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Abstract 

Relative surface energies of low-index planes and the effect of Europium 

segregants on grain boundary structure and fracture strength of magnesium aluminate 

spinel (MgAl2O4) bicrystals were evaluated by micro scale fractures tests and high-

resolution electron microscopy. Single crystal specimens with {111}, {110}, and {100} 

boundary planes were bonded together using hot pressing to make {111}/{100} and 

{100}/{110} interfaces. Certain of the resulting specimens were doped with Eu. Micro 

cantilever deflection tests were employed to measure fracture toughness within each 

single crystal and at both bicrystal boundaries. Correlating surface energy with fracture 

energy measurements, the surface energies of {111}, {110}, and {100} planes were 

found to have a decreasing trend. High-angle annular dark-field-scanning transmission 

electron microscopy (HAADF-STEM) was utilized to characterize grain boundary 

structure and chemistry. Differences in Eu segregation behavior on the two grain 

boundaries resulted in differences in grain boundary structure and differences in 

corresponding interfacial fracture strength. Eu segregated more uniformly to the 

{111}/{100} interface where it bonded strongly to the {111} plane but not to the {100} 

plane. The doped {100}/{110} boundary was characterized by a lack of uniform 

segregation. Corresponding fractography work and an in-situ foil fracture test was 
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carried out in addition at the interface, aiding the structure and fracture behavior 

analysis. Here, we demonstrate how micro-cantilever fracture toughness measurements 

on single crystal and individual grain boundaries can indicate surface energy trends. And 

by combining micro fracture tests and HAADF-STEM analysis, a method to investigate 

the correlation between the grain boundary structure and fracture strength was 

established to interpret how rare earth segregation behavior affects intrinsic 

toughening mechanisms of magnesium aluminate spinel. 

In recognition of the shortcomings of the microcantilever bend fracture test, a 

new micro-scale fracture test that uses a bowtie-shaped micro-beam specimen with a 

chevron notch was designed and employed in transparent ceramic toughness testing. 

This clamped-clamped specimen can produce stable crack growth in brittle materials. 

Cyclic loading causes progressive crack extension, thereby producing multiple fracture 

toughness results in one experiment. The symmetric geometry eliminates the mixed 

mode fracture that exists in single-ended cantilevers. A 3D finite element analysis (FEA) 

model built in ANSYS Mechanical APDL and Altair Hypermesh was used to relate the 

crack length to the beam compliance. Full analysis of the bowtie chevron specimen 

geometry sensitivity has been carried out with FEA. A detailed crack stability analysis 

was conducted combining different nano-mechanical testing system, loading conditions, 

FEA analysis and TEM experimental methods. MATLAB programming was utilized to 

process large experimental data and to apply a polynomial fit in establishing a 

compliance and crack extension length relationship. The fracture energy could then be 

evaluated using an energy approach (‘Work of Fracture’) by combining FEA and 
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experimental data. The results of tests using fused quartz and a glass-ceramic material 

match very well with published fracture toughness values. This validates the new micro 

scale testing method that possesses a combination of advantages not available in any 

other testing methods. 
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Chapter 1. Introduction 

1.1 Fracture toughness overview 

1.1.1 Three characteristics of fracture behavior 

Fracture toughness is an important property of a material, describing the resistance 

to fracture. There are three general characteristics to describe fracture of the sample or 

component tested. They are energy of fracture, fracture path, and microscopic fracture 

mechanisms. [1] These three characteristics are all important when describing the 

fracture behavior. 
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First, let’s look at fracture energy. The fracture energy is the energy required 

before and during the fracture process. For a smooth tensile bar, the area under the 

uniaxial tensile stress-strain curve represents energy per unit volume required during 

crack propagation process and thus could be utilized as an estimate for fracture 

toughness, as shown in Figure 1-1. Therefore, a high toughness is a combination of high 

strength and high ductility. One usually finds that to achieve a higher toughness, 

strength is often compromised to induce a higher ductility. For example, in the 

metallurgy tempering process, which occurs after the hardening process, the purpose is 

to reduce hardness (proportional to strength) and increase the degree of ductility to 

achieve high toughness. Ductile materials like metals often have a higher fracture 

toughness value compared to brittle (non-plastic) materials like ceramics where there is 

limited ductility. In ceramic materials or brittle metals, toughness is only determined by 

the strength of the material. 

Toughness ~  
Area under curve 

Figure 1-1. Stress strain curve of brittle and ductile material. 

Fracture strength/ultimate strength of brittle material is shown in 

color blue. Fracture strength of ductile material is shown in color 

red. The area under stress strain curve estimates toughness. 
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A material is said to be ‘tough’ when higher fracture energy is absorbed during 

the fracture process. And oppositely, ‘brittle’ means low energy is required during 

fracture process. 

Ceramics are non-plastic and often absorb little energy during fracture, and thus they 

are brittle in either context. Since a material's fracture property is the focus of this 

study, when we mention brittle, we are referring to the low energy absorption in 

fracture energy.  

 Crack path is the second indicator of the toughness of the material. For example, 

in brittle metals that fail by cleavage the crack path follows weak planes, and in brittle 

metals that fail by intergranular processes the crack path follows the grain boundaries. 

In tough metals, the crack will often be surrounded by evidence of plasticity.  In the case 

of ceramic, a low toughness material will often result in one single crack while a high 

toughness ceramic will often result in significant crack branching due to massive energy 

dissipated only to crack growth without plastic deformation available. Since strength 

correlates to toughness when ductility is absent, high strength ceramics also means 

higher toughness. Tempered glass will result in a special kind of fracture crack path, due 

to the nature of the residual stress state present in tempered glass. The tempering 

process for glass has two types, thermal tempering and chemical tempering. The latter 

involves an ion exchange process, where larger potassium ions replace the sodium ions 

in the manufacturing of the famous Gorilla glass. [2] In either type of tempering process, 

the outer surfaces of the glass are left in compression while the internal part left in 

tension. Therefore, the strength is much higher in tempered glass than traditional 
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annealing glass. Fracture will result in a network of cracks propagating and leaving the 

material in small fragments when the stored energy is released suddenly. Furthermore, 

a crack path could reveal information of loading condition and crack origin, which is a 

great indicator in failure analysis work in determining the cause of the failure. 

 Microscopic mechanisms are the third fracture characteristic, since crack 

propagation is related to the small process zone around the crack front. For metals, 

microvoid coalescence is often present due to the crack initiation at a particle between 

the interface of an inclusion or precipitates and the matrix material. Since ductility is 

involved in the forming of the microvoids, higher toughness is associated with deeper 

and wider microvoid coalescence. In addition, trans granular fracture and cleavage 

fracture are another two fast fracture mechanisms. The latter mechanisms are also 

present in ceramic fracture.  

1.1.2 Two methods to quantify fracture toughness 

There are two ways to analyze toughness quantitatively- energy balance analysis 

and stress field analysis.  

First, let’s look at the energy balance approach, which was first addressed by 

Griffith. [3] For brittle materials, this energy balance theory is very applicable in 

evaluating fracture toughness. Linear elastic fracture mechanics describes quantitatively 

the fracture behavior of brittle materials. The assumptions include a sharp crack 

embedded in a continuum elastic body and only a small-scale process zone ahead of the 

crack tip and thus a linear relation between the stress and strain. In an elastic material, a 
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balance between the decrease in stored energy and the increase in the surface energy 

created during the fracture process must be achieved. And therefore, we have 

 

 
𝑈 − 𝑈0 = −

 𝜎2𝑎2𝑡

𝐸
+ 4𝑎𝑡𝛾𝑠 

 

(1) 

Where, U is the energy with the crack, 𝑈0 is the energy before the crack and Inglis 

[4] has derived the decrease in the energy in an infinitely large plate with an elliptical 

crack as 
 𝜎2𝑎2𝑡

𝐸
, where t is the thickness of the plate, a is the half crack length, E is the 

modulus of the material. And 𝛾𝑠 is the surface energy per unit area. The two free 

surfaces created after the crack will generate a total free surface area of 4𝑎𝑡.  

In the condition of equilibrium, the first derivative of U with respect to crack length 

a must equal to zero. Thus, we have 

 2𝛾𝑠 =  
 𝜎2𝑎

𝐸
 (2) 

This equation can be rearranged to be, 

 𝜎 = √
2𝐸𝛾𝑠 

𝜋𝑎
 (3) 

for a plane stress condition, and 

 𝜎 = √
2𝐸𝛾𝑠 

𝜋𝑎(1 − 𝜈2)
 (4) 

for a plane strain condition, where 𝜈 is Poisson’s ratio. Note that this difference is very 

small since Poisson’s ratio is usually in the range between 0.25-0.33. And we could 
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further include plasticity terms by adding a plastic deformation energy term to the 

surface energy, so that this equation could be applied to ductile materials. 

Irwin [5] then chose to denote the energy source term as elastic strain energy 

release rate G. Therefore, equation (5) becomes, 

 

 𝜎 = √
𝐸𝐺 

𝜋𝑎
 (6) 

Now let’s consider a more sophisticated method in evaluating the toughness, the 

stress field analysis. Westergaard [6] and Irwin [7] first published solutions for crack tip 

stress distributions with three major modes of loading. These are Mode I (opening or 

tensile mode), Mode II (Sliding or shear mode) and Mode III (tearing or out of plane 

shear mode). A schematic diagram of the three stress modes is shown in Figure 1-2. 

 

The crack tip stresses defined as in Figure 1-3 are found to be, 

Figure 1-2. Three major modes of loading. Mode I: opening mode. Mode 

II: shear mode. Mode III: Tearing mode, out of plane shear  
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𝜎𝑦 =
𝐾

√2𝜋𝑟
 𝑐𝑜𝑠

𝜃

2
 (1 + 𝑠𝑖𝑛

𝜃

2
 𝑠𝑖𝑛

3𝜃

2
) 

𝜎𝑥 =
𝐾

√2𝜋𝑟
 𝑐𝑜𝑠

𝜃

2
 (1 − 𝑠𝑖𝑛

𝜃

2
 𝑠𝑖𝑛

3𝜃

2
) 

𝜏𝑥𝑦 =
𝐾

√2𝜋𝑟
 (𝑠𝑖𝑛

𝜃

2
 𝑐𝑜𝑠

𝜃

2
 𝑐𝑜𝑠

3𝜃

2
) 

(7) 

Therefore, we see that the crack tip stress distribution is determined by parameter r and 

𝜃 and is represented by parameter K, serving as a scale factor of the magnitude. K is 

then defined as stress intensity in the stress field analysis to define the magnitude of the 

crack tip stress field. K is associated with applied stress and crack length and thus is 

expressed as, 

 𝐾 = 𝑌𝜎√𝜋𝑎 (8) 

Figure 1-3. Crack tip stress field  
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where, Y is a geometric term. The determination of Y depends on the geometry of the 

specimen and the crack shape and location. A list of common Y values could be easily 

found in a handbook.  

After these two approaches are understood, a relation between stress, crack size 

and material properties can be described. A relation between these two approaches can 

then be derived as, 

 𝐾 = √𝐸𝐺 (9) 

for a plane stress condition, and 

 𝐾 = √
𝐸𝐺

(1 − 𝜐2)
 (10) 

for a plane strain condition. 

When measuring the fracture toughness experimentally, plane strain condition 

toughness is usually measured under a mode I (opening mode) loading condition. 

Instead of plane stress condition, plane strain condition gives the minimum toughness 

value measured that does not decrease with increasing test specimen thickness, and 

therefore could be used as the lower limit of the material toughness, denoted as Kic. So 

Kic is the material toughness characteristic independent of specimen geometry and 

represent the intrinsic fracture toughness.  

In a ductile material, the thickness and crack length needs to meet a certain 

criterion so that the measured Ki is valid and will not become smaller as the geometry of 

the specimen becomes thicker and wider. Brown and Srawley [8] have found that, 

  (11) 



 
 

 12 

𝑡 𝑎𝑛𝑑 𝑎 ≥ 2.5 (
𝐾1𝑐

𝜎𝑦𝑠
)

2

 

and ratio (
𝐾1𝑐

𝜎𝑦𝑠
)

2

can be related to plastic zone size in plane strain condition, so we have 

 (
𝐾1𝑐

𝜎𝑦𝑠
)

2

= 6 𝜋 𝑟𝑦 (12) 

   

where 𝑟𝑦 is the plastic zone size radius ahead of crack tip. And therefore, 

 

 𝑡 𝑎𝑛𝑑 𝑎 ≥ 50 𝑟𝑦 (13) 

 

Kic is often used experimentally to characterize fracture behavior of the material. 

An ideal experiment thus should give an accurate measurement of mode I loading 

condition, eliminating other modes. A mixed-mode fracture may occur in certain testing 

specimen geometry and thus affect the accuracy of the measured toughness. A further 

comparison of testing specimen geometry studied in this research concerning this 

matter is discussed in later chapters. 
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1.1.3 Intrinsic and extrinsic toughness 

Figure 1-4. Classes of extrinsic crack-tip shielding mechanisms in solids.  
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 When considering fracture behavior of a material, the energy required in the 

system for the fracture to propagate is a combination of intrinsic and extrinsic 

mechanisms.  These are influenced by atomic bond strength, interfacial strength, 

presence of porosity, second phase particles, notches from manufacturing surface 

processes, microscopic energy dispersive mechanisms during crack propagation 

including grain bridging and pull-outs that serve as friction agents to prevent crack 

opening. Therefore, a macroscopic fracture test may result in a measurement combining 

multiple factors, including the material properties, intrinsically, and other microscopic 

factors of the system, extrinsically.  

Intrinsic toughness of a material is the resistance to damage mechanisms that are 

active in the region ahead of the crack tip. It will depend on the nature of electron bond, 

the crystal structure and the degree of order in the material. [1] Atomic bonding 

provides the differences in toughness in different class of materials. The more rigidly 

fixed the valence electrons are, the more brittle the material is. Thus, the trend of a 

decreasing toughness occurs, when the electron bonds varies from metallic to ionic and 

to covalent. The crystal structure affects toughness significantly as well. High crystal 

symmetry will induce slip systems to increase ductility and thus higher toughness. A 

decreasing trend of crystal symmetry from close-packed structure to low-symmetry 

structure to amorphous will result in a decrease in fracture toughness. For example, FCC 

structured austenitic steel has a much higher ductility and a much higher toughness 

compared to BCC structured ferrite. Finally, the degree of order of atomic arrangement 

increasing will lead to a decreasing in the ability to deform and thus yield a higher 
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toughness. Random distribution of solid solution (highest order of degree) will suppress 

the ductility least (highest toughness), then short-order and finally long-order. A 

reduction in precipitate volume fracture and longer particle spacing will also lead to 

higher ductility and higher toughness. 

Extrinsic toughening mechanisms serve as ways to reduce crack driving force. The 

first class of extrinsic toughening mechanisms are crack deflection or meandering of the 

crack paths. Deflection may occur either by interaction with particles or weak planes. As 

long as the crack tip stress can be reduced by deflection from the perpendicular 

direction of the applied load, the deflection will occur. Zone shielding is another type of 

extrinsic mechanism. It involves a plastic deformation or dilatation in a zone 

surrounding the crack tip and wake. Zone shielding mechanisms include transformation 

toughening, microcrack toughening, crack wake plasticity, crack field void formation, 

residual stress fields and crack tip dislocation shielding. Another extrinsic mechanism is 

crack surface contact shielding. This includes wedging (crack closure), bridging (ligament 

or fiber toughening), sliding and a combination of wedging and bridging. In addition, a 

combined zone shielding and contact shielding is caused by plasticity or phase 

transformation induced crack closure. The schematic of these extrinsic mechanisms is 

shown in Figure 1-4.[9] 

1.1.4 Fracture toughness of brittle materials 

For ceramic materials, which are the focus of this study, the intrinsic toughness is 

very low due to a combination of ionic or covalent bonding, low symmetry crystal 

structure and long range order. And therefore, toughening processes have been 
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developed with a focus on extrinsic mechanisms. Rising crack growth resistance, or R-

curve behavior, is thus very common in toughened ceramics, such as ceramic matrix 

composites. As the crack size increases, crack tip shielding mechanisms will increase the 

toughness of the material, but the strength of the material remains constant, until the 

crack extension associated with failure dominates. On the other hand, a flat R-curve 

material will inherit a constant toughness value and a continuously decreasing strength 

as the crack size increases, raising the stress intensity as it does so. Another mechanism 

in ceramic materials involves crack path deflection due to a weakened grain boundary or 

a second phase particle. Moreover, a crack zone shielding mechanism that lowers the 

crack tip stress intensity may greatly affect the toughness, such as grain bridging, second 

phase bridging, microcracks and micro voids formation.  

Therefore, measurement of fracture toughness of polycrystalline ceramics 

experimentally is a complicated process involving intrinsic material bonding, crystal 

structure, grain boundary bonding and extrinsic microscopic mechanisms. In this study, 

we will introduce fracture toughness testing methods that specifically address this 

complication. Single crystal fracture testing and micro scale fracture testing methods 

along single grain boundaries are investigated and employed to simplify the analysis of 

toughness-influencing factors and establish an experimental methodology in evaluating 

material properties, such as surface energy, cleavage plane orientation, grain boundary 

structure and property relationships. 
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1.2 Magnesium aluminate spinel 

1.2.1 Motivation 

The ideal windshield material for aircraft, viewports for spacecraft, domes for 

cameras, and other transparent defense applications is always attracting research 

attention, since the traditional silicate glass and fused silica glass currently in use exhibit 

relatively poor mechanical properties when operating in unpredictable environments 

where they may potentially experience an unexpected impact. The fracture toughness 

value of such materials is only 0.6-0.8 MPa m1/2, which is causing great concern for 

space vehicles, as an increasing number of space debris was reported due to an 

increasing number of abandoned satellites over the years. "Bullet proof glass" windows 

are typically made of laminated glass. A common form of laminated glass is a pair of 

soda lime panels bonded together by a layer of polyvinyl butyral (PVB) polymer. If a 

crack is initiated, it will arrest at the interface. However, this toughening mechanism will 

increase the overall weight of the material and reduce the transparency of the 

Figure 1-5.  (a) Damage to the glass window of space shuttle Challenger 

caused by a paint chip (b) No penetration through transparent MgAl2O4 

Spinel after five rounds of bullets, demonstrates a higher fracture 

resistance over glass window 

b a 
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windshield. Replacing glass with better property materials seems to be the only solution 

for vehicle applications in which weight is a major concern.  

Transparent ceramics are known to offer a combination of superior optical and 

mechanical properties as compared to conventional glass systems. As shown in Figure 

1-5, transparent magnesium aluminate spinel, MgAl2O4, has a much higher damage 

resistance compared to conventional glass material.  

Spinel has raised great interest because of its superior properties, such as high 

melting temperature (2135 C), high hardness (16 GPa), low density (3.58 gcm-3), high 

strength both at room temperature (135-216 MPa) and elevated temperatures (120-205 

MPa at 1300 C), high electrical resistivity, high chemical stability and high thermal 

shock resistance. [10] 

In addition, spinel has a cubic structure and is thus optically isotropic. And it has 

demonstrated better optical properties than other transparent ceramics like sapphire 

and ALON.[11] Its manufacturing process can, in principle, be conducted at a much 

lower temperature, which would reduce the cost in fabrication.   

The combination of chemical inertness and thermal stability also make spinel 

attractive as a substrate for metal nanoparticle catalysts such as Pt.  Stable nanoparticle 

catalysts can be used in harsh conditions to stimulate chemical reactions of industrial 

importance. A substrate that is highly stable and that promotes stability of the metal 

nanoparticles can be used in a wide variety of processing conditions. While the viewport 

and substrate applications are quite different, the processing conditions and resulting 
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properties for both are dependent on the surface energies of the internal and external 

interfaces of the spinel. In the case of the window applications, surface energies play a 

key role in determining the grain growth character and boundary fracture strength. 

These, in turn, strongly relate to optical quality and fracture toughness, respectively.  

1.2.2 Problem statement  

1.2.2.1. Arguments of surface energy.  

  Surface energy is an important parameter in ceramic materials and plays an 

important role in determining processing and properties.[12–14] Studies on surface 

energy of spinel have attracted research interest and led to debates about which index 

planes are of the highest energy. Mishra et al. have conducted theoretical surface 

energy calculations on spinel using Coulomb and Born-Mayer potentials estimated from 

its infrared and Raman spectra and concluded that {111} planes are of lowest energy for 

MgAl2O4 spinel.[12] However, atomistic simulations with atomic potentials have been 

performed by Fang et al.[13] for low-index surfaces of spinel, where surface energy of 

{111} as found to be highest, and {100} to be the lowest with {110} in the middle. {111}, 

{110} and {100} low index planes were chosen for study because MgAl2O4 has a Zener 

Ratio of 2.43 with the Young’s elastic modulus a maximum in <111> and a minimum in 

<100>. [14] Stewart and Bradt have also investigated the fracture behavior of single 

crystals of these orientation planes experimentally and thus estimated the surface 

energy to have the same trend as Fang et. al.[15–18] More recent single crystal fracture 

measurements support these general conclusions.[19] 



 
 

 20 

If fracture tests were carried out on measuring single grain boundaries, through 

Griffith's criterion, fracture energy could then be correlated to grain boundary energy. 

Therefore, one could fabricate bi-crystals of different orientations to compare the 

surface energies of the two orientation planes on each side, through correlation 

between surface energy, grain boundary energy and fracture energy.  

1.2.2.2. Lack of systematic study of dopants effect on spinel 

fracture behavior 

Due to the complications in the sintering process of spinel, high-quality, low-cost 

commercial bulk spinel is not yet available for manufacturing. [20] In order to produce 

dense transparent spinel, porosity is required to be less than about 0.1% and the pore 

size is required to be less than 1/10 of the important wavelength. Sintering aids such as 

LiF are found to be essential for fabricating dense transparent spinel if expensive 

methods like Hot Isostatic Pressing are to be avoided. [20] These dopant ions will 

segregate along the grain boundary and thus change the grain growth and coarsening 

process. The residual dopants will alter the grain boundary structure and affect the 

mechanical properties. As shown in Figure 2(a) and (b), the LiF doped polycrystalline 

spinel exhibits a higher transparency but lower fracture toughness, since evidence of 

transgranular fracture was found, as shown in Figure 2(d).  

As observed in Figure 1-6 (a) and (b), with LiF as a sintering aid, the transparency has 

been greatly improved. [21] However, as shown in (c) and (d), intergranular fracture has 

been observed with LiF added in the sintering process.[22]  LiF as a dopant does have 
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both beneficial effects and drawbacks on the overall performance of polycrystalline 

spinel, however there is no systematic study conducted that has shown how and why 

the dopants' segregation behavior would have such significant impact.  

 

While studies of rare earth effects on spinel grain boundary mechanical behavior are 

limited, Yb has been shown to improve the strength of {111} grain boundary planes as 

compared to undoped boundary planes of identical orientation, presumably by lowering 

the boundary energy.[23] Specifically, a 30% increase in fracture toughness of individual 

Yb-doped {111}/{100} grain boundaries has been observed in spinel bi-crystal specimens 

as compared to identical undoped interfaces. Ordered Yb layer segregation was 

revealed in high angle annular dark field (HAADF) images, indicating a bond between Yb 

and Oxygen atoms on the {111} boundary plane. A similar bond was implied on the 

{100} boundary plane, but could not be demonstrated definitely.  

With LiF Without LiF 

With LiF 

 
Without LiF 

 

d c 
Figure 1-6 Dopants effect on the properties of polycrystalline spinel (a) 

without LiF (b) LiF doped spinel, demonstrate a higher transparency of 

spinel (c) without LiF (d) LiF doped spinel, evidence of a grain boundary 

fracture  
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However, there are no other systematic studies on how rare earth dopants will 

affect spinel. 

1.2.2.3. Discrepancy of bulk materials fracture testing results 

Previous studies on the doping segregation behavior effects on fracture 

properties in polycrystalline materials have been conducted on different materials, 

including alumina[24–27], magnesium oxide[28], silicon nitride[29–34] and silicon 

carbide[35].  

Rare earth dopants have been observed to alter the mechanical behavior of the 

Silicon Nitride system, however there was a discrepancy in how these dopants could 

affect the fracture behavior in bulk system mechanical testing.  Fracture toughness 
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values have been observed to either increase or decrease with respect to size of the 

rare earth doping element cation ionic radius. [29,34]  

In the study of Lojanova et. al.[34,36], fracture toughness of monolithic Si3N4 was 

measured to have a linear decreasing trend with increasing ionic radius of rare earth 

(RE) elements. The high fracture toughness with smaller RE elements (Lu, Yb, Y) was 

concluded to be a result of reinforcing effect of microstructure. In Lu-oxide containing 

sample, a higher volume fraction of a higher apparent aspect ratio of Si3N4 grains 

Figure 1-7 Influence of rare earth dopants on fracture toughness of Silicon 

Nitride. (a) As the ionic radius of rare earth element increases, the 

toughness increases, however in (b) as the ionic radius increases, the 

toughness decreases. 
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measured leads to high frequency of extrinsic toughening mechanisms present like pull-

outs and frictional bridges, which serve as crack energy dissipation mechanisms. 

In the study of Satet et al.[29], fracture toughness was measured to have an 

increasing trend with increasing ionic radius of RE elements. Unlike Lojanova’s study, all 

samples of Satet et al. were developed microstructurally comparable by altering 

sintering temperatures, eliminating the increasing trend of aspect ratio of Si3N4 grains 

with rare earth oxide addition.  In his study, aspect ratio measured in Lu-oxide sample 

was higher, but showed the lowest fracture toughness, which indicates a higher effect 

of compositional factor than microstructure effect. In other words, in Satet et al.’s 

study, grain boundary composition and microstructure of the grain aspect ratio both 

contribute to the fracture toughness measured in the system, but composition factor 

plays a more important role in determining the fracture toughness. Moreover, the 

amount of crack deflection was higher in La-bearing ceramic than was observed in Lu-

bearing ceramic in the comparison of crack opening path viewed in SEM. The debonding 

length is increased in the latter. Thus, it’s a result of increased amount of frictional 

bridges and pull-out resulted from the interfacial chemistry alteration from Lu3+ to La3+ 

that leads to the increasing trend of fracture toughness. This fractography comparison 

also means that the interfacial strength was significantly weakened from Lu3+ to La3+.   

Therefore, traditional mechanical tests on bulk materials may result in conflicting 

conclusions when analyzing the doping segregation behavior at interfaces, because 

dopants at the grain boundary may simultaneously influence the grain growth, 

interfacial chemistry, and interfacial strength, which makes it impossible to build a 
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direct correlation between the grain boundary structure with the mechanical behavior. 

Therefore, in order to understand the rare earth dopants' segregation behavior on grain 

boundary mechanical properties, micro scale mechanical testing methods performed 

along fabricated tri-crystal grain boundaries have great value. Edge-defined bi-crystals 

are the ideal candidates since the loading orientation and the grain boundary 

orientation (potential fracture plane) are both well-defined during the in-situ fracture 

tests. 
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Chapter 2. Fracture testing of brittle 

materials 

2.1 Bulk testing methods 

Figure 2-1. Standardized fracture testing methods for metals and ceramics 
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ASTM E 399 has standardized fracture toughness measurement techniques for 

metal systems at ambient temperature [37], including single edge notched bend (SENB) 

and compact tension (CT) specimens. Other methods like double torsion (DT), double 

cantilever beam (DCB) and chevron notch (CHV) specimen could be applied to brittle 

materials. 

Table 2-1. Advantages and disadvantages of fracture specimens 

Specimen Advantages Disadvantages 

SENB 1. Simple specimen geometry 

2. Less material required 

3. Elevated temperature 

applicable 

4. Large data of previous work 

1. Difficulty in sharp precrack 

2. Unstable crack growth 

(Difficulty in obtaining 

subcritical crack growth and 

R-curve measurements) 

CT 1. Long crack length and 

relatively stable crack 

extension 

2. Large data on previous work 

1. Difficulty in machining 

2. Difficulty in elevated 

temperature test 

3. Delicate precracking 

procedure required 

DCB Tensile loading mode:  

similar to CT and more stable 

1. similar to CT 
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Constant bending moment mode: 

Constant Ki independent of crack 

length 

 

1. Difficulty in attaching load 

arms, especially in elevated 

temperature 

Wedge loading mode: 

Elevated temperature capability 

1. Difficulty of displacement 

measurement 

2. Friction effects at the wedge 

loading point 

All loading modes: Grooves to guide the crack 

extension. 

1. Machining difficulty of the 

grooves 

2. Crack interactions with the 

grooves 

3. Effective thickness with 

grooves 

CHV 1. Maximum load is the only 

measurement necessary 

1. Delicate chevron notch 

machining 

2. Chevron notch shape and 

size requirement for stable 

crack growth. 



 
 

 29 

3. Complication with rising R 

curve material. 

DT 1. Ki independent of crack length  1. Constant Ki region affected 

by specimen dimensions. 

2. Ki varies along the crack 

front curve. 

3. Grooves required to guide 

crack. 

 

As shown in Figure 2-1 [38] (a). SENB could be loaded in either three point or 

four point bend configuration. Geometric term Y has been given for both configurations 

with specific span ratio range. In (b), compact tension specimen or wedge opening 

loaded specimens are loaded in tension so that the crack tip stress is in opening mode. 

In (c), double cantilever beam specimen is demonstrated in three loading conditions: 

tensile, constant bending moment, and wedge loading. DCB specimens have been 

applied to brittle materials fracture testing. For tensile loading mode, DCB is very similar 

to CT specimen, just longer and thus more stable crack extension capability.  In (d), a 

tapered DCB provides a constant K1 condition during crack extension by introducing a 

special taper to the specimen geometry. Chevron notched specimens are shown in (e-g): 

short rod, short bar, and bend bar. The maximum load recorded during test has been 

used to determine Ki, independent of crack length. Double torsion specimen is shown in 

(h). The advantages and disadvantages of each fracture specimen is listed in table 2-1. 
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In addition, fracture testing methods of brittle materials are listed in American Society 

for Testing and Materials Standard C 1421-15. [39] The geometries listed are primarily 

three or four point bend bar, the difference is in the precracks, as shown in Figure 2-2. 

The emphasis is in precracks because in brittle materials testing, the precrack is 

essentially important to introduce a valid Ki measurement. The precracks discussed here 

include a straight-through crack via bridge flexure (pb), a semi-elliptical surface crack via 

Knoop indentation (sc) or a chevron notch (vb). For pb specimen, a straight through 

precrack was extended by a special bridge compression fixture from median cracks 

associated with one or more Vickers or Knoop indentations or a shallow saw notch. For 

sc specimens, a surface flaw was introduced through a Knoop indenter and then 

Figure 2-2. Standardized fracture specimen for brittle materials 
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polished to remove the indents and the residual stress field. Vb specimens are valid only 

when crack stability is achieved, and in this conventional rectangular bar geometry, Kic 

measurement is independent of crack extension length; this is also described in previous 

ASTM E399 as CHV. Advantages, disadvantages and applicability are listed in table 2-2 as 

comparison. [39] 

 

Table 2-2. Advantages, disadvantages and applicability of fracture specimens for 

brittle materials. 

Specimen Advantages Disadvantages Applicability 

pb 1. Classic fracture 

configuration 

2. Large precracks 

3. Crack 

measurable 

1. Special bridge 

precracking fixture 

2. Large forces for 

precracking  

3. Low force to fracture 

after precrack 

4. Post fracture crack length 

measurement 

Large sharp cracks 

sc Small precracks 

similar to natural 

cracks 

1. Fractographic techniques 

for precrack 

measurement 

Small cracks 

comparable to 

natural cracks in 

dense materials 
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2. Skill and fractographic 

equipment required 

3. Not appropriate for soft 

or porous materials 

4. Not appropriate for 

coarse microstructure. 

vb No need to 

measure crack 

length 

1. Stable crack extension 

required 

2. May not work for stiff 

materials with low 

fracture toughness or 

materials not susceptible 

to slow crack growth 

3. Precision machining of 

notch  

4. Requires stiff load train 

Chapter 1. Large 

sharp cracks 

Chapter 2. Flat 

R-curve 

material 

 

2.2 Introduction to small scale mechanical testing 

Traditional fracture toughness testing methods developed for bulk materials are 

often difficult or impossible to apply directly to small-scale specimens, due to sample 

handling challenges and the small loads and displacements involved. Micro-scale 
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fracture toughness testing has particular advantages when the material or sub-region of 

interest has a scale below 100 µm. The micro-cantilever deflection test has recently 

emerged as a preferred method due to the simplicity of the cantilever beam 

configuration. It has been utilized to analyze a variety of materials such as thin films and 

individual phases within multiphase materials, and different phenomena including the 

influence of impurity segregation on grain boundary mechanical behavior. 

[40][41][23][42]  

2.3 Micro cantilever with straight notch 

The micro cantilever deflection test method was first introduced in 1988 [43] and has 

been widely used to determine mechanical properties of materials in nano/micro scales. 

The cantilever deflection test is widely used in micro scale mechanical tests, due to its 

simplicity in sample fabrication and well understood structure. It has been used in 

determining mechanical properties including Young’s modulus, yield strength and 

fracture behavior of both brittle ceramics and metals.[41,42,44–46] Special techniques 

were utilized when milling the pre notch to ensure a sharp notch tip when fabricating 

micro cantilevers using Focused Ion Beam technique. And it has been shown to 

accurately capture the mechanical behavior of the materials with comparison to those 

in bulk phases. Etching and focused ion beam techniques are the most often used 

fabrication methods for sample preparation. Nano indentation hardware has been used 

to perform the deflection test. During the mechanical test, both load and displacement 
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data are recorded simultaneously until catastrophic fracture happens. A schematic 

diagram is shown in Figure 2-3.  

 

Figure 2-3 Schematic of nanoindenter loading system and a cantilever microbeam 

[43] 

In order to calculate the fracture toughness value of a material tested in the cantilever 

deflection configuration, the following equation has been used in previous studies.[40] 

 𝐾𝐼𝐶 =
6 𝐹𝐿

𝑊2𝐵
√𝜋𝑎 ∙ 𝑓(

𝑎

𝑊
) (14) 
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𝑊
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2
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3
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𝑊
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where F is the load when fracture happens, L is the distance between the prenotch and 

loading point, W and B are the thickness and width of the beam respectively, and a is 

the prenotch depth. Function f(a/W) is a dimensionless geometry factor used to correct 

for the prenotch length when the crack is not small compared to W. The parameters of 

this function can be determined by finite element analysis. This polynomial will vary 

depending on specimen geometry. This equation is based on an assumption of a sharp 

prenotch with a notch root radius smaller enough to ensure the validity of the test 

results.  

This notch in micro scale is usually fabricated with Focused Ion Beam technique 

in a low current setting, because precracking procedure in micro scale is not available 

like bridge flexure mentioned in bulk testing methods. Especially in brittle materials, 

once the crack initiated it will not arrest unless a crack stabilizer is employed, and such 

Figure 2-4 (a) Schematic of FIB fabricating a sharp prenotch using decreasing 

ion beam current.  (b) leaving thin bridges on both sides of the pre-notch 
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mechanisms are not available in micro scale testing methods due to specimen handling 

and equipment limitations. The sharpness of the notch is essential in determining the 

accuracy of the fracture test. Linear elastic fracture mechanics has a preassumption that 

the precrack tip radius has a zero curvature. It was reported that a notch root radius of 

250nm fabricated using FIB milling is not considered to be a sharp crack in micro size 

samples with a geometric dimensions of 10*10*50 um.[47] 

In order to generate a sharp notch, a new technique has been used here 

involving three steps of FIB milling with decreasing ion beam current, which is shown in 

Figure 2-4 (a)  

Another technique that has been used to generate a uniform crack and to induce 

a real sharp pre crack at the notch root is to leave thin bridges at both sides of the notch 

on the specimen, which are around 100-200nm in width, as shown in Figure 2-4 (b)[46]. 

The idea behind this is that the thin bridges will fracture at a small load, and the 

resulting cracks will merge and arrest when they reach the uniformly-milled area at 

Figure 2-5 The dimension and crack length measurement from a single crystal 

spinel {100}<100> sample  
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depth a. In principle, this will introduce a sharp crack that can then propagate at a 

higher load. 

An in-situ mechanical test of a single crystal cantilever microbeam is shown in 

Figure 2-5[19]. The specimen was located with respect to the crystal orientation. The 

indenting direction is perpendicular to the top surface of the specimen, as shown in 

<100> direction in Figure Figure 2-5 (a) and the intended fracture plane is aligned with 

{100} orientation. And therefore each specimen was defined with two orientations, i.e. 

{100}, <100>. After the mechanical test, the fracture surface can be examined and the 

precrack length a, W, B can be measured respectively as shown in Figure 2-5 (b) in order 

to obtain the fracture toughness value using equation (16) 

Figure 2-6. Sketch of the chevron-notched samples used to measure fracture 

toughness (a) Overcut notch. (b) Undercut notch. The grey area is intact and the 

white area is a gap between the two parts of the beam. 
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2.4 Micro cantilever with chevron notch 

A micro cantilever deflection specimen with a chevron notch has been developed 

and utilized in small scale fracture toughness tests. [48] The advantage of a chevron 

notched specimen compared to a straight notch is that in micro scale, the straight notch 

machined with FIB is not as sharp as the crack introduced during fracture testing like 

those of a chevron notch. Upon loading, the triangle shaped chevron notch tip will 

experience the highest stress and thus fail at first, introducing a real sharp crack. And as 

the load increases, the crack can extend in a stable manner with appropriate testing 

parameters set up. In a micro cantilever chevron notched specimen, the chevron notch 

is positioned with the notch tip facing upward, as shown in Figure 2-6 and 2-7. [48]  

Therefore, when the beam is loaded in bending from the top, the crack tip 

experiences a tension mode loading. And therefore, fracture toughness could be 

obtained by, 

Figure 2-7. Chevron notched cantilever beam in alumina fiber. (a) overview of a 

fiber from which a beam was machined. (b) the same cantilever at higher 

magnification (c) view of the triangular ligament after testing (d) beam after 

testing. 
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𝐾𝐼 =
𝑃

𝐵√𝑊
 𝐹𝑣(𝑎̃) 

 

𝐹𝑣(𝑎̃) = √
1

2𝑏1̃

𝑎1̃ − 𝑎0̃

𝑎̃ − 𝑎0̃

𝑑𝐶𝑉

𝑑𝑎̃
 

(17) 

Where all the dimensions are normalized as, 𝑎̃ =
𝑎

𝑊
 , 𝑎0̃ =

𝑎0

𝑊
 , 𝑎1̃ =

𝑎1

𝑊
 and 𝑏1̃ =

𝑏1

𝐵
. 

And the compliance is dimensionless, 𝐶𝑉 = 𝐶𝐸𝐵. This geometric term is determined 

with finite element analysis modeling. Maximum load could be obtained experimentally 

and thus is the only parameter that needs to be measured from a fracture test to 

determine the fracture toughness value. 

We need to notice that in this testing method, a maximum load is only valid 

when the crack advances in a stable manner. The slope decreases to zero indicating the 

stability in a load displacement curve, shown in Figure 2-8. [48] The peak load reached in 

the test was immediately followed by unstable crack propagation. We can see that once 

the maximum load is reached, the indenter moves rapidly due to the programmed load 

function that was set to be monotonically increasing.  
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Fracture toughness was successfully determined with this method. The 

successful rate depends on machining the chevron notch to be thin enough to ensure a 

proper crack initiation with a lower load than the critical load associated with fracture 

equilibrium. Further studies in the same group involve a triangular cross section with a 

similar reversed chevron notch [49], the advantages of the later is that one could 

Figure 2-8. Indentation corrected load displacement responses of (a) fused 

quartz and (b) alumina chevron notched cantilever beam samples. 
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fabricate a fracture specimen in the center region of the sample surface, instead of a 

sample edge. The test configuration is shown in Figure 2-9. 

Figure 2-9.  (a) Triangular micro cantilever beam with chevron 

notch, as prepared on a flat fused quartz surface. (b) Sketch of 

chevron notch geometry. (c) Fracture surface of a chevron notch 

ligament. 
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2.5 Clamped-clamped rectangular with straight notch 

Another micro scale testing method has been developed is a clamped-clamped 

rectangular beam with a straight through notch, as shown in Figure 2-10. [50][51][52] 

The double clamped specimen is symmetric in nature and thus eliminated the mixed 

mode fracture in cantilever specimens. This geometry could achieve stability in certain 

test conditions. LEFM was utilized for evaluating fracture toughness as other testing 

methods. Extended finite element analysis (XFEM) was carried out using ABAQUS. Kic 

measurements were obtained with the pop-in loads Pf shown in Figure 2-10 (c) in 

combination with XFEM analysis.  

A disadvantage of this testing method is whether the pre machined notch radius 

(300nm in this study) is sufficiently sharp as that compared in a chevron notched 

Figure 2-10. A clamped single edge notched micro beam. (a) clamped beam for 

bending. (c) microbeam modelled in ABAQUS for simulation. (c) P-d curve of 

fracture test. (d) Fracture test in SEM in sync with (c) 
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specimen, since the pop-in load is the only parameter used in evaluating Kic. Any 

bluntness of the notch will result in an overestimation of fracture toughness. In this 

testing configuration, not specialized preparation techniques were utilized to ensure the 

sharpness of the pre machined notch like those discussed in micro cantilever beams 

with a straight through notch, because this notch is located underneath the specimen. A 

correction could be applied to the results, however the accuracy of the correction is 

hard to evaluate. Furthermore, the evaluation of toughness results with XFEM and COD 

(crack opening displacement) methods have a difference with the same specimen. This 

error could be a combination of limitation of low signal to noise ration of DIC (digital 

image correlation) and the inability of the FEM to simulate the experiment condition in 

a non-planar crack propagation process. 

 Furthermore, the beam is notched on the underside in the center so it can be 

loaded from the top just like the microcantilever. The location of the notch requires that 

milling take place parallel to the notch front (i.e., from the side of the beam), thereby 

inevitably causing a notch that varies in shape and tip radius across the width of the 

specimen. This would be a significant drawback if it were not the case that properly 

chosen beam and notch dimensions are capable of creating conditions under which 

crack growth can be stable. Extended Finite Element Modeling (XFEM) showed that 

stability is enhanced when the beam is short and thick, and when the crack length is 

neither extremely short nor extremely long. The proper starting conditions result in the 

initiation of a sharp crack at the tip of the notch followed by crack arrest before 

catastrophic failure occurs. This sharp crack can then be driven forward by progressively 
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higher loads, much like the case of the chevron notch. The single edge notched clamped 

beam is therefore capable of multiple fracture events with a single specimen, and is 

suitable for measurement of R-curve behavior. The symmetric nature of the bridge 

beam design promotes pure Mode I loading at the crack tip, and should help to guide 

crack growth in a direction perpendicular to the beam's major axis. Like the chevron 

notched microcantilever test, analysis of a bridge beam test requires extensive 

modeling. 

 A secondary failure mode is also possible with the bridge beam design: fracture 

near the two clamped ends of the beam where the bending stresses are very large. A 

theoretical analysis of this failure mode shows that it is possible to reduce the likelihood 

of beam-end failure by careful selection of the beam and notch dimensions, and by 

elimination of flaws in the vicinity of the high-stress regions. Stable fracture emanating 

from a single underside notch has been demonstrated for specimens made of single 

crystal Si and (Pt, Ni)Al bond coat [53], with dimensions on the order of tens to 

hundreds of micrometers. In these specimens, crack growth is measured on the 

micrometer scale. In theory, the technique should also work for specimens at the single-

micrometer scale for which crack growth must be measured on the nanometer scale, 

but this has not yet been demonstrated. In our laboratory we have had difficulty 

avoiding the secondary failure mode when working with micron-scale specimens for 

reasons that are unclear. 
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Chapter 3. Fracture toughness 

testing of doped spinel  

 

3.1 Tri-crystal specimen fabrication 

Two synthetic grain boundaries were investigated in this study, as shown in Figure 

3-1 [54]. The boundaries were fabricated by diffusion-bonding three spinel single-

crystals in a hot press (Thermal Technologies) at 1200 °C with an applied pressure of 10 

MPa. The three single-crystals were edge-oriented with {111}, {100} and {110} surface 

planes, respectively. One of the grain boundaries thus fabricated had a {111} surface 

plane of one abutting crystal parallel to a {100} surface plane of the other and will be 

referred to as the {111}/{100} grain boundary. The other grain boundary comprised a 

{100} surface plane of one abutting crystal parallel to the {110} of the other and will be 

referred to as the {110}/{100} grain boundary. The grain boundary plane orientations 

are provided schematically in Figure 3-2. The diffusion-bonded sample was cut in half 

perpendicular to the grain boundary planes and then cleaned by ultrasonication. One 

half was doped with europium by soaking in europium nitrate solution and then dried, 

while the other half was left undoped. Both samples were annealed individually at 

1600°C for 4 hours in a reducing atmosphere (forming gas). The samples were cooled 
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rapidly (~500°C/minute) from the annealing temperature to 1000°C. The cooling rates 

decreased with furnace temperature and, thus, the furnace reached 50°C in 15 minutes. 

Since the grain boundaries and free surfaces are identical in the two samples, the effect 

of europium on the grain boundary characteristics can be identified without any 

ambiguity. The annealed samples were polished and grain boundary orientations were 

confirmed with the aid of electron backscattered diffraction (EBSD; Hitachi 4300).  
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3.2 Improvement of micro cantilever test 

In our study, micro cantilever deflection testing method was utilized to measure 

spinel grain boundary fracture toughness, due to its simplicity in sample fabrication, well 

understood structure and reliability, since relatively large amount of application with 

Figure 3-2. Schematic depiction of tri-crystal sample orientation and cantilever 

beam specimen location. (Cantilever beams are enlarged in dimension relative 

to tri-crystal in the figure for clear view) 

Figure 3-2 Schematic diagram of fabrication process, 

annealing temperatures and characterization 
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micro cantilevers has been carried out in previous works. By aligning the pre notch at 

the location of the grain boundary, we could guide the fracture in the plane of the pre 

milled notch and then obtain the fracture load value from the transducer sensor during 

the mechanical test. Adjustments and improvements have been made in this study 

tailored to our current fabrication equipment, accurate loading point alignment, 

material elastic properties, milling rates and cantilever geometry. A geometric 

correction factor has been derived specifically in this study independently based on our 

finite element analysis modeling work carried out with ANSYS Mechanical APDL and 

FRAC 3D. This improvement is made in consideration of the material stiffness 

information embedded in the finite element analysis model to accurately capture the 

behavior of the structure during fracture testing experiment. 

5m 5m 

Figure 3-3. In-situ micro cantilever deflection fracture test before and after. 

Hysitron PI85 cono-spherical indenter tip was utilized as a deflection tool. 

Fracture propagation is aligned with the pre notched plane and after the 

fracture test, and the fracture surface is exposed, which allows the measurement 

of the pre notch ratio and characterization of the fracture surface. 
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3.1.1 Sample fabrication 

In preparation for cantilever fabrication, the top and side surfaces of the 

tricrystal were manually polished to create a 90 degree edge. Micro-cantilever beams 

were then fabricated by focused ion beam (FIB) milling using an FEI Scios Dual Beam 

system (Ga+ ions, 30keV, 0.5-30nA). The microcantilevers were nominally 12 µm in 

length, 3 µm in width and 3 µm in height, as shown in Figure 3-3. In practice, the total 

length was greater than 12 µm to avoid the need to make contact with the mechanical 

test instrument precisely at the beam edge.  For single crystal measurements, the entire 

cantilever beam was positioned within the respective crystal away from the grain 

boundaries. Three single crystal orientations of undoped spinel were tested: 

{100}<100>, {110}<110> and {111}<110> as defined by the ideal fracture plane and 

loading direction, respectively. At least three cantilever beams for each grain boundary 

and single-crystal arrangement were fabricated. 

In all cantilevers, an ion-milled pre-notch was created to control the site of crack 

initiation. For the bicrystal cantilevers, EBSD was utilized before milling to correctly 

locate the grain boundary, the position of which was then marked using a low current 

ion beam. For certain orientations, the grain boundary location was confirmed using 

phase contrast or by second phase precipitates seen in the scanning electron 

microscopy (SEM) mode of the FIB instrument.  The pre-notch was milled to a uniform 

length, with thin ligaments intentionally left on both sides of the notch.[46] To ensure a 

sharp crack tip, we reduced the ion milling current from 30 pA down to 1.5 pA.[44] SEM 

was used to confirm the notch radius as 10-20 nm, which is sufficiently sharp with 
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respect to beam dimensions to accurately evaluate the fracture toughness. For 

comparison, a previous microcantilever study on various silicon oxides, nitrides, and 

oxynitrides that used a similar notch radius determined that fracture toughness could 

be overestimated by as much as 20% if the side ligaments fail to create true crack prior 

to beam failure. [46]  

An additional pair of shallow alignment marks were ion-milled 9 µm from the 

notch on the top surface of each cantilever beam to guide placement of the indenter tip 

during the mechanical test. These marks are visible in Figure 3-3. The distance from the 

marks to the base of the cantilever established the effective beam length of 12 µm, 

regardless of the physical beam length. 

3.1.2 In-situ fracture test 

A Hysitron PI85 picoindenter was utilized as the mechanical testing instrument. A 

cono-spherical indenter tip was used to minimize the tip impression on the top of the 

cantilever beam. During the mechanical test, load and displacement were both 

recorded. A linear load control function was employed with constant loading rate. As 

the load increased, the beam was deflected until fracture. The fracture load was 

captured in the output data which was sampled at a rate of 5 µN /s. SEM images of each 

post-test fracture surface were used to accurately determine the ratio of the pre-notch 

length (a) to the beam thickness (W). Then, the fracture toughness value (KIC) was 

calculated using the equation (14), rewritten here for convenience. 
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 𝐾𝐼𝐶 =
6 𝐹𝐿

𝑊2𝐵
√𝜋𝑎 ∙ 𝑓(

𝑎

𝑊
) (14) 

   

in which F is the fracture load, L is the length between the notch and the loading point, 

B is the beam width, and f(a/W) is a dimensionless crack length correction term that is 

determined by finite element analysis. 

3.1.3 Finite Element Analysis  

 A 3D finite element analysis (FEA) model was built using ANSYS Mechanical 

APDL, in which the beam dimensions were identical to the ideal experiment design, as 

shown in Figure 3-4.  
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Mesh refinement was applied at the notch area to ensure the convergence of 

the model. The model was built in the X-Y plane first, the area adjacent to the notch 

area was defined in order to better arrange these refinement near the notch, as shown 

in Figure 3-5. 

A high order 3D 20-node structural solid element (SOLID 95) was selected after 

the extrusion of the 2D elements (PLANE 82), because of its high accuracy and tolerance 

of irregular shapes. A force load was applied to the top surface of the elements located 

at the free end of the beam 12 µm from the base, simulating the contact area of the 

Figure 3-4. 3D model of the cantilver deflection beam built in ANSYS 

Mechanical APDL, and refined meshing was applied to the notch area. Force 

was applied at the loading point. Extra support volume was also added due to 

the deformation of the bulk material support at the beam root. 
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indenter tip. The material supporting the cantilever beam was also included in the 

model as the deformation of this volume affects the accuracy of the cantilever 

deflection. The size of the support region was increased until the solutions converged; 

the chosen model used a support that was half of the cantilever beam’s length.  

 FRAC3D, a dedicated fracture toughness evaluation software package, was 

utilized to calculate the stress intensity factor value of the model.[55] In solving fracture 

mechanics problems, FRAC3D has certain advantages over many commercial codes by 

Figure 3-5. XY plane meshing details, generated with ANSYS Mechanical APDL 

14.0. Refinement is applied to highlight area near the notch. 
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utilizing enriched elements in evaluating the crack tip stress field, and, thus, well 

addresses the singularity and mesh refinement issues at the crack tip.  

Multiple models with the same experimental geometry but with varying crack 

lengths were simulated and their stress intensity factor values were calculated with 

FRAC3D. In ANSYS APDL, crack length is defined as a variable, treated as a master key. 

Therefore, by changing this crack length variable, we could generate identically meshed 

models with different crack length. This makes sure that the FEA results are not affected 

by the difference in meshing conditions. 

With the Ki measured from FRAC 3D for an increasing crack length, we could 

then derive the geometry factor term in Eqn. (14). 

The finite crack size geometry factor (f) as a function of the notch length ratio 

(a/W) was then fit to these data with a polynomial (Eqn 18), this fit was generated by 

MATLAB.  

 𝑓 (
𝑎

𝑊
) = 1.55 − 6.61 (

𝑎

𝑊
) + 38.52 (

𝑎

𝑊
)

2

− 91.07 (
𝑎

𝑊
)

3

+ 83.04 (
𝑎

𝑊
)

4

 (18) 

 

Eqn. 18 applies for when a/W is between 0.2 and 0.5.  

This polynomial was then used to calculate the fracture toughness (Eqn. 14) for 

the specific a/W ratio measured from each fractured beam.  
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3.3 Micro cantilever testing of Eu doped spinel 

3.3.1 Method 

In our study, micro cantilever deflection tests were employed to carry out the 

grain boundary fracture toughness measurement. By aligning the pre notch with the 

grain boundary, we could guide the fracture in the intended plane and thus evaluate the 

fracture behavior of the grain boundary. The {111}/{100} and {110}/{100} grain 

boundaries in both undoped and Eu-doped spinel were tested. 

In addition, by capturing grain boundary fracture behavior of magnesium 

aluminate spinel and correlating the fracture energy, grain boundary energy and surface 

energy, we could establish an experimental method in investigating the fundamental 

surface energy of low index planes of spinel. Moreover, by adding different rare earth 

elements as dopants and evaluating the fracture behavior of grain boundaries through 

micro-mechanical characterization and atomic resolution scanning transmission electron 

microscopy, we could investigate how the choice of rare earth doping element affects 

the grain boundary structure, chemistry and properties systematically, which is essential 

in understanding grain boundary segregation behavior and beneficial in designing a 

material fabrication process with rare earth dopants to produce high performance 

materials. 
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3.3.2 Fracture Test results  

Fracture toughness values and their standard deviations are plotted with respect 

to each specimen condition in Figure 3-7, and are also reported in Table 3-1. The single 

crystal fracture toughness values all have a standard deviation of 3% or smaller. Fracture 

of the {100}<100> specimens resulted in crack propagation perpendicular to the beam 

surface. During the {110}<110> and {111}<110> tests, the fracture plane was deflected 

from the pre-milled notch and, thus, a small correction was applied to these fracture 

toughness calculations to account for the decrease in the mode I stress intensity factor, 

KI. [19]. 
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Figure 3-6 and Table 3-1 also show the fracture toughness values for the 

undoped and Eu-doped spinel grain boundaries. The fracture planes were always 

coincident with the grain boundary planes during testing. The standard deviations for 

the undoped boundaries are similar to those for the single crystal specimens. The doped 

boundary values have standard deviations approximately four times larger. A higher 

fracture toughness value exists for the {110}/{100} grain boundary as compared to the 

{111}/{100} grain boundary for both the undoped and Eu-doped spinel. Little to no 

difference in fracture toughness is evident between the undoped and Eu-doped spinel 

grain boundaries that have the same orientation.  

Figure 3-6. Fracture toughness values with respect to different specimen condition. 

Standard deviation was shown in each column. Single crystal {100} and {111} has 

shown a higher fracture toughness. Undoped {111}/{100} interface is much weaker 

than a single crystal, Eu doped {111}/{100} interface is in the same range with a 

higher deviation due to different complexion combination contribution. Undoped 

{110}/{100} interface is a strong interface has fracture toughness comparable to 

{100} single crystal, Eu doped {110}/{100} interface has similar fracture toughness 

with a higher deviation in the results. 
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Table 3-1. Average fracture toughness results tri-crystal spinel 

Orientation {100}<100> {110}<110>  {111}<110> {111}/{100} {110}/{100} {111}/{100} {110}/{100} 

Condition Single 

Crystal 

Single 

Crystal 

Single 

Crystal 

Updoped Undoped Doped Doped 

Fracture 

toughness 

(MPam1/2)  

1.46 ± 

0.03 

1.55 ± 

0.05 

1.71 ± 

0.05 

0.93 ± 

0.01 

1.40 ± 

0.03 

1.00 ± 

0.12 

1.43 ± 

0.14 

 

3.4 Discussion on surface energy and grain boundary 

energy 

3.4.1 Single crystal  

According to the Griffith fracture criterion for brittle materials, external energy is 

required when forming new surfaces and this external energy corresponds to the 

fracture energy measured in a fracture test. [3] A high fracture strength, or in this case 

fracture toughness, therefore corresponds to a high surface energy. In the single crystal 

tests, the beams were fabricated and tested in {100}<100>, {110}<110> and {111}<110> 

orientations to probe the {100}, {110}, and {111} surface energies, respectively.  The 

average fracture toughness measurements derived from the microcantilevers match 
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with the most common trend reported in the literature for macroscopic single crystal 

spinel fracture toughness measurements made with conventional bend bars, wherein 

the {110} fracture plane has a slightly higher fracture toughness than the {100}, and the 

{111} fracture plane is significantly higher.[18] The high average fracture toughness of 

the {111} tensile axis specimens indicates that this plane has the highest surface energy 

of the three planes tested. The fractography trends for the single crystal beams are also 

in general agreement with published reports from conventional bend testing: the {100} 

cleavage plane is always smooth, the {110} plane is somewhat less so, and the {111} 

plane is associated with significant crack redirection during propagation. [15,16,18,56] 

These trends reinforce the conclusions stemming from the quantitative fracture 

toughness results. They also match very well with recent surface energy calculations 

that report a surface energy decrease from {111} to {110} and from {110} to {100} in 

pure single crystal spinel [13]. This is in direct contrast with older surface energy 

calculations that concluded that the {111} plane has the lowest energy of the three low-

index planes [12] 

3.4.2 Undoped interface fracture 

When fracture occurs at a grain boundary, the energy required to cause crack 

propagation depends on the energy of the internal grain boundary as well as the 

energies of the exposed surfaces. Equations (19) and (20) relate the fracture energy, G, 

of both the {111}/{100} and {110}/{100} grain boundaries, respectively, as the difference 

between the energies of the free surfaces and that of the intact boundary. 
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 𝐺{111}/{100} = (𝛾𝑠,{111} + 𝛾𝑠,{100}) − 𝛾𝑔𝑏,{111}/{100} (19) 

 𝐺{110}/{100} = (𝛾𝑠,{110} + 𝛾𝑠,{100}) − 𝛾𝑔𝑏,{110}/{100} (20) 

   

γs, {hkl} is the surface energy for the {hkl} plane and γgb,{hkl}/{hkl} is the grain 

boundary energy for the {hkl}/{hkl} boundary. Fracture toughness is not an energy term 

per se, and is therefore not a direct measure of the surface energies, but differences in 

fracture toughness can indicate the underlying trends. The fracture toughness of the 

undoped {110}/{100} grain boundary is similar to that of the single crystal {100} and 

{110} measurements, for which there is no γgb,{hkl}/{hkl} contribution. According to Eqn. 20, 

this would suggest that the {110}/{100} grain boundary energy is significantly lower than 

that of the respective free surface energies.  

In contrast, the undoped {111}/{100} grain boundary’s fracture toughness is 

significantly lower than the respective measurements of the {111} and {100} single 

crystals. This indicates that the {111}/{100} grain boundary has higher energy than the 

{110}/{100} grain boundary and, physically, there is relatively poor bonding between the 

{111} and {100} planes in this orientation.  

The analysis above was completed for the undoped grain boundary fracture tests 

because the surface energies of the surface planes were elucidated from the single 

crystal fracture measurements. However, this method cannot be used when evaluating 

the Eu-doped grain boundaries as the single crystal fracture toughness measurements 

are now inadequate as reference values for the free surfaces. 



 
 

 61 

3.4.3 Eu-Doped interface 

Based on our fracture toughness results, we have not seen an increase of 

fracture toughness of the grain boundary with Eu doping compared to the undoped 

grain boundaries. And this is true for both orientation boundaries. The reason of this 

insensitivity of the toughness to rare earth doping at the grain boundary can only be 

answered combining other techniques to reveal the atomic level structure.  

Further investigation of the grain boundary structure is made available through 

aberration corrected scanning electron microscopic analysis. The correlation of grain 

boundary structure and property is then established and will be discussed in great 

details in the following chapter. 
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Chapter 4. Direct correlation of 

grain boundary structure and 

fracture behavior 

4.1 Grain boundary segregation behavior 

The addition of dopants to spinel offers opportunities for tuning the interface 

energies and therefore the behavior. For example, rare earth dopants have been shown 

to segregate to free surfaces, stabilizing those surfaces. [57] Both the ionic size and ionic 

valance of the dopants were seen to determine the degree of stabilization, so proper 

selection of dopant type would be critical if this approach were to be put into practice. 

In general, among trivalent dopants larger ionic radius was associated with stronger 

segregation and influence on surface energy. For example, doping with La, the largest of 

the Lanthanide rare earths, was shown to have a very strong effect, making the {111} 

surfaces more favorable than they would be in undoped spinel. 

 In the case of internal interfaces, rare earth dopants have been observed to 

segregate strongly to grain boundaries and to alter the grain growth of polycrystalline 

spinel, promoting normal or abnormal grain growth depending on the selection of 

dopant and, in some cases, the heat treatment temperature.[58] Grain size and 
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uniformity determine optical quality, and grain boundary strength plays a role in 

determining fracture behavior.  

4.2 Previous work on rare earth doped spinel  

Previous studies on the effect of a rare earth dopant on spinel grain boundary 

behavior was carried out in our research group. Ytterbium was added as a dopant in the 

sintering process of spinel bi crystals. [19] 

The cantilever deflection test with the same nanoindentation system (Hysitron 

PI85) as our current study was applied to test the fracture toughness of grain 

boundaries on Spinel bi crystals. Only orientation {100}/{111} grain boundary was 

tested. In this case, Yb doping was found to affect the mechanical properties. Fracture 

toughness testing results with and without Yb added as a dopant was compared, the 

results are shown in Figure 4-1. Different annealing temperature effect was also 

	Figure 4-1 Fracture toughness value of Yb doped spinel {100}/{111} bicrystal 

grain boundary [19] .  
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considered. As shown in Figure 4-1, the bi crystal grain boundary has a lower fracture 

toughness than a single crystal. By adding Yb as a dopant, the fracture toughness value 

was improved to the same level as single crystals. And the fracture toughness value of 

Yb-doped grain boundaries does not change with annealing temperature varying in the 

range of 1400 °C to 1800 °C. This result implies that an identical grain boundary 

structure may be achieved under this wide temperature range by adding Yb in the 

system.  
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High resolution electron microscopy characterization was carried out to analyse 

this grain boundary structure. As shown in Figure 4-2, HAADF micrographs of the spinel 

grain boundary in each doping condition were compared. Figure 4-3(a) represents an 

undoped spinel grain boundary, where there is no impurity segregation along the grain 

boundary, figure (b) shows a Yb doped grain boundary of the as-pressed doped samples. 

A periodic staggered monolayer segregation is observed. It must be noted that a 

Figure 4-2 Atomic resolution HAADF images (a) the intrinsic undoped bicrystal 

grain boundary and (b) the ytterbium doped bicrystal grain boundary 

demonstrate different grain boundary structures. High resolution HAADF 

images showing the ytterbium configuration of (c) 1400 °C (d) 1600°C and (e)  

1800 °C annealed specimens in a grain boundary. [19] 

c 

d  

e 

1400 °C annealed 
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sufficient amount of ytterbium was introduced in the fabrication process, where other 

thermodynamically stable phases could form if they were energetically favored. Thus, it 

was concluded that the staggered monolayer structure is the most thermodynamically 

stable configuration of the ytterbium atoms in the spinel grain boundary and in fact it 

remains invariant over a large temperature range as shown in Figure 4-2 (c) (d) (e), 

which confirms the thermodynamic stability of such segregation behavior. 

 

A prior study of grain growth in rare-earth doped polycrystalline spinel 

demonstrated that Yb and Eu have significantly different effects on grain growth 

kinetics. Yb-doped polycrystals grew in a normal fashion from 1400 to 1800 C. In 

contrast, Eu-doped spinel underwent abnormal grain growth at temperatures greater 

than 1550 C, as shown in Figure 4-3.[54] During abnormal growth, certain boundary 

planes became more prevalent than others. These results imply that Yb and Eu have 

different effects on boundary energy, that the Eu effect is temperature sensitive, and 

that segregation effects on surface energy are structure dependent. Yb is in a 3+ state 

and Eu in a 2+ state in spinel and the ionic radius of Eu is larger than that of Yb. 

Differences in both ionic size and ionic valance might be expected to result in 

Figure 4-3 Grain growth of polycrystalline spinel for undoped, Eu doped 

heat treatment temperature at 1400 and 1600 C 
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measureable differences with regard to effects on boundary energy. Therefore, in the 

present study Eu was selected as the doping element of interest, with heat treatment at 

1600 C to induce behavior unlike that of Yb. Furthermore, two different low index 

boundaries were created to explore the effect of structure on segregation, boundary 

structure, and boundary energy.  

4.3 Eu doped Tri crystal grain boundary fracture 

behavior 

4.3.1 Fracture results 

Microcantilever fracture experiments were used to determine the relative 

fracture energies of different planes in updoped bicrystal boundaries, and doped 

bicrystal boundaries, as introduced in section 3.1. Scanning electron microscopy was 

used to analyze fracture surfaces. High resolution electron microscopy was used to 

elucidate the details of boundary chemistry and structure. From these results, an 

assessment of the relative surface energies of the low index planes with and without the 

presence of Eu could be made. 

For the Europium doped grain boundaries, {111}{100} interface is measured to 

be 1.00 ±0.12 MPam1/2 and {110}{100} interface is measure to be 1.43 ±0.14 MPam1/2, 

as shown in Figure 3-6 and Table 3-1. 
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4.3.2 Fractography   

 The contact end of each cantilever beam was broken off to expose the fracture 

surface for observation with SEM. As mentioned above, all {100}<100> oriented single 

crystal micro cantilever beams had a planar fracture surface (not shown) while the 

fracture plane was deflected in the {110}<110> and {111}<110> oriented single crystal 

tests (not shown). No special features were visible on any of the single crystal fracture 

surfaces.  

Figure 4-4 SEM images of fracture surfaces exposed after the fracture test, 

viewed with a 60 degree angle from the top surface. (a) an undoped {111}/{100} 

grain boundary is presented here as a ‘clean’ fracture surface for comparison  

(b) Eu doped {111} /{100} interfaces, large precipitates of similar shape and size 

were observed at both fracture surfaces. (c),(d) Eu doped {110} /{100} interfaces, 

in (c) we observed a mostly ‘clean’ fracture surface representative of this 

interface and less regularly we observe voids left from smaller precipitates as 

shown in (d) . 

2m 3m 

2m 

a 

d 

b 

c 

2m 
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The fracture surface of an undoped {111}/{100} grain boundary shown in Figure 

4-4(a) is a representative SEM micrograph showing that it also had a featureless ‘clean’ 

surface. All cantilever beams tested for the undoped-spinel grain boundaries have the 

same clean fracture surface, as expected. SEM observations of adjacent intact regions of 

the undoped tricrystal also showed no irregularities along the grain boundaries. 

In contrast, precipitates were observed along the {111}/{100} interface of the 

doped tricrystal specimen at the surface of the sample. The precipitates covered a 

significant portion of the boundary and sometimes created a continuous layer. 

Microcantilevers were prepared only in regions without precipitates visible at the 

surface. A precipitate within a beam is not expected to affect the fracture measurement 

results unless the precipitate is located at the notch tip. Figure 4-4(b) shows an SEM 

micrograph of the cantilever fracture surface of a Eu-doped {111}/{100} interface, in 

which a precipitate-free fracture surface is visible. In contrast to the undoped 

{111}/{100} fracture surface, two of the doped interfaces exhibited a non-planar 

fracture surface like the one shown in Figure 4-4(b). In these cases, fracture initiated at 

the two ends of the notch tip where the ligaments existed, deviated from the ideal 

fracture plane in the center, and then joined to create a single fracture plane below the 

notch front. 

In contrast to the {111}/{100} interface, the Eu-doped {110}{100} interface 

fracture surface was essentially clean, as shown in Figure 4-4(c). Precipitates were found 

along the grain boundary but with less regularity. Figure 4-4(d) is the {100} fracture 

surface of a {110}/{100} grain boundary cantilever beam that has voids left from 
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precipitates, which are much smaller than those observed in the {111}/{100} grain 

boundary.  

4.4 Atomic resolution STEM characterization of grain 

boundaries 

4.4.1 Atomic resolution electron microscopy 

Samples for transmission electron microscopy (TEM) of the {111}/{100} and 

{110}/{100} grain boundaries of both undoped and Eu-doped spinel were prepared with 

FIB and polished with a Fischione Nanomill. At least three TEM specimens of each grain 

boundary type were prepared and analyzed. Atomic-resolution scanning-TEM (STEM) 

was conducted using an aberration-corrected (probe corrected) JEOL JEM-ARM200CF, 

operating at 200kV and equipped with energy dispersive x-ray spectroscopy (EDS; JEOL 

100-mm2 X-ray Detector).  Slight crystal rotation during sample preparation required 

each sample to be imaged at three different tilting conditions to resolve the boundary 

structure: (1) grain boundary edge-on condition and (2,3) at each crystal’s low-order 

zone axis that was closest to the edge-on condition. Qualitative EDS linescans were also 

completed across the grain boundary.  

4.4.2 Electron Microscopy Results  

All undoped-spinel TEM samples of both {111}/{100} and {110}/{100} grain 

boundaries exhibit planar and clean interfaces, as determined by STEM and EDS (not 

shown). As expected from the SEM observations of the doped tricrystal, precipitates 
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were found in many of the Eu-doped spinel grain boundary TEM specimens. EDS 

confirmed that these precipitates are a Eu-rich aluminate phase. Other than the few 

scattered precipitates found along the grain boundaries, the STEM images from all Eu-

doped {110}/{100} TEM samples show that the boundary is clean and resembles the 

undoped spinel boundary of the same orientation (not shown). However, Eu was found 

to segregate strongly in all of the {111}/{100} boundary specimens. Figure 4-5 shows a 

high angle annular dark field (HAADF) image of the {111}/{100} grain boundary tilted to 

the edge-on condition. The high contrast at the grain boundary indicates a continuous 

layer of Eu-atoms, which was confirmed with EDS. When tilted to edge-on condition and 

to the zone axis of the {111} surface terminated crystal, as demonstrated in the 
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schematic in Figure 4-5. There is no evidence of Eu-preferred sites or ordering with the 

{100} terminated crystal at any tilting condition. 

 

4.4.3 In-situ foil fracture 

One of the Eu-doped {111}/{100} grain boundary TEM samples, prepared and 

imaged as described in Section 2.4, was returned to the FIB. A mechanical probe was 

used to bend the foil, causing it to fracture along the grain boundary in situ. The {100}-

surface oriented crystal was completely eliminated during the failure, leaving the {111}-

surface terminated crystal behind for imaging. The sample was immediately returned to 

the STEM for additional analysis using the methods described previously.  

[1-10] 

[111] 

[11-2] 

E
uM
gO 

Al 

Figure 4-5 Atomic Resolution HAADF image of {111}/{100} Eu doped 

grain boundary and corresponding model 
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The thin foil of the Eu-segregated {111}/{100} boundary that was broken in situ 

enabled observation of an identical boundary before and after fracture. Before fracture, 

the grain boundary had the same structure and chemistry as seen in Figure 4-5. The 

2 nm 

2 μm 

b 

5 nm 

a 

b 

2 μm 

d 

c 

d 

Eu-rich 
Precipitate 

Vacuum 

Vacuum 

Figure 4-6 HAADF micrographs of the {111}/{100} grain boundary with two Eu-

rich precipitates (a) before and (c) after fracture. (b) High magnification HAADF 

image of the interface between the Eu-rich precipitate and the {111} plane before 

fracture. (d) HAADF image of the {111} spinel free surface after fracture. Figures 

by Dr. Amanda Krause. 
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sample contained two Eu-rich aluminate precipitates on the boundary, as seen in Figure 

4-6(a). The precipitates were faceted with two faces parallel to the grain boundary and 

showed coincident lattice matching with the {111}-plane (left crystal in Figure 4-6(a)) 

and showed coincident lattice matching at the interface, as seen in Figure 4-6(b). While 

the precipitate was also parallel with the {100} surface (right crystal in Figure 4-6(a)), no 

evidence of coincident lattice matching was observed between the {100} plane and the 

Eu-rich precipitate (not shown).  

Figures 4-6(c) and (d) are HAADF images of the same sample after fracture. 

Figure 4-6(c) shows that the precipitates remained attached to the {111}-terminated 

surface. The fracture plane cut through the precipitates and then along the grain 

boundary interface. Figure 4-6(d) shows the exposed {111}-surface plane at Position d in 

Figure 4-6(c). The high contrast at the edge indicates that Eu-atoms remain bonded to 

the {111} plane after fracture. Failure must have occurred along the {100} plane or 

within a precipitate particle, leaving the bonds between Eu and the {111} plane intact.   

4.5 Discussion and Future work 

4.5.1 {111}{100} interface fracture 

Eu segregates strongly to the {111}/{100} grain boundary (Figure 4-5), in line 

with the finding that this boundary has relatively high energy. However, as seen in 

Figure 3-6 and Table 3-1, the grain boundary’s fracture toughness does not change with 

the addition of Eu. A layer of Eu was found to bond well to the {111}-surface, as seen in 
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Figure 4-5, but there is no evidence of ordered bonding with the {100}-surface at this 

interface. After fracture of the TEM specimen, the Eu-bonded {111} surface remains 

intact (Figure 4-6(d)) which suggests this particular bonding case is energetically 

favorable. Fracture occurred preferentially at the Eu-{100} interface, indicating that it is 

the weakest path. Therefore, despite the strong bonding between Eu and the {111}-

spinel plane, the fracture toughness of the doped {111}/{100} interface is not improved 

as compared to the undoped case because the bonding is not improved across both 

sides of the interface. 

This is unlike the Yb-doped spinel grain boundary (with same {111}/{100} grain 

boundary orientation) tested in [23] that exhibited a 30% increase in fracture toughness 

as compared to the undoped boundary. Cao et al. observed with STEM that Yb 

segregated strongly to the grain boundary and formed a staggered monolayer that 

bonded with both planes. This ordered grain boundary structure improved bonding 

across the interface to improve the fracture toughness. While Yb and Eu are both rare 

earth elements, they segregate and behave very differently in spinel grain boundaries. 

Both the ionic size and valence of the rare earth dopant influence segregation 

behavior[57], which alters the grain boundary chemistry, structure, and bonding 

strength.  

While comparisons across material systems must be made with caution, previous 

mechanical studies conducted on silicon nitride samples that were doped with different 

rare earth cations support this general finding.[29] Satet et al. found the interfacial 
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fracture strength decreased with an increase in the rare earth dopant’s radius. The 

change in interface strength was attributed to the decrease in cationic field strength 

associated with increasing radius. This agrees, at least qualitatively, with our results that 

the larger Eu dopant did not improve the fracture toughness compared to undoped 

interface but the smaller Yb dopant did. Valence may play an even larger role than ionic 

radius [57], but that influence cannot be evaluated independently by comparing only 

Eu2+ with Yb3+. 

The Eu-rich aluminate precipitates do not appear to significantly affect the 

fracture toughness measurements. As seen when comparing Figure 4-6(a) and 4-6(c), 

the fracture plane cuts through the precipitates. Therefore, the precipitate is weaker 

than the bonding between the precipitate and the {111}-plane, which is ordered (Figure 

4-6(b)). While weaker, the precipitates do not cover the entire interface so we 

hypothesize that one must be positioned directly at the notch tip to significantly alter 

the fracture toughness value measured.  

4.5.2 {110}{100} interface fracture 

The {110}/{100} grain boundary in Eu-doped spinel shows a ‘clean’ grain 

boundary, similar to that of the undoped spinel grain boundary. The similarity between 

these interfaces reflects the consistency in the fracture toughness values measured. Eu 

shows no propensity to form stable bonds with the {100} or {110} plane under the 

experimental conditions. The undoped {110}/{100} grain boundary was low in energy in 
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comparison to the {111}/{100} grain boundary and, thus, there is no great driving force 

for Eu-segregation.  

Small Eu-rich aluminate precipitates are found lightly distributed along the 

interface (Figure 4-4(d)), which caused a higher deviation in the fracture results (Figure 

3-6). These precipitates are much smaller and more sparsely distributed than those 

found along the {111}/{100} interface (Figure 4-4(b)). The lack of Eu segregation and 

reduced number of Eu-rich precipitates demonstrate that Eu prefers the {111} plane, 

which has the highest energy of the planes tested in this system. This is reinforced by 

the tendency for the {110}/(100) interface to reconstruct to form {111} facets.[54]  

4.5.3. Between the two interfaces 

According to the atomic resolution STEM results, we found that with Eu dopants, 

a combination of different complexion types were observed at the {111}/{100} grain 

boundary, including a monolayer and Eu-rich precipitates. However for the {110}/{100} 

Eu doped grain boundary, we mostly observed a ‘clean’ grain boundary with Eu-rich 

precipitates sparsely distributed. This again confirms the conclusion that {111}{100} 

grain boundary is a higher energy grain boundary. In other words, its unstable nature 

causes the transition to multiple complexion types during annealing with Europium 

doping at 1600 °C. And our fracture results of these two doped interfaces is consistent 

with that of undoped interfaces, where the {111}/{100} doped grain boundary is lower 

than that of the {110}/{100} orientation. 
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According to our early study on Europium doped polycrystalline spinel, we 

observed a complexion transition with annealing temperature at 1600 °C[]. The cooling 

time is 4hrs in our experiment, thus according to TTT diagram, it is possible that during 

the quenching process, this high temperature complexion type has transformed into low 

temperature complexions, which left a trace of higher order complexion type in 

combination with lower temperature complexion types. Recommended further work 

includes study on lower annealing temperature specimens below the transition 

annealing temperature 1500 °C, or longer cooling time after annealing at 1600 °C.  

4.5.4 Extending to Polycrystalline Spinel 

The fracture measurements and TEM images presented are for select special 

grain boundaries. Polycrystalline samples will have many different boundary types that 

will have different energies. While grain boundaries are often defined by their 

misorientation, grain boundary planes have sometimes been found to be more 

descriptive of the grain boundary behavior. [59] Here, we have looked at three of the 

low index planes. In a previous report on polycrystalline spinel behavior, a Eu-doped 

specimen heat treated at 1600 oC had a grain boundary plane distribution (GBPD) that 

showed a high proportion of {111}-planes. In conjunction with our results that 

demonstrate preferential Eu-segregation to the {111}-plane, the creation of a Eu-

bonded {111} grain boundary plane must lower the energy of the system. However, the 

relationship between Eu and the other abutting grain boundary plane will ultimately 

determine the total grain boundary energy and fracture toughness.  
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While the Eu-doped grain boundaries exhibit no superior intrinsic fracture 

toughness as compared to the undoped spinel boundaries, Eu-doping in spinel could still 

affect the fracture toughness of a polycrystalline specimen via influence on the 

microstructure. Schumacher et al. provided a time-temperature-transformation curve of 

the microstructural evolution in Eu-doped spinel, where a bimodal grain size distribution 

evolved with {111} planes dominating in the GBPD[58]. Here, we observed that Eu 

prefers the {111} plane over the others ({110} and {100}), which suggests that there will 

be a heterogeneous distribution of Eu in the grain boundaries. This supports the claim of 

Schumacher et al. that different grain boundary structures are responsible for the 

bimodal grain size distribution. Different dopants and the amount of doping could 

change the grain boundary plane distribution and, thus, change the microstructure. 

Individual grain boundary studies like the current work can help to separate the effects 

of dopant additions on intrinsic boundary toughness and extrinsic toughening 

mechanisms that can be influenced by microstructure control.  

 

4.6 Conclusion 

Grain boundary structure plays a significant role in determining the material 

fracture properties in bulk phase. Micro scale study on one single grain boundary 

enables us to understand the doping effect on grain boundary mechanical behavior. To 

relate a grain boundary property with the bulk phase material is crucial in guiding the 

material design and manufacturing. By statistical study of the complexion type 
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distribution, we could mathematically quantify and predict the macro scale properties 

based on the information of each complexion type studied in micro scale. Thus micro 

scale fracture toughness study on grain boundaries enables us to capture the grain 

boundary chemistry and structure, especially during sintering process with dopants and 

how this would affect the fracture behavior of the grain boundary complexions.  

Single crystal fracture toughness measurements of magnesium aluminate spinel 

specimens indicate that among low index planes, the {111} single crystal plane is the 

highest surface energy orientation, and the {100} plane is the lowest, with the {110} 

orientation in the middle. These results are in agreement with most recent experimental 

and theoretical studies. Bi-crystal fracture test results have shown that the undoped 

{111}/{100} boundary orientation has a 43% lower fracture toughness than {110}/{100} 

boundary orientation. Eu-doped grain boundaries exhibit the same level fracture energy 

as their undoped counterparts, in contrast to a {111}/{100} boundary doped with Yb.  

High resolution HAADF images suggest a mechanism underlying the fracture 

toughness results. For {111}/{100} doped grain boundaries, a combination of multiple 

grain boundary structures were observed including Eu-monolayer and Eu-rich 

precipitates. However for the {110}/{100} grain boundary, only a ‘clean’ interface was 

found between small, sparsely distributed Eu-rich precipitates. Neither case showed the 

staggered monolayer structure previously observed in the {111}/{100} Yb-doped spinel 

boundary. Although a strong bond may exist between Eu and the {111} side of a 

boundary, relatively poor strength of Eu-Eu bonds or bonds between Eu and the {100} 

boundary plane may result in the unimproved fracture toughness with Eu doping.  
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These results support the theoretical prediction that the surface energy of a 

{111} plane is more strongly affected by doping than the other low index planes. 

However, the larger Eu 2+ ion has a reduced tendency to segregate and alter surface 

energy than the smaller Yb 3+ ion. Valence may play a more significant role than size, so 

the present result does not necessarily contradict the general size trend observed in 

other material systems. 

Eu doping did not have a positive effect of boundary strength in either of the two 

orientations examined. However, when extrinsic mechanisms are considered in fracture 

behavior of bulk materials, weaker grain boundaries can enhance energy dispersing 

mechanisms like bridging, crack deflection, and pull-out of grains. This was observed in 

Satet at al.’s work in the Si3N4 system, in which an increase in rare earth dopants size 

introduced weaker boundaries and thus an increasing fracture toughness.[29] It may be, 

therefore, that Eu is an attractive dopant to choose because Eu-doped grain boundaries 

may have unchanged bond strength between the grain boundaries while offering 

options for controlling grain growth by selection of processing temperature.  
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Chapter 5. Design of a symmetric 

rectangular beam fracture test 

technique 

5.1 Limitation of present test techniques 

We have introduced several attractive fracture test techniques in Chapter 2. All these 

micro scale fracture specimens were utilized to measure fracture toughness 

experimentally. However, they all have limitations and drawbacks in their own ways. 

While micro cantilevers have a number of advantages for micro-scale fracture testing, 

the inherent mixed mode fracture cannot be neglected at large deflections of ductile 

materials and in anisotropic materials. In brittle material testing, this large fraction of 

shear mode in the initial load is often utilized as the fracture load measured from the 

experiment. Because no stable crack propagation or plasticity around the crack tip is 

available in brittle materials, this is when catastrophic fracture occurs. This is especially 

true when the FIB machined notch is not sharp enough. And the difficulty in producing a 

truly sharp crack by fatigue or other methods is not available in micro scale testing due to 
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specimen handling and equipment laminations. Another drawback of the cantilever is that 

the indenter inevitably slides on the top surface of the cantilever beam as the angle 

changes. This complicates the fracture load measurement in a ductile material fracture 

test as the beam plastically deforms. 

Stable crack growth has been achieved in cantilevers machined with a chevron notch; 

in this way there is sufficient stability to reliably produce a truly sharp crack prior to the 

onset of failure [48][49], but the mixed mode fracture toughness effect due to the 

asymmetric geometry of a cantilever is still present. And the test becomes unstable 

immediately after the stable crack has been achieved, making this test only valid for one 

single fracture load output per specimen. 

A symmetric clamped-clamped beam with a straight notch has been explored as a 

way of eliminating the mixed mode fracture, but its capability of stable crack growth is 

often limited because it may fail simultaneously at the beam center and beam ends, 

complicating analysis [51].  A way to further stabilize the fracture specimen needs to be 

investigated. Another drawback is the FIB machined notch tip cannot be treated as an 

ideal sharp crack tip in this straight notch configuration, which will again overestimate the 

fracture toughness results. 

Moreover, regardless of the specific specimen shape, site-specific micro-scale sample 

fabrication typically requires techniques that are time consuming and costly. Generating 

sufficient fracture data to ensure statistical significance is often not practical for any 

configuration that results in a single data point per test specimen. 

Therefore, new micro scale fracture test specimens are needed to address current 
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fracture specimen issues. We explored several fracture test configurations in micro scale. 

The design process, sample fabrication, advantages and issues are presented in the 

following two chapters. 

5.2 3pt bend rectangular beam with chevron notch test 

5.2.1 Design criteria 

For traditional bulk poly-crystal ceramics, a symmetrical bending specimen 

configuration is always utilized. A 3pt bending chevron notched beam is described in 

ASTM C1421-15 [39] for macro scale ceramic fracture toughness testing, as shown in 

Figure 5-1. 

Figure 5-1. 3pt bend test with chevron notch configuration schematic in ASTM standard 

test for bulk materials. Details of dimensions at the chevron notch are shown in higher 

magnification on the bottom. [39] 
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  This symmetrical specimen configuration would eliminate the mixed-mode 

fracture loading in existed in cantilever specimens, and the chevron notch shape would 

induce a stable crack propagation that prevents the potential higher fracture toughness 

value that might be obtained from a simple straight pre-notch. In order to produce a 

test with stability, we followed strictly one of the standard test configurations reported 

in ASTM C1421-15, as shown in Table 5-1.  The following equation is used to calculate 

the fracture toughness value: 

 
𝐾𝑖𝑐 = 𝑓 (

𝑎0

𝑊
,
𝑎1

𝑊
) (

𝑃𝑚𝑎𝑥 ∙  𝐿 10−6

𝐵𝑊
3
2

) (1) 

Where, f is the minimum stress intensity factor coefficient as determined from 

specimen geometries, Pmax is the maximum force as determined from the load-

displacement curve, L is the specimen length, B and W are the beam width and 

thickness, respectively. For 0.382≤ 𝑎0/𝑊 ≤0.420 and 0.950 ≤ 𝑎1/𝑊 ≤1.00 and a 

maximum error of 1%, the geometry factor f is given. Therefore, we chose parameters in 

our microscale specimen accordingly. 

Other requirements in additional to the general geometries are listed in Table 5-2 in 

order to achieve a valid test. 
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Table 5-1 Specimen configuration and requirements for 3pt bending chevron 

notched beam ASTM C1421-15[39] 

Test fixture L (mm) B(mm) W(mm) a0 (mm) a11, a12 t (mm) 

3pt 

bending 

macro scale 

specimen 

45 (min) 6.35±0.13 6.35±0.13 2.54±0.07 0.95W 

to1.00W 

≤0.25 

 

Table 5-2 Additional requirement for valid 3pt bending chevron notched beam 

test[39] 

Chevron notch 

grooves on either 

side should meet 

Tip of 

chevron shall 

be on the 

centerline 

Difference 

between a11 and 

a12, or the 

average of both 

Test rate Machine 

Compliance 

≤ 0.3t ≤0.02B ≤ 0.02W 0.0003 to 

0.005 

mm/s 

≤4.43×10−5 

m/N 

Using the focused ion beam technique in our experiment, we fabricated our 3pt 

bending microbeam with the chevron notch, where the specimen dimension is 

proportional to the standard test specimen dimension. The specific specimen 

dimensions that were chosen in our test are shown in Table 5-3. 
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Table 5-3 Specimen dimension selected in our micro beam fabrication 

Test fixture L (um) B(um) W(um) a0 (um) a11,a12 (um) t (um) 

3pt 

bending 

micro scale 

specimen 

15  2 2 0.8 2 ≤0.08 

The Hysitron PI85 pico- indenter has been used in our test for applying the load. 

The test rate is we chose is 5 nm/s which meets the ASTM requirement listed in Table 5-

2. The machine compliance provided by Hysitron of the indenter tip is 16.2×10−5 m/N, 

which is higher than the requirement suggested in the standard bulk system test. 

However, this compliance is sufficient enough for our experiment, as will be explained in 

details in later chapters. 

5.2.2 Specimen fabrication 

 Focused ion beam milling is utilized to fabricate the specimen in micro scale. A 

complicated fabrication process involving the manipulator/needle and platinum 

deposition was needed to fabricate the free end specimen configuration, which is 

shown in Figure 5-2.  

After milling the beam with the chevron notch in the middle, we mill away one 

end of the beam and leave a small ligament on the other side, as shown in Figure 5-3. 

Then the first step is to insert the needle and move it to the position right on top of the 

free end of the specimen, then use platinum deposition under a small current to glue 
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the needle on top of the specimen. The second step is to mill away the ligament on the 

right hand side so that the beam is lifted by the needle, as shown in Figure 5-3. Then we 

slowly move the needle downward, so that the beam comes into contact with the 

support material underneath, and we restrain the beam to the support using platinum 

deposition as a ‘glue’. Step 4 is to mill away the part that connects the needle and the 

specimen. Then we extract the needle in step 5. Now the free end 3pt bending 

specimen is finished. The final step is to conduct the mechanical test with the nano-

indentation system (Hysitron PI85) as shown in Figure 5-3.  

 

Figure 5-2. 3pt bend beam with chevron notch in micro scale. (a) Specimen fixed 

on bottom support with platinum. (b) In-situ fracture test with nano-indenter. 
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5.2.3 Limitation 

Figure 5-3 Fabrication procedure of the free end 3pt bending specimen with 

chevron notch 

 

1. Insert needle, ‘glue’ it 2. Lift the beam 

Fixed platinum ‘glue’ 

6. Mechanical test 

3. Put down, restrain the beam  

5. Extract the needle 

4. Cut the needle 
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As we can see, the fixed platinum glue on both sides of the specimen would 

break first when loading, since the platinum is much weaker compared to the testing 

material, but this would still affect the degree of freedom so that the boundary 

condition in our test is different from a true free-end 3pt bending test. And this 

complicated procedure takes a really long FIB milling time, and thus leads to high 

fabrication cost. Furthermore, the contact area between the bottom surface of the 

beam and the support is unknown, where the bottom of the surface might not be 

accurately parallel to the support, causing concern regarding the alignment of the 

loading direction on the specimen. 

Therefore, a better approach to modify the configuration of our specimen is 

needed, and this is the motivation of a doubly clamped beam design in the next section. 
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5.3 Clamped-clamped rectangular chevron specimen 

5.3.1 Specimen fabrication 

 As shown in Figure 5-4, instead of milling away the both ends of the beam, we keep 

them attached to the rest of the material, and thus achieve a clamped-clamped end 3pt 

bending test configuration. The chevron notch was milled in the middle underneath the 

contact point of the indenter tip. This approach is easier to fabricate, which takes 

shorter FIB milling time and thus is relatively cost efficient. 

Figure 5-4 Fixed-fixed end 3pt bending chevron notched micro beam under 

loading 
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5.3.2 Test results  

 

The indentation test result of a clamped-clamped end 3pt bending test is shown 

in Figure 5-5. The test is under displacement control, with a loading-hold-unloading 

complex input function, as shown in the green curve in the plot on the left hand side.  

The red curve is the load response over time during the deflection test. As we can see at 

Figure 5-6 Clamped-clamped 3pt bending chevron notched beam loading and 

unloading P-d curve 

Figure 5-5 Clamped-clamped 3pt bending chevron notched beam mechanical test 

results. (a) Load and  depth responses over time. (b) Load- Displacement during 

fracture test. 
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the very end of the first loading cycle, there’s a pop-in event, indicating the initiation of 

a precrack. In each following loading and unloading cycle, the slope decreases slowly. 

On the load-displacement curve, we could observe the same pop-in event as the slope 

was linear until the sudden drop at the end of the 1st loading cycle, then the following 

unloading and loading cycles show a decrease in the slope of P-d, which represents the 

decreasing stiffness of the specimen. 

If we extract the loading and unloading curves separately, as shown in Figure 5-

6, we could see the nonlinearity of the stiffness happens to both curves. We obtained 

the same trend and consistent beam stiffness nonlinearity results in 3 to 4 mechanical 

tests with the same configuration. This nonlinearity indicates a stable crack propagation 

after the crack initiation.  

We retrieved one of the fractured specimens, and managed to examine the 

fracture surface using the needle under SEM, as shown in Figure 5-7. The fracture 

surface shows that a chevron notch was successfully made. 

A valid test usually observed for a 3pt free-ends bend specimen with chevron 

notch is shown in Figure 5-8.[38] The sudden drop in load displacement curve indicates 

an unstable fracture in (a). In (b) and (c), the turnover in load-displacement curve 

represents the stability achieved with chevron notch, the maximum load was then used 

in evaluating toughness. 
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In a doubly clamped specimen with chevron notch, even though we may achieve 

a stable crack propagation, the stable extension is not through the maximum load, and 

thus we could not obtain a Pmax value to calculate the fracture toughness value. ‘Work 

of fracture’ is an alternative method in calculating fracture energy, through establishing 

compliance change and crack propagation length relationship. This method will be 

introduced in next chapter.  

Figure 5-7 SEM images of retrieving a fractured beam and 

chevron notch shaped fracture surface 

Figure 5-8. Three type of load v. time curves observed for 

chevron notched specimen; Kic value is determined using 

peak load Pmax of curves showing smooth turnover.  
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5.3.3 3D Modeling in ANSYS and Frac3D 

As shown in Figure 5-9, we build a quarter-symmetric finite element analysis 

model of chevron notched beam with clamped-clamped ends fixture. The load was 

applied in a small area on the top surface of the elements located in the center of the 

beam, shown as the red arrow in the Figure. Boundary conditions are added in the 

triangle shaped ligament in Z direction, which is along the beam to restrain the 

movement and model the symmetry of the notch, the notch thickness is idealized as 

zero. The mesh is refined using Altair Hypermesh to generate homogenous shaped 

elements. Then after building a series of models with different prenotch length, we 

obtain the specimen compliance curve as a function of crack propagation length. The 

Figure 5-9 Quarter symmetry finite element analysis model of fixed-fixed 

end chevron notched beam using ANSYS APDL 
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result is shown in Figure 5-10. We must note that when the crack length is in the range 

of 0-0.6, the curve fitting is acceptable. 

5.3.4 Crack stability analysis of fixed-fixed rectangular chevron 

specimen 

As discussed in section 5.3.2, to achieve the stability of the chevron notched 

beam it is critical to get a valid maximum load that results in the true fracture toughness 

value of the tested material. The stability evaluation involves a numerical analysis of the 

deflected beam compliance, the indenter tip compliance, as well as the precision in 

fabricating the chevron notched beam in experiments.  

In 1977, Bluhm [60] established a numerical method to calculate the stability of a 

generalized V shaped notch beam bending test, as shown in Figure 5-11. The energy 

release rate G for a loaded specimen containing a crack is given by  

Figure 5-10 Specimen compliance obtained from FEA model as a function of 

crack propagation length 
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 𝐺 =
1

2
 𝑃2  

𝑑𝐶𝑡

𝑑𝐴
 (21) 

   

where P is the applied load, A is the crack area and Ct is the total compliance of the 

system, which can be written as 

 𝐶𝑡 = 𝐶𝑠 + 𝐶𝑚 (22) 

   

where Cs is the compliance of the specimen and Cm is the compliance if the testing 

machine. 

The stability of the crack propagation is achieved when energy release rate G is 

no greater than the energy absorption rate required for crack extension Gcr, i.e. 

 
𝑑𝐺

𝑑𝐴
≤

𝑑𝐺𝑐𝑟

𝑑𝐴
 (23) 

   

where the critical energy release rate Gcr is a characteristic value of the material, and is 

independent of the crack propagation area A.  

Therefore, the stability could be presumed if 
𝑑𝐺

𝑑𝐴
≤ 0 

Now we have 

 𝑑𝐺

𝑑𝐴
=

1

2
(𝑝2

𝑑2𝐶𝑡

𝑑𝐴2
+ 2𝑃

𝑑𝑃

𝑑𝐴

𝑑𝐶𝑡

𝑑𝐴
) ≤ 0 (24) 
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Depending on the test condition, if the test is under load control where the added load 

is independent of crack length A, we could eliminate the second term in equation (24) 

and thus if we assume a constant load Pcr is added on the specimen, equation (24) 

could be simplified as  

 
(

𝑑𝐺

𝑑𝐴
)

𝑝
= 𝐺𝑐𝑟 (

𝑑2𝐶𝑡

𝑑𝐴2

𝑑𝐶𝑡

𝑑𝐴
⁄ )

𝐴=𝐴𝑐𝑟

 (25) 

 

Where Gcr is the critical energy release rate and Acr is the corresponding critical crack 

area. 

If the test is under displacement control, where the deflection of the beam is 

defined as 𝛿𝑡 = 𝑃 ∙ 𝐶𝑡, then equation (24) reduces to 

 
(

𝑑𝐺

𝑑𝐴
)

𝛿
= 𝐺𝑐𝑟 {[

𝑑2𝐶𝑡

𝑑𝐴2
−

2

𝐶𝑡
(

𝑑𝐶𝑡

𝑑𝐴
)

2

]
𝑑𝐶𝑡

𝑑𝐴
⁄ }

𝐴=𝐴𝑐𝑟

 (26) 
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Therefore, the stability factor could be calculated if system compliance is known 

as a function of crack area in each test condition. A schematic showing stability 

tendency is plotted in Figure 5-12. The stability factor is defined as dimensionless, 

where positive value implies stability. Thus, we could see from the schematic showing 

that only for certain chevron notched configurations under displacement control, one 

could achieve the stability through a wide range of crack length. This criterion is widely 

used to evaluate the stability of a 3pt bending test with a generalized chevron notch and 

also leads to the test requirements for a valid test listed in ASTM standard test. 

Figure 5-11. Generalized Notch/Crack configuration [60] 
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In our configuration, no analytic formula is available for clamped-clamped 

specimen geometry.  Crack stability analysis is made available with compliance and 

crack length relationship produced by finite element analysis model. 

The stability factor under displacement control Sd, and the stability factor under 

displacement control Sp were both calculated using MAPLE. The specimen compliance is 

obtained from our Finite Element Analysis model built in ANSYS Mechanical APDL. In 

order to calculate the stability factors Sd and Sp, we normalize the specimen compliance 

as a function of prenotch ratio, where the prenotch ratio is defined as α= a0/W, where α 

is the in the range of 0.4-0.7. The result is shown in Figure 5-13. 
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Figure 5-12 Schematic showing stability tendency as a function of crack 

length for various notch/crack configurations and load conditions[60] 
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Now, we are plotting the stability factor Sp and Sd as a function of α for the 

Figure 5-14 Stability factor Sp and Sd vs. α 
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Figure 5-13. Normalized beam specimen as a function of prenotch ratio 
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clamped-clamped end chevron notched microbeam. The result is shown in Figure 5-14, 

Sp and Sd is almost identical in the plot. As defined earlier, Sp and Sd would represent 

stability when they have positive values. As shown in the plot, the stable region for Sp is 

when α is in the range of (0.4, 0.5025) and (0.617, 0.7), whereas the stable region for Sd 

is when α is the range of (0.4, 0.5039) and (0.607,0.7). The machine compliance varies 

from 0.04-16.2 ×10−5m/N in our analysis, but does not affect the curve's positive range. 

Therefore, we could draw a conclusion that the clamped-clamped beam with the 

current dimension (same as described in section 5.2.1) does not guarantee a stable 

crack extension under both displacement control and load control, unless the crack 

length ratio is greater than 0.6.  

Another factor we analyzed here is the machine compliance effect, as we 

noticed, PI85 indenter compliance is 16.2 ×10−5m/N in our experiment, however as we 

decrease this value to a lower limit 0.04 in our analysis, the curve does not change. 

Thus, in our experiment the machine compliance could be neglected.   

5.4 Discussion and limitation 

Therefore, clamped-clamped specimen with a chevron notch could achieve stable 

crack extension with specific dimension selected in our study. However, the crack stable 

extension is in a relatively narrow range, which makes it hard to ensure enough amount 

of fracture toughness measurements. If the notch ratio is kept to be 0.4, the crack will 

initiate and propagate in a stable manner and then becomes unstable until it reaches 
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0.5. This could still give us valid toughness value with first stable region with the 

following criteria: 

(1) The chevron notch tip was fabricated sufficiently sharp, in which case, the crack 

will initiate in lower load, so that the test does not skip this initial stable region 

instantly and become unstable right after initiation crack. 

(2) The test was carried out in a slow loading rate with maximum load-unload cycles, 

where the crack length propagation from a ratio of 0.4-0.5 (200nm length) will 

be captured with sufficient data points in the load-unload cycle. 

The test is valid with second stable region with following criteria: 

(1) The chevron notch tip was fabricated sufficiently sharp, so that the crack 

initiation load does not exceed the load required to cause beam-roots fracture, 

in which case, the entire beam is fracture simultaneously both in the middle and 

the ends. 

(2) The crack either stably propagated through stable region I or skips it, but reaches 

stable region II and propagates in a stable manner. In this case, the load-unload 

cycle needs to be enough to capture sufficient data before ends-cracking 

initiates. 

Therefore, we can see that this configuration will yield a valid fracture toughness 

measurement only in a limited range and conditions. The danger of early ends-

cracking is also present in the study of clamped-clamped rectangular beam with 

straight-through cut discussed in section 2.5. 
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Chapter 6. Design of the micro 

bowtie chevron test technique 

6.1 Bowtie chevron design 

To address the shortcomings of previously described testing methods, we have 

developed a bowtie-shaped beam configuration that is fixed at both ends, and that has a 

chevron notch milled into the underside at the beam center, as shown in Figure 6-1. The 

rigid, symmetric test specimen configuration with a centralized chevron notch allows the 

controlled propagation of a crack advancing along a straight path. This makes it possible 

to collect multiple measurements of toughness with a single specimen by cyclically 

loading to a series of increasing peak load values, each of which causes a small, stable, 

and measurable increase in crack length. The specimen configuration also eliminates 

mixed mode fracture toughness.  

The loading point is above the chevron notch in the middle of the beam. When 

loading, the tip of the chevron notch will be the highest stress concentration, and thus the 

preferred site for crack initiation. As the crack advances along the chevron notch, the 

crack-front length will increase, as shown in Figure 6-1(b), thus a higher load is required 

for further propagation in each step [61][39]. Under appropriate testing conditions, such 

as the right chevron geometry and a very stiff loading instrument, the crack would 

advance in a stable fashion and the extent of crack propagation could be controlled by the 
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applied maximum load. If a cyclic load-unload function is employed, the compliance 

change from one cycle to the next is a predictable measure of crack propagation[62]. This 

correlation enables the measurement of compliance as a function of crack length, the 

crack advance per load cycle, and the fracture energy associated with the corresponding 

maximum load value at each step. 

 

 

𝑎0 

L

W

Load P

Figure 6-1. (a) Schematic cross-section of the bowtie chevron-notched beam design, 

showing the chevron notch during crack propagation. The triangle represents the 

original intact region and the grey area represents the intact region after some degree 

of crack growth has occurred. (b) Quarter symmetry FEA model. Axial displacement 

constraints (z-axis) were applied at the intact area ahead of crack front, where 

different color highlights represent different crack lengths.  

 

A bowtie shaped specimen was selected to avoid the end-cracking observed in 

rectangular clamped-clamped specimens. Experience with chevron-notched rectangular 

beams demonstrated that the ends of the beam would simultaneously fracture in a 

catastrophic fashion so that the real crack propagation at the chevron notch was hard to 

distinguish. A triangle-shaped specimen has a reduced stress concentration at the beam 
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ends as compared to a specimen with a uniform cross-section [63]. This eliminates or 

delays the end-cracking, allowing the central crack to initiate and propagate at the 

notch area for evaluation of the fracture toughness value. 

 

6.2 Experimental  

6.2.1 Specimen fabrication  

In the examples reported here, each specimen was fabricated from a bulk fused 

5µm 5µm 

5µm 2µm 

(a) (b) 

(c) (d) 

Figure 6-2. (a) top surface of a bowtie chevron beam. (b) 30 degree view of a bowtie 

specimen. (c) A in-situ mechanical test with indenter on top of specimen (d) Crack 

propagation observed under SEM during in-situ test. 
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quartz or lithium-aluminosilicate glass-ceramic (ZerodurTM) sample using Focused Ion 

Beam (FIB) milling in an FEI Scios instrument. The bulk sample was first mechanically 

ground and polished on adjacent surfaces so that a 90-degree edge was exposed for FIB 

milling. After the basic shape was established using a high ion beam current, the test 

structure was ion polished using 0.1 nA at a tilt angle of ±1.5 degrees to ensure smooth 

surfaces with minimal ion damage and parallel sides. The chevron notch was fabricated 

by milling at an angle to the surface in three steps, starting with an ion beam current of 

10 pA with a larger width milling pattern, reducing to a smaller width, and finishing with 

1.5 pA and a minimum milling width. Thus, a ‘V’ shaped segment was generated in the 

center of the test beam with the smallest radius at the tip of the resulting chevron notch, 

to ensure a reasonably sharp pre-notch for crack initiation. Finally, alignment markers 

were milled into the top surface to guide placement of the loading tip.  

In order to achieve the stability of crack growth, the geometry of the specimen (height, 

length, width of the beam, notch area thickness, and notch ratio), misalignment tolerance, 

testing rate, and instrument stiffness all play important roles. [39] The specimen 

dimensions were selected with these criteria in mind. For the current study, the bowtie 

specimen in Figure 1 had a nominal length L of 14 um, a width B of 8 um at the end of the 

beam and 2 um at the middle of the beam, and a thickness W of 2 um, which produces a 

square cross section of the notch area of 2 um x 2 um. The radius of the sharp notch tip 

was measured to be 10-20 nm using a Scanning Electron Microscope (SEM), and the 

widest area of the notch closer to the side surface is 30-50 nm. 
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6.2.2 In-situ micro mechanical testing procedure 

A nanomechanical testing system (Hysitron PI-85) was utilized to carry out the in-situ 

fracture toughness testing inside the FEI Scios FIB/SEM. The PI-85 instrument was 

operated under load control, and the load and deflection (tip displacement) were 

recorded simultaneously throughout each test. Tip alignment was facilitated by the SEM 

environment. As shown in Figure 6-2 (c), the indenter tip is aligned to the middle of the 

top surface of the specimen. Operating under load control, the specimen was deflected 

as the load increased, introduce crack initiation at the tip of the chevron notch. A cyclic 

load sequence with a loading rate of 150 uN/s was utilized, with 25uN increment in each 

step. In each load cycle, the specimen was loaded to a certain maximum value to 

propagate the crack, unloaded, reloaded to a fixed value of 200 µN, and unloaded again 

to evaluate the beam compliance from the unloading slope. During the next cycle the 

maximum load value was increased but the compliance evaluation load was kept the same. 

The detail of this complex loading cycle is introduced in later sections.  
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6.2.3 Contact stiffness correction to experimental data 

 

Prior to analyzing the beam compliance and fracture toughness, it was necessary to 

correct for the contact stiffness between the indenter tip and the specimen surface, as 

shown in Figure 6-3. Due to the creation of an indenter impression on the top surface of 

the specimen, both elastic and plastic deformation needed to be taken into account when 

analyzing the experiment results. In every loading segment that exceeds the maximum 

load of any previous cycle, both elastic deformation and new plastic deformation based 

on the instantaneous load must be known in order to correctly determine the beam 

displacement[64]. During unloading and during any reloading region that is lower than 

the prior maximum load, only the elastic deformation and prior plastic deformation need 

to be subtracted. An example of a corrected data set is shown in Figure 6-3 (a). Thermal 

Figure 6-3. Indenter tip impression on the top surface post fracture test 

was shown. 
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drift of the indenter tip was also calibrated with a separate set of tests, where a drift rate 

of 2nm/s has been obtained. The mechanical test was conducted separately with a time 

span around 3-4 minutes each for minimum thermal drift effect. 

Once the contact stiffness and thermal drift corrections were applied, a decrease in 

the slope of one compliance evaluation unload segment to the next indicated a 

compliance change due to stable crack growth. The compliance data was extracted from 

each unloading slope and plotted with respect to the maximum applied load. 

 

 

Figure 6-4. Correction applied load displacement curve of a bowtie 

chevron fracture specimen tested on fused quartz. 
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6.3 Complex load cycle for minimizing large deflection 

effect 

6.3.1 Introduction 

 

The geometry and constraints on the clamped-clamped bending beam could cause a 

nonlinear effect of the compliance change. As the loading increases during mechanical 

fracture test, the beam deflection increases, which cause a higher restraint from the 

clamped-clamped boundary condition, as shown in Figure 6-5. This complex boundary 

condition is mathematically difficult to address with a simple formulation. However, 

experimentally we could minimize this effect on the compliance change by controlling 

the load function to extract slope at small deflection. We achieved this goal by inserting 

a small deflection loading cycle in between each increasing large load cycle for 

advancing the crack growth. A 200 µN load and unload cycle was inserted in between 

each loading cycle, where we could measure the compliance change corresponded to 

the previous maximum load.  
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6.3.2 Experimental procedure 

In order to analyze the nonlinearity of this testing configuration, the mechanical test 

was carried out using two micro-mechanical testing systems as a comparison to confirm 

experimental data. One is the Hysitron PI 85 pico-indenter. For this testing method, we 

applied cyclic loading unloading method in order to measure the unloading slope for 

calculating the compliance change of the specimen. The fracture toughness results were 

then computed after post processing the experiment data, including contact stiffness 

correction and drift correction. In Figure 6-6(a), we observed a difference between the 

measurement of the stiffness at maximum load cycle and minimum load cycle. The 

minimum load was chosen at 200 uN to minimize the deflection of the specimen but 

large enough to ensure the accurate measurement of the stiffness without errors. As 

Figure 6-5. In-situ fracture test of a bowtie chevron specimen. Large 

deflection is observed in the test with large opening distance of the 

notch area. 
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the indentation loading increases, the specimen deflection increases. The discrepancy 

between the two curves is the result of nonlinearity of the clamped-clamped beam 

boundary condition. The stiffness measured at the large deflection is a combination of 

the crack propagation contribution and the restraint of the clamping force.  



 
 

 115 

 

1.00E+04

1.10E+04

1.20E+04

1.30E+04

1.40E+04

1.50E+04

1.60E+04

1.70E+04

1.80E+04

1.90E+04

2.00E+04

0 0.5 1 1.5 2 2.5 3 3.5 4St
if

fn
es

s 
 o

f 
ea

ch
 u

n
lo

ad
in

g 
cy

cl
e 

 m
/N

Maximum Indentation Load mN

Maximum load cycle 

Minimum load cycle 

1.00E+04

1.10E+04

1.20E+04

1.30E+04

1.40E+04

1.50E+04

1.60E+04

1.70E+04

1.80E+04

0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 D
yn

am
ic

 S
ti

ff
n

es
s 

N
/m

Indentation Load  mN

Maximum load cycle

Minimum load cycle

Figure 6-6. (a) Hysitron PI85 cyclic loading fracture test results. 

Compliance in each loading cycle with respect to indentation load. 

Maximum load corresponds to nonlinear deflection range and 

minimum load cycle corresponds to linear deflection range. (b) 

Nanomechanics dynamic stiffness measurement fracture test result 

showing a comparison between maximum and minimum load cycle 

stiffness measurement before contact stiffness correction. 
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The other method we used is continuous stiffness measurement by Nanomechanics 

Inc, where a dynamic stiffness was measured at both maximum loading cycle and 

minimum loading cycle, which is again 200 uN. As a comparison, the nonlinear effect 

with large deflection could be observed again in Figure 6-6 (b); the same trend was 

observed at this testing method. The increasing stiffness at the beginning of the test was 

due to the impression of the indenter on the top surface, which could be corrected with 

the same contact stiffness correction as shown in Figure 6-6(a). Therefore, we conclude 

that from two different testing systems, we observed the same nonlinear effect at 

maximum load measurement. And this proves that the method of complex loading cycle 

and measurement extracted from 200uN load cycle is reasonable and effective. 
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6.4 Finite element analysis modeling 

 

 

A 3D finite element analysis (FEA) quarter-model was built using Altair Hypermesh 

and ANSYS Mechanical APDL to evaluate the effects of geometry, and to establish the 

correlation between specimen compliance and crack propagation. A refined mesh at the 

notch area was used to ensure accuracy of the FEA model, as shown in Figure 6-7 (d). The 

model dimensions matched the experiment design. The wide end was constrained in all 

directions to simulate the attachment to the bulk material, the straight side area in the 

middle of the beam was constrained in the x (transverse) direction to impose model 

Figure 6-7. A quarter symmetry finite element analysis model built with ANSYS 

Mechanical APDL and Altair Hyper mesh. A refined meshing was applied at the 

crack tip. 
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symmetry, and the intact V-notch area was constrained in the z (axial) direction. A 

distributed load was added on the top surface of the elements above the notch area. A 

series of models with different crack opening length a were modeled under the same 

boundary conditions and load conditions to simulate the crack propagation. The intact 

area for one such case is depicted in Figure 6-7 (a), and a series of areas are shown by the 

colored regions in Figure 6-7 (b). By analyzing the deflection at the tip of the notched 

region for each applied load value, a function describing the beam compliance C as a 

function of crack length a was obtained, as shown in Figure 6-8. 

6.5 Geometry sensitivity evaluation 

6.5.1 Method 

After a fracture test, the fracture surface could be exposed by milling half of the 

beam ends and removed horizontally with a manipulator in the SEM. The fracture 

Figure 6-8. Compliance vs. Crack propagation length, generated 

through FEA, polynomial fit with MATLAB 
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surface exposed in this procedure is shown in Figure 6-9. The specimen length and 

chevron notch shape could be measured, the dimensions of which are depicted in Figure 

6-9 (c) and (d). 

In order to analyze the effect of geometry dimensions of the beam on the 

compliance, a series of geometry sensitivity tests were conducted through finite 

element analysis modeling. Models with different crack length, width, and thickness 

were created to analyze the beam dimension effect on the overall compliance of the 

specimen. Moreover, models with different notch angle, overcut/undercut, and 

different pre-notch length were also created to analyze how the chevron notch 

geometry would affect the compliance change of the test. The effect of each dimension 

change on the overall specimen compliance was evaluated with a normalized change 

factor. A linear change of ±10% was applied at each dimension variable, and then the 

corresponding change in the compliance could be evaluated using FEA model. By 

comparing the relative compliance change of the overall beam with same change ratio 

of each dimension, we could then compare the dimension sensitivity of the bowtie 

chevron specimen.  

 



 
 

 120 

6.5.2 Geometry sensitivity results 

Geometry dimension sensitivity can be studied by comparing compliance change 

ratio at different dimensions. Compliance of the specimen was normalized so that the 

sensitivity of each dimension change could be represented as comparison. The finite 

element analysis model with change in different dimensions is shown in Figure 6-10. 

The impact factor of each dimension changes is shown in Figure 6-11 and listed 

in Table 6-1. The length and the height of the specimen play relatively more significant 

roles compared to other geometry dimensions, and the notch angle effect is minimal on 

L
 

B
 

W
 

Figure 6-9. Fracture surface exposed post fracture tests (a) (b) show the two 

opposite sides of a fracture. (c) (d) depicts the dimensions defined for a bowtie 

chevron specimen. 
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the relative compliance change as well as overcut and undercut situation. And 

therefore, we are very confident in machining the chevron notched specimen without 

concern for the notch angle effect on the overall compliance change of the specimen. 
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Figure 6-10. Finite element analysis model with change in different dimensions. (a) 

length (b) thickness (c) width (d) overcut/undercut (e) notch angle 
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Figure 6-11. (a) Finite element analysis result, the compliance change as crack 

propagation length. (b) Geometry sensitivity test. Impact ratio as a function of each 

geometry dimension. 
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Table 6-1. Geometry sensitivity results. Normalized impact factor of each dimension 

change. 

 

 

 

 

 

Dimension 
Standard 

design 

FEA change 

in model 
ΔL/L 

ANSYS 

compliance 

change 

Equation 

L 14 15 7.14% 20.476% 22.996% 

W 2 2.25 12.50% -25.238% 
-

29.767% 

B 2 1.8 -10.00% 8.095% 11.111% 

alpha 39.8 35.54 -10.70% -4.695% n/a 

 39.8 45 13.07% 3.099% n/a 

overcut 2 0.333 16.65% 9.480% n/a 

undercut 2 -0.2 -10.00% -5.423% n/a 
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6.6 Crack stability analysis 

6.6.1 Methodology 

In order to evaluate the crack growth stability, we need to derive the corresponding 

strain energy release rate with respect to normalized crack propagation length. 

Strain energy release rate G for chevron notched specimen could be expressed as,  

 𝐺 =
1

2𝑏
 𝑃2  

𝑑𝐶𝑡

𝑑𝑎
 (27) 

where P is the applied load, 𝑎 is the crack propagation length, b is the notch width at 

the crack front, defined as b= 2 x a x tan𝜑, where 𝜑 is the semi angle of the chevron 

notch. Note that Eqn. (27) is derived from Eqn. (21) mentioned in section 5.3.4.  

 𝐺 =
1

2𝑎 𝑡𝑎𝑛𝜑
 𝑃2  

𝑑𝐶𝑡

𝑑𝑎
    (28) 

And C represents the compliance of the bending beam, where 𝐶𝑡 = 𝐶𝑚 + 𝐶𝑠, 𝐶𝑡 is 

the total compliance of the machine compliance 𝐶𝑚 and the specimen compliance 𝐶𝑠.  

The crack propagation is stable when the propagation rate is smaller than the critical 

crack propagation rate as the crack length increases, and for brittle materials, there is 

no R-curve behavior, so that the critical energy release rate is independent of the crack 

propagation length a and therefore could be expressed as, 

 
𝑑𝐺

𝑑𝑎
 ≤  

𝑑𝐺𝑐𝑟

𝑑𝑎
= 0 (29) 

 

From Eqn. (28) , we get 
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𝑑𝐺

𝑑𝑎
=

1

2𝑎 𝑡𝑎𝑛𝜑
 (𝑃2  

𝑑2𝐶𝑡

𝑑𝑎2
+ 2 𝑃 

𝑑𝑃

𝑑𝑎
  

𝑑𝐶𝑡

𝑑𝑎
) −

1

2𝑎2 𝑡𝑎𝑛𝜑
 𝑃2  

𝑑𝐶𝑡

𝑑𝑎
 (30) 

 

Under constant load condition, where  
𝑑𝑃

𝑑𝑎
= 0  

 (
𝑑𝐺

𝑑𝑎
) 𝑝 =

𝑃2

2𝑎 𝑡𝑎𝑛𝜑
 ( 

𝑑2𝐶𝑡

𝑑𝑎2
−

1

𝑎
 
𝑑𝐶𝑡

𝑑𝑎
) =  𝐺𝑐𝑟(

𝑑2𝐶𝑡

𝑑𝑎2

𝑑𝐶𝑡

𝑑𝑎

−
1

𝑎
) ≤ 0 (31) 

 

Under constant displacement condition, where  
𝑑𝑑𝑡

𝑑𝑎
= 0, 𝑤ℎ𝑒𝑟𝑒 𝑑𝑡 = 𝑃𝐶𝑡, 

Thus,  

 𝑃 =
𝑑𝑡

𝐶𝑡
 (32) 

   

 
𝑑𝑃

𝑑𝑎
=

𝑑𝑑𝑡

𝑑𝑎

1

𝐶𝑡
 −

1

𝐶𝑡
2  𝑑𝑡  

𝑑𝐶𝑡

𝑑𝑎
=  −

1

𝐶𝑡
2  𝑑𝑡  

𝑑𝐶𝑡

𝑑𝑎
 (33) 

 

Therefore, plugging (33) into (30), we get 

 (
𝑑𝐺

𝑑𝑎
) 𝑑 =

1

2𝑎 𝑡𝑎𝑛𝜑
 {𝑃2  

𝑑2𝐶𝑡

𝑑𝑎2
− 2𝑃 

1

𝐶𝑡
2  𝑑𝑡 (

𝑑𝐶𝑡

𝑑𝑎
)2} −

1

2𝑎2 𝑡𝑎𝑛𝜑
 𝑃2  

𝑑𝐶𝑡

𝑑𝑎
 (34) 

 

 Then plugging (32) into (34) and rearranging, we get 

 (
𝑑𝐺

𝑑𝑎
) 𝑑 =

𝑃2 

2𝑎 𝑡𝑎𝑛𝜑
 {

𝑑2𝐶𝑡

𝑑𝑎2
− 2 

1

𝐶𝑡
(
𝑑𝐶𝑡

𝑑𝑎
)2 −

1

𝑎
 
𝑑𝐶𝑡

𝑑𝑎
} (35) 
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 (
𝑑𝐺

𝑑𝑎
) 𝑑 = 𝐺𝑐𝑟{

𝑑2𝐶𝑡

𝑑𝑎2

𝑑𝐶𝑡

𝑑𝑎

−
2

𝐶𝑡
 
𝑑𝐶𝑡

𝑑𝑎
−

1

𝑎
} ≤ 0 (36) 

 

         Now, the compliance of a bending beam is not only affected by the geometry of 

the specimen but also the material's properties. Thus, compliance can be normalized as    

𝜆𝑡 = 𝐸𝐵 𝐶𝑡 , [65] where E is the elastic modulus of the material and B is the width of the 

beam. Crack propagation length a can be normalized as 𝛼 = 𝑎/𝑊, where W is the beam 

thickness. Then equation (31) and (36) can be derived dimensionless and simplified as, 

 −𝑓𝑝 =

𝑑2𝜆𝑡

𝑑𝛼2

𝑑𝜆𝑡

𝑑𝛼

−
1

𝛼 − 𝑎0/𝑊
≤ 0 (37) 

 −𝑓𝑑 =

𝑑2𝜆𝑡

𝑑𝛼2

𝑑𝜆𝑡

𝑑𝛼

−
2

𝜆𝑡
 
𝑑𝜆𝑡

𝑑𝛼

1

𝛼 − 𝑎0/𝑊
−

1

𝛼 − 𝑎0/𝑊
≤ 0 (38) 

 

where 𝑎0 is initial crack length/ pre notch length, 𝑓𝑝 and 𝑓𝑑 are defined as the crack 

stability factor under constant load and constant displacement conditions respectively. 

Positive values indicate stable crack growth, and negative values indicate instability. 

Thus, it is now critical to obtain the value for the compliance function 𝜆𝑡  with 

respect to crack length ratio  𝛼, so that the first derivative and second derivative of 

compliance change will lead to the determination of stability of the crack growth. The 

machine compliance is a parameter regarding the equipment, which in our case, is the 

machine compliance of Hysitron PI85 Pico-indenter. The unit includes the transducer, 
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the spring and all the loading cells behind the indenter tip. We may notice that under 

load control, the total compliance 𝜆𝑡 in the expression can be replaced as 𝜆𝑠 of the 

specimen, because only the derivative terms are included. However, for the 

displacement control, machine compliance may play a more significant role. This 

machine compliance is usually large compared to specimen compliance during bending 

tests to ensure the stability of the test. For Hysitron PI85, a non-normalized value of 1.5 

nm/mN was initially provided by the company, then recalibrated to be 6.26 nm/mN 

after several years of usage. The machine compliance was calibrated using a cube corner 

tip on the surface of fused quartz. In our analysis, the machine compliance was set to be 

between 0.1 to 50 nm/mN as to sufficiently analyze the problem, with any calibration 

error of the machine compliance taken into account.  
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6.6.2 Crack stability results 

Mathematical software MAPLE was used to do the analysis crack stability factor 

evaluation for the derived normalized compliance function (37) and (38). Machine 

compliance was selected within the range of 0.1-50 × 10−3m/N, which yields to a 

normalized machine compliance 𝜆𝑚 of 34.2 to 17100, with a beam width of 2 µm.  

Within this range of machine compliance change, which includes the current calibrated 

machine compliance of PI85 system to be 2140.92, there is no significant impact on the 

defined stability factor. The stability factor has been plotted with respect to crack 

propagation length ratio α, which is shown in Figure 6-12. As we can see that under 

constant load condition, in no range of pre notch ratio would result in a stable crack 

propagate. Under constant displacement control, in all the pre-notch ratio this 

configuration will result in a stable crack growth as the crack propagates. 

Normalized crack propagation 
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𝑓𝑝 

Figure 6-12. Crack stability factor vs. normalized crack 

propagation length 



 
 

 131 

6.6.3 Stability verification by TEM 

In order to verify the compliance prediction of FEA model and the stability analysis, 

we intentionally conducted an incomplete fracture test, where the load function was 

stopped after a few loading cycles, so that the crack has initiated but did not completely 

fracture the beam. The initiation of the crack can be observed in the slope change of 

unloading segments in the load- displacement curve, which represents the stiffness of 

the specimen. Then a TEM specimen of size 2 x 2 um was lifted out at the notch area 

with a thickness of 200nm, so that the crack front is embedded in the TEM specimen, as 

shown in Figure 6-13.  

       The bright field image of one TEM specimen extracted from an interrupted test is 

shown in Figure 6-13. The image is oriented such that the original top of the specimen is 

located on the left side. The impression left by the indenter tip is visible on that edge of 

the specimen. A clear vertical line is visible spanning the triangular region. In the original 

chevron orientation, this line runs from side to side. Convergent beam electron 

diffraction (CBED) patterns taken on both sides of this line are well ordered, as expected 

for a single crystal. However, a subtle shift in the patterns indicates a small change in 

crystal orientation on the order of 2-3 degrees, consistent with an intact crystal on one 

side and a slightly misaligned crystal on the other side where the crack has opened and 

imperfectly closed. The CBED pattern acquired right on the line is much less ordered, 

consistent with high local elastic strain gradients present at a crack tip. The likelihood 

that the line indicates a stable crack front is therefore very high, and its presence 

verifies that crack stability is indeed possible with the chevron notch bowtie specimen.  
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        This image also makes it possible to measure the crack propagation length. The 

total distance from the tip of the triangle to the top of the beam is 1.26 µm. The beam 

was nominally 2 µm thick, so the initial crack length a0 was approximately 0.74 µm 

and the crack length ratio was a0/W=0.37. This is very close to the target FIB length of 

a0/W=0.40, demonstrating the ability of the blind milling procedure to accurately 

achieve the desired notch geometry. The cracked region is 0.76 µm in length, 

corresponding to total crack propagation of approximately 60% of the triangular 

region. These results can be directly compared to the FEA model that predicted a 

cracked region 0.80 um long, based on the corresponding measured compliance of this 

particular beam at the end of the test. The FEA results and TEM measurement of 

experiment crack propagation were consistent and therefore the validity of the FEA 

model was confirmed. 
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6.7 Fracture energy calculation 

Fracture toughness then was evaluated using an energy balance approach based 

on the measured compliance change and corresponding load data, combining the 

results from the experiment and FEA model. The strain energy release rate G was 

obtained as a function of compliance change as the crack propagates, which is derived 

for the chevron notch in our configuration as shown in Equation (27), rewritten here for 

convenience,  

Figure 6-13. TEM specimen of notch area, where a crack front could be 

observed clearly. 

 5 µm  10 µm 
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𝐺 =
1

2𝑏
𝑃2 𝑑𝐶

𝑑𝑎
                                                                                (27) 

The quantity 
𝑑𝐶

𝑑𝑎
 is the compliance change as the crack propagates during each 

loading cycle. The crack propagation length a and rate 
𝑑𝐶

𝑑𝑎
  are obtained by combining 

experiment output, FEA modeling, and numerical methods using MATLAB. If the material 

is brittle and isotropic, the stress intensity factor at fracture, 𝐾𝐼 , can also be obtained by 

the relation, 

 𝐾𝐼 = √
𝐸𝐺

1 − 𝜈2
 (39) 
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where E is the elastic modulus and 𝜈 is the Poisson’s ratio. A fracture toughness value 

could then be calculated based on Equation 27 for each unloading segment, and 

multiple results from a single specimen could be averaged to create a final value and a 

statistical distribution, as shown in Figure 6-14. The compliance change as a function of 

crack length is plotted for two transparent ceramic materials fused quartz and 

ZerodurTM, as shown in Figure 6-15. 

 

Figure 6-14. Finite element analysis result of compliance change with respect to 

crack length 
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A comparison between the fracture toughness values measured in this study and 

literature results is shown in Table 6-2 and Table 6-3. Actual specimen dimensions 

measured in the SEM were used for all calculations rather than the nominal dimensions 

described above. The fused quartz results represent 27 data points extracted from 3 

bowtie specimens. An average fracture toughness value of 0.62 ± 0.07 MPa/√𝑚 was 

obtained for the fused quartz, which matches very well with those results that have been 

reported in literature. [24][66–68]. There are many measurements of fused quartz 

fracture toughness so the reported values are likely to be reliable. Unfortunately, there 

are very few fracture toughness measurements reported for ZerodurTM. The glass-ceramic 

results from the bowtie structure represent 28 data points extracted from 4 specimens. 

The average value of 1.26 ± 0.1 MPa/√𝑚 for the glass-ceramic matches well with a 2004 

report that used microindentation [69]. An older report that also used microindentation 

claimed a value between that of fused quartz and the newer ZerodurTM result. [70] While 
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respect to load for fused quartz and ZerodurTM. 
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the match to the current measurement is not very close, both values agree insofar as the 

glass-ceramic has a higher fracture toughness than fused quartz. 

 

 

Table 6-2. Fused quartz fracture toughness value comparison with literature 

Testing Method Fracture 

toughness value 

MPa/√𝒎 

References 

Macroscopic three-point 

bending  

0.58 Harding et al. [66] 

Macroscopic chevron-notched 

short rod 

0.735 Barker [67] 

Nano indentation toughness, 

cube corner tip 

0.6±0.1 Scholz et al. [68] 

Micro cantilever beam chevron 0.65±0.04 Mueller et al. [48] 

Microscopic bowtie chevron  0.62±0.07 this study 
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Table 6-3. ZerodurTM fracture toughness value comparison with literature  

Testing Method Fracture 

toughness value 

MPa/√𝒎 

References 

Micro indentation toughness, 

Vickers  

0.9 Viens [70] 

Micro indentation toughness, 

Vickers 

1.33±0.08 Bouvier et al. [69] 

Microscopic bowtie chevron  1.26 ± 0.1 this study 

 

 

 

6.8 Conclusion 

In aggregate, the current results strongly support the chevron-notch bowtie as a 

promising test structure for micro-scale fracture toughness testing of brittle materials. 

Full analysis of this testing method has been carried out to ensure the validity of 

the testing theoretically and experimentally. Analytical analysis includes finite element 

analysis, geometry sensitivity analysis and crack stability analysis. It has shown that this 

testing method will ensure crack stability and therefore provide accurate fracture 

measurement as well as a time and cost-efficient testing method by generating multiple 

results out of one single test. 
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Chapter 7. Conclusion and Future 

Work 

 The first part of this work has focused on micro scale fracture toughness analysis 

on transparent ceramic magnesium aluminate spinel. Fracture behavior of low index 

plane single crystals were investigated. Correlation between fracture energy and low 

index plane energy was established through micro cantilever deflection testing method. 

Fracture toughness measurements of single crystal magnesium aluminate spinel 

specimens indicate that among low index planes, the {111} single crystal plane is the 

highest surface energy orientation, and the {100} plane is the lowest, with the {110} 

orientation in the middle. These results are in agreement with most recent experimental 

and theoretical studies. Fracture test results for undoped bicrystal boundaries have 

shown that the {111}/{100} boundary orientation has a 43% lower fracture toughness 

than the {110}/{100} boundary orientation, implying that the {111}/{100} boundary has 

the greater energy of the two. Somewhat surprisingly, Eu-doped grain boundaries 

exhibit the same level fracture energy as their undoped counterparts regardless of 

whether or not Eu is present.  
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High resolution STEM micrographs suggest a mechanism underlying the fracture 

toughness results. For {111}/{100} doped grain boundaries, Eu was found to strongly 

segregate to the {111} plane and faceted Eu-rich precipitates were observed. However 

for the {110}/{100} grain boundary, only a ‘clean’ interface was found between small, 

sparsely distributed Eu-rich precipitates. Neither case showed the same highly-ordered 

grain boundary complexion previously observed in a {111}/{100} Yb-doped spinel 

boundary. Although a strong bond may exist between Eu and the {111} side of a 

boundary, relatively poor strength of Eu-Eu bonds or bonds between Eu and the {100} 

boundary plane may result in the unimproved fracture toughness associated with Eu 

doping.  

These results support the theoretical prediction that the surface energy of a 

{111} plane is more strongly affected by doping than the other low index planes. 

However, the larger Eu 2+ ion has a reduced tendency to segregate and alter surface 

energy than the smaller Yb 3+ ion. Valence may play a more significant role than size, so 

the present result does not necessarily contradict the general size trend observed in 

other material systems. 

Eu doping did not have a positive effect on boundary strength in either of the 

two orientations examined, which can be attributed in part to the formation of a more 

“disordered” high temperature grain boundary complexion. However, when extrinsic 

mechanisms are considered in fracture behavior of bulk materials, weaker grain 

boundaries can enhance energy dispersing mechanisms like bridging, crack deflection, 

and pull-outs of grains. This was observed in Satet et al.’s work in the polycrystalline 
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Si3N4 system, in which an increase in rare earth dopant size introduced weaker 

boundaries and thus an increasing fracture toughness.[29] It may be, therefore, that Eu 

is an attractive dopant to choose because Eu-doped grain boundaries may have 

unchanged bond strength between the grain boundaries while offering options for 

controlling grain growth by selection of processing temperature.   

 The second part of this work was focused on micro scale fracture toughness 

testing method development. This experimental testing method was further 

investigated with detailed experimental procedures targeting various goals. This include 

large deflection of beam bending induced nonlinearity, contact stiffness evaluation 

induced compliance correction methods and also factors that contribute to stable crack 

growth analysis. 

Testing method was first utilized to measure fracture toughness on two brittle 

transparent ceramics, fused quartz and ZerodurTM. An average fracture toughness value 

of 0.62 ± 0.07 MPa√𝑚 was obtained for the fused quartz, which matches very well with 

those results that have been reported in the literature. [66, 67,68] There are many 

published measurements of fused quartz fracture toughness so the reported values are 

likely to be reliable. Unfortunately, there are very few fracture toughness 

measurements reported for ZerodurTM. The glass-ceramic results from the bowtie 

structure represent 28 data points extracted from 4 specimens. The average value of 

1.26 ± 0.1 MPa√𝑚 for the glass-ceramic matches well with a 2004 report that used 

microindentation . An older report that also used microindentation claimed a value 
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between that of fused quartz and the newer ZerodurTM result. [69] While the match 

between the older value and the current measurement is not very close, both values 

agree insofar as the glass-ceramic has a higher fracture toughness than fused quartz. In 

aggregate, the current results strongly support the chevron-notch bowtie as a promising 

test structure for micro-scale fracture toughness testing of brittle materials. 

The bowtie chevron-notched micro beam has been further analyzed and then 

demonstrated using two different experimental instruments and a brittle crystalline 

ceramic material. Although the instruments are both inherently load-controlled, 

their finite response time enabled stable crack growth as shown by cross-section 

TEM from an interrupted test. None of the tests failed prematurely at the ends, 

showing that the bowtie design is successful at delaying the early end-cracking 

sometimes observed in rectangular specimens due to high stress intensity at the 

beam roots. Stable crack growth at the chevron will guarantee that the toughness 

measured is a result of crack propagation instead of unstable fracture at a blunt 

notch that may be affected by ion implantation. Moreover, with a work of fracture 

approach, we resolve the fracture measurement with a well-established strain 

energy release rate calculation. This energy approach significantly simplifies the 

analytical analysis by simply extracting compliance data from a straightforward 

linear elastic finite element analysis model. In addition, multiple evaluations of 

toughness can be extracted from a single test. This is a significant advantage in 

fracture testing, since catastrophic failure usually results in one single measurement 

of the fracture toughness of one test specimen. Despite the added complexity 
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associated with milling a bowtie chevron specimen, it can be time and cost efficient 

by obtaining multiple fracture measurement. The time of fabrication and mechanical 

testing of a traditional spinel cantilever with a cross section of 2x2 or 3x3 µm is 4-5 

hours to get one measurement, while it takes 5-6 hours for a bowtie chevron 

specimen like the ones described here. A 25% increase in fabrication time can bring 

a 5-8 times as many quantitative results. 

Further work includes implementing bowtie chevron testing technique in other 

materials and also along a single grain boundary. The stable crack growth of bowtie 

chevron method and eliminating the mixed mode fracture behavior will benefit in 

guiding the fracture propagation path along the grain boundary and thus provide 

multiple measurement of grain boundary fracture toughness of a single experiment. 

Further analysis could also be focused on magnesium aluminate spinel in how to 

correlate the micro scale fracture toughens results with bulk material property. This 

will involve statistical analysis methods and large quantity of experimental 

measurement of grain boundary fracture tests to reveal and characterize the 

structure-property correlation. Rare earth elements other than Ytterbium and 

Europium could also be utilized in further study of dopants effects on grain 

boundary behavior. More experimental analysis will aid the investigation in grain 

boundary structure, energy and strength affected by dopant segregation behavior. 

The same systematic study method could also be utilized in testing and assessing 

other material system, when grain boundary fracture strength and structure was a 

focus.  Micro-scale fracture testing methods could also be implemented on thin film 
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mechanical behavior evaluation or minimized medical device when the area of 

interest is in small scale. Furthermore, fracture toughness testing method of micro 

scale samples could also be utilized in metal and polymer where ductility is involved. 

In such case, J-integral methods could be employed to evaluation the fracture 

toughness results. 
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