
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Flow Structure on a Rotating Wing: Effect of
Radius of Gyration
Maxwell Marshall Wolfinger
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wolfinger, Maxwell Marshall, "Flow Structure on a Rotating Wing: Effect of Radius of Gyration" (2015). Theses and Dissertations.
Paper 1673.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1673?utm_source=preserve.lehigh.edu%2Fetd%2F1673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


 

FLOW STRUCTURE ON A ROTATING WING: EFFECT OF 

RADIUS OF GYRATION 

 

 

by 

 

Maxwell Wolfinger 

 

 

 

 

Presented to the Graduate Research Committee 

Of Lehigh University 

In Candidacy for the Degree of 

Doctor of Philosophy 

 

in 

 

Mechanical Engineering 

 

 

Lehigh University 

January, 2015 



ii 
 

 

Approved and recommended for acceptance as a dissertation in partial fulfillment 

of the requirements for the degree of Doctor of Philosophy.  

 

 

______________________  

Date  

____________________________  

Donald Rockwell 

Dissertation Advisor 

______________________  

Accepted Date  

Committee Members:  

 

_____________________________  

Professor Donald Rockwell 

 

_____________________________  

Professor Yaling Liu  

 

_____________________________  

Professor Alparslan Oztekin  

 

_____________________________  

Professor John Spletzer 



iii 
 

 

 

 

 

 

 

 

 

 

 

To Kate 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank a number of people at Lehigh for helping bring this research 

together. First, I would like to extend my greatest appreciation to Professor Donald 

Rockwell, for his guidance and commitment to this research project. Professor 

Rockwell’s collaborative efforts as my advisor were invaluable, and his attention to detail 

and thoroughness have helped this project immeasurably. 

 In addition to Professor Rockwell, I would like to thank my committee members, 

Professor Alparslan Oztekin, Professor Yaling Liu, and Professor John Spletzer for their 

guidance and suggestions throughout the PhD process. 

 I would also like to offer my gratitude to several fellow graduate students, 

particularly Matthew Bross and Daniel Tudball-Smith, for their collaborative efforts. Our 

parallel projects all benefited from mutual support that expedited the research process, 

and allowed us the chance to help each other with countless issues. 

 This experimental research would not have been possible without technical 

support from a number of excellent Lehigh community members. For that reason, I 

would like to acknowledge the work of Richard Towne, Eli Towne, and James Bunderla, 

who constructed the experimental systems used for this research project. I would also like 

to thank Naazer Ashraf, for his work maintaining our computing systems. The 



v 
 

administrative staff of the Mechanical Engineering and Mechanics department, JoAnn 

Casciano in particular, was also immensely helpful, and for that, I am thankful. 

 My family was integral in keeping me motivated throughout my time in graduate 

school and pushing me to finish my PhD. They inspired me to pursue graduate research, 

and supported me in countless ways. 

Finally and most importantly, I would like to thank my wife, Kate. She was with 

me throughout this process, helping with editing and listening to countless presentations, 

for which I am eternally grateful. 

  

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

Page 

TITLE ………………………………………………….……..………………………..…i 

CERTIFICATE OF APPROVAL ……………………………………………………ii 

DEDICATION………………………………………..…………………………………iii 

ACKNOWLEDGEMENTS…………………………………………………………….iv 

TABLE OF CONTENTS……………………………………………………………….vi 

LIST OF FIGURES……………………………………………………………………...x 

NOMENCLATURE………………………………………………………………….xviii 

 

ABSTRACT………………………………………………………………………………1 

 

CHAPTER 1: INTRODUCTION……………………………………………...……….4 

1.1 Motivation for bio-inspired research……………………………………….5 

1.1.1 MAV design……………………………………………………………...…6 

1.2 Review of bio-inspired research…………………………………………….8 

1.2.1 Flow structure on wings in flapping motion………………………………..9 

1.2.2 Flow structure on wings in pure rotation…………………………………..10 



vii 
 

1.2.3 Time-resolved, volumetric flow structure on wings in pure rotation and 

rectilinear translation…………………………………………………………….14 

1.2.4 Effect of large travel distance on flow structure…………………..….…...17 

1.2.5 Scaling of effects of rotation on flow structure………….……………...…18 

1.3 Unresolved issues…………………………………………………………...22 

1.4 Research objectives…………………………………………………………23 

CHAPTER 2: EXPERIMENTAL SYSTEMS AND TECHNIQUES…….………...38 

 2.1 Water channel………………………………………………………………39 

 2.2 Wing parameters and motion……………………………………………...39 

 2.2.1 Motion axes………………………………………………………………..40 

 2.2.2 Motion control……………………………………………………………..40 

 2.2.3 Wing parameters……………………………………….………………….41 

 2.2.4 Wing kinematics…………………………………………………………..43 

 2.3 Quantitative flow imaging…………………………………………………45 

 2.3.1 PIV system components…………………………………………………..46 

 2.3.2 PIV image processing……………………………………………………..48 

 2.3.3 Volumetric and temporal reconstruction………………………………….50 



viii 
 

 2.3.4 Post processing…………………………………………………………….52 

 2.4 Measurement uncertainty………………………………………………….54 

 2.4.1 Theoretical PIV uncertainty……………………………………………….55 

 2.4.2 Flow field convergence……………………………………………………56 

CHAPTER 3: FLOW STRUCTURE ON A WING OF LOW ASPECT RATIO….75 

3.1 Background…………………………………………………………………76 

3.2 Experimental systems and techniques…………………………………….78 

3.3 Three-dimensional images of flow structure……………………………...82 

3.3.1 Volume images of flow structure…………………………………………..82 

3.3.2 Multiple slices of flow structure along span of wing………………………86 

3.3.3 Flow structure at midspan of wing…………………………………………89 

3.3.4 Volumetric representations of flow structure at very large travel distance..95 

3.4 Conclusions………………………………………………………………….98 

CHAPTER 4: FLOW STRUCTURE ON A WING OF MODERATE ASPECT 

RATIO…………………………………………………………………………………120 

 4.1 Background…………………………………………………………….….121 

 4.2 Experimental systems and techniques…………………………….……..122 



ix 
 

 4.3 Volumetric flow structure………………………………………….……..125 

 4.3.1 Iso-surfaces of flow structure…………………………….……………….125 

 4.3.2 Multiple sectional patterns along span……………………………….…...136 

4.4 Conclusions……………………………………………………….………..145 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS…….……….……162 

 5.1 Conclusions………………………………………………………………...162 

 5.2 Recommendations…………………………………………………………166 

REFERENCES……………………………………………….…………………….….169 

APPENDIX A: ADDITIONAL IMAGES OF THE FLOW STRUCTURE ON A 

WING AT DIFFERENT RADII OF GYRATION……………………….………...174 

 A.1 Effect of Reynolds number on flow structure…………………………..175 

A.2 Flow structure at same value of rotation angle Φ………………………175 

A.3 Streamlines………………………………………………………………..177 

A.4 Comparison of vorticity components in Cartesian and cylindrical 

coordinates…………………………………………………………………….178 

A.5 Flow structure for different aspect ratio AR wings…………………….179 

VITA…………………………………………………………………………………...207 

 



x 
 

LIST OF FIGURES 

 

Page 

Figure 1.1. Photographs of several early micro air vehicles (MAVs), and performance 

characteristics of each. (Pines and Bohorquez, 2006)…………………………………...25 

Figure 1.2. Photograph of DARPA hummingbird MAV. (AeroVironment, 2014)…..…26 

Figure 1.3. Flow structure on live insects. Qualitative visualization of Ellington et al. 

(1996) (top three rows), and quantitative visualizaton of Bomphrey et al. (2006) (bottom 

two rows)………………………………………………………………………………...27 

Figure 1.4. Flow structure computed on a flapping insect (Aono et al. 2007)………….28 

Figure 1.5. Lift and drag forces on purely rotating (3-D) and translating (2-D) wing. 

(Top-left) time-history of lift on a rotating wing at several angles of attack α. (Bottom-

right) Comparison of the lift and drag forces on a rotating wing (3-D steady) to the peak 

(2-D transient), and sustained (2-D steady) forces on a 2-D translating wing (Dickinson et 

al. 1999)……………………………………………………………….…………………29 

Figure 1.6. Flow structure on rotating and translating wing. (a) Streamlines, contours of 

components of velocity and contours of vorticity at the mid-span. (b) Stacked contours of 

vorticity across the span (Ozen and Rockwell, 2011)………………………….………..30 

Figure 1.7. Iso-surfaces of spanwise vorticity ωz (green), and streamwise vorticity ωx 

(blue) on a rotating wing (Kim and Gharib, 2010)………………………….…………...31 

Figure 1.8. Flow structure visualized with iso-surfaces of Q-criterion, on AR = 2 and AR 

= 4 rotating wings, at several rotation angles Φ (Carr et al. 2013)……………...………32 

Figure 1.9. (Top two rows) Flow structure development on rotating and translating wing 

visualized with iso-surfaces of total pressure. (Bottom two rows) Pressure coefficient 

development on the leeward surface of rotating and translating wings (Garmann et al. 

2013)……………………………………………………………………………………..33 

Figure 1.10. Flow structure development on a rotating wing visualized with iso-surfaces 

of total pressure without centrifugal force (Garmann and Visbal, 2014)………………..34 



xi 
 

Figure 1.11: Diagram showing the path of a rotating wing at four radii of gyration Rg 

(Lentink and Dickinson, 2009a)…………………………………………………………35 

Figure 1.12. Transformation of the flow surface with increasing aspect-ratio. Flow 

structure visualized with iso-surfaces of Q-criterion (Harbig et al. 2013)……………..36 

Figure 1.13. Lift and drag forces on a rotating wing at four radii of gyration (Lentink and 

Dickinson, 2009b)……………………………………………………………………….37 

Figure 2.1: Photograph of experimental facility………………………………………..60 

Figure 2.2: Trimetric diagram of motion control system……………………………….61 

Figure 2.3: Plan view schematic of wing configurations. Arcs indicate path of the radius 

of gyration……………………………………………………………………………….62 

Figure 2.4: Motion profile showing the distance travelled at the radius of gyration as a 

function of time………………………………………………………………………….63 

Figure 2.5: Explanation of actuator disk area for different radii of gyration. The area of 

the orange region is constant when rgΦ/C is constant. (Lentink and Dickinson, 2009a)..64 

Figure 2.6: Overview of experimental apparatus, including the water channel, the motion 

control system and the quantitative flow imaging system. ……………………………...65 

Figure 2.7: Plan view schematic showing rotated camera image planes that satisfy the 

Scheimpflug condition (Prasad, 2000)………………………………………………...…66 

Figure 2.8: Processing pipeline for generation of instantaneous vector-fields with three 

components of velocity…………………………………………………………………..67 

Figure 2.9: Post-processing pipeline for phase-averaging and volumetric reconstruction, 

using sectional results from different spanwise locations. Volumetric iso-surfaces of 

spanwise vorticity ωz…………………………………………………………………….68 

Figure 2.10: Post-processing pipeline for time-resolved flow structure development.…69 

Figure 2.11: Uncertainty in determining correct particle displacements in an 

interrogation window (Adrian and Westerweel, 2011)…………………………………..70 

Figure 2.12: Color contours of velocity and vorticity for different phase-averaged 

velocity fields…………………………………………………………………………….71 

Figure 2.13: Convergence of rms error of velocity and vorticity with increasing number 

of phase-averaged velocity fields………………………………………………………...72 



xii 
 

Figure 2.14: Variability of rms error of velocity and vorticity across twenty one sets of 9 

phase-averaged velocity fields……………………………………………………...73 

Figure 2.15: Transparent iso-surfaces of Q-criterion for different phase-averages. Q = 2 

(grey-yellow), 7 (brown-orange), and 15 (orange)………………………………………74 

Figure 3.1. Schematic of rotating wing and relevant dimensions…………..………….102 

Figure 3.2. Transparent iso-surfaces of Q-criterion compared with transparent iso-

surfaces of vorticity magnitude scaled to match Q-criterion; rg/C = 1.2, rgΦ/C = 

5.5…………………………………………………………………………………….…103 

Figure 3.3.  Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C and rgΦ/C = 5.5…………………………………………………………………...104 

Figure 3.4.  Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C and rgΦ/C = 5.5…………………………………………………………………...105 

Figure 3.5.  Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 

5.5………………………………………………………………………………………106 

Figure 3.6. Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 

5.5………………………………………………………………………………………107 

Figure 3.7.  Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 

5.5………………………………………………………………………………………108 

Figure 3.8. Sectional cuts of dimensionless spanwise ωzC/Vrg in the range ±4 to ±10 at 

six spanwise locations for different values of Rossby number rg/C. For all cases, the 

travel distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% of 

original dimension for visualization……………………………………………………109 

Figure 3.9. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant spanwise velocity are superposed on 

black line contours of constant spanwise vorticity. For all cases, the travel distance of the 

wing is rgΦ/C = 5.5. The wing span is expanded to 200% of original dimension for 

visualization…………………………………………………………………………….110 



xiii 
 

Figure 3.10. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant spanwise vorticity flux are 

superposed on black line contours of constant spanwise vorticity. For all cases, the travel 

distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% of original 

dimension for visualization……………………………………………………………..111 

Figure 3.11. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant downward velocity component 

(downwash) are superposed on black line contours of constant spanwise vorticity. For all 

cases, the travel distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% 

of original dimension for visualization…………………………………………………112 

Figure 3.12. Sectional cuts at midspan of spanwise vorticity at different values of Rossby 

number rg/C as indicated, and rotation distance rgΦ/C………………………………..113 

Figure 3.13. Sectional cuts at midspan of spanwise vorticity flux at different values of 

Rossby number rg/C as indicated, and rotation distance rgΦ/C………………………..114 

Figure 3.14. Sectional cuts at midspan of spanwise vorticity flux for extreme values of 

Rossby number rg/C and rotation distance rgΦ/C……………………………………...115 

Figure 3.15. Sectional cuts at midspan of u velocity  at different values of Rossby 

number rg/C as indicated, and rotation distance rgΦ/C………………………………...116 

Figure 3.16. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C, and rotation distance rgΦ/C………………………………………………………117 

Figure 3.17. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C, and rotation distance rgΦ/C………………………………………………………118 

Figure 3.18. Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) at different values of Rossby number rg/C, and rotation distance 

rgΦ/C…………………………………………………………………………………...119 

Figure 4.1. Schematic of rotating wing and relevant dimensions……………………..150 

Figure 4.2. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 0.5…………………………………………………...151 



xiv 
 

Figure 4.3. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 1.5……………………………………………………152 

Figure 4.4. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 2.0……………………………………………………153 

Figure 4.5. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 3.0……………………………………………………154 

Figure 4.6. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 5.5……………………………………………………155 

 Figure 4.7. Iso-surfaces of Q-criterion Q = 4.5 coloured with helical density H at 

different values of Rossby number rg/C and rotation distance rgΦ/C…………………156 

Figure 4.8. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of downwash 

at different values of Rossby number rg/C and rotation distance rgΦ/C…………………157 

Figure 4.9. Sectional cuts of dimensionless spanwise vorticity ωzC/Vrg at seven 

spanwise locations for different values of Rossby number rg/C and travel distance rgΦ/C. 

The wing span is expanded to 150% of original dimension for visualization………….158 

Figure 4.10. Sectional cuts of flow structure at seven spanwise locations for different 

values of Rossby number rg/C and travel distance rgΦ/C. Contours of constant values of 

downward velocity component (downwash) are superposed on contours of constant 

spanwise vorticity. The wing span is expanded to 150% of original dimension for 

visualization…………………………………………………………………………….159 

Figure 4.11. Sectional cuts of flow structure at spanwise location z/b = 0.57 (spanwise 

location D in figures 9, 10, and 12) for different values of Rossby number rg/C and travel 

distance rgΦ/C. Contours of constant values of tangential velocity component u (see 

schematic) are superposed on velocity vectors V and contours of constant spanwise 

vorticity…………………………………………………………………………………160 

Figure 4.12. Sectional cuts of flow structure at seven spanwise locations for different 

values of Rossby number rg/C and travel distance rgΦ/C. Contours of constant values of 

tangential velocity component are superposed on contours of constant spanwise vorticity. 

The wing span is expanded to 150% of original dimension for visualization………….161 

Figure A.1. Sectional cuts of spanwise vorticity at midspan for different values of 

Reynolds number Rerg based on velocity at the radius of gyration……………………182 



xv 
 

Figure A.2.  Plan view of Transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C at Φ = 270°……………………………………………………….183 

Figure A.3.  End view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and Φ = 270°……………………………………………………..184 

Figure A.4.  Trimetric view of transparent iso-surfaces of Q-criterion at different values 

of Rossby number rg/C and Φ = 270°………………………………………………….185 

Figure A.5.  Trimetric view of transparent iso-surfaces of Q-criterion and opaque iso-

surfaces of downwash (downward velocity) v/Vrg at different values of Rossby number 

rg/C and Φ = 270°………………………………………………………………………186 

Figure A.6. Sectional cuts at midspan of spanwise vorticity at different values of Rossby 

number rg/C as indicated, and rotation angle Φ………………………………………..187 

Figure A.7. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 15°……....188 

Figure A.8. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 30°……….189 

 Figure A.9. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 45°……….190 

 Figure A.10. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 270°……...191 

Figure A.11. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

1.0……………………………………………………………………………………….192 

Figure A.12. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

2.0……………………………………………………………………………………….193 

Figure A.13. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

3.0………………………………………………………………………………………194 

Figure A.14. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

5.5………………………………………………………………………………………195 



xvi 
 

Figure A.15. Schematic of Cartesian and cylindrical coordinate systems used to represent 

components of vorticity in figures A.16 through A.20…………………………………196 

Figure A.16. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 1. Rotation distance rgΦ/C = 5.5…………..197 

 Figure A.17. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 1.0…………..198 

Figure A.18. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 2.0…………..199 

Figure A.19. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 3.0………….200 

Figure A.20. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 5.5…………..201 

 Figure A.21. Plan view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed 

reference frame…………………………………………………………………………202 

Figure A.22. End view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed 

reference frame…………………………………………………………………………203 

Figure A.23. Trimetric view of transparent iso-surfaces of Q-criterion at different values 

of Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-

fixed reference frame…………………………………………………………………...204 



xvii 
 

Figure A.24. Trimetric view of iso-surfaces of Q-criterion Q = 4.5 colored with helical 

density H at different values of Rossby number rg/C and aspect ratio AR = b/C. Rotation 

distance rgΦ/C = 5.5. Lab-fixed reference frame………………………………………205 

 Figure A.25. Trimetric view of transparent iso-surfaces of Q-criterion and opaque iso-

surfaces of downwash at different values of Rossby number rg/C and aspect ratio AR = 

b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed reference frame……………………….206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 
 

NOMENCLATURE 

 

AR Aspect ratio 

a Smoothing parameter 

b Wingspan 

C Chord length 

CCD Charge-coupled device 

da Point source image size 

ds Diffraction limited spot diameter 

dτ Particle image size 

dp Particle size 

FFT Fast-fourier-transform 

𝑓# Lens f-number 

h Helical density 

LEV Leading-edge vortex 

MAV Micro air vehicle 

Mo Image magnification 

O Of the order 

PIV Particle image velocimetry 

Q Second invariant of the velocity gradient tensor 

r radial distance 

Re Reynolds number 

rg Radius of gyration 

Ro Rossby number 

RV Root vortex 



xix 
 

SPIV Stereoscopic particle image velocimetry 

||S|| Magnitude of rate-of-strain tensor 

TV Tip vortex 

tw Wing thickness 

t Time Variable 

Δt Time delay 

 urms Root-mean-square velocity fluctuation 

V Velocity vector 

Vrg Velocity at the radius of gyration 

x Coordinate tangential to wing motion 

y Coordinate orthogonal to wing motion and wing span 

z Coordinate parallel to wing span 

Δz Volumetric reconstruction plane spacing 

 

Greek Symbols 

α  Angle of attack 

λ Wavelength of light 

ζ  Coordinate parallel to wing span 

η  Coordinate normal to wing surface 

θ Azimuthal coordinate 

ν  Kinematic viscosity 

σ  Gaussian smoothing kernel 

 Random velocity error 

Φ Rotation angle 

χ Coordinate orthogonal to wing-normal and wing span 

Ω Angular velocity 



xx 
 

||Ω|| Magnitude of vorticity tensor 

ω  Vorticity vector 



1 
 

 

 

ABSTRACT 

 

The flow structure on a rotating wing (flat plate) is characterized over a range of 

Rossby number Ro = rg/C, in which rg and C are the radius of gyration and chord of the 

wing, as well as travel distance rgΦ/C, where Φ is the angle of rotation. Wings having 

low aspect ratio AR = 1, and moderate aspect ratio AR = 2 are considered. Stereoscopic 

particle image velocimetry (SPIV) is employed to determine the flow patterns on defined 

planes and, by means of reconstruction, throughout entire volumes. Images including Q-

criterion, spanwise vorticity, spanwise velocity, downwash velocity, tangential velocity, 

vorticity flux and helical density are employed to represent the flow structure. These 

quantities are represented both with iso-surfaces, and on sectional slices along the span. 

The flow structure on a low aspect ratio wing is characterized for a range of 

radius of gyration rg/C, at a travel distance well after the onset of motion. When the 

radius of gyration is small, the leading-edge, tip and root vortices are highly coherent, 

with large dimensionless values of Q in the interior regions of all vortices, and large 

downwash between these components of the vortex system. For increasing radius of 

gyration, however, the vortex system rapidly degrades, accompanied by loss of large Q 

within its interior, and downstream displacement of the region of large downwash. These 

trends are accompanied by increased deflection of the leading-edge vorticity layer away 

from the surface of the wing, and decreased spanwise velocity and vorticity flux in the 
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trailing region of the wing, which are associated with the degree of deflection of the tip 

vortex across the wake region. Radius of gyration also affects development of the 

sectional flow structure determined at the midspan of the wing. Combinations of large 

radius of gyration rg/C and travel distance rgΦ/C lead to separated flow patterns, similar 

to those observed on rectilinear translating wings at high angle of attack. In the extreme 

case, where the wing travels a distance corresponding to a number of revolutions, the 

highly coherent flow structure is generally preserved if the radius of gyration is small; it 

degrades substantially, however, at larger radius of gyration. 

 The three-dimensional flow structure is also characterized on a moderate aspect 

ratio wing, at low and moderate radii of gyration, for a range of travel distance. Increase 

of the radius of gyration reduces the influence of rotation on the flow structure. At small 

radius of gyration, a coherent leading-edge vortex develops rapidly, then persists over a 

range of travel distance. At moderate radius of gyration, this leading-edge vortex is 

replaced by an arch vortex, which develops over a larger travel distance than the leading-

edge vortex; it is eventually swept into the wake of the wing. The subsequent vortical 

structures on the wing are much less coherent, and these structures resemble a separated 

shear layer typical on a translating wing at high angle of attack α. The foregoing classes 

of vortical structures are associated with distinctive patterns of helical density, 

downwash, and tangential velocity. 

 Taken together, the above results demonstrate the critical influence of radius of 

gyration on flow structure coherence for a range of wing aspect ratio. When the 

parameter rg is small, a coherent vortex system forms rapidly on a rotating wing, and this 
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vortex system persists as the wing continues to rotate at constant angular velocity. When 

the parameter rg is increased to a moderate value, the flow structure development is not 

as rapid, and coherent vortical structures do not persist as the wing rotates at constant 

angular velocity. 
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CHAPTER 1 

 

INTRODUCTION 

 

The study of bio-inspired flight, particularly that of insects, has become a 

prevalent area of research in recent years. Much of this research has been driven by 

interest in the development of micro air vehicles (MAVs), and the desire to emulate 

the performance of biological flyers in the design of these vehicles. Comprehensive 

reviews of bio-inspired research are given by Sane (2003), Wang (2005), and Shyy et 

al. (2010). In addition, Pines and Bohorquez (2006) relate our understanding of insect 

flight to practical issues of micro air vehicles. This chapter is divided into sub-

sections that respectively: (i) describe the motivation behind recent research of bio-

inspired flight; (ii) summarize the results of those studies that are most relevant to the 

current investigation; (iii) identify issues related to bio-inspired flight that have not 

been resolved; and (iv) propose objectives for this investigation to address these 

issues. 
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1.1 MOTIVATION FOR BIO-INSPIRED RESEARCH 

 

 One of the primary motivations behind recent research of bio-inspired flight has 

been a desire to gain an understanding of the mechanisms that allow flapping animals, 

particularly animals such as insects and hummingbirds that are capable of steady hover 

flight, to be such outstanding flyers. Insects have been of particular interest, due to their 

small size. These flapping animals take flight using unsteady wing kinematics that are 

much different from the wing motion employed in conventional, fixed-wing aircraft, 

rotorcraft, and even the kinematics of larger biological flyers. Identification of the 

aerodynamic mechanisms that result from these kinematics has been a major goal of 

much of the research into bio-inspired flight. This goal has been augmented recently by 

efforts to develop micro air vehicles that exploit the same mechanisms used by biological 

flyers. 

Ellington (1984) provided an excellent, all-encompassing investigation of insect 

flight. This investigation characterized many of the differences between insect flight and 

the flight of conventional, fixed-wing aircraft and rotorcraft. The morphological 

parameters and kinematics of wing motion employed by several biological flyers were 

identified. Insects generally employ flexible, low aspect-ratio wings (AR < 5) that flap 

periodically. In comparison, fixed-wing aircraft and rotorcraft typically employ higher 

aspect ratio wings or rotors that respectively undergo constant translation and constant 

rotation; these conventional airfoils do not oscillate. During the wing beat of an insect, 

the angle of attack α is typically not static; it dynamically changes throughout the motion. 

This variation of α is facilitated passively, through wing flexibility, as well as actively, 
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through control by the insect. In contrast, aircraft wings are rigid, and do not typically 

rely on unsteady variation of α. Another characteristic difference is the oscillatory nature 

of insect wing motion, compared with the unidirectional nature of conventional wing 

motion. Finally, insect wings operate at low Reynolds number in the range 10 < Re < 

10
4
, which is lower than the range Re > 10

5 
for conventional, fixed-wing aircraft.  

 The morphological and kinematic differences between the flight of insects and the 

flight of conventional aircraft and rotorcraft result in significantly larger aerodynamic 

forces on insect wings. That is, the lift forces generated per square inch of lifting surface 

of a periodically-flapping insect wing are greater than the lift forces generated per square 

inch of a conventional aircraft wing. Several investigators, including Ellington (1984), 

have used conventional aerodynamic principles to predict performance of insect wings, 

based on their morphological parameters, and found that the results underestimated the 

actual lift and drag. Since insect flight is different from conventional flight in numerous 

ways, it has been difficult for researchers to identify what parametric or kinematic 

mechanisms account for the most significant differences of lift force. Several flow 

mechanisms have been proposed to account for this difference, but the contributions of 

each of these mechanisms to the lift forces on insect wings are heretofore unclarified. 

 

1.1.1 MAV design  

In addition to the interest of biological researchers in understanding insect flight, 

a desire for small micro air vehicles (MAVs) has emerged in recent years, which has 
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increased the interest of engineers in bio-inspired research. This interest for MAVs is 

widespread, with applications ranging from military reconnaissance to parcel delivery. 

The characteristics proposed for a MAV, as identified by Pines and Bohorquez (2006), 

include: no length scale greater than 6 inches, gross weights of 200 grams or less, and 

flight time greater than 60 minutes.  

The earliest MAV prototypes were miniaturized conventional aircraft that 

employed the same flight characteristics as these much larger vehicles. Figure 1.1, from 

Pines and Bohorquez (2006), shows photographs of some early MAV designs, and a plot 

that compares the flight time of each MAV to the weight of that aircraft. Most of the 

MAVs included in this figure employ fixed wings and conventionally operated propellers 

or rotors. The aircraft shown are also quite large, and the performance of these vehicles 

did not meet the design benchmarks necessary for their intended use.  

The lack of comprehensive understanding of bio-inspired flight has not stopped 

several aircraft designers from using bio-mimetic design. Several recent MAV designs 

have employed bio-mimicry, in an attempt to generate lift and drag similar to insects, i.e., 

MAV designers have imitated wing geometries and wing kinematics found in biological 

flight, in the hope that these mimetic designs will offer similar performance to their 

natural counterparts. An example of a bio-mimetic MAV, which was created in the 

likeness of a hummingbird, is shown in figure 1.2. This vehicle employs electric motors 

to generate oscillatory wing motion, similar to a typical flapping flyer. Moreover, the 

leading-edge of each wing is rigid, and a flexible membrane serves as the wing in order 

to imitate the wing flexibility seen in biological flyers. This resulted in close mimicry of 
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the oscillatory wing motion employed by an actual hummingbird, and it offered 

substantial improvement over the miniaturized aircraft discussed in the previous 

paragraph (Keennon et al. 2012). However, this design, and other bio-mimetic MAVs, 

still have not achieve all of the desired goals identified by Pines and Bohorquez (2006). 

In addition, MAVs that employ such intricate bio-mimetic wing kinematics are much 

more difficult to design and produce, due to the complexity of wing motion. 

The incomplete understanding of flow physics in the parametric space where 

insects operate has challenged potential MAV designers, since they do not have an 

accurate representation of the aerodynamic mechanisms used by the flapping animals that 

they are trying to mimic. A greater understanding of the flow physics responsible for the 

performance advantages of bio-inspired flight would enable MAV designers to simplify 

designs and improve performance. Specifically, it would be useful to characterize the 

flow physics on bio-inspired wings. In turn, such knowledge of the physics can lead to 

parameters and design considerations for MAVs that perform as well as biological flyers. 

Significant research efforts have been pursued in recent years. Recent investigations are 

briefly reviewed in section 1.2.  

 

1.2 REVIEW OF BIO-INSPIRED RESEARCH  

 

Research into the flight characteristics and aerodynamic mechanisms employed 

by insects has been conducted in several ways. Experimental studies have been presented 

that: (i) recorded the wing motion/kinematics employed by live insects; (ii) determined 



9 
 

the lift and drag forces on live insects and model insect wings, and (iii) visualized the 

flow around live or model insect wings. Flow visualization has been conducted either 

qualitatively, using smoke or dye injection, or quantitatively, using particle image 

velocimetry. Computational studies that computed the flow velocities and forces on 

insect wings have also been presented. 

 

1.2.1 Flow structure on wings in flapping motion 

  Investigation of the flow physics and aerodynamic performance of flapping flight 

at the scale of insects has been conducted using several approaches. Ellington (1984), and 

Wilmott and Ellington (1997a & b) related insect wing kinematics to aerodynamic force 

production. Ellington et al. (1996) and Bomphrey et al. (2006) employed respectively 

qualitative and quantitative flow visualization to characterize the flow structure along the 

wings of live insects. The flow structures visualized in these respective studies are shown 

in figure 1.3. Ellington et al. (1996), and Lentink and Dickinson (2009b) determined the 

forces and qualitative flow structure on mechanical models of flapping-wings, which 

were scaled to match insects. Further investigations employed force measurement 

(Dickinson et al. 1999; Birch and Dickinson, 2001; Poelma et al. 2006) and quantitative 

flow visualization (Birch and Dickinson, 2001; Poelma et al. 2006; Lu and Shen, 2008). 

The computations of Liu et al. (1998), Sun and Tang (2001), Aono et al. (2007), Kweon 

and Choi (2010), and Jardin et al. (2012) provided insight into the flow structure, largely 

in concert with the experimental studies described in the foregoing summary. The three 
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dimensional flow structure on a flapping insect, computed by Aono et al. (2007), is 

shown in figure 1.4. 

Ellington (1984) and Dickinson et al. (1999), among others, identified several 

aspects of the flow structure in relation to the wing kinematics of insects; this flow 

structure has been linked, in turn, to the production of lift. These flow features include: (i) 

maintenance of flow attachment during wing rotation at high angle of attack α; (ii) 

additional circulation due to wing pronation and supination; and (iii) capture of shed 

vorticity during stroke reversal. The latter two mechanisms require respectively angle of 

attack variation and stroke reversal, and are therefore exclusive to the periodic (flapping) 

wing motion that occurs in natural fliers. The maintenance of flow attachment during 

wing rotation, however, has been observed during the portion of the oscillation (flapping) 

cycle where pure rotation of the wing occurs at high angle of attack α. This motion makes 

up a significant portion of the flapping cycle of certain insects (Ellington, 1984; Wilmott 

and Ellington, 1997a). This flow attachment improves lift production through an increase 

in circulation around the wing.  

 

1.2.2 Flow structure on wings in pure rotation 

Pure rotation involves rotation of a wing about a fixed axis at constant angular 

velocity Ω and constant angle of attack α, following acceleration from rest. Dickinson et 

al. (1999) recorded the time history of force production on a finite aspect-ratio wing 

undergoing pure rotation and compared it to the force production on a two-dimensional 
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model wing undergoing rectilinear translation (Dickinson and Götz, 1992). They 

observed peak values of lift and drag coefficients shortly after the onset of motion for 

both translation and rotation. These peaks were followed by relatively constant lift while 

the wing moved at constant angular or translational velocity. An excerpt from that 

investigation is shown in figure 1.5. The time history of force production on a rotating 

wing is shown in the upper-left of figure 1.5. The early force peak, seen in the figure at 

approximately t = 0.25 s, has been associated with non-circulatory forces and a 

phenomenon known as delayed stall by several investigators (Ellington 1984; Dickinson 

et al. 1999; Sane and Dickinson 2001; Hubel and Tropea 2009). After the initial force 

peak, Dickinson et al. (1999) found that the rotating wing produced significantly larger 

lift and drag coefficients than the two-dimensional, translating wing. Lift and drag polar 

plots of the rotating (labeled as 3-D steady) and translating (labelled as 2-D steady) wing 

are shown in the lower-right corner of figure 1.5. This portion of the figure clearly shows 

significantly larger sustained lift and drag forces on the rotating wing. Usherwood and 

Ellington (2002a), Birch et al. (2004), Luo and Sun (2005), Garmann et al. (2013), and 

Harbig et al. (2013) also described time histories of aerodynamic force production on 

wings undergoing pure rotation. They reported results that were similar to Dickinson et 

al. (1999) across a broad range of wing planforms and Reynolds number, although the 

early force peak was not evident in all investigations (Garmann et al. 2013). Lentink and 

Dickinson (2009b) and Garmann et al. (2013) compared lift and drag on finite aspect-

ratio wings undergoing pure rotation and rectilinear translation. These studies revealed 

that significantly larger lift and drag were produced when the wing was undergoing pure 

rotation. While the variation of these forces with time has a generally similar form over 
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the range of Reynolds number in these investigations, larger magnitude lift and drag 

coefficients have been associated with larger values of Reynolds number (Birch et al. 

2004; Lentink and Dickinson, 2009b; Garmann et al. 2013; Harbig et al. 2013).  

  A number of studies have addressed the flow structure associated with increased 

lift and drag on rotating wings. Many investigators have documented the existence of a 

stable leading-edge vortex along a wing undergoing pure rotation, well after the wing 

reached constant velocity (e.g., Birch et al. 2004; Luo and Sun, 2005; Poelma et al. 2006; 

Ansari et al. 2009; Lentink and Dickinson, 2009b; Kim and Gharib, 2010; Ozen and 

Rockwell, 2011, Harbig et al. 2013, Garmann et al. 2013; Carr et al. 2013). Figure 1.6 

shows results from the quantitative flow imaging of Ozen and Rockwell (2011). In this 

figure, the components of velocity are represented with color contours, as is the vorticity 

ωC/Vrg, which is a parameter that indicates vortical structures. This figure shows the 

flow structures on rotating and rectilinearly translating wings well after the onset of wing 

motion. The horizontal rows at the top of figure 1.6 show the flow structure at the mid 

span of a rotating wing (top row) and a translating wing (second row). An attached 

leading-edge vortex is clearly visible on the rotating wing, as seen by the (red) positive 

vorticity in the upper-right contour plot. In contrast, the vorticity contours on the 

translating wing (immediately below the rotating wing) show the separated shear layer 

originating from the leading-edge (red) and trailing-edge (blue) of that wing. At the 

bottom of figure 1.6, contours of vorticity taken at several spanwise locations are stacked 

on top of each other, and small magnitude contours are removed. This representation 

clearly shows that the leading-edge vortex remains close to the wing surface across the 
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wingspan for the rotating wing (left), and, in contrast, the flow is dominated by separated 

shear layers across the span of a translating wing. The leading-edge vortex on a rotating 

wing, which arose from separation at the leading-edge, remained close, or ‘attached’, to 

the leading-edge of the wing in all of the foregoing studies. In these studies, this stable 

leading-edge vortex existed across a broad range of wing planforms and Reynolds 

number. Similar vortical structures have been observed on models of flapping wings 

(Ellington et al. 1996; Birch and Dickinson, 2001; Jardin et al. 2012) and live insects 

(Ellington et al. 1996; Bomphrey et al. 2006). In addition to the aforementioned findings, 

Lentink and Dickinson (2009a), Kim and Gharib (2010), Ozen and Rockwell (2011), and 

Garmann et al. (2013) determined the difference between the stable leading-edge vortex 

on a wing undergoing pure rotation and the flow structure on the same wing undergoing 

rectilinear translation. As shown in figure 1.6, Ozen and Rockwell (2011) found that the 

fully-evolved flow structure on a translating wing was dominated by separated shear 

layers on the leading- and trailing-edges of the wing. Garmann et al. (2013) found 

rectilinear translation resulted in detachment or shedding of the leading-edge vortex 

shortly after the onset of motion.  

Other features of the flow structure on a rotating wing have been identified during 

steady rotation, well after the onset of wing motion. Near the tip of the wing, the leading-

edge vortex connects to the tip vortex that extends into the wake (Poelma et al. 2006; 

Ansari et al. 2009; Kim and Gharib, 2010; Ozen and Rockwell, 2012; Garmann et al. 

2013; Carr et al. 2013; Harbig et al. 2013). A figure from Kim and Gharib (2010) is 

reproduced in figure 1.7. In this figure, the (transparent green) spanwise vorticity ωz iso-
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surface highlights the leading-edge vortex, and the (opaque blue) streamwise vorticity ωx 

iso-surface highlights the coherent tip vortex. Ozen and Rockwell (2012) and Garmann et 

al. (2013) also observed well-defined vortices near the root of a rotating wing that 

extended into the wake. The vortical structure in the tip region was less organized or, in 

some studies, not stably attached (Ansari et al. 2009; Lentink and Dickinson, 2009b; 

Jones and Babinsky, 2011; Ozen and Rockwell, 2012; Carr et al. 2013). This 

phenomenon has been linked to larger values of Reynolds number (Lentink and 

Dickinson, 2009b; Garmann et al. 2013; Harbig et al. 2013) and aspect-ratio AR = b/C, 

where b is the span of the wing and C is the average chord (Carr et al. 2013; Harbig et al. 

2013, Garmann and Visbal, 2014). The studies of Birch et al. (2004), Poelma et al. 

(2006), Ansari et al. (2009), Kim and Gharib (2010), Ozen and Rockwell (2012), Carr et 

al. (2013), Garmann et al. (2013), Harbig et al. (2013) found significant spanwise flow 

and vorticity flux from the root of the wing to its tip. Birch et al. (2004) found that the 

distribution of this spanwise flow was dependent on Reynolds number. Ozen and 

Rockwell (2012) observed significant downward-oriented flow (downwash) associated 

with the attached leading-edge vortex and the coherent tip and root vortices.  

 

1.2.3 Time-resolved, volumetric flow structure on wings in pure rotation and 

rectilinear translation 

In addition to the flow structure that occurs during steady rotation well after the 

onset of wing motion, several investigations have described different stages of the 
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transient, volumetric flow structure. That is, the three-dimensional flow structure near a 

rotating wing, as a function of time.  

Ozen and Rockwell (2012) observed a stable leading-edge vortex (LEV) at two 

stages of the flow structure development on an impulsively started rotating wing. Poelma 

et al. (2006), Kim and Gharib (2010), Harbig et al. (2013), Carr et al. (2013), Garmann et 

al. (2013) and Garmann and Visbal (2014) characterized the temporal development of 

this leading-edge vortex on an impulsively started rotating wing. A coherent tip vortex 

was often observed adjacent to the leading-edge vortex. The leading-edge vortex quickly 

develops to a stable state, i.e., the vortex rapidly attains a size and shape that persists as 

the wing continues to rotate. The results of Carr et al. (2013), which characterized the 

leading-edge vortex with particle image velocimetry, are shown in figure 1.8. Iso-

surfaces of Q-criterion colored with contours of helicity are shown for the flow structure 

development on an AR = 2 wing (first and third horizontal row), and on an AR = 4 

(second and forth horizontal row) wing. The Q-criterion indicates regions dominated by 

rotation, and is therefore used to identify vortical structures. A conical leading-edge 

vortex is evident on both wings, and this vortex persists at all rotation angles Φ. Both 

Poelma et al. (2006) and Jardin et al. (2012) observed similar leading-edge vortices on 

rotating wings undergoing periodic, reciprocatory motion similar to a hovering insect. 

Lentink and Dickinson (2009a & b) related the stability of the leading-edge 

vortex on a wing in pure rotation to centripetal and Coriolis accelerations. Their 

conceptual framework indicated that these accelerations enhanced the stable state of the 

leading-edge vortex. Garmann et al. (2013) assessed these accelerations and the spanwise 
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pressure gradient through computations. Garmann and Visbal (2014) subsequently 

showed that elimination of the centrifugal force substantially altered development of the 

flow structure, and decreased the coherence of the leading-edge vortex.  

The three-dimensional vortex system arising from a rectilinearly translating wing 

is markedly different from that on a rotating wing. Garmann et al. (2013) characterized 

the development of an arch-like vortex on an impulsively started, rectilinearly translating 

wing. The development of this arch vortex can be seen in the second horizontal row of 

figure 1.9. Garmann and Visbal (2013) also observed an arch vortex on a wing 

undergoing periodic hover motion. Various forms of arch vortex structures are indicated 

in the images of impulsively started, rectilinearly translating wings by Taira and Colonius 

(2009), and Kim and Gharib (2010), and on a rectilinearly translating wing undergoing 

periodic motion by Jardin et al. (2012). The fundamental physics of the arch vortex was 

first computed and assessed in detail by Visbal (2011), for the case of a heaving wing in 

the presence of inflow, and was confirmed experimentally on a heaving wing by Visbal et 

al. (2013). Yilmaz and Rockwell (2011) experimentally characterized the structure of the 

arch vortex on a pitching wing with inflow. 

Direct comparisons of the development of the volumetric flow structure on both a 

rotating wing rg = O(1) and on a translating wing rg = ∞ are given by Kim and Gharib 

(2010), Jardin et al. (2012), Garmann et al. (2013), and Garmann and Visbal (2013). 

These studies demonstrated that the attached leading-edge vortex and the arch vortex 

occur respectively on rotating and rectilinearly translating wings. Moreover, the 

development of the leading-edge vortex was more rapid than the arch vortex. Garmann et 
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al. (2013) found fundamentally different surface pressure distributions on rotating and 

translating wings. Both results are shown in figure 1.9. In the top two horizontal rows of 

figure 1.9, iso-surfaces of constant total pressure that resulted from both wing motions 

are presented. A leading-edge vortex is evident on the rotating wing, and an arch vortex 

is evident on the translating wing. In the bottom two horizontal rows, the surface pressure 

on each wing is shown for several travel distances. The magnitudes of pressure 

coefficient are significantly greater on the rotating wing than on the translating wing. 

This negative pressure difference accompanied greater lift and drag forces on the rotating 

wing. For both types of vortical structure, the maximum negative (suction) pressure 

occurred at the location where each respective vortical structure was closest to the wing. 

However, significantly larger negative pressure was associated with the leading-edge 

vortex than with the arch vortex. This distinction of the magnitude of negative pressure is 

associated with larger lift and drag forces on the rotating wing. In addition, Garmann and 

Visbal (2013) computed surface pressure distributions and force trends on rotating and 

rectilinearly translating wings in simulated hover motion; they are similar to those 

described in the foregoing. 

 

1.2.4 Effect of large travel distance on flow structure 

Experimental and computational investigation of the flow structure on a rotating 

wing has generally been limited to angles of rotation well within its first full revolution, 

that is, Φ < 360° where Φ is the angle of rotation measured from the onset of motion. 

When the wing rotates beyond one full revolution Φ > 360°, it interacts with previously 
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generated vorticity in its wake while the flow structure continues to relax. Usherwood 

and Ellington (2002a) found, however, that the magnitudes of horizontal and vertical 

forces generated by a rotating wing did not significantly change from Φ = 180° to Φ = 

1,260° (3.5 revolutions). Mayo and Jones (2013) compared sectional patterns of the 

instantaneous flow structure at angles of rotation Φ = 180° and 540° corresponding to 0.5 

and 1.5 revolutions of the flat plate. They observed a minor reduction in the scale of the 

leading-edge vortex near the root of the wing. At the midspan, an elongated concentration 

of vorticity adjacent to the leading-edge was present at both 0.5 and 1.5 revolutions of the 

wing, but it was located closer to the wing at 1.5 revolutions. 

 

1.2.5 Scaling of effects of rotation on flow structure 

Identification of the flow mechanisms responsible for a stable leading-edge vortex 

on rotating wings, a condition associated with enhanced lift, has motivated much of the 

research in this field. Lentink and Dickinson (2009a) defined the mechanisms of stability 

of the leading-edge vortex in relation to the aerodynamic forces via an analytical 

framework. Their framework indicates that the force components due to centripetal and 

Coriolis accelerations in a non-inertial frame of reference fixed to a rotating wing 

stabilize the flow structure. Garmann and Visbal (2014) found, via high fidelity 

computations of the flow along a rotating wing, that Coriolis effects do not contribute to 

an attached, stable leading-edge vortex. Moreover, introduction of a term that cancelled 

centripetal forces significantly altered the flow structure, thereby causing the leading-

edge vortex to break down while the wing rotated at constant angular velocity. The flow 
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structure development without the centripetal force is shown in figure 1.10. Wojcik and 

Buchholz (2014) evaluated vorticity transport in the leading-edge vortex and found that 

annihilation of vorticity was an important factor in leading-edge vortex stability. 

 The dimensionless magnitudes of the rotational accelerations proposed by Lentink 

and Dickinson (2009a) can be related to the dimensionless Rossby number Ro = r/C 

where r is a characteristic radial dimension of the wing. Variation of this parameter has 

been investigated using the following approaches. The first defines the Rossby number as 

the ratio of the span b of the wing to its chord C, i.e., Ro = b/C = AR, and the value of the 

aspect ratio AR is varied. The second approach defines the Rossby number as the ratio of 

the radius of gyration rg of the wing to the chord C of the wing, i.e., Ro = rg/C, and the 

radius of gyration rg is varied while the wing aspect ratio AR is held constant. The effect 

of varying the Rossby number via rg is shown in figure 1.11. As rg is increased, the 

radius of the circle circumscribed by the wingtip is also increased, and the influence of 

rotation on the flow structure is diminished. 

Investigations that describe the effects of aspect ratio AR on the flow structure and 

forces on a wing undergoing pure rotation include the experiments of Usherwood and 

Ellington (2002b) and Carr et al. (2013), and the computations of Luo and Sun (2005), 

Harbig et al. (2013), and Garmann and Visbal (2014). Collectively, these studies have 

found that at locations beyond the midspan of a rotating wing, where local Rossby 

number Rolocal = rlocal/C is largest, the leading-edge vortex lifts off the surface of the 

wing and becomes less coherent. This breakdown is more pronounced on higher aspect-
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ratio wings, perhaps due to decreased spanwise vorticity flux on those wings (Carr et al. 

2013), and is consistent with the vortex separation and shedding found on the outer half-

span of rotating wings by Ansari et al. (2009) as well as Jones and Babinsky (2011). 

Harbig et al. computed the structure on several aspect ratio wings with bio-inspired 

planforms. The results of this investigation at three aspect ratios AR = 2.91, 5.10, and 

7.28 are shown in figure 1.12. In this figure, the flow structure is visualized with Q-

criterion and colored with spanwise vorticity. The lowest aspect ratio wing, shown in the 

top of figure 1.12, is associated with the most coherent vortical structures. As the aspect 

ratio is increased, the vortical structures become less coherent. Harbig et al. (2013) 

showed that, for a wing rotating about its root, definition of the Reynolds number based 

on the tip radius reduced the differences in the flow structure, due to variation of aspect 

ratio and Reynolds number, to a single scaling parameter ReR = vtipR/ν, where vtip is the 

tip velocity of the wing and R is the span of the wing. The effect of variation of the aspect 

ratio on the aerodynamic forces observed by Usherwood and Ellington (2002b), Luo and 

Sun (2005), and Garmann et al. (2013) was small compared to the difference in forces 

observed between rotating and translating wings by Usherwood and Ellington (2002b), 

Lentink and Dickinson (2009b), and Garmann et al. (2013). Luo and Sun (2005) 

observed that, as the aspect ratio of the wing increased, the decrease in lift due to 

breakdown of the leading-edge vortex balanced an increase in lift due to reduced three-

dimensional effects.   

Investigation of the effect of Rossby number via variation of the radius of 

gyration of a fixed wing-planform has been less extensive. Lentink and Dickinson 
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(2009b) showed that increasing the Rossby number led to a decrease in lift and drag 

coefficients over four values of Rossby number: Ro = rtip/C = 2.9, 3.6, 4.4, and ∞ (purely 

translating wing). Lift-drag polar plots, provided by Lentink and Dickinson (2009b), for 

these different wing configurations are reproduced in figure 1.13. An arrow indicates the 

decrease in lift and drag forces, as the Rossby number of the wing is increased. The wing 

at lowest Rossby number produced the largest magnitude aerodynamic forces (largest 

radius ‘circle’ on figure 1.13), while the rectilinearly translating wing produced the 

smallest magnitude aerodynamic forces (smallest radius ‘circle’ on figure 1.13). 

Schlueter et al. (2014) also found that as the radius of gyration of a rotating wing was 

increased, the lift and drag approached values corresponding to a translating wing. 

Increase of the Rossby number by variation of the radius of gyration rg has an important 

limit: when the radius of gyration becomes infinitely large, i.e., rg/C = Ro = ∞, the 

motion of the finite aspect ratio wing approaches rectilinear translation. In other words, a 

translating wing is equivalent to a rotating wing with infinite radius of gyration, rg/C = 

Ro = ∞. The aforementioned qualitative and quantitative flow visualization of Lentink 

and Dickinson (2009b), Kim and Gharib (2010), Ozen and Rockwell (2011), and 

Garmann et al. (2013) describes the difference in flow structure at Ro = O(1) (rotating 

wing) and Ro = ∞ (rectilinearly-translating wing). 
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1.3 UNRESOLVED ISSUES 

 When considered collectively, the research studies presented above have offered 

significant insight into bio-inspired flight. However, they have not adequately addressed 

the following issues. 

Flow structure at different radii of gyration of a wing. A number of studies have 

identified the flow structure on two classes of wings: (i) rotating wings where rg = O(1); 

and (ii) translating wings where rg = ∞. In addition, when the lift and drag forces on 

wings at different radii of gyration were characterized, increasing the radius of gyration 

was found to decrease the lift and drag forces on a rotating wing. Currently, no studies 

have addressed the quantitative characterization of the flow structure on wings at 

different, finite radii of gyration. Quantitative determination of the flow near a rotating 

wing will allow for identification of the different flow structures responsible for the 

decrease in lift and drag forces, and should offer insight into the parameters responsible 

for any change in flow physics as a function of radius of gyration. 

Structure of leading-edge vortex at large travel distance. Recent investigations have 

identified the existence of a stable leading-edge vortex on a purely rotating wing. This 

vortex remained attached to the wing through a range of rotation angles Φ < 360°. In 

addition, the lift and drag on rotating wings remain nearly constant from Φ = 180° to Φ = 

1,260°. Conversely, the lift on a translating wing is known to attenuate rapidly after an 

impulsive start, a phenomenon known as delayed stall. Currently, no studies have 

confirmed the continued existence of the leading-edge vortex on a rotating wing as the 
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wing continues to rotate through large rotation angles and the flow structure continues to 

relax, or the transformation of vortical structures on a wing at different radii of gyration.  

Flow physics associated with leading-edge vortex stability. The leading-edge vortex 

on rotating wings has been associated with spanwise flow and spanwise vorticity flux. 

However, other quantities such as downwash and enhanced helicity may contribute to 

leading-edge vortex stability. The physics behind stability of the flow structure on 

rotating wings, in particular the retention of a leading-edge vortical structure, is not 

adequately understood. 

Temporal development of the flow structure with moderate rotational effects. The 

flow structure development on both rotating and translating wings has been characterized 

using time resolved results with fine temporal resolution. On these wings, markedly 

different flow structures were observed: a stable leading-edge vortex was observed on a 

rotating wing, and an arch vortex was observed on a translating wing. The transformation 

of development of the flow structure between these extremes, due to reduced rotational 

effects at larger, finite values of radius of gyration, has not been characterized. This 

characterization would provide a better understanding of the flow physics that causes 

such different flow structures and lift forces. 

 

1.4 RESEARCH OBJECTIVES 

The objective of the present investigation is to characterize, experimentally, the 

three-dimensional flow structure on rotating wings at different radii of gyration. The flow 
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will be quantitatively determined at several stages of development of the flow structure, 

and the results will be interpreted in terms of vorticity, Q-criterion, components of 

velocity (u, v, and w), vorticity flux, helicity and streamlines. Both iso-surfaces and 

sectional slices will be used to represent the flow structure. 

More specifically, the current investigation aims to: 

 Develop and implement an experimental system to determine the flow 

structure on a rotating wing. Stereoscopic particle image velocimetry 

(SPIV) will be employed, with volumetric reconstruction, to determine 

this flow structure quantitatively. 

 Characterize the flow on a rotating wing at multiple radii of gyration to 

identify the role of rotation on the flow structure near this wing. 

 Determine the time-resolved flow structure on a rotating wing using 

temporal reconstruction, i.e., quantify the volumetric flow structure at 

several stages of flow development, to characterize the effect of radius of 

gyration on this development. 

 Determine the flow structure on a rotating wing after the wing has rotated 

through an extremely large rotation angle Φ, when the flow structure has 

had significant time to relax to a final state. 

 Identify flow characteristics such as helicity and downwash velocity that 

are associated with leading-edge vortex stability on rotating wings. 
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Figure 1.1. Photographs of several early micro air vehicles (MAVs), and performance 

characteristics of each. (Pines and Bohorquez, 2006). 
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Figure 1.2. Photograph of DARPA hummingbird MAV. (AeroVironment, 2014). 
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Figure 1.3. Flow structure on live insects. Qualitative visualization of Ellington et al. 

(1996) (top three rows), and quantitative visualization of Bomphrey et al. (2006) (bottom 

two rows).  
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Figure 1.4. Flow structure computed on a flapping insect (Aono et al. 2007). 
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Figure 1.5. Lift and drag forces on purely rotating (3-D) and translating (2-D) wing. 

(Top-left) time-history of lift on a rotating wing at several angles of attack α. (Bottom-

right) Comparison of the lift and drag forces on a rotating wing (3-D steady) to the peak 

(2-D transient), and sustained (2-D steady) forces on a 2-D translating wing (Dickinson et 

al. 1999). 
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Figure 1.6. Flow structure on rotating and translating wing. (a) Streamlines, contours of 

components of velocity and contours of vorticity at the midspan. (b) Stacked contours of 

vorticity across the span (Ozen and Rockwell, 2011). 
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Figure 1.7. Iso-surfaces of spanwise vorticity ωz (green), and streamwise vorticity ωx 

(blue) on a rotating wing (Kim and Gharib, 2010). 
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Figure 1.8. Flow structure visualized with iso-surfaces of Q-criterion, on AR = 2 and AR 

= 4 rotating wings, at several rotation angles Φ (Carr et al. 2013). 
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Figure 1.9. (Top two rows) Flow structure development on rotating and translating wing 

visualized with iso-surfaces of total pressure. (Bottom two rows) Pressure coefficient 

development on the leeward surface of rotating and translating wings (Garmann et al. 

2013). 
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Figure 1.10. Flow structure development on a rotating wing visualized with iso-surfaces 

of total pressure without centrifugal force (Garmann and Visbal, 2014). 
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Figure 1.11: Diagram showing the path of a rotating wing at four radii of gyration Rg 

(Lentink and Dickinson, 2009a). 
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Figure 1.12. Transformation of the flow surface with increasing aspect-ratio. Flow 

structure visualized with iso-surfaces of Q-criterion (Harbig et al. 2013). 
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Figure 1.13. Lift and drag forces on a rotating wing at four radii of gyration (Lentink and 

Dickinson, 2009b). 
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CHAPTER 2 

 

EXPERIMENTAL SYSTEMS AND TECHNIQUES 

 

Experiments were conducted in a large-scale, free surface water channel in the 

Fluids Lab at Lehigh University. Figure 2.1 shows a photograph of the test facility and 

experimental system. The investigations discussed herein considered a bio-inspired, low 

aspect ratio wing undergoing pure rotation. An experimental apparatus was constructed to 

simulate this motion. Stereoscopic particle image velocimetry (SPIV) was employed to 

determine the fluid motion generated by the rotating wing. This chapter is divided into 

sub-sections that respectively describe: (i) the water channel; (ii) the wing parameters, 

kinematics, and motion control; (iii) the quantitative flow-imaging technique used to 

determine flow patterns; and (iv) the uncertainty associated with the quantitative imaging 

technique. 
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2.1 WATER CHANNEL 

The channel consisted of transparent, Plexiglass walls that allowed for 

visualization of the flow through these walls. The test section had dimensions of 5,435 

mm length, 613 mm width, and 594 mm height. This section was filled with water, 

filtered with four 5 μm filters, and the water temperature was maintained at 24°C. The 

channel was filled to a depth of 508 mm for experiments. A large recirculation pump in 

the test facility was capable of producing inflow, but no inflow velocity was employed in 

the experiments presented herein, i.e., all experimental results presented in this 

investigation were performed in initially quiescent water. Since no inflow velocity was 

employed, removable Plexiglass panels, which served to block fluid movement in-to and 

out-of of the test section, were installed at the upstream and downstream ends of the test 

section. These panels helped maintain seeding-particle density during flow visualization 

experiments by limiting the exchange of fluid between the test section and the large 

reservoirs seen in figure 2.1. 

 

2.2 WING PARAMETERS AND MOTION 

 An experimental apparatus was constructed to control the wing kinematics and 

positioning during experiments. The system consisted of: (i) a traverse system with three 

degrees of freedom that allowed precise control of wing motion during experiments; (ii) 

several wing geometries, with various means of attaching them to the rotating shaft, 

which enabled variation of specific parameters relevant to the investigations presented in 
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this report; and (iii) a digital motion control system, with three computer-controlled 

motors, that allowed for precise control of wing positioning and motion. 

 

2.2.1 Motion axes 

Figure 2.2 shows an isometric view of the three-axis traverse system that was 

constructed for this research. A wing was mounted to the vertically-oriented brass rod. 

The cylindrical, vertical rod had a diameter of 12.7 mm and a length of 622 mm. The 

traverse system was capable of moving the rod in three ways: (i) linear motion in the 

vertical direction; (ii) linear motion in one horizontal direction; and (iii) rotation about 

the center of the rod. A Daedal 310062AT two-dimensional translation stage provided the 

linear modes of motion. Two bearings located the brass rod and allowed for the rotational 

mode of motion. These components are also indicated in figure 2.2.  

 

2.2.2 Motion control 

Dual-rod stepper motors were used to drive the wing motion along the axes 

described above. These motors are shown in figure 2.2. The linear axes were employed to 

vary the static location of the rotating rod, i.e., the stepper motors powering these axes 

varied the static position of the brass rod relative to the water channel and flow imaging 

system. Compumotor model AX-57/102 stepper motors with a resolution of 25,000 steps 

per revolution were used to control linear motion. When combined with the translation 

stage, the resolution of linear motion was 1969 steps per millimeter for both axes. A third 
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Compumotor model AX-57/102 stepper motor with a resolution of 25,000 steps per 

revolution was connected to the vertical rod through a series of three rubber timing belts, 

resulting in an overall drive-ratio of stepper motor rotation to vertical rod rotation of 

18:1. This corresponded to 450,000 steps per revolution of the brass rod. The timing belt 

system served to damp any vibrations induced by the incremental nature of stepper motor 

rotation.  

All three stepper motors were controlled by Compumotor micro-stepper drives 

connected to a National Instruments UMI-7764 control box. An ACCU-CODER 755A 

encoder was installed on the stepper motor that drove rotational motion. Using the 

encoder, the control box was able to monitor the accuracy of motion execution during 

wing rotation in a closed loop. Wing motion was executed within 100 steps (0.1° of 

vertical rod rotation) of the prescribed motion. A desktop PC using National Instruments 

software generated and executed wing motion through control of the stepper motors. This 

PC also generated a 5V triggering signal that was sent to the particle image velocimetry 

(PIV) system via a National Instruments BNC-2110 BNC connector array. Triggering 

was used to synchronize flow visualization with wing motion. 

 

2.2.3 Wing parameters 

As shown in figure 2.2, a smaller brass rod connected the vertical rod to the 

midchord of the wing. This connecting rod had a diameter 2.3 mm. All wings had a 

constant thickness of 2.3 mm and were not cambered. These wings were machined from a 
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clear sheet of acrylic. All of the wings employed had a rectangular planform with sharp 

edges. After machining, the machined sides of the wing were sanded to remove burrs, 

and polished so that the sides of the wing were clear. Wings had a chord C = 25.4 mm 

and spans b = 28.6 mm, 50.8, 127.0 mm yielding respective aspect ratios AR = b/C = 1.1, 

2.0, and 5.0. The thickness to chord ratio of all wings was tw/C = .09.  

Several wing configurations were investigated. Figure 2.3 shows a plan view 

schematic of the rotating rod and each of these wing configurations. Chapters 3 and 

Chapter 4 focus on the investigation of wings at different radii of gyration rg. The radius 

of gyration was calculated with the following equation (Ellington, 1984; Lentink and 

Dickinson, 2009b): 

rg=√
1

S
∫ r2R

0
c(r)dr      (2.1) 

In equation 2.1, S is the planform area of the wing, R is the distance from the center of 

rotation to the wing tip, c(r) is the chord of the wing as a function of distance from the 

center of rotation (constant in this investigation), and r is distance from the center of the 

wing to any location along the span, which is the integrating variable dr. The value of rg 

was varied for each wing by adding extension rods to the support rod that connected the 

wing to the vertical rod. Extension rods all had a diameter of 6.4 mm. As shown in figure 

2.3, four radii of gyration were investigated with the aspect ratio AR = 1.1 wing, and two 

radii of gyration were investigated with the aspect ratio AR = 2.0 wing. The angle of 
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attack of the wing was set to α = 45° for all experiments; the angle of attack was static, 

i.e., it did not change during wing motion. 

 

2.2.4 Wing kinematics 

 The flow structure was investigated after acceleration of the wing from rest in 

quiescent water. After the initial acceleration, the wing rotated at constant velocity to a 

specified rotation angle, at which time it decelerated to a resting (non-moving) state. 

These periods of acceleration and deceleration were made as short as possible without 

inducing vibration in the motion control components. Therefore, the motion simulated an 

impulsive start and stop of the wing. Figure 2.4 shows a line plot of wing rotation rgΦ/C 

as a function of time. Here, Φ is the angle between the initial and current location of the 

wing; Φ is given in radians. The motion profile employed was previously implemented 

by Ozen (2013), and Yilmaz (2012), who adapted it from Eldredge et al. (2009). It is 

described by the function: 

Φ(t) = Φmax
ln[cosh(a(t-t

1
))cosh(a(t-t

4
))sech(a(t-t

2
))sech(a(t-t

3
)]

max(ln[cosh(a(t-t
1
))cosh(a(t-t

4
))sech(a(t-t

2
))sech(a(t-t

3
)])

   (2.2) 

The parameter a is a smoothing parameter. An increase in the value of a increased the 

rates of acceleration and deceleration of the wing. Parameters t1, t2, t3, and t4 adjust the 

timing of the acceleration and deceleration of the motion. 
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 Development of the flow around the rotating wing was characterized as a function 

of the length of the arc representing the path of the radius of gyration; it is defined as the 

travel distance rgΦ/C. Lentink and Dickinson (2009a & b) describe advantages of using 

this parameter. When rgΦ/C is used, instead of, for example, Φ, to characterize the flow 

structure, the actuator disc area swept by the wing is constant for all radii of gyration. 

Lentink and Dickinson (2009a) provide a diagram that illustrates the actuator disc area at 

different radii of gyration, which is reproduced in figure 2.5. In this figure, a wing at four 

radii of gyration is shown. The orange area, which is the area swept by the rotating wing, 

is constant. If the rotation angle Φ were used instead of rgΦ/C, a wing at a large radius of 

gyration would travel through a larger arc, and therefore sweep a larger actuator disk than 

a wing at a smaller radius of gyration, resulting in a different stage of development of the 

flow structure.  

This investigation was not focused on identifying the effects of different 

acceleration and deceleration profiles on the flow structure. Therefore, the parameters of 

the function above were adjusted such that the smoothed acceleration and deceleration 

periods, at the radius of gyration rg, were identical for all radii of gyration investigated, 

i.e., the distance travelled along the arc described in the foregoing as a function of time 

rgΦ/C = f(t) was identical for all experiments. 
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2.3 QUANTITATIVE FLOW IMAGING 

Stereoscopic particle-image velocimetry (PIV) was employed to characterize the 

flow along the rotating wing described in section 2.2. Traditional, monoscopic PIV 

determines the velocity of fluid in a plane. In PIV, tracer particles seeded in a fluid are 

illuminated with a laser sheet and photographed at two instants in time. The images are 

divided into interrogation windows, according to a rectangular grid, and a frame-to-frame 

cross correlation algorithm is used to determine the average particle displacement in each 

interrogation window between the two images. The average fluid velocity in each of 

these windows is then estimated from the average displacement and the difference in time 

between image acquisitions, according to the following equation (Adrian and 

Westerweel, 2011):  

(v
px

, v
py

)≈
(Δxp,   Δyp)

Δt
  (2.3) 

In equation 2.3, Δxp and Δyp are displacements of a particle in the x and y directions, and 

vpx and vpy are the respective velocity components of the particle. Monoscopic PIV 

analysis therefore results in a two-dimensional grid or field of velocity vectors, or vector-

field, one from each interrogation window. In stereoscopic PIV, the same analysis is 

conducted, except that two cameras photograph the illuminated particles from different 

perspectives. The vector-fields generated by each camera are then mapped onto the laser 

plane, which, along with knowledge of the orientations of the cameras relative to the laser 

plane, allows determination of all three components of velocity.  
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Both monoscopic and stereoscopic PIV have been used to evaluate a wide range 

of flows, since the introduction of the technique by Adrian (1984). Adrian and 

Westerweel (2011) provide the most recent, thorough description of PIV analysis. Their 

review includes practical considerations for the design and implementation of a PIV 

system. Stereoscopic particle image velocimetry was employed for all experiments in this 

investigation. 

 

2.3.1 PIV system components 

Figure 2.6 shows a schematic of the PIV system used to conduct the present 

experiments. A New Wave Solo III laser generated light pulses to illuminate particles. 

The laser employed a dual-pulsed Nd:YAG crystal to generate cylindrical laser pulses, 

with maximum output energy of 120 mJ at a wavelength of 532 nm (green light). The 

output pulses generated by the laser passed through two lenses: (i) a cylindrical lens with 

a focal length of -50 mm; and (ii) a spherical lens with a focal length of 1000 mm. The 

lens arrangement converted the output pulses into a laser sheet with a beam waist, i.e., 

minimum laser-sheet thickness, that was approximately level with the vertical position of 

the wing. At the beam waist, the laser sheet had a thickness of between 0.8 and 1.2 mm.  

The laser sheet was oriented vertically and aligned parallel to the walls of the water 

channel. The error in vertical alignment of the laser sheet was less than 0.2°, and the error 

in alignment of the laser sheet parallel to the walls of the water channel was less than 

0.8°. Laser pulses were generated in pairs for PIV at a rate of 15 Hz, i.e., 30 pulses were 

generated per second, and each pair of pulses was used to generate one set of PIV images 
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to create one three-component vector-field. The exposure time delay Δt, defined as the 

difference in time between the first and second laser pulse in a pair, was set between 2 

and 5 milliseconds, to satisfy the criterion that no particle travel more than ¼ of an 

interrogation window (Adrian and Westerweel, 2011). The laser light illuminated 

metallic-coated, hollow, plastic particles that had been seeded in the water channel. 

Particles were added to the water until the criterion requiring 10-15 particle images per 

PIV interrogation window was satisfied (Adrian and Westerweel, 2011). 

Images of the illuminated particles were captured using two TSI PoweviewPlus 

2MP cameras. The cameras captured pairs of images at a rate of 15 Hz, i.e., 30 total 

images were captured per camera, per second. Images were recorded to a desktop 

computer using Insight 3G software. These cameras employed charge-coupled-device 

(CCD) sensor arrays with resolutions of 1600 x 1200 pixels. Nikon lenses, with a focal 

length of 28 mm, were employed, giving a magnification of between Mo = 0.06 and 0.09, 

which yielded respective resolutions of particles in the laser sheet of between 7.1 and 

12.3 pixels/mm. An asymmetric camera configuration was used, as indicated in the plan 

view of figure 2.6. One camera viewed the laser sheet ‘straight-on’; the second viewed 

the laser sheet at an offset angle, i.e., the angle between the vector normal to the light 

sheet and the vector normal to the lens plane of each camera was 0° (straight-on) and 45° 

(offset). This asymmetric arrangement was necessitated by the configuration of the 

motion system. If the cameras were arranged in a symmetric configuration, the motion 

control system, specifically the vertical rod, would have blocked the area of interest in the 

flow field. The Scheimpflug condition, described by Prasad (2000), states that if lines 
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tangent to the image-, lens-, and object-planes meet at a single point, the entire object 

plane will be in focus. This condition was satisfied by rotating the CCD sensor of the 

offset camera relative to the lens plane, as shown in figure 2.7.  

 

2.3.2 PIV image processing 

 Captured images sets from each camera were processed with Insight 3G software. 

The steps involved in PIV processing are shown in figure 2.8. Initially, each image was 

divided into 32 pixel x 32 pixel interrogation windows with 50% overlap. The employed 

interrogation technique resulted in 7,227 vectors for each two-dimensional vector field. 

Average particle displacements were estimated using cross-correlation: the interrogation 

windows in the image of the first laser pulse were correlated with the corresponding 

interrogation windows in the image of the second laser pulse, Δt seconds after the first 

laser pulse. The Hart correlation algorithm, developed by Hart (1998a & b), was 

employed for particle displacement estimation. This algorithm offered faster processing 

speeds and better sub-pixel estimates of particle displacement than the more traditional 

Fast Fourier Transform (FFT) correlation method. The increase in processing speed is 

partially achieved by suppressing background noise below a threshold percentage of the 

maximum image intensity. The threshold was set to 80% of the maximum intensity. The 

Hart correlation algorithm required the use of bilinear peak finding. Once average 

particle displacements were estimated in each interrogation window, first order 

differencing was used to derive the average velocity in each interrogation window, as 

described in equation 2.3. 
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 After vector-fields were determined, each vector was then compared with the 

local median in a 9-vector neighborhood, to remove spurious vectors that resulted from 

errant particle images or reflections in some interrogation windows. If the two values 

differed beyond a certain tolerance, the initial vector was removed and replaced with the 

median. Less than 1% of vectors, generally those very near to the wing, failed the median 

test. After the neighborhood test, a low-pass filter using a Gaussian weighting function 

was used with 24 neighbors to smooth each vector. The smoothing kernel σ was set to σ = 

0.8. 

 The final step in processing each image set, which represented the flow field in 

the laser sheet at a given instant in time, was to map the 2-D vector-fields, generated from 

the image of each camera, onto the laser plane, to determine all three components of 

velocity. Prior to experiments, images were taken of a 3-D calibration target, produced by 

TSI for use with Insight 3G. These images allowed generation of a mapping function for 

each camera that mapped locations in each digital image to physical locations in the laser 

plane. Using these mapping functions, all three components of velocity were determined 

on an evenly spaced grid in the laser plane. Stereo-automapping was also employed to 

correct for any misalignments during calibration. The resolution of the final two-

dimensional grids ranged from approximately 6,000 to 10,000 vectors, depending on the 

image magnification and stereoscopic calibration. 
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2.3.3 Volumetric and temporal reconstruction 

 Images of the particles illuminated by the laser sheet were acquired sequentially, 

as the wing followed motion prescribed by the kinematics described in section 2.2. Image 

capture was initiated by a precisely timed trigger signal, generated by the motion control 

system. The wing-motion/image-capture process was repeated several times under 

identical, controllable conditions; therefore, several sequences of the flow field 

development around the rotating wing were recorded. The triggering process ensured that 

the wing position for each sequence matched the wing position in all other sequences. 

Accuracy of the image timing was confirmed by checking the wing position between 

image sequences. The maximum variation in wing tip position was less than 1 mm.  

After image capture and PIV processing, vector fields associated with 

corresponding images in each sequence were averaged to determine the mean flow 

velocity at each grid location. This process is known as phase-averaging. An averaged 

vector-field, which is the result of averaging instantaneous vector-fields, is referred to as 

a phase-averaged vector-field in this report. The first two horizontal rows of figure 2.9 

show the steps of the phase-averaging process. Instantaneous vector fields at the midspan 

of a rotating wing are shown in the first row of this figure. The velocity fields were then 

averaged at each grid location to generate the phase-averaged vector-field. Phase-

averaged vectors-fields are shown in the second row of figure 2.9. 

The flow field was visualized using a sectional approach and a volumetric 

approach. In the first approach, the flow field was determined when wing rotation 

brought the chord-line of the wing parallel to the laser plane. In this approach, 6 images 
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were averaged for each set of experimental parameters. The spanwise location of the laser 

sheet coincided with the midspan of the wing. Since only 6 image sequences were 

required for a given set of experimental parameters, the sectional approach allowed for 

rapid consideration of a number of parameters. 

In the second approach, flow velocities were reconstructed into a volume of fluid 

around the rotating wing. To determine volumetric information, phase-averaged, 

sectional flow fields were determined with the motion control system in different 

locations relative to the laser plane; this positioning was controlled by the horizontal, 

linear axis discussed in section 2.2. A set of 9 image sequences was acquired per 

sectional location. Between sets of image sequence acquisition, the motion system was 

translated horizontally using the stepper motor, to change the location of the rotating 

wing relative to the laser sheet precisely. The sectional flow fields at each horizontal 

location were averaged, as described in the above paragraph, and then reconstructed into 

a volume. The bottom two horizontal rows of figure 2.9 show this reconstruction process. 

In the third row of figure 2.9, averaged sectional slices are arranged with the known 

location of these results. Then, the data is combined into a single volumetric result, 

shown in the final row of figure 2.9. Volumetric data was determined for most of this 

investigation, since the flow structures investigated were highly three-dimensional. After 

volumetric reconstruction, one-dimensional spatial smoothing was applied between these 

sectional slices. The smoothing function was similar to that used to smooth the data in-

plane, which was described in section 2.3.2. Therefore, the volumetric results have been 

smoothed once in each spatial dimension. 
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For some experiments, volume data was generated in a sequence to resolve 

temporal changes in the flow field. Temporal resolution of the sequence was dictated by 

the 15 Hz imaging rate of the PIV system. The final step in temporal reconstruction was 

to rotate and interpolate the sequence of volumes, such that the wing location was the 

same between volumes. Figure 2.10 shows the steps of this rotation process. The top row 

of figure 2.10 shows the data acquisition as the wing rotates. The volumes in a sequence 

of image acquisition were separated in time by the imaging rate Δtvolumes = 0.067 s. 

Velocity vectors were rotated about the center of the vertical rod, as shown in the second 

row of figure 2.10. The data were then linearly interpolated onto a fixed grid aligned with 

the chord and span of the wing, which is shown in the final row of figure 2.10. In the 

temporally reconstructed experiments, the velocity data was also transformed into a 

wing-fixed frame of reference, by subtracting the wing velocity from the velocity at each 

location. 

 

2.3.4 Post processing 

 All spatial dimensions were normalized with the chord of the wing C, and all 

velocities were normalized with the velocity Vrg at the radius of gyration of the wing. 

Several derived quantities were also used to visualize the fluid movement associated with 

wing motion. When necessary, first order differencing was used to estimate the first 

derivatives of flow velocity in each spatial dimension. Derivatives higher than first-order 
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were not considered. The equations for each of the quantities considered, as well as a 

brief description, are provided below. 

1. Vorticity. Vorticity is defined as the curl of the velocity field ω = ∇ x V.  It 

represents the rotational or swirling motion of the fluid. The first-order 

differencing equations for calculating vorticity from velocity are listed below. 

 

ωx = 
∂w

∂y
-

∂v

∂z
 = 

w(i,j+1,k)-w(i,j-1,k)

y(i,j+1,k)-y(i,j-1,k)
-

v(i,j,k+1)-v(i,j,k-1)

z(i,j,k+1)-z(i,j,k-1)
 (2.4) 

 

ωy = 
∂u

∂z
-

∂w

∂x
 = 

u(i,j,k+1)-u(i,j,k-1)

z(i,j,k+1)-z(i,j,k-1)
-

w(i+1,j,k)-w(i-1,j,k)

x(i+1,j,k)-x(i-1,j,k)
 (2.5) 

 

ωz = 
∂v

∂x
-

∂u

∂y
 = 

v(i+1,j,k)-v(i-1,j,k)

x(i-1,j,k)-x(i-1,j,k)
-

u(i,j+1,k)-u(i,j-1,k)

y(i,j+1,k)-y(i,j-1,k)
  (2.6) 

 

2. Helicity. Helicity h is a scalar, defined as the dot product of the velocity and 

vorticity vectors.  

 

h = ω ∙ V = uωx + vωy + wωz   (2.7) 

 

Large helicity magnitude indicates regions where large flow velocity V is aligned 

with large ω, i.e., the regions of highest magnitude helicity will occur where 

strong swirling, indicated by ω, is coincident with significant flow velocity. 
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3. Q-criterion. The Q-criterion represents the contributions of the antisymmetric 

and symmetric components of the velocity gradient tensor, such that a positive 

value of the Q-criterion indicates regions dominated by rotation. 

Q = 0.5 [ΩijΩij-SijSij] = 0.5 [||Ω||
2
-||S||

2
]  (2.8) 

 

2.4 MEASUREMENT UNCERTAINTY 

 The aim of the PIV technique, described in section 2.3, is to represent the flow 

structure on a rotating wing accurately. Since the flow on a rotating wing at high angle of 

attack is highly unsteady, there is significant variability between instantaneous results 

under identical conditions. In addition, the PIV method itself has inherent uncertainty. 

Therefore, two forms of uncertainty arise in PIV that must be considered: (i) 

experimental error in the determination of instantaneous velocity from each set of PIV 

images; and (ii) variability of the flow field under identical experimental conditions, i.e., 

run-to-run changes in the velocity field. In the following, the first section estimates the 

theoretical uncertainty of each PIV vector-field, according to the analysis of Adrian and 

Westerweel (2011). In the second section, the convergence of PIV is considered using 

qualitative and quantitative representations of the experimental results. 
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2.4.1 Theoretical PIV uncertainty 

 Adrian and Westerweel (2011) assessed the sources of uncertainty inherent to 

PIV. Their analysis focused on the limit in estimating particle displacements due to the 

finite nature of digital imaging, i.e., the fact that determination of a particle image 

location can be no more accurate than the size of a pixel in the camera sensor. The 

following equation, for the physical size of a particle image on the camera sensor dτ, was 

central to their investigation: 

 dτ ≈ (Mo
2dp

2
+ds

2
+da

2)
1/2

   (2.9) 

The image size dτ is affected by the particle size dp, the magnification of the system Mo, 

the finite diameter of a point-source image due to lens aberrations da, and the diffraction-

limited spot diameter ds given by: 

ds = 2.44(1+Mo)f
#

λ   (2.10) 

Here, f 
#

 is the f-number of the lens and λ is the wavelength of the laser light. For these 

experiments, the smallest particle-image size was dτ = 11.0 μm. The size of each pixel in 

the TSI Powerview 2MP cameras was dr = 7.4 μm, giving a particle image to pixel ratio 

of dτ/dr = 1.5. Adrian and Westerweel (2011) simulated the effect of this quantity in 

determining the error in PIV analysis. Figure 2.11 shows the results of these simulations. 
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This figure indicates that the error associated with dτ/dr = 1.5 is less than 0.15 pixels. 

This corresponds to σv = 4 mm/s, where σv is the single-run, random error of the PIV 

measurement. In non-dimensional terms, the random error is 8.7% of the velocity at the 

radius of gyration Vrg. Since this figure is the random error of an instantaneous 

measurement, it decreases with phase-averaging. The random error with 9 phase-

averaged vector-fields is σv,9-avg = .03Vrg. According to Lawson and Wu (1997), the 

ratio of out-of-plane velocity error to in-plane velocity error, for the stereo half angle 

used in this investigation (22.5°), is σw/σv = 2.41. Therefore the maximum out of plane 

velocity error due to particle image size is σw,9-avg = .07Vrg. 

2.4.2 Flow field convergence 

 In addition to the theoretical uncertainty analysis, the convergence of PIV results 

was considered. Two hundred sets of PIV images were taken, under identical 

experimental conditions, to evaluate the change in results, both qualitatively and 

quantitatively, when the number of averaged vector-fields increases. The images were 

acquired with the laser sheet at the midspan of an aspect ratio AR = 2 wing at an angle of 

attack α = 45°, a rotation angle of Φ = 57°, a radius of gyration of rg = 4.7, and a 

Reynolds number Rerg = 1400.  

Planar, vector fields of velocity and spanwise vorticity were generated for 2 

through 200 phase-averages. Figure 2.12 shows contour plots for four cases, an 
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instantaneous image and images corresponding to 3, 6, and 9 phase-averaged vector 

fields. These cases are separated into horizontal rows. The vertical columns of figure 2.12 

show color contour plots of velocity components u, v, and w, as well as the spanwise 

vorticity ωz. A schematic showing the orientation of the coordinate system is also shown; 

the tangential velocity of the wing is in the positive x direction. The instantaneous u- and 

v-velocity contour plots are very similar to the plots of those velocity components after 

200 phase-averaged vector-fields. More low-level variations are present in the 

instantaneous contour plots of spanwise velocity w. However, the contour plots of w for 

3, 9, and 200 averages are all very similar. The spanwise vorticity ωz contours are also 

similar for the 3, 9, and 200 phase-averaged results, while the instantaneous contours are 

noticeably different. Overall, the contours of u, v, w, and ωz are similar across 3, 9, and 

200 phase-averaged vector-fields. This indicates that 9 phase-averaged images are 

adequate for representations of the flow structure. 

 Convergence of the velocity and vorticity was also evaluated quantitatively. The 

root-mean-squared (rms) error for the phase-averaged tangential velocity u is defined by 

the equation: 

urms(i)= √
∑ (u(i)-u(200))

2N
1

N
  (2.11) 

In equation 2.11, N is the number of grid locations in the vector-field, u(i) is the x 

component of velocity for i phase-averaged vector-fields, and u(200) is the u component 
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of velocity for 200 phase-averaged vector-fields. urms represents the root-mean-square 

difference between the u velocity field using i phase-averaged vector-fields and the u 

velocity field using 200 phase-averaged vector-fields, calculated across the two-

dimensional vector grid. The result for urms therefore contained 200 values, one for each 

number of phase-averages from 1 (instantaneous data) to 200. Similar equations were 

used to calculate vrms, wrms, and ωzrms. 

  Root-mean-square values determined from equation 2.11 are plotted against the 

number of phase-averaged vector-fields in figure 2.13. The velocity components are 

normalized by velocity at the radius of gyration Vrg.  Spanwise vorticity is normalized by 

10Vrg/C, which is a typically significant value. All four quantities are initially less than 

0.1, i.e., the rms error between an instantaneous vector-field and the vector-field 

generated with 200 phase-averaged vector-fields is less than 10%. With 9 phase-

averages, the rms error in determining u, w, and ωz is less than 4%; it is approximately 

6.5% for v. The additional error in v is likely a result of the shed vortex, because the x 

location of this vortex is highly variable from run-to-run. 

 To ensure that the error quantities determined from equation 2.11 are consistent, 

the 200 instantaneous vector-fields were divided into 21 sets of 9 instantaneous vector-

fields. These sets of 9 were averaged and compared with the 200-average field, using the 

rms formulation of equation 2.11. The results of this analysis are plotted in figure 2.14. 

The horizontal axis represents the n
th

 set of 9 averages, from 1 through 21. The error in 
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velocity and vorticity fluctuates between approximately 2% and 7%. The maximum rms 

error occurs at n = 1 (for v velocity) and n = 14 (for w velocity). It is approximately 7% 

of the radius of gyration velocity Vrg for both cases. Therefore, the upper-limit of 

possible error in a 9 phase-averaged vector-field, due to both flow variability and random 

PIV uncertainty, is approximately 7% of the radius of gyration velocity. 

The qualitative change of the flow structure due to phase-averaging was also 

extended to three dimensions, as shown in figure 2.15. The volumes shown therein were 

imaged using an aspect ratio AR = 2 wing at α = 45° and a value of Reynolds number 

Rerg = 1400. Transparent iso-surfaces of the Q-criterion Q = 2, 7, and 15 are represented 

by progressively darker colors. This sequence of colors indicates regions with increasing 

dominance of rotation ||Ω||
2
 over irrotational strain ||S||

2
, and is used in chapters 3 and 4 

to identify vortical structures in the flow. Four different cases are shown: an 

instantaneous image, and images corresponding to 3, 6, and 9 phase-averages. The 

volumetric results constructed from the instantaneous, planar data are noisy and less 

organized, which is expected given the high degree of run-to-run variability. However, 

the averages of 3, 6, and 9 images are very similar. 9 phase-averaged velocity-fields 

appear to adequately represent the three dimensional volume, i.e., as of 9 phase-averages, 

the flow structure does not change with additional averaging. 
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Figure 2.1: Photograph of experimental facility. 
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Figure 2.2: Trimetric diagram of motion control system. 
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Figure 2.3: Plan view schematic of wing configurations. Arcs indicate path of the radius 

of gyration. 
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Figure 2.4: Motion profile showing the distance travelled at the radius of gyration as a 

function of time. 
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Figure 2.5: Explanation of actuator disk area for different radii of gyration. The area of 

the orange region is constant when rgΦ/C is constant. (Lentink and Dickinson, 2009a) 
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Figure 2.6: Overview of experimental apparatus, including the water channel, the motion 

control system and the quantitative flow imaging system.  
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Figure 2.7: Plan view schematic showing rotated camera image planes that satisfy the 

Scheimpflug condition (Prasad, 2000). 
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Figure 2.8: Processing pipeline for generation of instantaneous vector-fields with three 

components of velocity. 
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Figure 2.9: Post-processing pipeline for phase-averaging and volumetric reconstruction, 

using sectional results from different spanwise locations. Volumetric iso-surfaces of 

spanwise vorticity ωz. 
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Figure 2.10: Post-processing pipeline for time-resolved flow structure development. 
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Figure 2.11: Uncertainty in determining correct particle displacements in an 

interrogation window (Adrian and Westerweel, 2011). 
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Figure 2.12: Color contours of velocity and vorticity for different phase-averaged 

velocity fields. 
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Figure 2.13: Convergence of rms error of velocity and vorticity with increasing number 

of phase-averaged velocity fields. 
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Figure 2.14: Variability of rms error of velocity and vorticity across twenty one sets of 9 

phase-averaged velocity fields. 
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Figure 2.15: Transparent iso-surfaces of Q-criterion for different phase-averages.  

Q = 2 (grey-yellow), 7 (brown-orange), and 15 (orange) 
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CHAPTER 3 

 

FLOW STRUCTURE ON A WING OF LOW ASPECT RATIO  

 

 In this chapter, the flow structure along a wing having low aspect ratio (AR = 1) is 

characterized at several radii of gyration via particle image velocimetry. The volumetric 

flow structure is determined at a travel distance of rgΦ/C = 5.5, which is well after the 

onset of motion. In addition, the flow structure at the midspan of the wing is assessed at 

four values of radius of gyration. Finally, the flow structure is characterized at a very 

large value of travel distance rgΦ/C = 78.4, which, for the smallest radius of gyration 

rg/C, corresponds to 10.75 complete rotations of the wing. The flow patterns are 

quantitatively represented in terms of: vorticity, components of velocity, vorticity flux, 

and Q-criterion. This chapter is divided into subsections that provide an introduction to 

this part of the investigation, a description of the experimental systems specific to this 

study, an assessment of quantitative visualization, and concluding remarks. 
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3.1 BACKGROUND 

Recently, substantial efforts have focused on characterization of the flow structure 

on model wings simulating the flight of insects. Many studies have reduced the intricate 

flapping patterns employed by insects to a wing undergoing pure rotation, i.e., a wing 

undergoing pure rotation, at constant angular velocity, after an initial acceleration from 

rest. This simplification of the motion has allowed researchers to identify the flow 

physics that arise from pure rotation of a wing at high angle of attack. Specifically, the 

flow structure on a purely rotating, aspect ratio AR = 1 rectangular wing has been 

characterized by Ozen and Rockwell (2011), Garmann et al. (2013), and Carr et al. 

(2013). Each of those investigations found an attached leading-edge vortex on a rotating 

wing at very low radius of gyration (rg/C < 2).  

In addition to determining the flow structure on a rotating wing, Garmann et al. 

(2013) determined the flow structure on a rectilinearly translating wing, and compared 

the flow structures and lift forces that resulted from those different motions. The flow 

structures that resulted from those two motions were markedly different. On the rotating 

wing, a leading-edge vortex formed rapidly, and this vortex remained in position 

throughout the wing motion. In contrast, on the translating wing, an arch vortex formed, 

and was eventually shed. Taira and Colonius (2009) determined the flow structure on a 

rectilinearly translating wing of aspect ratio AR = 1, well after the onset of motion. They 

found that the developed flow structure was steady, but it did not include a coherent 

leading-edge vortex. 
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Lentink and Dickinson (2009b) found, using qualitative bubble visualization, that 

an increase of the radius of gyration rg/C significantly reduced the lift forces on a rotating 

wing, and substantially altered the flow structure observed on those wings. They 

proposed a framework that identified centripetal and Coriolis accelerations as the 

mechanisms responsible for the stability of vortical structures, namely the leading edge 

vortex, on rotating wings. Their framework indicated that stability of the leading-edge 

vortex should be unaffected by continued rotation through large travel distances. This 

agrees with the force measurements of Usherwood and Ellington (2002a), where the 

horizontal and vertical forces on a rotating wing did not change from a rotation angle Φ = 

180° to Φ = 540°. 

Alterations of the quantitative flow on an AR = 1 wing, due to changes of radius 

of gyration and large travel distances, have not been addressed.  In particular, alterations 

of the degree of coherence and the interior structure of the three-dimensional vortex 

system, that is, the root, leading-edge, and tip vortices, have remained unclarified over a 

range of radius of gyration. The possibility of attaining a preserved state of the three-

dimensional vortex system at very large travel distance, corresponding to large rotation 

angle of the wing, has not been addressed in relation to the magnitude of the radius of 

gyration. This chapter of the present investigation addresses these issues via quantitative 

imaging, and aims to interpret the flow physics in terms of multiple (nested) transparent 

iso-surfaces of Q-criterion, as well as surfaces of downwash and corresponding sectional 

patterns of spanwise vorticity, velocity and vorticity flux. 
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3.2 EXPERIMENTAL SYSTEMS AND TECHNIQUES 

 

 Experiments were performed in the water channel described in section 2.1. A 

rectangular, flat plate with sharp edges was used as a model wing. An isometric diagram 

of the wing system is shown in figure 3.1. The wing had a span b = 28.6 mm and a chord 

C = 25.4 mm, and thereby an aspect ratio AR = 1.13. Its thickness was tw = 2.3 mm, 

corresponding to a thickness to chord ratio of tw/C = 0.09. A connecting rod of diameter 

3.2 mm supported the wing at its midchord. This rod was connected to a vertical shaft of 

diameter 12.7 mm, which served as the rotation axis. The wing was located 

approximately at the mid-depth of the water channel. 

The wing was rotated about a vertical axis as shown in figure 3.1. This rotation 

consisted of rapid acceleration from rest to constant angular velocity by a computer-

controlled stepper motor. The rotational motion was smoothed according to the function 

described by Eldredge et al. (2009) and was adjusted such that 90% of the maximum 

velocity was attained in the first 0.6 chord-lengths of travel at the radius of gyration 

rgΦ/C of the wing. The angle of attack α was maintained at α = 45° for all experiments in 

this investigation. The maximum velocity at the radius of gyration of the wing during 

constant rotation was Vrg = 49 mm/s. This velocity corresponded to a Reynolds number 

based on the radius of gyration velocity and wing chord of Rerg = VrgC/ν = 1,400. Initial 

experiments were conducted to determine the Reynolds number sensitivity in the range 
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1,400 < Rerg < 5,000. No significant change to the phase-averaged representations of the 

overall flow structure or peak magnitudes of vorticity was found in this range. 

The distance between the root of the wing and the axis of rotation, defined as ro, 

was varied to investigate the effect of Rossby number rg/C on the flow structure. This 

distance was set to values of ro = 16, 41, 67, 118 mm corresponding to Rossby numbers 

rg/C = 1.2, 2.1, 3.1, 5.1. The angular velocity of the wing was adjusted such that the 

tangential velocity at the radius of gyration Vrg, and consequently the Reynolds number 

Rerg, remained constant for all values of Rossby number. 

Stereoscopic particle image velocimetry (SPIV) was employed to determine the 

quantitative flow structure along the rotating wing. The (green) plane in figure 3.1 shows 

the orientation of the laser sheet for determination of the velocity field at the midspan. 

The water was seeded with 12 μm metallic-coated, hollow, plastic spheres to facilitate 

particle image velocimetry. These spheres were illuminated with a dual-pulsed Nd:YAG 

laser system having a maximum output of 120 mJ. A camera arrangement employing an 

angular displacement configuration was used to image the seeding particles. This imaging 

system is similar to those described by Ozen and Rockwell (2012) and Bross et al. 

(2013). It consisted of two identical cameras employing charge-coupled device (CCD) 

sensors, both with resolutions of 1,600 pixels x 1,200 pixels. The cameras were oriented 

asymmetrically with respect to the light sheet: one camera viewed the light sheet 

‘straight-on’ and the second camera viewed the light sheet at an offset angle, i.e., the 
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angle between the normal to the light sheet and the normal to the lens plane of the camera 

was 0°(straight-on) and 45°(offset). Due to this orientation, it was necessary to locate a 

prism between the latter (offset) camera and the vertical wall of the water channel. 

Camera mounting systems that allowed rotation of the image plane relative to the lens 

plane were employed to satisfy the Scheimpflug condition (Prasad, 2000). 

Captured image pairs from each camera were evaluated using a cross correlation 

technique with 32 x 32 pixel interrogation windows. A 50% overlap of adjacent 

interrogation windows was employed. The velocity vectors produced by this correlation 

were validated against a local average and replaced with this average if they were found 

to be spurious. The total number of spurious results for this evaluation technique was less 

than 1% of all vectors. The vector grids determined from image pairs on each camera 

were then combined to determine the out of plane velocity at each point on the sectional 

plane. This combination resulted in a sectional plane of the velocity field that was 4.98C 

X 3.18C, in the x and y directions, respectively, in which C is the wing chord. This 

represents an effective magnification of 12.3 pixels/mm, and an in-plane vector spacing 

of .05C, corresponding to 6,174 vectors in each plane. 

This investigation considered two methods of flow field representation using 

these sectional planes of the quantitatively determined flow velocity: (i) sectional slices 

of the flow-field at the midspan of the wing, and (ii) volumetric reconstructions of the 

flow field using sectional slices determined at multiple locations. Sectional slices at the 

midspan were determined in the following way. First, sets of instantaneous images were 

acquired precisely when the midspan of the wing was aligned with the laser sheet. Six of 
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these image sets were acquired for each case. These images were processed to produce 

three-dimensional vector fields as described above; they were then averaged to yield the 

results presented in section 3.3. Sectional slices at the midspan were generated for 

rotation angles of Φ = 36°, 90°, 270° at the lowest Rossby number rg/C = 1.2. These 

rotation angles corresponded to travel distances at the radius of gyration rgΦ/C = 0.7, 

1.8, 5.5 respectively. These same travel distances were then investigated for other values 

of the Rossby number rg/C. 

Volumetric reconstruction of the flow structure was conducted at two values of 

travel distance rgΦ/C = 5.5 and 78.4 for selected Rossby numbers. This reconstruction 

was accomplished through acquisition of particle images at 16 evenly spaced locations 

along the span of the wing, i.e., the rotation axis of the wing was translated to 16 evenly 

spaced locations in the z direction indicated in figure 3.1. The distance between these 

planes was Δz/C = 0.1. Nine image sequences were acquired at each spanwise location, 

therefore each volumetric reconstruction consisted of 144 individual image set 

acquisitions. The vector fields from each of the nine sequences at each location were 

averaged together, and these averaged planes were combined into a three-dimensional 

volume.  

The error of each instantaneous vector-field determination was estimated 

according to Adrian and Westerweel (2011).  The RMS random error of in-plane velocity 

σu was approximately 4% to 6% of the maximum velocity. The ratio of the out-of-plane 
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RMS error to in-plane RMS error was calculated according to Lawson and Wu (1997). 

This error ratio was σw/σu = 2.41. In order to determine the uncertainty of the volumetric 

reconstruction process in determining flow properties, the theoretical Hill’s spherical 

vortex (1894) was scaled to a size similar to the vortical structures observed in this study. 

The RMS error in calculating total vorticity using first-order differencing was 2.7% of the 

maximum vorticity for a Hill’s spherical vortex with a radius of 0.25C. 

 

3.3 THREE-DIMENSIONAL IMAGES OF FLOW STRUCTURE 

 

3.3.1 Volume images of flow structure 

Iso-surfaces of the Q-criterion are shown in figures 3.3 through 3.4. The Rossby 

number varies from rg/C = 1.2 to 5.1 and, for all images, the travel distance of the wing is 

rgΦ/C = 5.5. The Q-criterion represents the contributions of the antisymmetric and 

symmetric components of the velocity gradient tensor such that a positive value of the Q-

criterion indicates regions dominated by rotation. 

QC
2
/Vrg

2
 = 0.5[ ΩijΩij - SijSij ] = 0.5[ ||Ω||

2
 - ||S||

2
 ] 

Hunt et al. (1988) formulated the Q-criterion to identify eddy zones as strong swirling 

zones with vorticity. According to their interpretation, regions of large, positive Q 

indicate where irrotational straining is small compared with the vorticity.  
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Figure 3.2 shows representative images corresponding to a low value of Rossby 

number rg/C = 1.2. The left image indicates three nested, transparent iso-surfaces of 

QC
2
/Vrg

2
 = 3, 8, and 13, which are represented respectively by the grey-yellow, brown-

orange, and orange colors. This sequence of colors thereby indicates regions with 

increasing dominance of rotation ||Ω||
2
 over irrotational strain ||S||

2
. As a comparison, the 

right image shows transparent iso-surfaces of total vorticity scaled to match the Q-

criterion. Values of ||ω||
2
C

2
/4Vrg

2
 = 3, 8, and 13 correspond to grey-yellow, brown-

orange, and orange colors. The difference between these iso-surfaces is therefore the 

contribution of irrotational strain ||S||
2
. The iso-surfaces of QC

2
/Vrg

2
 and ||ω||

2
C

2
/4Vrg

2
 

representing the root vortex and tip vortex are very similar, indicating that the 

contribution of irrotational strain ||S||
2 

in these regions is small. In contrast, the iso-

surfaces in the leading-edge region are noticeably different, indicating significant 

irrotational strain in that region.   

The images of figure 3.3 show the effects of Rossby number rg/C on the nested, 

transparent iso-surfaces of QC
2
/Vrg

2
. Considering the image of figure 3.3 at a value of 

Rossby rg/C = 1.2, the iso-surfaces of QC
2
/Vrg

2
 indicate a well-defined leading-edge 

vortex. This vortex has a conical form, that is, an increasing scale with increasing radial 

distance from the axis of rotation. Moreover, the highest (orange) level QC
2
/Vrg

2
 = 13 in 

the innermost region of the leading-edge vortex persists along most of the span of the 
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wing. This leading-edge vortex forms a loop with the coherent root and tip vortices, 

which have high levels of QC
2
/Vrg

2
 along their entire extent, and are severely deflected 

towards the center of rotation. 

The image at rg/C = 2.1 in figure 3.3 indicates that the highest (orange) level of 

QC
2
/Vrg

2
 = 13 no longer exists within the innermost region of the leading-edge vortex, 

and the next lower level of (brown-orange) QC
2
/Vrg

2
 = 8 has been displaced towards the 

aft portion of the leading-edge vortex. That is, the highly concentrated structure of the 

leading-edge vortex that exists at rg/C = 1.2 degrades to a less concentrated form at rg/C 

= 2.1. Regarding the root and tip vortices at rg/C = 2.1, their deflection towards the axis 

of rotation is milder than at rg/C = 1.2, and, furthermore, the highest (orange) level of 

QC
2
/Vrg

2
 = 13 in the innermost region of these vortices is substantially attenuated, such 

that only a region of small spatial extent is evident. One can therefore conclude that 

increasing the radius of gyration, as indicated in the images at rg/C = 1.2 and 2.1, results 

in attenuation of the region of high QC
2
/Vrg

2
 in not only the leading-edge vortex, but 

also the tip and root vortices.  

The image at the largest value of Rossby number rg/C = 5.1 in figure 3.3 indicates 

further degradation of the leading-edge vortex relative to that at rg/C = 2.1. It is now 

defined primarily by the lowest (grey-yellow) level of QC
2
/Vrg

2
 = 3. Correspondingly, 
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the tip and root vortices are not significantly deflected towards the axis of rotation and 

the higher levels of QC
2
/Vrg

2
 = 8 and QC

2
/Vrg

2
 = 13 are absent over most of the interior 

of the tip and root vortices.  

Figure 3.4 shows corresponding views looking towards the leading-edge of the 

plate. The same principal features as indicated in figure 3.3 are evident. That is, 

degradation of the highest level of QC
2
/Vrg

2
 = 13 within the components of the vortex 

system occurs for increasing values of Rossby number rg/C. This view also indicates that, 

in addition to the less severe deflection of the root and tip vortices towards the radius of 

curvature, the tip vortex is at an increased height from the trailing-edge of the wing for 

the larger values of Rossby number rg/C =  2.1 and 5.1 relative to rg/C = 1.2.  

Figures 3.5-3.7 show opaque (blue) iso-surfaces of downwash v/Vrg superposed 

on the iso-surfaces of QC
2
/Vrg

2
 given in figures 3.3 and 3.4. The schematic of figure 3.5 

shows a side view of a sectional cut of the wing and the direction of vertical velocity that 

is associated with the negative (blue) downwash. The images in figures 3.5 through 3.7 

indicate that the spatial extent of the negative (blue) iso-surface of downwash v/Vrg 

decreases substantially with increasing values of rg/C. That is, for increasing values of 

rg/C = 1.2, 2.1 and 5.1, the width of this v/Vrg iso-surface in the spanwise dimension z 

decreases markedly. This decreasing spatial extent is directly correlated to the attenuation 

of higher levels of QC
2
/Vrg

2
 = 8 and QC

2
/Vrg

2
 = 13 within the interiors of the leading-
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edge, tip, and root vortices as the value of Rossby number is increased. Correspondingly, 

the leading-edge of the v/Vrg iso-surface moves downstream of the leading-edge of the 

wing. For all values of rg/C, the v/Vrg iso-surface extends well downstream of the 

trailing-edge of the wing.  

 

3.3.2 Multiple slices of flow structure along span of wing 

Figures 3.8 through 3.11 indicate sectional cuts of the flow structure at six 

locations A through F along the span of the wing. In order to indicate the distinctions 

between features on adjacent sectional cuts, the span of the wing in these layouts is 

stretched by a factor of two. The root and tip of the wing correspond respectively to 

sectional cuts A and F.  

Figure 3.8 shows contours of constant (black line) vorticity ωz normalized with 

the chord C and the velocity Vrg of the wing at the radius of gyration. This dimensionless 

vorticity ωzC/Vrg is shown on sectional cuts A through F. The black lines correspond to 

ωzC/Vrg = ±4 through ωzC/Vrg = ±10 with ΔωzC/Vrg = 1. At the lowest Rossby number 

rg/C = 1.2, the vorticity contours remain relatively close to the surface of the wing for 

spanwise locations A-D. In contrast, at the highest Rossby number rg/C = 5.1, the 

vorticity contours remain close to the surface of the wing only at spanwise location A, 

i.e., near the root. At larger values of spanwise location corresponding to planes B 
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through F, the vorticity contours are substantially deflected away from the surface of the 

wing, which is expected for the limiting case of a wing undergoing purely rectilinear 

motion at high angle of attack α. 

Figure 3.9 shows (color) contours of spanwise velocity w/Vrg superposed on 

contours of constant (black line) vorticity ωzC/Vrg. At the smallest value of Rossby 

number rg/C = 1.2, the largest magnitude (red) flow from the root to the tip is coincident 

with the black line contours of ωzC/Vrg located downstream of the trailing-edge, which 

represent the reoriented tip vortex in the wake region, evident in the volumetric iso-

surfaces of the Q-criterion given in figures 3.3 through 3.7. At successively larger values 

of Rossby number rg/C, the peak magnitudes of w/Vrg on each sectional cut decrease in 

accord with the decrease of the peak values of ωzC/Vrg. This trend corresponds to 

decreased deflection of the tip vortex across the wake, as shown by the iso-surfaces of 

QC
2
/Vrg

2
 in figure 3.3. 

Figure 3.10 shows (color) contours of spanwise vorticity flux ωzwC/Vrg
2 

superposed on contours of constant (black line) vorticity ωzC/Vrg. At the lowest Rossby 

number rg/C = 1.2, the region of largest (dark blue) magnitude of ωzwC/Vrg
2 

is 

coincident with the deflected tip vortex across the wake of the wing, evident from 

comparison with figure 3.3. At rg/C = 2.1 and 5.1, the scale and magnitude of the blue 
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region of ωzwC/Vrg
2 

decrease relative to the (dark blue) contours shown at rg/C = 1.2, in 

accord with the decreased magnitude of the spanwise velocity w/Vrg indicated in figure 

3.9. Regarding the patterns of spanwise vorticity flux ωzwC/Vrg
2
 along the leading-edge

 

in the outboard region of the wing, corresponding to sectional cuts D through F, positive 

(blue) values dominate for all values of Rossby number rg/C = 1.2 through 5.1.  

Figure 3.11 shows contours of constant downwash velocity v/Vrg superposed on 

contours of constant (black line) vorticity ωzC/Vrg. Large magnitude (dark red) 

downwash velocity is most prevalent at lower Rossby numbers rg/C = 1.2 and 2.1, 

extending over the spanwise locations A through D. At spanwise locations B, C, and D, 

the region of large amplitude downwash extends from the (black line) vorticity ωzC/Vrg 

concentration corresponding to the leading-edge vortex to the ωzC/Vrg concentration of 

the deflected tip vortex. The peak magnitude of downwash v/Vrg is larger (dark red) at 

the lowest Rossby number rg/C = 1.2 than at rg/C = 2.1 (light red). At rg/C = 5.1, the 

spatial extent of the (red-yellow) downwash regions is significantly decreased on each of 

the sectional cuts and, furthermore, the magnitude is further attenuated relative to the 

(darker red) values at rg/C = 1.2 and 2.1. Moreover, at section B, the contours of elevated 

downwash velocity v/Vrg do not extend up to the leading-edge vortex at rg/C = 5.1. 

Viewing together the contours of downwash velocity and the vorticity layers at the 
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leading-edge of the wing, at all radii of gyration rg/C = 1.2, 2.1 and 5.1,  it is evident that 

downwash velocity of larger magnitude and spatial extent is associated with enhanced 

retention of the leading-edge vorticity layer (cluster) closer to the surface of the wing. 

In essence, the nature of the tip vortex deflected across the wake region of the 

wing, described in figures 3.3-3.7, is closely related to the sectional representations of the 

flow structure along the span of the wing. As the value of Rossby number increases, this 

deflected tip vortex experiences: a decrease in the degree of deflection towards the center 

of rotation; and a decrease in the level of spanwise-oriented vorticity within its interior. 

Correspondingly, an increase of Rossby number also yields increased deflection of the 

separated, leading-edge vorticity layer in a direction away from the surface of the wing; 

this deflection is correlated with a decrease in spatial extent and magnitude of the 

downwash velocity, as well as a decrease in magnitude of the spanwise velocity and 

vorticity flux in the trailing-edge region of the wing. 

 

3.3.3 Flow structure at midspan of wing 

Figure 3.12 shows sectional cuts of spanwise vorticity ωzC/Vrg at the midspan of 

the wing. These patterns are shown as a function of two parameters: (i) the Rossby 

number rg/C; and (ii) the distance of wing travel rgΦ/C. The images in the left column of 

figure 3.12 correspond to the travel distance rgΦ/C = 0.7 of the wing. They show the 

early development of the flow structure after the onset of wing motion. At this value of 
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rgΦ/C = 0.7, the sectional patterns of ωzC/Vrg are generally similar over the range of 

Rossby number from rg/C = 1.2 to 5.1. In particular, the concentration of negative (red-

yellow) vorticity at the leading-edge of the wing, which represents the leading-edge 

vortex, has a similar scale and vorticity magnitude at all values of Rossby number. The 

concentration of positive (blue) vorticity, located downstream of the trailing-edge of the 

wing, is the starting vortex, which is shed after the onset of wing motion.  Its peak 

vorticity magnitude ωzC/Vrg decreases with increasing Rossby number rg/C, whereas its 

distance from the trailing-edge is constant. 

The images in the middle column of figure 3.12 represent the flow structure at a 

distance of wing travel rgΦ/C = 1.8. At the lowest value of rg/C = 1.2, the form of the 

vorticity concentration at the leading-edge is very similar to that at the lower value of 

rgΦ/C = 0.7. At larger values of rg/C = 2.1, 3.1 and 5.1, however, the length of the 

leading-edge vortex increases as it deflects away from the surface of the wing. Regarding 

the concentration of positive (blue) vorticity downstream of the trailing-edge of the wing, 

its peak value is smaller at larger values of rg/C = 3.1 and 5.1, while its distance 

downstream of the trailing-edge is larger. 

 The images in the right column of figure 3.12 indicate the flow structure at a 

larger distance of wing travel rgΦ/C = 5.5; they correspond to the volume representations 

given in the previous section. At the lowest Rossby number rg/C = 1.2, the structure of 
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the leading-edge vortex resembles the structure at rgΦ/C = 1.8 and 0.7. That is, a well-

defined, attached leading-edge vortex persists regardless of travel distance rgΦ/C. At 

higher Rossby numbers rg/C = 2.1, 3.1, and 5.1, the length of the leading-edge vortex 

increases as it deflects away from the surface of the wing. Moreover, at rg/C = 3.1 and 

5.1, the spatial extent of the region of highest (red) vorticity magnitude decreases, relative 

to the corresponding cases at rg/C = 3.1 and 5.1 shown in the middle column of figure 

3.12. In fact, at rgΦ/C = 5.5 and rg/C = 5.1, the form of the vorticity layer separating 

from the leading-edge closely resembles the separated shear layer along a wing at high 

angle of attack α undergoing rectilinear, translating motion (Ozen and Rockwell, 2011). 

Furthermore, the images in the right column of figure 3.12 indicate that the negative 

(blue) concentration of vorticity in the vicinity of the trailing-edge has a relatively high 

peak magnitude at rg/C = 1.2, in comparison with the substantially attenuated magnitudes 

at larger values of rg/C = 2.1, 3.1 and 5.1. The distance from the trailing-edge to the 

center of each of these respective concentrations is actually smaller than, or 

approximately equal to, the corresponding distances at the smaller value of travel 

distance rg/C = 1.8, thereby indicating that they represent the cross-section of the tip 

vortex that is deflected across the wake, rather than vorticity that is shed from the 

trailing-edge as a starting vortex and convected away from the edge. This feature is 

evident in the three-dimensional representations of Q-criterion shown in figures 3.3 

through 3.7, i.e., the blue concentration of vorticity in the right column of figure 3.12 at 
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each respective Rossby number corresponds to a sectional slice of the iso-surface of 

QC
2
/Vrg

2
 that represents the reoriented tip vortex described in figures 3.3 through 3.7. 

In essence, the overview of figure 3.12 indicates that when the Rossby number 

rg/C is sufficiently small, that is, rg/C = 1.2, the structure of the leading-edge vortex is 

preserved over the range of travel distance rgΦ/C of the wing. Remarkably, this 

preservation of the leading-edge vortex is also associated with preservation of a high 

degree of concentration of vorticity ωzC/Vrg of the positive (blue) vortical structure, in 

the vicinity of the trailing-edge. From the three-dimensional flow structure given in 

figures 3.3 through 3.7, it is clear that this positive concentration is the sectional cut of 

the tip vortex that is deflected across the wake. At higher values of rg/C, however, the 

form and degree of concentration of vorticity in the leading-edge vortex continues to 

evolve with successively larger values of travel distance rgΦ/C of the wing. 

Correspondingly, at larger values of rg/C and rgΦ/C, the peak magnitude of the positive 

(blue) vorticity ωzC/Vrg concentration in the region of the trailing-edge is, in general, 

substantially attenuated. As indicated in figures 3.3 and 3.4, large values of QC
2
/Vrg

2
, 

and thereby vorticity ωzC/Vrg are attenuated in the interior region of the tip vortex at 

larger values of radius of gyration rg/C. 
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Figure 3.13 shows (color) contours of spanwise vorticity flux ωzwC/Vrg
2
 

superimposed upon (black) contour lines of spanwise vorticity ωzC/Vrg = ±6, ±8, ±10. 

This layout of images, which shows the effects of variation of Rossby number rg/C and 

travel distance rgΦ/C of the wing, is the same as for figure 3.12. At the smallest values of 

Rossby number rg/C = 1.2 and travel distance rgΦ/C = 0.7 of the wing in figure 3.13, 

negative (red) spanwise vorticity flux ωzwC/Vrg
2
 is present within the leading-edge 

vortex and the starting vortex (compare figure 3.12). Combinations of larger values of 

Rossby number rg/C and travel distance rgΦ/C of the wing tend to promote the onset of 

positive (blue) spanwise vorticity flux ωzwC/Vrg
2
 within the leading-edge vortex, and for 

the limiting case of rg/C = 5.1 and rgΦ/C = 5.5, neither positive (blue) nor negative (red) 

flux ωzwC/Vrg
2
 is evident. This trend of the patterns of vorticity flux within the 

concentration of vorticity at the leading-edge is associated with an increase in length of 

the vorticity concentration and its deflection away from the surface of the wing (compare 

figure 3.12). Regarding the concentration of vorticity flux in the vicinity of the trailing-

edge, the images shown in the left column (rgΦ/C = 0.7) of figure 3.13 indicate a high 

level of negative (red) ωzwC/Vrg
2
 at rg/C = 1.2, and an attenuated negative level at rg/C 

= 2.1, 3.1 and 5.1. All of these concentrations of vorticity flux are associated with the 

vortex shed during the onset of motion. As shown in the middle column (rgΦ/C = 1.8) 
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and right column (rgΦ/C = 5.5) of figure 3.13, the vorticity flux ωzwC/Vrg
2
 associated 

with the vorticity concentration in the vicinity of the trailing-edge at a later stage of the 

flow development has a positive (blue) value, and represents the sectional cut of the tip 

vortex that is deflected across the wake. The scale and/or peak magnitude of ωzwC/Vrg
2
 

decreases with increasing value of Rossby number rg/C.  

Figure 3.14 shows patterns of vorticity flux ωzwC/Vrg
2 

for the extreme cases of 

Rossby number rg/C and rotation distance rgΦ/C given in figure 3.13. As indicated in the 

left column of figure 3.13, shortly after the onset of motion (rgΦ/C = 0.7) the stable 

leading-edge vortex at rg/C = 1.2 involves large magnitude flux through its center. The 

images in the right column of figure 3.14 correspond to the larger travel distance rgΦ/C = 

5.5 of the wing. There is a relationship between the degree of preservation of the leading-

edge vortex and, in the region of the trailing-edge, the magnitude and scale of the (blue) 

vorticity flux of the sectional cut of the deflected tip vortex across the wake (compare 

figure 3.12). At rg/C = 1.2, the leading-edge vortex is generally preserved with 

significant magnitude of negative (red) vorticity flux ωzwC/Vrg
2
; this vortex preservation 

coexists with the large magnitude positive (blue) ωzwC/Vrg
2
 of the sectional cut of the tip 

vortex deflected across the wake. On the other hand, in the image at the lower right, for 

rg/C = 5.1, the concentrated leading-edge vortex is substantially degraded and the 



95 
 

magnitude of the concentrated region of (blue) ωzwC/Vrg
2 

in the region downstream of 

the trailing-edge is attenuated. 

 Figure 3.15 shows representations of the component of flow velocity u, which is 

the projection of the flow velocity V in the direction of the tangential velocity Vrg of the 

wing motion; contours of constant u/Vrg are indicated. The color dark blue represents 

u/Vrg = -1. This (dark blue) region corresponds to a region of highly separated flow 

involving negative (upstream-oriented) flow in this reference frame. Viewing the entire 

layout of images in figure 3.15, it is evident that when rg/C and rgΦ/C are sufficiently 

small, the region where the u component of velocity nears or exceeds the velocity of the 

wing at the radius of gyration (dark blue) has a minimum spatial extent. On the other 

hand, for the extreme case of large rg/C = 5.1 and rgΦ/C = 5.5, the (dark blue) region 

corresponding to u/Vrg = -1 has a very large spatial extent, thereby indicating a large 

region of separated flow. This observation is in accord with deflection of the vorticity 

layer from the leading-edge away from the surface of the wing.  

 

3.3.4 Volumetric representations of flow structure at very large travel distance 

 The representations of the flow structure considered up to this point are for a 

rotating wing prior to completion of one full revolution. In this section, comparisons are 

made with the flow structure after multiple revolutions. Figures 3.16-3.18 show 
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comparisons of: (i) the flow structure for a travel distance rgΦ/C = 5.5, which 

corresponds to values of angular rotation 270° and 61° for radii of gyration rg/C = 1.2 

and 5.1; and (ii) the flow structure at very large travel distance rgΦ/C = 78.4, which 

corresponds to 3,870° degrees (10.75 revolutions) for rg/C = 1.2 and 875° (2.5 

revolutions) for rg/C = 5.1. The images of figures 3.16-3.18 show the same level of the 

Q-criterion as in figure 3.3 for display of the QC
2
/Vrg

2
 iso-surfaces.  

The top row of figure 3.16 indicates, at a Rossby number rg/C = 1.2, very similar 

iso-surfaces for the lowest level of QC
2
/Vrg

2
 = 3 (grey-yellow) for both rgΦ/C = 5.5 and 

rgΦ/C = 78.4. At higher levels of QC
2
/Vrg

2
 = 8 (brown- orange) and 13 (orange), some 

degradation of the spatial extent of the iso-surfaces is evident at rgΦ/C = 78.4 relative to 

rgΦ/C = 5.5, particularly for the highest (orange) value of QC
2
/Vrg

2
 = 13. This detectable 

degradation occurs in both the leading-edge and tip vortices, but, in a broad sense, the 

structure of the vortex system remains intact. The bottom row of figure 3.16 indicates 

more extensive modification to the flow structure at a larger Rossby number rg/C = 5.1 

for rgΦ/C = 78.4. In this regime, the defined region of the flow structure at the leading-

edge, which is evident at rgΦ/C = 5.5, shrinks in size at rgΦ/C = 78.4 and is displaced 

downstream towards the midchord of the wing. The (grey-yellow) QC
2
/Vrg

2
 = 3 iso-
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surface in the tip-region, which trails well into the wake of the wing at rgΦ/C = 5.5, is no 

longer evident at rgΦ/C = 78.4. 

Figure 3.17 shows views looking towards the leading-edge of the plate. It further 

illustrates the changes of the flow structure seen in figure 3.16. At a Rossby number rg/C 

= 1.2, the lowest level (grey-yellow) of QC
2
/Vrg

2
 = 3 indicates that the location of the 

reoriented tip vortex relative to the trailing-edge is similar at rgΦ/C = 5.5 and rgΦ/C = 

78.4.  

Figure 3.18 shows superposed, opaque (blue) iso-surfaces of downwash velocity 

with transparent iso-surfaces of the Q-criterion. The top row of figure 3.18 indicates 

persistence of a large region of high-level (blue) downward velocity v/Vrg at rgΦ/C = 

78.4 for a Rossby number rg/C = 1.2. Slight modification of this iso-surface is evident in 

the root region due to a minor degradation of the coherence of the root vortex at rgΦ/C = 

78.4. In contrast, the bottom row of figure 3.18 indicates the disappearance of all regions 

of high-level downwash at rgΦ/C = 78.4 for a Rossby number rg/C = 5.1. 
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3.4 CONCLUSIONS 

 

The flow structure on a rotating wing is characterized in terms of three-

dimensional and sectional images using a technique of particle image velocimetry. This 

structure is sensitive to the distance of the wing from the center of rotation, represented 

by the radius of gyration rg or the Rossby number rg/C, in which C is the wing chord. 

Moreover, it is also a function of the distance travelled rgΦ/C along the arc of rotation of 

the wing, where Φ is the angle of rotation. To assess the effects of variations of Rossby 

number rg/C, the flow structure is compared at given values of travel distance rgΦ/C. 

Variation of the flow structure with Rossby number rg/C is represented by 

volumetric, transparent iso-surfaces of the Q-criterion, where Q physically represents the 

difference between rotation ||Ω||
2
 and strain ||S||

2
. Large, positive values of Q indicate 

regions where the vorticity (rotation) ||Ω||
2
 dominates irrotational strain ||S||

2
. Nested, 

transparent iso-surfaces of QC
2
/Vrg

2
 therefore allow definition of the interior structure of 

the leading-edge, root, tip, and trailing-edge vortices as a function of Rossby number 

rg/C. As the Rossby number increases, the influence of rotation on the flow structure 

decreases, yielding rapid degradation of coherent vortical structures. With increasing 

rg/C, the highest levels of QC
2
/Vrg

2
 in the interior of the leading-edge vortex are 

attenuated, and the entire vortex is distorted and displaced away from the leading-edge. 
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Simultaneously, the highest levels of QC
2
/Vrg

2
 within the tip and root vortices are also 

attenuated, and they lose their ordered, coherent structure. These findings suggest that 

stability or retention of the leading-edge vortex is actually coupled with the interior 

structure of the tip and root vortices. This interpretation is in accord with the results of 

Carr et al. (2013), where increased tip vortex coherence was associated with increased 

leading-edge vortex coherence. Moreover, higher interior levels of QC
2
/Vrg

2
 are 

associated with increased coherence of the tip and root vortices. In essence, high levels of 

QC
2
/Vrg

2
 within the interior of the entire three-dimensional vortex system, which are 

observed at low Rossby number rg/C, thereby indicate the strong relationship between 

the leading-edge vortex and the tip and root vortices. 

A further consequence of wing rotation is deflection of the tip and root vortices 

towards the center of rotation. It is most severe at the lowest value of Rossby number 

rg/C, where the deflected tip vortex extends across the wake in the region immediately 

downstream of the trailing-edge, thereby contributing significantly to the magnitude of 

downwash at upstream locations. For increasing values of rg/C, however, the deflection 

of the trajectories of the root and tip vortices towards the center of rotation decreases, and 

at the highest value of rg/C, only small radial deflection is evident.  

The three-dimensional vortex system, involving the leading-edge, tip and root 

vortices, induces a region of large magnitude downwash, which is located between the tip 

and root vortices. The scale (spatial extent) of this downwash region is strongly 
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correlated with the magnitude of QC
2
/Vrg

2
 within the interior of the vortex system. At 

the lowest value of Rossby number rg/C, the scale of the downwash region is largest and 

it extends upstream to the coherent leading-edge vortex. At successively larger values of 

Rossby number rg/C, however, the scale of the region of large magnitude downwash 

successively decreases, and its leading-edge moves downstream of the leading-edge of 

the wing. Loss of identity of the stable leading-edge vortex, which occurs with increasing 

values of Rossby number rg/C, is therefore directly linked to diminished spatial extent of 

the region of downwash of large magnitude. 

These three-dimensional volume representations of the flow structure are 

complemented by sectional cuts along the span of the wing. The foregoing trends are 

accompanied by increased deflection of the leading-edge vorticity layer away from the 

surface of the wing with increasing values of Rossby number rg/C. Simultaneously, the 

magnitude of spanwise velocity w/Vrg and vorticity flux ωzwC/Vrg
2 

in the trailing region 

of the wing are attenuated, as is, the downwash v/Vrg. These effects are strongly 

correlated with the degree of deflection and strength of the tip vortex across the wake of 

the wing. 

An overview of the combined effects of Rossby number rg/C and travel distance 

rgΦ/C, which extends over relatively wide ranges of rg/C and rgΦ/C, reveals several 

regimes of the sectional flow structure. At the lowest value of rg/C, a stable (attached) 
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leading-edge vortex exists over the entire range of rgΦ/C. At larger values of rg/C and 

rgΦ/C, patterns of vorticity indicate that the leading-edge vortex lifts away from the wing 

surface until, at the combination of the largest values of rg/C and rgΦ/C, the flow 

structure approaches that expected on a purely translating wing, whereby the separated 

vorticity layer is displaced well away from the surface of the wing.  

Rotation of the wing to very large angle Φ, i.e., through a number of revolutions 

such that a very large value of travel distance rgΦ/C is attained, reveals if the asymptotic 

state of the flow structure differs from the structure at smaller travel distance. At a low 

value of Rossby number rg/C, the highly coherent three-dimensional flow structure 

remains essentially intact with only minor degeneration of the iso-surfaces of Q-criterion. 

On the other hand, increase of the value of rg/C by a factor of five yields a severely 

degraded flow structure at very large travel distance rgΦ/C. 

The results at all travel distances indicate the significant role of rotation in 

maintaining coherent vortical structures. When the rotational influence is greatest (low 

Rossby number), coherent vortical structures persist regardless of travel distance. When 

this rotational influence is reduced (higher Rossby number), vortical structures are 

initially less coherent than at low Rossby number, and these structures degrade rapidly 

with increasing travel distance. 

  



102 
 

 

Figure 3.1. Schematic of rotating wing and relevant dimensions. 
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Figure 3.2. Transparent iso-surfaces of Q-criterion compared with transparent iso-

surfaces of vorticity magnitude scaled to match Q-criterion; rg/C = 1.2, rgΦ/C = 5.5. 
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Figure 3.3.  Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C and rgΦ/C = 5.5. 
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Figure 3.4.  Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C and rgΦ/C = 5.5. 
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Figure 3.5.  Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 



107 
 

 

 

 

Figure 3.6. Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 5.5. 
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Figure 3.7.  Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) v/Vrg at different values of Rossby number rg/C and rgΦ/C = 5.5. 



109 
 

 

Figure 3.8. Sectional cuts of dimensionless spanwise ωzC/Vrg in the range ±4 to ±10 at 

six spanwise locations for different values of Rossby number rg/C. For all cases, the 

travel distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% of 

original dimension for visualization. 
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Figure 3.9. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant spanwise velocity are superposed on 

black line contours of constant spanwise vorticity. For all cases, the travel distance of the 

wing is rgΦ/C = 5.5. The wing span is expanded to 200% of original dimension for 

visualization. 
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Figure 3.10. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant spanwise vorticity flux are 

superposed on black line contours of constant spanwise vorticity. For all cases, the travel 

distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% of original 

dimension for visualization. 
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Figure 3.11. Sectional cuts of flow structure at six spanwise locations for different values 

of Rossby number rg/C. Color contours of constant downward velocity component 

(downwash) are superposed on black line contours of constant spanwise vorticity. For all 

cases, the travel distance of the wing is rgΦ/C = 5.5. The wing span is expanded to 200% 

of original dimension for visualization. 
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Figure 3.12. Sectional cuts at midspan of spanwise vorticity at different values of Rossby 

number rg/C as indicated, and rotation distance rgΦ/C. 
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Figure 3.13. Sectional cuts at midspan of spanwise vorticity flux at different values of 

Rossby number rg/C as indicated, and rotation distance rgΦ/C. 
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Figure 3.14. Sectional cuts at midspan of spanwise vorticity flux for extreme values of 

Rossby number rg/C and rotation distance rgΦ/C. 
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Figure 3.15. Sectional cuts at midspan of u velocity at different values of Rossby number 

rg/C as indicated, and rotation distance rgΦ/C. 
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Figure 3.16. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C, and rotation distance rgΦ/C. 
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Figure 3.17. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C, and rotation distance rgΦ/C. 
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Figure 3.18. Transparent iso-surfaces of Q-criterion and opaque iso-surface of downwash 

(downward velocity) at different values of Rossby number rg/C, and rotation distance 

rgΦ/C. 
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CHAPTER 4 

 

FLOW STRUCTURE ON A WING OF MODERATE ASPECT RATIO  

  

In this chapter, the stages of development of the flow structure along a wing 

having moderate aspect ratio (AR = 2) are characterized via particle image velocimetry. 

Volumetric and sectional representations of the flow patterns, in terms of vorticity, 

components of velocity, vorticity flux, and Q-criterion are determined at two radii of 

gyration rg. This chapter is divided into subsections that provide an introduction to this 

part of the investigation, a description of the experimental systems specific to this 

chapter, an assessment of the quantitative flow visualization results, and concluding 

remarks. 
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4.1 BACKGROUND 

  

 In recent years, the development of the flow structure on rotating wings and 

rectilinearly translating wings at low Reynolds number Re and high angle of attack α has 

received substantial attention. Dickinson et al. (1999), Lentink and Dickinson (2009b), 

Garmann et al. (2013), Garmann, and Visbal (2013) each characterized the forces on 

wings undergoing these types of motions, and those investigations found an increase in 

lift and drag when a wing was rotated instead of rectilinearly translated. This increase in 

aerodynamic forces due to wing rotation has been associated with the impressive flight 

performance of small biological flyers, such as insects. The difference in aerodynamic 

loading on similar wings resulting from different classes of motion has motivated 

investigation into the development of the flow structure on these wings. 

 The transient flow structure on wings undergoing basic types of motions has been 

visualized qualitatively, using dye or bubble injection, as well as quantitatively, using 

particle image velocimetry or computational simulations. The investigations of Lentink 

and Dickinson (2009b), Kim and Gharib (2010), Jardin et al. (2012), Garmann et al. 

(2013), and Garmann and Visbal (2013) characterized the flow structure on a wing at low 

Reynolds number and high angle of attack that underwent both types of motion. In these 

studies, two classes of development of vortex structures have been observed: (i) stable 

leading-edge vortices; and (ii) arch vortices. These structures were respectively observed 

on wings undergoing rotation (rg/C = O(1)), and rectilinear translation (rg/C = ∞), i.e., 
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wing rotation has been associated with a stable leading-edge vortex, and wing translation 

has been associated with an arch vortex. 

Chapter 3 addressed the volumetric flow-structure on a rotating wing having low 

aspect ratio AR = 1; it was sensitive to the radius of gyration in the range 1.2 ≤ rg/C ≤ 5.1. 

However, the development of the flow structure along a wing having moderate aspect 

ratio at different radii of gyration rg/C, which is more practically significant, has not been 

addressed. More specifically, the possibility of a radical change of the form of the three-

dimensional vortical structure, due to only moderate alteration of the radius of gyration 

rg/C, has not been pursued. Comparison of the basic forms of the vortical structure, on 

the basis of iso-Q, helicity, vorticity and downwash, has not been addressed. Such an 

assessment can lead to insight into the manner and duration of their evolution. This 

investigation addresses these issues through time-resolved, stereoscopic particle image 

velocimetry. The three-dimensional vortex systems are characterized via nested, 

transparent iso-surfaces of Q-criterion, iso-surfaces of Q-criterion colored with helical 

density, and iso-surfaces of downwash, as well as sectional slices of vorticity, downwash 

and tangential velocity. 

 

4.2 EXPERIMENTAL SYSTEM AND TECHNIQUES 

 

A large, free-surface water channel with test section dimensions 5435 mm x 613 

mm was employed as the test facility. The water depth in this channel was maintained at 
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approximately 508 mm during experiments. All experiments were performed in quiescent 

fluid without inflow. 

For the present experiments, an aspect ratio AR = b/C = 2.0 rectangular flat plate 

was used as a model wing. Figure 4.1 shows an isometric diagram of the wing and 

relevant dimensions. The wing had dimensions b = 55.2 mm and C = 25.4 mm. The 

thickness of the wing was tw = 2.3 mm, corresponding to a thickness to chord ratio tw/C = 

.09. The wing was supported at its midchord by a connecting rod of diameter 2.3 mm. 

This connecting rod was affixed to a vertical shaft of diameter 12.7 mm, which served as 

the rotation axis. The wing was located approximately 305 mm above the bottom surface 

of the test section. 

A computer controlled stepper motor rotated the wing about a vertical axis as 

shown in figure 4.1. This motion involved rapid acceleration from rest to constant 

angular velocity. The flow around the wing was characterized as a function of wing travel 

distance rgΦ/C, where rg is the radius of gyration and Φ is the angle of rotation of the 

wing, as shown in figure 4.1. The distance rgΦ/C therefore corresponds to the length of 

the arc subtended by the radius of gyration of the wing. The motion was smoothed 

according to the function described by Eldredge et al. (2009). Smoothing was applied 

such that the profile of travel distance rgΦ/C = f(t) at the radius of gyration of the wing 

was identical for all experiments. The wing reached constant tangential velocity at 

approximately rgΦ/C = 0.5. The velocity at the radius of gyration during rotation at 

constant angular velocity was Vrg = 49 mm/s. This velocity yielded a Reynolds number 
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of VrgC/ν = 1400, where ν is the kinematic viscosity of water. The angle of attack was α 

= 45° for all experiments. Two values of radius of gyration were investigated: rg/C = 1.7 

and rg/C = 4.7. These values of rg/C corresponded to root distances ro = 16 mm and 92 

mm. 

Stereoscopic particle image velocimetry (SPIV) was employed to determine the 

sectional, quantitative flow structure along the rotating wing. The in-plane resolution 

(vector spacing) and magnification for the PIV calibration were respectively .05C and 7.1 

pixels/mm.  

Three-dimensional, phase-averaged volumes of the flow structure were 

constructed from averaged, three-dimensional velocity fields on sectional planes. Nine 

vector-fields were averaged at each section. The spacing of the sectional vector-fields 

was Δz/C = 0.1, where Δz is the distance between adjacent planes. Each of the 

reconstructed volumes had the following minimum x, y and z dimensions: 4.8C x 6.7C x 

2.9C. Chapter 2 gives an assessment of the uncertainty of the volumetric reconstruction 

technique employed in this investigation. Images were captured at an acquisition rate of 

15 Hz to allow for temporal determination of the flow structure. This acquisition rate 

corresponded to a travel distance between volumetric reconstructions of ΔrgΦ/C = 0.13, 

i.e., the temporal resolution of the experimental system allowed reconstruction of 

quantitative flow volumes at intervals of ΔrgΦ/C = 0.13. These volumetric 

reconstructions were then transformed from the lab-fixed frame of reference, inherent to 

PIV analysis, to a frame of reference in which the wing is stationary.  
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Figure 4.1 also shows the orientation of two coordinate systems relative to the 

rotating wing. The flow velocities described in this study correspond to the xyz coordinate 

system, e.g., u/Vrg, which is the flow velocity in the direction of the x-axis. In this 

coordinate system, the x dimension is parallel to the tangential direction of wing rotation, 

the y dimension is orthogonal to both the tangential direction of wing rotation and the 

span of the wing, and the z dimension is parallel to the span of the wing. A second 

coordinate system, with spatial dimensions χ, η and ζ, is also provided for interpretation 

of different three-dimensional viewing perspectives. In this coordinate system, the χ and ζ 

dimensions are respectively parallel to the chord of the wing and the span of the wing, 

and the η dimension is orthogonal to the leeward and windward surfaces of the wing. 

 

4.3 VOLUMETRIC FLOW STRUCTURE 

 

4.3.1 Iso-surfaces of flow structure 

Figures 4.2 through 4.6 show the effects of radius of gyration rg/C, and travel 

distance rgΦ/C on nested, transparent iso-surfaces of qC
2
/Vrg

2
. The equation for q is:  

qC
2
/Vrg

2
 = 0.5[ ΩijΩij - SijSij ] = 0.5[ ||Ω||

2
 - ||S||

2
 ]             (3.1)   

Nested, transparent iso-surfaces at values of qC
2
/Vrg

2
 = 2, 7, and 15 are 

represented respectively by gray-yellow, brown-orange and orange colors. These iso-

surfaces therefore indicate regions of the flow where rotation ||Ω||
2
 dominates 
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irrotational strain ||S||
2

. Herein references to Q represent the non-dimensionalized Q-

criterion, which is defined as Q = qC
2
/Vrg

2
.  

Figure 4.2 shows the initial development of the flow structure at rgΦ/C = 0.5. 

Three perspective views of these iso-surfaces are shown in each figure: (from top) front; 

plan; and trimetric-views. A diagram of the wing, showing the orientation of each view 

relative to the χηζ coordinate system, is indicated in the inset in the center of each row of 

images. The center of rotation (not shown) is located to the left of the wing. The flow 

structure at this early stage is similar for both values of radius of gyration rg/C. The Q = 2 

iso-surfaces indicate a vortex loop located adjacent to the leading-edge, tip, and trailing-

edge of the wing. Higher level Q = 7 and 15 iso-surfaces are most prevalent in the 

leading-edge region for both radii of gyration. At rg/C = 1.7, the iso-surfaces associated 

with elevated levels of Q-criterion Q = 7 and Q = 15 are more concentrated on the portion 

of the wing outboard of its midspan, and the Q = 2 iso-surface in the leading-edge region 

tends towards a conical shape. In contrast, the Q = 2 and 7 iso-surfaces are more evenly 

distributed along the leading-edge at rg/C = 4.7. For both values of rg/C, the Q-criterion 

iso-surfaces are located very close to the surface of the wing in the regions of the leading-

edge and the tip of the wing. The tip-vortex at rg/C = 1.7 contains a larger extent of the 

iso-surface of Q = 7 compared to the tip vortex at rg/C = 4.7. Regarding the starting 
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vortex from the trailing-edge at rg/C = 4.7, it contains a large surface of Q = 7; in 

contrast, the starting vortex at rg/C = 1.7 is dominated by the lower level Q = 2 surface.   

Figure 4.3 shows the flow structure at rgΦ/C = 1.5, i.e., after the wing has 

traveled 1.5 chord lengths. The higher level Q = 7 and 15 iso-surfaces have increased in 

spatial extent in the cores of both leading-edge vortices, and have begun to lift away from 

the wing surface at both radii of gyration. At rg/C = 1.7, this lift-off occurs predominantly 

on the outboard portion of the wing, close to the wing tip. In fact, in the leading-edge 

region, the distance from the wing surface to the Q = 7 and 15 iso-surfaces is proportional 

to the distance along the span, i.e., the interior of the leading-edge vortex is near the wing 

at its root, and farthest from the wing near the tip. On the other hand, at rg/C = 4.7, the 

leading-edge vortex remains ‘pinned’ or close to the wing at the corners of the leading-

edge. At both radii of gyration, the strength of the tip vortex has increased relative to its 

strength at rgΦ/C = 0.5 (compare figure 4.2), as indicated by larger Q = 7 and Q = 15 iso-

surfaces near the wing tip. At the smaller radius of gyration rg/C = 1.7, the iso-surface 

corresponding to the highest level of Q = 15 within the tip vortex has a larger spatial 

extent compared to rg/C = 4.7. This tip vortex extends into the wake, where it connects to 

the shed (starting) vortex at both rg/C = 1.7 and 4.7.  

Figure 4.4 shows further development of the flow structure at a larger travel 

distance rgΦ/C = 2.0. At rg/C = 1.7, the change in Q-criterion iso-surfaces between 



128 
 

figures 4.3 and 4.4 is minor. In contrast, the flow structure at rg/C = 4.7 is substantially 

altered. Specifically, the leading-edge vortex continues to lift-off the surface of the wing, 

and takes the form of an arch-vortex. This observation of an arch vortex represents the 

first characterization of such a structure on a rotating wing. That is, as the radius of 

gyration becomes sufficiently large, the effects of centripetal acceleration and radial 

pressure gradient that promote formation of the attached, conical leading-edge vortex 

(Garmann and Visbal, 2013) give way to formation of an arch vortex. This vortical 

structure was originally computed for rectilinear plunging motion by Visbal (2011), and 

confirmed experimentally for rectilinear pitching to high angle of attack in presence of 

inflow by Yilmaz and Rockwell (2011). Visbal et al. (2013) further assessed the 

computational and experimental studies of the arch vortex on a plunging wing. Further 

investigations of the arch vortex involve computations for an impulsively started, 

rectilinearly translating wing at high angle of attack (Garmann et al. 2013), and a wing 

undergoing hover motion in a rectilinear mode (Garmann and Visbal, 2013). In figure 

4.4, the Q = 7 and Q = 15 iso-surfaces form the legs of the arch vortex at rg/C = 4.7. 

These legs appear to have evolved from the Q = 7 iso-surfaces that were pinned to the 

leading-edge corners of the wing at rgΦ/C = 1.5 in figure 4.3. They have shifted toward 

the midspan of the wing, i.e., they have pinched together relative to their location at 

rgΦ/C = 1.5. For both values of rg/C in figure 4.4, the Q = 7 and 15 iso-surfaces within 

the tip vortex are now evident in the region of the trailing-edge of the wing (see plan 
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view of figure 4.4), and, in the tip region located upstream of the trailing-edge of the 

wing, the flow structure is dominated by the lowest level of Q = 2.  

The flow development from rgΦ/C = 0.5 to rgΦ/C = 2.0 at small radius of 

gyration, shown in figures 4.2 through 4.4, is similar to that computed on an impulsively 

started rotating wing (Garmann et al. 2013), and a reciprocating wing undergoing 

rotational motion (Garmann and Visbal, 2013). That is, when the radius of gyration is 

small, an attached leading-edge vortex forms quickly and persists as the wing rotates. At 

moderate radius of gyration, the flow structure closely resembles that computed on an 

impulsively started rotating wing (Garmann et al. 2013), and a reciprocating wing 

undergoing rectilinear motion (Garmann and Visbal, 2013). For those type of motion, an 

arch vortex forms on the wing, and the development of this structure is not as rapid.  

Figure 4.5 shows further development of the flow structure at a travel distance of 

rgΦ/C = 3.0. The Q = 7 and Q = 15 iso-surfaces in the leading-edge vortex have moved 

downstream, and decreased in spatial extent, relative to rgΦ/C = 2.0. Along with these 

changes to the vortical structure of the leading-edge vortex, the tip vortex is now 

increasingly deflected toward the center of rotation at rgΦ/C = 3.0; at rgΦ/C = 2.0, it was 

approximately parallel to the tangential velocity of the wing. In figure 4.5, at rg/C = 4.7, 

the legs of the arch-vortex continue to move together (pinch), thereby continuing the 

trend observed at smaller travel distances rgΦ/C. Simultaneously, the arch vortex also 

moves further away from the wing surface (as evident in the top row of the figure 4.5), 
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and in the downstream direction (evident in the middle row of figure 4.5). The iso-

surfaces of Q associated with this structure no longer directly connect to the tip-vortex, 

even at the lowest value Q = 2. The higher value Q = 7 and 15 iso-surfaces within the 

arch vortex decrease in spatial extent and undergo distortion, indicating loss of 

coherence. 

The effect of radius of gyration rg/C on vortex formation up to this value of travel 

distance rgΦ/C is as follows. When rg/C is sufficiently small, a coherent leading-edge 

vortex forms on the wing, and this vortex reaches a developed state at a travel distance of 

rgΦ/C = 1.5, i.e., the vortical structure near the wing does not significantly change after 

rgΦ/C = 1.5. In contrast, at a larger value of rg/C = 4.7, the development of the flow 

structure leads to an arch vortex. Similar types of vortical structures were observed 

respectively on both impulsively started rotating and rectilinearly translating wings (Kim 

and Gharib 2010; Garmann et al. 2013), and rotating and rectilinearly translating wings 

in simulated hover motion (Jardin et al. 2012; Garmann and Visbal, 2013). In the studies 

of Garmann et al. (2013), and Garmann and Visbal (2013), the coherent leading-edge 

vortex was associated with significantly higher negative pressure on the leeward side of 

the wing than the arch vortex evident on the rectilinearly translating wings. Greater lift 

and drag forces accompanied the increased negative pressure beneath the leading-edge 

vortex on the rotating wing. 

Figure 4.6 shows the flow structure after the wing has rotated through 5.5 chords 

of travel, i.e., rgΦ/C = 5.5. At rg/C = 1.7, the Q = 2 iso-surface is similar to the Q = 2 iso-
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surface observed at rgΦ/C = 3.0, and the coherent leading-edge vortex and tip vortex 

continue to dominate the flow structure. The Q = 7 and 15 iso-surfaces have shifted 

upstream toward the leading-edge of the wing. The branched structure of the Q = 7 iso-

surface indicates periodic shedding of high level vortical structures from the leading-

edge, within the leading-edge vortex. The tip vortex no longer contains high level Q = 7 

and 15 iso-surfaces, but this loss of coherence in the tip vortex does not appear to affect 

the coherence of the leading-edge vortex negatively. In comparison, the flow structure at 

rg/C = 4.7 substantially changes from its form at rgΦ/C = 3.0 (compare figure 4.5). At 

rgΦ/C = 5.5 in figure 4.6, the arch vortex has been swept downstream and is no longer in 

the field of view. The region along the surface of the wing that was previously occupied 

by the arch vortex is largely devoid of highly level Q = 7 and 15 iso-surfaces. The low 

level Q = 2 iso-surfaces along the wing indicate a degree of recovery of a very weak 

leading-edge vortex that extends approximately from the root to the midspan of the wing, 

but it is much weaker than the vortex at rg/C = 1.7. The iso-surfaces of Q-criterion at 

rg/C = 4.7 also indicate loss of a coherent tip vortex. 

Figure 4.7 indicates iso-surfaces of Q = 4.5 colored with helical density h, also 

known as helicity. The equation for h is:  

h = V·ω = uωx+ vωy+ wωz. (4.2)   

Elevated magnitudes of h indicate regions where the velocity V and vorticity ω 

are sufficiently large and tend to be aligned with each other. These regions are associated 
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with significant flow along the rotation axis of a vortex, which results in helical 

streamline patterns. Helicity h can also be interpreted as the flux of vorticity along the 

rotation axis of a vortex (Moffatt, 1969). Herein H represents the non-dimensionalized 

helical density, which is defined as H = hC/Vrg
2
. A trimetric view perspective (bottom 

rows of figures 4.2 through 4.6) is employed for this figure. Four travel distances rgΦ/C 

= 0.5, 1.5, 2.5, and 5.5 are represented. 

The top row of figure 4.7 shows patterns of positive (blue), and negative (red) 

helicity shortly after the onset of wing motion, i.e., at rgΦ/C = 0.5. At this early stage of 

the flow development, similar patterns of helicity H are apparent for both radii of 

gyration rg/C = 1.7 and 4.7. Large magnitude positive (blue) H occurs along the tip 

vortices, and negative (red) H along the leading-edge vortices. The larger scale tip vortex 

at rg/C = 1.7 shows large magnitude (darker) positive H over a larger extent. 

The second row of figure 4.7 shows the distribution of helical density H at rgΦ/C 

= 1.5. The iso-surfaces of Q are similar at rg/C = 1.7 and 4.7; they consist of a coherent 

vortex across the leading-edge and tip of the wing, which forms a loop with the starting, 

i.e., trailing, vortex, that has less spatial extent. However, the distribution of H along 

these iso-surfaces is remarkably different. At rg/C = 1.7, large magnitude, positive (blue) 

H is evident across both the leading-edge vortex and the tip vortex, and it extends along 

the tip vortex into the wake. This consistent positive (blue) H along the Q iso-surface 
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indicates unidirectional flux of vorticity along this three-dimensional vortical structure. 

At rg/C = 4.7, however, the magnitude of H is smaller along the leading-edge vortex 

(lighter blue and red colors), and the sign of H alternates between negative (red) and 

positive (blue). This pattern indicates lack of a unidirectional vorticity flux along the iso-

surface.  

The third row in figure 4.7 indicates the further development of patterns of H at 

rgΦ/C = 2.5. At rg/C = 1.7, the Q iso-surface and distribution of H along the iso-surface 

are generally similar to those at rgΦ/C = 1.5. The primary difference appears in the 

junction between the leading-edge and tip vortices. In this region, the Q iso-surface is not 

as compact and organized as at rgΦ/C = 1.5. In comparison with this general preservation 

of the forms of Q and H at rg/C = 1.7, the corresponding patterns at rg/C = 4.7 change 

significantly from rgΦ/C = 1.5 to 2.5. The Q iso-surface now indicates a well-defined 

arch vortex, as shown in figures 4.3 and 4.4. The magnitude of H on the arch vortex iso-

surface is further reduced from the levels apparent at rgΦ/C = 1.5. Along with the 

reduction (lighter color) of the level of H in the arch vortex, the magnitude of H along the 

tip vortex is also reduced.  

The bottom row of images in figure 4.7 corresponds to rgΦ/C = 5.5, that is, well 

after the onset of wing motion. The flow structure at the smaller radius of gyration rg/C = 

1.7 has changed significantly, relative to the structure at rgΦ/C = 2.5. In particular, the 
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iso-Q surface that represents the tip vortex is less organized and has a smaller spatial 

extent. Additionally, a region of Q-criterion with large magnitude negative (red) H has 

formed near the junction between the trailing-edge and tip of the wing. Remarkably, the 

overall form of the leading-edge vortex shows only minor alterations, that is, the iso-Q 

surface representing the leading-edge vortex is largely unchanged from rgΦ/C = 2.5 to 

5.5. The level of H along that iso-surface is, however, no longer uniformly positive 

(blue). At rg/C = 4.7, the change in the iso-Q surface and helicity H is more dramatic. 

The arch vortex, evident at rgΦ/C = 2.5, is absent at rgΦ/C = 5.5. It has been replaced by 

a smaller, coherent leading-edge vortex that terminates near the midspan of the wing. 

This small leading-edge vortex is not associated with significant helicity. 

Figure 4.8 shows (opaque) iso-surfaces of elevated downward velocity or 

downwash v/Vrg = 0.65, superposed on the (transparent) iso-Q surfaces shown in figures 

4.2 through 4.6. A plan view perspective (middle row of figures 4.2 through 4.6) is 

employed for this figure. The four travel distances displayed in figure 4.7, rgΦ/C = 0.5, 

1.5, 2.5, and 5.5, are represented in figure 4.8. 

The first row of figure 4.8 corresponds to a travel distance of rgΦ/C = 0.5. At this 

travel distance, the Q = 2 iso-surfaces at both radii of gyration have significant spatial 

extent, but the v/Vrg iso-surfaces do not. The formation of a small region of elevated 

downwash at rg/C = 1.7 is adjacent to the Q = 15 iso-surface at that radius of gyration. 
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This observation indicates that coherent vortex formation occurs before significant 

downwash is established on the leeward side of the wing.  

Images of the downwash and the Q-criterion iso-surfaces at rgΦ/C = 1.5 are 

represented in the second row of figure 4.8. At this travel distance, the spatial extent of 

the elevated downwash region is much larger than at rgΦ/C = 0.5 for both radii of 

gyration. At rg/C = 1.7, the (opaque) downwash iso-surface has formed downstream of 

the coherent leading-edge vortex, and inboard of the coherent tip vortex. This iso-surface 

continues downstream along the tip vortex, past the trailing-edge of the wing and into the 

wake (out of the image). At rg/C = 4.7, the downwash v/Vrg iso-surface has a different 

shape and smaller spatial extent than at rg/C = 1.7. At this radius of gyration, the majority 

of the v/Vrg iso-surface is immediately behind the Q iso-surfaces that represent the 

forming arch vortex. Near the tip of the wing, the coherent tip vortex induces an 

additional downwash region, which extends approximately 0.25C past the trailing-edge. 

The third row of images in figure 4.8 corresponds to rgΦ/C = 2.5. At rg/C = 1.7, 

the overall structure of the Q iso-surfaces is similar to that at rgΦ/C = 1.5. The most 

significant change occurs in the tip region, where the tip vortex appears to become less 

organized at rgΦ/C = 2.5. The spatial extent of the v/Vrg iso-surface increases from 

rgΦ/C = 1.5 to 2.5. At rg/C = 4.7, the Q-criterion iso-surfaces indicate movement of the 

arch vortex toward the trailing-edge of the wing. This movement forces the v/Vrg iso-
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surface downstream as well. The spatial extent of the downwash region near the root of 

the wing also increases, possibly due to induction from the left side of the arch vortex and 

the root vortex. 

The bottom row of figure 4.8 corresponds to a travel distance of rgΦ/C = 5.5. At 

rg/C = 1.7, there is an increase in the spatial extent of the Q iso-surfaces in the leading-

edge and tip regions. This increase in spatial extent is accompanied by a shift of the 

downwash iso-surface toward the root of the wing, in accord with the larger Q-criterion 

iso-surface in the tip region. Overall, the iso-Q surfaces at rg/C = 1.7 are similar at rgΦ/C 

= 2.5 and 5.5. At rg/C = 4.7, the changes to both Q-criterion and v/Vrg iso-surfaces 

between rgΦ/C = 2.5 and 5.5 are more pronounced. The Q iso-surfaces indicate that the 

arch vortex is no longer present at rgΦ/C = 5.5. Higher-level Q iso-surfaces are no longer 

present, and, along with this change, the large v/Vrg iso-surface seen at rgΦ/C = 2.5 is 

also absent. Instead, there is a significantly smaller region of elevated downwash between 

the Q = 2 iso-surfaces that represent the root vortex and the leading-edge vortical 

structure.  

 

4.3.2 Multiple sectional patterns along span 

 Figures 4.9 through 4.11 indicate sectional cuts of the flow structure at eight 

spanwise locations A through F along the wing. In order to indicate the distinctions 
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between features on adjacent sectional cuts, the span of the wing is stretched by a factor 

of 1.5 in these layouts. A diagram showing the orientation of each view relative to the χηζ 

coordinate system is indicated at the top of each figure. 

Figure 4.9 shows contours of constant (black line) vorticity ωzC/Vrg. The black 

contour lines correspond to vorticity values ωzC/Vrg = ±4 through ±10 with ΔωzC/Vrg = 

1. At the smaller radius of gyration rg/C = 1.7, and the shortest travel distance shown 

rgΦ/C = 1.0, the density of the vorticity contour lines along the leading-edge increases 

with spanwise location. In contrast, at rg/C = 4.7 the contour lines at spanwise locations 

C, D, and E tend to have a similar form, i.e., the shape of the vorticity contours does not 

change as much across the span of the wing at rg/C = 4.7 as it does at sections C, D, and 

E for rg/C = 1.7. The vorticity concentrations located downstream of the trailing-edge, 

which correspond to the starting vortex that is shed from the trailing-edge, have 

distributions along the span that are similar to the patterns of vorticity concentrations 

along the leading-edge at both rg/C = 1.7 and 4.7; they have larger circumference near 

the tip at rg/C = 1.7 and are more uniform along the span at rg/C = 4.7. 

At rgΦ/C = 2.0 the overall form of the distribution of patterns of vorticity along 

the span of the wing at the smaller radius of gyration rg/C = 1.7 is similar to the spanwise 

distribution at rgΦ/C = 1.0. That is, the scale of the vorticity concentration formed in the 
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separated shear layer increases along the span of the wing, from section B to section E. At 

spanwise locations E and F, the concentration of vorticity contours on the leading-edge 

resembles a separated shear layer. At rg/C = 4.7, the arch vortex formation, observed in 

iso-surfaces of the Q-criterion (Compare figure 4.4), is manifested in large-scale 

concentrations of vorticity at sections C, D, and E. This arch vortex appears to be 

approximately symmetric around spanwise location D, which corresponds to z/b = 0.57, 

or just outboard of the midspan of the wing. 

 The third row of figure 4.9 corresponds to a travel distance rgΦ/C = 3.0. At the 

smaller radius of gyration rg/C = 1.7, the sectional patterns of vorticity at spanwise 

location F and, to a lesser extent, spanwise location E, resemble a separated shear layer. 

At rg/C = 4.7, the patterns of vorticity concentration near the leading-edge resemble a 

separated shear layer at spanwise locations C through F. At locations D and E, large-scale 

vorticity concentrations, associated with formation of the arch vortex, are still apparent 

downstream of the separated shear layer along the leading-edge. 

 The bottom row of figure 4.9 represents the flow structure at the largest travel 

distance rgΦ/C = 5.5. At rg/C = 1.7, the leading-edge vortex is located close to the wing 

at spanwise locations inboard of the midspan, and a structure resembling a separated 

shear layer has formed at spanwise locations outboard of the midspan. At rg/C = 4.7, the 

contours of constant vorticity take the form of narrow, extended layers formed from the 
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leading-edge of the wing at spanwise locations B through F. These types of layers are 

representative of fully separated flow at high angle of attack. 

 Figure 4.10 shows (color) contours of downwash velocity v/Vrg superposed on 

contours of constant (black line) vorticity ωzC/Vrg. These red-yellow contours indicate 

dominance of downwash for all cases shown, i.e., there is no upwash velocity with a 

magnitude above the cut-off threshold (v/Vrg ≥ 0.4). Generally speaking, for all values of 

travel distance rgΦ/C, larger scale regions of large (red) magnitude downwash v/Vrg 

occur for the small radius of gyration rg/C = 1.7, relative to moderate radius of gyration 

rg/C = 4.7. This observation is correlated with persistence of ordered concentrations of 

vorticity ωzC/Vrg in the shear layer from the leading-edge of the wing at rg/C = 1.7, 

relative to the patterns observed at rg/C = 4.7.  

For the smallest travel distance rgΦ/C = 1.0, and radius of gyration rg/C = 1.7, the 

contours of downwash velocity v/Vrg extend from the downstream edge of each 

concentration of vorticity. These contours indicate that the largest scales of large (red) 

magnitude of v/Vrg occur at spanwise locations beyond the midspan of the wing 

(spanwise locations D-F). At spanwise locations E and F, the elevated contours of v/Vrg 

extend from the vorticity concentration of the separated shear layer to the vorticity 

concentration that represents the starting vortex shed from the trailing-edge. At larger 
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travel distance rgΦ/C = 2.0, the spatial extent of the large (red) magnitude downwash 

v/Vrg increases and shifts inboard. That is, the contours of large v/Vrg become more 

extensive and move away from the outboard spanwise location F, and toward the wing 

root i.e., spanwise locations C to E. These regions of pronounced v/Vrg at sections C to E 

persist for larger values of travel distance rgΦ/C = 3.0 and 5.5. Taking an overview of the 

sectional patterns of  v/Vrg for all values of travel distance rgΦ/C in the left column of 

figure 4.10, a dramatic transformation occurs from the startup patterns at small travel 

distance rgΦ/C = 1.0, to the patterns that persist from rgΦ/C = 2.0 to the largest travel 

distance rgΦ/C = 5.5. This preservation of large contours of downwash from rgΦ/C = 2.0 

to rgΦ/C = 5.5 is in accord with similar preservation of Q-criterion (see figures 4.4 to 

4.6), and helicity (see figure 4.7). 

The right column of figure 4.10 shows the patterns of downwash v/Vrg at the 

larger value of radius of gyration rg/C = 4.7. Considering, first of all, the small travel 

distance rgΦ/C = 1.0, the downwash contours are similar in magnitude and spatial extent 

at spanwise locations B to E. At all spanwise locations, the regions of elevated downwash 

are located at the downstream edges of the patterns of vorticity concentration, formed 

from the leading-edge of the wing. These contours, however, do not extend to the 

respective vorticity concentrations that represent the starting vortex, formed from the 

trailing-edge of the wing, as they do at spanwise locations D and E for rg/C = 1.7. As the 
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wing rotates at constant velocity to larger values of travel distance rgΦ/C, larger scale 

regions of downwash form. In comparison with the images at smaller radius of gyration 

rg/C = 1.7 in the left column, these regions have lower (lighter red) levels of peak 

downwash at most spanwise locations. Furthermore, at the travel distance rgΦ/C = 2.0, 

the moderately high (light red) levels of downwash velocity v/Vrg are located at the 

downstream edges of the vorticity concentrations ωzC/Vrg that represent the arch vortex 

at spanwise locations C to E (compare the iso-Q surfaces of figure 4). At rgΦ/C = 3.0, the 

locations of the indicated contours of  v/Vrg relative to the positions of the vorticity 

concentrations ωzC/Vrg remain the same as at smaller travel distances rgΦ/C = 1.0 and 

2.0. At rgΦ/C = 5.5, the arch vortex has been swept downstream of the trailing-edge 

(compare figure 4.6), and significant concentrations of vorticity associated with the 

separated shear layer from the leading-edge are no longer evident. Instead, elongated 

regions of low-level vorticity occur at spanwise locations B through F, along the span of 

the wing. Correspondingly, regions of moderately large (red-yellow) downwash occur 

well downstream of the leading-edge of the wing.   

 Figure 4.11 shows sectional cuts of the flow structure at the spanwise location D 

designated in figures 4.9, 4.10 and 4.12. These images show the velocity vectors in a 

reference frame equivalent to flow past a stationary wing, superposed with (color) 

contours of velocity u/Vrg in the direction of rotation, and contours of constant (blue line) 
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spanwise vorticity ωzC/Vrg. The magnitude of the velocity at infinite distance from the 

wing, approaching the wing from the left (not evident in these images), is equal to the 

velocity Vrg of the wing at its radius of gyration. As indicated in the color band in the 

inset of figure 4.11, these color contours represent a range of velocity from u/Vrg = -0.6 

to 0.15, with a white band that represents u/Vrg = 0. The (red) contour u/Vrg > 0 indicates 

regions where the flow has positive tangential flow velocity relative to the wing in a 

wing-fixed reference frame. The left column of images represents the small radius of 

gyration rg/C = 1.7, while the right column shows images corresponding to the moderate 

radius of gyration rg/C = 4.7.  

 Considering, first, the images at rg/C = 1.7 (left column) for all three values of 

travel distance rgΦ/C = 1.5, 3.0 and 5.5, the velocity vectors near the wing have 

substantial magnitude and are oriented in the downstream direction, as indicated by the 

green contours, with the exception of a very small region of mildly positive u/Vrg 

(orange-red) at the smallest value of travel distance rgΦ/C = 1.5. These patterns of 

velocity vectors, along with the lack of any significant upstream flow along the wing, 

indicate the absence of substantial regions of flow separation or stall. The (blue) vorticity 

lines indicate that the leading-edge vortex remains close to the leeward surface of the 

wing at all values of travel distance. In other words, there is a correlation between: (i) 
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preservation of the coherent vorticity concentration in the separating shear layer that 

remains close to the surface of the wing; and (ii) the absence of a region of stalled flow. 

 In contrast, the corresponding patterns at rg/C = 4.7 (right column) show 

respectively small-scale and large-scale regions of upstream oriented (red) velocity at 

travel distances rgΦ/C = 1.5 and 3.0. These regions are associated with the swirl induced 

by the vorticity concentration in the separated shear layer, indicated by the (blue) contour 

lines of vorticity. This vorticity concentration is the sectional cut of the arch vortex, 

indicated in the three-dimensional representations of figures 4.3 and 4.5. However, at the 

largest travel distance of rgΦ/C = 5.5, the magnitude of the velocity vectors has 

decreased dramatically; only a low-level (blue) layer of vorticity is evident because the 

aforementioned vorticity concentration has been swept downstream (compare with the 

three-dimensional image of figure 4.6). The overall flow pattern at rgΦ/C = 5.5 is 

characteristic of a highly separated or stalled flow.  

 The images of figure 4.11 serve as a guide for interpretation of the sectional 

patterns in figure 4.12, which shows (color) contours of velocity u/Vrg in the direction of 

rotation superposed on contours of constant (black line) vorticity ωzC/Vrg, as described 

and interpreted in figure 4.11. The contours of u/Vrg in figure 4.12 are similar to the 

contours of u/Vrg in figure 4.11.  
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 At small radius of gyration rg/C = 1.7 in figure 4.12 (left column), the contours 

of u/Vrg at sections D and E show (red) regions where the velocity component is 

upstream u/Vrg > 0. Overall, at small radius of gyration, the scale of regions where the 

flow is upstream u/Vrg > 0 is minimal.  

 At larger radius of gyration rg/C = 4.7, (red) regions where the flow is upstream 

u/Vrg > 0 are more prevalent. At rgΦ/C = 1.5, these regions initially form at spanwise 

locations C-E, between the surface of the wing and the vorticity concentrations that 

represent the arch vortex. Each of these regions of upstream flow is induced by the 

vorticity concentration in the separated shear layer, as observed in figure 4.11. At rgΦ/C 

= 3.0, large (red) regions of significant upstream flow u/Vrg = 0.15 exist beneath the 

vorticity contours associated with the arch vortex, at spanwise locations D and E. At 

rgΦ/C = 5.5, a (red) region of u/Vrg > 0 at spanwise locations D and E exists in presence 

of low level distributed vorticity. This overall pattern corresponds to highly separated or 

stalled flow, as addressed in figure 4.11. 

 When considered together, figures 4.10 through 4.12 provide the following 

insight. The formation of a stable leading-edge vortex at small radius of gyration, evident 

in iso-surfaces of the Q-criterion and patterns of spanwise vorticity on sectional planes, is 

associated with increased downwash velocity on the leeward side of the wing. This flow 

structure is not associated with significant regions of upstream oriented velocity 
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component (u/Vrg > 0) in a wing-fixed reference frame. In contrast, the formation of an 

arch vortex does not promote substantial downwash or flow attachment on the leeward 

side of the wing. Instead, large regions of upstream oriented swirl flow u/Vrg > 0 are 

induced by the vorticity concentration. Eventually, fully separated or stalled flow, 

involving large-scale regions of upstream oriented flow having low velocity magnitude, 

occurs when the arch vortex is swept away from the wing.  

 

4.4 CONCLUSIONS 

The development of the three-dimensional vortex structure on a wing of moderate 

aspect ratio (AR = 2) undergoing pure rotation (rotation at constant angular velocity and 

fixed angle of attack α) is characterized via volumetric reconstruction of results obtained 

from phase-averaged stereoscopic particle image velocimetry. This characterization is 

carried out at small and moderate values of radius of gyration, rg/C = 1.7 and 4.7, for a 

range of travel distances from rgΦ/C = 0.5 to rgΦ/C = 5.5. The evolution of the vortex 

structure is fundamentally different at these radii of gyration, and gives rise to distinctive 

classes of vortices, namely a conical leading-edge vortex and an arch vortex. 

Vortical structures on the wing are represented by volumetric, transparent iso-

surfaces of the Q-criterion. These iso-surfaces indicate regions of the flow where rotation 

||Ω||
2
 dominates irrotational strain ||S||

2
. At small radius of gyration (rg/C = 1.7), a 

coherent leading-edge vortex forms on the leeward surface of the wing; it is associated 



146 
 

with a tip vortex that remains coherent downstream of the trailing-edge and extends well 

into the wake of the wing. This overall flow structure is preserved to the maximum travel 

distance characterized herein. On the other hand, at moderate radius of gyration (rg/C = 

4.7), an arch vortex forms on the leeward surface of the wing; it eventually loses its 

coherence and is swept downstream. During the initial stage of development of both the 

conical leading-edge vortex and the arch vortex, the patterns and the time of onset of high 

levels of Q-criterion within the components of the three-dimensional vortex, that is, the 

leading-edge vortex, the tip vortex and the trailing vortex, show significant differences 

and foretell the fundamentally different forms of the vortex structure. 

The Q-criterion iso-surfaces, which are employed to characterize the basic forms 

of the vortex structure described in the foregoing, have been employed with the helicity h 

= V*ω to provide further insight into the evolution of the vortex structure. Helicity may 

be interpreted as the magnitude of vorticity flux along the axis of the vortex. It is 

demonstrated that, at small radius of gyration, for the case of the three-dimensional 

vortex system associated with the conical, attached leading-edge vortex, a large 

magnitude of positive helicity is maintained along the axis of the vortex system as it 

develops along the wing. Correspondingly, the coherence of the three-dimensional vortex 

system is preserved. In contrast, at moderate radius of gyration, for which the arch vortex 

develops, the peak magnitude of helicity is attenuated, and, more importantly, the sign of 

the helicity alternates across the span of the arch vortex, indicating non-unidirectional 

vorticity flux along the axis of the vortex. The arch vortex rapidly degenerates as it is 

swept downstream.  
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Further distinction of the evolution of the attached conical leading-edge vortex 

and the arch vortex is evident in patterns of downwash velocity v/Vrg. At small radius of 

gyration, the persistence of coherent vortical structures containing high magnitude Q-

criterion near the leading-edge of the wing results in a large downwash region at all travel 

distances greater than rgΦ/C = 0.5. In comparison, the magnitude and spatial extent of 

the downwash are substantially diminished at moderate radius of gyration for larger 

travel distance, and, correspondingly, large magnitude iso-surfaces of the Q-criterion do 

not persist. 

The volumetric representations of the three-dimensional flow structure described 

in the foregoing are complemented by sectional patterns along the span of the wing. The 

initial development of the flow structure, shortly after onset of the wing motion, is as 

follows. For the small radius of gyration, the patterns of spanwise vorticity on sectional 

planes are asymmetric with respect to the midspan of the wing; larger concentrations of 

vorticity occur near the tip of the wing. For moderate radius of gyration, however, the 

patterns of spanwise vorticity are nearly symmetric. Well after the onset of wing motion, 

the patterns of spanwise vorticity on sectional planes depend strongly on the radius of 

gyration, and show fundamentally different forms. For small radius of gyration, the 

vorticity concentrations tend to remain close to the surface of the wing. For moderate 

radius of gyration, however, such concentrations are deflected away from the surface of 

the wing, and at sufficiently large travel distance, vorticity concentrations give way to 

low level layers of distributed vorticity in the shear layer, accompanied by a large region 
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of low velocity between the vorticity layer and the surface of the wing, i.e., a fully 

separated flow.  

The magnitude and spatial extent of sectional patterns of downwash and 

tangential velocity are closely related to the aforementioned sectional patterns of vorticity 

contours. When the vorticity concentration remains close to the surface of the wing, as is 

the case at small radius of gyration, large magnitude downwash extends downstream 

from the edges of the vorticity contours. Moreover, the tangential velocity beneath the 

vorticity concentration is oriented in the downstream direction.  On the other hand, when 

the vorticity contours take an elongated form and are deflected substantially away from 

the surface of the wing, the magnitude and extent of the sectional downwash is greatly 

diminished, and the flow travels upstream in the region below the shear layer emanating 

from the leading-edge of the wing. In turn, these features of the downwash and tangential 

velocity are intimately related to formation and development of both the conical leading-

edge vortex and the arch vortex.  

The results presented herein indicate that, for a wing having sufficiently large 

aspect ratio, an increase of the radius of gyration, from a small to a moderate value, 

produces a dramatic change in the vortex structure, i.e., from an attached conical leading-

edge vortex to an arch vortex. In essence, this means that the strong rotational effects that 

occur at small radius of gyration, namely the centripetal force and the radial pressure 

gradient, as assessed for a rotating wing by Lentink and Dickinson (2009a & b) and 

Garmann et al. (2013), are attenuated with increasing radius of gyration, such that the 

arch vortex, which heretofore has been observed only on wings in rectilinear motion, 
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becomes dominant. This formation of the arch vortex occurs over a larger travel distance 

than the relatively rapid onset of the attached leading-edge vortex, and it eventually loses 

its coherence as it is swept downstream. The arch vortex characterized herein closely 

resembles the flow structure on a rectilinearly translating wing at similar angle of attack. 

Visbal (2011) first defined the arch vortex on a wing undergoing unsteady rectilinear 

motion, namely heaving, and subsequent computational studies have characterized the 

arch vortex on wings undergoing unsteady hover (Garmann and Visbal, 2013), and steady 

translation after an impulsive start (Garmann et al. 2013). These computations are 

complemented and confirmed by the three-dimensional experimental imaging of Yilmaz 

and Rockwell (2011), and Visbal et al. (2013). 
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Figure 4.1. Schematic of rotating wing and relevant dimensions. 
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Figure 4.2. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 0.5. 
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 Figure 4.3. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 1.5. 
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Figure 4.4. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 2.0. 
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Figure 4.5. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 3.0. 
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Figure 4.6. Transparent iso-surfaces of Q-criterion at different values of Rossby number 

rg/C. Rotation distance rgΦ/C = 5.5. 
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Figure 4.7. Iso-surfaces of Q-criterion Q = 4.5 colored with helical density H at different 

values of Rossby number rg/C and rotation distance rgΦ/C. 
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Figure 4.8. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of downwash 

at different values of Rossby number rg/C and rotation distance rgΦ/C. 
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Figure 4.9. Sectional cuts of dimensionless spanwise vorticity ωzC/Vrg at seven 

spanwise locations for different values of Rossby number rg/C and travel distance rgΦ/C. 

The wing span is expanded to 150% of original dimension for visualization. 
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Figure 4.10. Sectional cuts of flow structure at seven spanwise locations for different 

values of Rossby number rg/C and travel distance rgΦ/C. Contours of constant values of 

downward velocity component (downwash) are superposed on contours of constant 

spanwise vorticity. The wing span is expanded to 150% of original dimension for 

visualization. 
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Figure 4.11. Sectional cuts of flow structure at spanwise location z/b = 0.57 (spanwise 

location D in figures 4.9, 4.10, and 4.12) for different values of Rossby number rg/C and 

travel distance rgΦ/C. Contours of constant values of tangential velocity component u 

(see schematic) are superposed on velocity vectors V and contours of constant spanwise 

vorticity. 
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Figure 4.12. Sectional cuts of flow structure at seven spanwise locations for different 

values of Rossby number rg/C and travel distance rgΦ/C. Contours of constant values of 

tangential velocity component are superposed on contours of constant spanwise vorticity. 

The wing span is expanded to 150% of original dimension for visualization. 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 CONCLUSIONS 

This investigation provides new insight into the flow structure associated with 

bio-inspired, low Reynolds number flight through experimental determination of the 

unsteady flow velocities in the fluid surrounding a purely rotating wing, that is, a wing 

rotating at constant angular velocity Φ, and angle of attack α, after an initial acceleration 

from rest in quiescent fluid. Specifically, this investigation characterizes the 

transformation of the flow structure due to change of the radius of gyration rg, from very 

low values to moderate values. Increasing rg reduces the influence of rotation on the flow 

structure. To simulate the desired wing motion, a computer controlled, rotating wing 

model was designed and implemented; it precisely followed the prescribed wing 

kinematics. Stereoscopic particle image velocimetry (SPIV) was employed to determine 

the velocity field around this rotating wing model. This SPIV technique yielded sectional 

representations of the flow field, which were phase-averaged and reconstructed into 

volumetric representations. Chapters 3 and 4 respectively provide conclusions specific to 

a low aspect ratio wing AR = 1, and a moderate aspect ratio wing AR = 2. In the 
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following, overall conclusions are presented regarding the effect of radius of gyration, 

and recommendations are proposed for future research and design considerations for 

micro air vehicles (MAVs). 

This investigation addresses the volumetric flow structure for several radii of 

gyration, and the transformation of this structure due to changes of radius of gyration rg 

and increasing distance travelled by the wing rgΦ/C. This approach leads to 

characterization of the transient development of flow structure at different radii of 

gyration. Post processing of the volumetric representations of flow velocities allows 

quantitative determination of several derived quantities, including vorticity, vorticity flux, 

helical density, and Q-criterion. These quantities are used to define the flow physics 

resulting from the wing motion. 

 When the radius of gyration is minimized, highly coherent vortical structures are 

observed after moderate travel distance, i.e., well after the onset of motion of the wing. 

These coherent structures include leading-edge, root, and tip vortices. The leading-edge 

vortex is conical in shape, with increasing diameter from the root of the wing to the tip of 

the wing, where it joins with the tip vortex. Both the root and tip vortices are severely 

deflected toward the radius of gyration as they extend into the wake of the wing. Other 

organized flow features are also observed when the radius of gyration is minimized, 

including significant spanwise vorticity flux or helicity throughout the vortex system, and 

significant downward velocity (downwash) in the region bounded by the vortex system. 

In addition, the volume of stalled fluid is minimal at small radius of gyration. That is, 
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there are insignificant regions of the flow that are either (i) moving at approximately the 

tangential velocity of the wing in a lab-fixed reference frame, or (ii) moving at 

approximately zero tangential velocity in a wing-fixed reference frame,  

When the radius of gyration rg is increased to larger values, the coherent vortical 

structures observed at small values of degrade or lose intensity. This degradation affects 

the entire vortex system, including the leading-edge vortex, root vortex, and tip vortex; 

that is, all of these vortical structures lose strength and become less organized when the 

radius of gyration is increased. This loss of vortex organization is associated with 

reductions of the magnitude and spatial extent of regions of downwash velocity, spanwise 

vorticity flux and helicity. Moreover, deflection of the root and tip vortices towards the 

radius of gyration decreases, and the spatial extent of stalled fluid increases. 

 Radius of gyration also significantly influences the early temporal development of 

flow structures on a rotating wing. On an AR = 1 wing, a stable leading-edge vortex is 

observed at the midspan for all travel distances when rg is minimized. When the radius of 

gyration is minimized on an AR = 2 wing, a leading-edge vortex quickly develops, and 

this vortex persists in a similar form as the wing continues to rotate. In contrast, when 

radius of gyration is increased to moderate values, the development of the flow structure 

is less rapid and does not lead to a coherent leading-edge vortex on either aspect ratio 

wing. In particular, on the larger aspect ratio AR = 2 wing, the formation and shedding of 

an arch vortex, which has previously been characterized only on wings undergoing 

translational motion, is observed at moderate radius of gyration. This vortex is similar in 
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size and strength to the leading-edge vortex, but it is not stable, i.e., it does not persist as 

the wing continues to rotate. Instead, the arch vortex is swept away from the wing and is 

replaced by less organized vortical structures.  

Minimization of the radius of gyration also maintains a stable leading-edge vortex 

at very large travel distance on a low aspect ratio AR = 1 wing. At the largest radius of 

gyration investigated herein, the volumetric flow structure is marginally coherent at 

moderate travel distance; rotation to extremely large travel distance yields loss of 

organized vortical structures. In contrast, at small radius of gyration, the organized 

vortical structures, observed at moderate travel distance, are largely preserved at very 

large travel distance. 

This investigation demonstrates that the radius of gyration of a rotating wing 

critically influences the formation and stability of the coherent vortex system, which 

involves the leading-edge, tip and root vortices. When the radius of gyration is 

minimized, coherent vortical structures form rapidly and persist at all travel distances. In 

contrast, when the radius of gyration is increased to moderate values, coherent vortical 

structures that form on the wing do not stabilize. Instead, they degrade as the wing 

rotates. These results indicate the important influence of rotation on stability of the flow 

structure, and therefore lift production, in biological flight. A stable, attached leading-

edge vortex, which other investigators have demonstrated is a key factor in lift production 

in biological flight, can be maintained on a purely rotating wing at sufficiently low radius 

of gyration, well after the onset of motion. 
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5.2 RECOMMENDATIONS 

 This study has identified rg as a parameter that is critical to bio-inspired flight. 

Moderate changes in the radius of gyration have been shown to significantly affect the 

formation of vortical structures on a rotating wing, and minimization of this parameter 

positively affects stability of the leading-edge vortex. The different vortical structures 

observed herein have been linked by other investigators to significantly changes in lift 

force. In particular, it has been demonstrated that a coherent leading-edge vortex is 

essential for bio-inspired flight, which requires production of lift at high angle of attack. 

Knowledge of the role of rg on leading-edge vortex formation and stability has several 

repercussions for future investigations in this field. First, the strong influence of this 

parameter on the flow structure invites further research. Secondly, the current results 

highlight the importance of rg as a design parameter for MAVs. 

Increase of the radius of gyration to a moderate value causes the flow structure on 

a rotating wing to resemble the flow structure on a translating wing. Other investigators 

have characterized the difference in lift forces on rotating and translating wings. Further 

research that compares the lift forces on the wing at, small, moderate, and infinite radius 

of gyration, while simultaneously determining the lift forces through direct measurement, 

will be useful in fully understanding the importance of the radius of gyration on the lift 

forces. 

The effect of radius of gyration in accord with other effects important to bio-

inspired flight will also be important in fully understanding the role of this parameter in 
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lift production on biological flyers. These flyers use a wide range of wing geometries to 

generate lift. Herein, only purely rotating, rectangular planform wings were considered. 

Characterization of the effects of these different wing geometries on the flow structure 

will therefore be worthwhile. Wing flexibility should also be investigated, as it could 

substantially alter the effective planform of the wing, and stabilize or destabilize the 

vortical structures that are important to lift production. 

It will also be necessary to characterize the flow field under varying conditions, 

such as inflow or different types of motion of the wing, in order to determine the 

robustness of the stable leading-edge vortex. In the quiescent fluid experiments employed 

for this investigation, small radius of gyration was sufficient to ensure coherence of the 

flow structure. Variations of the inflow, including gusts, and classes of wing motion, 

including heaving motion, should be investigated to assess the stability of the coherent 

vortical structures, especially the leading-edge vortex. Such results could determine the 

practicality of using constantly rotating wings for lift generation on MAVs. 

Practical, engineering-related issues should also be addressed. In spite of the 

additional research that will be necessary to completely characterize the stability of the 

leading-edge vortex, as well as the other components of the three-dimensional vortex 

system, the current knowledge of parameters related to bio-inspired flight offers a good 

foundation to guide the design of micro air vehicles (MAVs). Leading-edge vortex 

stability at low radius of gyration has proved to be a key component in biological flight. 

Radius of gyration should therefore be considered in the selection of wing aspect ratio, as 

well as in the design of drive systems. For instance, large, obstructive motor drive 
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systems may force the wing away from the rotation axis and increase radius of gyration. 

This situation should be avoided. Since, when the radius of gyration is sufficiently small, 

the leading-edge vortex is stable well after the onset of motion, MAV design should 

incorporate wings undergoing constant rotation, rather than complicated, reciprocatory 

wing motions employed on recent bio-mimetic aircraft. These reciprocatory designs are 

very difficult to optimize and manufacture, and they carry significantly larger power 

requirements to generate oscillatory motion. It will be more advantageous to design 

MAVs with sufficiently small radius of gyration that operate at constant rotational 

velocity, similar to a conventional propeller, so that the advantage  of  lift performance 

associated with a coherent leading-edge vortex can be exploited, while the design 

complexity is minimized. 

 It will also be necessary to investigate the flow structure and associated 

aerodynamic performance of MAV vehicles in situ. Research of this nature will allow 

determination of optimum wing geometry and configuration for a given MAV design, to 

ensure the stability of the leading-edge vortex. These designs may incorporate propeller-

like wings with multiple blades, as well as several lift sources at a number of locations 

along the MAV geometry. The interaction of flow structures from each of these sources 

will affect overall aircraft performance; the conditions for optimization of these 

configurations should be addressed. 
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APPENDIX A 

 

ADDITIONAL IMAGES OF THE FLOW STRUCTURE ON A WING AT 

DIFFERENT RADII OF GYRATION 

  

In chapters 3 and 4, the flow along a wing is characterized for wings having low 

aspect ratio (AR = 1), and moderate aspect ratio (AR = 2). In addition to the experimental 

results presented therein, several other volumetric reconstructions and representations of 

the flow structure were determined. This appendix supplements chapters 3 and 4 with 

several figures that were not included in those results. It is divided into sections that 

respectively compare flow patterns for different values of Reynolds number, rotation 

angle, Cartesian versus cylindrical coordinates, and aspect ratio. Herein the symbols Q, 

H, and ω respectively refer to the normalized values of Q-criterion qC
2
/Vrg

2
, helical 

density hC/Vrg
2
, and vorticity ωC/ Vrg. 
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A.1 Effect of Reynolds number on flow structure 

Figure A.1 shows sectional cuts of spanwise vorticity ωz at the midspan of the 

wing. These patterns are shown as a function of Reynolds number Rerg = VrgC/ν, in the 

range 1400 ≤ Rerg ≤ 5000. In this range, there are minor changes to the vorticity patterns. 

Specifically, the reoriented tip vortex appears to be slightly affected by this parameter, 

i.e., there are minor variations in the vorticity contours representing the reoriented tip 

vortex in this range of Reynolds number. 

 

A.2 Flow structure at same value of rotation angle Φ  

Figures A.2 through A.5 show iso-surfaces and expanded sectional slices of the 

flow structure on an AR = 1 wing similar to the representations employed in figures 3.3 

through 3.11. In these figures, however, rotation angle Φ is held constant at 270°, instead 

of comparisons at the same value of travel distance rgΦ/C based on the radius of gyration 

rg, which are employed in chapter 3. When the rotation angle is instead employed to 

characterize the development of the flow structure, the difference in flow structure at rg/C 

= 1.2 and 5.1 is more extreme. For instance, in figure A.2, the vortical structures are 

much less organized at larger Rossby number.  No coherent root or tip vortices are 

apparent, and the leading-edge vortex has extremely low levels of Q. In addition, in 

figure A.5 the region of elevated downwash vanishes at rg/C = 5.1. 
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 Figure A.6 shows sectional cuts of spanwise vorticity ωz at the midspan of the 

wing. These patterns are shown as a function of two parameters: (i) the Rossby number 

rg/C; and (ii) the angle of rotation Φ. Taking an overview of figure A.9, Φ = 90° is 

generally a sufficient large rotation angle for stabilization of the flow structure, i.e., the 

flow structure at Φ = 90° closely resembles the structure later at Φ = 270°. Generally, 

when the rotation angle is used to characterize flow structure, the effects of radius of 

gyration on the flow structure development around an AR = 1 wing are more pronounced 

than when the travel distance rgΦ/C is used, as in chapter 3. 

 The flow structure development on an AR = 2 wing as a function of rotation angle 

Φ is shown in figures A.7 through A.10, using the views employed in chapter 4. Nested 

iso-surfaces of the Q-criterion are superposed with opaque iso-surfaces of downward 

velocity (downwash). Initially, at Φ = 15° (figure A.7), much larger vortical structures 

form at moderate radius of gyration. This is a result of the much larger volume through 

which the wing has translated at moderate radius of gyration. As the rotation angle 

increases (figures A.8 and A.9), the flow structures at low radius of gyration become 

larger, and remain organized, while the flow structures at moderate radius of gyration 

break down, and become less coherent. At Φ = 270° (figure A.10), the flow structure at 

moderate radius of gyration is very low level, and is not associated with significant 

downwash, while at low radius of gyration the flow structure is still organized, it contains 

elevated levels of iso-Q, and the organized flow structure is associated with a significant 

region of elevated downwash. 
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A.3 Streamlines 

 Figures A.11 through A.14 show the effects of radius of gyration rg/C, and travel 

distance rgΦ/C on streamlines that originate on the leeward surface of a rotating AR = 2 

wing. These lines are placed on a rectangular grid, with 0.1C spacing between adjacent 

streamlines, yielding a total of 231 lines. Plan, end, and trimetric views are shown. 

Initially, at rgΦ/C = 1.0 (figure A.11), the streamlines closely follow the travel path of 

the wing. This is especially apparent in the end view (top row), where the streamlines are 

nearly uniformly distributed along the span, and there is minor swirling very near the 

surface of the wing. 

 As the wing continues to rotate at rgΦ/C = 2.0 (figure A.12), the streamlines 

highlight different flow features. At low radius of gyration, a significant number of the 

streamlines outboard of the midspan roll up into the tip vortex. It is also evident that 

streamlines near the leading-edge are entrained into this tip vortex, after traveling through 

the leading-edge vortex. At moderate radius of gyration, streamlines are instead entrained 

into the arch vortex. The density of streamlines in this arch vortex is higher than in any 

other region of the flow. 

 At larger travel distances rgΦ/C = 3.0 (figure A.13), and rgΦ/C = 5.5 (figure 

A.14), the streamline pattern at low radius of gyration is similar to the pattern seen at 

rgΦ/C = 2.0 (figure A.12). In contrast, the streamlines at moderate radius of gyration, and 

a travel distance rgΦ/C = 3.0, show the breakdown of the arch vortex. The streamlines in 
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this vortex are less concentrated than in the previous figure, and the vortex has shifted 

toward the tip of the wing. At rgΦ/C = 5.5, the arch vortex is no longer evident; it has 

been replaced by a large region of swirling streamlines. In contrast, at low radius of 

gyration, the leading-edge/tip vortex system remains. 

 

A.4 Comparison of vorticity components in Cartesian and cylindrical coordinates 

Figures A.16 through A.20 compare the components of vorticity on rotating AR = 

1 and AR = 2 wings when represented in Cartesian (xyz), and cylindrical (rθz) 

coordinates. A plan-view schematic of these coordinate systems in relation to the rotating 

wing is shown in figure A.15. For all figures, each component of vorticity is represented 

with ωi = ||4|| iso-surfaces, where ωi is the indicated component of vorticity: x, z, r, θ. 

Orange iso-surfaces are associated with positive vorticity ωi = +4, and blue iso-surfaces 

are associated with negative vorticity ωi = -4. 

Figure A.16 shows plan views of an AR = 1 wing at the extreme radii of gyration 

investigated herein, and at a travel distance of rgΦ/C = 5.5. It is clear from this figure that 

the cylindrical coordinate system separates vorticity representing the leading-edge and 

trailing-edge vortices into radial vorticity ωr, and vorticity representing root and tip 

vortices into azimuthal vorticity ωθ. In contrast, when the vorticity is represented in 
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Cartesian coordinates, the tip vortex at low radius of gyration is a mixture of spanwise 

vorticity ωz (blue), and tangential vorticity ωx (orange). 

Figures A.17 through A.20 show plan views of an AR = 2 wing at two radii of 

gyration for several travel distances. This sequence therefore shows the development of 

vorticity in Cartesian and cylindrical coordinates. The same layout and iso-surfaces 

employed in figure A.16 are again used in figures A.17 through A.20. The effect of 

cylindrical coordinates is to isolate the root and tip vortices as azimuthal vorticity ωθ. 

Another feature highlighted with these vorticity representations is the legs of the arch 

vortex at moderate radius of gyration. When the vorticity components are separated, these 

legs are represented with iso-surfaces of both azimuthal vorticity ωθ, and tangential 

vorticity ωx, near the surface of the wing and below the arch vortex, which is represented 

with radial vorticity ωr, and spanwise vorticity ωz at travel distance rgΦ/C = 2.0 (figure 

A.17). 

 

A.5 Flow structure for different aspect ratio AR wings 

Figures A.21 through A.25 show comparisons of the flow structure at different 

radii of gyration for wings of aspect ratio AR = 1, 2, and 5. The travel distance for these 

images is rgΦ/C = 5.5. In figures A.21 through A.23, nested, transparent iso-surfaces of 

Q-criterion are shown. In these figures, it is clear that the most coherent vortical 
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structures occur on the AR = 1 wing. The Q = 7 and Q = 15 iso-surfaces are largest on 

that wing. However, the leading-edge vortical structures on the AR = 2 wing are also 

highly organized at low radius of gyration. In contrast to the images of AR = 1 and 2 

wings, the overall flow structures on the AR = 5 wing are significantly different. Low 

level Q-criterion persists near the leading-edge across the span of that wing. In addition, a 

highly coherent vortex, with a cylindrical shape, branches off of the leading-edge 

vorticity near the root-leading-edge corner of the wing, and this vortex extends 

diagonally towards the trailing-edge and across the wing planform. It eventually reaches 

the trailing-edge of the wing (see figure A.21). When the vortex crosses the trailing-edge, 

it rapidly breaks down. Outboard of this vortex breakdown, there are significantly more 

low level Q-criterion iso-surfaces near the trailing-edge of the wing than there are 

inboard of the vortex breakdown. 

Figure A.24 shows iso-surfaces of Q-criterion (Q = 4.5) colored with helical 

density H in a lab-fixed reference frame. When the aspect ratio or the radius of gyration 

is minimized, large magnitude (blue) helical density is evident throughout the tip vortex, 

and vortical structures are generally more organized. When these parameters are not 

minimized, less coherent vortical structures exist, with lower magnitude helical density 

on their surfaces. 

Figure A.25 shows nested, transparent iso-surfaces of Q-criterion superposed with 

opaque iso-surfaces of downward velocity v/Vrg (downwash). The downwash iso-surface 

on the AR = 5 wing is significantly different from the downwash iso-surfaces on wings of 

lower aspect ratio. For this wing, a large downwash iso-surface exists, despite the lack of 
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an organized root or tip vortex, which was a feature associated with significant 

downwash velocity on the lower aspect ratio wings. The relative size of the downwash, 

compared to the total planform area of the wing, is, however, significantly less for the AR 

= 5 wing than the AR = 1 and AR = 2 wing at low radius of gyration, i.e., the lower aspect 

ratio wings generate significantly more downwash per unit of planform area. 
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Figure A.1. Sectional cuts of spanwise vorticity at midspan for different values of 

Reynolds number Rerg based on velocity at the radius of gyration. 
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Figure A.2.  Plan view of Transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C at Φ = 270°. 
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Figure A.3.  End view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and Φ = 270°. 
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Figure A.4.  Trimetric view of transparent iso-surfaces of Q-criterion at different values 

of Rossby number rg/C and Φ = 270°. 
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Figure A.5.  Trimetric view of transparent iso-surfaces of Q-criterion and opaque iso-

surfaces of downwash (downward velocity) v/Vrg at different values of Rossby number 

rg/C and Φ = 270°.  
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Figure A.6. Sectional cuts at midspan of spanwise vorticity at different values of Rossby 

number rg/C as indicated, and rotation angle Φ. 
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Figure A.7. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 15°. 
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Figure A.8. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 30°. 
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Figure A.9. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 45°. 
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Figure A.10. Transparent iso-surfaces of Q-criterion and opaque iso-surfaces of 

downwash at different values of Rossby number rg/C. Rotation angle Φ = 270°. 
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Figure A.11. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

1.0. 
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Figure A.12. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

2.0. 

 

 

 



194 
 

 
 

Figure A.13. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

3.0. 
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Figure A.14. Streamlines originating from a 0.1C rectangular grid on the leeward surface 

of a rotating wing for different values of Rossby number rg/C. Rotation distance rgΦ/C = 

5.5. 
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Figure A.15. Schematic of Cartesian and cylindrical coordinate systems used to represent 

components of vorticity in figures A.16 through A.20. 
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Figure A.16. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 1. Rotation distance rgΦ/C = 5.5. 
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Figure A.17. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 1.0. 
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Figure A.18. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 2.0. 
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Figure A.19. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 3.0. 
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Figure A.20. Plan view of iso-surfaces of components of vorticity in rectangular and 

cylindrical coordinates at different values of Rossby number rg/C. All iso-surfaces have a 

magnitude of ||ωi|| = 4. Orange iso-surfaces indicate positive vorticity and blue iso-

surfaces indicate negative vorticity. AR = 2. Rotation distance rgΦ/C = 5.5. 
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Figure A.21. Plan view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed 

reference frame. 
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Figure A.22. End view of transparent iso-surfaces of Q-criterion at different values of 

Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed 

reference frame. 
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Figure A.23. Trimetric view of transparent iso-surfaces of Q-criterion at different values 

of Rossby number rg/C and aspect ratio AR = b/C. Rotation distance rgΦ/C = 5.5. Lab-

fixed reference frame. 
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Figure A.24. Trimetric view of iso-surfaces of Q-criterion Q = 4.5 colored with helical 

density H at different values of Rossby number rg/C and aspect ratio AR = b/C. Rotation 

distance rgΦ/C = 5.5. Lab-fixed reference frame. 
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Figure A.25. Trimetric view of transparent iso-surfaces of Q-criterion and opaque iso-

surfaces of downwash at different values of Rossby number rg/C and aspect ratio AR = 

b/C. Rotation distance rgΦ/C = 5.5. Lab-fixed reference frame. 
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