitch using laser 

Doppler velocimetry. They showed that in the near wake there is little change in the 

vortex trajectory, but there are substantial oscillations in maximum circulation, as well as 

length and circulation scales. A similar investigation by Chang and Park (2000), featuring 

a larger amplitude of pitching oscillation, with variations of angle of attack from 0° to 

30°, showed that larger oscillations created larger regions of flow separation during each 

cycle. This allowed the tip-vortex rollup to be analyzed, and it was shown that it caused a 

more disturbed and irregular tip vortex to form during this part of the oscillation. Birch 

and Lee (2005) employed a pitching airfoil and showed that if deep-stall occurs during 

the oscillation, hysteresis occurs between the pitch-up and pitch-down motions. 

Furthermore they showed that tangential velocity, circulation and lift-induced drag were 

larger during pitch-up than pitch-down. 

Garmann and Visbal (2016a & 2016b) examined high-frequency, low-amplitude 

oscillation of a wing using high-fidelity, large-eddy simulation. These investigations 

employed a wing whose angle of attack remained constant, i.e., a heaving motion. This 

type of oscillation was found to create a tip vortex with varying core size. Moreover, it 

induced vortex motion as much as quintuple the initial oscillation amplitude of the wing. 

Further downstream, this induced motion changed from purely vertical to orbital. These 

vortex trajectories increased in amplitude with higher frequencies and amplitudes. 

Fishman et al. (2016) used stereo particle image velocimetry to investigate the 

structure of a trailing vortex from a wing undergoing small amplitude heaving motion. 
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Large fluctuations of vortex circulation and axial velocity deficit occurred over the course 

of the oscillation cycle. Pronounced azimuthal vorticity arose in conjunction with 

increased axial velocity deficit as a result of decreased swirl ratio, which lay beneath the 

theoretical threshold for the amplification of azimuthal modes. This process involved the 

rapid amplification, then disruption, of axial vorticity fluctuation. 

1.3.3 Unsteady Vortex-Wing Interaction 

Interaction of a vortex undergoing either periodic oscillations or transient motion 

represents a particular challenging problem. Alternately, a steady incident vortex may 

impinge upon an oscillating wing. Both of these classes of unsteady vortex-wing 

interaction generate interesting physics.  

 An investigation of the effects of an oscillating fin on the breakdown of a vortex 

shed from a delta wing was performed by Gursul and Xie (2001). They found that while 

the breakdown location was dependent on spanwise location, it could also vary with 

oscillation frequency. Interestingly this variation was only present if the oscillation 

frequency was below a cutoff frequency; any frequency higher than the cutoff did not 

change the position of vortex breakdown. 

 Garmann & Visbal (2014b) considered a spanwise-wandering incident vortex that 

impinged upon a stationary wing. Immediately upstream of the wing, the spanwise 

motion diminished in amplitude, and a small vertical oscillation motion began. A vortex 

with this type of spanwise motion does not feature a spiraling instability upstream of the 

leading edge at any phase of its motion, implying that flow structures seen in the steady 
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interaction are not necessarily present in the unsteady interaction. Garmann & Visbal 

(2015c) investigated the transient interaction of a vortex and a wing which underwent 

steady spanwise motion. This transient encounter involved several different flow regimes 

that were originally seen in Garmann and Visbal (2014a), where the regimes represented 

steady interaction cases for different spanwise positions of vortex impingement. A spiral 

instability was present in this interaction once the wing tip had moved sufficiently close 

to the incident vortex. Additionally the lift, pitching moment, and rolling moment were 

analyzed, and it was found that all of these properties scaled proportionally to the side 

slip speed of the wing. 

 Barnes et al (2015) examined how bending oscillations of a wing affected the 

vortex-wing interaction, specifically for an interaction position inboard of the tip. Little 

change in the interaction was seen for the low frequency case unless the bending 

amplitude was large. It was shown that the bending motion inhibited the formation of the 

spiral instability upstream of the leading edge, previously noted as associated with this 

type of interaction. Closer to the leading edge, this instability could still form, with the 

oscillation frequency of the wing shifting the frequency of the instability if the two were 

sufficiently close.  

 

1.4 UNRESOLVED ISSUES 



18 

The aforementioned studies provide significant insight into the interaction between a 

streamwise-oriented vortex and a wing. These previous investigations have not, however, 

addressed the following aspects of the flow physics: 

The relationship between the streamwise development of the axial velocity, the axial 

component of vorticity, and the circulation and the radius of the impinging vortex. As the 

incident vortex approaches the follower wing it is distorted; this distortion has not yet 

been addressed. 

The degree of dominance of the upwash and downwash of the incident vortex in relation 

to the upwash induced by the follower wing in absence of the incident vortex. The 

incident vortex creates a region of upwash and downwash on either side of its center. As 

the incident vortex approaches the follower wing, these regions of vertical velocity 

interact with both the upwash induced by the follower wing and are influenced by the 

upstream blockage that the wing creates. This concept has not been pursued.  

The unsteady nature of the incident vortex upstream of the follower wing in relation to 

the degree of time-averaged distortion of the vortex. No quantitative insight is available 

on the unsteady characteristics of the incident vortex in relation to the spanwise location 

of the incident vortex relative to the tip of the wing, and thereby the degree of distortion 

of the vortex as it approaches the wing. 

The sensitivity of the foregoing aspects of the vortex-wing interaction to both spanwise 

and vertical displacements of the centerline of the incident vortex relative to the tip of the 

wing. Possible distortion and loss of coherence of the incident vortex, as well as either 
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enhancement or attenuation of the pre-existing tip vortex on the wing in relation to 

position of the incident vortex have not been pursued.. 

The definition of new patterns of streamline topology of the vortex wing interaction based 

on critical point theory. The aforementioned physics of the vortex-wing interaction, 

including enhancement or attenuation of the tip vortex, has not yet been interpreted in 

terms of sectional streamline topology, which allows a comprehensive definition of key 

features of the flow structure. 

 

1.5 RESEARCH OBJECTIVES 

This investigation focuses on an in-depth understanding of the physics of 

interaction between a streamwise-oriented vortex and a wing. The explicit objectives of 

this investigation are as follows. 

(1) Design and implement a unique experimental system to examine the interaction 

between a streamwise oriented vortex and a wing. This system will allow use of both 

monoscopic and stereoscopic particle image velocimetry (MPIV and SPIV). It will 

provide the possibility for two wings to be displaced independently of one another so that 

different vortex impingement locations can be analyzed and for the trailer wing to be 

subjected to vibrations of prescribed amplitude and frequency.  

(2) Determine the flow structure of the vortex-wing interaction upstream of the wing. Of 

interest will be how the blockage of the downstream wing influences streamwise 
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development of the structure of the approaching vortex, especially near the leading edge 

of the trailer wing.  

(3) Characterize the flow structure of the vortex-wing interaction along the chord and 

downstream of the trailer wing. Of primary interest will be the effect that the incident 

vortex has on the tip vortex formed on the trailer wing, particularly its enhancement or 

attenuation, and the possible distortion or disintegration of the incident vortex as it 

encounters and moves along the follower wing. 

(4) Reveal the basic physics of vortex-oscillating wing interaction. For the case of a 

steady streamwise vortex impinging upon, or adjacent to, the tip region of a wing 

subjected to prescribed amplitude and frequency of oscillation, determine new types of 

patterns of vortex interaction and distortion. 

Common to all of the foregoing objectives are the following experimental and 

post-processing techniques. MPIV and SPIV will lead to representations of the flow 

structure that include iso-surfaces, section slices, streamlines, and contours on cross-

sectional cuts. Components of velocity and vorticity, root-mean-square of streamwise 

velocity deficit, and streamwise vorticity, will be determined in relation to swirl ratio, and 

streamline patterns. Experimental findings will be interpreted in conjunction with 

theoretical concepts regarding the structure and stability of a columnar vortex.  
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Figure 1.1: A group of northern bald ibises flying in formation. Portugal et al. (2014) 

 

 
Figure 1.2: Heart rates and wingbeat frequencies for gliding of pelicans: alone at 50m 

above water; alone at 1m above water; and in formation. Weimerskirch et al. (2001) 
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Figure 1.3: The top set of images shows the difference between the leading bird wingtip 

path (black) and the following bird wingtip path (red) for formation flight (left) and inline 

flight (right). The bottom set of images shows how the following bird (black) positions its 

wings in the airflow created by the leading bird (grey). Portugal et al. (2014) 

 

 
Figure 1.4: Three possible arrangements for formation flight: (i.) echelon, (ii.) inline, 

(iii.) chevron. Bangash et al. (2006) 
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Figure 1.5: Smoke visualization of the impingement of a tip vortex shed from a leading 

aircraft onto the wing of a downstream aircraft. This image was taken as a part of NASA 

Dryden’s Autonomous Formation Flight Project and features a pair of F/A-18s. Thomas 

(2001) 

 

 
Figure 1.6: Smoke visualization of a vortex shed from the forebody of an aircraft. Vortex 

bursts upstream of the fin. Moses (1997) 
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Figure 1.7: Iso-surfaces that show the complexity of vortex-wing interaction for 

helicopter rotor blades. Raffel (2000) 

 

 

 
Figure 1.8: Schematic of the roll-up mechanism of the wake into vortices on a 

turbomachinery blade. Schlienger et al. (2005) 
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CHAPTER 2 

EXPERIMENTAL SYSTEMS AND TECHNIQUES 

 

 This chapter provides an overview of the experimental systems and visualization 

techniques used in this investigation of vortex-wing interactions. The systems included a 

water channel, an experimental setup with wing configurations at arbitrary position and 

spacing, and motion control. The quantitative visualization techniques involved both 

monoscopic and stereoscopic particle image velocimetry. 

 

2.1 WATER CHANNEL 

 The free-surface water channel, shown in Figure 2.1, located in Packard Lab room 

174, was used for experiments. This water channel has a test section length of 4877 mm, 

a width of 927 mm, and a depth of 610 mm. Flow conditioning for this water channel 

includes a distributor attached to the entrance of the inflow reservoir, two successive 

sections of honeycomb, five screens, and a 2:1 contraction which results in a turbulence 

intensity below 0.5%. The freestream velocity used in all experiments was U = 158 mm/s 

in the test section, which corresponded to a Reynolds number Re = 8000 based on wing 

chord. The test section is made of Plexiglas, which allowed implementation of the 

visualization techniques described below. 

 

2.2 EXPERIMENTAL SYSTEMS 
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 The experimental setup used in these experiments featured two wings, which were 

positioned such that the vortex-wing interaction could be examined. To allow full control 

over this arrangement, the leader wing has the capability of independent motion along 

three axes, and the angle of attack of both wings can be adjusted. Additionally, the leader 

wing extends upwards through the free surface; therefore only the lower wing tip creates 

a tip vortex. Figure 2.2 shows this setup.  

Two different configurations of this setup were utilized, with one featuring a 

stationary follower wing and the other an oscillating follower wing. The leader wing is a 

NACA 0012 airfoil which has chord C = 50.8 mm, angle of attack α = 16° and is oriented 

vertically. The stationary follower wing is a clear acrylic flat plate with chord C = 50.8 

mm, thickness t = 1.5875 mm, span b = 203.2 mm, and angle of attack β = 4°. The 

spanwise distance between the two wings is Δx = 152.4 mm. For the case of the 

oscillating follower wing, shown in Figure 2.3, the leader wing is the same as the 

aforementioned, but the angle of attack α = 8°. The follower wing is a clear acrylic flat 

plate with chord C = 50.8 mm, thickness t = 3.175 mm, span b = 203.2 mm, and angle of 

attack β = 0°. The spanwise distance between the two wings is Δx = 254 mm. 

 

2.3 MOTION CONTROL 

 To allow precise movement of the wings in these experiments, motion control 

was used. This system utilized two Compumotor stepper motors controlled by a National 
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Instruments P70530 micro-stepper drives, a National Instruments PCI-7344 4-card, and a 

UMI-7764 indexer box.  

Two forms of motion control were used in these experiments. Motion control was 

used to accurately move the experimental system in the streamwise direction through the 

laser plane; this allowed volume reconstruction. Motion control was also used for the 

oscillation of the vertical position of the follower wing. This was achieved by applying a 

constant rotation to a wheel which had an off-center hole connected to the follower wing 

via an arm. This connection translated the rotational motion of the wheel into sinusoidal 

motion in the vertical direction; the specifics of that motion are available in Figure 2.4. 

 

2.4 QUANTITATIVE IMAGING TECHNIQUES 

 In order to quantitatively analyze the flows under consideration in these 

experiments, particle image velocimetry (PIV) was used. This technique utilizes a dual-

pulsed Nd-YAG laser to illuminate a plane of the flow, which was created by 

transmitting the laser through two 25 mm cylindrical lenses and a 1000 mm spherical 

lens. This plane was then turned to the desired orientation using a mirror. The frequency 

of this laser illumination had different values during the experiments: f = 14.29 Hz for the 

stationary follower wing; and f = 4 Hz and 10 Hz for the oscillating follower wing. The 

flow was seeded with 11 μm hollow metallic coated plastic spheres which have a specific 

density of 1.96 g/cc. As the laser pulses, the particles in the laser plane are illuminated, 

allowing them to be captured by TSI PowerView Plus cameras with a CCD array of 1600 
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x 1200 pixels. Two different PIV techniques were used in these experiments: 

monoscopic; and stereoscopic.  

2.4.1 Camera Arrangements 

 Monoscopic PIV uses one camera to capture the field of view, resulting in a 

vector field composed of the two in-plane components of velocity. This technique was 

used along the chord of the trailer wing in order to collect data near the surface of the 

wing, which is difficult with other techniques. To allow the camera to have the most 

effective view, a mirror was inserted downstream of the wing at an angle of 45°; this 

gave the camera a direction of view normal to the laser plane without affecting the vortex 

development and interaction incident upon, and along, the wing. In Appendix A the 

mirror was shown to be located sufficiently far downstream such that it did not influence 

the flow around the trailer wing. 

  Stereoscopic PIV utilizes two cameras to capture all three velocity vectors in a 

field of interest. This technique was used upstream of the trailer wing, with each camera 

at a 40° angle. To eliminate refraction, prisms were constructed of 9.52 mm thick 

Plexiglas and filled with distilled water. They were designed such that the face of the 

prism closest to the camera was normal to the line of sight through the camera lens. 

Figure 2.5 shows a plan view of the arrangement of the cameras and the liquid prisms for 

both SPIV and MPIV. Details of the experimental test section together with components 

for the MPIV and SPIV systems are illustrated in Figure 2.6. 

2.4.2 Image Analysis 



29 

 To generate the quantitative vector fields from the particle images, several 

different steps must be taken. Before the data are acquired, the PIV system must be 

calibrated. This procedure defines the relative positions and angles of the camera(s) to the 

plane of the laser sheet, and also, in the case of SPIV, to each other. This calibration is 

performed by aligning a calibration plate with the laser sheet; the calibration plate used 

for this work had a 10 mm grid defined on the y-z plane, where every second point is on a 

raised surface offset 1mm from the base plane. After the calibration plate is aligned with 

the laser sheet the cameras are focused on the surface of the plate.  

For MPIV, this process simply involves orienting the mirror at an angle of 45° 

with respect to the plate, arranging the camera perpendicular to the direction of flow, and 

focusing the camera on the plate. The calibration process for SPIV begins with orienting 

the cameras at 40° with respect to the plate on opposite sides of the water channel, and 

focusing them on the laser plate. To account for the varying distance between the camera 

and the calibration plate, the angle between the CCD array within the camera and the lens 

of the camera must be adjusted. The goal of this adjustment is to have the image, object, 

and lens planes all intersect at a line, which allows the entire object plane to be in focus. 

After the camera(s) has been properly focused on the calibration plane, images are taken. 

These images of the calibration plate are analyzed using Insight 4G, which generates a 

calibration file defining the relative positions between the camera(s) and the laser sheet. 

2.4.3 Image Processing 

 During data capture the camera acquires a pair of images, designated as A and B, 

which are combined to create the vector fields. Images A and B are taken at times t0 and 
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t0 + Δt respectively, where t0 is some instant in time and Δt is a small time later. Δt is 

selected such that the particles image will not move more than one-third of the width of 

the interrogation window between the two frames. The interrogation window is the 

region of the pattern of particle images used to define each velocity vector. If, however, 

there is a substantial out of plane velocity component, such as occurs when the laser sheet 

intersects the axis of a trailing vortex, an additional criterion must be satisfied: the time 

delay Δt must be such that the distance the particle travels through the laser sheet is less 

than one-fourth the sheet thickness. 

 The first step of evaluation of the patterns of particle images is pre-processing, 

which enhances the pattern of particle images to ensure that subsequent processing 

creates the most accurate velocity vectors from the images. An image generator is used to 

create an image that is a map of the minimum intensity for every pixel. In other words it 

is an image which shows everything but the particles, such as the wing or supports. This 

image is subtracted from every image, creating images which ideally only show the 

particles. For MPIV a horizontal mirror operation is also needed to account for the 

physical mirror used in those experiments. 

A classic PIV algorithm was employed for processing; it used interrogation 

windows 32 by 32 pixels, Figure 2.7 shows two particle images and the histogram created 

by the PIV algorithm. A Nyquist grid engine, which creates a grid with 50% overlap was 

used. This grid engine has low computation time, allowing more images to be captured 

and analyzed. The correlation engine used was developed by Hart (1998); it only 

examines the most significant pixels in the interrogation window. This reduces the effects 
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of low level noise on the vector calculation. A Gaussian peak engine was used which fits 

a Gaussian curve to the highest pixels, allowing for sub-pixel accuracy when calculating 

the magnitude and direction of the velocity vector. 

After the velocity vectors are calculated, post-processing is used to both validate 

and condition this vector field. First local vector validation is performed using a median 

test to determine if any component of a vector is different enough from its neighbors that 

it could not accurately represent the flow. After these vectors are eliminated they are 

replaced using a technique based on the local mean which is generated using a 5 by 5 grid 

centered on the missing vector. Finally a smoothing pass is performed, with each vector 

being replaced by the Gaussian-weighted mean generated using the 5 by 5 nearest vectors 

and a smoothing kernel σ = 0.8. Figure 2.8 includes representative images from each step 

of image processing. 

At this point, the processes for MPIV and SPIV diverge. In MPIV the vector array 

created in the previous step is mapped onto the object plane using the calibration file, 

which yields the in-plane components of velocity. In SPIV there are two cameras, 

designated 1 and 2, which have each yielded an array of two dimensional velocity 

vectors. Insight combines these vector arrays using the calibration file in order to 

determine an array of three dimension velocity vectors on the object plane. For all of the 

experiments, a peak-to-noise ratio larger than 2 was achieved for the vast majority of 

interrogation windows. 

 To obtain accurate averaged representations of the vectors , both time and phase 

averaging were used; 100 images were used for time averaged MPIV, 80 images were 
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used for phase-averaged MPIV, and 150 for time-averaged SPIV. This averaging further 

reduced the likelihood of a bad vector being present in the final data. A discussion on the 

number of images required for time averaging is given in Section 2.5.3 which deals with 

error analysis. 

2.4.4 Volume Reconstruction 

 Two dimensional arrays of velocity vectors were collected at multiple streamline 

locations which varied by experiment, but generally extended from 1C (one wing chord) 

upstream of the follower wing to 2C downstream. These data planes were close enough 

together that the flow in-between these planes could be accurately interpolated. The two 

dimensional arrays were combined to form a three dimensional array which allowed for 

visualization of the flow field as a volume, and, for SPIV, the calculation of the two out-

of-plane vorticity components ωy and ωz.  

 

2.5 ERROR ANALYSIS 

2.5.1 Random Error 

 Random error encompasses any non-repeatable error which is not due to 

variations in the flow field. This error can be caused by slight difference in lighting 

intensity, irregularities in particle densities, electronic noise in the camera circuits, etc. 

Regardless of the cause of the random error, the effect is always the same, to cause the 
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same particle to appear slightly different between the two exposures, denoted as frames A 

and B in Section 2.4.3.  

 This difference is quantified as the rms error in determining the centroid of the 

particle image σΔX. This term is used to calculate the rms error of the velocity 

measurement σu = σΔX / (M0Δt), where M0 is the image magnification and Δt, as 

previously defined, is the time between exposures. σΔX = cτdτ where cτ is a constant 

dependent on the ability of the analysis procedure to determine the particle displacement 

between images and dτ is the diameter of the particle on the image plane. cτ can be 

estimated utilizing the displacement of a particle in pixels, which in this case is 

approximately 3 pixels, yielding a cτ of between 0.04 and 0.06. The diameter of the 

particle on the image plane dτ = M0(1.5δzλ + dp
2
) where δz is the depth of field, the laser 

wavelength λ = 532 nm, and the particle diameter dp = 11 μm. δz = 4f
#
 λ (1 + 1/M0)

2
 

where the f-stop f
#
 = 8. Finally, M0 = Z0/z0 where the distance from the image plane to the 

lens is Z0 = 0.0381 m and the distance from the lens to the object plane z0 = 1.143 m. 

Evaluating all of the previously mentioned terms yields an in-plane σu = 0.051 to 0.071 of 

the freestream velocity. These calculations were performed based on the work of Adrian 

and Westerweel (2011). In the present investigation, this random error is significantly 

reduced by the use of either phase or time-averaging.  

 According to Lawson and Wu (1997), the error in the out-of-plane velocity can be 

calculated as a function of in-plane error and the camera angle. The camera angle used in 

these experiments is 40° which corresponds to an error ration er = 1.05. Therefore the 

out-of-plane error σu = 0.054 to 0.075. 
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2.5.2 Bias Error 

 Bias error covers any error which is not random in nature, but is instead 

systematic. A source of bias error for PIV comes about when the size of the particle on 

the image plane is small relative to the size of the pixels. Since the PIV technique is 

limited by the pixel size, it cannot resolve any smaller than that length scale. For these 

experiments the ratio of the particle image diameter to the pixel pitch dτ/dr is 

approximately 1.75. According to Adrian and Westerweel (2011) this ratio relates to 

error, and for these experiments the bias error associated with a Gaussian fit is no more 

than 1%. 

 Another source of bias error comes from calculating out-of-plane vorticity, which 

requires the comparison of several nearby velocity vectors. Soria et al. (1995) showed 

that the distances between these vectors can cause errors which predictably underpredict 

the vorticity in the core of an Oseen vortex, which is a good approximation of the 

incident vortices seen in these experiments. Consideration of six velocity vectors along 

the radius of the vortex, defined as the radial distance from the vortex axis to the 

maximum tangential velocity, gives a maximum out-of-plane vorticity bias error of 3% 

along the vortex axis. This bias error decreases linearly as the radial distance from the 

vortex axis increases. 

2.5.3 Phase and Time Averaging Error Reduction 

 To reduce the random error discussed previously, both phase and time averaging 

were used. These types of averaging reduce any non-systematic errors that may occur 
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during experiments. To determine how many averages are needed for the images to 

converge, a large data set containing 200 images was taken. Averages were then 

constructed using 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 images from this set. 

Figure 2.9 shows how the (color) contours of streamwise vorticity ωx at different 

numbers of averages compare to the final (black line) contours constructed with all 200 

images. Examining the (color) contours constructed using 20 and 40 images, the contours 

do not align with the black lines which represent the final case constructed with 200 

images. As the number of averages of the (color) contours increases the match between 

them and the (black) lines improves. By an average of 80 images, the fewest used for 

averaging in these experiments, there are only very slight differences. 

As a further representation of the degree of convergence in relation to the number 

of images averaged, two different approaches were employed for the magnitude of the 

inplane velocity over the area of the vortex, by the area considered is a square whose 

sides are coincident with the lowest level vorticity contour. The first calculation was 

performed by comparing the velocity at N averaged images to N + 10 averaged images, 

while the second compared N averaged images to the final image. The percent difference 

as a function of the number of averages is shown in Figure 2.10. It is evident that for both 

methods of comparison, the percent difference of the value of velocity drops quickly as 

the number of averages increases. 
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Figure 2.1: Water channel system in Packard Lab room 174.  

 

 
 

Figure 2.2: Experimental setup for steady vortex-wing interaction experiments. 
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Figure 2.3: Experimental setup for unsteady vortex-wing interaction experiments. 

 

 

 

 
Figure 2.4: Vertical position and velocity of the wing as a function of phase angle for the 

vortex-oscillating wing experiments. 
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Figure 2.5: Plan view of camera arrangement for monographic PIV (MPIV) and 

stereographic PIV (SPIV). 
 
 

 
 

 

Figure 2.6: Setup of monographic PIV (MPIV) and stereographic PIV (SPIV). 
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Figure 2.7: Image of interrogation process. The top two images are particle images of the 

same location window for the two different frames. These images are statistically 

compared to generate the histogram of possible displacements seen in the bottom image. 

The highest peak in the histogram indicates the most probable displacement, and 

therefore the most probable velocity.  
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Figure 2.8: Image processing for PIV.  
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Figure 2.9: Color contours and (black) lines of constant values of streamwise vorticity 

for a vortex shed from a NACA 0012 airfoil with C = 50.8 mm at a distance of x/C = 5, 

r/C = 50 from the trailing edge of the wing. The lines of streamwise vorticity were 

created using 200 averaged images and the color contours of streamwise vorticity were 

created using increasing numbers of images. The maximum magnitude of vorticity for the 

average of 200 images was ωxC/𝑈∞ = -11.54, and the largest deviation from this value 

was for an average of 20 images corresponding to ωxC/𝑈∞ = -12.12. 
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(a) 

 

 
(b) 

 

Figure 2.10: Image averaging for a vortex shed from a NACA 0012 airfoil with C = 50.8 

mm at a distance of x/C = 5, r/C = 50 from the trailing edge of the wing. (a) Comparison 

of velocity at N averaged images to N + 10 averaged images. (b) Comparison of velocity 

at N averaged images to 200 averaged images. 
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CHAPTER 3 

STRUCTURE OF A STREAMWISE-ORIENTED VORTEX  

INCIDENT UPON A WING 

 

3.1 OVERVIEW 

Interaction between a streamwise-oriented vortex and a fin, blade, or wing has 

emerged as a critical class of flow-structure interaction, with important consequences for 

both unsteady and steady loading. Examples include: buffeting of a fin or tail of an 

aircraft by the vortex originating from an upstream canard; steady and unsteady loading 

of the downstream blade in a rotating machine arising from the tip vortex generated from 

an upstream blade; loading of a helicopter rotor due to the tip vortex from a preceding 

rotor; and alteration of the lift and drag, as well as potential buffeting, of a follower wing 

due to the streamwise vortex originating from the leader wing in formation flight. This 

latter type of interaction is not limited to a small number of aircraft and wings of large or 

moderate scale, but extends to a large number of very small-scale of micro air vehicles in 

a swarm or flock that may be deployed for atmospheric surveillance (Kroo, 2004). In the 

following, the essential features of the foregoing interactions are summarized.  

The foregoing advances provide a basis for gaining new insight into the internal 

structure of the vortex incident upon simulated fins, tails, plates and wings, and the 

manner in which it is altered in upstream regions. In particular, the heretofore unclarified 

relationships between the deficit of the streamwise velocity, the magnitudes of 

streamwise and azimuthal vorticity, the upwash and downwash, the root-mean-square of 
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the velocity and vorticity fluctuations, and the swirl ratio will be addressed in relation to 

the degree that the tip of the downstream wing penetrates the incident vortex. 

 

3.2 EXPERIMENTAL SYSTEMS AND TECHNIQUES 

A free-surface water channel was used for experiments, where the water channel 

had a test section with a length of 4877 mm, a width of 927 mm, and a depth of 610 mm. 

The freestream velocity was 𝑈∞ = 158 mm/s, which corresponded to a Reynolds number 

of 8000 based on the wing chord. The turbulence intensity was 0.3%. The experimental 

setup is shown in figure 3.1. The leader wing is a squared tip NACA 0012 airfoil which 

has chord C = 50.8 mm, angle of attack α = 16° and is oriented vertically. This angle of 

attack was selected to generate a tip vortex having a dimensionless circulation similar to 

that in the computations of Garmann and Visbal (2014a & 2015a). The follower wing is a 

clear acrylic flat plate with chord C = 50.8 mm, thickness t = 1.58 mm, span b = 203.2 

mm, and angle of attack β = 4°. The streamwise distance between the two wings is Δx = 

152.4 mm.  

 The vertical Δz and spanwise Δy offsets were defined by the trajectory of the tip 

vortex shed from the leader wing. Preliminary stereo particle image velocimetry (SPIV) 

images were acquired to determine which values of vertical and spanwise offset led to 

impingement of the tip vortex from the leader wing on the tip of the follower wing. This 

location was defined by the leader wing offsets Δy0 and Δz0. In this investigation, four 
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different values of spanwise offset Δy were examined, Δy = Δy0 + 12.7 mm, Δy0 + 6.35 

mm, Δy0, and Δy0 - 31.75 mm, while Δz = Δz0, i.e., no offset in the vertical direction.  

To quantitatively visualize the structure of the vortex, SPIV was employed. It 

provides all three components of velocity. The flow was seeded with 11 μm hollow 

metallic coated plastic spheres, which provide 15-20 particle images in the interrogation 

window of 32 x 32 pixels. To illuminate the spheres, a 3 mm thick laser sheet was 

produced by a dual-pulsed Nd-YAG operating at 14.29 Hz. Images were acquired from 

each camera simultaneously, where each had a CCD array of 1600 x 1200 pixels. In this 

SPIV arrangement, the cameras were placed upstream of the laser plane at a 40° angle 

from the flow, thereby allowing an unobstructed view of the laser plane. The images from 

the two cameras were then evaluated using a cross-correlation technique with 50% 

overlap, yielding 8432 vectors in the field of view. Each pixel was 47.36 μm/px, which 

corresponds to an interrogation window width of 1515 μm.  

Both the in- and out-of-plane uncertainties were calculated using the technique 

described by Adrian and Westerweel (2011). The RMS random error for the in-plane 

velocity is between 1.0% and 1.4% of the freestream velocity, furthermore, the RMS 

random error is between 1.2% and 1.6% of the freestream velocity for the out-of-plane 

velocity component. For this SPIV setup, the pixel size is large compared to the particle 

image diameter and therefore the bias error is small in comparison to the RMS random 

error. 

 For each experimental configuration, image acquisition was performed at 6.35 

mm intervals from 50.8 mm to 6.35 mm upstream of the leading edge of the follower 
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wing. At each of these locations, 150 images were captured; these images were time-

averaged to produce the final images. The flow structure at different streamwise locations 

was examined by translating the wing system to the desired location in the streamwise 

direction. The leader wing could move independently from the rest of the system, which 

allowed examination of the flow at successive spanwise locations of the leader wing. At 

each location, the individual images on the crossflow planes of the vortex, taken at 

successive streamwise locations, were combined to provide iso-surface representations of 

the three-dimensional flow field. These fields contain 67 456 vectors, and allowed 

calculation of all three components of vorticity.  

 

3.3 DISTORTION OF VORTEX STRUCTURE DUE TO IMPINGEMENT 

3.3.1 Initial Structure of Undistorted Vortex 

 The velocity profiles of the trailing vortex generated from the leader wing, at a 

location upstream of the region of significant flow distortion as the follower wing is 

approached, were acquired in absence of the follower wing and are compared in figure 

3.2 with previous investigations at Reynolds numbers at least an order of magnitude 

larger than the present study: Devenport et al (1993), Zheng and Ramaprian (1993); and 

Inasawa et al (2012). The distribution of normalized azimuthal velocity uθ/(uθ)max is 

indicated in figure 3.2a and normalized axial velocity deficit (𝑈∞-u)/( 𝑈∞-umin) in figure 

3.2b. For the present experiment, the dimensional value of maximum azimuthal velocity 

is uθ/𝑈∞ = 0.49, and the maximum axial velocity deficit is Δu = 0.19. Moreover, the 
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vortex Reynolds number Rev = Γ/ν is 2959. In both figures 3.2a and 3.2b, the solid line 

corresponds to the theoretical q-vortex described by Garmann and Visbal (2015a). This 

q-vortex has its origin in the work of Batchelor (1964). These normalized distributions of 

azimuthal and axial velocity have a similar form for all cases, over the range of the 

Reynolds number based on wing chord from 8 000 to 250 000. At the highest value of Re 

= 530 000, there is discernible departure. 

For the present investigation, the swirl ratio q = 3.95, and the value of circulation 

is Γ/C𝑈∞ = 0.4. This value of q lies above the value of q = √2 corresponding to the onset 

of azimuthal instabilities (Garmann and Visbal, 2014a & 2015a) according to the 

criterion of Leibovich and Stewartson (1983). 

3.3.2 Velocity Defect and Streamwise Vorticity  

Figure 3.3 shows iso surfaces of the streamwise velocity deficit 1 −  𝑢/𝑈∞, 

hereafter referred to as velocity deficit, along the axis of the vortex incident upon the 

leading edge of the wing. These surfaces of velocity deficit increase in both radius and 

magnitude as the spanwise impingement location Δy/rv is displaced from outboard to 

inboard. For all but the outboard case, all levels of iso-surfaces increase in radius near the 

leading edge of the follower wing.  

The plot of figure 3.4 shows the maximum velocity deficit 1 −  𝑢/𝑈∞ as a 

function of distance x´/C upstream of the leading edge of the wing. For the outboard and 

slightly outboard positions of the incident vortex, Δy/rv = 1.25 and 2.5, along with the 

case of no follower wing, there is a mild increase of velocity deficit as the leading-edge is 
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approached. Then, in the immediate vicinity of the leading-edge, at x´/C = 0.125, a 

decrease occurs. On the other hand, for the aligned and inboard cases, the velocity deficit 

increases rapidly as the leading-edge is approached. For the case of inboard interaction, 

the magnitude of the deficit increases by approximately a factor of two from x´/C = 1 to 

x´/C = 0.125. The form of this variation of velocity deficit is detectably distorted relative 

to the other three variations; such distortion is associated with onset of a large diameter 

region of high velocity defect that extends well upstream of the leading edge, as indicated 

in figure 3.3, as well as relatively large rms values of velocity and vorticity, which will be 

addressed subsequently. It is evident from these plots of figure 3.4, as well as the images 

shown in figure 3.3, that the upstream influence of the wing extends at least a distance of 

one chord C, which corresponds to 5 diameters Dv of the incident vortex in absence of the 

follower wing. 

Figure 3.5 shows iso surfaces of the streamwise vorticity ωxC/𝑈∞. The layout of 

these images and the designated values of Δy/rv correspond to the images of velocity 

deficit 1 −  𝑢/𝑈∞ in figure 3.3. In accord with the surfaces of velocity deficit given in 

figure 3.3, the patterns of streamwise vorticity are sensitive to changes in the spanwise 

location of vortex impingement, again indicating upstream influence of the wing. The 

maximum value of streamwise vorticity is significantly altered, but unlike the surfaces of 

velocity deficit given in figure 3.3, the outer radii of the lowest level surfaces do not 

change significantly with either spanwise offset or streamwise position. However, as the 

location of vortex impingement moves inboard, the length of the highest level iso-surface 

of ωxC/𝑈∞ = -15 is attenuated, such that for the inboard interaction (Δy/C = -0.625, Δy/rv 
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= -6.25) it exists only in the region well upstream of the leading edge of the wing. In 

other words, the downstream boundary of the highest level iso-surface of ωxC/𝑈∞ = -15 

retreats in the upstream direction for increased inboard displacement of vortex 

impingement; simultaneously, the diameter of this iso-surface decreases. 

Further information related to the radial distribution of the streamwise vorticity 

can be determined by examining the distribution of circulation within the vortex. 

Although the total circulation of the vortex remains essentially constant over the range of 

streamwise locations in the field of view, varying by less than 3%, the radial distribution 

of the circulation is, of course, not constant. Herein the core of the vortex is defined as 

having a radius r* that contains half of the total circulation of the vortex. Calculations 

show that the magnitude of r* increases in the streamwise direction by as much as 30% 

as the leading edge of the wing is approached. Correspondingly, the magnitude of the 

peak vorticity along the centerline decreases by 29.7%. Taken together with the decrease 

in the higher levels of axial vorticity indicated in the iso-surfaces of figure 3.5, this 

observation indicates that the average streamwise vorticity in the core of the vortex of 

radius r* decreases, while the average streamwise vorticity outside the core increases, as 

the vortex develops in the streamwise direction. Therefore, the aforementioned decrease 

of maximum axial (streamwise) vorticity is due to a redistribution of that vorticity out of 

the vortex core. 

3.3.3 Azimuthal Vorticity 

Figure 3.6 shows time-averaged slices of the azimuthal vorticity ωθC/𝑈∞, which 

is dominated by the derivative of streamwise velocity u in the radial direction, (𝜕𝑢/
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𝜕𝑟)𝐶/𝑈∞, relative to the other component of azimuthal vorticity, which is the derivative 

of the radial velocity in the streamwise direction, (𝜕𝑢𝑟/𝜕𝑥)𝐶/𝑈∞. The highest levels of 

azimuthal vorticity take the form of well-defined rings which are centered on the axis of 

the vortex. As the spanwise location of vortex impingement moves from outboard to 

inboard, both the maximum value of azimuthal vorticity
 
and its outer radius increase. An 

increase in the magnitude and outer radius of the ring of azimuthal vorticity can also be 

seen for decreasing values of x´/C, that is, for locations closer to the leading edge of the 

wing. These trends can be compared with the increase in velocity deficit indicated in 

figure 3.3. In essence, as x´/C decreases, the maximum values of both velocity deficit and 

azimuthal vorticity increase.  

Garmann & Visbal (2015a) show a helical instability around the perimeter of their 

incident vortex for streamwise locations where the swirl ratio q < √2; this instability is 

evident in their instantaneous images. As indicated on the images of figure 3.6, the 

magnitude of the swirl ratio drops below this threshold value for both Δy/rv = 0 and -6.25, 

at x´/C < 0.5 and 0.75 respectively. In these regions, azimuthal vorticity has its largest 

magnitudes, corresponding to the same region as the helical instability observed by 

Garmann & Visbal (2015a). 

3.3.4 Cross-Comparisons of Velocity Defect and Components of Vorticity 

Figure 3.7 provides a direct comparison of time-averaged slices of the flow 

structure for two selected spanwise locations Δy/rv, of the incident vortex. Representative 

inboard (Δy/rv = -6.25) and outboard (Δy/rv = 1.25) interactions are compared. For the 

inboard interaction, the following alterations are evident relative to the outboard 
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interaction: enhancement of the magnitude and radial extent of the region of velocity 

defect 1 −  𝑢/𝑈∞; attenuation of the highest levels of streamwise vorticity ωxC/𝑈∞; and 

enhancement of the magnitude and radial extent of azimuthal vorticity ωθC/𝑈∞.  

Focusing on the comparison of the cross-sectional cuts of velocity defect and 

axial vorticity given in figure 3.7, as well as the iso-surfaces of these same parameters 

given in figures 3.3 and 3.5, it is evident that there is a close relationship between 

enhancement of the velocity defect and attenuation of the peak value of axial vorticity. A 

direct, quantitative comparison is given in figure 3.8, which shows superposition of (dark 

blue line) contours of constant axial vorticity and shaded regions of velocity defect for 

three impingement locations on a longitudinal cut through the vortex. In all cases, the tip 

B of the moderate level of velocity defect 1 −  𝑢/𝑈∞ = 0.3 extends well upstream 

through the center of the vortex, and immediately downstream of this tip, the width of the 

region of vorticity defined by the lowest level contour ωxC/𝑈∞ = -15 rapidly decreases 

and goes to zero at the location A. In other words, occurrence of a sufficiently large 

magnitude of the velocity defect promotes attenuation of high level vorticity along the 

vortex axis. 

The axial vorticity was integrated over the entire cross-section of the vortex at 

successive streamwise locations along the axis of the vortex, and the magnitude of the 

circulation was found to be constant within 3%. Herein, the core of the vortex is defined 

as the inner portion that contains one-half of the total circulation; it has a radius 

designated as r*. The dashed line on figure 3.8 defines the locus of r*, which increases 
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over the streamwise extent of the vortex by approximately 33%, 21%, and 10% for the 

inboard, aligned, and slightly outboard cases respectively.  

As indicated in the foregoing, with increasing streamwise distance along the 

vortex, the defect of axial velocity increases, the magnitude of the maximum value of the 

axial vorticity decreases, the circulation remains constant, and the radius r* based on half 

circulation increases. These changes in the vortex structure can be related to the adverse 

pressure gradient in the streamwise direction created by the downstream wing. In view of 

the fact that these parameters change rapidly over a small streamwise distance, a process 

of rapid distortion occurs, and inviscid effects dominate.  

The inviscid theoretical model of Batchelor (1964) provides a guide for 

interpretation of the foregoing relationships. It focuses on the effect of streamwise 

pressure gradient, which can be related to the streamwise velocity variation in the 

inviscid vortex core via Bernoulli’s equation. If the pressure in the core increases in the 

axial direction, corresponding to an adverse pressure gradient, then Batchelor’s (1964) 

theory indicates that the core diameter will increase provided that the circulation remains 

constant. Therefore, with this condition on circulation, an adverse pressure gradient is 

associated with both a decrease of axial velocity and a decrease in maximum vorticity, 

which is in line with the current experimental findings. Moreover, this relationship 

persists for varying values of offset of the incident vortex relative to the tip of the 

follower wing, that is, for different rates of deceleration of the vortex core, corresponding 

to different rates of increase of the velocity defect in the streamwise direction. 

3.3.5 Upwash and Downwash  
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Iso surfaces of (red-brown) upwash and (blue) downwash 𝑤/𝑈∞ are given in 

figure 3.9. Consider first the case of the outboard interaction (Δy/rv = 2.5). The (red-

brown) upwash surfaces show little variation along the axis of the vortex, except in the 

region close to the leading-edge of the wing, where the peak magnitude and spatial extent 

(radii) of the highest level surface is enhanced. Moreover, the (tan) surface representing 

the moderate levels of upwash extend further inboard as the leading edge of the wing is 

approached, and close to the leading edge these surfaces extend in the spanwise direction 

along the leading edge of the wing. These trends are due to the upwash component 

induced by the angle of attack of the wing, which exists in absence of the incident vortex, 

and has significantly large values close to the leading edge of the wing. That is, this 

wing-induced upwash enhances the magnitude and spatial extent of the upwash 

associated with the incident vortex. The foregoing trends for the outboard interaction 

(Δy/rv = 2.5) persist at successive locations of the incident vortex further inboard, i.e., 

slightly outboard (Δy/rv = 1.25), aligned (Δy/rv = 0), and inboard (Δy/rv = -6.25) 

interactions. In fact, there is little difference in the shapes of the upwash surfaces between 

impingement locations.  

Regarding the contours of (blue-green) downwash 𝑤/𝑈∞ for the outboard 

interaction of figure 3.9, a clear decrease in the peak magnitude and spatial extent of the 

highest level surface of downwash occurs along the axis of the vortex as the leading-edge 

of the follower wing is approached. This decrease with streamwise distance along the 

axis of the vortex is in accord with the increased magnitude of the upwash arising from 

the angle of attack of the wing. The attenuation of downwash magnitude with streamwise 
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distance becomes increasingly prevalent at successive inboard locations corresponding to 

the slightly outboard, aligned and inboard interactions.  

Figure 3.10 shows the superposition of: shaded contours of upwash and 

downwash of the incident vortex; and line contours of the wing-induced upwash in 

absence of the incident vortex. Both sets of contours are at a location close to the leading 

edge, x´/C = 0.125, for four different spanwise impingement locations. Comparison of the 

sets of contours at a given position of the incident vortex shows that the spanwise 

extension of upwash at locations inboard of the vortex axis is at least partially due to the 

self-induced upwash induced by the follower wing. Furthermore, low levels of the self-

induced upwash of the wing are associated with a decrease of the maximum value of 

downwash of the vortex-wing interaction. The wing-induced upwash is additionally 

responsible for the increasing counter-clockwise rotation of the upwash and downwash 

contours around the vortex axis as the streamwise impingement location moves inboard. 

The highest levels of induced upwash are situated slightly vertically above the axis of the 

vortex, and when they combine with the incoming vortex, the result is rotated contours. 

Figure 3.11 shows the change in the maximum magnitude of both the upwash and 

downwash for all four values of vortex offset. For the case of the aligned (Δy/rv = 0) and 

inboard (Δy/rv = -6.25) positions of the incident vortex, the overall decrease of the peak 

magnitude of downwash is approximately one third of its initial value. In contrast, the 

peak upwash velocity shows only small changes in the streamwise direction for all values 

of spanwise offset of the vortex, except in the immediate vicinity of the leading edge, 

where there is clearly a rise of the order of one eighth of the approach value.  

3.3.6 Swirl Ratio 
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Changes of the surfaces of velocity deficit 1 −  𝑢/𝑈∞, and w/𝑈∞ described in the 

preceding figures 3.3 and 3.9 can be related to changes in the swirl ratio q, where q = 

Γ/(2πrΔu) ≈ 1.567 uθ /Δu according to Jacquin & Pantano (2002), in which Γ is 

circulation, r is the vortex radius, Δu is the velocity deficit in the core, and uθ is the 

maximum azimuthal velocity. Values of swirl ratio computed from the present 

experimental data are plotted in figure 3.12 as a function of distance x´/C upstream of the 

leading edge for the four different values of spanwise offset Δy/rv, i.e., the outboard, 

slightly outboard and aligned positions of the incident vortex, along with the no follower 

wing case. It is evident that the magnitude of swirl ratio continually decreases up to x´/C 

= 0.25. At locations closer to the leading edge, the magnitude of the swirl ratio rises in 

the outboard and aligned cases. This rise is largest for the outboard position and smallest 

for the aligned position of the incident vortex. In accord with the computations of 

Garmann & Visbal (2015a), this rise is due to acceleration of the core flow in that region. 

Moreover, the plot of the velocity deficit given in figure 3.4 shows a decrease of velocity 

deficit as the leading-edge is approached for the outboard and slightly outboard cases and 

a fairly constant value for the aligned case, in contrast to the continued increase in 

velocity deficit for the inboard location.  

 Furthermore, for the aligned and inboard positions of the incident vortex, the 

decrease of swirl ratio as the leading edge is approached is relatively rapid, and small 

values of swirl ratio in the range of 1.0 < q < 1.5 are eventually attained. A horizontal line 

on this plot defines the magnitude of q = √2, which represents the critical value of swirl 

ratio for the q-vortex according Leibovich & Stewartson (1983), below which azimuthal 
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instabilities are excited. For both the aligned and inboard positions of the incident vortex, 

the magnitude of the swirl ratio falls below this critical value for values of x´/C < 0.5. 

From figure 3.12, these small values of swirl ratio correspond to large values of velocity 

deficit. This region where the values of q < √2 correspond to the region of large (dark 

red) azimuthal vorticity ωθC/𝑈∞ is designated in figure 3.6. The occurrence of a helical 

instability embedded within the turbulent background of the incident vortex can produce 

enhanced values of time averaged azimuthal vorticity. In the computations of Garmann & 

Visbal (2015a) the nature of the incident vortex is shown as a laminar q-vortex incident 

upon the leading-edge, for which a helical instability is easily discernible near the leading 

edge. 

3.3.7 Patterns of Instantaneous and RMS Flow Structure 

Figure 3.13 shows instantaneous images of streamwise vorticity ωxC/𝑈∞ of the 

incident vortex at the location x´/C = 0.125 immediately upstream of the leading edge for 

four different impingement locations. At each spanwise location of vortex impingement, 

the three randomly selected images show variation of the pattern of vorticity. For the 

outboard case, Δy/rv = 2.5, the vortex core is dominated by a single region of high 

streamwise vorticity for all images acquired at arbitrary instants t1, t2, and t3. Near the 

outer edge of the vortex there are some irregularities, but the shape remains 

approximately circular. The slightly outboard case, Δy/rv = 1.25, has regions of large 

streamwise vorticity that are more distorted, and the shape of the vortex is more irregular 

than at Δy/rv = 2.5. The aligned case, Δy/rv = 0, is even more irregular, and the core of the 

vortex is no longer identifiable. However, in all three instantaneous images the high level 
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of streamwise vorticity is connected to a lower level of streamwise vorticity. For the 

inboard case, Δy/rv = -6.25, the regions of high streamwise vorticity are separated by 

regions of very low streamwise vorticity, such that they almost appear to be separate 

structures. This is most apparent in image t1, where the vortex has split into three separate 

regions of high streamwise vorticity.  

Figure 3.14 illustrates the effects of the impingement location Δy/rv and the 

upstream distance x´/C on the root-mean-square of the streamwise velocity urms/𝑈∞. In 

each image, the patterns of velocity vectors V are superposed on the contours of urms/𝑈∞, 

thereby allowing identification of the center of swirl. As the spanwise impingement 

location moves from outboard to inboard, urms/𝑈∞ increases for all upstream positions. 

Furthermore, as x´/C decreases, the urms/𝑈∞ values increase for the aligned and inboard 

impingement locations. The increase of values of urms/𝑈∞ corresponds to the 

aforementioned increases in the velocity deficit 1 −  𝑢/𝑈∞. That is, comparing figures 

3.3 and 3.14, it is evident that the patterns of largest urms/𝑈∞ occur at the same streamwise 

location where the magnitude of the velocity deficit is largest, evident for the aligned and 

inboard interactions. Moreover, the patterns of largest urms/𝑈∞ in figure 3.14 correspond 

to the lowest values of swirl ratio q given in the plot of figure 3.12, in particular, regions 

where q < √2 for the aligned and inboard interactions. 

Figure 3.15 illustrates patterns of root-mean-square streamwise vorticity 

(ωx)rms/(ωx)max which has been normalized by the local maximum value of the time-

averaged streamwise vorticity (ωx)max. The highest levels of (ωx)rms/(ωx)max do not occur 

on the vortex axis; instead they are located in a ring surrounding the axis. Generally 
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speaking, larger values of (ωx)rms/(ωx)max tend to occur at smaller values of x´/C and at 

spanwise locations further inboard. At x´/C = 0.125, the increase in magnitude and spatial 

extent of (ωx)rms/(ωx)max with successive displacements of the impingement location of the 

incident vortex in the inboard direction correlates with increasing distortion of the 

instantaneous images given in figure 3.13. It also corresponds to the aforementioned 

increases of urms/𝑈∞ and velocity deficit given respectively in figures 3.14 and 3.3, as 

well as associated decreases of swirl ratio given in figure 3.12. 

As shown in both figures 3.14 and 3.15, the RMS contours depart from 

axisymmetry in this region of flow distortion, especially near the leading-edge for the 

inboard and aligned impingement cases Δy/rv = 0 and -6.25. For the type of encounter 

addressed herein, a nominally axisymmetric incident vortex approaches a planar leading-

edge, rather than an axisymmetric leading-edge. This encounter likely induces non-

axisymmetric distortions of the turbulent fluctuations and the mean flow in the vicinity of 

the leading edge. 

 

3.4 CONCLUSIONS 

The distortion of a trailing vortex from a leader wing incident upon the tip of a 

follower wing (flat plate) has been characterized using a stereoscopic technique of 

particle image velocimetry, thereby providing the flow structure of the incident vortex at 

locations well upstream of the follower wing for varying degrees of spanwise offset Δy of 

the incident vortex relative to the tip of the wing designated as outboard (Δy/rv = 2.5), 
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slightly outboard (Δy/rv = 1.25), aligned (Δy/rv = 0), and inboard (Δy/rv = -6.25) of the tip, 

in which rv is the radius of the incident vortex.  

The influence of the vortex-wing interaction is not simply confined to a localized 

region in the vicinity of the leading-edge of the follower wing; rather, it can extend a 

distance upstream of at least one wing chord (approximately five vortex diameters). 

Moreover, significant upstream influence is evident when the tip of the vortex impinges 

well outboard of the tip of the follower wing. 

The magnitude and radius of the region of streamwise velocity deficit 1 −  𝑢/𝑈∞ 

of the incident vortex are significantly enhanced for the slightly outboard interaction and 

substantially altered for the aligned and inboard interactions, relative to the outboard 

interaction.  

The value of the velocity deficit increases as the leading edge of the follower 

wing is approached, except in the domain close to the leading edge, where the velocity 

deficit either attains a plateau value or decreases. Correspondingly, the radius of the 

vortex increases while its circulation remains constant; this observation is associated with 

a potentially large decrease of streamwise vorticity in the vortex core and an increase 

outside the core. When rapid attenuation of high level vorticity occurs along the vortex 

axis, it is associated with existence of a sufficiently large magnitude of velocity defect. 

The aforementioned enhancement of streamwise velocity deficit, attenuation of 

maximum streamwise vorticity, and increase of vortex radius are linked to the adverse 

pressure gradient that exists in the region upstream of the wing. These observations are in 
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accord with the inviscid theoretical model of Batchelor (1964), whereby the rapid 

distortion of the vortex structure approaching the wing is associated with dominance of 

inviscid mechanisms.  

These alterations to the vortex structure correspond to a decrease in swirl ratio q; 

when swirl ratio becomes sufficiently small, in particular in the region approaching the 

leading edge of the follower wing for the aligned and inboard interactions, a substantial 

increase in the time-mean azimuthal vorticity ωθC/𝑈∞ arises along the outer periphery of 

the vortex. The largest enhancements of azimuthal vorticity occur when q < √2, which is 

in accord with the theoretical prediction of Leibovich & Stewartson (1983) for small-

wavelength instabilities about the vortex, and with the computations of Garmann & 

Visbal (2014a & 2015a), which show an instantaneous helical instability about the 

exterior region of the vortex. On the other hand, for the cases of the outboard and slightly 

outboard interactions of the vortex with the tip of the wing, the swirl ratio q does not 

reach values below the threshold value q < √2, and enhancement of azimuthal vorticity 

does not occur along the entire streamwise extent of the incident vortex. 

The attainment of lower values of swirl ratio q also corresponds to the onset of 

relatively large values of root-mean-square fluctuations of streamwise vorticity 

(ωx)rms/(ωx)max and axial velocity urms/𝑈∞ on cross-sectional cuts of the incident vortex. 

The predominant magnitudes tend to be concentrated in a ring-like region surrounding 

the central portion of the incident vortex. Moreover, the largest rms magnitudes of these 

fluctuations are prevalent in the region immediately upstream of the leading edge of the 

follower wing, and for progressively further inboard locations of the incident vortex. The 
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corresponding instantaneous structure of the streamwise vorticity ωxC/𝑈∞ on a cross-

sectional cut of the vortex, at a location upstream of the leading edge of the follower 

wing, shows progressively more severe degradation of the coherent structure of the 

vortex for decreasing values of swirl ratio, i.e., for further inboard locations of the 

incident vortex. 

The foregoing changes of the incident vortex are associated with alterations of the 

upwash (positive vertical velocity 𝑤/𝑈∞) and downwash (negative 𝑤/𝑈∞). Downwash 

is attenuated as the leading edge of the follower wing is approached; corresponding 

values of upwash, however, do not change significantly, except for a mild enhancement 

in the immediate vicinity of the leading edge. Both of these effects are at least partially 

due to the self-induced upwash of the follower wing, which exists in absence of the 

incident vortex. This observation is deduced from comparison of upwash and downwash 

patterns for cases of an incident vortex and no incident vortex incident upon the follower 

wing.  
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Figure 3.1: Plan and side views of the experimental arrangement. 
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Figure 3.2: (a) Azimuthal velocity uθ/(uθ)max versus r/rmax in which rmax is the radial 

location of the maximum azimuthal velocity (uθ)max; and (b) Axial velocity deficit (𝑈∞ - 
u)/(𝑈∞ - umin) versus r/r0.5 where umin is the deficit velocity at the centerline and r0.5 is the 

radius at which the axial velocity deficit is equal to half the maximum deficit. Each 

profile was created by averaging all available data. 
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Figure 3.3: Iso-surfaces of streamwise velocity deficit 1 − 𝑢/𝑈∞ at four spanwise 

locations Δy/rv of vortex impingement. The surfaces extend over the streamwise distance 

from 0.125 C to 1 C upstream of the leading edge of the wing. 
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Figure 3.4: Plot of the maximum velocity deficit 1 −  𝑢/𝑈∞ along the centerline of the 

vortex for different spanwise locations Δy/rv of vortex impingement, as well as for the 

case of no vortex impingement, i.e., in absence of the follower wing. All cases are plotted 

as a function of streamwise location x´/C upstream of the leading-edge of the wing. 
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Figure 3.5: Iso-surfaces of streamwise vorticity ωxC/𝑈∞ at four spanwise locations Δy/rv 

of vortex impingement. The surfaces extend over the streamwise distance from 0.125 C 

to 1 C upstream of the leading edge of the wing. 
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Figure 3.6: Slices of azimuthal vorticity ωθC/𝑈∞ at four spanwise locations Δy/rv of 

vortex impingement. The slices extend over the streamwise distance from 0.125 C to 1 C 

upstream of the leading edge of the wing. 
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Figure 3.7: Sectional cuts of velocity defect, streamwise vorticity and azimuthal vorticity 

on streamwise-oriented planes at two different spanwise impingement locations Δy/rv. 

The sectional cuts extend over the streamwise distance from 0.125 C to 1 C upstream of 

the leading edge of the wing. 
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Figure 3.8: Longitudinal (axially-oriented) cuts of streamwise vorticity ωxC/𝑈∞ and 

streamwise velocity deficit 1 −  𝑢/𝑈∞ contours along the axis of the vortex for three 

different spanwise locations Δy/rv of vortex impingement. Also shown is a dashed line 

that represents the vortex core radius r*. 

 

 

 



70 

 
Figure 3.9: Iso-surfaces of upwash and downwash 𝑤/𝑈∞ at four spanwise locations 

Δy/rv of vortex impingement. The surfaces extend over the streamwise distance from 

0.125 C to 1 C upstream of the leading edge of the wing. 
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Figure 3.10: Cross-sectional cuts of upwash (positive) and downwash (negative) 

w/𝑈∞ for four different spanwise locations Δy/rv of vortex impingement at x´/C = 0.125. 

These plots also show (black) contour lines of wing-induced upwash w/𝑈∞ due to the 

follower wing in absence of the incident vortex. 
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Figure 3.11: Plot of the magnitude of maximum upwash and downwash for different 

spanwise locations Δy/rv of impingement, as well as the no follower wing case. All cases 

are plotted as a function of streamwise location x´/C upstream of the leading-edge of the 

wing. The shaded blue region represents the band of data corresponding to the no 

follower wing (FW) case. 
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Figure 3.12: Plot of the swirl ratio q for different spanwise locations Δy/rv of 

impingement, as well as the no follower wing case. All cases are plotted as a function of 

streamwise location x´/C upstream of the leading-edge of the wing. 
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Figure 3.13: Cross-sectional cuts of instantaneous streamwise vorticity ωxC/𝑈∞ on 

streamwise oriented planes at x´/C = 0.125 C; four different spanwise locations Δy/rv of 

impingement are shown. The three different images in each row show different 

instantaneous images. 
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Figure 3.14: Cross-sectional cuts of rms streamwise velocity urms/𝑈∞on streamwise-

oriented planes; four different spanwise locations Δy/rv of impingement are shown. 
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Figure 3.15: Cross-sectional cuts of rms streamwise vorticity (ωx)rms/(ωx)max on 

streamwise oriented planes; four different spanwise locations Δy/rv of impingement are 

shown. 
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CHAPTER 4 

TOPOLOGY OF VORTEX-WING INTERACTION 

 

4.1 OVERVIEW 

Recently there has been increased interest in formation flight, which can be 

represented by the interaction between a streamwise-oriented vortex and a wing. 

Formation flight has been shown to provide aerodynamic advantages for both biological 

and man-made fliers. It involves at least two wings, where the follower (downstream) 

wing is under the influence of the trailing vortex generated from the leader (upstream) 

wing. 

 A goal of the present experiments is to determine if generic modes of vortex-wing 

interaction exist at extreme values of Reynolds number and circulation of the incident 

vortex. It is hypothesized that the basic classes of interaction will be insensitive to 

Reynolds number. Irrespective of this hypothesis, however, the results of the present 

experiments are directly applicable to micro air vehicles, where the Reynolds number is 

relatively small. A central concept, which has not yet been addressed, is the nature of the 

streamline topology associated with the basic modes of interaction. The existence and 

location of critical points of this topology, including foci, bifurcation lines, saddle points, 

and nodal lines can provide deeper insight into the physics of generation of the basic 

modes of interaction, including extreme cases of enhancement and attenuation of the tip 

vortex from the wing. This investigation focuses on these issues and employs a technique 

of particle image velocimetry to characterize the flow structure. 
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4.2 EXPERIMENTAL SYSTEM AND TECHNIQUES 

  Experiments were performed in a free-surface water channel. Its test section was 

4877 mm long, 927 mm wide and 610 mm deep. The free stream velocity in the test 

section was 158 mm/s, giving a value of Reynolds number of 8000 based on the chord of 

the leader wing. An overview of the experimental arrangement is provided in Figure 4.1. 

The leader wing is oriented vertically; it is a NACA 0012 airfoil, which has a chord C = 

50.8 mm, and an angle of attack α = 16°. The leader wing extends upwards through the 

free surface. As a consequence, a tip vortex is generated only from the lower wing tip. 

The follower wing is a clear acrylic flat plate with a chord C = 50.8 mm, thickness t 

=1.5875 mm, span b = 203.2 mm, and angle of attack β = 4°. The streamwise distance 

between the two wings is Δx = 152.4 mm.  

 When the trailing vortex is formed from the tip of the leader wing, it will undergo 

a given trajectory influenced by induction effects as it approaches the follower wing. It is 

therefore necessary to offset the position of the tip of the leader wing to achieve the 

desired interaction with the trailer wing. The displacements Δy0 and Δz0 that resulted in a 

tip vortex impinging directly on the tip of the trailer wing were determined using 

monoscopic particle image velocimetry (MPIV) data. In this investigation, five different 

offsets Δy were examined, Δy = Δy0 – 12.7 mm, Δy0 – 3.175 mm, Δy0, Δy0 + 3.175 mm, 

and Δy0 + 12.7 mm, while three different Δz offsets were examined at each value of Δy, 

Δz = Δz0 – 3.175 mm, Δz0, Δz0 + 3.175 mm. 
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MPIV was employed to determine the quantitative structure of the vortices. It 

provides the two in-plane components of velocity. The flow was seeded with 11 μm 

hollow metallic coated plastic spheres such that 15-20 particle images were present in the 

interrogation window of 32 x 32 pixels. To illuminate these particles, a 3 mm thick laser 

sheet was produced by a dual-pulsed Nd-YAD laser operating at 14.29 Hz. Images were 

acquired from a camera that had a CCD array of 1600 x 1200 pixels. The image from the 

camera was then evaluated using a cross-correlation technique with 50% overlap, 

yielding 7227 vectors in the field of view. Each pixel is 48.8 μm/px, which corresponds 

to an interrogation window width of 1562 μm.  

The in-plane uncertainty was calculated using the technique described in Adrian 

and Westerweel (2011). The RMS random error for the in-plane velocity is between 5.1% 

and 7.2% of the freestream velocity. For this MPIV setup, the pixel size is large 

compared to the particle image diameter and therefore the bias error is small in 

comparison to the RMS random error. 

 For each experimental configuration, image acquisition was performed at 6.35 

mm intervals from a location 12.7 mm upstream of the leading edge of the follower wing 

to 12.7 mm downstream of its trailing edge. At each of these locations, 100 images were 

captured; they were then time-averaged to produce the final images. Based on 

convergence tests, an average of 100 images was found to be sufficient to represent the 

time-averaged flow, with the maximum values of spanwise velocity, upwash, and 

streamwise vorticity being within 3% of the converged values. 
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The flow structure at different streamwise locations was examined by translating 

the wing system to the desired location in the streamwise direction. The leader wing 

could move independently from the rest of the system, which allowed examination of the 

flow at successive spanwise locations of the leader wing.  

 

4.3 MODES OF VORTEX-WING INTERACTIONS: COMPUTATIONS AND 

EXPERIMENTS 

Variation of the offset of the incident vortex relative to the tip of the follower 

wing generates a number of modes of vortex-wing interaction. These modes are 

described in the following. 

4.3.1 Vertically-Oriented Vortex Dipole 

Figure 4.2 compares the computations of Garmann and Visbal (2015a) with the 

present experiments; a schematic of this interaction is given in Figure 4.1. The inception 

of the tip (red) vortex, which is enhanced by the upwash induced by the incident (blue) 

vortex, occurs for both computations and experiments at x´/C = 0.25 and increases in 

scale with streamwise distance x´/C along the chord of the wing. Simultaneously, the 

incident vortex is distorted at increasing values of x´/C. That is, its left side is flattened 

and its overall shape is elongated in the vertical direction due to interaction with the 

induced tip vortex. The vortex dipole formed by the incident vortex and the induced tip 

vortex rises vertically above the tip of the wing at successive values of x´/C. In the wake 
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of the trailer wing, at x´/C = 1.25, the vortex dipole is remarkably preserved, and the 

levels of streamwise vorticity ωxC/𝑈∞ are not significantly altered. 

4.3.2 Inclined Vortex Dipole 

Figure 4.3 displays both the computations of Barnes et al. (2015a) and the present 

experiments. At the leading edge of the wing x´/C = 0 the vertical position of the incident 

vortex is slightly above the surface of the wing. Similar to the interaction shown in Figure 

4.2, the initial formation of the tip vortex is evident at x´/C = 0.25. At successively larger 

values of x´/C, the induced tip vortex shows an increase in scale while it forms a dipole 

with the incident vortex. Due to the fact that the incident vortex is located above the tip 

vortex, the vortex dipole translates upwards and inboard, that is, its trajectory is inclined 

with respect to the surface of the plate. During this process, elongation of the shape of the 

incident vortex occurs due to its interaction with the tip vortex. Downstream of the 

trailing edge, at x´/C = 1.25, both vortices of the vortex dipole retain their overall forms 

and levels of streamwise vorticity ωxC/𝑈∞.  

4.3.3 Nested Vortex System Transforming into a Vortex Dipole 

 Figure 4.4 shows comparison of experiments with computations of Garmann and 

Visbal (2015a) for the case where the incident (blue) vortex is aligned with the tip of the 

wing. The structure of the incident vortex is distorted at x´/C = 0 as it encounters the tip 

of the wing. At x´/C = 0.25, formation of the tip (red) vortex is nested within the incident 

vortex. At successively larger values of x´/C, the tip vortex grows in scale and initiates 

departure from the tip region. Simultaneously, the incident vortex moves upward and 
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inboard, in accord with the self-induced motion of the incident vortex-tip vortex dipole 

along an inclined trajectory with respect to the surface of the plate. In the wake of the 

plate, at x´/C = 1.25, the vorticity levels of the tip and incident vortices are significantly 

attenuated, in contrast to the foregoing cases of vortex dipole development indicated in 

Figures 2 and 3, where the incident vortex was located significantly outboard of the tip of 

the wing.  

4.3.4 Inboard-Directed Vortex Dipole 

In Figure 4.5, which represents the computations of Barnes et al. (2015a) in 

comparison with the present experiments, the incident (blue) vortex is nearly aligned with 

the tip of the wing and located slightly above it. At x´/C = 0.25, a concentrated (red) 

vorticity layer is generated along the upper surface of the wing; it is located beneath the 

concentration of (blue) vorticity associated with the incident vortex. From x´/C = 0.5 to 

1.0, the incident (blue) vortex moves over the cluster of vorticity from the tip, while 

continuing to move inboard from the tip. Simultaneously, the computations indicate an 

identifiable, small concentration of (red) vorticity along the surface of the plate, whereas 

the experiments indicate a layer of elevated (red) vorticity along the plate beneath the 

incident vortex as it translates inboard. At x´/C = 1.25, the levels of (blue) vorticity in the 

incident vortex and the (red) vortex/vorticity layer from the tip are significantly degraded 

relative to the values at the trailing edge x´/C = 1.0.  

4.3.5 Inboard-Directed Incident Vortex 
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 Figure 4.6 shows the case of vortex-plate interaction where the incident vortex is 

slightly inboard and above the tip of the wing. The computations of Barnes et al. (2015a) 

are shown together with the present experiments. Downstream of the leading edge, at 

x´/C = 0.25, and along the upper surface of the wing, the cluster of vorticity takes an 

elongated form that extends well inboard of the tip of the wing for both computations and 

experiments. Over the region extending from x´/C = 0.5 to 1.0, the vorticity level of the 

(blue) cluster of vorticity decreases as it translates inboard from the tip. This translation is 

due to a ground effect whereby coexistence of the indicated vortex and its image within 

the plate induces motion along the plate. 

The formation of a tip vortex is suppressed in contrast to the enhanced formation 

of the tip vortex indicated in Figures 2 and 3. The onset of a small scale vortex in the 

computations is likely due to: the significantly smaller circulation of the incident vortex 

of the computations compared to experiments, Γv/(C𝑈∞) = 0.105 and 0.503 respectively; 

and the fact that the incident vortex in the experiments is closer to the tip than in 

computations. In the wake, at x´/C = 1.25, remnants of the incident vortex are almost 

nonexistent, and only a small-scale tip vortex exists in the computations. 

 

4.4 STREAMLINE TOPOLOGY OF VORTEX-WING INTERACTIONS 

The patterns of vorticity concentrations described in the foregoing define the 

basic modes of vortex-wing interaction. In order to provide a further physical basis for 

interpretation of these modes, streamline topology is employed. This approach, which 
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employs experimental imaging, provides a means for describing the compatibility 

between coexisting, adjacent regions of complex flow patterns in relation to the types and 

locations of critical points. In the following, representative modes of vortex-wing 

interaction are described using this topological approach. Some critical points such as 

half-saddle points are not addressed here for the purpose of clarity. 

4.4.1 Structure in absence of incident vortex 

Figure 4.7 shows patterns of time-averaged streamlines superimposed on colored 

contours of streamwise vorticity ωxC/𝑈∞ for the case of a free trailer wing, i.e., a wing in 

absence of an incident vortex. Images are shown at locations extending from upstream of 

the leading edge of the wing (plate) to the near wake, i.e., from x´/C = -0.25 to x´/C = 

1.25. At each value of x´/C, the patterns of vorticity contours are indicated separately in 

the inset. 

  Near the leading edge at x´/C = -0.25 and x´/C = 0 the upstream influence of the 

trailer wing on the incoming flow is evident. This is manifested as a region of upwash 

directly upstream of the leader wing, which is bounded on the outboard side by a 

bifurcation line BLb
+
. Just past the leading edge at x´/C = 0.25, a new bifurcation line 

BLa
+ 

occurs; it is associated with the flow wrapping around the wing tip. Furthermore, the 

first traces of the tip vortex can be seen as the small region of positive (red) vorticity near 

the wing tip.  

 Further along the chord of the wing, from x´/C = 0.5 to x´/C = 1, the tip vortex 

shows a stable focus, which is labeled Fc. Spiral foci, both stable and unstable, are 
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associated with axial velocity in the core, according to Perry and Chong (1990). The size 

and shape of this vortex do not change significantly over this region, which is in stark 

contrast to the evolution of the tip vortex seen in Figure 4.8. While BLb
+
 is still present 

outboard of the wing, BLa
+
 is not. Downstream of the trailing edge at x´/C = 1.25 the tip 

vortex has separated from the wing and is now surrounded by an unstable limit cycle, 

otherwise known as a positive closed bifurcation line, which feeds BLb
+
.  

4.4.2 Vertically-Oriented Vortex Dipole 

 Figure 4.8 shows patterns of time-averaged streamlines superimposed on colored 

contours of streamwise vorticity ωxC/𝑈∞ at locations extending from upstream of the 

leading edge of the plate to the near wake, i.e., from x´/C = -0.25 to x´/C = 1.25. At each 

value of x´/C, the patterns of vorticity contours are indicated separately in the inset.  

At x´/C = -0.25 and x´/C = 0, it is evident that the incident vortex is located 

outboard of the tip of the plate, and has a well-defined focus Fa; streamlines spiral either 

outward from, or inward towards, Fa. These spiral patterns are associated with the 

existence of an axial velocity component and either contraction or stretching of the 

vortex. Such spiral patterns are embedded within limit cycles of the streamlines. The 

limit cycle present in this case is unstable, similar to the limit cycle addressed in section 

4.4.1 Free Trailer Wing. Moreover, the nature of the axial flow for this vortex is known 

from the previously performed experiments of McKenna, Bross, and Rockwell (2016), 

which showed that the incident vortex has a velocity defect in the core for all spanwise 

impingement locations upstream of the leading edge of the trailer wing. Streamline 

patterns shown for other types of interaction in subsequent figures have the same 
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conceptual interpretation as in the foregoing, regarding a stable or unstable focus and 

limit cycle(s). 

Downstream of the leading-edge, at x´/C = 0.25, separation from the tip of the 

plate yields a positive (red) vorticity concentration that is associated with a pattern of 

streamlines that reattach to the upper surface of the plate. Inboard of this location, a small 

negative (blue) vorticity cluster is associated with a focus Fb. To account for existence of 

the upwash (upward-oriented streamlines) above the plate, and for that fact that the 

vortices associated with foci Fa and Fb involve clockwise-oriented swirling streamlines, 

saddle point SPa exists between them. Beneath the plate, another saddle point SPb exists; 

it allows compatibility between: the downwash beneath the plate; the upwash associated 

with the incident vortex; and the flow from the region below the plate into the feeding 

sheet of the tip (red) vortex.  

At x´/C = 0.5, the positive (red) vorticity concentration near the tip, originally 

evident at x´/C = 0.25, has developed into a vortex with focus Fc. Focus Fa of the incident 

vortex forms a dipole with Fc, thereby propelling Fa and Fc upwards, and creating the 

bifurcation line BLa
+
 originating from the accelerated flow through the dipole, i.e., the 

flow between Fa and Fc. This accelerated region of the flow has a maximum velocity that 

corresponds to 159% of the maximum azimuthal velocity of the incident vortex in the 

absence of the trailer wing (plate). The saddle point SPb still exists beneath the plate and 

is displaced downwards away from the plate. 

At x´/C = 0.75 and 1, the vortex involving Fc continues to develop, and detaches 

from the (orange-red) feeding sheet at the tip of the plate. The vortex dipole associated 
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with the foci Fa and Fc moves further upward. Simultaneously, the bifurcation line BLa
+
 

is deflected upwards.  

In the near wake, at x´/C = 1.25, the overall structure of the dipole associated with 

the major vorticity concentrations is preserved. The concentrations continue to be 

identified with the foci Fa and Fc. Separation from the trailing corner of the tip of the 

plate has, however generated a distorted limit cycle streamline on the inboard side of the 

vortex associated with the focus Fc. Moreover, the saddle point SPb beneath the vortex 

dipole persists. 

4.4.3 Inboard-Directed Vortex Dipole 

In Figure 4.9, the center of the incident vortex approaching the wing is slightly 

displaced from its tip in the outboard direction, as evident by the location of the focus Fa 

at the streamwise position x´/C = -0.25 upstream of the leading edge of the wing and x´/C 

= 0 at the leading edge. Moreover, at these locations, a positive bifurcation line BLa
+
 

arises from distortion of the incident vortex in presence of the tip of the wing. 

 At x´/C = 0.25, the flow structure replicates the major critical points indicated for 

the case of outboard interaction in Figure 4.8: foci Fa and Fb, and saddle point SPa. The 

foci Fa and Fb are, however, much closer together than for the case of outboard 

interaction in Figure 4.8. In addition, the region of streamline separation and 

reattachment at the tip of the edge associated with the positive (red) vorticity 

concentration now has a detectable focus Fc at its center, and the bifurcation line BLa
+
 

emerges from densely packed streamlines surrounding the incident vortex. An important 
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feature of this topology, in comparison with the pattern at the streamwise location in 

Figure 4.8, is the abrupt upward displacement of the focus Fa at x´/C = 0.25. This new 

position of Fa represents the genesis of the inclined vortex dipole, which develops at 

larger values of streamwise distance x´/C.   

Images at larger values of streamwise distance x´/C = 0.5 to 1 indicate further 

development of the inclined vortex dipole as it moves away from the tip of the wing 

along a trajectory at an angle of approximate 45° with respect to the wing surface. During 

this process, the saddle point SPa and a nodal line Na evident at x´/C = 0.5 give way to a 

bifurcation line BLb
+
 at x´/C = 0.75 and 1.0. Moreover, a new saddle point SPb at x´/C = 

0.5 and 0.75 allows compatibility between: the downwash beneath the plate; the flow into 

the feeding sheet of the vortex formed from the tip of the wing; and the flow through the 

center of the dipole.  

At x´/C = 1.0, departure of the positive (red) vorticity concentration identified by 

the focus Fc away from the tip of the wing is associated with disappearance of the saddle 

point SPb beneath the tip. A new positive cluster of positive vorticity has formed near the 

tip. To allow compatibly between the streamlines associated with this cluster and the 

focus Fc, a new saddle point SPc is formed. 

In the wake of the plate at x´/C = 1.25, all of the critical points of the flow 

topology defined at the trailing edge x´/C = 1.0 are preserved, and the saddle point SPc 

has rotated clockwise by approximately 90°. Moreover, comparison with the vorticity 

concentrations in the images shown in the inserts at x´/C = 1.0 and 1.25 indicate that they 

are also generally preserved, with some attenuation of higher levels. 
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4.4.4 Inboard-Directed Vortex 

Figure 4.10 shows the case of a slightly inboard interaction of the incident vortex 

with the leading-edge of the plate. That is, the center of the vortex is located just inboard 

of the tip of the plate and slightly above its leading-edge, such that the major share of 

vorticity ωxC/𝑈∞ is on the upper side of the plate, as indicated at streamwise locations 

upstream of and at the leading-edge of the plate, x´/C = -0.25 and 0. 

At x´/C = 0.25, a single focus Fa exists on the upper side of the plate, which is 

associated with the cluster of negative (blue) vorticity. The direction of swirl is in the 

clockwise direction, in accord with the incident vortex and the swirl exists both in the 

region above and below the surface of the plate. At the tip of the plate, a saddle point SPa 

exists. In fact, this saddle point persists for larger streamwise distances along the plate of 

x´/C = 0.5, 0.75 and 1.0. As shown particularly clearly at x´/C = 0.5 and 0.75, a small-

scale separation bubble, defined by the region of the separation and reattachment 

streamline in the immediate vicinity of the tip, occurs to the left of the saddle point. On 

the other hand, to the right of the saddle point, the streamlines pass about the region of 

the tip relatively undistorted to the region beneath the plate. For the limiting location at 

the trailing edge of the plate, i.e., at x´/C = 1.0, the saddle point rotates clockwise by 

approximately 90° such that it is located beneath the tip of the plate. This preservation of 

the small-scale separation-reattachment region at the tip of the plate in conjunction with 

the saddle point indicates that there is no formation of a tip vortex in contrast to the cases 

of the outboard and slightly outboard interactions of the incident vortex with the plate 

indicated in Figures 8 and 9. A complementary interpretation of lack of formation of a tip 
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vortex is as follows. The downwash of the streamlines in the immediate vicinity of the tip 

of the plate overwhelms the naturally occurring upwash due to angle of attack and 

thereby the tendency to form a tip vortex. 

A further observation associated with this slightly inboard interaction is as 

follows. The well-defined focus Fa that exists at x´/C = 0.25 is not identifiable at larger 

values of x´/C. This is due to the fact that the peak level of negative (blue) vorticity is 

attenuated at larger values of x´/C, and thereby cannot induce a localized region of swirl 

relative to the large-scale overall swirl associated with the original incident vortex, which 

is preserved over all locations up to the trailing edge at x´/C = 1.0. 

Although this slightly inboard interaction does not induce an enhanced tip vortex, 

in contrast to the cases of the outboard and slightly outboard interactions of Figures 8 and 

9, it does yield a layer of high level positive (red) vorticity along the upper surface of 

plate, this layer of positive vorticity is in accord with the streamlines directed from right 

to left, that is, from the tip to inboard locations along the surface of the plate. 

In the wake of the plate, that is, at x´/C = 1.25, the saddle point SPa is still 

identifiable. In addition, a focus Fb occurs; it is apparently associated with the shedding 

process from the trailing edge of the tip of the plate  

 

4.5 CONCLUSIONS 
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The impingement of a trailing vortex upon a wing has been characterized using a 

technique of particle image velocimetry. The present experiments are employed in 

conjunction with high fidelity computations at the Air Force Research Laboratory to 

classify the basic modes of vortex-wing interaction. The predominant parameter that 

dictates the mode of interaction is the dimensionless location of the incident vortex 

relative to the tip of the wing. Substantial differences in the values of dimensionless 

circulation and Reynolds number of the incident vortex between computations and 

experiments yield the same mode of interaction so long as the dimensionless position of 

the incident vortex is matched.  

The central focus of this investigation is to define the streamline topology for 

generic modes of interaction. The patterns of streamlines and the associated critical 

points, including foci, saddle points, bifurcation lines and nodal lines, provide insight into 

the physics of the interaction and genesis of the various types of interaction modes. When 

the incident vortex is located outboard of the tip of the wing, it forms a dipole with the 

enhanced vortex generated from the wing tip. This dipole involves a region of accelerated 

flow between the two vortices, which manifests as a bifurcation line that exists above and 

parallel to the plate. Saddle points above and below the tip of the plate allow complex, 

localized patterns of the flow to coexist. 

Substantially different streamline topology occurs if the incident vortex is located 

inboard of the wing tip. In this case, a portion of the incident vortex moves above the 

surface of the plate; it is initially identified with a focus which does not persist with 

increasing distance along the chord due to rapid attenuation of higher levels of vorticity. 
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Moreover, the streamline topology above and below the tip of the plate is greatly 

simplified, with absence of any saddle points, relative to the aforementioned case where 

the incident vortex is located outboard of the tip of the wing. At the tip of the wing, a 

separation bubble defined by separation-reattachment streamlines encloses only low level 

vorticity. Immediately adjacent to this bubble at the tip, a saddle point occurs. This 

separation bubble-saddle point system is remarkably invariant with increasing chordwise 

distance along the wing. This means that onset of a separation line at the tip does not 

occur and thereby formation of a tip vortex does not develop. This type of topology is 

compatible with the downwash that occurs immediately outboard of the saddle point.  
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Figure 4.1: Plan and side views of the experimental arrangement  
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Figure 4.2: Comparison of streamwise vorticity from computations of Garmann and 

Visbal (2015a) (Γv/(C𝑈∞) = 0.503; Re = 20,000) and present experiments (Γv/(C𝑈∞) = 

0.394; Re = 8,000) for the outboard interaction of an incident vortex with a plate. Images 

of Garmann et al (2015a) are after images appearing in Garmann, D. J. and Visbal, M. R. 

2015a Interactions of a streamwise-oriented vortex with a finite wing. Journal of Fluid 

Mechanics 767, 782-810. Courtesy of Cambridge University Press 
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Figure 4.3: Comparison of patterns of streamwise vorticity from Barnes et al. (2015a) 

(Γv/(C𝑈∞) = 0.105; Re = 30,000) and present experiments (Γv/(C𝑈∞) = 0.394; Re = 

8,000) patterns correspond to outboard interaction of an incident vortex with a plate. 

Images after Barnes et al (2015a) are reproduced with permission from Barnes, C. J., 

Visbal, M. R. & Gordnier, R. E. 2015a Analysis of streamwise-oriented vortex 

interactions for two wings in close proximity. Phys. Fluids 27 (015103). Copyright 2014, 

AIP Publishing LLC 
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Figure 4.4: Comparison of streamwise vorticity from computations of Garmann and 

Visbal (2015a) (Γv/(C𝑈∞) = 0.503; Re = 20,000) and present experiments (Γv/(C𝑈∞) = 

0.394; Re = 8,000) for the aligned interaction of an incident vortex with a plate. Images 

of Garmann et al (2015) are after images appearing in Garmann, D. J. and Visbal, M. R. 

2015a Interactions of a streamwise-oriented vortex with a finite wing. Journal of Fluid 

Mechanics 767, 782-810. Courtesy of Cambridge University Press. 
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Figure 4.5: Comparison of patterns of streamwise vorticity from Barnes et al. (2015a) 

(Γv/(C𝑈∞) = 0.105; Re = 30,000) and present experiments (Γv/(C𝑈∞) = 0.394; Re = 

8,000) patterns correspond to aligned interaction of an incident vortex with a plate. 

Images after Barnes et al (2015a) are reproduced with permission from Barnes, C. J., 

Visbal, M. R. & Gordnier, R. E. 2015a Analysis of streamwise-oriented vortex 

interactions for two wings in close proximity. Phys. Fluids 27 (015103). Copyright 2014, 

AIP Publishing LLC 
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Figure 4.6: Comparison of patterns of streamwise vorticity from Barnes et al. (2015a) 

(Γv/(C𝑈∞) = 0.105; Re = 30,000) and present experiments (Γv/(C𝑈∞) = 0.394; Re = 

8,000) patterns correspond to inboard interaction of an incident vortex with a plate. 

Images after Barnes et al (2015a) are reproduced with permission from Barnes, C. J., 

Visbal, M. R. & Gordnier, R. E. 2015a Analysis of streamwise-oriented vortex 

interactions for two wings in close proximity. Phys. Fluids 27 (015103). Copyright 2014, 

AIP Publishing LLC 
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Figure 4.7: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours located on streamwise oriented planes 
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Figure 4.8: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours located on streamwise oriented planes 
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Figure 4.9: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours located on streamwise oriented planes. 
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Figure 4.10: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours located on streamwise oriented planes. 
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CHAPTER 5 

INTERACTION OF A TRAILING VORTEX WITH AN OSCILLATING WING 

 

5.1 OVERVIEW 

Interactions between vortices and bodies and the associated unsteady loading have 

been reviewed by Rockwell (1998). One class of interaction involves an incident vortex 

with its axis oriented in the streamwise direction. Applications include vortices incident 

upon the wing of a trailing aircraft in formation flight, the fin or tail of an aircraft, and 

blading in turbomachinery. While the interaction with a stationary wing has been 

examined extensively, relatively little attention has been devoted to the case of a trailing 

vortex impinging on an oscillation wing. Investigation into an oscillating wing would 

reveal the underlying flow physics in applications where wings were bending or flapping, 

both of these cases are common in formation flight.  

The focus of this investigation is on the physics of interaction of an incident 

vortex with an oscillating wing, in particular the unexplored effect of outboard 

displacement of the vortex from the tip of the wing. It is anticipated that the nature of this 

interaction will vary during the oscillation cycle of the wing. More specifically, variations 

of the trajectory of the incident vortex, potential shedding of vorticity from the tip of the 

wing, and net upwash and downwash outboard of the wing tip are anticipated during the 

oscillation cycle. The interrelationship between these features will be pursued. 
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5.2 EXPERIMENTAL SYSTEMS AND TECHNIQUES 

A free-surface water channel was employed in the present experiments; it had a 

test section length of 4877 mm, a width of 927 mm, and a depth of 610 mm. The 

freestream turbulence intensity was 0.3%, and the freestream velocity was 𝑈∞ = 158 

mm/s, which corresponded to a Reynolds number of 8000 based on the wing chord. The 

experimental setup is shown in figure 5.1(a). The vortex generator (blue) is a squared tip 

NACA 0012 airfoil which has chord C = 50.8 mm, angle of attack α = 8° and is oriented 

vertically. The wing (yellow) is a clear acrylic flat plate with chord C = 50.8 mm, 

thickness t = 3.175 mm, span b = 203.2 mm, and angle of attack β = 0°. The streamwise 

separation between the two wings is held constant in these experiments at Δx = 254 mm.  

 The vertical Δz and spanwise Δy offsets relative to the tip of the wing were 

defined by the trajectory of the vortex shed from the vortex generator. Preliminary mono 

particle image velocimetry (MPIV) images were acquired to determine which values of 

vertical and spanwise offset led to impingement of the tip vortex from the vortex 

generator on the tip of the wing. This location was defined by the vortex generator offsets 

Δy0 and Δz0. In this investigation, four different values of spanwise offset Δy were 

examined, Δy = Δy0 + 19.05 mm, Δy0 + 12.7 mm, Δy0 + 6.35 mm, and Δy0, while Δz = 

Δz0, i.e., no offset in the vertical direction. 

To allow precise movement of the components of the experimental arrangement 

during experiments, a motion control system was used. It involved two Compumotor 

stepper motors interfaced with National Instruments P70530 micro-stepper drives, a 

National Instruments PCI-7344 4-card, and a UMI-7764 indexer box. Oscillation of the 
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vertical position of the wing was achieved by applying a constant angular velocity to a 

wheel which had an off-center hole and was connected to the wing via an arm. This 

connection translated the rotational motion of the wheel into z sinusoidal perturbation in 

the heaving mode, which had an amplitude A = 6 mm and a frequency f = 2.5 Hz. Figure 

5.1(b) depicts the position and velocity of the wing during the heaving cycle. 

Monoscopic particle image velocimetry (MPIV) was employed to determine the 

quantitative structure of the vortices, which provides the two in-plane components of 

velocity. The flow was seeded with 11 μm hollow metallic coated plastic spheres such 

that 15-20 particle images were present in the interrogation window of 32 x 32 pixels. To 

illuminate these particles, a 3 mm thick laser sheet was produced by a dual-pulsed Nd-

YAD laser operating at 10 Hz, which allowed eight images to be captured during each 

heaving cycle. Images were acquired with a camera that had a CCD array of 1600 x 1200 

pixels. The image from the camera was then evaluated using a cross-correlation 

technique with 50% overlap, yielding 7227 vectors in the field of view. Each pixel is 

52.04 μm/px, which corresponds to an interrogation window width of 1665.28 μm.  

The in-plane uncertainty was calculated using the technique described in Adrian 

and Westerweel (2011). The RMS random error for the in-plane velocity is between 5.1% 

and 7.2% of the freestream velocity. For this MPIV setup, the pixel size is large 

compared to the particle image diameter and therefore the bias error associated with the 

uncertainty in the location of a particle is small in comparison to the RMS random error. 

Another source of bias error comes from calculating out-of-plane vorticity, which 

requires the comparison of several nearby velocity vectors. Soria et al. (1995) showed 
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that the distances between these vectors can cause errors that deterministically 

underpredict the vorticity in the core of an Oseen vortex, which is a reasonable 

approximation of the incident vortex of the present experiments. Consideration of six 

velocity vectors along the radius of the vortex, defined as the radial distance from the 

vortex axis to the maximum tangential velocity, gives a maximum out-of-plane vorticity 

bias error of 3% along the vortex axis. This bias error decreases linearly as the radial 

distance from the vortex axis increases. 

 For each experimental configuration, image acquisition was performed at 

intervals of 12.7 mm intervals extending from a location 25.4 mm upstream of the 

leading edge of the wing to 50.8 mm downstream of its trailing edge. At each location, 

640 images were captured, which corresponded to 80 images per phase. These images 

were then phase-averaged, a process performed by averaging every image at a certain 

phase, to produce the final images. Based on convergence tests, an average of 80 images 

was found to be sufficient to represent the phase-averaged flow, with the maximum 

values of spanwise velocity, upwash, and streamwise vorticity being within 4% of the 

converged values. 

The flow structure at different streamwise locations was examined by translating 

the wing system to the desired position. The vortex generator could move independently 

from the rest of the system, which allowed investigation of different locations of vortex 

impingement upon the trailer wing.  
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5.3 SIMULTANEOUS EFFECTS OF WING MOTION AND INCIDENT VORTEX 

ON FLOW STRUCTURE 

5.3.1 Patterns of Streamwise Vorticity  

Figure 2 shows contours of streamwise vorticity ωx at the half-chord location 

along the wing. The vertical displacement zw and velocity ww of the wing are indicated in 

the diagrams at the bottom of the layout. The downstroke zw occurs from φ = 0 to π, and 

the upstroke from π to 2π. The vertical velocity ww of the wing is ww = 0 at its extreme 

positions, φ = 0 and π. Moreover, the maximum positive velocity occurs at φ = 3π/2 

while maximum negative velocity is at φ = π/2.  

 For the case where the incident vortex is located furthest outboard, Δy/C = 0.375, 

shown in the left column of images of figure 5.2, the shape of the incident vortex, 

comprised of negative (blue) vorticity, is relatively unchanged over the full cycle of 

motion of the wing. On the other hand, for the vortex formed from the tip of the edge, 

comprised of positive (red) vorticity, its existence is evident only over a portion of the 

oscillation cycle of the wing. As the downstroke begins, at φ = π/4, the tip velocity has a 

significant negative value; a small region of (red) vorticity is apparent at the tip of the 

wing. This scale of the tip vortex increases as the negative (downward) velocity of the 

wing increases, reaching its largest size at φ = π/2 and 3π/4. At the extreme position of 

the downstroke, the region of vorticity associated with the tip vortex decreases in scale. 

The upstroke immediately follows at φ = 5π/4, where there is only a very small region of 
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positive vorticity above the surface of the wing. For the remainder of the rising motion of 

the wing, there is no positive vorticity present in the field of view. 

 The same general trend as in the foregoing, with several distinctive differences, 

occurs for the vortex offset Δy/C = 0.25 shown in the second column of images of figure 

5.2. In this case, the incident (blue) vortex becomes slightly distorted as the (red) tip 

vortex increases in scale and strength. The shape of the vortex goes from circular to 

oblong, over the range of phase angle from φ = 0 to π, whereby the top of the incident 

vortex leans towards the tip vortex. As will be shown subsequently, this distortion is 

associated with a dipole involving the two vortices. The close proximity of the incident 

vortex to the tip of the wing has an effect on the structure of the tip vortex, which has 

increased in scale and strength (defined as higher vorticity values, darker red) at all 

phases, relative to the outboard case shown in the first column of images. 

 For the incident vortex at an offset of Δy/C = 0.125, represented in the third 

column of images of figure 5.2, the shape and position of the incident vortex experiences 

large variations with phase angle of the wing motion. This observation is due to the close 

proximity of the incident vortex to the wing.  

 Finally, for the extreme case where the incident vortex is nominally aligned with 

the tip of the wing, Δy/C = 0, corresponding to the images in the fourth column of figure 

5.2, the incident (blue) vortex is not detectable from φ = π/4 to 3π/4. For this range of 

phase angle, it impinges directly on the tip of the wing, whereas outside this range of 

phase angle, the trajectory of the incident vortex is deflected away from the tip of the 

wing. Furthermore, a well-defined (red) tip vortex does not form at the wing tip. The only 
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positive vorticity is in the form of a small layer of low level (yellow) vorticity that wraps 

around the tip; it remains adjacent to the surface of the wing from φ = π/2 to 5π/4. 

 The effect of offset Δy/C of the incident vortex on the maximum value of positive 

(red) streamwise vorticity (ωx)max is as follows. At Δy/C = 0.375, 0.25, and 0.125, the 

respective values are (ωx)max = 18.24, 22.60, and 18.32. That is, as the impingement 

location of the vortex moves inboard, the maximum value of vorticity initially increases, 

then decreases until the tip vortex is eliminated entirely at Δy/C =0 corresponding to the 

aligned interaction. This maximum value (ωx)max is not achieved at φ = π/2, where the 

wing has its maximum negative velocity ww, but instead at φ = 3π/4. That is, the tip 

vortex continues to increase in strength despite the deceleration of the wing, resulting in a 

phase lag between the occurrence of maximum vorticity of the tip vortex and the motion 

of the wing. 

5.3.2 Overview of Flow Structure  

 Figure 5.3 compares: contours of upwash w (upper row of images); and 

streamlines superimposed on contours of streamwise vorticity ωx (lower row). The offset 

of the incident vortex is at its furthest outboard location Δy/C = 0.375, and the images 

correspond to the two phase angles φ = π/2 to 3π/2 during the oscillation cycle. These 

values of φ represent the largest magnitudes of wing velocity ww, in the negative 

(downward) and positive (upward) directions respectively. 

 The images corresponding to the phase angle φ = π/2 in the left column in figure 

5.3 show three distinct regions of vertical velocity. A small region of (blue) downwash is 
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located furthest inboard, a large region of upwash (red-yellow) extends from the wing tip 

outwards, and an additional region of downwash is located furthest outboard. These 

contours can be physically interpreted with the aid of the corresponding streamlines in 

figure 5.3. The closely spaced streamlines near the tip of the wing indicate that the flow is 

accelerated in that region. This observation is due to the combined effect of the upwash 

induced by the downward velocity of the wing and the upwash induced by the incident 

vortex. These components combine to form the elongated (red-yellow) region of net 

upwash indicated in figure 5.3. The two regions of (blue) net downwash are associated 

with the inboard portion of the forming tip vortex and the outboard portion of the incident 

vortex. 

 Next, consider the images corresponding to the phase angle φ = 3π/2 in the right 

column of figure 5.3. The differences between these contours of (red-yellow) upwash and 

the previously discussed contours at φ = π/2 are stark. The present contours show a 

region of upwash that has smaller magnitude and scale than the upwash at φ = π/2 and 

the nearby region of (blue) downwash at φ = 3π/2. Comparing the outboard region of 

(blue) downwash at φ = π/2 and 3π/2, it has increased in size at φ = 3π/2. The streamlines 

reveal that the upward motion of the wing, represented by positive ww, induces a 

component of downwash, and thereby results in a decrease of the net (red-yellow) 

upwash and net (blue) downwash outboard of the tip. In essence, the wing-induced 

downwash is counter to the upwash induced by the incident vortex, which is the origin of 

the foregoing changes. 
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Comparison of the patterns of streamline topology superposed on patterns of 

vorticity in figure 5.3, shows dramatic differences at φ = π/2 and 3π/2, corresponding 

respectively to maximum negative and positive velocities of the wing. That is, the 

patterns at maximum negative and positive values of wing velocity are not simply mirror 

images of each other. They are fundamentally different, with well-defined shedding of 

vorticity from the tip of the wing and formation of a dipole system of vorticity and 

streamline topology at the maximum negative velocity of the wing. At the maximum 

positive velocity of the wing, none of these major features are present. These differences 

are particularly remarkable in view of the fact that the vertical displacement and 

maximum magnitude of velocity of the oscillating wing are only 6% of the wing chord 

and 6% of the freestream velocity respectively; that is, the effect of the wing oscillation 

or perturbation is greatly magnified in terms of the consequences for streamline topology 

and formation of a tip vortex.  

5.3.3 Patterns of Upwash and Downwash 

 Large offset of incident vortex Figure 5.4 shows color contours of (red) upwash 

and (blue) downwash for the case where the incident vortex is displaced furthest in the 

outboard direction from the tip of the wing, i.e., Δy/C = 0.375. Contours of black solid 

lines and dashed lines superposed on the color contours represent respectively upwash 

and downwash in absence of the incident vortex.  

The red-yellow contours of upwash indicate that the largest values occur at the 

phase angles φ = π/2 and 3π/4. At these values of φ, there are two primary contributions 

to the net value of upwash: the upwash indicated by the contours of solid lines arising 
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from downward velocity of the tip of the wing; and upwash induced by the incident 

vortex. These contributions are separated spatially over the range of phase angles from φ 

= π/4 to π, where there are two local maxima of upwash. The local maximum near the 

wing is mostly due to the downward velocity of the tip, while the maximum located 

further outboard is due to the upwash of the incident vortex. On the other hand, the 

yellow-orange contours at values of φ = 3π/2, 7π/4, and 0 represent relatively small 

values of net upwash, which are due to the counteracting effects of: the downwash due to 

the upward velocity of the tip indicated by the black dashed line contours; and the 

upwash due to the incident vortex. 

The magnitude and scale of the (blue) contours of downwash also undergo 

changes during the oscillation cycle of the wing. They are large when substantial 

downwash arises from the motion of the wing, as represented by the dashed line contours 

at values of φ = 3π/2, 7π/4, and 0.  

 Moderate offset of incident vortex Figure 5.5 shows images corresponding to the 

incident vortex located closer to the tip of the wing, that is, the dimensionless 

displacement of the vortex axis is Δy/C = 0.25. The entire pattern of (red-yellow) upwash 

and (blue) downwash is shifted closer to the tip of the wing relative to the pattern shown 

in figure 5.4. Furthermore, the pattern of upwash is contracted substantially in the 

spanwise direction, and the two local maxima of the upwash contours evident over the 

range of phase angles from φ = π/4 to π in the image layout of figure 5.4 have now 

merged. Moreover, the corresponding concentrations of (red) vorticity shed from the tip 
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of the wing have a larger scale than those in figure 5.4, indicating a larger value of 

circulation.  

Small offset of incident vortex Figure 5.6 shows that when the incident vortex is 

located even closer to the tip of the wing, Δy/C = 0.125, as represented by the images of 

figure 5.6, the patterns of (red) upwash take on a distinctly different form, namely a 

narrow cluster that eventually rises above the tip and decreases in magnitude at larger 

values of phase angle. The patterns of (red) upwash and (blue) downwash form a dipole-

like combination at most values of phase angle φ. 

A further point is that the magnitudes of regions of (blue) downwash are greatly 

diminished from those given in figure 5.5. In fact, at φ = 3π/4 there are no contours of 

downwash outboard of the wing tip. Apparently the magnitude of the upwash induced in 

this region by the wing motion is sufficient to cancel the downwash associated with the 

incident vortex. 

 Effect of vortex offset on interrelationship between upwash and vorticity. Figure 

5.7 shows line contours of upwash superimposed on color contours of vorticity for the 

four values of offset of the incident vortex. At the offset Δy/C = 0.375, the spanwise 

extent of the upwash extends from the incident (blue) vortex towards the shed (red-

yellow) vortex during the downstroke from φ = π/4 to π, in order to conjoin the two 

regions of upwash. During the upstroke, extending from φ = 5π/4 to 0, this process is 

reversed, until the only remaining region of upwash is that associated with the incident 

vortex. Similar patterns are evident for the vortex offset Δy/C = 0.25. In this case, the two 
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vortices are close enough that the upwash region extends towards the wing except at 

values of phase where the wing has a large value of positive (upward) velocity, i.e., φ = 

3π/2 and 7π/4. 

 When the incident vortex is offset a small distance from the tip, Δy/C = 0.125, 

there is no meaningful distinction between the two regions of upwash. The compressed 

nature of the dipole causes the line contours to be very closely spaced, representing a 

large rise in velocity over a short distance. The inclined nature of the dipole is also 

apparent in this case, with the contours of upwash wrapping around the tip of the wing.  

 The maximum value of upwash increases at Δy/C = 0.375 relative to Δy/C = 0. 25, 

but then decreases from Δy/C = 0.25 to 0. This observation correlates with changes of the 

maximum value of streamwise vorticity ωx with Δy/C in figure 5.2. As previously 

indicated, there is essentially no upwash for the aligned interaction case, Δy/C = 0. 

5.3.4 Patterns of Upwash and Spanwise Velocity 

 Figure 5.8 shows (black) line contours of upwash w superimposed on color 

contours of spanwise velocity v for φ = 3π/4. For the outboard location Δy/C = 0.375 of 

the incident vortex, there are well defined regions of positive (yellow) and negative (blue) 

spanwise velocity well outboard of the tip, which are associated with the incident vortex. 

Near the wing tip there is a small region of positive spanwise velocity beneath the tip, 

and a region of negative positive velocity above the tip. In short, fluid moves around the 

wing tip, from the bottom to the top surface. 
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 At Δy/C = 0.25, the two regions of negative spanwise velocity have merged into 

one, which extends from above the wing to well outboard of the tip. This is due to the 

close proximity of the incident vortex to the tip, as well as the slight incline of the vortex 

dipole, which is clearly visible in figure 5.2. Further inboard, at Δy/C = 0.125, the 

magnitude of negative spanwise velocity has increased, and there is no longer a region of 

positive spanwise velocity above the tip. Correspondingly, the incident vortex is above 

the surface of the wing and forms a dipole with the vortex shed from the tip of the wing 

(see patterns of vorticity in figure 5.2). Associated with this dipole is an inboard-directed 

jet evident in figure 5.8. For the aligned case, Δy/C = 0, there is lack of a vortex dipole 

(compare pattern of vorticity in Figure 5.2) and only a region of negative (dark blue) 

spanwise velocity, which represents a horizontal, inboard-directed jet along the upper 

surface of the wing. 

5.3.5 Patterns of Streamline Topology  

 Figure 5.9 shows streamlines superimposed on color contours of vorticity at the 

phase angle φ = π/2 during the oscillation cycle of the wing. The smaller image at the 

center of the layout corresponds to the case of no incident vortex, that is, the oscillating 

wing in absence of an incident vortex. The four larger images represent varying degrees 

of offset Δy/C of the centerline of the incident vortex relative to the tip of the oscillating 

wing. Images in the inset of each streamline pattern show the patterns of vorticity. 

At φ = π/2 the wing is undergoing its maximum negative velocity, ww, as 

indicated in the schematic at the bottom of the figure layout. For the case of no incident 

vortex this negative (downward) velocity of the wing is associated with upwash outboard 
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of the wing tip. Moreover, in the immediate vicinity of the wing tip, a focus Fc exists; it is 

associated with generation of positive (yellow) vorticity caused by the motion of the 

wing.  

In presence of the incident vortex, displaced from the tip of the wing by distances 

of Δy/C = 0.375, 0.25 and 0.125, focus Fc still occurs immediately adjacent to the tip. 

Another focus Fb is located above the surface of the wing for Δy/C = 0.25 and 0.125; this 

focus is associated with the tip vortex. The (red) positive vorticity concentration 

surrounding focus Fb is connected to a positive vorticity feeding sheet which extends 

around the tip of the wing. Between the (blue) incident vortex and the tip of the wing, the 

spacing between streamlines is small indicating a region of large velocity for all values of 

Δy/C; this is due to the vortex dipole. The accelerated flow is mostly upwash for Δy/C = 

0.375, but as the dipole inclines at values of offset Δy/C = 0.25 and 0.125, the flow is also 

accelerated in the spanwise direction. A further topological critical point, evident at 

values of vortex offset of Δy/C = 0.25 and 0.125, is the saddle point SPa, which allows 

compatibility between different regions of the streamline patterns. 

On the other hand, for the case where the incident vortex is aligned with the tip of 

the wing, Δy/C = 0, no residual (blue) regions of vorticity are evident. However Fc and 

SPa are still present. Focus Fc is associated with a low level (yellow) layer of vorticity 

extending from the tip, and SPa allows for compatibility between this vorticity and the 

downwash outside of the tip. 

Figure 5.10 shows the streamline topology at a phase angle of φ = 3π/4, that is, 

immediately following attainment of the maximum negative velocity of the wing. For 
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values of vortex offset relative to the tip of the wing of Δy/C = 0.375, 0.25 and 0.125, the 

vortex dipole, which is indicated by the spiral patterns of streamlines having Fa and Fb as 

their foci, have rotated in the counterclockwise direction, relative to their positions in 

figure 5.9. Moreover, the saddle points SPa and SPb also rotate in the same direction. 

 For the case where the incident vortex is aligned with the tip of the edge, Δy/C = 

0, the streamlines passing through the saddle point SPa provide boundaries of the region 

within which the focus Fc of the tip vortex occurs. 

 Taking an overview of the general features of the patterns of streamline topology 

at Δy/C = 0.375, 0.25 and 0.125 in both figures 9 and 10, in comparison with the image 

for the case of no incident vortex, it is apparent that presence of the incident vortex 

dramatically enhances the magnitude and scale of the tip vortex, thereby giving rise to a 

dipole vortex system involving the tip vortex and the incident vortex. As a consequence, 

the incident vortex is displaced significantly in the vertical direction with decreasing 

values of Δy/C until, at the smallest value, it is positioned well above the tip of the wing. 

All of these features become undetectable and irrelevant when the incident vortex is 

nominally aligned with the tip of the wing; its coherence is lost. 

Figure 5.11 is at the value of phase angle φ = 5π/4, and as indicated in the 

schematic at the bottom of the image layout, this phase corresponds to the upstroke of the 

wing and the wing velocity ww is nearly at its maximum positive value. Focus Fa still 

exists for all positive values of vortex offset Δy/C. It is now present in the extreme case 

where the incident vortex is nominally aligned, Δy/C = 0, with the tip of the wing. In fact, 

in this case, the incident vortex is well above the surface of the wing. Moreover, for all 
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values of Δy/C, a single saddle point SPc exists above, and well inboard of, the tip of the 

wing. This saddle point is at the interface between the flow regions dominated by the 

incident vortex and the inboard focus Fd. The pronounced concentrations of (red) positive 

vorticity shed from the tip of the wing have degenerated both in magnitude and scale 

relative to earlier values of phase angle during the oscillation cycle. At Δy/C = 0, the 

yellow layer of vorticity along the surface of the wing is due to the induced boundary 

layer, which involves flow from right to left along the upper surface.  

 Figure 5.12 represents attainment of the maximum positive (upward) velocity ww 

of the wing at the value of phase angle φ = 3π/2. For the case of no incident vortex, 

represented by the small image at the center of the layout of figure 5.12, a well-defined 

concentration of (blue) negative vorticity is shed from the tip of the wing and focus Fe is 

associated with this negative concentration. Furthermore, in the region immediately 

outboard of the tip of the wing, the induced velocity is in the downward direction, i.e., 

downwash occurs. In presence of the incident vortex, the integrity of the associated (blue) 

region of negative vorticity is maintained for all values of vortex offset Δy/C. It is 

coincident with the focus Fa of the swirling streamline pattern. For decreasing values of 

offset Δy/C = 0.375, 0.25 and 0.125, the center of the incident vortex was further above 

the tip of the wing and at Δy/C = 0, it remains above the tip. No saddle points exist in all 

images. A well-defined positive bifurcation line BLa is formed above the surface of the 

wing except at the largest value of incident vortex offset of Δy/C = 0.375. Furthermore, 

there is no formation of a red positive tip vortex for all values of Δy/C due to the 
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counteracting effects of downwash that is induced outboard of the tip of the wing and 

upwash induced by the incident vortex. 

 Comparison of the patterns of streamline topology and the associated 

concentrations of vorticity for the case where the wing has its maximum negative 

velocity in figure 5.9 and its maximum positive velocity in figure 5.12 shows dramatic 

differences. That is, the patterns at maximum negative and positive velocity are not 

simply mirror images of each other. They are fundamentally different, with well-defined 

shedding of vorticity from the tip of the wing and formation of a dipole system of 

vorticity and streamline topology at the maximum negative velocity of the wing. At the 

maximum positive velocity of the wing, none of these major features are present. 

Furthermore, at the maximum negative velocity of the wing, when there is zero offset 

between the incident vortex and the tip of the wing, its coherence is destroyed and the 

incident vortex has no apparent consequence for the shedding of vorticity from the tip of 

the wing. Conversely, at the maximum positive velocity of the wing, the incident vortex 

maintains its integrity and is displaced well above the tip of the wing. This small 

oscillation results in effects in the flow field which are greatly enhanced relative to its 

magnitude. 

5.3.6 Volume Representations of Vorticity and Upwash 

 Figures 13 through 16 show volume reconstructions of the entire flow field 

surrounding the wing. These images extend from half a chord upstream of the wing (the 

bottom-most slice) to a chord downstream of the trailing edge (the upper-most slice). 
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 Figure 5.13 shows slices of streamwise vorticity ωx for the largest offset Δy/C = 

0.375 of the incident vortex from the tip of the wing. The incident vortex composed of 

negative (blue) vorticity is evident on the left side of each frame. In agreement with 

figure 5.2, at x’/C = 0.5, the position of the incident vortex does not vary significantly 

during motion of the wing. Conversely, the tip vortex undergoes formation and shedding 

over the wing oscillation cycle. During the downstroke, the scale and magnitude of (red) 

vorticity vary with both phase and streamwise position along the chord. Overall, the 

images of figure 5.13 indicate that the physics indicated in figure 5.2 at the mid-chord 

actually extend over the entire chord of the wing.  

Figure 5.14 shows four pairs of images that directly compare net (red-yellow) 

upwash immediately outboard of the tip of the wing and formation and shedding of (red) 

axial vorticity ωx from the tip at four values of phase angle φ of the oscillating wing. At 

φ = 0 there is little positive vorticity along the chord of the wing, and an examination of 

the upwash reveals that only lower level (orange-yellow) concentrations exists in this 

region. The wing reaches its maximum negative velocity at φ = π/2 and, at this stage, the 

tip vortex has formed along the chord of the wing. This vortex arises from the 

correspondingly high levels of upwash that are now present between the incident vortex 

and the wing. As phase angle φ continues to increase, the patterns of large and small 

upwash move along the tip of the wing into its wake and, correspondingly, the 

concentrations of shed vorticity shed from the tip are convected downstream as well. This 

process repeats itself with every oscillation cycle of the wing. 
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 Figure 5.15 shows slices of streamwise vorticity for the limiting case where the 

axis of the incident vortex is aligned with the tip of the wing i.e., Δy/C = 0. Keep in mind 

that the amplitude of the wing motion is only 6% of its chord, that is, zw/C = 0.06. During 

the downstroke the wing moves low enough such that the majority of the vortex moves 

over the upper surface of the wing. This can be seen in the third slice downstream at x’/C 

= 0 from φ = 0 to 3π/4. From φ = π to 5π/4 this negative (blue) vorticity associated with 

the tip vortex moves in the downstream direction along the upper surface of the wing. 

The upward motion of the wing, which began during these values of φ, moves the wing 

progressively higher towards the incident vortex. As the vertical distance between the 

wing and the incident vortex decreases, the strength of the interaction between the vortex 

and its mirror image vortex inside the surface of the wing increases. This interaction 

moves the incident vortex outboard to the tip, where the upward motion of the plate 

draws it around the tip. By φ = 7π/4, this vorticity is split by the wing, and any remaining 

vorticity near the trailing edge of the wing is shed. Such vorticity is evident in the wake 

during the first several phases from φ = 0 to 3π/4. This volume reconstruction again 

shows that the trends apparent at the half chord extend over the entire chordwise extent of 

the wing. That is, the incident vortex moves above the upper surface of the wing when 

the wing is at its lowest position, and is eliminated due to direct interaction with the wing 

during its upstroke. 

 The region of positive (red-yellow) vorticity along the surface of the wing also 

varies during the oscillation cycle. It has the largest extent when the wing has large 
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negative velocity wv. While these are the same values of phase where the tip vortex had 

its largest spatial extent at other values of Δy/C, a tip vortex does not form in this case. 

Figure 5.16 shows patterns of upwash corresponding to figure 5.15 (Δy/C = 0). 

This volume reconstruction represents slices of upwash and downwash near the wing for 

the aligned incident vortex. Focusing on the region of (blue) downwash, it first 

diminishes, then disappears along the chord of the wing during the downstroke until φ = 

π. Subsequently, during the upstroke, the downwash increases in magnitude and scale. 

For the images corresponding to the largest offset of the incident vortex, given in figure 

5.14, the upwash associated with the incident vortex is directly outboard of the tip, and it 

combines with the flow moving around the tip caused by the motion of the wing. In the 

present case the location of the incident vortex causes its downwash to be positioned 

directly outboard of the tip. Therefore, the magnitude of the downwash outboard of the 

tip decreases during the downstroke and increases during the upstroke. 

 

5.4. CONCLUSIONS 

Modes of incident vortex-oscillating wing interaction may be defined as follows: 

(i) the trajectory of the incident vortex is largely unaltered when its impingement location 

is displaced a distance Δy/C = 0.375 outboard of the tip of the wing, in which C is the 

chord of the wing; (ii) its trajectory is substantially altered, with deviations in both the 

spanwise and surface normal directions to the wing, when the impingement location is in 

the range Δy/C = 0.25 or 0.125; and (iii) its trajectory undergoes changes in spanwise 
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position over part of the oscillation cycle and disintegration over the remaining portion of 

the cycle when it is nominally aligned with the tip of the wing, i.e., Δy/C = 0.  

For all of the foregoing modes, shedding of positive vorticity and formation of a 

vortex from the tip of the oscillating wing occurs only over a portion of the oscillation 

cycle. The maximum vorticity and circulation of the shed vortex occurs for the mode (ii) 

interaction of the incident vortex. In fact, for this mode, the trajectory of the incident 

vortex is closely linked to the formation of the tip vortex. On the other hand, for mode 

(iii), where direct encounter of the incident vortex with the tip occurs over a portion of 

the oscillation cycle, only very low level shedding of vorticity occurs from the tip. 

The magnitude and scale of the vorticity shed from the tip of the wing is dictated 

by the magnitude of the upwash immediately outboard of the tip of the wing. This 

upwash is due to two contributions: the upwash arising from the small amplitude motion 

of the wing; and the upwash induced by the incident vortex. These two contributions may 

be either mutually reinforcing or counteracting, depending on the phase angle of the wing 

motion. As a consequence, the magnitude and scale of the net upwash immediately 

outboard of the wing tip can vary substantially during the oscillation cycle. Large 

magnitude positive vorticity is shed when the tip velocity of the wing is negative. This 

observation arises from the fact that the induced upwash immediately outboard of the 

wing tip is positive when the tip velocity is negative, thereby reinforcing the upwash 

induced by the incident vortex, giving a large magnitude of net upwash and maximum 

strength of the shed vorticity/vortex from the tip. 
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The magnitude and scale of the foregoing patterns of upwash are influenced by 

the offset of the incident vortex from the wing tip. As the offset is decreased, the 

magnitude and scale of the vorticity shed from the tip of the wing initially increases, then 

decreases until the limiting case of no shed vorticity when the vortex is aligned with the 

tip of the wing. This trend can be interpreted in terms of distinctive forms of upwash 

patterns in relation to the vorticity concentrations of the incident and shed vortices. 

Further outboard from the tip of the wing, a region of downwash is induced by the 

incident vortex. Moreover, a component of downwash is induced during part of the 

oscillation cycle of the wing. As a consequence, the net downwash in this outboard 

region is either reinforced or attenuated due to the same physical reasoning as in the 

foregoing for the net upwash closer to the tip of the wing. This observation has 

implications for loading on a trailer wing in formation flight. 

All of the foregoing features of net upwash and downwash, as well as vorticity 

shed from the tip of the wing, can be interpreted in terms of streamline topology. Such 

topology defines the patterns of streamlines in terms of critical points such as foci and 

saddle points, and allows interpretation of the origins of regions of large upwash and 

downwash in terms of neighboring regions of the flow field. It is been demonstrated that 

even though the tip velocity of the wing is relatively small in relation to the freestream 

velocity, radically different streamline topology occurs at, for example, the maximum 

positive velocity of the tip in comparison with the maximum negative velocity, i.e., such 

patterns are not simply symmetrical about the wing. 
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Figure 5.1: (a) Plan and side views of the experimental arrangement. (b) Velocity and 

position of the wing over the oscillation cycle. 
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Figure 5.2: Comparison of contours of streamwise vorticity at x’/C = 0.5 for four 

impingement locations (columns) and different phase angles (rows). 
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Figure 5.3: Comparison of contours of upwash and streamline topology superimposed on 

contours of streamwise vorticity for the outboard most impingement case across two 

phases. 
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Figure 5.4: Comparison of line contours of upwash (solid) and downwash (dashed) for 

the case of no incident vortex with color contours of upwash for the largest outboard 

displacement of the incident vortex Δy/C = 0.375. Inlays of streamwise vorticity are 

visible in the bottom right corner of each image. 
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Figure 5.5: Comparison of line contours of upwash (solid) and downwash (dashed) for 

the case of no incident vortex with color contours of upwash for the outboard 

displacement of the incident vortex Δy/C = 0.25. Inlays of streamwise vorticity are visible 

in the bottom right corner of each image. 
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Figure 5.6: Comparison of line contours of upwash (solid) and downwash (dashed) for 

the case of no incident vortex with color contours of upwash for small outboard 

displacement of the incident vortex Δy/C = 0.125. Inlays of streamwise vorticity are 

visible in the bottom right corner of each image. 
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Figure 5.7: Comparison of line contours of upwash with color contours of streamwise 

vorticity at x’/C = 0.5 for four impingement locations (columns) and different phase 

angles (rows). 
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Figure 5.8: Comparison of line contours of upwash with color contours of spanwise 

velocity at x’/C = 0.5 for four impingement locations at φ = 3π/4. 
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Figure 5.9: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours for four different offsets Δy/C of the incident 

vortex. Also shown is the case of no incident vortex. 
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Figure 5.10: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours for four different offsets Δy/C of the incident 

vortex. Also shown is the case of no incident vortex. 
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Figure 5.11: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours for four different offsets Δy/C of the incident 

vortex. Also shown is the case of no incident vortex. 
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Figure 5.12: Experimental patterns of time-averaged streamlines superimposed on 

streamwise vorticity ωxC/𝑈∞ contours for four different offsets Δy/C of the incident 

vortex. Also shown is the case of no incident vortex. 
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Figure 5.13: Slices of streamwise vorticity for the largest outboard displacement of the 

incident vortex Δy/C = 0.375 for different phase angles. The slices extend over the 

streamwise distance from x’/C = -0.5 to 2. 
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Figure 5.14: Slices of streamwise vorticity compared with slices of upwash for the 

largest outboard displacement of the incident vortex Δy/C = 0.375, for indicated phase 

angles. The slices extend over the streamwise distance from x’/C = -0.5 to 2. 
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Figure 5.15: Slices of streamwise vorticity for the aligned impingement case Δy/C = 0 

for different phase angles. The slices extend over the streamwise distance from x’/C = -

0.5 to 2. 
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Figure 5.16: Slices of upwash for the aligned impingement case Δy/C = 0 for different 

phase angles. The slices extend over the streamwise distance from x’/C = -0.5 to 2.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS  

 This investigation focused on vortex-wing interaction with application to 

formation flight of aircraft, helicopter rotors, and turbomachinery blades. Experiments 

were performed using a system that was custom designed and built in-house. It gave 

precise control of the position of the leader wing that generated a trailing vortex and the 

position and harmonic motion of the downstream (follower) wing. Quantitative data 

acquisition using both monoscopic and stereoscopic particle image velocimetry (PIV) 

was employed to determine both phase-averaged and time-averaged sectional and 

volumetric patterns of a variety of flow parameters, including velocity components, 

vorticity components, swirl ratio, and streamlines.  

 A nominally steady vortex impinging upon a stationary wing and a wing 

undergoing controlled oscillation of small amplitude was characterized. The flow 

structure was determined over the region extending from upstream of the leading edge of 

the wing into its wake. Common features that were pursued include the structure of the 

incident vortex, the vortex formed from the tip of the wing, the dipole formed by these 

two vortices, and the streamline topology involving a number of critical points in the 

flow including foci, saddle points, and bifurcation lines. While detailed remarks are given 

at the ends of each of the preceding chapters, summaries of the most important findings 

are given below. 
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6.1.1 Structure of a streamwise-oriented vortex incident upon a wing 

The distortion of a vortex impinging upon a wing (flat plate) has been 

characterized using a stereoscopic technique of particle image velocimetry, thereby 

providing the flow structure of the incident vortex at locations well upstream of the wing 

for varying degrees of spanwise offset of the vortex relative to the tip of the wing. The 

influence of the vortex-wing interaction is not simply confined to a localized region in the 

vicinity of the leading-edge; rather, it can extend a distance upstream of at least one wing 

chord (approximately five vortex diameters). Significant upstream influence is evident 

when the tip of the vortex impinges well outboard of the tip of the wing.  

The upstream influence of the wing on the incident vortex is dependent on the 

vortex offset, but, in general, the following trends are evident for successive streamwise 

locations approaching the leading edge: an increase in the magnitude and radius of the 

streamwise velocity deficit; a transport of streamwise vorticity away from the axis of the 

vortex; an increase in azimuthal vorticity, which is directly related to a decrease in swirl 

ratio; an increase of root-mean-square fluctuation of streamwise vorticity; and attenuation 

of the downwash associated with the incident vortex. 

The aforementioned enhancement of streamwise velocity deficit, attenuation of 

maximum streamwise vorticity, and increase of vortex radius are linked to the adverse 

pressure gradient that exists in the region upstream of the wing. The largest 

enhancements of azimuthal vorticity occur for the inboard and aligned cases when the 

swirl ratio decreases below a critical value, which is in accord with the theoretical 

prediction of Leibovich & Stewartson (1983) for small-wavelength instabilities about the 
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vortex. On the other hand, for the cases of the outboard and slightly outboard interactions 

of the vortex with the tip of the wing, the swirl ratio does not reach values below this 

threshold, and enhancement of azimuthal vorticity does not occur along the entire 

streamwise extent of the incident vortex. 

6.1.2 Topology of vortex-wing interactions 

The predominant parameter that dictates the mode of vortex-wing interaction is 

the dimensionless location of the incident vortex relative to the tip of the wing. Even 

though the values of dimensionless circulation and Reynolds number of the incident 

vortex are substantially different for computations and experiments, the mode of 

interaction is the same so long as the dimensionless position of the incident vortex is 

matched.  

The streamline topology of these modes of interaction indicates that when the 

incident vortex is located outboard of the tip of the wing, it forms a dipole with the 

enhanced vortex generated from the wing tip. This dipole involves a region of accelerated 

flow between the two vortices, which manifests as a bifurcation line that exists above and 

parallel to the plate. Saddle points above and below the tip of the plate allow complex, 

localized patterns of the flow to coexist. Substantially different streamline topology 

occurs if the incident vortex is located inboard of the wing tip, with the most noticeable 

result being lack of a forming vortex. In this case, a portion of the incident vortex moves 

above the surface of the plate; it is initially identified with a focus that does not persist 

with increasing distance along the chord due to rapid attenuation of higher levels of 

vorticity. At the tip of the wing, a separation bubble defined by separation-reattachment 
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streamlines encloses only low level vorticity. Immediately adjacent to this bubble at the 

tip, a saddle point occurs. This separation bubble-saddle point system is remarkably 

invariant with increasing chordwise distance along the wing. This means that onset of a 

separation line at the tip does not occur and thereby formation of a tip vortex does not 

develop. 

6.1.3 Interaction of a trailing vortex with an oscillating wing 

 For the case of an incident vortex located outboard of the tip of an oscillating 

wing, the distortion of the incident vortex and the generation of a vortex from the tip of 

the oscillating wing depend not only on the offset of the incident vortex relative to the tip, 

but also on the phase of the wing motion during its oscillation cycle. If the incident 

vortex is located far outboard of the wing, no distortion occurs, a slightly enhanced 

region of upwash arises outboard of the tip of the wing, and a vortex forms at the tip 

during its downstroke. If, however, the incident vortex is located closer to the wing, its 

trajectory and form are distorted, and a greatly enhanced region of upwash occurs 

outboard of the wing tip; a tip vortex having larger circulation, is present over a longer 

portion of the oscillation cycle. If the vortex impinges directly onto the wing tip, the 

motion of the wing attenuates the coherence of the incident vortex during part of the 

oscillation, such that no enhanced upwash is present outboard of the tip, and no tip vortex 

is present. 

 The foregoing modes can be interpreted in the context of the enhanced region of 

upwash between the incident vortex and the tip of the wing. This enhancement is created 

by the combined effect of the flow that wraps around the wing tip during its oscillation 
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and the upwash associated with the incident vortex. During the downstroke of the wing 

tip, upwash is created, and it is enhanced by the upwash associated with the incident 

vortex. This additive effect enhances the formation of the vortex that forms from the tip 

of the wing. During the upstroke, the flow wraps down around the tip of the wing and 

counteracts the upwash of the incident vortex. As a consequence, during this part of the 

oscillation cycle of the wing a vortex is not formed from its tip. Furthermore, the 

streamline topology and the associated critical points are remarkably different for the 

cases where the wing-induced upwash adds to, or detracts from, the upwash of the 

incident vortex. 

 

6.2 RECOMMENDATIONS 

This investigation has provided insight into the basic physics of vortex-wing 

interaction, and thereby provided the foundation for further studies. Taking into 

consideration the present findings, it is possible to define the following 

unclarified/uninvestigated aspects of vortex-wing interaction: 

The present study has employed a wing in the form of a flat plate at very small or 

zero angle of attack. To account for the range of conditions encountered in practical 

applications, implementation of an actual airfoil of defined shape and camber, at angles 

of attack up to and including the onset of separation and stall, would be a productive path. 

The degree to which the incident vortex can enhance the tip vortex of the wing is a 

central issue. That is, by changing the circulation of the naturally-occurring vortex from 
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the tip of the wing through variations of angle of attack, one could gain insight into the 

enhancement of circulation of the tip vortex that is attainable in relation to its naturally 

occurring state. 

The wing used in the present experiments is made of acrylic, a material which is 

functionally rigid under small loading. Both biological fliers and aircraft have wings 

which flex in the presence of extreme or unsteady loading. This aspect of flight could be 

modeled by changing the material of the wing to one that is more flexible. It has been 

shown herein that the location of vortex impingement on the wing dictates which mode of 

vortex interaction will occur; therefore any displacement of the location of the wing tip 

during bending will have drastic effects on the flow field. 

In biological formation flight, both flapping and gliding are utilized to maintain 

the individual fliers in formation. While the present experiments involve a downstream 

wing capable of flapping (oscillatory) motion, the addition of an oscillating incident 

vortex would allow examination of realistic formation flight configurations of biological 

fliers. The present study shows that oscillations of the trailer wing greatly affect the 

circulation of the tip vortex, and it is expected that an oscillating incident vortex would 

have similar effects. Further experiments could address the effects of phase difference 

between the flapping wings, with the potential of explaining why some birds regulate this 

phase difference.  

 In the present experiments, unsteadiness of the flow around the wing was 

identified by variations of patterns of streamlines and velocity contours, as well as root-

mean-square values of vorticity and velocity. These representations indicated that the 
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wing was undergoing unsteady loading for many of the experimental vortex-wing 

interactions investigated herein. Simultaneous force and flow measurements would 

clarify how fluctuations in certain unsteady flow features, such as the tip vortex from an 

oscillating wing, affects the loading on the wing.  
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APPENDIX A 

SUPPLEMENT TO CHAPTER 2: MONOSCOPIC PIV WITH A MIRROR 

In section 2.4.1, which discussed the optical arrangement for monoscopic PIV, it 

was stated that the inclusion of a mirror located downstream of the experiments would 

not affect the results. The following figures indicate that this is indeed the case. 

Figure A.1 shows contours of streamwise velocity u/𝑈∞ of a tip vortex three 

chords after it was formed. These six contours show different streamwise positions of the 

mirror xm, which is defined as the distance of the mirror from the interrogation plane. At 

xm = 1C the minimum axial velocity u/𝑈∞ is lower than any other case, and the extent of 

each contour level is at its largest. As xm increases the u/𝑈∞ contours converge to the no 

mirror case, achieving convergence by xm = 6C. 

Figure A.2 demonstrates the effects that a downstream mirror can have on the 

streamwise vorticity ωxC/𝑈∞ of a tip vortex. It is immediately apparent that the 

differences in contours between the values of mirror offset xm are significantly smaller 

than the differences seen in Figure A.1 for the streamwise velocity u/𝑈∞. Once again 

these contours are well converged by xm = 6C.  

These two figures both exhibit a similar trend in terms of the variation of the flow 

structure as a result of mirror location xm. While the flow structure is significantly altered 

for cases in which xm < 4, the structures converge to that of the no mirror case for 

locations greater than six chords. For these locations, the influence of the mirror is small 

enough that it no longer affects the flow field in a discernable way. Therefore, a mirror 
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location eight chords downstream of the laser plane, as it was in all monoscopic PIV 

experiments, does not influence the imaging. 
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Figure A.1: Cross-sectional cuts of streamwise velocity u/𝑈∞ on streamwise oriented 

planes three chords (3C) behind the trailing edge of the leader wing; six different mirror 

locations xm are shown.  
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Figure A.2: Cross-sectional cuts of streamwise vorticity ωxC/𝑈∞ on streamwise oriented 

planes three chords (3C) behind the trailing edge of the leader wing; six different mirror 

locations xm are shown.  
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APPENDIX B 

SUPPLEMENT TO CHAPTER 4: VOLUME TOPOLOGY OF VORTEX- 

WING INTERACTION 

 Appendix B is an extention of chapter 3, which deals with the flow 

structure along the chord of a wing which is subjected to impingement of an incident 

vortex. Chapter 3 addresses contours of streamwise vorticity ωxC/𝑈∞ and plots of 

streamline topology for several locations of vortex impingement. This supplementary 

section covers several more impingement locations in detail, including volumetric 

representations of streamwise vorticity, vertical velocity, and spanwise velocity. 

 

B.1 VERTICALLY AND INCLINED VORTEX DIPOLE 

Figures B.1 and B.2 display sectional slices amd iso-surfaces of streamwise 

vorticity ωxC/𝑈∞ for the largest outboard location of the incident vortex Δy/rv = 2.5. For 

all values of vertical offset Δz/rv both the incident vortex (blue-green) and the tip vortex 

(red-yellow) are present; furthermore, these vortices form a dipole as they move along the 

chord of the wing. For increasing values of Δz/rv, the vortex dipole system is deflected 

increasingly inboard, until at the maximum value of Δz/rv = 1.25, this deflection is very 

distinct. An examination of the iso-surfaces reveals that the highest vorticity (dark blue) 

contour decreases in radius with downstream position until it is no longer persent in the 

flow. This results in a tip vortex having a larger magnitude streamwise vorticity then the 

incident vortex. 
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Sectional cuts and iso-surfaces of vertical velocity w/𝑈∞ are indicated in figures 

B.3 and B.4 respectively, which have the same layout as figure B.1. The upwash (red-

yellow) is in two distinct regions: along the leading edge; and just outside the tip. Near 

the leading edge, the upwash is associated with the angle of attack of the wing, and 

enhanced by the upwash of the incident vortex. The region outside the wing tip is a 

combination of the upwash from the incident vortex and the tip vortex corresponding to 

the flow accelerated by the vortex dipole. Regions of downwash (blue-green) are visible 

both inboard and outboard of the upwash near the tip. These regions correspond 

respectively to the downwash of the tip vortex and the downwash of the incident vortex. 

The iso-surfaces reveal that while the outboard most region of downwash decreases in 

magnitude, evident from the decreasing radius of the surfaces, the region of upwash 

increases. 

Sectional cuts of contours of spanwise velocity v/𝑈∞ are indicated in figure B.5, 

with the corresponding iso-surfaces being shown in B.6. The incident vortex involves the 

spanwise velocity dipole, located outboard of the wing tip, while the tip vortex is 

associated with the dipole near the tip. This organization is most distinct in the Δz/rv = -

1.25 case, but as Δz/rv increases, the two inboard motion components (blue-green) merge 

together. This is due to the tilt in the vortex dipole angle discussed previously. As the 

dipole tilts, the jet that forms at its center rotates from vertical towards the plate; this 

results in a jet which accelerates flow in both the vertical and horizontal directions. 

 

B.2 SUPRESSION OF TIP VORTEX VIA DIRECT IMPINGEMENT 
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Contour slices and iso-surfaces of streamwise vorticity ωxC/𝑈∞ for the aligned 

Δy/rv = 0, interaction are indicated in figures B.7 and B.8. In all cases, the formation of 

the tip vortex is suppressed in comparison to the outboard Δy/rv = 2.5 cases seen in figure 

B.1. For Δz/rv = -1.25 and 0, the incoming vortex bifurcates at the leading edge of the 

plate. This causes negative (blue-green) vorticity to be present on both the pressure and 

suction surfaces of the wing.  

For Δz/rv = -1.25 the negative region of ωxC/𝑈∞ beneath the plate begins to move 

around the tip. After this occurs, it is in close proximity to the positive vorticity (red-

yellow) tip vortex which is beginning to form. This close proximity causes both regions 

of vorticity to lose strength moving downstream. On the top of the plate, the negative 

vorticity associated with the incident vortex flattens out and moves inboard. This motion 

is induction caused by the interaction between the vortex and its mirror image vortex 

inside the plate. In this region there is a thin layer of positive vorticity between the 

negative vorticity and the plate. 

Similar to the offset Δz/rv = -1.25, the Δz/rv = 0 case shows the incident vortex 

bifurcating at the leading edge of the plate. In this case a larger portion of the vorticity is 

present on the upper surface of the plate. Once again the portion of the vortex beneath the 

plate moves towards the forming tip vortex. Above the plate, the incident vortex again 

moves inboard with a similar mechanism as was described in the Δz/rv = -1.25 case.  

 In the final case of Δz/rv = 1.25 the incident vortex is entirely above the 

plate. At this location, the tip vortex is still suppressed. The negative vorticity above the 

plate again moves inboard for the same reasons discussed previously. 
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The iso-surfaces in figure B.8 reveal that the higher level surfaces of streamwise 

vorticity ωxC/𝑈∞ change drastically between vertical impingement locations Δz/rv. As 

Δz/rv increases the extent of these surfaces increase as well; at Δz/rv = -1.25 the highest 

magnitude contour is not present anywhere in the flow, but at Δz/rv = 1.25 it extends over 

the surface of the plate. This is in stark contrast to the outboard impingement case Δy/rv = 

2.5 where the highest level contour essentially identical for all Δz/rv. Slices and iso-

surfaces of the vertical velocity w/𝑈∞ for the case where the incident vortex is aligned 

with the tip of the wing are indicated in figures B.9 and B.10. The large region of upwash 

seen near the leading edge for the outboard interactions, figures B.3 and B.4, is again 

present in these images. For the aligned interaction, this upwash does not extend all the 

way to the tip as was seen for the outboard interactions. This is due to the incident vortex 

moving inboard, eliminating the increased upwash at the tip. In all cases, a region of 

downwash moves from the tip near the leading edge to further inboard at the trailing 

edge. This matches the motion of the vortices seen in figures B.7 and B.8. As Δz/rv 

increases, the strength of the downwash region increases, which again matches the 

observations of the strength of the incident vortex in figures B.7 and B.8. At Δz/rv = -1.25 

there is a small region of downwash beneath the plate which corresponds to the larger 

portion of the vortex beneath the plate. While there is little upwash above the plate for the 

vertically aligned case, Δz/rv = 0, there is a significant portion for the above case, Δz/rv = 

1.25. This is due to the larger portion of the vortex above the plate at this location. 

Figures B.11 and B.12 shows slices and iso-surfaces of spanwise velocity v/𝑈∞ 

for the interaction case where the incident vortex is aligned with the tip of the wing. For 
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all cases a layer of fluid with inboard motion is located directly above the surface of the 

wing, and outboard flow is present further above the wing near the tip. The magnitude 

and extent of both these regions increases as Δz/rv increases. This is due to larger portions 

of the incident vortex present above the plate. For Δz/rv = -1.25 a small region of fluid 

with inboard motion is also present under the plate near the leading edge. This region is 

due to the bifurcation of the incident vortex leaving a larger portion of the vortex beneath 

the plate. There is also a small portion of outboard flow near the tip, which shows flow 

move from the pressure to suction sides of the wing. 

 

B.3 SUPRESSION OF TIP VORTEX VIA INBOARD IMPINGEMENT 

Volumetric representations of streamwise vorticity ωxC/𝑈∞ for the inboard 

interactions at Δy/rv = -2.5 are presented in figures B.13 and B.14. Above the surface of 

the plate the flow is similar to what was seen for the aligned case Δy/rv = 0 in figure B.7. 

A portion of the incident vortex shifts inboard as the streamwise distance from the 

leading edge increases; this motion is due to induction effects. Beneath this portion of the 

incident vortex is a layer of positive vorticity, which is again similar to what was seen in 

the case of aligned interaction. As Δz/rv increases, the magnitude and extent of both of 

these regions increase, due to a larger portion of the incident vortex located above the 

surface of the wing.  

Figures B.15 and B.16 show slices and iso-surfaces of vertical velocity w/𝑈∞ for 

the inboard interactions at Δz/rv = -1.25, 0, and 1.25. As was seen in both the outboard 
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and aligned interactions, there is a large region of upwash near the leading edge. This 

region does not extend as close to the tip as for the aligned interaction, which is due to 

the further inboard location of the incident vortex. A region of downwash is also present 

above the wing for all cases. As Δz/rv increases the magnitude and extent of these 

contours also increases, which is due to the increasing distance between the incident 

vortex and the wing. At Δz/rv = -1.25 mirrored structures can also be seen beneath the 

wing, that is, a region of downwash near the tip, and a smaller region of upwash inboard 

of it. This illustrates the reduced effective angle of attack near the wing tip due to the 

inboard location of the incident vortex. 

Slices and iso-surfaces of spanwise velocity w/𝑈∞ are indicated in figures B.17 

and B.18 respectively for all inboard interactions Δy/rv = -2.5. As with the streamwise 

vorticity there are many similarities between the inboard and aligned interactions. Once 

again there is a layer of flow moving inboard, located above the surface of the plate. 

There is also a region of outboard flow further above the plate which is strongest near the 

leading edge. As Δz/rv increases, the magnitude and extent of both of these regions also 

increases; this is due to a larger portion of the incident vortex located above the surface of 

the wing. For Δz/rv = -1.25, mirrored structures can also be seen beneath the wing, these 

structures are composed of a layer of outboard flow near the surface and a region of 

inboard flow beneath it. This observation is due to the comparatively larger portion of the 

vortex being beneath the plate. 
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Figure B.1: Slices of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 2.5. The slices extend over the streamwise distance from 

0.125 C to 1.25 C downstream of the leading edge of the wing. 
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Figure B.2: Iso-surfaces of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv 

of vortex impingement for Δy/rv = 2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.3: Slices of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = 2.5. The slices extend over the streamwise distance from 0.125 C 

to 1.25 C downstream of the leading edge of the wing. 
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Figure B.4: Iso-surfaces of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.5: Slices of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = 2.5. The slices extend over the streamwise distance from 0.125 C 

to 1.25 C downstream of the leading edge of the wing. 
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Figure B.6: Iso-surfaces of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.7: Slices of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 0. The slices extend over the streamwise distance from 

0.125 C to 1.25 C downstream of the leading edge of the wing. 



168 

 
Figure B.8: Iso-surfaces of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv 

of vortex impingement for Δy/rv = 0. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.9: Slices of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = 0. The slices extend over the streamwise distance from 0.125 C 

to 1.25 C downstream of the leading edge of the wing. 
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Figure B.10: Iso-surfaces of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 0. The surfaces extend over the streamwise distance from 

0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.11: Slices of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = 0. The slices extend over the streamwise distance from 0.125 C 

to 1.25 C downstream of the leading edge of the wing. 
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Figure B.12: Iso-surfaces of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = 0. The surfaces extend over the streamwise distance from 

0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.13: Slices of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = -2.5. The slices extend over the streamwise distance from 

0.125 C to 1.25 C downstream of the leading edge of the wing. 
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Figure B.14: Iso-surfaces of streamwise vorticity ωxC/𝑈∞ at three vertical locations Δz/rv 

of vortex impingement for Δy/rv = -2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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Figure B.15: Slices of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = -2.5. The slices extend over the streamwise distance from 0.125 

C to 1.25 C downstream of the leading edge of the wing. 
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Figure B.16: Iso-surfaces of vertical velocity 𝑤/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = -2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 

 



177 

 
Figure B.17: Slices of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of vortex 

impingement for Δy/rv = -2.5. The slices extend over the streamwise distance from 0.125 

C to 1.25 C downstream of the leading edge of the wing. 
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Figure B.18: Iso-surfaces of spanwise velocity 𝑣/𝑈∞ at three vertical locations Δz/rv of 

vortex impingement for Δy/rv = -2.5. The surfaces extend over the streamwise distance 

from 0.25 C upstream to 1.25 C downstream of the leading edge of the wing. 
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APPENDIX C 

SUPPLEMENT TO CHAPTER 4: TURBULENT KINETIC ENERGY OF MODES 

OF VORTEX-WING INTERACTIONS- COMPUTATIONS AND EXPERIMENTS 

In section 4.3, comparisons of contours of streamwise vorticity ωxC/𝑈∞ were 

shown between the computations of Garmann and Visbal (2015a) and the present 

experiments. Appendix C continues these comparisons by analyzing the similarity and 

differences in contours of turbulent kinetic energy T. 

In this section, levels of turbulent kinetic energy T are primarily used to identify 

the separation zone on the wing, and any change in the stability of the vortices. Adjusted 

in-plane turbulent kinetic energy T* is used for the experiments, and is defined as T* = 
1

2
 

(𝑤′2 ̅̅ ̅̅ ̅̅ + 𝑣′2 ̅̅ ̅̅ ̅ + .5 ∗ 𝑤′2 + 𝑣′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). Since the out-of-plane velocity was not recorded, the out-of-

plane velocity fluctuation was estimated using the in-plane velocity fluctuations 

according to Cebeci (2013). The experiments also show higher levels of turbulent kinetic 

energy in the incident vortex, which is a byproduct of the vortex generation method. 

For the outboard interaction shown in figure C.1, increased levels of T can be seen 

above the surface of the plate from x´/C = 0.25 to 1. These levels are associated with the 

separated region of the suction surface of the wing. In both cases the highest T levels in 

the separated region occur at x´/C = 0.5. In addition, the boundary of the separated region 

near the tip moves inboard as the tip vortex develops, and increased levels of T can be 

seen in the core of the tip vortex. 
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Figure C.2 shows the comparison for the aligned interaction case, which again 

features a separation region inboard of the tip. This region is present on the wing from 

x´/C = 0.25 to 1, and has its largest values of T at x´/C = 0.5. From x´/C = 0.5 to 1, the T 

levels of both the incident and tip vortices increase, with these vortices having a region of 

lower T between themselves and the separated region. 

The comparison of the T levels for the inboard interaction is shown in Figure C.3. 

In this case there are two different separated regions which are defined by the position of 

the incident vortex. Inboard of the incident vortex, there is a separated region above the 

plate which is similar to those seen in both the outboard and aligned interaction cases. 

Outboard of the impingement location, a separation region is actually present below the 

surface of the plate. Along the chord of the wing, the T levels of the separation region 

above the plate are higher than those of the separation region below it. 
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Figure C.1: Comparison of turbulent kinetic energy from computations of Garmann et 

al. (2015a) (Γv/(C𝑈∞) = 0.503; Re = 20,000) and present experiments (Γv/(C𝑈∞) = 0.394; 

Re = 8,000) for the outboard interaction of an incident vortex with a plate. T* was 

calculated by estimating the value of the out-of-plane fluctuation 𝑢′2̅̅ ̅̅  by 𝑢′2̅̅ ̅̅ =
1

2
(𝑣′2 + 𝑤′2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

according to Cebeci (2013). 
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Figure C.2: Comparison of turbulent kinetic energy from computations of Garmann et 

al. (2015a) (Γv/(C𝑈∞) = 0.503; Re = 20,000) and present experiments (Γv/(C𝑈∞) = 0.394; 

Re = 8,000) for the aligned interaction of an incident vortex with a plate. T* was 

calculated by estimating the value of the out-of-plane fluctuation 𝑢′2̅̅ ̅̅  by 𝑢′2̅̅ ̅̅ =
1

2
(𝑣′2 + 𝑤′2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

according to Cebeci (2013). 
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Figure C.3: Comparison of turbulent kinetic energy from computations of Garmann et 

al. (2015a) (Γv/(C𝑈∞) = 0.503; Re = 20,000) and present experiments (Γv/(C𝑈∞) = 0.394; 

Re = 8,000) for the inboard interaction of an incident vortex with a plate. T* was 

calculated by estimating the value of the out-of-plane fluctuation 𝑢′2̅̅ ̅̅  by 𝑢′2̅̅ ̅̅ =
1

2
(𝑣′2 + 𝑤′2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

according to Cebeci (2013). 
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APPENDIX D 

SUPPLEMENT TO CHAPTER 5: PHASE LAG DURING THE 

INTERACTION OF A TRAILING VORTEX WITH AN OSCILLATING WING 

This appendix addresses how the signals associated with the maximum upwash 

and maximum streamwise vorticity lag the wing motion at all streamwise locations. For 

these images, a phase lag φL = 0 means that the peak of the signal occurs at the same 

phase as the maximum negative velocity of the wing ww which occurs at φ = π/2. A 

positive value of φL corresponds to the signal peak occurring after φ = π/2, so if φL = π, 

the signal has its peak at φ = 3π/2. 

Figure D.1 shows how the phase lags φL change for the offset of the incident 

vortex of Δy/C = 0.375. Near the leading edge, at x’/C = 0.25, the phase lag is small, with 

the maximum values of upwash and streamwise vorticity occurring soon after the wing 

has achieved its maximum negative velocity. Further downstream, the phase lag increases 

for both the upwash and the maximum streamwise vorticity of the incident vortex. From 

x’/C = 0.5 to 1.5 the occurrence of maximum vorticity lags slightly behind the upwash, 

creating a phase gap between them, but they match up again further into the wake. Over a 

distance less than two chords of the wing, both signals have fallen π behind the motion of 

the wing, from being in phase with the maximum negative velocity ww at x’/C = 0.25, to 

being in phase with the maximum positive velocity at x’/C = 0. 

The phase lag φL at Δy/C = 0.25 is shown in figure D.2. This shows trends similar 

to those at Δy/C = 0.375 in figure D.1, although the phase gap between the upwash and 
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maximum vorticity of the tip vortex has increased over the streamwise region x’/C = 0.5 

to 1.5. This increase is caused by φL for the maximum upwash at x’/C = 0.5 being 

slightly smaller than at x’/C = 0.25. 

This decrease in lag is significantly more pronounced in figure D.3, which shows 

the lag for Δy/C = 0.125; in this case φL for the maximum upwash is negative, meaning 

that the velocity signal of the wing lags behind that of the maximum upwash. At the 

trailing edge, x’/C = 1, φL for the maximum upwash once again becomes positive, 

approaching φL for the maximum vorticity as was seen in the other two cases. Phase lag 

φL for the maximum vorticity follows a trend similar to that at Δy/C = 0.375 and Δy/C = 

0.25. 

These figures show that the region of upwash outboard of the wing and the 

formation of the tip vortex on the wing are linked to the velocity of the wing, but they are 

not phase locked to it. In fact, from inception of the tip vortex, its oscillation in strength, 

represented by maximum vorticity, lags behind the velocity of the wing, with φL 

increasing in size with downstream location. The same is true of the maximum upwash, 

although it does exhibit interesting behavior along the chord of the wing. In the wake, the 

two values of φL approach one another, which is caused by the two vortices dominating 

the flow at these locations. If the wing motion does not influence the flow, the two values 

of φL become equal, which is due to the maximum upwash no longer being enhanced by 

the motion of the wing. 
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Figure D.1: Phase lags at successive streamwise locations. The red squares are the phase 

lags between the maximum upwash and the motion of the wing, and the blue diamonds 

are the phase lags between the maximum streamwise vorticity (associated with the tip 

vortex) and the motion of the wing. 
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Figure D.2: Phase lags at successive streamwise locations. The red squares are the phase 

lags between the maximum upwash and the motion of the wing, and the blue diamonds 

are the phase lags between the maximum streamwise vorticity (associated with the tip 

vortex) and the motion of the wing. 



188 

 
Figure D.3: Phase lags at successive streamwise locations. The red squares are the phase 

lags between the maximum upwash and the motion of the wing, and the blue diamonds 

are the phase lags between the maximum streamwise vorticity (associated with the tip 

vortex) and the motion of the wing. The empty diamonds represent where the coherence 

is below 0.9. 
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