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ABSTRACT 

 

The melt modulation concept was originally introduced to control the melt flow 

during the filling phase of cold runner injection molding machines. Since its inception, 

several melt modulation systems have been developed. Although previously designed 

systems successful balanced multi-cavity and family molding parts and controlled weld-

line position, they were not commercially viable.  

The main objective of this dissertation was to employ scientific and business 

based approaches to develop and enhance a melt modulation technology for cold-runner 

based injection molding. This research intends to bridge the gap between an important 

scientific discovery and its industrial applications. This was achieved with the goal of 

advancing science and technology to enhance polymer product manufacturing. As a 

result, a modular melt modulation system was developed to deliver intelligent 

manufacturing and precision control to cold runner injection molding machines. This 

modular system has the ability to adaptively manipulate injection molding part qualities 

and  control the melt flow and packing processing parameters during each injection cycle. 

This precision control is cost effective and results in enhanced production rate, less 

waste, less processing and set-up time, and better product quality. Also, it has been tested 

to show that controlling packing parameters contributes to enhancing the final product 

quality.  

This research also focused on manipulating and controlling packing parameters 

using melt modulation in order to produce molded parts with different optical and 
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physical properties in each injection molding cycle. Numerical simulations and 

experimental results of common thermoplastic transparent polymers, such as Plexiglas
®
 

V920 (PMMA), LEXAN™ 101-111 (PC), and STYRON
®
 685D (GPPS) are 

demonstrated herein.   

The work outlined in this dissertation highlights my contributions to the 

advancement of the science and technology related to multi-cavity injection molding 

processes as well as the injection molding industry. These contributions included the 

design and development of a modular melt modulation system to precisely control mold 

filling and packing pressure and time at the individual cavity level in real-time; and the 

validation of the impact of packing processing parameters on the quality of injection 

molding transparent products through numerical simulations and experiments.  
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CHAPTER 1  – INTRODUCTION AND PROBLEM DESCRIPTION 

 

One of the most utilized manufacturing processes, and sometimes the only 

practical way to shape complex thermoplastics parts, is injection molding. Almost all 

thermoplastics and thermoset resins can be injection molded [1]. Injection molding can 

also be used to produce products from other materials such as metals, glasses, and 

elastomers, where the material is fed into a heated barrel, mixed, and forced into a mold 

cavity where it cools and hardens to the formation of the cavity [2]. 

Standard injection molding machines used today have two main melt delivery 

systems: hot and cold runner systems. Although hot runner molding has been gaining 

popularity in recent years, it has only captured an estimated 30% market share [3]. Cold 

runner systems still dominate having the majority market share in the industry. The 

injection molding industry has been growing at an estimated rate of 2.8% year over year 

[4]. In 2010, it was estimated to have a market value of $168 billion [5]. However, like 

any manufacturing process, injection molding has its own set of capabilities and 

limitations. The most common cold runner injection molding limitations include the 

following: 

A. Multi-cavity imbalanced filling 

B. Difficulties associated with making high quality family molding parts 

C. Limited control of weld-line position  

D. Inability to control packing parameters during injection molding cycle 

Each limitation is discussed in details in the next section. 
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1.1 Multi-Cavity Imbalanced Filling 

One of the limitations of cold runners is the inability to precisely control melt 

flow during filling process. Even when using geometrically balanced cold runners, the 

phenomenon of imbalanced filling in the cavities is often observed. This is mainly due to 

the melt shear imbalance, which results in poor mold quality among the produced parts 

and often requires additional retooling process. Figure 1-1 shows an example of running a 

short shot with imbalanced filling in a typical multiple-cavity mold, where the runner was 

designed in a standard symmetrical and naturally balanced pattern. Manufacturers have 

long accepted imbalanced cavity filling as a limitation of cold runner injection molding.   

 

 

 Figure 1-1: Imbalanced Filling in Symmetrical Multi Cavity Mold [3] 
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1.2 Family Molding 

Another common limitation of cold runners is the difficulty in producing family 

molding parts, which is a process of manufacturing parts of different sizes and shapes 

within the same mold. Due to the complexity of properly distributing flow and packing 

pressure between the cavities when using cold runners, family molding is not widely used 

in the cold runner injection molding industry. A practical example of such failure is 

shown in Figure 1-2, and the complete part can be seen in Figure 1-3. This short shot 

occurred during a cold runner filling process for electrical connecter parts produced by 

family molding. The smaller connectors on the left hand side were completely filled at 

the same time, the bigger connectors on the right hand side were only partially filled. 

Incomplete filling is more common when using cold runners, which have little or no 

control over the distribution of both melt flow and packing pressure. 

 

Figure 1-2: Incomplete Filling - Family Molding 

 

Figure 1-3: Complete Filling - Family Molding 
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1.3 Weld-Line Positioning 

The ability to control the weld-line position is another common limitation of cold 

runner injection molding. A weld-line is formed when two or more melt flow fronts meet 

in a cavity during a filling process. Typically, the material molded in this region has poor 

bonding properties (inhomogeneous bond), which makes it vulnerable at high stresses. If 

the dog-bone specimen in Figure 1-4 is subject to high stress, the part will most likely to 

break at the weld-line position since this represents the weakest bond.   

 

Figure 1-4: Weld-Line Position 

 

1.4 Packing Processing Parameters 

The lack of direct control of the packing processing parameters (packing pressure 

and packing time) and the melt temperature during a cold-runner injection molding cycle 

is very common. Not being able to control either parameters means that the final part 

quality is dictated by the preselected control settings prior to each cycle.  

Pressure and temperature profiles during an injection molding cycle are very 

useful and can reveal valuable information about the final part quality. As the injection 

molding cycle begins, the cavity pressure increases sharply to a peak; this usually 
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indicates that the part is filled. At the end of the filling stage, the part is packed at a 

specific preselected pressure profile. The shape of the pressure curve is also indicative of 

the material being processed [28]. Figure 1-5 illustrates typical cavity pressure and 

temperature history of an injected molded part. 

 

Figure 1-5: Typical Cavity Pressure and Temperature History in an Injection Molded Part [28] 

When the cavities are filled at the end of the filling cycle, the packing phase 

begins. In this phase, melt shear thinning behavior has little or no significant effect and 

the viscosity of the polymer depends only on the temperature of the melt. When the 

polymer begins to cool and solidify, it can lose significant volume due to shrinkage 

attributed to phase transformation from liquid to solid; and, the distance between 

molecules is effectively decreased. In some cases, the volumetric shrinkage at zero 

pressure can be as much as 20% or even higher, which often causes poor part quality [3]. 

To reduce the high volumetric shrinkage rate and ensure flow is compensated through the 

cavities, the pressure during the packing phase must be maintained to compensate for the 

lost volume from shrinkage until the gate freezes [30]. As a result, increasing the cavity 
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packing processing parameters (packing pressure and packing time) increase the flow 

creep to compensate for the lost volume, which also increase molecular orientation, 

particularly near the gate. Moreover, higher packing processing parameters decreases 

melt relaxation, allowing increased retention of flow-induced residual stress [31]. 

Consequently, packing processing parameters have significant impact on polymer 

molecular orientation as well as mechanical and optical properties of clear polymers 

during molding.  

The best and most cost effective solution to overcome these limitations is through 

the implementation of melt modulation technology. The melt modulation technique is 

simple and powerful. It offers better manufacturing control for cold runner applications. 

It also provides the ability to precisely control melt flow in cold runner mold, fill 

different size cavities proportional to their cavity size, control weld-line position and 

packing parameters in a single cycle. Because of its ability to precisely control filling and 

packing pressure parameters, melt modulation has been shown to enhance physical 

properties of injection molded parts and improve optical characteristics of clear polymers. 

Although the melt modulation technology was patented in 1999, it has not been adopted 

in industry. This is mainly due to the fact that the original system, although technically 

successful, was not commercially viable. 
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1.5  Melt Modulation Technique 

The melt modulation concept was developed by Dr. John Coulter [27] as a new 

manufacturing control tool for cold runner applications. It incorporates single or multi-

controllable mechanical rotary valves that are embedded into the melt delivery system to 

control melt flow to the mold cavities. The control valve pins are installed into the 

moveable side of the mold and end at the parting line. The controllable rotation of each 

valve pin produces the desired flow modulation and packing pressure effects by rotating 

the valves to a specific angle, θ, relative to the runner. Figure 1-6 illustrates a diagram of 

a resultant valve in both fully opened and partially closed positions.  

 

Figure 1-6: Rotary Control Valve Configurations: (a) Fully open  (b) Partially closed [29] 

A 3-D cross-section view of the original melt modulation control valve in the 

runner is represented in Figure 1-7.  

 

Figure 1-7: 3-D Cross-section View of the Melt Modulation Control Valve in the Runner [29]: 

(a) Pre-filling, (b) During filling, (c) Part removal   
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For multi-cavity or family mold cavity filling, the control valves are actuated to 

adjust for the required amount of flow to fill each cavity. In the case of family molding, 

the flow to the smaller cavities is more regulated so that both the larger and smaller 

cavities complete filling at the same time. The diagram in Figure 1-8 shows one control 

valve is partially closed restricting the melt flow to the cavity, while the other valve is 

fully open. 

 

Figure 1-8: Diagram of Melt Modulation Technique [29] 
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1.6  Research Motivation and Program Objectives 

1.6.1  Research Motivation: 

 

The trend throughout the plastics industry is to produce smaller, lighter and more 

functional systems. This trend, especially in the electronic and computer markets, 

requires that companies produce a variety of products with smaller and more complex 

parts and tighter tolerances. It is also expected that production lot sizes in the hundreds 

rather than thousands or millions will become a commonplace. In addition, reductions in 

defect rate as low to as 50 ppm will need to be achieved. To meet the demands of global 

competition, injection molders will need to be in a position to achieve the following [27]: 

o Rapidly produce increasingly complex parts 

o Have the ability to make smaller batch sizes profitably 

o Provide a wide range of products 

o Produce improved quality 

o Offer lower cost 

In order for this trend to be realized, systems with more precise melt flow and 

packing pressure control would be required. In response to these changes in market place 

requirements, the melt modulation technique was introduced in 1999. 
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1.6.2  Program Objectives: 

 

The key goals of this research are as follows: 

1. To design and develop an enhanced multi-modular melt modulation 

prototype with a focus on improved control and commercial viability. 

2. To experimentally and analytically validate the enhanced system for novel 

differential control of filling and packing during injection molding. 

3. To scientifically analyze and validate the benefits of a multi-modular 

system. 

4. To complete a thorough engineering analysis exploring the practical 

business aspects of the new multi-modular system. 

1. To design and develop an enhanced multi-modular melt modulation 

prototype with a focus on improved control and commercial viability. 

Prior to developing the modular melt modulation system, previously designed 

systems had been thoroughly analyzed and studied. Based on the review of previous 

systems, technical specifications and objectives were established. The modular melt 

system prototype was designed and developed to be equivalent to a Technology 

Readiness Level 6 (TRL6), as defined in Figure 1-9. Since the application of the modular 

melt modulation is industrial, the prototype was only approved in an industrial 

environment.  
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Figure 1-9: Definition of Technology Readiness Level for the Aerospace Industry [62] 

To minimize market entry barriers, the design of the modular prototype system 

was simplified to reduce cost, while still utilizing high quality components. The finished 

prototype can be marketed to retrofit existing cold runner injection molding machines and 

to companies that are currently producing new injection molding equipment. The primary 

target market focuses on cold runner injection molders that require precession and family 

molding for small parts that are used in the electronics,  nanotechnology, dentistry, 

optics, medical devices, energy products, and aerospace industries. The markets that 

would benefit most from this technology are those producing low volume (less than 

100,000 parts annually) and short runs on cold runner injection molding machines. 
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2. To experimentally and analytically validate the enhanced system for novel 

differential control of filling and packing during injection molding. 

The modular melt modulation system was validated experimentally and through 

numerical simulations as well.  

i. Analytical Validation:  

Numerical simulations of three common optical polymers have been performed to 

investigate the effect of cold runner injection molding packing processing parameters on 

final product quality. The materials selected for the analysis were Polymethyl 

Methacrylate (PMMA), Polycarbonate (PC), and General Purpose Polystyrene (GPPS). 

PMMA has a trade name of Plexiglas
®
 V-920 and is manufactured by Arkema, Inc. 

Polycarbonate (PC), known as LEXAN™ 101-111, is manufactured by SABIC. General 

Purpose Polystyrene (GPPS) is made by Americas Styrenics and also called STYRON
®

 

685D. Results showed that there is a direct link between packing time and packing 

pressure and the molecular orientation of a clear polymer. Turning any one of the valves 

during an injection molding cycle typically results in pressure drop across all valves. This 

pressure change impacts the final optical properties and physical characteristics of the 

molded parts. 

Control valve linear distance from the sprue is another variable that was 

investigated. Additional analysis was conducted to investigate the optimal location for the 

control valve. Numerical simulations showed that pressure drop slower near the gate and 

the sprue and it drops faster between gate and the sprue (see Figure 1-10).  
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Figure 1-10: Different Valve Locations Relative to the Mold Cavity 

 

ii. Experimental Validation:  

The same three common clear polymers were chosen for the experimental 

validation. ASTM D638, type I and type IV, dog-bone shape parts were used to 

investigate the effect of the packing processing parameters on molecular 

orientation during injection molding cycles. Testing results showed that changing 

the packing pressure and packing time had a direct impact on the final product 

optical quality in terms of both precision of geometric dimensions and optical 

birefringence. Increasing packing processing parameters tends to reduce volume 

loss (shrinkage) and deflection. However, it increases the product final weight. In 

addition, increasing packing pressure and packing time causes higher molecular 

orientation, which is evidenced through higher birefringence and optical 

retardation. Products with higher molecular orientation in the flow direction 

exhibit higher tensile strengths. However, high birefringence causes poor optical 

characteristics such as haze or focal blur.  
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3. To scientifically analyze and validate the benefits of a modular system 

The benefits of the modular melt modulation system were validated through 

numerical simulations and experimental testing. Numerical simulations and experimental 

results of an ASTM D638, type I, dog-bone shaped parts showed that optical properties 

and physical characteristics of polymers in cold runner injection molding are sensitive to 

changes of packing processing parameters. Additional simulations and testing were 

performed on ASTM D638, type IV, using the modular melt modulation system. The 

results showed that turning the control valves of the modular system modulated the melt 

flow through the runner and balanced filling of all cavities in a multi-cavity mold. It also 

showed that turning the valve during an injection molding cycle changed the pressure 

drop across the valves, which had direct impact on the molecular orientation of the final 

product. As a result, the final product quality can be manipulated directly by the modular 

melt modulation system.   

4. To complete a thorough engineering analysis exploring the practical business 

aspects of the new multi-modular system 

The modular melt modulation system was developed to solve common problems 

that occur in cold runner injection molding. The modular system was designed to meet 

the technical specifications, but also be commercially viable. Market research and 

financial analysis were performed to ensure there is a potential opportunity for the 

modular melt modulation system. Several case studies were analyzed comparing cost of 

ownership to the benefits received including the cost savings resulting from incorporating 

the modular melt modulation system.  
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1.7  Dissertation Structure  

 

 This dissertation presents the design, development and validation (analytical and 

experimental) stages of the new modular melt modulation system. This document 

consists of nine chapters, including the introduction, and is structured as follows:  

CHAPTER 2 details relevant technological background, including information on 

cold and hot runner based injection molding; potential opportunity for the melt 

modulation technique in the injection molding industry; and the history, capabilities and 

limitations of the melt modulation technique.  

CHAPTER 3 describes related scientific and technical fundamentals of melt 

rheology, control valves and their significance; and the analytical control technique I 

utilized.   

 CHAPTER 4 presents my design and development of the new modular melt 

modulation system as a workable prototype for market evaluation. 

 CHAPTER 5 and CHAPTER 6 illustrate numerical simulation results, using 

Moldflow software, of varying cold runner injection molding packing processing 

parameters with and without melt modulation system and their impact on part quality of 

clear polymers. 

 CHAPTER 7 contains experimental results of the impact of packing processing 

parameters and different melt modulation control methods on the final quality of clear 

polymers.  

 CHAPTER 8 discusses financial case studies and market research for the modular 

melt modulation system, with a focus on feasibility of commercialization.  
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 Finally, in CHAPTER 9, conclusions are presented regarding all the work 

completed toward this dissertation and the impact of this research with some 

recommendations for future work and suggestions related to the melt modulation 

technique. 
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CHAPTER 2 – RELEVANT TECHNOLOGICAL BACKGROUND 

 

2.1  Injection Molding 

Injection molding is the most utilized manufacturing process for thermoplastic 

and thermosetting materials. Sometimes, injection molding is the only practical process 

to shape complex thermoplastic parts. However, it can also be used to produce products 

from other materials such as metals, glasses, and elastomers, where the material is fed 

into a heated barrel, mixed, and forced into a mold cavity where it cools and hardens to 

the formation of the cavity. A standard injection molding machine, illustrated in Figure 

2-1, consists of the following three main functional units: 

1. Injection Unit 

2. Mold Assembly 

3. Clamping Unit 

 

Figure 2-1: Injection Molding Machine [64] 
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The injection process liquefies the plastics before injecting or advancing the resin 

into the mold cavities. The clamping unit holds the mold together while the resin is being 

fed into the mold cavities and the resin is cooled [1].  

The ideal injection molding system delivers high quality molded parts of uniform 

density, which are free from all physical and cosmetic defects at the best possible cost. 

However, every technology has its own capabilities and limitations. Common molding 

defects in injection molding include the following: 

1. “Short shot” – caused by incomplete filling 

2. “Sink marks” – caused by low packing pressure 

3. “Jetting” – caused by high speed injection 

4. “Warpage” – caused by uneven cooling 

5. “Burn marks” – caused by poor removal of air  

Within the mold assembly, the melt delivery system is the second major unit of an 

injection molding machine, and plays a major role in the final product quality. Its primary 

functions are as follows: 

1. Contain the polymer melt within the mold cavities until the cavities are 

completely filled, packed and cooled. 

2. Efficiently transfer heat from the hot polymer melt to the cooler mold 

steel, to ensure uniform product. 

3. Eject the molded part. 
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The main components of the mold assembly are the mold core and the mold 

cavity, which are typically made of steel or aluminum and highly customizable tooling. 

There are different types of mold configurations (i.e. two-plate, three-plate, etc.) and each 

design is utilized for a different purpose depending on machine type, part configuration, 

mold capabilities and limitations. Given its simplicity, the two-plate mold is more 

popular. As shown in Figure 2-2, the two-plate mold consists of two main sections, the 

stationary and moveable plates. The stationary half includes the top clamping plate and 

the “A” plate. The moveable half consists of the “B” plate, support plate, ejector plate, 

the ejector housing, and the supporting hardware. During the injection cycle, the part 

cavity (the space between the mold core and the mold cavity) is filled with molten 

plastics to form the desired part.    

 

Figure 2-2: Two Plate Mold Base Configuration (Source: DME electronic catalog) 

The three-plate mold assembly, shown in Figure 2-3, is very similar to the two-

plate mold, but not as common. A three-plate mold has multiple runners so it can provide 

more gating location flexibility than the two-plate mold. Also, the separation of the feed 

system from the mold cavities are often automated, which saves time and cost. However, 
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three-plate molds are more complex and have more potential issues than a two-plate 

mold, including the following: [7]: 

1. Cold runner is molded and ejected at the end of each cycle. Large runners 

(compared to molded parts) lead to increased material consumption and cycle 

time, thus increasing the molded part cost.  

2. The mold requires additional plates and components, which increases cost and 

complexity.   

3. The mold requires a large mold opening stroke to eject runner. 

 

Figure 2-3: Three-Plate Mold Assembly [8]-[9] 

Applications for cold runner and hot runner systems sometimes overlap. Choosing 

the appropriate system delivers high quality product at the best economic value. Selecting 

one system over the other for specific applications is usually based on some of the 

following factors [10]: 

 Cost of investment and the return on capital 

 The complexity of the part needed to be injection molded  
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 Color requirements - the range and frequent changes of color during each 

production run  

 Final physical and optical characteristics of the finished product  

 Type of resin material to use - virgin or "regrind"  

 Single or multiple design production  

 Volume of parts to be produced  

 Production speed required 

The electrical/electronics industry has benefited from hot runner systems to 

produce small components (connectors and bobbins that are molded in multi-cavity 

molds) in a high volume production. Also, companies manufacturing large multi-gated 

parts for the automotive industry (bumpers and dashboards) have benefited from the cost 

and technical advantages of hot runners. In other cases such as low volume production, 

cold runners might be the best tooling. The capabilities and limitations of hot runner and 

cold runner systems are briefly identified below.  

2.2  Hot Runner vs. Cold Runner Melt Delivery Systems 

This section provides a comparison between two common melt delivery systems 

(cold and hot runners systems).  

2.2.1  Hot Runner System 

The hot runner system (also referred to as a hot-manifold or runnerless system) 

was first developed in the early 1940’s. However, because of reliability setbacks and high 

initial investment cost, the process did not gain popularity until the early 1990’s, when 
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technological advances and lower energy and higher raw material costs made it 

economically feasible. A patent that dates back to 1940 for a hot runner system was 

issued to E. R. Knowles [11].  

Figure 2-4 shows a schematic drawing of an early design for a hot runner mold by 

Robinson Plastics Corporation. 

 

Figure 2-4: Schematic Drawing of an Early Design Hot Runner Mold  (Robinson Plastics Corp.) [11] 

Hot runner systems provide consistency in material flow and fill from part to part. 

They consist of two plate molds with a heated melt delivery system inside one half of the 



 25 

mold. The runners in the injection molds are kept hot and insulated from the chilled 

cavities. The main components of a hot runner system are the manifold and the drops 

[12]. 

There are several different types and combinations of hot runner systems which 

are now available 'off-the-shelf'. The most common are the standard hot runners and the 

insulated runners. Standard hot runners are divided into externally heated and internally 

heated runners. The former has been in use much longer than the latter [13]-[14]. Unlike 

cold runner systems, hot runners keep the polymer in a molten state and are not ejected 

with the molded part. The polymer is kept in a liquid state at approximately the same 

temperature and viscosity of the material in the barrel of the injection molding machine. 

In insulated runners, the polymer in the middle of the runner is fluid, but the outer part is 

solidifies. Figure 2-5 below shows the hot runner system types. 

 

Figure 2-5: Hot Runner Types - (a) Externally Heated, (b) Internally Heated, and (c) Insulated [14] 
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i.  Externally Heated Manifold/Nozzle Systems: 

An externally heated runner system consists of a cartridge-heated manifold with 

interior flow channels. The manifold is typically designed with various thermal insulating 

features to separate it from the rest of the mold, thus reducing heat transfer (loss) [14]. 

Because there is no heater obstructing flow and the polymer is kept fluid, externally 

heated hot runner channels have the lowest pressure drop of any runner system. This 

makes them a better candidate for color changes, when compared with other types of hot-

runners, since none of the polymer in the runner system freezes. However, externally 

heated nozzles have more limitations than those of internally heated systems. An 

externally heated nozzle has heating elements (thermocouple, heating coil, sleeve, etc.) 

located on the outside of the nozzle’s body. This causes expansion when the coil is heated 

pulling away from the nozzle’s body, creating a gap, and the coil no longer touches the 

nozzle body uniformly. This creates the need for a higher temperature to properly heat 

the polymer, which will increase the risk of uneven heating, overheating and burning out 

the coil. Yet, this system is better for processing thermally sensitive materials since there 

are no places for material to get trapped and degrade [12]. 

ii Internally Heated Manifold/Nozzle System: 

Compared with externally heated runners, internally heated manifold is a 

relatively newer system. The main goal of its development was to reduce maintenance 

cost, where the internally heated nozzle is 100% sealed, reducing the need for spare parts 

replacement. Internally heated runners supply the heat through a system of heat tubes or 

probes located within the flow channels. The nozzle heating elements (the thermocouple, 
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heating coil, sleeve, etc.) are located much closer to the gate, delivering heat at a very 

precise temperature. As a result, a better heat profile and more controlled melt 

temperature lead to better molded part quality [12]. 

The drops offer optimal gate tip control. They separate runner heat from the mold, 

which reduces heat transfer (loss) to the rest of the mold. This is because an insulating 

frozen layer is formed against the steel wall on the inside of the flow channels [12]-[14].  

However, internally heated runners require higher molding pressures than external 

heating and color changes are very difficult. Furthermore, they are not recommended for 

thermally sensitive materials since such runner configurations are prone to material 

degradation. 

iii Insulated Runner System  

Insulated runner mold is a special type of hot runner system that is not heated, 

where the manifold is run at ambient temperature. The runners have oversized and 

extremely thick flow channels formed in the mold plate and stay molten during constant 

cycling. These flow channels are large enough to ensure a material flow due to the 

insulating effect of the outer skins (frozen on the runner wall) of solid and semi-

plasticized material. In this system the nozzles are generally internally heated. Compared 

to hot runners, this system is very inexpensive and ideal for low tolerance parts such as 

plastic cups and Frisbees. Nevertheless, these runner systems have major limitations. 

They offer little or no control, and only commodity plastics like PP and PE can be used. 

Also, if the runner system freezes due to stopping the mold cycling, the mold has to be 

split in order to remove it [12]-[14]. For those reasons, hot runners (internally and 
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externally heated) are more commonly used than insulated runners. Table 2-1 details 

some of the advantages and disadvantages of the three hot runner systems.  

Table 2-1: Advantages/Disadvantages of Hot Runner Systems [14] 

Runner Type Advantages Disadvantages 

Externally 

Heated 

 Improved 

distribution of heat 

 Better temperature 

control 

 Higher cost  

 Complicated design 

 Thermal expansion of various mold 

components 

Internally 

Heated 

 Improved 

distribution of heat 

 Better distribution of 

heat 

 Reduced 

maintenance cost 

 Improved part 

quality 

 Higher cost  

 Complicated design 

 Thermal expansion of various mold 

components 

 Requires careful balancing and 

sophisticated heat control 

Insulated 

 

 Less complicated 

design 

 Less costly to build 

 Undesired freeze-up at the gate 

 Requires fast cycle to maintain melt 

state 

 Long start-up periods to stabilize melt 

temperature 

 Problems in uniform mold filling 

 

Depending of the requirements of the final product, a hot runner system may or 

may not be the best option. For a blemish-free surface, hot runners may be the only 

choice. For other parts configurations that require less startup difficulty, more simplicity 

in the mold control system and less mold construction cost may rule out hot runner 

systems [15]. However, when selecting a hot runner system, the factors in Table 2-2 

should be considered. 
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Table 2-2: Selection Criteria for a Hot Runner System [16] 

Economy Product Process Material 

o Investment 

o Production 

quantity 

o Cycle time 

o Material waste  

o Energy 

o Regrinding 

o Dimensions 

o Shot weight 

o Gate/sink marks 

o Reproducibility 

o Tolerances / 

warpage 

o Fiber orientation 

o Start up 

o Total flow path 

o Pressure 

distribution 

o Melt homogeneity 

o Residence time 

o Color change 

o Flow behavior 

o Melting 

temperature/range 

o Process window 

o Thermal stability 

o Reinforcement 

o Additives 
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2.2.2  Cold Runner System 

Cold runner molding has the majority market share primarily because of its 

simplicity and low investment cost [3]. It is easier to operate, manage, and maintain. A 

material is injected into cavities through a runner profile, cooled, solidified and then 

ejected at the end of every molding cycle.  

For detailed comparison between the two runner configurations in terms of the 

capabilities and limitations, see Table 2-3.  

Table 2-3: Capabilities and Limitations of Externally Heated Hot Runner and Cold Runner Systems 

[3], [10]-[13], [15]-[22] 

Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

Overview 

 Runner (excess material retained in 

the feed channels) is cooled and 

ejected with the part  

 A part and a runner are produced 

every cycle  

 Waste material must be either 

disposed of or reground and 

reprocessed  

 Hot runner molding usually 

yields the lowest cost per 

finished part, but the molds can 

be very expensive to build.  

 Molds have heated manifold & 

nozzles.  

 No runner (hot runner 

eliminates the excess material 

retained in the feed channels of 

a cold runner mold) 

Best for: 

 

 Short runs 

 Simple design parts  

 When more than one color part need 

to be produced 

 High volume and long 

production cycles  

 Highly complex design and 

automated production 

 Molding expensive polymer 

 Family molding 

Cost 
 Less Expensive 

 (Cost of the Machine) 

 More expensive.  

 Typically, the cost of the 

machine, cost of nozzles and 
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

supporting equipment.  

Material Loss 
 Runner 

 Rejects 
 Rejects only 

Operating Cost Lower Higher 

Maintenance  

Cost 
Lower Higher 

Initial Start-up 

Cost 
Lower Higher 

Advantages 

 Lower investment – Major advantage 

 Simplicity – Simple mold design 

 Lower costs - manufacturing, 

operation and maintenance. Less 

expensive to build, operate and 

maintain than hot runners 

 No high skill-level personnel are 

required for maintenance   

 Flexibility – Tolerant of all plastic 

materials 

 Faster start up - Start up procedure 

is more easier and quicker 

 Less Downtime – No electrical 

systems such as cartridge heaters burn 

out and connecting wires fails 

 Shorter Downtime – it takes less 

time to fix when the mold is down for 

repairs.  

 Simpler mold repair – compared 

with hot runner molds 

 Color change – Easy changes 

 Consistent operation  

 Family Molding 

 High Volume Productions  - 
economical for production of 

over 50,000 parts per year 

(most cases) 

 Material savings - no material 

loss from regrind or reprocess  

 Low cost / piece - least 

expensive for large volume 

production  

 Shorter, faster cycle times - 

no runners to cool 

 Automated processing – No 

need to separate runners from 

the parts  

 No Material Contamination - 

Reduces the possibility of 

contamination from regrind 

 Lower pressure – both 

injection and clamping 

pressures 

 Shorter cooling time – no 

runner 

 Shot size reduced  - reduced 
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

shot volume into runners  

 Cleaner molding process - no 

reground sprues and runners are 

left at the end of each cycle  

 Reduction in material shear 

 Improved part finish - 

blemish-free surface 

 Balance molding - less 

sensitivity to the requirements 

for balanced runners 

 No blending cost of regrind 

with virgin material or for 

material handling 

 No Material Waste - reduction 

of scrap (limited to rejected 

parts), permitting a much 

higher percentage of virgin 

material in the part, which 

maintains a better level of 

physical properties 

 Better Physical Properties - 

No degradation of material 

properties, especially when 

running clear materials 

 Better dimensional Control -  

because material temperature 

and pressure in the cylinder are 

the same, there is consistent 

heat within the cavity, resulting 

in better parts and fewer rejects.  

 Quality Improvement 

 Effective increase in shot 

capacity -  especially multi-

cavity molds  

 Energy Saving - no energy 

wasted on melting, cooling, and 

regrinding the runner, which is 

sometimes 50% of the shot.  

 Easing Compliance with 
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

OSHA Regulations - reduction 

of noise and dust caused by 

regrinding, cycle time is 

reduced in cases where runners 

take longer to freeze than 

molded parts 

 Improving Productivity - cold 

runners no longer catch on 

knock-out pins, leader pins, or 

hoses during automatic 

molding, where automatic 

runner-removal systems can 

fail and cause mold damage 

 Reduced Sink Marks   

 Simplified Multiple Gating 

especially for large parts  

 No Finishing Required – 

especially for the gate, which is 

sheared automatically. This 

saves labor and handling, and 

reduces the loss of material 

caused by additional operations 

such as milling  

 Minimum Pressure loss via 

the sprue-runner system 

 Faster Cavity Filling - 

elimination of pressure and 

time loss in filling a runner 

system permits the mold to fill 

faster, which is particularly 

helpful in thin-wall moldings 

 Even Cavity Filling - there is 

an even start in filling the 

cavities 

 Minimum Operator Attention 

– A human operator is always 

required, but the operator can 

run other machines or perform 

other tasks such as inspection 

and packing  
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

 Less propability of Gate 

Freezing -  this permits more 

freedom in molding conditions 

 Multiple Use of Tooling - 

controls, and occasionally 

manifolds, and nozzles can be 

used on more than one mold, 

which significantly reduces the 

cost of tooling 

Disadvantages    

 Simple Mold Design 

 Waste Plastics Generated 

 Regrind of Runner Material –

excess material must be disposed of 

or reground and reprocessed 

 Material contamination is possible 

due to material regrind 

 Additional Steps – secondary 

operations in the manufacturing 

process may be required 

 Lack of Melt Control  - no melt flow 

control during filling process 

 Lack of Packing Pressure Control  - 

no cavity pressure control during the 

injection molding cycle 

 Limited Weld-line Control    

 Possible consequences of Regrind: 

 Increases variations in the injection 

molding process 

 Detracts from material properties 

(i.e. strength, mechanical 

properties, clarity in light pipe or 

lens production) 

 

 Higher Investment – Major 

disadvantage 

 Complexity – the mold design 

requires more engineering and 

expertise than a three-plate 

mold to operate successfully 

and profitably. If the gates are 

in the wrong location, a costly 

time-consuming job is required 

to fix, and sometimes a 

complete rebuild of the mold is 

necessary. If the probes are in 

the wrong location, accurate 

machining is required  

 High Skill-level Personnel are 

required for maintenance   

 Slow and Complex Start Up - 

start up procedure is more 

difficult 

 Critical Temperature 

Control - temperature at the 

nozzle has to be just right. Too 

hot can cause Nozzle 

Drooling, too cold can cause 

some melt to solidify 

 Radiation Heat Loss 

(Manifold) -  Significant cost 

factor 

 Thermal Expansion of various 

components needs to be taken 



 35 

Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

into account 

 Critical Molding Conditions 

 Thermal Degradation of 

material. Risk of thermal 

damage to sensitive materials 

 Abrasion (reinforced plastics) 

 Frequent Downtime – more 

components that are susceptible 

to failure (i.e. nozzle blockage, 

electrical systems such as 

thermocouples and cartridge 

heaters burn out, and 

connecting wires fails) 

 Longer Downtime – it takes 

longer to fix when the mold is 

down for repairs. Repair 

normally requires full 

disassembly, cleaning and 

reassembly  

 Gates are sensitive to clogs – 

Even with strainers in line, a 

slight bit of contamination such 

as dirt or paper from bags may 

plug the small gates 

 Drool – Molds without gate 

valves may drool from time to 

time especially when the valve 

is left open for a long time 

 Color Change Problems 

 Higher Parts Replacement 

Costs -  parts more susceptible 

to:   

o Breakdowns  

o Leakage  

o Heating element failure  

 Long Purging Time  
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

Common 

Problems 

 

 Unbalanced filling 

 Cosmetic defects 

 The part is not filling 

 Nozzle drooling 

 Nozzle not working 

 Excessive flash on part 

 Burn marks/streaks on part or 

near gate 

 Excessive tip wear in nozzles 

when using plastics with high 

glass fill content 

 Gate vestige too large 

 Gate freezing off too soon, or 

during cycle 

 Flow lines on large flat part 

 Bloom on part opposite gate 

 Cold slug in part 

 Intermittent blockage caused 

by cold slug, tip fails by trying 

to extrude through nut 

 Plastics sticking to front of 

bush nut or sprue nut 

 Quality Conditions for 

Partially Crystalline 

Engineering Thermoplastics: 

 The temperature must be 

controlled more strictly 

than in the case of 

amorphous materials 

 Very high temperatures will 

usually cause the polymer 

to degrade (blistering and 

other undesirable effects).   

 Streaks, discoloration and 

surface defects will also be 

produced, due to local 

overheating 
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Criteria 
Cold Runner Molding 

(70% Market share) 

Hot Runner Molding  

(Externally heated) 

(30% Market share) 

 Pressure: Unsuitable hot 

runner systems usually 

cause high pressure losses 

 Melt residence time can 

vary between cavities 

 Separate controls should be 

provided for the hot runner 

inlet, the runner and each 

nozzle, to enable all parts to 

be individually balanced 

with regard to the thermally 

sensitive molding 

compounds. Regulating 

devices should be used 

which guarantee constant 

temperatures through 

adaptation of the power 

supply (e.g. PID) 

 The bypass inside the 

runner should be as perfect 

as possible for materials 

with high thermal 

sensitivity such as POM 

and flame resistant 

compounds 

 In general, it is inadvisable 

to use shut-off nozzles 

when processing POM. 

However, if the use of 

needle valve nozzles is 

needed to process other 

kinds of material, the 

nozzle/needle combinations 

should be used which keep 

pressure losses as low as 

possible 
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2.3  Previous Scientific Development 

2.3.1  Melt Modulation Development 

Since its introduction in 1999, melt modulation technology has seen many 

developments and improvements to make it more practical and efficient for cold runner 

systems [28]-[29]. It also has been experimentally validated for several filling 

applications of cold runner based injection molding. Figure 2-6 shows a history timeline 

of the melt modulation system. 

 

Figure 2-6: Melt Modulation History 
 

Previous work done using melt modulation by Layser [28], [32], [33] and 

Tantrapiwat [29], [34] demonstrated significant quality product enhancements during the 

filling phase of cold runner based injection molding, and added capabilities such as 

balanced multi-cavity molding, family molding, and weld-line position control. Later, 

Teeraparpwong [35] began expanding the work to investigate the processing parameters 

and their impacts on optical properties. The goal was to set the stage for expanding the 

melt modulation capabilities to control packing parameters during the packing phase to 

enhance product molecular orientation and optical properties.  
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1. Dr. John Coulter invented the melt modulation concept in 1999, as a new 

manufacturing control tool for cold runner applications. Since then, several melt 

modulation designs were introduced. 

2. Dr. Greg Layser predominately studied melt manipulation with vibration-

assisted injection molding (VAIM). Figure 2-7 shows a schematic depicting the 

implementation of VAIM process. He also covered other areas, including: 

a. Numerical Simulation of a Multi-cavity Mold Utilizing Cavity Specific 

Control of Melt Flow During Injection Molding  

b. Localized Material Effects Associated With Flow Control during Multi-cavity 

Injection Molding Processes. 

 
Figure 2-7: Schematic Depicting Implementation of VAIM Process [28] 

3. Dr. Akapot Tantrapiwat successfully improved the original system, shown in 

Figure 2-8, and developed a compact melt modulation system that has significant 

reduction in the system size and cost of original system. His redesign effort 

focused on: 
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a. Control Valve 

b. Driving Mechanism 

c. Controller 

d. Control Techniques (Fixed angle, Bang-Bang, and Hybrid) 

He also conducted several experiments of molds that have more than 4 cavities 

using compact melt modulation system. 

 
Figure 2-8: Conceptual CAD Model of the Original Melt Modulation System 

a. Control Valve: 

The original rotary valve, shown in Figure 2-9: (a), was expensive and 

required an ejector pin to eject the molded parts. Also, because the original 

valve had limitations such as a small control range, it was changed to an 

eccentric plug valve, Figure 2-9: (b). This improvement increased the control 

range, which increased effectiveness and reduced cost.  
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(a)                   (b) 

Figure 2-9: Valve Port Configurations: (a) Rotary (b) Eccentric 

The configuration of the new eccentric valve is shown in Figure 2-10. 

The geometry of the eccentric valve port is similar to the original design, 

except that it has only one plug and it is installed at a slightly offset location.  

 

Figure 2-10: Eccentric Valve Port Configuration [29] 

Through numerical simulation of the eccentric valve flow behavior, 

Akapot showed that by reducing the valve radius, R, and the offset distance, s, 

more controllable flow characteristics can be achieved. This makes the control 

valve more effective and optimizes the range of operating angle during the 

filling stage. When compared to the original valve design, the eccentric valve 

port has more linear response flow characteristics [29]. 
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b. Driving mechanism 

Also included in the redesign effort was the melt modulation driving 

mechanism. The original driving system shown in Figure 2-11 (a) was bulky, 

expensive and difficult to set up. The new compact driving mechanism, 

represented in Figure 2-11 (b), is significantly smaller, easier to use, and more 

cost efficient. The cost to build the original design was more than ten times 

that of the compact system. 

 

(a)                (b) 

 

Figure 2-11: Original Driving Mechanism vs. Compact system [29] 

c. Controller 

The original controller and user interface is illustrated in Figure 2-12. 

All systems components were connected to a computer and controlled using 

LabVIEW control software.  
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Figure 2-12: Original Controller and User Interface 

Figure 2-13 (a) shows the original melt modulation controller. The 

compact controller, shown in Figure 2-13 (b) is about 20% of the original 

controller size. These improvements contributed to major cost and size 

reduction.  

 

(a)                                  (b) 

Figure 2-13: Original Controller vs. Compact system [29] 
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d. Control Techniques  

Akapot developed three different control methods for the compact 

melt modulation system and they are as follows:  

1. Fixed angle method works by choosing a specific valve angle to achieve a 

desirable melt flow.   

2. Bang-Bang method controls the valve by only two positions, fully-close 

and fully-open. The advantages of Bang-Bang method over fixed-angle 

method include simpler valve manipulation, better control characteristics, 

and less material damage from shearing.  

3. Hybrid method is a combination of fixed-angle and Bang-Bang methods. 

This method eliminates the risk of having a disconnected runner due to the 

melt flow solidifying when Bang-Bang is causing the valve to be in a fully 

closed position. It also offers better control characteristics  

4. Punlop Teeraparpwong: began setting the stage for expanding the melt 

modulation capabilities to control packing parameters during the packing. His  

major accomplishments included: 

i. Initiated the examination of the processing parameters and their impacts 

on optical properties 

ii. Performed numerical simulation using Moldflow to investigate the 

influence of the processing parameters on weight and geometric 

dimensional quality, including shrinkage, and deflection.  
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2.3.2  Limitations of Previous Development 

Both Layser and Tantrapiwat demonstrated significant quality product 

enhancements during the filling phase of cold runner based injection molding, and added 

capabilities such as balanced multi-cavity molding, family molding, and weld-line 

position control. However, in injection molding, the packing parameters have significant 

impact on polymer molecular orientation as well as mechanical and optical properties of 

clear polymers during molding. To demonstrate the effectiveness of the melt modulation 

technology, controlling the melt flow and packing pressure is critical for the overall part 

quality.  Also, the current melt modulation system is still at Technology Readiness Level 

4 (TRL4) according to the NASA Technology Readiness Level Scale shown in Figure 

2-14. TRL4 means the system has been validated in lab settings.  

 

Figure 2-14: NASA Technology Readiness Level Scale [62] 
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In addition, the current control system still requires a computer in order to run. To 

improve chances of making the melt modulation system becoming “market ready” with 

successful launch potential, a fully integrated, a stand-alone system would be the best 

approach. Other system limitations include the following: 

i. The application used to control melt modulation system (Delphi 7 

programming code) runs only on the outdated platform of Windows XP. 

ii. The control valve possesses a quick-opening characteristic for both filling 

& packing phases. During packing phase, any small valve rotation at 

certain packing times causes significant pressure drop. 

iii. System control methods: 

a. Fixed Angle: This method is supposed to provide simple procedure and 

can be applied with any shot size. However results from previous 

experiments showed the flow characteristics with a quick opening 

behavior which caused poor controllability. 

b. Bang-Bang: When applying to a process which uses a small shot size and 

fast injection speed, it is difficult to control a valve properly. When the 

filling process starts, a control valve is set to be fully-closed and rotated to 

fully-open at a specified injection ram position. Before the control valve 

opens, the melt flow is stopped and can solidify. As a result, the solidified 

runner can prevent the cavity from being filled completely. In general, this 

method is sensitive to shot size and requires screw position control. 
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c. Hybrid (same as fixed-angle method): When the melt flows through a 

narrow channel, it suffers from high shear rate which may degrade the 

material and reduce the quality of the molded part. Therefore the largest 

possible initial fixed angle is recommended which can allow the melt flow 

to fill 50%-80% of the runner across that valve. This method is also 

sensitive to shot size and requires screw position control.  

2.3.3  eGate® Electric Valve Development 

While the development of melt modulation was taking place at Lehigh, 

Synventive developed a similar product, eGate
®
 electric valve gate hot runner system, is 

for hot runner injection molding applications. The eGate
®

 electric valve gate hot runner 

system incorporates a proportional-integral-derivative controller (PID controller), which 

is a closed feedback loop system to precisely control each valve pin’s position, 

acceleration, velocity and stroke. The Synventive eGate was developed to meet 

applications that require precision and dimensional stability. It enhances product quality 

and improves production rate. It eliminates weld-lines (flow lines) on multi-gated parts 

and resolves imbalance issues and provides the ability to make family molding parts. 

Specific molding applications for the eGate
®
 system include multi-shot and or multi-

material applications, sequential and cascading molding and parts that require superior 

cosmetic surfaces. The eGate
®

 electric valve system has many advantages over traditional 

valve gates and they are as follows [42]:  

 Better control – it can precisely adjust the valve pin velocity and position, and 

thus the flow rate out of each nozzle gate at any time during the fill process 
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 Superior part quality –  better cosmetic part/gate quality  

 Process repeatability – consistency of shot-to-shot and part-to-part injection 

molding 

 Clean, quiet and energy efficient  

 Process monitoring – data gathered and monitored for real-time pin position  

 Ease of service – quick start-up and high up-time 

2.4  Remaining Scientific Challenges 

 The following are the remaining cold runner injection molding challenges: 

A. Balance of melt flow filling and packing parameter of multi-cavity molds 

B. Successful production of family molding parts with full process repeatability  

C. Control of weld-line position 

D. Packing processing parameters (pressure and time) control during an 

injection molding cycle.  

These challenges are the motivation for my work. With these limitations in mind, 

I developed a modular melt modulation system to address and fulfill these unmet needs. 

A summary of the related scientific fundamentals is in the next chapter.   
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CHAPTER 3 – RELATED SCIENTIFIC FUNDAMENTALS 

 

Injection molders are under pressure to produce high quality parts while 

maintaining a minimum cost. Evidently, this requires precise control of the molding 

process parameters to avoid residual stresses and other factors that may jeopardize the 

quality of the final product. One of the major factors that determine the final part quality 

is the polymer melt rheology.   

3.1  Melt Rheology  

Rheology can be defined as the study of deformation and flow of matter. The flow 

of polymers is more complex than Newtonian fluids such as water or air. Newtonian fluid 

is defined as a fluid with constant viscosity, which is the resistance to flow, at changing 

shear rate. A common Newtonian fluid has a viscosity that may be affected by 

temperature, but not by changing flow rate or shear rate. A fluid viscosity is determined 

by the shear stress divided by the shear rate. For most common polymers, the viscosity is 

Newtonian at low shear rate. However, the viscosity becomes non-Newtonian at higher 

shear rate during injection molding [3].  

Injection molding melt flow is known to be laminar with normal Reynolds 

Number of ~ 10. Turbulent flow usually develops when Reynolds Number is 2300 or 

higher. During the filling phase of an injection molding cycle, the plastic melt exhibits a 

specific behavior known as “fountain flow”. Although, the fountain flow behavior 

develops in both hot and cold runner molds, the plastic frozen layer only does not occur 

in most hot runners. As the melt enters the cavity of a cold runner mold, some of the 
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material is deposited (frozen) on the cavity walls, and the remaining hotter material flows 

through the frozen layer causing a flow front. The drag of the flowing melt laminates on 

the mold walls causing a faster flow on the center. This results in a parabolic velocity 

profile, or fountain flow, at the flow front as shown Figure 3-1. Typically, the material 

moving closer to the outer channel walls experiences some shearing. Shear rate is near 

zero at the mold wall and at the center of the flow channel. Maximum shear stresses are 

usually near the channel wall [3]. In general, the shear stress profile induces molecular 

orientation located in the higher shear regions in the flow direction. As these molecular 

orientations are frozen in, this may create an uncontrolled anisotropic molecular structure 

distribution, which is often associated with poor or less than optimal performance 

characteristics.  

 

Figure 3-1: Flow Patterns and Shear Stress Profile during Mold Filling 

Polymer melt rheology is usually dictated by the polymer molecular orientation, 

which plays an important role in shaping the final injection molded product quality. 

Figure 3-2 and Figure 3-3 show typical temperature and shear rate distribution across the 

cavity thickness respectively.   
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Figure 3-2: Temperature Distribution across Cavity [28] 

 

 

Figure 3-3: Shear Rate Distribution across Cavity [28] 

Figure 3-4 shows the viscosity distribution curve, which is a result of the 

temperature and shear rate dependency of the viscosity. When the polymer freezes near 

the channel wall, thin skin layer, with a thickness (s), is formed during the molding 

process.   
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Figure 3-4: Viscosity Distribution across Cavity [28] 
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3.2  Control Valve Fundamentals 

The flow characteristic of a control valve is defined as the relationship between 

control valve capacity and valve stem travel. Most valves have non-linear response - 

primarily due to the valve geometry. Different valve geometries affect valve capacity as 

the valve travels in different ways [18]. The most common characteristics for control 

valves are shown Figure 3-5. The valve flow percentage is plotted against valve stem 

position. 

 

Figure 3-5: Typical Flow Characteristic Classification of Control Valves [37] 

These curves are based on a constant pressure drop across the control valve. 

Typically, when the valve starts to open, the resistance due to fluid flow decreases the 

pressure drop across the valve in a non-linear fashion. Therefore, to achieve a linear 

curve, an equal-percentage, or modified-flow characteristics might be the best option.   

The flow characteristics in a cold runner mold work the same way. The flow 

profile in the mold is dictated by performance of the control valve and the mold 

configuration. The amount of flow to the cavities depends on the control valve and valve 
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port geometry, while the behavior of the flow is determined by the cavity and runner 

configurations. The relationship between the pressure drop across the control valve and 

the entire system is expressed as:   

 

(3-1) 

where Pvalve and Psystem are pressure drops across the valve and the entire 

system respectively. A reduced pressure ratio indicates that the pressure drop at the 

control valve is less significant and has little impact on the entire system. As a result, the 

flow characteristic might resemble the quick opening behavior as shown in Figure 3-6. 

To compensate for this, an equal percentage valve may be used to achieve linear flow 

characteristic.  

 

Figure 3-6: Shifting Flow Characteristic of the System According to the Pressure Ratio [29] 

The relationship between the control valve and runner is illustrated in Figure 3-7. 

In order for the valve to be sized appropriately, the valve outer diameter must exceed the 

system

valve
R

P

P
P
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width of the runner channel. The valve port can be smaller or built with different profiles 

to produce desired flow control characteristics.  

 

Figure 3-7: Valve Port and Runner Channel Geometry [29] 

Full port is defined as the identical cross sectional area between valve port and 

runner channel. To improve flow control response, it is recommended to have a valve 

with 65% reduced cross section of the total port area [36]. To achieve a complete shut off 

of the valve plug when it is fully tuned, the runner channel in conjunction with the valve 

cord-length, l2, should be shorter than the cord-length of valve plug, l1.  

For a runner that has a constant port width of w, the maximum width allowed at 

the valve port can be obtained by: 

(3-2) 

where R and d are the radius and the port width of the valve respectively. 

Consequently, if a runner with a valve that has the same radius, R, and port width, d, the 

2

2

4
R
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maximum controllable angle for the particular valve for a non-circular profile for both 

runner channel and valve port can be determined by: 

 

(3-3) 

Valve full port is defined as the runner width and the valve channel being equal 

(w = d = 2r). When the valve is at full port, the flow area can be obtained geometrically 

by projecting cross section areas on both channels. As the valve turns, the narrowest cross 

section at a particular turning angle θ is the overlap region between the projection areas 

as shown in Figure 3-8. Also, the distance, L, changes as a function of valve angle, θ, and 

results in a transformation on the overlapping area which can be presented by: 

   

(3-4) 

   

 

Figure 3-8: Approximate Geometry of Opening Valve Port [29] 
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3.3  Melt Modulation Technique 

The melt modulation valve port is an eccentric rotary plug. The configuration of 

the eccentric valve is shown in Figure 3-9. The geometry of the eccentric valve port is 

similar to the design in Figure 3-7, except that it has only one plug and it is installed at a 

slightly offset location from the center of the runner.  

 

Figure 3-9: Eccentric Valve Port Configuration [29] 

There is no limit on how many valves the melt modulation technology can have. 

However, the level of complexity in controlling the valves increases as the number of 

valves increases. A two-valve melt modulation system, as shown in Figure 3-10(a), has 

been tested to understand the flow characteristics. When the two valves (A and B) are 

fully open, the amount of melt flow through each valve should be the same regardless of 

cavity configurations. Suppose valve “A” is chosen to be the control valve while keeping 

valve “B” at fully open position. As valve “A” is turning toward the closing position, the 

flow through valve “A” decreases while it quickly increases through valve “B”. Because 

of pressure drop across the control valve and the runner channel, the system tends to have 
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a “quick opening” behavior as shown in Figure 3-10(b). Typically, this behavior is not 

desirable as it reduces the control of packing parameters during the packing phase. As a 

result, a suitable control valve system is critical to having an effective melt modulation 

system.  

 

Figure 3-10: Melt Modulation System Flow Characteristics [29] 
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3.4  Birefringence 

Transparent polymers with excellent optical properties are very useful for plastic 

optics applications. The most widely used polymers are Poly(methyl methacrylate) 

(PMMA), and Polycarbonate (PC) due to their excellent transparency. Clear polymers 

have many advantages such as lighter weight, lower cost, and a higher impact resistance 

than glass. Additionally, optical plastics have the same level of light transmittance as hi-

grade glass materials. Also, when plastic breaks, the scraps are less dangerous in 

comparison to glass. Moreover, glass is not suitable for mass production [18]. 

There are two main factors that greatly affect the quality of optical plastic 

materials. First is birefringence in the material and the second is geometric dimension 

changes from the desired shape. Birefringence is an important measurement of polymer 

orientation. It is primarily caused by flow-induced residual stress [17] and can be seen by 

passing polarized light through stressed transparent material which has two refractive 

indexes. The refractive index, n, is defined as a ratio of the speed of light through vacuum 

(3 x 10
8
 m/s), c, by the speed of light through the material, v.  

(3-5) 

Light normally moves through a transparent material in the form of waves, which 

are Omni-directional. When passing the light across a polarizing lens, called polarizer, 

only one light wave component is allowed to pass. After the polarized light passes 

through the transparent material, it is separated into two wave fronts which have different 

velocities. Each wave front is parallel to the direction of principal stress, σ1 and σ2. In 

order for birefringence to be visible, another polarizing lens called an analyzer must be 

v

c
n 
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placed in the path of polarized light from the material. The analyzer can be rotated to 

control the light intensity passing through. Eventually, the two wave fronts will cross, 

resulting in a noticeable color spectrum. The schematic diagram in Figure 3-11shows 

how to observe birefringence. 

 
Figure 3-11: Schematic of plane polarizes scope activity [18] 

Birefringence can be determined by using Brewster’s Law, 

(3-6) 

where C is the photoelastic coefficient of a polymer. Selected values of C are listed in 

Table 3-1.  

Table 3-1: Photoelastic Coefficient of Polymer [18] 

Polymer Photoelastic Coefficient, C (x10
-13

 cm
2
/dyn) 

PMMA -6 

PC 72 

COP  

(Zeonex 480R) 
6.5 

PS -55 

 2121   Cnnn
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According to equation (3-6), high molecular orientation causes a higher difference 

of principal stresses. Consequently, high birefringence is generated.  

Since birefringence cannot be calculated directly, retardation (δ) must be determined first. 

Retardation is the phase difference between two wave fronts traveling through the 

material, which controls the intensity of the color spectrum displayed by a polarizer. The 

relationship between retardation and birefringence is governed by the following equation, 

(3-7) 

        where t is the thickness of the material used to observe birefringence. Retardation 

can be calculated by the relationship between the wavelength (λ) and the fringe order (m), 

which can be manually counted through a polarizer. 

(3-8) 

The two main causes of birefringence during injection molding process are flow-

induced and thermally-induced residual stress.  

 Geometric dimension tolerance is another crucial factor that defines optical 

quality. Major dimensional problems that could occur in injection molded optics are 

shrinkage, warpage, and surface quality. The shape quality of molded optics primarily 

depends on the processing parameters of the injection molding process, including melt 

temperature, mold temperature, packing pressure, and packing time. 

t
n
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CHAPTER 4 – DEVELOPMENT OF MODULAR MELT MODULATION 

SYSTEM 

 

4.1  Introduction  

Successful product development starts with solving the right problem. 

Understanding the need that must be fulfilled or the problem that needs to be addressed 

coupled with knowledge of basic science principles, such as rheology of plastics, filling 

and packing effects of molded thermoplastic materials and basic operations of cold 

runner injection molding, is essential in developing a melt flow control system. The 

design and development of the modular melt modulation system began with 

understanding the market needs and customer requirements. This chapter focuses on the 

development of the modular melt modulation systems.  

Two previously designed melt modulation systems were developed; the original 

and the compact melt modulation systems. Both former systems were analyzed 

thoroughly to learn their capabilities and the limitations. The melt modulation design was 

implemented on a standard two-plate mold with a nominal size of 8 x 10 similar to the 

one shown in Figure 4-1.   

 

Figure 4-1: Two Plate Mold Base Configuration (Source: DME electronic catalog) 
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All the mold plates are stacked together and mounted inside the mold chamber of 

the injection molding machine. There are several different sizes and configurations of 

injection molding machines. They are usually categorized by their clamping force and 

injection rate as well as their processing method and configuration (i.e. hot vs. cold 

runner and horizontal vs. vertical injection molding machines).  

A 3-D model of a standard injection molding machine is shown in Figure 4-2. For 

safety reasons, the mold assembly has to be contained within the mold chamber and the 

sliding doors must be completely closed in order for the machine to run. There is a small 

opening underneath the mold assembly in the mold chamber. This opening allows for the 

ejected parts to be dropped in a collection basket or container. There is also another small 

opening directly above the mold assembly, but in general, the available space around the 

mold assembly is very limited and may not accommodate additional apparatus. 

 

Figure 4-2: 3-D Model of a Standard 40-ton Nissei Injection Molding Machine 
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The original melt modulation system had many disadvantages that made it 

impractical to implement. Figure 4-3 shows the supporting equipment required in order to 

operate the original system, some of which can be expensive. Also, it had to be mounted 

on the mold directly as illustrated in Figure 4-4. Other limitations of the original designs 

include the following:  

1. Large size and space requirement 

2. Entailed many modifications to the mold base 

3. Required many components, which increased costs significantly 

4. High tooling cost 

As a result, this created a need for an improved and more practical design.  

 

Figure 4-3: Original Melt Modulation System Supporting Equipment  
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Figure 4-4: Original Melt Modulation System (left: 3-D Model, right: Actual Picture) 

  

The original melt modulation design had undergone many design improvements 

over the years. The last one was the compact melt modulation system and can be seen in 

Figure 4-5 and Figure 4-6.  Chapter 2 contains more details about both the original and 

the compact melt modulation systems.  

 

 

Figure 4-5: Compact Melt Modulation Valve Driving Mechanism (Prototype) 
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 Figure 4-6: Compact Melt Modulation Mold Base with Control Valve Driving Mechanism 

 

4.2  Design of the Modular Melt Modulation System 

 The basic principle of the melt modulation concept is: using rotary valves to 

control melt flow and packing pressure of polymers in a way that defines the final quality 

of the injection molding part. Prior to developing the modular melt modulation system, I 

derived the following technical specifications: 

1. Modular design to allow for future expansion  

2. Easy installation and setup  

3. Fully integrated stand-alone system with user interface touch screen LCD. No 

personal computer (PC) is required 

4. Electric (AC powered) as primary source, but can be battery operated 

5. Low power consumption 

6. Low voltage demand (7-12 Volts) 
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7. Simple control system (open loop control system) 

8. Precise valve control for both filling and packing stages 

9. Multi control modes (manual and automatic) 

10. Easy to use, simplified user interface.   

11. Valves are embedded in the mold assembly 

12. Relatively small in size, 7.5” long by 7.5” wide by 7” deep. 

13. Low ownership cost (1/10 of original system) 

14. Safe to operate 

15. High quality system 

16. Excellent process repeatability  

17. Clean, quiet and energy efficient  

18. Process monitoring  – data gathered and monitored for real-time valve position  

19. Quick start-up time 

20. Technology Readiness Level 6 (TRL6) 
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The new modular melt modulation system I have designed and developed meet 

these specifications. The development of the modular system has been completed to be at 

Technology Readiness Level 6 (TRL6) according to the NASA Technology Readiness 

Level Scale shown in Figure 4-7. TRL6 means the system is in a prototype stage where it 

can be tested in an industrial setting.  

 

Figure 4-7: NASA Technology Readiness Level Scale [63] 

The new modular melt modulation system consists of three major units: 

1. Control Valves and Driving Mechanism 

2. Modular Mold Assembly 

3. User Interface Control (UIC) 
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The control valves driving mechanism is the actuation system which includes the 

actuators and the gearbox. The actuators directly and precisely control the valves based 

on inputs received from the user interface control unit (UIC). The modular mold 

assembly contains a standard mold base and the modular cavity inserts. Finally, the user 

interface control (UIC) unit has a microcontroller and a servo controller that sends the 

command signals to the actuators, enabling them to perform certain tasks based on the 

selected control scheme. All three units are detailed below. 

4.2.1  Control Valves and Driving Mechanism  

 

The new melt modulation system has control valves embedded into the mold 

assembly. This provides a modular and economical configuration, easy setup, and zero 

maintenance requirements. The control valves are driven directly by high-torque servo 

motors, ensuring high performance and precise control valve positioning. The current 

prototype design has four 1/4" diameter valves and four servo motors as shown in Figure 

4-8.  

 

Figure 4-8: Driving Mechanism 
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4.2.1.1  Control Valves 

The original melt modulation system had rotary valves, each containing an 

internal stem for the purpose of ejecting the completed part. The configuration of the 

original valve port is shown in Figure 4-9(a). When the performance of the original 

control valve was tested, the results showed that this valve port configuration caused 

undesired quick opening characteristics [29]. As a result, the valve design was simplified 

to just a stem, which is illustrated in Figure 4-9(b). The simplified valve is eccentric and 

can control the melt flow and act as an ejector pin at the same time.  

 

 
Figure 4-9: Control Valve, (a) Original Valve with a Stem, (b) Compact System   

 

To further simplify the valve, improve the control valve performance while 

reducing the cost of valve, the current modular design incorporates a standard “off the 

shelf” ejector pin with a modified port that matches any round or parabolic runner 

configuration with a matching draft angle. An example of a parabolic valve with a draft 

angle of 5ᵒ is shown in Figure 4-10. The draft angle can be changed to match the runner 

profile to eliminate any unnecessary melt flow shear or restrictions. 
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Figure 4-10: Control Valve, (a) Modular System, (b) Compact System 

 

A 3-D cross-section view of the modular melt modulation control valve in the 

runner is shown in Figure 4-11.  

 

Figure 4-11: A 3-D Cross-section View of the Modular Melt Modulation Control Valve:  

(a) Pre-Filling   (b) During Filling   (c) Ejecting   (d) Part Removal   

The modular melt modulation valve port is also an eccentric rotary plug. The 

configuration of the eccentric valve is shown in Figure 4-12. The geometry of the 

eccentric valve port is similar to the design in Figure 3-7, except that it has only a pin and 

it is installed at a slightly offset location from the center of the runner.  
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Figure 4-12: Eccentric Valve Port Configuration [29] 

The operating angle of the eccentric valve port design can be determined as: 

(4-1) 

where r is half of the cold runner width, R is the valve port radius, and s is the 

offset distance from the center of valve and the center of the runner. For proper operation 

of the valve from fully open to fully closed position, the design parameters have to be 

selected so that the cord-length of valve plug, l1, is longer than the runner channel in 

conjunction with the valve cord-length, l2, as in Equation    (4-2): 

                       






 

R

sr
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A numerical simulation study of the eccentric valve flow behavior showed that by 

reducing the valve radius, R, and the offset distance, s, in equation (4-1), more 

controllable and flow characteristics can be attained [29]. This makes the control valve 

more effective and optimizes the range of operating angle during the filling stage. When 

compared to the valve design in Figure 3-7, the eccentric valve port has more linear 

response flow characteristics and provides more effective flow and packing control. 
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To ensure the eccentric valve seals the runner at closed position during the 

packing phase, the seating distance, α, should be greater than zero as follows:     

     >     0R r s         (4-3) 

The melt modulation valve diameter has been selected to be 1/4” in diameter, 

while the offset distance was selected to be 0.02” according to the prototype designed. 

Table 4-1 presents all parameters of the eccentric valve port used for the packing stage 

control application. 

Table 4-1: Eccentric Valve Port Parameters  

Parameter [units] Value 

Valve Radius, R [in] 0.1250 

Half of Runner Width, r [in] 0.0938 

Offset Distance, s [in] 0.0200 

Range of Operating Angle, θ, [degree] 67.79 

Curvature l1 [in] 0.2930 

Curvature l2 [in] 0.1490 

Valve Seating Distance, α [in] 0.0113 

 

In order to ensure good valve performance, some of the control valve parameters 

in Table 4-1 were carefully selected.  For example, to ensure the valve completely shuts 

off the flow and seals the runner properly when it is fully closed, the seating distance, , 

has to be greater than zero. Other parameters were selected based on sizes of widely 

available tooling. According to runner design standard, it is recommended that the runner 
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is shaped as a full round or parabolic and its diameter to be at least 1.5 times the 

thickness of the cavity [3]. Since the maximum thickness of the cavities used was 

approximately 1/8” thick, the runner was chosen to be parabolic with a diameter of 3/16”.  

In addition, when the parameters used in Table 4-1 were utilized with a similar 

valve configuration, the results showed better flow control and performance [29]. The 

result can be seen in Figure 4-13, where the compact system valve (labeled ‘new valve’ 

on this graph) produced more of a linear control response. 

 

 

Figure 4-13: Flow Characteristics, Original Valve vs. Compact System (New Valve) [29] 

 

 Another aspect of ensuring a good valve performance is determining the valve 

closing direction. Figure 4-14 (a) and (b) show the two different methods of closing the 

control valves. Both methods were investigated and it was determined that the valve 

produced better flow characteristics when closed prior to the melt entering the valve, 

Figure 4-14 (b). In addition, the control valve encountered less resistance and, therefore; 
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required less torque to close [29]. As a result, the closing action shown in Figure 4-14 (b) 

has been selected.  

 

Figure 4-14 Control Valve Closing Direction [29] 

Additional control valves can be incorporated to the modular melt modulation 

system as long as there is enough physical space on the mold base. The number of control 

valves is usually determined by the number of runners used. Ideally, it is a ratio of 1:1. If, 

for example, the modular melt modulation system is implemented where the number of 

runners exceed the number of control valves used, the system will only control flow and 

packing pressure through runners with valves. Also, as the number of control valves 

increases, the level of complexity in controlling the melt increases as well because the 

melt flow is nonlinear. 
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4.2.1.2  Actuator 

An actuator is a device that converts energy (i.e. electrical, pneumatic, etc.) into a 

physical motion. The vast majority of actuators can either produce linear or rotational 

motion. Choosing the right actuator requires an understanding of the system requirements 

and is critical to achieving a high performance design. Based on the design specifications, 

actuators that can transform electrical energy to rotational motion were required.  

There are two mechanical characteristics that differentiate electrical actuators; 

torque and rotational speed. Since this is an industrial application where very high torque 

is required, it is more efficient and convenient to have AC (alternating current) source to 

power the actuators, or where the motors are powered by a power supply source that is 

connected to the wall outlet.  

Since the control valves are required to rotate in both clock-wise (CW) and 

counter clock-wise (CCW) directions, high torque rotary actuators (servo motors) were 

selected for the valve driving mechanism.  

In order to determine the proper size actuator required to operate the control 

valves, the torque requirements had to be established. In previous development, simple 

torque measurements of the valve stems turning with a range of packing pressures that 

were applied to the system were conducted [29]. Figure 4-15 shows the range of torque 

required to turn the control valves at different levels of packing pressure. The 

measurement included turning the valve from open to closed and closed to open as well 

as using a dummy valve, which is just a valve stem without a port. Depending on the 

direction of turning the control valves, the torque requirements were slightly different. 
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However, in the case of the dummy valve, the torque requirement stayed relatively the 

same even under high packing pressure. 

 

Figure 4-15: Measured Torque for Turning Control Valve at Different Packing Pressure [29] 

 

As it is unlikely for the melt modulation system to be applied with a maximum 

packing pressure, it was estimated that it would withstand 80% of the maximum packing 

pressure. Based on this assumption, the control valves require a driving mechanism that 

must overcome approximately 700 oz-in of torque. Based on the torque measurements, 

the torque required to turn the valve at zero packing pressure was slightly over 300 oz-in, 

which is very high. For that reason, the original system had large actuators outside the 

mold assembly. However, the new system must have small, embedded and less costly 

actuators. One way to overcome this high torque requirement is to select a high efficiency 

gear train to overcome the initial torque required at zero packing pressure (300 oz-in). 
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This will reduce the overall torque requirement on the actuator to 400 oz-in.  As a result, 

the gear reduction was reduced to a single transmission step.  

The transmission system used on the original melt modulation design was a set of 

wire cables and pulleys that transmitted rotation from outside the mold. Another set of 

timing pulleys were also employed to transmit power from the actuator to the mechanism. 

However, this configuration was not efficient due to the high friction caused by cables 

and pulleys. To reduce friction and improve transmission efficiency, an embedded gear 

train design would be more suitable, especially since the mold base has a limited space. 

Given the desired location to mount the driving mechanism and the geometry of the 

actuators and the control valves, a set of four spur gears were selected. Furthermore, spur 

gears have high efficiency and small backlash. The modular melt modulation driving 

mechanism can be seen in Figure 4-16. 

 

Figure 4-16 Driving Mechanism for Modular Melt Modulation Prototype 
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Figure 4-17 shows a 24 tooth pinion gear driving a 40 tooth spur gear. The gear 

module and number of teeth were selected based on the output torque and rotational 

speed requirement. To determine the drive gear revolutions needed to turn the driven gear 

one complete revolution, the gear ratio must be calculated. The gear ratio (GR) can be 

calculated as follows: 

(4-4) 

 

where NA and NB represent the number of drive gear (pinion) teeth and the 

number of driven gear teeth respectively. According to equation (4-4), each spur gear 

provides a torque ratio of 1.667:1 (or 40:24). 

 

Figure 4-17: “Low” Gearing to Increase Torque 
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The gears used in the gear train had the same pitch number of 32. To ensure 

robust gear system efficiency, the gear train power transmitting efficiency can be 

estimated by:  

    PE 100       (4-5) 

where P is the percentage of power loss of the gear train and can be calculated by: 
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 Where,  is the coefficient of friction, α is the gear pressure angle, ODs and ODp 

are the outside diameter of the spur gear and the pinion, PDs and PDp are pitch diameter 

of the spur gear and the pinion respectively. The details of the gear parameters are 

summarized in Table 4-2.   
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Table 4-2: Gear Train Specifications 

Specifications Gear Pinion 

Pitch Number (Np) 32 32 

Number of teeth (N) 40 24 

Pitch Diameter (PD) 1.25 inch .75 inch 

Outside Diameter (OD) 1.30 inch 0.8 inch 

Pressure Angle (α) 20 degree 20 degree 

 

Since the driving mechanism has thrust bearings, there is very little friction. 

However, if we assume the control valve coefficient of friction is approximately 0.65, the 

total gear efficiency drops to 95 %. This leads to a maximum torque of 665 oz-in required 

to turn the control valve, which is adequate for the power requirement that has been 

previously established. 

The modular melt modulation system requires a powerful actuator with precise 

speed and position control. Based on these requirements, digital servo motors with optical 

encoders were selected. Basically, a servo is a small device that incorporates a two wire 

DC motor with an output shaft, a gear train, a potentiometer, and an integrated circuit. A 

servo comes with three wires: one is for power, one is for ground, and one is a control 

input line. The signal from the control line determines the angular position of the servo 

shaft. The angular position of the shaft will remain in position as long as the coded signal 

exists on the control input line. If the coded signal changes, then the angular position of 

the shaft changes accordingly. Also, a servomotor was selected because it has the ability 

to deliver high torque in comparison to other types of motors. Typically, digital 
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servomotors have instant response as they are designed for precise control applications. 

Their fast motion response is attributed to their digital microprocessors, which are ten 

times faster than an analog servo. Moreover, digital servomotors have three times the 

standing torque of an analog counterpart. Servomotors are usually available with different 

power requirements and turning configurations. Because it is safer to handle low voltage, 

DC servo motors were selected. Based on these criteria, a second generation high 

performance Hitec “Ultra Torque” HS-7950TH digital servomotor, shown in Figure 4-18, 

was selected. This servo has a programmable digital circuit, Titanium gear set, heatsink 

case, and ultra-power coreless motor.  

 

 

Figure 4-18: Titanium Gears, Hitec HS-7950TH Servomotor [49] 

Compared with the first generation Hitec servos, this new servo has wear resistant 

titanium gears (inside the servo housing) with two hardened steel gear pins and axial 

brass bushings mounted in the servo case as well as a circuit that has twice the resolution 

with added programmable overload protection. The HS-7950TH has a 90° rotation in 

Output shaft 
Titanium 

gear train 

Bearing & 

shaft assembly 
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both clock-wise (CW) and counter clock-wise (CCW) directions. It also has a torque of 

486 oz-in at 7.4 volts, which exceeds the torque requirement of 400 oz-in to turn the 

control valves. The actuator specifications details are presented in Table 4-3. 

Table 4-3: Hitec HS-7950TH Servomotor Specifications 

Modular Melt Modulation Actuator Specifications 

Control System  +Pulse Width Control 1500usec Neutral 

Required Pulse  3-5 Volt Peak to Peak Square Wave 

Operating Voltage Range  4.8-7.4 Volts 

Operating Temperature Range  -20 to +60 Degree C (-4F to +140F) 

Operating Speed (4.8V)  0.18 sec/60° at no load 

Operating Speed (6.0V)  0.15 sec/60° at no load 

Operating Speed (7.4V)  0.13 sec/60° at no load 

Stall Torque (4.8V)  344oz/in. (22kg.cm) 

Stall Torque (6.0V)  402oz/in. (29kg.cm) 

Stall Torque (7.4V)  486oz/in. (35kg.cm) 

Operating Angle  45 Deg. one side pulse traveling 400usec 

Continuous Rotation Modifiable  Yes 

Direction  Clockwise/Pulse Traveling 1500 to 1900usec 

Idle Current Drain (4.8V)  9mA at stop 

Idle Current Drain (6.0V)  9mA at stop 

Current Drain (4.8V)  220mA/idle and 3.8 amps at lock/stall 

Current Drain (6.0V)  300mA/idle and 4.8 amps at lock/stall 

Dead Band Width  1usec 

Motor Type  Coreless Carbon Brush 

Potentiometer Drive  6 Slider Indirect Drive 

Bearing Type  Dual Ball Bearing MR106 

Gear Type  Titanium Gears 

Connector Wire Length  11.81" (300mm) 

Dimensions  1.57" x 0.79"x 1.50" (40 x 20 x 38mm) 

Weight  2.40oz (68g) 
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4.2.2  Modular Mold Design 

The modular mold design encompasses a standard mold base and modular cavity 

inserts for quick and easy attach and detach. Typically, mold assemblies have a single 

cavity insert. The insert may have multiple cavities, but they are all on a single insert. If 

any single cavity has to be removed, the entire mold assembly must be completely 

removed from the injection molding machine and taken apart to remove the insert. This 

process can take two hours or more, depending on the complexity of the mold base.  Set-

up time could be reduced if every cavity insert had its own mold assembly, but that 

would costly. To reduce material costs and set-up time, modular cavity inserts have been 

developed. The idea started with a design of a modular cavity insert assembly, with 

cavity inserts that connect to each other just like a puzzle, as shown in Figure 4-19.  

 

Figure 4-19: Modular Mold Assembly (4-Valve configuration) 
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All modular cavity inserts are mounted to a base plate and the entire assembly is 

mounted on the B-plate. This allows every cavity insert to be individually removed or 

replaced easily and quickly. This insert/change can be done by leaving the valve insert 

and the base plate mounted to the B-plate and the mold assembly. The entire cavity 

insert/change process can be completed in less than one minute. Figure 4-20 shows an 

exploded view of the modular cavity inserts assembly. This design not only saves money 

and time, but it provides the ability to make different assemblies in one injection molding 

cycle.  

 

Figure 4-20: Modular Cavity Inserts Assembly – Exploded View 

 

The modular cavity inserts assembly can be configured in many different ways, as 

illustrated in Figure 4-21. In matter of minutes or even seconds, the mold assembly can 

be configured to control weld-line position, multi-cavities, and/or family molding. Figure 

4-21(a) shows an example of two identical cavities, each with two runners for weld-line 

position control. When the two cavities are dissimilar, this configuration will allow for 

both weld-line position and multi-cavity control. If three cavities are required for a 
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specific application, the configuration in in Figure 4-21(b) can be used. If all three 

cavities have single runners, then the forth valve can be shut off. Finally, if the 

application requires four duplicate cavities or just an assembly of four different parts, 

then Figure 4-21(c) can be used. 

 

Figure 4-21: Modular Cavity Inserts Assembly - (a) Two Cavities (b) Three Cavities (c) Four Cavities 

Because the modular melt modulation system is designed to control both melt 

flow during filling and packing pressure, the system is equipped with a pressure 

transducer. A pressure transducer, model number 6159A, made by Kistler has been 

selected and shown in Figure 4-22.  

 

Figure 4-22: Kistler Pressure Transducer (Model No. 6159A) [50]  
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This model is designed specifically to measure cavity pressure. The pressure 

transducer technical data is presented in Table 4-4.  

Table 4-4: Technical Data of Kistler Pressure Transducer Model 6159A [50] 

Specification Unit Value 

Range bar 0-2,000 

Overload bar 2,500 

Sensitivity pC/bar ≈ -2.5 

Linearity, all ranges % FSO ≤ ±1 

Operating Temperature Range 

Mold (sensor, cable, connector) C 0-200 

Melt (at front of sensor) C < 450 

 

Figure 4-23 illustrates the valve locations. Since the pressure transducer is on the 

same runner as valve #1, the first cavity insert must be attached to valve #1 at all times, 

regardless of the required application. 

 

Figure 4-23: Valve Insert  
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In order to incorporate the modular melt modulation system to a mold assembly, 

where the cavity inserts share the same ejector pins, the following minor modifications 

will be required: 

1. Drill through holes for the valves through the B-plate, support plate (if 

applicable), ejector retainer plate, and the ejector plate.  

2. The B-plate must also have a through hole for the pressure transducer.  

3. Drill four mounting holes (for the valve driving mechanism) on the ejector 

plate.  

4.  Install the extension bars (2.5 inches minimum width), similar the one shown 

in Figure 4-6, between the ejector housing and the B-plate to make room for 

the valve driving mechanism.  

5. Replace the four mounting bolts that secures the ejector housing to the mold 

assembly with longer bolts to compensate for the extension bars length. 

If, on the other hand, the cavities are dissimilar or require ejector pins at different 

locations, the new design of the cavity inserts (not shown here) and a new B-plate will be 

required in addition to the modifications listed above.  The new cavity insert design is an 

assembly that has its ejector pins and springs. Therefore, it requires a special B-plate and 

the ejector retainer plate and the support plate will not be required.  
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Installation of the valve driving mechanism is shown in Figure 4-24. 

 

Figure 4-24: Modular Mold Plate – Driving Mechanism Location 

 

4.2.3  User Interface Control (UIC)  

The modular melt modulation system is controlled by a user interface control 

(UIC) unit, which is fully integrated and designed to be a stand-alone unit. The current 

prototype (shown in Figure 4-25 and Figure 4-26) requires an external (AC) power 

source, but no PC is required to operate it. The purpose of the UIC is to allow the 

operator to choose the type of control required for each job. This UIC is designed to 

control up to, but not limited to, four valves simultaneously. Additional valves can be 

added if an expansion of the system is required. The microcontroller has 36 possible 

control scenarios to control up to four valves. Adding more valves to the system will 
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require more power and additional lines of code to address new control scenarios, not 

including functions for manual control. Each valve position can be controlled precisely 

and the controller has LEDs showing the status of each valve, whether it is on or off. 

 

 Figure 4-25: User Interface Control (UIC) 

  

Figure 4-26: User Interface Control (UIC) – Transparent View 
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The UIC consists of the following major units: 

1. TFT LCD Touch screen display  

2. Microcontroller and main PCB board  

3. Voltage regulators/amplifier/other electronic components 

4.2.3.1  TFT LCD Touch Screen  

The display used for the prototype is a 3.2” TFT LCD touch screen module as 

seen in Figure 4-27. It is designed with a touch controller and, through a shield, is 

compatible with the Arduino MEGA, which is an open source platform. This LCD touch 

screen was selected because of its ability to perform required tasks at a reduced cost.   

 

 

Figure 4-27: Touchscreen LCD [44] 
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4.2.3.2  Microcontroller and Main PCB Board   

The Microcontroller used for the modular melt modulation prototype is the 

Arduino Mega, shown in Figure 4-28 and Figure 4-29. The Arduino is an open source 

(free to download) platform based on a simple input/output (I/O) board and a 

development environment that implements the Processing language [46]. The Arduino 

Mega has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 

analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB 

connection, a power jack, an ICSP header, and a reset button [45]. The Arduino MEGA 

board schematic can be viewed in [51]. Other Arduino tools and resources can be found 

in [52] and [53].  

 

Figure 4-28: Arduino Mega Microcontroller [45] 
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Figure 4-29: Arduino Mega - Labeled Components [45] 

The ATmega1280 has 128 KB of flash memory for storing and it allows the user 

to upload new code without use of an external hardware programmer. It communicates 

using the original STK500 protocol (C header files).  

The Mega has 54 digital pins that can be used as an input or output. Some of the 

pins have specialized functions, but all operate at 5 volts. Each pin can provide or receive 

a maximum of 40 mA and has an internal pull-up resistor of 20-50 kOhms [45]. The 

Arduino Mega can be programmed with the Arduino software that is free to download 

(http://arduino.cc/en/Main/Software). The ATmega1280 on the Arduino Mega  

The Arduino Mega can be powered by connecting to a computer with a USB 

connection or with an external power supply and the power source is selected 

automatically. External (non-USB) power source can come either from an AC-to-DC 

wall or battery. The recommended power range for the Arduino Mega is 7 to 12 volts. It 

can operate at external power source on a range of 6 to 20 volts. However, if less than 7V 
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is supplied, the 5V pin may supply less than five volts and that might cause the board to 

be unstable. Also, if more than 12V is supplied, the built-in voltage regulator may 

overheat and damage the board. For the modular melt modulation prototype, an external 

power supply (PowerMax PM3-45), shown in Figure 4-30 is used along with voltage 

regulators to regulate the voltage supplied to the microcontroller and the servo motors. 

The characteristics of the power supply used are summarized in Table 4-5. 

 

Figure 4-30: PowerMax PM3-45 – Modular Melt Modulation Power Supply 

Table 4-5: Modular Melt Modulation Power Supply  
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The Arduino platform has been selected because of the following features [47]: 

 It is a multiplatform environment. It can run on all common platforms such 

Windows, Macintosh, and Linux. 

 It is based on the Processing programming IDE, an easy-to-use development 

environment. 

 It can be programmed via a USB cable, not a serial port. This feature is useful, 

because many modern computers do not have serial ports. 

 It is open source hardware and software. This allows the user to download the 

circuit diagram, buy all the components, and make it their own, without paying 

anything to the makers of Arduino. 

 The hardware is low cost with good quality. The Mega board costs about $35 and 

replacement parts are cheap and widely available. Replacing a burnt-out chip on 

the board costs no more than $7.  

 There is a large and active community of users of Arduino, so there is plenty of 

online support available at no extra cost. 

 The Arduino Project was developed in an educational environment and is 

therefore great for newcomers to get things working quickly. 

The characteristics of the Arduino Mega board are summarized in Table 4-6. 
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Table 4-6: Modular Melt Modulation PCB Board Details 

Microcontroller ATmega1280 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits) 6-20V 

Digital I/O Pins 54 (of which 15 provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 128 KB of which 4 KB used by bootloader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

 

4.2.3.3  Control Logic  

The control logic defines the specifics of the operations and the code is embedded 

in the microcontroller. The current code allows for two modes of control; manual and 

automatic. In the manual model, each control valve is turned by a dial knob to a fixed 

angle until it is changed again. The automatic control has several program scenarios to 

control up to four valves to perform the following: 

1. Balance melt flow for Single and multi-cavity 

2. Produce high quality family molding parts 

3. Weld-line position control 

4. Packing pressure and packing time control 
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CHAPTER 5 – NUMERICAL SIMULATIONS AND INVESTIGATION OF COLD 

RUNNER INJECTION MOLDING PROCESSING PARAMETERS AND THEIR 

EFFECTS ON PRODUCT OPTICAL PROPERTIES  

 

5.1  Introduction 

This chapter investigates the effect of packing processing parameters (packing 

pressure and time) of cold runner based injection molding on the final product quality. 

Injection molding packing processing parameters have a significant impact on the 

polymer internal molecular orientation, mechanical properties and optical performance. 

Numerical simulations of common thermoplastic clear polymers have been completed 

and the results are presented herein [55].  

This study is comprised of two parts. First is numerical simulation, using 

Moldflow software, to investigate the quality of the molded product in terms of geometric 

dimension tolerance, while the second part is a set of experiments to show the variation 

of optical quality and physical strength due to different processing conditions. The 

numerical simulations presented here were completed based on a single-cavity mold. The 

experimental results are discussed in CHAPTER 7.  

The primary goal of this study was to investigate processing parameters and their 

impact on the properties of injection-molded products. The results have been used to 

establish a baseline to expand current melt modulation capabilities, including enhancing 

optical properties of clear polymers in cold runner based injection molding.  
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5.2 Materials 

The three optical polymers selected for the numerical simulation are Polymethyl 

Methacrylate (PMMA), Polycarbonate (PC), and General Purpose Polystyrene (GPPS). 

PMMA has a trade name of Plexiglas® V-920 and is manufactured by Arkema, Inc. 

Polycarbonate (PC), known as LEXAN™ 101, is manufactured by SABIC. General 

Purpose Polystyrene (GPPS) is made by Americas Styrenics and also called STYRON
®

 

685D. Table 5-1 shows some of the properties such as melt density, specific heat, and 

thermal conductivity of the materials used for simulation and testing. 

Table 5-1: Properties of PMMA, PC, and GPPS [43] 

Polymer 
Melt Density 

g/cm
3
 

Specific Heat (Cp) 

J/kg/°C 

Thermal 

Conductivity 

W/M/°C 

PMMA 

(at 246ºC) 
1.0606 2638 0.163 

PC 

(at 300ºC) 
1.0477 1900 .24 

GPPS 

(at 200ºC) 
.97096 1768 .123 

 

Dog-bone shaped parts made in accordance with ASTM D638 – Type I were used 

for this study. The geometry and dimensions of the test specimens are shown in Figure 

5-1. This figure also shows the three different nodes used for the numerical simulation 

and the experiment. Node 40, node 102, and node 178 are positioned at 17.58 mm, 84.66 

mm, and 148.76 mm away from the gate in an axial direction respectively. These three 

nodes and gate positions are used to measure volume shrinkage, deflection and other 

parameters referenced in the simulations and experimental results. 
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Figure 5-1: Gate and Nodes Position  

The injection molding machine used to conduct the experiment was a Nissei 

model PS40E5ASE. Table 5-2 lists some of the machine’s key specifications. 

Table 5-2: Nissei Injection Unit Specifications [48] 

Specification (unit) Value Specification (unit) Value 

Screw Diameter (mm) 26 Injection Rate (cm
3
/sec) 71 

Injection Capacity (cm
3
/shot) 49 Screw Stroke (mm) 92 

Plasticizing Rate (kg/hr)   22 Screw Speeds (rpm) 0-335 

Injection Pressure (kg/cm
2
) 1870 Clamp Force (ton) 40 

 

84.66 mm

17.58 mm

Gate       N40 N102 N178

148.76 mm

84.66 mm

17.58 mm

Gate       N40 N102 N178

148.76 mm

84.66 mm

17.58 mm

Gate       N40 N102 N178

148.76 mm148.76 mm
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5.3 Numerical Simulation 

The purpose of the numerical simulations studied and reported here was to 

investigate the influence of the processing parameters on weight and geometric 

dimensional quality, including shrinkage, and deflection. The analysis was performed 

using Moldflow. The simulation focused on a dog-bone shaped part molded from 

PMMA, PC and GPPS material. A 3-D model was created, along with the runner system 

and represented in Figure 5-2. The 3-D model was meshed, creating 5,245 elements 

connected by 1,029 nodes. The total volume of the dog-bone cavity and the cold runner 

system, including the sprue, are 8.1427 cm
3
 and 8.8439 cm

3
 respectively.  

 

Figure 5-2: A 3-D Meshed Model in MOLDFLOW  

To analyze the effect of each parameter, the Taguchi method with an L9 (3
4
) 

orthogonal array was used to conduct the simulation by setting four parameters to have 
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three levels each. Table 5-4 shows all corresponding levels for each parameter selected 

for L9 array in Table 5-3.    

Table 5-3: L9 (3
4
) Orthogonal Array  

Experiment A B C D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 2 3 1 

5 2 3 1 2 

6 2 1 2 3 

7 3 3 2 1 

8 3 1 3 2 

9 3 2 1 3 

 

Table 5-4: Parameters Used for Numerical Simulation  

Material Parameter Symbol Level 1 Level 2 Level 3 

PMMA 

Mold Temperature (C) A 38 58 80 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

Melt Temperature (C) D 240 260 280 

PC 

Mold Temperature (C) A 80 91 102 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

Melt Temperature (C) D 286 296 324 

GPPS 

Mold Temperature (C) A 30 45 60 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

Melt Temperature (C) B 198 219 240 
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The virtual injection molding machine in Moldflow was set up to operate with the 

actual Nissei machine parameters, shown in Table 5-2, with an injection speed 20 cm
3
/s, 

40 tons of clamping force, and velocity/pressure (V/P) switchover at 95% volume filled. 

Cooling time was set to 150 seconds to ensure complete solidification. The results were 

selected from the three different node positions illustrated in Figure 5-1. 

5.3.1 Average Volumetric Shrinkage Results 

Volumetric loss (shrinkage) is the increasing percentage of volume lost from the 

time packing phase ends until the part reaches ambient reference temperature. High 

volumetric shrinkage is a common quality problem in injection molding parts and often 

results in sink marks and voids. Also, non-uniform volumetric shrinkage may cause 

warping. The results of average volumetric shrinkage for PMMA, PC, and GPPS are 

presented in Figure 5-3, Figure 5-4, and Figure 5-5 respectively. 

 

Figure 5-3: Average Volumetric Shrinkage of PMMA (ASTM D-638 Type I ) 
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Figure 5-4: Average Volumetric Shrinkage of PC (ASTM D-638 Type I) 

 

 

Figure 5-5: Average Volumetric Shrinkage of GPPS (ASTM D-638 Type I) 
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5.3.2 Deflection Results  

Deflection is determined by the part stiffness and the level of non-uniform 

shrinkage. Common causes of warpage are non-uniform shrinkage, and unbalanced 

cooling [30] [56]. The effect of non-uniform shrinkage on warpage is minor when 

compared to unbalanced cooling. The non-uniform shrinkage can be reduced by 

increasing the packing parameters, including packing pressure and time. However, this 

can result in greater warpage from unbalanced cooling [56]. 

For this simulation, the mold temperature was set at constant without internal 

cooling lines. Thus, it can be assumed that there was no deflection from unbalanced 

cooling and the cooling rate in all simulation results was constant throughout the part. An 

overall deflection measurement is represented as the total warpage in each node. The 

Taguchi results of the total deflection in all directions for PMMA, PC, and GPPS are 

presented in Figure 5-6, Figure 5-7, and Figure 5-8 respectively.  

 

Figure 5-6: Total Deflection of PMMA - ASTM D-638 Type I (Numerical) 
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Figure 5-7: Total Deflection of PC - ASTM D-638 Type I (Numerical) 

 

Figure 5-8: Total Deflection of GPPS - ASTM D-638 Type I (Numerical) 
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5.3.3 Weight  

Part final weight is a critical quality property, especially for small components 

used in aerospace and electronics applications. The Final weight simulation results of all 

three transparent materials are shown in Figure 5-9.  

 

Figure 5-9: Final Part Weight - ASTM D-638 Type I (Numerical) 
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5.4 Discussion 

The results presented here clearly show that processing parameters significantly 

impact the properties of molded product. Parameters such as melt and mold temperature 

can have a direct impact on the final properties and quality of the molded product. Higher 

temperature provides the melt flow more relaxation time before it solidifies. Longer 

relaxation time leads to material with less residual stresses, less birefringence, and less 

retardation. On the other hand, higher temperatures may degrade the material and lead to 

a weaker part as well as inducing more volume loss (shrinkage) and deflection. 

Other parameters such as packing pressure and packing time also affect product 

quality. Increasing packing parameters tends to reduce volume loss (shrinkage) and 

deflection. However, it increases the product final weight. In addition, increasing packing 

pressure and packing time causes higher molecular orientation, which is evidenced 

through higher birefringence and optical retardation. Products with higher molecular 

orientation in the flow direction exhibit higher tensile strengths. On the contrary, high 

birefringence causes poor optical characteristics such as haze or focal blur.  

Similar investigation has been conducted using the melt modulation technique to 

analyze the impact of modulating the melt flow and the packing pressure on optical and 

physical properties of cold runner based injection-molded products. The numerical 

simulations results are detailed in the next chapter. 
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CHAPTER 6 – NUMERICAL ANALYSIS AND INVESTIGATION OF MELT 

MODULATION CONTROL AND ITS EFFECT ON COLD RUNNER 

INJECTION MOLDING PACKING PARAMETERS AND FINAL PRODUCT 

QUALITY 

 

6.1  Introduction 

Transparent polymers with good optical properties are commonly used for plastic 

optics applications. The most widely used polymers are Polymethyl Methacrylate 

(PMMA) and Polycarbonate (PC) due to their excellent optical properties, lighter weight, 

lower cost and higher impact resistance when compared with glass.  

There are two main factors that can significantly affect the quality of clear plastic 

materials. First is birefringence, and the second is geometric dimension changes from the 

desired shape. High birefringence can cause poor optical characteristics such as haze or 

focal blur. Major dimensional problems that could occur in injection molded optics are 

shrinkage, warpage, and surface quality. The shape quality of molded optics depends 

primarily on the processing parameters of the injection molding cycle, including melt 

temperature, mold temperature, packing pressure, and packing time. 

The primary goal of this study is to investigate the impact of melt modulation on 

optical and physical properties of cold runner based injection-molded products. The melt 

modulation technique has been be implemented to control the packing processing 

parameters (packing pressure and packing time), and determine the optical quality in 

terms of both precision of geometric dimensions and optical birefringence. Numerical 

simulations of common thermoplastic optical polymers, using the melt modulation 

technique, have been performed to investigate the quality of the molded part in terms of 
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geometric dimension tolerance. The results provided a baseline to expand current melt 

modulation capabilities to enhance optical properties of clear polymers [65]. The optical 

briefings results are discussed in CHAPTER 7. 

6.2 Materials 

Three common optical polymers were chosen for the numerical simulation; 

Plexiglas
®
 V920 (PMMA), LEXAN™ 101-111 (PC), and STYRON

®
 685D (GPPS). 

Table 5-1 shows key properties such as melt density, specific heat, and thermal 

conductivity of the materials used for simulation and testing. 

Dog-bone shaped parts made in accordance with ASTM D638 – Type IV have 

been used for this study. The geometry and dimensions of each dog-bone cavity are 

presented in Figure 6-1. 

 

 

Figure 6-1: Gate and Nodes Position ASTM D638 – Type IV 
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6.3 Numerical Simulation 

The virtual injection molding machine in Moldflow was set up to operate with the 

actual parameters of the Nissei injection molding machine as shown in Table 5-2. Three 

packing pressure values were selected for the numerical simulation; 55MPa, 82.5MPa, 

and 110MPa, which represents 30%, 45% and 60% of the maximum pressure of the 

Nissei machine respectively. An injection rate of 35cm
3
/s was set to a packing time of 15 

seconds, a clamping force of 40 tons, and V/P switchover at 95% volume filled. Cooling 

time was set to 150 seconds to ensure complete solidification of the part. The processing 

parameters have been set according to the values listed in Table 6-1.  

Table 6-1: Recommended Processing Conditions for PMMA, PC and GPPS [58]-[60] 

Processing 

Parameter 
Unit 

PMMA 

(Plexiglas
®
 V920) 

PC  

(LEXAN™ 101) 

GPPS 

(STYRON
® 

685D) 

Barrel Zone 1 

Temperature (Feed) 
C 204 290 - 310 200 - 215 

Barrel Zone 2 

Temperature (Middle) 
C 210 300 - 320 215 - 230 

Barrel Zone 3 

Temperature (Front) 
C 216 310 - 330 230 - 245 

Nozzle  Temperature C 210 305 - 325 230 - 245 

Mold Temperature  C 65 - 85 80 - 115 15 - 65 

Melt Temperature  C 240 - 280 310 - 330 193 - 232 

Back Pressure              MPa 0.7 – 1.4 0.3 - 0.7 0.2 – 1.5 

Injection Pressure             

(% of Maximum) 
% 50 50 50 

Screw Speed RPM 50 - 100 40 - 70 Medium - High 

Molding Shrinkage  % 0.4 - 0.7 0.5 – 0.7 0.3 - 0.7 

 

 



 111 

The study was performed using Autodesk Simulation Moldflow. 3-D models with 

parabolic runners and fan gates were created and imported into Moldflow as illustrated in 

Figure 6-2.  

 

Figure 6-2: A 3-D Meshed Model in MOLDFLOW 

Three analyses have been conducted to complete this study. The first analysis is to 

determine the optimal location of the control valves in the runner. The second analysis is 

to investigate the effect of the melt modulation technique on product quality. The results 

include the pressure drop across the valve at different valve angles with varied packing 

pressure, the average volume shrinkage percentage, and the total deflection of the final 

product. The last analysis evaluates the shear rate of the three polymers as a result of 

turning the control valve. 

The model used for the study has two pressure sensors. Figure 6-3 shows the 

location of each pressure sensor. The first pressure transducer (P1) is located near the 

sprue. The second pressure transducer (P2) is positioned near the gate.   



 112 

 

Figure 6-3: Pressure Transducer Positions 

6.3.1 Control Valve Optimal Location 

This analysis was completed to establish an optimal location for the control 

valves. Four numerical simulations were completed, one simulation for each control 

valve location. Since the model was symmetrical, only one side was used for the analysis. 

Four possible control valve locations have been considered, and they are shown in Figure 

6-4. The first location is nearest to the sprue. Since a pressure transducer is required to be 

installed between the control valve and the sprue, the first valve was located about 

25.4mm (1.0”) away from the sprue. The second control valve was positioned at 50.8mm 

(2.0”) away from the sprue. The third location was between the sprue and the gate. The 

last valve was located near the gate.    
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Figure 6-4: Four Possible Valve Locations 

6.3.2 Melt Modulation Effect on Optical and Physical Properties 

Since it is not feasible to analyze a transient process in Moldflow, such as turning 

the control valve during each simulation cycle, three separate models with different 

control valve angles were created; θ = 0˚, θ = 33.75˚, and θ = 67.5˚, as shown in Figure 

6-5. In the first case, θ = 0˚, the control valves are fully open and there is 100% flow 

through the runner, and this one is referred to as the “100% model”. In the second 

scenario, one control valve is completely closed through the filling and packing cycle 

while the other is partially closed with 62.5% melt flow through the runner or a control 

valve angle (θ) of 33.75˚. This one is denoted in the analysis as the “62.5% model”. The 

reason for keeping one valve fully closed throughout the cycle is to avoid unbalanced 

filling during filling phase.  
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Figure 6-5: Runner System and Control Valve Positions 

(a) 100% model (fully open)     (b) 62.5% model (partially closed)     (c) 25% Model (near closed) 

 

The valve range of operation is from 0˚ to 90˚ relative to the runner center line. 

However, to avoid discontinuity in the runner system and high shear rate, it is desirable to 

restrict the control valve so that it returns to a position that is less than 90˚ during the 

packing phase. As a result, the control valve maximum range during packing stage has 

been limited to an angle, θ, of 67.5˚. This is illustrated in Figure 6-5(c) and is referred to 

as near closed position or the “25% model”. In this case, there is only 25% flow through 

the runner. Table 6-2 summarizes the three valve positions used for the numerical 

simulations. Also, the geometry of the control valve is concentric. The parameters of the 

eccentric valve port used for this study are listed in Table 6-3.   

Table 6-2: Control Valve Parameters 

Parameters θ
1
 θ

2
 θ

3
 

Control Valve Angle 0° 33.75° 67.5° 

Valve Flow 100%  62.5% 25% 

Valve Position Fully 

Open 

Partially-Closed Near-Closed 
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Table 6-3: Parameters of Eccentric Valve Port 

Parameter (units) Values 

Valve Radius, R (in) 0.125 

Half of Runner Width, r (in) 0.0825 

Offset Distance, s (in) 0.02 

Range of Operating Angle, θ (degree) 90 

Curvature l1  (in) 0.293 

Curvature l2  (in) 0.149 

Valve Seating distance, α (in) 0.0225 

 

All models were meshed using 3D tetrahedral elements to achieve the most 

accurate results. For the fully open valve position (100% model), a 0.7 mm global edge 

length was applied. The total meshed tetras were 547,642 elements connected by 108,465 

nodes. The partially closed valve model, Figure 6-5(b), has total meshed tetras of 379,836 

elements and 72,410 connected nodes with a 0.5 mm global edge length. Last, the model 

for the near close valve position (25% model) has a 0.2 mm global edge length and 

310,891 elements connected by 61,012 nodes.  

6.3.3 Shear Rate Analysis 

When the control valve is near the closed position, the maximum melt flow 

restriction has been reached. To determine of whether this flow restriction causes any 

degradation, the maximum shear rate had to be examined. Although the whole part was 

examined for excessive shear rate, the main focus was on the local areas where the 

control valve is located. The analysis evaluates the shear rate of the three different control 
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valve models while subjected to three different packing pressures; 55MPa, 82.5MPa, and 

110MPa, which represents 30%, 45% and 60% of the maximum pressure of the Nissei 

machine respectively.  

6.4 Results and Discussion 

The data presented in the following sections contain results of the pressure drop 

across the valve, the average volumetric shrinkage, the maximum deflection (warpage) of 

three different clear polymers, and the maximum shear rate at and around the control 

valve.   

6.4.1 Pressure Drop across the Valve 

This analysis determined the pressure drop across the valve with respect to several 

control valve locations, various control valve angles and different packing pressures. The 

pressure drop across the valve, ∆P, is calculated by subtracting P2 from P1. The first 

location, P1, is in the runner near the sprue and the second location, P2, is located just 

before the gate as illustrated in Figure 6-3.   

6.4.1.1  Different Valve Locations  

When the valve is fully open, there is little or no pressure drop across the valve. 

As the valve begins to turn, the pressure drop increases until the cycle reaches the end of 

the packing stage. In order to determine an optimal location for the control valve, the 

pressure drop across the valve at four possible locations was calculated from pressure 

data obtained from Moldflow. The numerical simulations were performed at two different 

packing pressures, 30% and 60% of the machines’ maximum packing pressure 
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respectively. Since all three selected polymers have similar behavior, only STYRON
®

 

685D (GPPS) material was considered for the multi-valve location analysis and the 

control valve was set at the near closed-position (θ3 = 67.5°). The results for the 30% of 

the maximum packing pressure are shown in Figure 6-6.  

 

Figure 6-6: GPPS - ΔP across the Valve at Different Locations (30% Max Packing Pressure) 
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Figure 6-7: GPPS - ΔP across the Valve at Different Locations (60% Max Packing Pressure) 

According to results, locations 1 and 4 have similar and higher pressure drop than 

the other two locations. When the packing pressure was set to 55Mpa, location 1 (nearest 

to the sprue) recorded the highest pressure drop throughout the filling cycle and most of 

the packing pressure phase. This indicates that location 1 has better packing pressure 

control and is therefore more effective in terms of final part quality control. This makes 

the first valve location more desirable than the other three. However, when the packing 

pressure was doubled, location 4 showed slightly higher packing pressure than location 1. 

Since it is more practical to have the pressure transducer near the sprue for the modular 

melt modulation system, valve location 1 was selected.  
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6.4.1.2  Different Valve Angles  

The data presented here is for all the three different control valve models (25%, 

62.5% and 100%) as a function of time from the beginning of the filling cycle (0.4 

second) until the end of packing phase (15 second). The results for PMMA, PC and 

GPPS can be seen in Figure 6-8, Figure 6-9, and Figure 6-10 respectively. The numerical 

simulation was based on 110MPa packing pressures (60% of the machines’ maximum 

packing pressure), and valve location 1. These results show the effects valve angle 

changes on the pressure drop across the valve. Increasing the control valve angle restricts 

the melt flow through the runner and also causes higher pressure drop. The highest 

pressure drop is seen near the close position of the valve (25% model).  

 

 

Figure 6-8: PMMA - Pressure Drop across Three Different Angles 
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Figure 6-9: PC - Pressure Drop across Three Different Angles 

 

 

Figure 6-10: GPPS - Pressure Drop across Three Different Angles 
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6.4.1.3  Different Packing Pressure  

The pressure drop across the valve at location 1 as a function of time was 

analyzed using three different packing pressures. For this analysis, the near-closed 

control valve position (25% model) was selected. The results for PMMA, PC and GPPS 

are illustrated in Figure 6-11, Figure 6-12, and Figure 6-13. According to the results, the 

pressure drop can be amplified by increasing the packing pressure. From the simulation 

results, cavity filling lasted for about 0.4 second. The lowest pressure drop is seen at a 

packing pressure of 55MPa (30% of the maximum pressure of the Nissei machine), 

followed by a packaging pressure of 82.5MPa. The simulation results were obtained from 

valve location 1. 

 

Figure 6-11: PMMA - Pressure Drop across the Valve at Two Different Levels of Packing Pressures 
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Figure 6-12: PC - Pressure Drop across the Valve at Two Different Levels of Packing Pressures 

 

Figure 6-13: GPPS - Pressure Drop across the Valve at Two Different Levels of Packing Pressures 
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6.4.2 Average Volumetric Shrinkage Results 

Volumetric loss (shrinkage) is the increasing percentage of volume lost from the 

time the packing phase ends until the part reaches ambient reference temperature. High 

volumetric shrinkage is a common quality problem in injection molding parts and often 

results in sink marks and voids. Also, non-uniform volumetric shrinkage may cause 

warping. The results of average volumetric shrinkage for PMMA, PC, and GPPS from 

this numerical simulation are were selected from node 3.  

6.4.2.1  Different Valve Locations 

The numerical simulation was performed at two different packing pressures, 30% 

and 60% of the machines’ maximum packing pressure. STYRON
®

 685D (GPPS) 

material was selected for the multi-valve location analysis and the control valve was set 

at the near closed-position (θ3 = 67.5°). The results of the 30% and 60% of maximum 

pressure can be seen Figure 6-16 and Figure 6-15 respectively.   

According to results, the volume shrinkage had a very small variation (less than 

1%) within all four locations. When the packing pressure was set to 30% of the maximum 

packing pressure, as illustrated in Figure 6-16, locations 1 showed volume shrinkage of 

6%, which is the highest recorded. Location 2 had the lowest volume shrinkage of 5.55%. 

The difference between the highest and lowest volume shrinkage is less than 0.5%, which 

is very small.  
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Figure 6-14: GPPS-Average Volume Shrinkage at different Locations (30% max packing pressure) 

When the packing pressure was doubled to 60% of the maximum pressure, as 

shown in Figure 6-15, the average volume shrinkage was nearly cut in half. Location 1 

initially had the highest volume shrinkage, but it was reduced from 3.4% to 3% at the end 

of the packing cycle. Location 2 still showed the lowest final volume shrinkage of 2.75%. 

However, since the difference is less than 0.25%, other factors must be taken into 

consideration prior to selecting the best valve location.  
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Figure 6-15: GPPS- Average Volume Shrinkage at different Locations (60% max packing pressure) 

6.4.2.2  Different Valve Angles 

Any change in the control valve angle that leads to restrictions in melt flow or 

packing pressure has an impact on the final shrinkage of the injection molded product.  

Results showing the average volume shrinkage of three different valve angles at node 3 

as a function of the valve angle at the end of packing phase are illustrated in Figure 6-16, 

Figure 6-17, and Figure 6-18. This numerical simulation was performed on PMMA, PC 

and GPPS at three different packing pressures (30%, 45% and 60% of the machines’ 

maximum packing pressure). All results were obtained from valve location 1.  

According to the results obtained from Moldflow, there is a direct relationship 

between volume shrinkage and valve angle. Restricting melt flow and packing pressure 
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increases the average volume shrinkage on the part. Also, changing the packing 

processing parameters can impact the volume shrinkage.   

 

Figure 6-16: Average Volume Shrinkage Results at Node 3 vs. Model % (Valve Angle)  
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Figure 6-17: Average Volume Shrinkage Results at Node 3 vs. Model % (Valve Angle)  

 

Figure 6-18: Average Volume Shrinkage Results at Node 3 vs. Model % (Valve Angle)  
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6.4.2.3  Different Packing Pressure  

Another variable that can affect volume shrinkage is packing pressure. The results 

of the average volume shrinkage for all three different valve angles at node 3, as a 

function of packing pressure at the end of packing phase are shown in Figure 6-19, Figure 

6-20, and Figure 6-21. The numerical simulation was performed for PMMA, PC and 

GPPS at three different valve angles (25%, 62.5% and 100% models). The results were 

also obtained from valve location 1.  

The results show an inverse relationship between average volume shrinkage and 

packing pressure. When keeping the valve angle constant, the average volume shrinkage 

was reduced as a result of increasing the packing pressure.  

 

Figure 6-19: Average Volume Shrinkage Results at Node 3 vs. Packing Pressure  
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Figure 6-20: Average Volume Shrinkage Results at Node 3 vs. Packing Pressure  

 

 

Figure 6-21: Average Volume Shrinkage Results at Node 3 vs. Packing Pressure  
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6.4.3 Deflection Results  

The deflection results were obtained from three different numerical simulations. 

The first simulation examines maximum deflection at four different valve locations. The 

second simulation evaluates the impact of changing the valve angle at constant packing 

pressure on both the deflection of each node and the maximum deflection. The final 

simulation assesses the relationship between packing pressures on the warpage of the 

final part.  

Total deflection results have been selected from three different positions: node 1, 

node 2, and node 3 positioned at 13.63 mm, 57.64 mm, and 100.52 mm away from the 

gate in an axial direction, respectively. Maximum deflection results have been obtained 

from node 3 only. 

6.4.3.1  Different Valve Locations 

This analysis was performed using only GPPS material and a control valve angle 

of 67.5º (25% model). The simulations were completed for all four valve locations at 

30% and 60% of maximum packing pressure. The maximum deflection results are shown 

in Figure 6-22 and Figure 6-23, and they represent the maximum value of warpage or 

deflection at node 3 over time. It can be seen that as the packing pressure increases, 

maximum deflection (warpage) is decreased. Location 1 shows the least warpage 

followed by location 4. Location 2 leads to the highest warpage on the final part. 
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Figure 6-22: Maximum Deflection - Different Valve Locations, 30% Max Packing Pressure (GPPS) 

 

Figure 6-23: Maximum Deflection - Different Valve Locations, 60% Max Packing Pressure (GPPS) 
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6.4.3.2  Different Valve Angles 

Two numerical simulations have been performed on three clear polymers at valve 

location 1. The objective of the first analysis was to study the impact of turning the 

control valve at constant packing pressure (110MPa) on the deflection of each node. The 

deflection results of PMMA, PC, and GPPS are presented as the warpage in each of the 

three nodes, and they are shown in Figure 6-24, Figure 6-25, and Figure 6-26. It can be 

seen that as the control valve angle is increased, the total deflection (warpage) is reduced. 

Having the control valve at the near close position (θ = 67.5º, 25% model) shows the 

least deflection or warpage.  

 

 

Figure 6-24: Deflection - Different Valve Positions at 110MPa (PMMA) 

 



 133 

 

Figure 6-25: Deflection - Different Valve Positions at 110MPa (PC) 

 

Figure 6-26: Deflection - Different Valve Positions at 110MPa (GPPS) 
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In the second simulation, the focus is only on the maximum warpage (deflection 

at node 3) with respect to changing the valve angle at three different constant packing 

pressures. The simulation results were also based on valve location 1. The maximum 

deflection results of PMMA, PC, and GPPS are illustrated in Figure 6-27, Figure 6-28, 

and Figure 6-29. The results show that having the valve at the fully open position (100% 

model) produces the highest warpage. The near close position (25% model) shows the 

least deflection or warpage. 

 

Figure 6-27: Maximum Deflection at Different Valve Positions (30% of Max Packing Pressure) 
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Figure 6-28: Maximum Deflection at Different Valve Positions (45% of Max Packing Pressure) 

 

Figure 6-29: Maximum Deflection at Different Valve Positions (60% of Max Packing Pressure) 
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6.4.2.3  Different Packing Pressure  

This analysis focusses on studying the effect of changing the packing pressure on 

the deflection of node 3 (maximum warpage) of PMMA, PC, and GPPS materials at a 

constant valve angle and valve location 1. The results showing the influence of packing 

pressure on maximum deflection at fixed valve position are presented in Figure 6-30, 

Figure 6-31, and Figure 6-32. The results show that as the packing pressure increases, the 

maximum deflection (warpage) is reduced.  

 

Figure 6-30: Maximum Deflection at Different Packing Pressure (25% Model) 
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Figure 6-31: Maximum Deflection at Different Packing Pressure (62.5% Model) 

 

Figure 6-32: Maximum Deflection at Different Packing Pressure (100% Model) 
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6.4.4 Shear Rate  

The shear rate of PMMA, PC, and GPPS materials at a valve location 1 and at 

different packing pressure and valve angles have been analyzed and summarized in Table 

6-4. According to the results, the highest shear rates were observed when the valve is 

near closed position with 110MPa packing pressure.  

Table 6-4: Shear Rate of PMMA, PC and GPPS at different Valve Angles and Packing Pressure 

 

30% Packing Pressure 45% Packing Pressure 60% Packing Pressure 

Valve 

Position PMMA PC GPPS PMMA PC GPPS PMMA PC GPPS 

100% 4461 3631 3484 7012 3925 3673 11022 4536 4425 

62.5% 14067 15745 13065 18650 17090 14319 19229 14504 14112 

25% 19773 19850 17174 20176 20580 18062 22237 23225 19019 

 

 

The shear rate results of the three clear polymers were sufficiently close enough 

to each other. The maximum shear rate contours of PMMA, PC, and GPPS using the 25% 

valve model and 60% of the machine’s maximum packing pressure are shown in Figure 

6-33, Figure 6-34, and Figure 6-35 respectively. The maximum shear rate results were 

slightly higher than 20,000 1/sec for PMMA and PC materials.  
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Figure 6-33: Shear Rate Contours – PMMA at 60% of Maximum Packing Pressure (25% Model) 

 

Figure 6-34: Shear Rate Contours – PC at 60% of Maximum Packing Pressure (25% Model) 
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Figure 6-35: Shear Rate Contours – GPPS at 60% of Maximum Packing Pressure (25% Model) 

High shear rate can cause material degradation, especially if additives have been 

added. Since no additives were included, the desired shear rate target was under 40,000 

1/sec for all of the three materials. The highest shear rate recorded was 23,225 1/sec for 

Polycarbonate material. Lower injection and packing pressures usually produce lower 

shear rate and shear stress levels. If additives were added and the desired shear rate 

dropped below 20,000 1/sec for all three materials, either the packing pressure has to be 

decreased or the injection time must be increased to reduce the shear rate.  

The simulation results of the shear rates as a function of valve angle at 55MPa 

and 110MPa constant pressures are shown in Figure 6-36 and Figure 6-37 respectively.  
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Figure 6-36: Shear Rate vs. Valve Angle at 30% of Maximum Packing Pressure 

 

Figure 6-37: Shear Rate vs. Valve Angle at 60% of Maximum Packing Pressure 
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The results of the shear rate as a function of maximum packing pressure is 

presented in Figure 6-38. 

 

Figure 6-38: Shear Rate vs. Packing Pressure (25% Model) 

 

 

 The next chapter details the experimental results of the effect of different packing 

processing conditions on optical quality and part physical strength. It also demonstrate 

the impact of the melt modulation technique on the geometrical quality of the injection 

molded part and its birefringence.  
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CHAPTER 7 – EXPERIMENTAL RESULTS  

In order to demonstrate the effectiveness of melt modulation control on product 

optical and physical properties, a series of experiments have been conducted.  

7.1  Introduction 

The melt modulation technique has been implemented to control the packing 

parameters and to determine optical quality in terms of both precision of geometric 

dimensions and optical birefringence. These results have helped expand current melt 

modulation capabilities to enhance optical properties of clear polymers in cold runner 

based injection molding. The primary goal of the experiments was to investigate the 

processing parameters and their impact on the properties of injection-molded products 

and to validate the use of the melt modulation system. 

This chapter details the results of two experiments. The first experiment showed 

results of the effect of different packing processing conditions on optical quality and part 

strength. The second experiment test demonstrated the impact of the melt modulation 

technique on the geometrical quality of the injection molded part and its birefringence.  

7.2 Materials 

The same clear polymers used in chapter 6 were selected for the experiments; 

Polymethyl Methacrylate Plexiglas
®
 V-920 (PMMA), Polycarbonate LEXAN™ 101-111 

(PC), and STYRON
®
 685D (GPPS).  
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The test specimens used to for the first set of experiments were dog-bone shaped 

standard tensile test specimens (ASTM D638 – Type I). The geometry and dimensions of 

test specimens is presented in Figure 5-1.  

The second set of experiments incorporates the modular melt modulation system. 

Since the size of the mold insert was smaller, ASTM D638 – Type IV dog-bone shaped 

test specimens were selected for testing. Type VI test specimens have similar geometry to 

type I but are smaller.  The geometry and dimension of the specimens used are identical 

to Figure 6-1 but without gates. Since the melt modulation valves were incorporated, the 

control valves replace the need for gates.   

7.3 Experimental Results 

A series of experimental were performed to investigate the effect of the melt 

modulation technique on cold runner injection molding parts. The injection molding 

machine used to conduct the experiment was a Nissei model PS40E5ASE, and the 

machine’s specifications summarized in Table 5-2. The injection molding machine was 

set up to an injection speed 20 cm
3
/s, 40 tons of clamping force, and velocity/pressure 

(V/P) switchover at 95% volume filled. Cooling time was set to 15 seconds.  The first 

testing was conducted to validate the simulation results obtained from Moldflow in 

CHAPTER 5. The second experimental results validate the impact the melt modulation 

technique has on final product quality. The recommended processing conditions for all 

three resins used for the experiments are summarized in Table 6-1.  
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7.3.1 Packing Processing Parameters Experimental Results  

The Taguchi method used for the experiment with L9 (3
3
) orthogonal array and 

included three parameters only: mold temperature, packing pressure, and packing time. 

The melt temperature was not included in the experiment processing parameters for two 

reasons: First, it takes time to heat up and cool down polymer melt in cold-runner 

injection molding machines, so it is not possible to change the melt temperature rapidly. 

Second, having the molten polymer sit in a barrel for an extended period of time until the 

melt temperature reaches the requested value is undesirable as it may overheat the 

polymer and cause melt degradation.  

The ASTM D638 – Type I dog-bone specimens were molded according to the 

processing parameters listed in Table 7-1. For each processing condition, samples were 

selected after the machine was running for at least ten cycles. These parameters are 

consistent with the parameters used in the Moldflow simulations. The only change was 

that the cooling time was reduced to 15 seconds, which is sufficient for the molten 

polymer to completely solidify. The levels of each parameter selected for the experiment 

and the modified L9 array are shown in Table 7-2.   
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Table 7-1: Experimental Processing Parameters  

Material Parameter Symbol Level 1 Level  2 Level 3 

PMMA 

Mold Temperature (C) A 38 58 80 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

PC 

Mold Temperature (C) A 80 91 102 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

GPPS 

Mold Temperature (C) A 30 45 60 

Packing Pressure (MPa) B 30 75 120 

Packing Time (s) C 2 8 15 

 

Table 7-2: Modified L9 (3
3
) Orthogonal Array  

Experiment A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 2 3 

5 2 3 1 

6 2 1 2 

7 3 3 2 

8 3 1 3 

9 3 2 1 
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7.3.1.1  Birefringence  

Birefringence of the ASTM D638 – Type I dog-bone specimens was analyzed 

using a polarimeter (PF-100SF). The specimens were observed through a green 570 nm 

band-pass filter for better clarity. The birefringence results from Taguchi L9 method of 

nine experiments for all three translucent materials are presented in Figure 7-1, Figure 

7-2, and Figure 7-3. The birefringence is not visible for Polymethyl Methacrylate 

(PMMA). 

 

Figure 7-1: GPPS Birefringence Result from Taguchi L9 Method (ASTM D638 – Type I) 
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Figure 7-2: PC Birefringence Result from Taguchi L9 Method (ASTM D638 – Type I) 
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Figure 7-3: PMMA Birefringence Result from Taguchi L9 Method (ASTM D638 – Type I) 
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The samples from each experiment were collected and used to calculate 

retardation from equation (3-8). The retardation plots from nine experiments for GPPS 

and PC are shown in Figure 7-4 and Figure 7-5. The linear distance measured from the 

gate position is represented by the horizontal axis. 

Retardation results show significant variation between each experiment. To show 

the effect of the packing parameters on retardation, the maximum value of retardation of 

GPPS and PC from each experiment was collected to generate Taguchi plot as shown in 

Figure 7-6 and Figure 7-7. 

 

Figure 7-4:  Retardation Plot - GPPS (ASTM D638 – Type I) 
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Figure 7-5:  Retardation Plot – PC (ASTM D638 – Type I)  

 

Figure 7-6: Taguchi Plot of Maximum Retardation - GPPS (ASTM D638 – Type I) 
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Figure 7-7: Taguchi Plot of Maximum Retardation – PC (ASTM D638 – Type I) 

 

7.3.1.2  Tensile Test  

From each material and experiment, five ASTM D638 – Type I dog-bone 

specimens were tested to different processing conditions using MTI Phoenix tensile test 

machine with a load cell capacity of 10,000 lbs. to investigate their strength. The results 

for the average maximum tensile load of GPPS, PC and PMMA are shown in Figure 7-8, 

Figure 7-9, and Figure 7-10 respectively. The results of the average maximum tensile 

stress of GPPS, PC and PMMA are illustrated in Figure 7-11, Figure 7-12, and Figure 

7-13 respectively. 
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Figure 7-8: GPPS - Average Maximum Tensile Load (ASTM D638 – Type I) 

 

Figure 7-9: PC - Average Maximum Tensile Load (ASTM D638 – Type I) 
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Figure 7-10: PMMA - Average Maximum Tensile Load (ASTM D638 – Type I)  

 

Figure 7-11: GPPS - Average Max Tensile Stress (ASTM D638 – Type I)  
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Figure 7-12: PC - Average Max Tensile Stress (ASTM D638 – Type I)  

 

Figure 7-13: PMMA - Average Max Tensile Stress (ASTM D638 – Type I)   
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7.3.2 Melt Modulation Experimental Results  

The following experiments have been conducted to demonstrate the ability of the 

modular melt modulation to control the packing parameters; and hence, impact the final 

product quality. This has been accomplished by manipulating the packing parameters 

during an injection molding cycle using the modular melt modulation system. The 

modular melt modulation system experiments included testing of three different packing 

control routines; packing pressure, packing time, and valve angle control. Since the three 

transparent materials have had similar performance in previous testing, only STYRON® 

685D (GPPS) was selected for these experiments [58]. The Nissei injection molding 

machine model number PS40E5ASE with the specifications in Table 5-2 was used for the 

experiments with the recommended processing conditions from Table 6-1 and level 2 

from Table 7-1 unless otherwise noted. The mold insert used for the following three 

experiments has a two cavity configuration and is shown in Figure 7-14 

 

Figure 7-14: ASTM D638 – Type IV Mold Insert Used for Experiments 
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The packing profile of the injection molding machine has a two-level step 

function, each with full range from 0%-100% of maximum packing pressure the machine. 

Prior to conducting each experiment, the two cavities were initially filled to about 95% of 

their total volume at zero packing pressure. This was achieved by shutting off valves 2 

and 3; while keeping valves 1 and 4 fully open. After that, packing pressures for level 1 

and level 2 were increased equally until the two cavities were completely filled. This 

established the lower limit for the packing pressure required for the experiments. To 

establish the upper limit of the packing pressure required, both levels 1 and 2 were 

increased equally until the cavities began to flash (excess polymer). After defining the 

packing pressure range for the experiments valve 1 remained open and valve 4 was being 

controlled throughout the following experiments. 

7.3.2.1  Packing Pressure Control  

To manufacture parts with different packing pressure profiles, the operating 

control valves must have different angular positions. In this experiment, the packing 

pressure has been restricted by turning only one valve at a constant packing time. Since 

only two cavities were tested, valves 2 and 3 were closed throughout the entire injection 

molding cycle. Valve 1 remained open during the entire injection molding cycle, while 

valve 4 was closed during the packing phase only. The birefringence and tensile test 

results have been obtained for each cavity. Figure 7-15 illustrates the birefringence of 

each cavity.  
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7.3.2.2  Packing Time Control  

Similar to the process of controlling packing pressure, packing time control is 

applied at the end of the filling cycle at constant packing pressure for a specific time. In 

this experiment, the processing parameters of level 2 from Table 7-1 have been used. The 

packing time control was applied on valve 4 after 2 seconds from the time the injection 

cycle began. During a series of 10 parts made, the average injection molding time was 

1.36 seconds. The experiment started with valve 1 fully open throughout the cycle and 

valve 4 was shutting off for 8 seconds. Valves 2 and 3 were remained closed. The 

birefringence results of each cavity are shown in Figure 7-16. 

7.3.2.3  Valve Angle Control  

Another useful method to measure the effect of melt modulation technique on 

packing parameters is to vary the angle of one of the valves at constant packing pressure 

and time. However, rather than shutting off valve 4 completely as in the previous tests, 

the valve angle was set to 45ᵒ during the packing phase. Valves 2 and 3 were closed, 

while valve 1 remained open during the entire injection molding cycle. The birefringence 

results of the valve angle control of each cavity can be seen in Figure 7-17. 

The results for average maximum tensile load and stress for both cavities with 

respect to all the three control methods were also recorded and shown in Figure 7-18 and 

Figure 7-19 respectively. 
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Figure 7-15: Birefringence - Cavity #1 vs. Cavity #2 (Packing Pressure Control) 
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Figure 7-16: Birefringence - Cavity #1 vs. Cavity #2 (Packing Time Control) 
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Figure 7-17: Birefringence - Cavity #1 vs. Cavity #2 (Valve Angle Control) 
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Figure 7-18: Average Maximum Tensile Load - Cavity #1 vs. Cavity #2 (All Control Methods) 

 

Figure 7-19: Average Max Tensile Stress - Cavity #1 vs. Cavity #2 (All Control Methods) 
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7.4 Discussion 

The experimental results clearly show that processing parameters significantly 

affect the properties of injection molding products. Mold temperature, packing pressure 

and packing time can impact the final quality of the molded product. Increasing packing 

processing parameters tends to increase the molecular orientation, which is evidenced 

through higher birefringence and optical retardation. It also increased part tensile 

strength. Of the three clear polymers, STYRON
®

 685D (GPPS) had higher birefringence 

and more variations in optical retardation than Polycarbonate LEXAN™ (PC). 

Polymethyl Methacrylate Plexiglas
®
 V-920 (PMMA) showed no visible birefringence.  

In the second set of experiments, the results showed that turning the control valve 

to restrict packing pressure can have a direct influence on the properties of cold runner 

injection molding parts. Two cavities were tested under the same conditions with one 

exception, valve angle. The first cavity (cavity 1) had full melt flow and packing since 

the valve was open during the whole injection molding cycle. The second cavity (cavity 

2) had full melt flow but with restricted packing parameters, where the valve was either 

completely closed or restricted to 45ᵒ angle for a specific duration of packing time.  The 

results showed that the first cavity consistently exhibited higher birefringence than the 

second cavity. The birefringence of the second cavity increased under angle control 

because there was packing pressure passing through the valve.  

In terms of physical properties, the second cavity demonstrated lower tensile 

strength and tensile stress than the first cavity. This is due to the pressure drop across the 

valve caused by either closing the control valve or restricting it. When comparing all 
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three control methods, angle control generated parts with higher tensile strength and 

stress than the other two control methods. That is because packing pressure passed 

through the valve. Packing time control showed slightly higher tensile strength than 

packing pressure control. This is due to the fact that the valve was kept shut for a shorter 

period of packing time than the packing pressure control.       

The new melt modulation system has been validated analytically and 

experimentally in the lab. However, it still has to be endorsed in the market place. The 

next chapter discusses the market research and the product feasibility for 

commercialization as well as presenting several financial case studies for the modular 

melt modulation system. 
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CHAPTER 8 – MARKET ANALYSIS  

The melt modulation technology has been proven to work well in the lab. It has 

provided possibilities that were not previously available for cold runner injection molding 

machines. However, it still has to be validated in the market place. There are many early- 

and mid-stage academic discoveries that have worked well in lab, but never successfully 

made it to the market place. In order for a technology to make it in a market place, it has 

to meet a specific need or fulfill a poorly addressed application. Success with such 

innovation requires a good understanding of the technical and business fundamentals that 

govern their application. Even then, the risk of falling under the term “Technical success 

and Commercial Failure” is still high. According to Greg Stevens, president of 

WinOvations, a new product research and consulting firm in Midland, Michigan, only 2 

products are launched out of every 3,000 ideas, and only one of those succeeds [6]. The 

challenge always is how to reduce the risk of failure and make sure that technological 

innovations such as the modular melt modulation system becomes a successful “market 

ready” technology.  

8.1 Market Size 

Almost every product we touch throughout the day has been produced by a 

manufacturing process. The majority of those products are made by plastics. According 

to a recent US Census, there are 333,220 plastics and rubber industry machinery 

manufacturing in in the US [61].     
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The global demand for plastics resin production has been growing at a steady 

pace. According to Figure 8-1, the global plastics resin production from 1950 to 2010 has 

a solid up trend up until 2007.  In 2008, the global demand for plastics resin fell slightly 

for the first time in 34 years, caused by the global financial crises.  

 

Figure 8-1: Global Plastics Resin Production from 1950-2010 [26] 

The total worldwide market for injection molding machines is estimated at an 

annual growth rate of 15.5% between 2009 and 2013. The molders' demand in Eastern 

Europe, China and Latin America, is the driving force behind this positive trend with 

growth rates of 23.1%, 19.4% and 21.5% respectively [23]. 

According to a recent market report published by Transparency Market Research, 

the global market for injection molded plastics was estimated to be worth USD 168 
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billion in 2010 which is expected to reach a market worth of USD 252 billion by 2018, 

growing at a Compound Annual Growth Rate (CAGR) of 5.3% from 2013 to 2018. In 

terms of material consumption, 79,079.5 kilo tons were consumed in 2010 which is 

expected to reach 116,171.4 kilo tons by the end of 2018, growing at a CAGR of 4.9% 

from 2013 to 2018. In 2011, North America and Europe share about one third of the 

market, which was the second largest market after Asia Pacific being the largest market 

for injection molded plastics, sharing 37.2% of the market. The growth of the global 

house ware and personal care market, where polypropylene, one of the major resins used 

for injection molded plastics, is majorly used, is one of the main factors driving the 

global injection molded plastics market. Another growth area that is contributing to the 

global sales for injection molded plastics is the global packaging market, mainly rigid 

packaging. With 31.9% of the market in 2011, the packaging industry captured the 

biggest market share, followed by the consumables and electronics, sharing 30.1% of the 

market. The fastest growing market in the injection molding industry is the electronics 

segment, growing at a CAGR of 5.1% from 2013 to 2018 [24]. 

Another growth segment is the injection molding machine market, which 

displayed strong momentum in 2011. Compared with the Chinese market, Germany and 

the U.S. increased over 10% in output value and Japan 8.7%. Given the strong demand 

by the international market, China’s injection molding machine exports in 2011 increased 

by a large margin, with annual cumulative export value of US$824 million, a year over 

year (YoY) rise of 32.0%. The Chinese injection molding machine industry in 2011 grew 

with annual sales of USD $3.967 billion. With an output of 27,000 units produced in 



 168 

2011, Haitian International is the largest injection molding machine enterprise in China 

and even the world. Other Chinese companies that have shown strong competition 

producing over 10,000 units per year include The Chen Hsong Group, Borch Machinery, 

Guangdong Kaiming Engineering Co., Ltd. and Tederic Machinery Manufacture (China) 

Co., Ltd. Other producers such as Demag, Engel, Husky, NISSEI, TOYO and Toshiba 

have also successively increased their strength in the injection molding machine market 

[25]. 

In the first quarter of 2011, Plastics News conducted a survey showing that 30% 

of the old makers in the United States have shown an increase in profit level [26]. At the 

same time 17% of the mold makers have seen decrease in profit levels and the remaining 

reported no change. Figure 8-2 shows the profit and the employment levels for the US 

mold makers that were surveyed during the first quarter of 2011. 

 

Figure 8-2: US Mold Makers Profit and Employment Levels [26] 
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8.2  Potential Opportunity for Modular Melt Modulation System 

The injection molding market is big and growing. Although hot runner molding 

has been gaining popularity in recent years, it has only captured an estimated 30% market 

share [3]. Cold runner systems still dominate with the majority market share in the 

industry because of its low investment cost and simplicity (easier to operated, manage, 

and maintain). Also, hot runner molds are only feasible in certain injection molding 

applications. Hot runner systems are ideal for high volume and long production cycles, 

highly complex design with automated production, molding expensive polymer, family 

molding and for products that require blemish-free surface. However, there are many 

applications where cold runner can be more economically feasible. The following case 

studies demonstrate when hot runner molding makes financial sense.     

8.2.1  Financial Feasibility - Hot Runner Versus Cold Runner Systems 

Hot runner systems can reduce injection cycle time, which yields higher 

productivity. Also, since it does not have runners, there is no wasted runner material. This 

contribute to the reduction of piece part cost. In addition, the absence of the cold runner 

saves added labor time required for runner handling, gate trimming, and regrinding. 

These factors contribute to the majority of the savings. Often, the selection process 

between cold runner and hot runner systems is dictated by financial factors, but these 

factors are not sufficient to conclude that hot runner is always the best choice. To 

examine the financial feasibility of replacing cold runner with hot runner system, five 

case studies have selected. The case studies are presented here to demonstrate the 

circumstances where hot runner systems may provide better economic value and cost 
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savings. The focus of these studies was strictly financial. All five cases, case study 1 

through case study 5 are illustrated in Figure 8-3, Figure 8-4, Figure 8-5, Figure 8-6, and 

Figure 8-7 respectively. The results are based on calculations that were derived from a 

model introduced by one of the hot runner manufactures [19], which utilized it as a tool 

to demonstrate the first year savings generated by incorporating hot manifold systems. 

The case studies were investigated using the following assumptions: 

1. Parts can be manufactured by either hot runner or cold runner machines with 

acceptable product quality. 

2. Four cavities output with a 4H cavity runner configuration 

3. Runner size:  

a) Sprue: 2.375” long with an average diameter of 1/4” 

b) Runner: 6” long with a 3/16” diameter 

c) Sub-runner: 2” long with a 1/8” diameter 

4. Material: Thermoplastic resin with a mass density of 0.04329 lb/in
3
 

5. A cycle time of 18 seconds, which includes filling, packing and cooling time 

6. Eight hours work day with one shift/day, and five working days per week. 

7. Cold runner regrind of 10%. 

8. Cycle time saving contributed to hot runner mold: 15%  

9. Machine operating costs: $16/hour  

10. Operator rate: $20/hour 

11. Manifold cost: $15,000 (including four hot manifolds and supporting equipment) 

12. Shop hourly rate of $60/hour 
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13. Set-up time of one hour with an additional hour/week for maintenance 

14. Electricity cost of $0.35 per kW    

As illustrated in Figure 8-3, for a low cost polymer (i.e. $3/lb.) and low 

production volume, there is clearly no savings at all. The total money gained was 

$2,411.65, which does not cover the cost of the hot manifold. In this case, investing in a 

hot runner system would result in a loss of $12,737.55. Also, if the volume continues to 

be around the same rate, the molder will have to wait about seven years to break even. 

Therefore, staying with a cold runner mold for this case is a better choice.    

 

Figure 8-3: Case No. 1 – Financial Feasibility of Hot Runner Mold (4-H Cavity Design) 
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In the second case study, shown in Figure 8-4, all parameters remained the same 

including the cost of the polymer; except that the annual production volume was 

increased significantly. Based on these assumptions, the runner costs $0.04 each. When 

the production rate increased from 16,000 units to 104,000 parts, there was a saving of 

$35.91 generated from the volume increase in the first year. This suggests that a hot 

runner system might be more economically feasible as long as the production volume 

required exceeds the minimum production rate threshold of 104,000. 

 

Figure 8-4: Case No. 2 – Financial Feasibility of Hot Runner Mold (4-H Cavity Design) 
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Another factor that can justify the initial investment in a hot runner system is the 

high cost of the required polymer. Figure 8-5 illustrates a breakeven in the first year even 

though the first year production rate was relatively low (16,000 parts). The polymer cost 

increased from $3 per pound to $65 per pound. This caused a sharp increase in the cost of 

the runner going up from $0.04 to $0.93 each, an increase of $0.89 per part.  

 

Figure 8-5: Case No. 3 – Financial Feasibility of Hot Runner Mold (4-H Cavity Design) 
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Justifying hot-runner molds is not just about breaking even. This is just to 

establish the minimum thresholds required to ensure sustainable profitability. As can be 

seen in Figure 8-6, when the cost of the polymer was $65 per pound and the production 

rate remained at 104,000, total first year savings exceeded $83,000. These are some of 

the financial cases where incorporating a hot runner system would make a wise 

investment.    

 

Figure 8-6: Case No. 4 – Financial Feasibility of Hot Runner Mold (4-H Cavity Design) 



 175 

The previous cases were based on a four cavities 4H runner configuration. If the 

number of cavities were increased, the material wasted from the runner would increase as 

well. An example of 8HH runner configuration is shown in Figure 8-7. In this case, 

breaking even can be reached at a material cost of $40 per pound, which is lower than the 

$65 used in previous cases. Also, as the weight of the runner increases, so are the savings 

generated from using hot runner manifolds. 

 

Figure 8-7: Case No. 5 – Financial Feasibility of Hot Runner Mold (8-HH Cavity Design) 
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8.2.2  Modular Melt Modulation Ownership Cost 

Product development is often lengthy and costly. Recurring and non-recurring 

costs can impact the final outcome of any product. It is critical for a product to be low 

cost and have a simple cost structure prior to launch. While trying to prove the concept, 

the melt modulation prototype was built using mostly “off the shelf” items. However, 

there are some expensive components that were bought at retail price. Table 8-1 shows 

the unit cost of the melt modulation of up to four valve system.  

Table 8-1: Cost of Materials for 1 to 4 Valve Modular Melt Modulation Prototype  

S/N Cost/ea. Description 1 Valve 2 Valves 3 Valves 4 Valves 

1 $35.25  Valve Assembly $35.25  $70.50  $105.75  $141.00  

2 $164.98  Actuator Assembly $164.98  $329.96  $494.94  $659.92  

3 $37.99  Voltage Regulator $75.98  $113.97  $151.96  $189.95  

4 $119.00  Power Supply $119.00  $119.00  $119.00  $119.00  

5 $1,495.00  
Kistler Pressure 

Transducer 
$1,495.00  $1,495.00  $1,495.00  $1,495.00  

6 $249.00  
Kistler Pressure 

Amplifier 
$249.00  $249.00  $249.00  $249.00  

7 $81.69  
Microcontroller & 5" 

LCD Touch Panel 
$81.69  $81.69  $81.69  $81.69  

8 $16.09  Motor control Board $16.09  $16.09  $16.09  $16.09  

9 $3.67  
 Housing (Material total 

weight 540g at 
$3.67/kg) 

$3.67  $3.67  $3.67  $3.67  

10 $36.45  

Motor Mount Bracket 
(Multipurpose 6061 

Alum, Rectangular Bar, 
1-1/2" x 5" x 6"  Long) 

$36.45  $36.45  $36.45  $36.45  

11 $3.49  5k potentiometer $3.49  $3.49  $3.49  $3.49  

12 $3.49  Control knobs $3.49  $3.49  $3.49  $3.49  

13 $12.60  Mounting Hardware $12.60  $12.60  $12.60  $12.60  

Total Cost $2,296.69  $2,534.91  $2,773.13  $3,011.35  

 

http://www.servocity.com/html/32p_hitec_metal_gear.html#.U6QCsfldV6I
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The biggest costs drivers are the pressure transducer, pressure sensor amplifier, 

actuators, power supply and voltage regulators. As shown in Table 8-2, the pressure 

transducer is half of the cost of the 4-valve system. Newer injection molding machines, 

from 2007 and up, are equipped with the ability to directly export and stream data about 

the process such as screw speed, position and pressure information. Although the 

prototype unit has a pressure transducer, if the application is installed on newer injection 

molding machines, the pressure transducer and the amplifier can be removed. This would 

save a total of $1,744, which is more than 50% of the cost of 4-valve system and more 

than 75% of the cost of the single valve system. To make sure that the retrofit market of 

older injection machines is not ignored, a lower cost of $189 pressure transducer system 

has been identified. This generates a total saving of $1,555.     

Another possibility for cutting down production cost is to redesign the main board 

to allow for built-in voltage regulators. This would eliminate the cost of the five 

BEC-5-50 voltage regulators. Also, lower cost power supply and actuators are required.  

All of these cost reductions would improve the chances of success of the modular melt 

modulation system drastically. Based on recent quotes received directly from 

manufacturers, a 4-valve system with pressure sensor cost could drop down to $950 

(or $795 for a system without pressure sensors).  
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Table 8-2: Bill of Materials for Modular Melt Modulation Prototype  

S/N Model Description 
Qty. 
Ea. 

Unit Cost 
Ea. 

Extended 
Amount 

% of 
Total 
cost 

1 HSR-5990TG  Servo Motor 4 $149.99  $599.96  4.95% 

2 615286  Motor Pinion Gear 4 $14.99  $59.96  0.49% 

3 7880K35  Valve Spur Gear 4 $27.02  $108.08  0.89% 

4 THX17 1/4  Valve Shaft 4 $3.56  $14.24  0.12% 

5 TQ-031 Valve Shaft Lower Thrust Bearing 4 $2.23  $8.92  0.07% 

6 TQ-025 Valve Shaft Upper Thrust Bearing 4 $2.44  $9.76  0.08% 

7 BEC-5-50 Voltage Regulator 5 $37.99  $189.95  6.27% 

8 PM3-45 PowerMax Power Supply 1 $119.00  $119.00  3.93% 

9  6159A Kistler Pressure Transducer 1 $1,495.00  $1,495.00  49.36% 

10 5039A222 Kistler Pressure Amplifier 1 $249.00  $249.00  8.22% 

11  271-1714 5k potentiometer 4 $3.49  $13.96  0.12% 

12  274-415 Control knobs 4 $3.49  $13.96  0.12% 

13 2760170 EXP300 PC Board 1 $3.49  $3.49  0.12% 

14 20-011-D24  

Arduino MEGA2560 Micro+5" LCD 
Touch Panel SD Card Slot + Shield 
Kit For Arduino 

1 $81.69  $81.69  2.70% 

15 8975K501  

Motor Bracket (Multipurpose 6061 
Al., Rectangular Bar, 1-1/2" x 5"W x 
6"L) 

1 $36.45  $36.45  1.20% 

16 ABS 

 Housing (Material total weight 
540g at $3.67/kg) 

0.54kg  $3.67/kg  $1.98  0.12% 

 LCD cover =  61g  

Front cover = 148g 

Back cover = 135g 

Top cover = 115g 

User interface cover = 81g  

17 Misc. 
Hardware (Mounting , electrical 
components, etc.) 

1 $25.20  $25.20  0.83% 

        
Total 
Cost 

$3,030.60  
  

 

 

http://www.servocity.com/html/hs-7950th_servo.html#.U6QEN_ldV6I
http://www.servocity.com/html/32p_hitec_metal_gear.html#.U6QCsfldV6I
http://www.mcmaster.com/#7880k35/=shllt4
http://www.sainsmart.com/sainsmart-mega2560-5-lcd-touch-panel-sd-card-slot-shield-kit-for-arduino.html
http://www.mcmaster.com/#8975K501
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8.2.3  Modular Melt Modulation Operating Cost 

The modular melt modulation system prototype has actuators and each actuator 

can draw a maximum current of 4.8A at stall torque and 300mA when idle. The 

maximum current drawn from the microcontroller, LCD and other electronic components 

does not exceed 900mA. At stall torque, the modular melt modulation prototype draws no 

more than a current of 5.7A per valve. To get the kilowatt-hours of the modular melt 

modulation, we first need to calculate the power of the device. The electric power in 

watts is the rate at which energy is converted from the electrical energy to mechanical 

energy in this case. The power of the device is the product of the applied voltage (V) and 

the electric current (I) and is given by the following equation: 

(8-1) 

At 6V, the prototype has an electric power that does not exceed 34.2 Watt per 

valve. In terms of operating cost, the kilowatt-hours of the system can be calculated using 

the following equation: 

(8-2) 

Assuming that the price per Kilo-Watt-hour is $0.15, the cost to operate the 

prototype should not exceed $0.005 per valve per hour.  

 

 

 

 

 

 
  

VIP 

1000

kWhperpricexusedhoursxWattage
yelectricitofCost 
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8.2.4  Hot Runner Versus Modular Melt Modulation System 

Every technology has its own unique set of capabilities and limitations. One way 

to see these at a glance is to compare technological innovations side by side. Table 8-3 

compares the different levels of control that can be achieved during an injection molding 

cycle, as well as the benefits and disadvantages of each system.    

Table 8-3: Comparison of Cold Runner with and without Melt Modulation and Hot Runner Molds  

Capability 
Traditional Cold 

Runner Mold 

Modular Melt 

Modulation System 

Hot Runner Manifolds 

System 

Melt Flow Control    

     Multi-cavity 
Special tooling 

required 
  

     Family molding 
Special tooling 

required 
  

     Weld-line position 
Special tooling 

required 
  

Packing Processing 

Parameters Control 
   

     Packing pressure     

     Packing time    

Temperature Control    

     Melt temperature     

     Mold temperature    

Time to change mold Up to 4 hrs. 5-10 min. Up to 4 hrs. 

Purging time short short long 

Adding Additives 

and Changing Color 
Easy Easy 

Not easy and additional 

time is required 

Routine maintenance No No Yes 

Repair downtime short short long 

Cost of 4-cavity 

system (not including 

cost of the mold) 

$0 $5,000 $15,000 

Parts replacement 

cost 
Low Low 

High (more susceptible to 

breakdowns, leakage and 

heating element failure) 
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Although the latest design of the modular melt modular system has not hit the 

market, the hot runner has been in the market since 1940. It has seen many improvements 

over the years, but still presents many challenges. Common hot runner problems include 

the following: 

 Lengthy  start-up periods required to stabilize melt temperature 

 Excessive repair time, which usually includes full disassembly, cleaning and 

reassembly 

 Nozzle drooling and/or not operational 

 Sensitivity to clogs: Even with strainers in line, a slight bit of contamination 

such as dirt or paper from bags, may plug the small gates 

 Excessive flash on part 

 Burn marks/streaks on part, or near gate 

 Excessive tip wear in nozzles when using plastics with high glass fill content 

 Gate vestige too large 

 Gate freezing off too soon, or during cycle 

 Requires fast cycle to maintain melt state 

 Flow lines on large flat part 

 Bloom on part opposite gate 

 Cold slug in part 

 Intermittent blockage caused by cold slug, tip fails by trying to extrude 

through nut 

 Plastics sticking to front of bush nut or sprue nut 
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8.3 Dimensional Analysis: 

One of the most useful tools to determine the cost of a system per use or per cycle 

is to perform a dimensional analysis. There are two costs involved in injection molding: 

(1) The cost of the mold and (2) the cost of each unit produced, as shown in Figure 8-8.  

 

Figure 8-8: Cost of Injection Molding 

1) Cost of the mold: The time to build the mold can range anywhere from as little as 50 

hours to as much as 500 hours and even more in some extreme cases. There are two 

methods to estimate the mold cost. The first method is analytical, which estimates the 

cost of the mold piece by piece. Cost is estimated by multiplying the total number of 

hours to make the entire mold (i.e. grind, bore, drill, mill, etc.) by labor cost. Since 

the cost estimate is often required before the final mold construction is defined 

sometimes before the moldmaker is selected. As a result, this method is not widely 

used among moldmakers. The second method estimates costs based on several factors 

including past experience, mold design, relationships with customer and suppliers, 

and other economic considerations. This method is used more often than the first one.  

To improve the cost estimate, it is convenient to assume the number of 

working time is 20 hours per day and 50 minutes per hour to allow for a safety 

Costs of Injection 
Molding 

(1) Cost of the mold (2) Cost of each unit 
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margin of 80%. Determining the costs of a particular part depends on several factors 

including the complexity of the design of the part, the precision required, and the 

cosmetic effect of the gate. These restrictions usually dictate the number of cavities 

used on the mold.  

Increasing the number of cavities on a mold reduces the total cost of injection 

molding parts. However, the more cavities you have on a mold, the higher variations 

in geometry and part physical and optical characters existing between the cavities.  

The cost of adding additional cavities varies between cold and hot runner systems. 

For example, adding a second cavity for a cold runner system typically cost 

approximately 60% more than a single cavity. Increasing the number of cavities using 

hot runner mold significantly increases the cost in a nonlinear fashion. Adding a 

second cavity for hot runner would cost about 100% more than a single cavity system 

and this differential increases with each additional cavity. The primary considerations 

that impact the mold cost are sales volume, part weight and size, mold cost, and cycle 

time. As a result, this cost will not be considered in the dimensional analysis. 

2) Cost of each unit: This includes the cost of material, machine, and set-up costs. The 

material cost is based on the amount of the material required to manufacture each 

part, which typically cost between $1.00 and $3.00 per pound for low cost polymers. 

The machine time cost is based upon cycle time and number of cavities in the mold 

and it is widely based on hourly rates that could range anywhere from $20/hour to 

$75/hour, for automatic operation, depending on the size of machine used. Additional 

hourly cost can be added if an operator is required. Rates can vary anywhere between 
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$15-$30/hour. The cycle time is the time it takes the machine to make one mold. The 

number of cavities indicates how many parts are made from each mold.   

To simplify the analysis, all cost for implementing melt modulation system will 

remain relatively unchanged with the exception of material costs. Focusing only on one 

of the benefits of the modular melt modulation system provides, family molding while 

improving parts quality, it is assumed that the acceptance rate of parts molded is 99%.  

8.3.1  Cost Analysis 

This section will demonstrate the cost analysis of using the melt modulation 

added per injection molding cycle. To determine the cost of each modular melt 

modulation system used per cycle, the following assumptions, Table 8-4, were used: 

Table 8-4: Assumptions for Dimensional Analysis 

ID Input Value Unit 

1 Price per 4-valve melt 

modulation unit 

5,000 Dollars Per Unit 

2 Life of unit 5 Years Per Unit 

3 Working days per year 260 Days per Year 

4 Working hours per day 8 Hours per Day 

5 Seconds per cycle 36 Seconds Per Cycle 

6 Polymer cost per 

pound 

2 Dollars Per Pound of 

Polymer 

7 Pounds per cycle 3 Pounds of Polymer per 

Cycle 

8 Weight per part 1.25 Ounces of Polymer per Part 

9 Weight per runner 8 Ounces of Polymer per 

Cycle 

10 Parts per cycle 

(number of cavities) 

8 Parts Per Cycle 
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The cost added per cycle can be calculated as follows: 

 
Cost Added One Melt 

Modulation 

Unit 

Time 

(seconds) 

= 

Cost 

Added 

Melt 

Modulation 

Unit 

Life of the 

Unit 

(Hours) 

Number of 

Cycles 

Cycle 

 

 
$ 5000 Cost 

Added 

1 Melt 

Modulation 

Unit 

1 year 1 day 1 hr. 36 sec. 

= 

$ 0.005 

Cost 

Added 

1 Melt 

Modulation 

Unit 

5 year 260 day 8 hr. 3600 

sec. 

1 cycle Cycle 

 

The cost added per cycle is about half of a penny. If the mold has eight cavities, 

the cost to own the modular melt modulation per cavity would be $0.005 divided by 8, 

which is very small. 
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8.3.2  Cost Savings: 

The cost savings is generated from increasing the production rate through multi-

cavity or family molding over the life of the melt modulation unit, and it is illustrated in 

Table 8-5. 

Table 8-5: Cost Saving Generated by Amplifying Production Rate 

Input Cells    

Calculated Cells   

    

Identifier Input Value Unit 

1 Cost/unit 5,000 Dollars/Unit 

2 Life of unit 5 Years/Unit 

3 Working days/year 300 Days/Year 

4 Working hours/day 8 Hours/Day 

5 Seconds/cycle 36 Seconds/Cycle 

6 Cost/pound 2 Dollars/Pound of Polymer 

7 Pounds/cycle 1.125 Pounds of Polymer/Cycle 

8 Weight/part 1.25 Ounces of Polymer/Part 

9 Weight/runner 8 Ounces of Polymer/Cycle 

10 Parts/cycle 8 Parts/Cycle 

11 Acceptable parts ratio .95  

 Cost Savings  

over Unit Lifetime 

 

$2,565,000.00 

 

 

 

Over the assumed life of each modular melt modulation system, there is a potential to 

save over $2.5 million if the system were to be used for five years.    
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CHAPTER 9 – SUMMARY AND CONCLUSIONS  

9.1  Research Summary 

Injection molders have long accepted the limitations of cold runner injection 

molding. As customer demands change, the need for a viable solution to overcome those 

limitations is becoming more critical. A bleeding edge technology has been developed to 

meet current market demand. The modular melt modulation system provides the ability to 

fully control the melt flow and packing processing parameters in real-time during cold 

runner based injection molding cycles. This system provides an intelligent manufacturing 

process with the ability to adaptively control part qualities. The technology behind this 

system is simple.  It locally controls the melt flow and packing processing parameters in a 

mold using mechanical control valves driven by programed servo motors.   

The development of melt modulation technology has seen many improvements 

over the past 10 years. It also has been experimentally validated for several applications 

of cold runner based injection molding. Previous melt modulation research by Layser 

[28][32][33] and Tantrapiwat [29][34] demonstrated significant quality product 

enhancements during the filling phase of cold runner based injection molding, and added 

capabilities such as balanced multi-cavity molding, family molding, and weld-line 

position control. Later, Teeraparpwong [35] initiated the investigation of the processing 

parameters and their impacts on optical properties. The goal was to set the stage for 

expanding melt modulation capabilities to control packing parameters during the packing 

phase to enhance product molecular orientation and optical properties. Previously 
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developed systems had many limitations and could only work in a lab setting. The best 

system was at Technology Readiness Level TRL 4.  

The key objectives of this research were as follows: 

1. To design and develop an enhanced multi-modular melt modulation prototype 

with a focus on improved control and commercially viable. 

2. To experimentally and analytically validate the enhanced system for novel 

differential control of filling and packing during injection molding. 

3. To scientifically analyze and validate the benefits of a multi-modular system. 

4. To complete a thorough engineering analysis exploring the practical business 

aspects of the new multi-modular system. 

All four research objectives have been successfully achieved. As a result of this 

research, a new and considerably improved modular melt modulation system has been 

developed and validated through testing. Improvements were not just limited to design 

and ease of use, but also with capabilities. The new modular system has shown additional 

capabilities such as controlling packing pressure and time in real-time during injection 

molding cycle. In addition to improved performance, the new system cost significantly 

less than the original system and now is commercially viable. The new modular melt 

system is a stand-alone unit and compatible with most existing cold runner injection 

machines. It has been validated in the laboratory environment. The laboratory data 

demonstrated improved value performance in comparison with traditional control 

methods and data demonstrating effects of different control methods on part quality. This 

new system has a Technology Readiness Level (TRL) 6. 
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9.2 Impact of Dissertation Research 

While Lehigh University has a strong research capabilities, manufacturing science 

has been an area where Lehigh has produced critical advances with practical applications. 

Although some of the advances were just incremental innovations, melt modulation 

technology is of a different kind. Melt modulation technology is what is considered as 

radical innovation, which is defined by scholars as an innovation development of a new 

business or product lines [38].  

It is self-evident that radical innovation has been the single, most important 

component of long-term economic growth. To demonstrate an example of how high 

strong economy is fueled by innovation, consider the invention of mobile devices. In 

1983, when AT&T was being divested in an anti-trust suit, it was considering whether it 

should attempt to retain the frequencies that would be essential for the operation of 

mobile phones. As a result, AT&T hired one of America’s best-known consulting firms 

to forecast the likely number of American subscribers for mobile phones by the year 

1999. The forecast that was given to AT&T was that there might be as many as one 

million subscribers. It turned out that the number exceeded 70 million subscribers in that 

year [39]. In fact, the number of mobile phones sold around the world in late 2010 

exceeded 5 billion units [40].  

To have more appreciation for innovation, imagine how life would have been now 

if AT&T had not relied on innovation to pursue the development of mobile phones. 

Where would the economy be if we had not seen the contribution of companies like IBM, 

Google, Yahoo, Ebay, Apple, Microsoft and other technology giants? Also, if the United 
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States government had not created an innovative environment, would not the outcome 

have been completely different?  

Also, there is a direct link between innovation and the strength of the economy. 

To keep up with the pace with the number of people entering the work force for the first 

time back in 2000, the U.S. economy would have had to generate 21 million jobs. As it 

turned out, 23.5 million new jobs were created. It is estimated that small business and the 

entrepreneurs who run them accounted for more than two thirds of those new jobs. 

Today, U.S. small businesses (firms with 500 workers or fewer) employ more than 50% 

of the labor force and generate approximately one-half of the nonfarm private gross 

domestic product (GDP) [41]. 

Designing and developing a melt modulation system in a way that is viable for 

commercialization is one of the major impacts of this research. The modular melt 

modulation system, compatible with all light and medium weight injection molding 

machines has been successfully designed, tested and validated. Incorporating this system 

is inexpensive and greatly reduces production cost and set-up cost. 

As a result of this research, I was able to contribute to the advancement of the 

science and technology related to multi-cavity injection molding process as well as the 

injection molding industry. With the incorporation of a modular melt system, cold runner 

injection molding machines can have dynamic melt and packing control. Mold filling and 

packing pressure can be precision controlled at the individual cavity level, which allows 

for real-time control of the filling and packing of multi-cavity molds. There is also 

demonstrated potential for the ability to control weld line position (shift to a non-critical 
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area to increase strength) during each cycle and produced balanced filling for multi-

cavity applications and family molding. 

 Previously developed systems had a number of limitations preventing them from 

being commercially feasible. This significant design improvement coupled with an 

increased ease of use and retrofit capabilities indicate the newly developed system is now 

commercially viable. 

Commercialization of the modular melt modulation system can benefit the 

industry in many ways. Here are some of the value propositions for the modular melt 

modulation technology: 

1. Technical:  

o Intelligent manufacturing process with adaptive control  

o Dynamic melt control - give cold-runner machines the ability to control 

cavity flow, pressure, and weld-line position (shift to a non-critical area to 

increase strength) 

o Improve mold quality to produce balanced parts  

o Allow for balanced family molding 

2. Business:  

o Reduced production time 

o Low tooling cost 

o Amplify production of high quality parts. 

o Foster economic Growth by introducing market driven technology  

o Create a Leadership role for Lehigh by advancing Manufacturing Industry  
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This research also intends to bridge the gap between an important scientific 

discovery and its industrial applications. This was achieved with the goal of advancing 

science and technology to enhance polymer product manufacturing.  

The work in this dissertation highlights my contributions to the advancement of 

the science and technology related to multi-cavity injection molding processes as well as 

the injection molding industry with the following accomplishments: 

1. Designed and developed a modular melt modulation system to precisely 

control mold filling and packing pressure at the individual cavity level. This 

system allows for controlling the filling and packing of multi cavity molds in 

real-time (CHAPTER 4). 

2. Validated the impact of packing processing parameters on the quality of 

injection molding transparent products through numerical analysis and 

simulation (CHAPTER 5) 

3. Completed additional simulations and analysis to demonstrate results showing 

the effect of melt modulation control on optical properties of clear polymers 

and their final product quality (CHAPTER 6) 

4. Conducted experimental testing of the modular melt modulation system to 

illustrate and compare results for parts made with different packing controls. 

The packing pressure control of the modular melt modulation system was 

experimentally validated and the results are detailed in CHAPTER 7. 

5. Performed market analysis and financial feasibility of the modular melt 

modulation (CHAPTER 8). 
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Finally, this dissertation had a major personal impact, as well. When I first started 

my Ph.D., I had an idea of what I was going to investigate and how I would proceed. 

However, as I began my research, I realized a large number of skillsets would be required 

for me to produce scholarly work which would be worthwhile reading. Skills I am proud 

to have gained at Lehigh University include the following: 

 Creative and Independent Thinking  

 Research 

 Component and Machine Design  

 3-D Design software (Solidworks) 

 Product Development 

 Numerical Simulations Tools (Moldflow) 

 Manufacturing: 

o Machining – programming and operating machines (CNC and 

manual machines) 

o Operating cold runner based injection molding machines 

 Project Management 

 Publications  

   The most valuable skill of all is learning how to be patient enough to stay 

focused on the research in order to achieve the main objectives.   
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9.3 Proposed Future Work 

 The current modular melt modulation system prototype is ready to be field tested. 

Areas where additional work is needed would include business and technical 

considerations, such as further cost reduction and market survey. Also, the current system 

has been designed to be retrofitted with existing injection molding machines. 

Collaboration with injection molding manufacturers to develop an integrated melt 

modulation system is crucial to the long term success of this technology. Other features 

and design improvements can also be added to the existing design. For example, 

currently prototype uses a bulky, expensive power supply and voltage regulators. The 

electronics, including the circuit boards, can be redesigned to optimize performance and 

reduce cost. 
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9.4 Conclusions 

 According to previous studies reported in [55] and [65], processing parameters 

can significantly impact the properties of molded product. Parameters such as melt and 

mold temperature can have a direct impact on the final properties and quality of the 

molded product. Higher temperature provides the melt flow more relaxation time before 

it solidifies. Longer relaxation time leads to material with less residual stresses, less 

birefringence, and less retardation. However, higher temperatures may also degrade the 

material and lead to a weaker part as well as inducing more volume loss (shrinkage) and 

deflection. 

The melt modulation control valve has a direct impact on the final quality of a 

cold runner injection molding products. Turning the valve during the packing phase tends 

to increase pressure drop across the valve and volume shrinkage, but decrease warpage.   

Other parameters such as packing pressure and packing time also affect product quality. 

Increasing packing parameters tends to reduce volume loss (shrinkage) and deflection. 

However, it increases the product final weight. In addition, increasing packing pressure 

and packing time causes higher molecular orientation, which is evidenced through higher 

birefringence and optical retardation. Products with higher molecular orientation in the 

flow direction exhibit higher tensile strengths. However, high birefringence causes poor 

optical characteristics such as haze or focal blur.  

The two main factors that determine the quality of an optical polymeric product 

are final geometry and optical isotropy. Because there is no one parameter that can 

optimize both factors, there is a compromise when controlling processing parameters for 
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maximizing product quality. In other words, manipulating packing parameters to achieve 

better product geometry is very likely to cause poor optical characteristics and vice-versa. 

In an effort to overcome these challenges in cold runner based injection molding, future 

testing will employ the melt modulation system to manipulate the packing parameters to 

achieve both quality aspects so that the machine will produce a final optical product with 

optimum quality.   

According to the simulations and experimental results, the modular melt 

modulation system was successfully validated for cold runner injection molding 

applications. It has the ability to accomplish what similar technologies developed for hot-

runner injection molding machines have achieved, but is significantly simpler to use and 

less expensive to own and operate. The modular melt modulation system provides many 

benefits to existing cold runner injection molding machines and here are some of them:  

 Better control – it provides precise melt flow and packing pressure control of each 

cavity in real-time. 

 Superior part optical quality  

 Easy installation and setup - fully integrated stand-alone system with user 

interface touch screen LCD. No personal computer (PC) is required 

 Process repeatability – consistency of shot-to-shot and part-to-part injection 

molding 

 Clean, quiet and energy efficient  
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