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ABSTRACT 
 
A finite volume numerical method is introduced to perform the direct numerical simulation 

for two-phase immiscible and incompressible fluids. The Navier-Stokes equation is 

discretized by the staggered mesh spatially and advected temporally with the 4th order 

Runge-Kutta scheme. CFL conditions involving the effect from the convective term, 

viscous term, stiff source term and heat transfer are applied to meet the stringent limitation 

on the time step. Energy equation is coupled with the Navier-Stokes equation when the 

study of heat transfer is included. The interface separating the fluids is treated implicitly 

using a finite thickness, which constrained the numerical instabilities within the interface, 

by the level set method. The topology change and location of the interface are captured by 

advecting the smooth level set function with the 5th order WENO algorithm. Re-

initialization of the signed distance function is executed at the designated time steps to 

ensure the mass conservation. The surface tension effect is modelled with the Continuum 

Surface Force (CSF) model and the numerical spurious error is corrected by the modified 

curvature calculation. The validated method is used to study the dynamics of single and 

multiple bubble/droplet movements influenced by different viscosity, density ratio and 

surface tension effect. The application of this method is further extended to investigate the 

binary Rayleigh-Bénard convection in two-dimensional and three-dimensional geometries. 

The complex nonequilibrium of the system is well captured and compared with the linear 

stability analysis. Discussion and explanation for the driving mechanism and pattern of 

energy transportation of the two-phase Rayleigh-Bénard convection are presented with the 

predicted results. 
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Chapter 1 

Introduction 

 

1.1 Motivation 

In nature, flows  of multiple components or multiple phases are very common. Rayleigh-

Bénard convection of layered multiple fluids occurs often in vitally important systems. The 

earth mantel movement and the cloud formation are two significant examples of Rayleigh-

Bénard system. The major feature of the dynamics in the system is the convective flow 

induced by density stratification and the quest for the understanding of this flow pattern 

has motivated a large body of experimental, numerical and theoretical investigations. When 

a sufficiently large temperature gradient is applied cross a fluid layer at rest, the onset of 

the convective motion can occur. After Bénard’s first quantitative experiment [1] and Lord 

Rayleigh’s linear stability analysis[2] studying this phenomenon, several investigators 

have focused on the study of a single layer Rayleigh-Bénard system. Numerical studies of 

Rayleigh-Bénard convection in the system with the boundary of stress free surface ignore 

the presence of air layer. Although most of the researches achieved good agreements 

between the numerical studies and experimental studies of Rayleigh Benard problem with 

a free surface, the dynamics and characteristics in the ignored air layer are not explored. In 



 

3 

this study Rayleigh-Bénard convection of air and liquid is considered.  For the binary 

system with an air layer, large ratios in density and viscosity across the interface would 

lead to a numerical instability. A numerical method, which can deal with steep gradients 

in the physical properties, is needed.  

1.2 Literature review 

For multiphase flows of immiscible fluids, fluids are separated by a sharp interface where 

discontinuity on material properties occurs. For multiphase Rayleigh-Bénard convection 

problems, we consider two immiscible fluids and hence density, viscosity, thermal 

conductivity across the interface become discontinuous. Discontinuities cannot be handled 

with numerical methods so a practical approach is that there exists a region with a very 

small thickness across which properties vary with a very steep gradient. The interface 

representation can be achieved by various methods, implicitly and explicitly. The most 

popular choices are reviewed and discussed as the following. In 1976, Noh & Woodward 

introduced the Volume of Fraction (VOF) method, which is based on earlier Marker-and-

Cell (MAC) methods[3]. The scalar fraction function 𝐶𝐶 is used to construct the interface 

by tracking through each cell in the computational grid. A Piecewise-Linear Interface 

Calculation (PLIC) scheme was introduced to remedy of the imperfect interface description 

of VOF [4]. As pointed in [5], conventional conservative schemes cannot guarantee the 

sharpness of the front, due the excessive numerical diffusion. And the higher order schemes 

can incur numerical oscillations near the front. Unverdi & Tryggavason introduced the 

front tracking method [5], where the interface is constructed by adding or subtracting points 

to the front. However, this complication is amplified when the algorithm is used to solve a 



 

4 

three-dimensional problem. Both the two general explicit frameworks for the interface 

representation lack the accuracy for calculation of the related geometric terms inherently.  

Osher and Sethian introduced a method based on a level set formulation for the interface 

representation [6]. This method eliminated the numerical oscillations in the conventional 

schemes and the complication of adding or subtracting points to the front. The merging and 

breaking of the interface can be taken care of automatically by this implicit smooth function. 

Furthermore, the geometric terms can be accurately calculated based on the method’s own 

characteristics, where the curve or surface separating the fluids never need to be 

interpolated. 

The numerical investigations are further extended when coupled with the energy equation. 

The single-phase Rayleigh-Bénard convection has been studied analytically and 

numerically. Bénard first conducted the quantitative experiments and studied the stability 

of a thin layer fluid imposed to a vertical temperature gradient with a free upper surface 

[1]. Lord Rayleigh proposed his linear stability analysis [2] and was accepted as 

explanation for the Bénard’s results until Pearson pointed out the role of surface tension, 

which is referred as the thermal Marangoni effect [7]. Based on the thickness of the fluid 

layer, the effect of buoyancy and surface tension are in competition for dominating the 

flow and there exists a compensation thickness where the two effects balance each other 

[8]. Recent experimental results on multiphase convection showed a dramatic increase in 

the heat transfer properties by introducing a dispersed phase interacting the primary phase 

thermally and mechanically[9]. Similar numerical simulations with the presence of a 

second phase in a cylindrical cell has a profound effect on the flow behavior and heat 

transfer[10]. The numerical simulation of the two-layer convection system was used to 
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prove a thermal Lattice Boltzmann model [11]. A linear stability analysis for the double-

layer system was presented and the results were compared with CFD simulation [12]. 

However, it is not entirely clarified for the critical Rayleigh number and wave number for 

the onset of convection in the multiphase flow regime. Therefore, further numerical 

investigations must be carried out that could help to understand the temporal and the spatial 

characteristics of flow structures in the multiphase Rayleigh-Benard convections. 

1.2 Dissertation structure 

In this study, we combine the level set method with a projection algorithm to solve the 

Navier-Stokes equation for multiphase flow. The energy equation shall be coupled and 

solved for investigating the multiphase Rayleigh-Bénard convections. The dissertation is 

structured as follows. The numerical techniques are detailed in Chapter 2. A brief summary 

is also included for the numerical algorithm employed. In Chapter 3 the spatial and 

temporal discretization schemes are presented for the governing equations and related 

terms. The results of numerical investigations are presented in Chapter 4. A short 

conclusion and outlook for future investigations are presented in Chapter 5. 
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Chapter 2 

Mathematical Model 

 
Fluid flows are encountered in nature and many critically important industrial applications. 

The recent development of semiconductor industry now allows the numerical simulations 

to expand into a finer resolution with significantly decreased computational time. In this 

chapter, we present a robust numerical algorithm to solve complex flow problems of 

multiple fluids. 

2.1 Governing equation 

Equations governing the fluid motion are Navier-Stokes equations presented below 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻(𝜕𝜕 ∙ 𝜕𝜕) = −
1
𝜌𝜌
𝛻𝛻𝛻𝛻 + 𝛻𝛻(𝛻𝛻 ∙ 𝜕𝜕 + 𝛻𝛻𝑇𝑇 ∙ 𝜕𝜕) + 𝑓𝑓 (1) 

where 𝜇𝜇 is the dynamic viscosity of the fluid and 𝑓𝑓 is the external force. 

The fluid density is considered as a function of temperature. The density of fluid particle 

is to remain constant, hence the following equation represent the change of density in the 

flow domain  

 𝐷𝐷𝜌𝜌
𝐷𝐷𝜕𝜕

=
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 ∙ 𝛻𝛻𝜌𝜌 = 0 (2) 
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where D()/Dt  is the material derivative. For the conservation of mass equation of 

incompressible flow, this equation reduces to 

 𝛻𝛻 ∙ 𝜕𝜕 = 0 (3) 

For multiple fluids, one fluid is separated from another by a sharp interface and the density 

of particles in each fluid is constant. Instead of solving equation (2) every time step, the 

density can be reconstructed from the location of the interface.  

For flows in multiple dimensions, the momentum equation (1) can be written in each 

direction. In a two dimensional geometry: 

 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = −
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑔𝑔𝑥𝑥 +
𝜕𝜕
𝜕𝜕𝜕𝜕

2𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑓𝑓𝑥𝑥 (4) 

 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� = −
𝜕𝜕𝛻𝛻
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑔𝑔𝑦𝑦 +
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕
 𝜕𝜕𝜕𝜕

2𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑦𝑦 (5) 

the continuity equation (1.3) is expanded, 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 
(6) 

And this can be easily expanded into the third dimension for the Navier-Stokes equation 

and continuity equation. 

For incompressible flow, the advection term can be shown in the following manners 

 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ 𝜕𝜕𝜕𝜕� = 𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛻𝛻 ∙ 𝜕𝜕� =
𝜕𝜕𝜌𝜌𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ 𝜌𝜌𝜕𝜕𝜕𝜕 (7) 

For constant viscosity (𝜇𝜇 = 𝜇𝜇𝑜𝑜), the diffusion terms can be written as: 

 𝛻𝛻 ∙ 𝜇𝜇𝑜𝑜(𝛻𝛻𝜕𝜕 + 𝛻𝛻𝑇𝑇𝜕𝜕) = 𝜇𝜇𝑜𝑜𝛻𝛻2𝜕𝜕 (8) 
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2.2 Fractional projection 

Projection Method” which was introduced by Chorin[13] in 1967 can be used to integrate 

the Navier-Stokes equations. The solution is obtained in a fractional step manner. First, the 

velocity is advanced in time without the influence of the pressure term in the momentum 

equation and a non-divergence free velocity is obtained. The predicted velocity field is 

used to calculate and update the pressure field under certain convergence criterion. Then 

the velocity field is corrected by the updated pressure to ensure the incompressibility of the 

flow.  

To illustrate how this works, we shall first use a simple first-order explicit time marching 

scheme and higher order schemes can be employed at the later stage. 

 
𝜕𝜕𝑛𝑛+1 − 𝜕𝜕𝑛𝑛

𝛥𝛥𝜕𝜕
+ 𝐴𝐴(𝜕𝜕𝑛𝑛) = −

1
𝜌𝜌
𝛻𝛻𝛻𝛻 + 𝜈𝜈𝐷𝐷(𝜕𝜕𝑛𝑛) + 𝑓𝑓𝑛𝑛 (9) 

 𝛻𝛻 ∙ 𝜕𝜕𝑛𝑛+1 = 0 (10) 

The superscript n and n+1 denotes the corresponding values at current and future time 

steps, respectively. Function A() and D() are numerical approximations for the advection 

and the diffusion terms, 𝜈𝜈 is the kinematic viscosity and f is the numerical approximation 

for body forces acting on the fluid.  

Following the theory of the projection method, a temporary velocity 𝜕𝜕∗ is introduced, 

 𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛+1 − 𝜕𝜕∗ + 𝜕𝜕∗ − 𝜕𝜕𝑛𝑛 (11) 

and the momentum equation is split into two parts as follow. 

 𝜕𝜕∗ − 𝜕𝜕𝑛𝑛

𝛥𝛥𝜕𝜕
+ 𝐴𝐴(𝜕𝜕𝑛𝑛) = 𝜈𝜈𝐷𝐷(𝜕𝜕𝑛𝑛) + 𝑓𝑓𝑛𝑛 

(12) 
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 𝜕𝜕𝑛𝑛+1 − 𝜕𝜕∗

𝛥𝛥𝜕𝜕
= −

1
𝜌𝜌
𝛻𝛻𝛻𝛻𝑛𝑛+1 

(13) 

Adding the two equations (12,13) together yields the exactly equation (9). 

The pressure Poisson’s equation can be obtained by taking gradient of equation (13) and 

𝜕𝜕𝑛𝑛+1 is eliminated based on the incompressibility and reduces to 

 1
𝛥𝛥𝜕𝜕
𝛻𝛻 ∙ 𝜕𝜕∗ =

1
𝜌𝜌
𝛻𝛻2𝛻𝛻𝑛𝑛+1 (14) 

 After the Poisson’s equation is solved, the projected velocity at time step n+1 can be found 

by using equation (13).  

2.3 Level set method 

Back to 1988, the level set method was introduced by Osher and Sethian for tracking the 

propagating the front of flame[6]. In 1994,Sussman, Smereka and Osher further extended 

this method for multiphase flow simulations [14] and this method has become the main 

alternative of the volume fraction method in direct advection of the marker function. The 

level set method does not make any assumption about the connectivity of the interface, 

based on its mathematical characteristic. When the interface between fluids undergoes 

topological changes, like burble coalescing or breaking up, no interpolation or intervention 

is needed to continue the computation by using the level set function, as of its own 

smoothness. Also, the geometric terms, like normal and curvature, can be easily discretized 

and accurately calculated. 

By using an implicit function 𝜙𝜙, the interface separating the different phases is represented 

by the zero-level set of the function. 



 

10 

 𝛤𝛤 = {𝜕𝜕|𝜙𝜙(𝜕𝜕, 𝜕𝜕) = 0} (15) 

Here, the lighter fluid or gas resides in the region where 𝜙𝜙 < 0 and the heavier fluid or 

liquid takes the region where 𝜙𝜙 > 0. Hence, we have 

 𝜙𝜙(𝜕𝜕, 𝜕𝜕)�
> 0, 𝑖𝑖𝑓𝑓 𝜕𝜕 ∈ 𝑙𝑙𝑖𝑖𝑙𝑙𝜕𝜕𝑖𝑖𝑙𝑙
= 0,                  𝑖𝑖𝑓𝑓 𝜕𝜕 ∈ 𝛤𝛤
< 0,             𝑖𝑖𝑓𝑓 𝜕𝜕 ∈ 𝑔𝑔𝑔𝑔𝑔𝑔

 (16) 

We set the normal direction always as pointing from gas to liquid. The unit normal and 

curvature terms of the interface are calculated by 

 𝑛𝑛 = 𝛻𝛻𝛻𝛻
|𝛻𝛻𝛻𝛻|�𝛻𝛻=0

and  𝜅𝜅 = 𝛻𝛻 ∙ ( 𝛻𝛻𝛻𝛻
|𝛻𝛻𝛻𝛻|�𝛻𝛻=0

 (17) 

The evolution of the interface, which moves with the fluid particles, is given by 

 𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 ∙ 𝛻𝛻𝜙𝜙 = 0 
(18) 

where u is the fluid velocity. The above equation is guaranteed by the nature of the level 

set function that should be constant along the particle path. That yields 

 𝑙𝑙𝜙𝜙(𝜕𝜕(𝜕𝜕), 𝜕𝜕)
𝑙𝑙𝜕𝜕

= 0 
(19) 

And with 𝑙𝑙𝜕𝜕(𝜕𝜕)/𝑙𝑙𝜕𝜕 ≡ 𝜕𝜕, 

 𝑙𝑙𝜕𝜕(𝜕𝜕)
𝑙𝑙𝜕𝜕

∙ 𝛻𝛻𝜙𝜙(𝜕𝜕, 𝜕𝜕) +
𝜕𝜕𝜙𝜙(𝜕𝜕, 𝜕𝜕)
𝑙𝑙𝜕𝜕

= 0 
(20) 

yields equation (18). 

As we treat the density and the viscosity as constant in each phase, the values of these 

two properties are separated by the sing of 𝜙𝜙 

 𝜌𝜌(𝜙𝜙) = 𝜌𝜌𝑔𝑔 + �𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑔𝑔�𝐻𝐻(𝜙𝜙) (21) 

  𝜇𝜇(𝜙𝜙) = 𝜇𝜇𝑔𝑔 + �𝜇𝜇𝑙𝑙 − 𝜇𝜇𝑔𝑔�𝐻𝐻(𝜙𝜙) (22) 
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The subscripts g an l denote the  gas and the liquid phase, respectively. And 𝐻𝐻(𝜙𝜙) is the 

Heaviside function, which is 

 𝐻𝐻(𝜙𝜙) = �
0

1/2
1

 (23) 

2.4 Surface tension model 

Due to the discontinuous change of fluid properties, which lead to the abrupt changes in 

molecular forces, the surface tension becomes an inherent material property at the interface 

to balance the jump of stress and pressure. Brackbill et al. introduced a continuum surface 

force (CSF) model, which can handle the complex interface topology[15]. The CSF model 

treats the surface tension as a continuous volume effect across the interface instead of a 

boundary value condition. Chang et al. further adapted the CSF model with the level set 

method[16]. The effect of a surface tension is described as a singularized forced term 

localized on the fluid interface, which is corresponding to the zero level set of 𝜙𝜙. 

 𝑓𝑓𝑠𝑠 ≡ 𝜎𝜎𝜅𝜅𝑛𝑛 = 𝜎𝜎𝜅𝜅(𝜙𝜙)𝛿𝛿(𝜙𝜙)𝛻𝛻𝜙𝜙 (24) 

where 𝛿𝛿(𝜙𝜙) is the Dirac delta function.  

2.5 Smoothing 

Setting a small but a finite thickness for the interface can alleviate the numerical difficulties 

in the first step of Chorin’s projection method raised by the sharp changes in density across 

the interface. A constant thickness of the interface can also help resolving the discontinuity 

in calculation of 𝛿𝛿(𝜙𝜙) for the surface tension. Hence, we set the smoothed Heaviside 

function as 
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 𝐻𝐻𝜖𝜖(𝜙𝜙) = �

                      0                         if   ϕ<ϵ
1
2
�1 +

𝜙𝜙
𝜖𝜖
−

1
𝜋𝜋

sin(𝜋𝜋𝜙𝜙/𝜖𝜖)�      if   |ϕ|≤ϵ

                      1                         if   ϕ>ϵ

 (25) 

Equivalently, the modified delta function is 

 
𝛿𝛿𝜖𝜖(𝜙𝜙) =

𝑙𝑙𝐻𝐻
𝑙𝑙𝜙𝜙

 
(26) 

Now, the thickness of the interface is set to 2𝜖𝜖|𝛻𝛻𝛻𝛻|. in order to have a uniform thickness across 

the interface, it is favorable to make the term in the dominator, |𝛻𝛻𝜙𝜙|, as a constant value 

within |𝜙𝜙| ≤ 𝜖𝜖. The common way to accomplish that is to initialize the level set function 

as a distance function, 

 |𝛻𝛻𝜙𝜙| = 1. (27) 

2.6 Re-initialization of the level set function 

When moving the zero level set using equation (18) under the correct velocity, the level 

set function will not remain as a distance function after a short period of time. Since 

preserving this feature is important to ensure the accurate calculation for the gradient of 

the level set function, |𝛻𝛻𝜙𝜙|, a reinitialization algorithm is needed to keep the level set 

function as a distance function. Several algorithms are introduced [17–19] and one 

introduced by Sussman, Smereka and Osher in 1994 gained a lot of interests[14]. This 

iterative approach introduced by Sussmann et al. has an advantage of cutting down the 

number of required iterations when the level set function 𝜙𝜙 is close to a distance function. 

This is achieved by solving the partial differential equation, 
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𝜕𝜕𝜙𝜙𝑑𝑑
𝜕𝜕𝜕𝜕

= 𝑔𝑔𝑔𝑔𝑛𝑛(𝜙𝜙)(1 − |𝛻𝛻𝜙𝜙|) (28) 

with initial condition, 

 𝜙𝜙𝑑𝑑(𝜕𝜕, 0) = 𝜙𝜙(𝜕𝜕) (29) 

where 

 𝑔𝑔𝑖𝑖𝑔𝑔𝑛𝑛(𝜙𝜙) = �
−1,     𝜙𝜙 < 0
   0,     𝜙𝜙 = 0
    1,     𝜙𝜙 > 0

 (30) 

and 𝜕𝜕 is an artificial time. Since the sign function equals zero at the zero level set, the 

solution of equation (28) has the same zero level set as 𝜙𝜙(𝜕𝜕).  

Rewriting equation (28) shows 

 
𝜕𝜕𝜙𝜙𝑑𝑑
𝜕𝜕𝜕𝜕

+ 𝑔𝑔𝑔𝑔𝑛𝑛(𝜙𝜙)
𝛻𝛻𝜙𝜙𝑑𝑑

|𝛻𝛻𝜙𝜙𝑑𝑑| ∙ 𝛻𝛻𝜙𝜙𝑑𝑑  = 𝑔𝑔𝑔𝑔𝑛𝑛(𝜙𝜙) (31) 

Equation (31) is a nonlinear hyperbolic equation whose characteristic velocities pointing 

outwards from the interface in the direction of the normal. This makes 𝜙𝜙𝑑𝑑 to be reinitialized 

to the distance function near the interface first. As we only have the interest near the 

interface area, we can stop the iteration steps once the level set function is properly 

reinitialized near the interface. 

2.7 Rayleigh-Bénard Convection  

For a fluid at rest is heated from below and cooled from above, the onset of fluid motion 

can occur when the critical condition is reached. The organized periodic counter-rotating 

vorticity rolls will appear in the flow. The principal of the instability is buoyancy driven 

effects.. Most studies in this field considered  single phase flows but a little attention has 

been given to multiphase flows.  
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In Rayleigh-Bénard convection, the fluid motion induced by the density stratification 

which is causedby Velocity, temperature and pressure fields are determined by solving 

equations derived from conservation laws: conservation of mass, momentum and energy.. 

The Navier-Stokes equations are presented in the previous sections. The energy equation 

for the temperature field is. 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕 ∙ 𝛻𝛻𝜕𝜕 = 𝜒𝜒𝛻𝛻2𝜕𝜕 
(32) 

where 𝜒𝜒 is the thermal diffusivity of the fluid. The equation of state is 

 𝜌𝜌 = 𝜌𝜌0(1 + 𝛼𝛼𝛥𝛥𝜕𝜕) (33) 

where 𝛼𝛼 is the volume expansion coefficient of the fluid and is usually negative, 𝜌𝜌0 is the 

density of fluid at the reference temperature 𝜕𝜕0. Hence the density will decrease when the 

fluids is heated. Based on the Boussinesq approximation, the density is treated as constant 

except in the buoyancy term in the momentum equation. Material properties such as the 

viscosity, the thermal diffusivity and the volume expansion coefficient are assumed to be 

constant.. With this assumption, the Navier-Stokes equation becomes 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻(𝜕𝜕 ∙ 𝜕𝜕) = −
1
𝜌𝜌0
𝛻𝛻𝛻𝛻 +

𝜇𝜇
𝜌𝜌0
𝛻𝛻(𝛻𝛻 ∙ 𝜕𝜕 + 𝛻𝛻𝑇𝑇 ∙ 𝜕𝜕) +

𝜌𝜌
𝜌𝜌𝑜𝑜
𝑔𝑔 + 𝑓𝑓 (34) 

2.8 Summary 

Summary of the algorithm is as follows: 

Step 1. Initialize the level set function to be signed as a distance function. 

Step 2. Solve the Navier-Stokes equation with Chorin’s projection method. For each time 

step, the physical properties, such as density, viscosity, thermal diffusivity are constructed 
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based on the interface location which is represented as the zero-level set of level set 

function.  

The level set function is advected under the updated velocity field obtained above. 

Solve the energy equation. 

Step 3. Re-initialize the level set function back to a signed distance function by solving the 

PDE below to obtain the steady state solution. 

Step 4. Repeat step 2 and 3 until desired the set flow time is reached. 
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Chapter 3 

Numerical Algortihm 

 

3.1 Temporal discretization 

In the previous chapter, the first order time integration scheme was used for the illustration 

of the Chorin’s projection method. However, this simple explicit forward-in-time 

algorithm only provides first-order accuracy. For most problems, it is desirable to have a 

second-order or higher order time integration method to ensure the numerical stability.  

The Runge-Kutta method, which is generally referred to as “RK4”, is implemented in our 

current numerical method. The RK4 approximates the value at 𝜕𝜕𝑛𝑛+1 with the current value 

at 𝜕𝜕𝑛𝑛 plus the weighted average of four increments, 𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3, 𝑘𝑘4. A quick comparison for 

the accuracy between RK4 and first order Euler methods is made by solving a simple ODE. 

The following equation is solved 

 𝜕𝜕′ = 𝑓𝑓(𝜕𝜕, 𝜕𝜕) = 𝑙𝑙𝜕𝜕/𝑙𝑙𝜕𝜕 = 𝜕𝜕𝑔𝑔𝑖𝑖𝑛𝑛𝜕𝜕 (35) 

with initial condition 𝜕𝜕(0) = −1.  

 𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛 +
ℎ
6

(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4) (36) 

 𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛 + ℎ (37) 

for n = 0, 1, 2, 3, …, using 
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𝑘𝑘1 = 𝑓𝑓(𝜕𝜕𝑛𝑛, 𝜕𝜕𝑛𝑛), 

𝑘𝑘2 = 𝑓𝑓 �𝜕𝜕𝑛𝑛 +
ℎ
2

, 𝜕𝜕𝑛𝑛 +
ℎ
2
𝑘𝑘1�, 

𝑘𝑘3 = 𝑓𝑓 �𝜕𝜕𝑛𝑛 +
ℎ
2

, 𝜕𝜕𝑛𝑛 +
ℎ
2
𝑘𝑘2�, 

𝑘𝑘4 = 𝑓𝑓(𝜕𝜕𝑛𝑛 + ℎ, 𝜕𝜕𝑛𝑛 + ℎ𝑘𝑘3). 

(38) 

In Figure 1, the data points of blue circle and green star are obtained by using RK4 and 

first order Euler methods, respectively. The solid line represents the analytical solution. 

The solution obtained by the forward Euler method quickly drift away from the analytical 

solution after certain time steps. In comparison, the RK4 maintained a good convergence 

behavior at all times. Similar patterns can also be observed in Figure 2. Deviation between 

the analytical solution and solution obtained by RK4 is nearly zero at all times while there 

is a large deviation between the analytical solution and the solution obtained by  forward 

Euler schemes. 
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Figure 1 Solutions of dx/dt =xsint, x(0) = -1 with RK4 and first order Euler 

 

 
Figure 2 Errors in solutions with RK4 and first order Euler 
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3.2 Spatial discretization 

To discretize the governing equation, the Finite-Volume approach is used and conservation 

principals are applied to small control volumes. For the shape of the control volume, we 

choose the structured Cartesian grids for our work. Regular structured grid is relatively 

simple and efficient for numerical code development, as the various variables are stored at 

the points on the intersection of orthogonal grid lines. Instead of using a collocated 

structured grid, which stores all the variables on the same grid point for each control 

volume, we put the u velocity components on the vertical boundaries and v velocity 

components on the horizontal boundaries in a two dimensional space. And the scalars, like 

pressure, density, level set function etc. are stored in the cell centers. In a three dimensional 

space, the vector variables, u, v, w, are placed on the faces of the volume. The scalars are 

put in the center of the volume. A simple illustration is showed in Figure 3 and Figure 4. 
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Figure 3 Staggered mesh decomposition for control volumes in 2D 

 

Figure 4 Staggered mesh decomposition for control volumes in 3D 



 

21 

This kind of discretization is usually referred as a staggered mesh. The chief benefit from 

the staggered mesh is eliminating the odd-even decoupling problem on the collocated 

mesh, which is generated by the result of when variables entering the equation only in the 

first order derivatives. 

Based on the setup of the staggered mesh, setting the boundary value of the normal 

velocity for each boundary is trivial. It is directly set as what it should be as the center of 

the control volume coincides with the boundary. The tangential velocity is determined by 

a linear interpolation between the velocity of ghost node and the node next to the 

boundary. To illustrate this, we take the y-velocity component on the left boundary 

 𝜕𝜕𝑤𝑤𝑤𝑤𝑙𝑙𝑙𝑙 = 1/2(𝜕𝜕𝑖𝑖,𝑗𝑗 + 𝜕𝜕2,𝑗𝑗) (39) 

where 𝜕𝜕1,𝑗𝑗 is the value on the ghost node. For a no-slip boundary, 𝜕𝜕𝑤𝑤𝑤𝑤𝑙𝑙 is equal to zero, 

which means the value of 𝜕𝜕1,𝑗𝑗 is just the reflection of 𝜕𝜕2,𝑗𝑗. 

For a finite-volume method, the average velocity is used in each control volume. For each 

term in the Navier-Stokes equation, it is approximated by the average value over the control 

volume. The averages for the advection and the viscous terms over each control volume 

are: 

 𝐴𝐴(𝜕𝜕𝑛𝑛) =
1
Δ𝑉𝑉

� ∇ ∙ (𝜕𝜕𝑛𝑛𝜕𝜕𝑛𝑛)𝑙𝑙𝜕𝜕 =
1
Δ𝑉𝑉

� 𝜕𝜕𝑛𝑛(𝜕𝜕𝑛𝑛 ∙ 𝑛𝑛)𝑙𝑙𝑔𝑔
𝑆𝑆𝑉𝑉

 (40) 

and 

 𝐷𝐷(𝜕𝜕𝑛𝑛) =
𝜇𝜇0
Δ𝑉𝑉

�∇2𝜕𝜕𝑛𝑛𝑙𝑙𝜕𝜕
𝑉𝑉

=
𝜇𝜇0
Δ𝑉𝑉

�∇ ∙ ∇𝜕𝜕𝑛𝑛𝑙𝑙𝜕𝜕
𝑉𝑉

=
𝜇𝜇0
𝑉𝑉
� ∇𝜕𝜕 ∙ 𝑛𝑛 𝑙𝑙𝑔𝑔
𝑆𝑆

 (41) 

where we converted the volume of the control volume, Δ𝑉𝑉, into the surface, 𝑆𝑆, by applying 

the divergence theorem.  
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A simple square or cubic control volume scheme is selected to show how the surface and 

volume integrals are approximated. Here we assume a two-dimensional flow and the 

extension into the third dimensional space is easy and straightforward. The control volume 

bounded by red lines in Figure 3 is selected and identified as (𝑖𝑖, 𝑗𝑗). The neighbor control 

volumes are indexed by (𝑖𝑖 ± 1, 𝑗𝑗) and (𝑖𝑖, 𝑗𝑗 ± 1), respectively. The edges are identified 

half-indices away from the center of each control volume. The incompressibility condition 

is evaluated at the pressure control volume centered at (𝑖𝑖, 𝑗𝑗) and discretized as 

 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛+1 − 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

𝑛𝑛+1 + 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛+1 − 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

𝑛𝑛+1 = 0 (42) 

where the integrals along the edges are approximated by the mid-point rule. 

Similarly, the approximation for the predictor step and projection step can be discretized 

at the u- and v-velocity control volumes. 

For the predictor step, 

 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
∗ = 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛 + Δ𝜕𝜕(−(𝐴𝐴𝑥𝑥)𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 + 𝜈𝜈(𝐷𝐷𝑥𝑥)𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛 + (𝑓𝑓𝑥𝑥)𝑖𝑖+1/2,𝑗𝑗 (43) 

  𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
∗ = 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

𝑛𝑛 + Δ𝜕𝜕(−�𝐴𝐴𝑦𝑦�𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛

+ 𝜈𝜈�𝐷𝐷𝑦𝑦�𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛

+ �𝑓𝑓𝑦𝑦�𝑖𝑖,𝑗𝑗+1/2
 (44) 

 And for the projection step 

 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛+1 = 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

∗ −
1
𝜌𝜌
Δ𝜕𝜕
ℎ

(𝛻𝛻𝑖𝑖+1,𝑗𝑗
𝑛𝑛+1 − 𝛻𝛻𝑖𝑖,𝑗𝑗𝑛𝑛+1)   (45) 

  𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛+1 = 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

∗ −
1
𝜌𝜌
Δ𝜕𝜕
ℎ

(𝛻𝛻𝑖𝑖,𝑗𝑗+1𝑛𝑛+1 − 𝛻𝛻𝑖𝑖,𝑗𝑗𝑛𝑛+1) (46) 

The pressure Poisson equation is derived by substituting equations (42) and (43) into the 

discretized continuity equation (39) and taking the divergence on both sides of the obtained 

equation. As the velocity is assumed to be divergence free at 𝜕𝜕 = 𝑛𝑛 + 1 , the 

𝜕𝜕𝑛𝑛+1 𝑔𝑔𝑛𝑛𝑙𝑙 𝜕𝜕𝑛𝑛+1 are eliminated. For multiphase flow, the density and viscosity across the 
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whole computational domain are not constant for each cell. Hence the discretized Poisson 

equation is 

 

1
ℎ2
�
𝛻𝛻𝑖𝑖+1,𝑗𝑗 − 𝛻𝛻𝑖𝑖,𝑗𝑗
𝜌𝜌𝑖𝑖+1,𝑗𝑗
𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛

−
𝛻𝛻𝑖𝑖,𝑗𝑗 − 𝛻𝛻𝑖𝑖−1,𝑗𝑗

𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖−1,𝑗𝑗
𝑛𝑛 +

𝛻𝛻𝑖𝑖,𝑗𝑗+1 − 𝛻𝛻𝑖𝑖,𝑗𝑗
𝜌𝜌𝑖𝑖,𝑗𝑗+1𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛

−
𝛻𝛻𝑖𝑖,𝑗𝑗 − 𝛻𝛻𝑖𝑖,𝑗𝑗−1
𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗−1𝑛𝑛 �

=
1

2ℎΔ𝜕𝜕
(𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

∗ − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2
∗ + 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

∗ − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2
∗ ) (47) 

on an equal spaced uniform grid. To solve equation (44), we employ iteration method, 

where 𝛻𝛻𝑖𝑖,𝑗𝑗 is isolated on the left-hand side and computed by the estimated values from the 

surrounding pressures. This Jacobi iteration will be ended by the prescribed convergence 

criteria. Comparing to Jacobi iteration’s robust but slow scheme, a variation of the Gauss-

Seidel, called successive over-relaxation (SOR), is implemented to help reduce the 

computational cost of solving the Poisson equation. For the SOR method, the weighted 

average of the updated value and the one from last iteration are also considered when 

computing for the new iteration step: 

𝛻𝛻𝑖𝑖,𝑗𝑗𝛼𝛼+1 = 𝛽𝛽 �
1
𝛥𝛥𝜕𝜕2

�
1

𝜌𝜌𝑖𝑖+1,𝑗𝑗
𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛

+
1

𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖−1,𝑗𝑗
𝑛𝑛 � +

1
𝛥𝛥𝜕𝜕2

�
1

𝜌𝜌𝑖𝑖,𝑗𝑗+1𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛
+

1
𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗−1𝑛𝑛 ��

− 1

 

                   �
1
𝛥𝛥𝜕𝜕2

�
𝛻𝛻𝑖𝑖+1,𝑗𝑗
𝛼𝛼

𝜌𝜌𝑖𝑖+1,𝑗𝑗
𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛

+
𝛻𝛻𝑖𝑖−1,𝑗𝑗
𝛼𝛼+1

𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖−1,𝑗𝑗
𝑛𝑛 � +

1
𝛥𝛥𝜕𝜕2

�
𝛻𝛻𝑖𝑖,𝑗𝑗+1𝛼𝛼

𝜌𝜌𝑖𝑖,𝑗𝑗+1𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛
+

𝛻𝛻𝑖𝑖,𝑗𝑗−1𝛼𝛼+1

𝜌𝜌𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝜌𝜌𝑖𝑖,𝑗𝑗−1𝑛𝑛 �

−
1

2𝛥𝛥𝜕𝜕
�
𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
∗ − 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

∗  
𝛥𝛥𝜕𝜕

+
𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
∗ − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2

∗  
𝛥𝛥𝜕𝜕

�� + (1 − 𝛽𝛽)𝛻𝛻𝑖𝑖,𝑗𝑗𝛼𝛼   (48) 

𝛽𝛽 is the relaxation parameter and must be greater than 1 for an over-relaxation and smaller 

than 2 for a stability reasons. A balanced range of 𝛽𝛽 for the compromise between the 

stability and an accelerated convergence is between 1.2 and 1.5. 
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With the illustrated layout for the control volumes in Figure 3, midpoint rule is used for the 

approximation of the integral over each edge and a linear interpolation is used for velocities 

at undefined locations. And the explicit formulas for the advection terms are: 

 (𝐴𝐴𝑥𝑥)𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 =

1
ℎ

⎩
⎪
⎪
⎨

⎪
⎪
⎧ �

𝜕𝜕𝑖𝑖+3/2,𝑗𝑗
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛

2
�
2

− �
𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 + 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

𝑛𝑛

2
�
2

+�
𝜕𝜕𝑖𝑖+1/2,𝑗𝑗+1
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛

2
��

𝜕𝜕𝑖𝑖+1,𝑗𝑗+1/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

𝑛𝑛

2
�

−�
𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗−1

𝑛𝑛

2
��

𝜕𝜕𝑖𝑖+1,𝑗𝑗−1/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2

𝑛𝑛

2
�
⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (49) 

  �𝐴𝐴𝑦𝑦�𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛

=
1
ℎ

⎩
⎪
⎪
⎨

⎪
⎪
⎧ �

𝜕𝜕𝑖𝑖,𝑗𝑗+3/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

𝑛𝑛

2
�
2

− �
𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2

𝑛𝑛

2
�
2

+�
𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗+1

𝑛𝑛

2
��

𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1,𝑗𝑗+1/2

𝑛𝑛

2
�

−�
𝜕𝜕𝑖𝑖−1/2,𝑗𝑗+1
𝑛𝑛 + 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

𝑛𝑛

2
��

𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 + 𝜕𝜕𝑖𝑖−1,𝑗𝑗+1/2

𝑛𝑛

2
�
⎭
⎪
⎪
⎬

⎪
⎪
⎫

 (50) 

The explicit discretization formulas for the diffusion terms with non-constant viscosities 

are: 

 

(𝐷𝐷𝑥𝑥)𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 = 

1
ℎ2
�

2𝜇𝜇𝑖𝑖+1,𝑗𝑗
𝑛𝑛 �𝜕𝜕𝑖𝑖+3/2,𝑗𝑗

𝑛𝑛 − 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 � − 2𝜇𝜇𝑖𝑖,𝑗𝑗𝑛𝑛 �𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛 − 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗
𝑛𝑛 �

+𝜇𝜇𝑖𝑖+1/2,𝑗𝑗+1/2
𝑛𝑛 �𝜕𝜕𝑖𝑖+1/2,𝑗𝑗+1

𝑛𝑛 − 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1,𝑗𝑗+1/2

𝑛𝑛 − 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 �

−𝜇𝜇𝑖𝑖+1/2,𝑗𝑗−1/2
𝑛𝑛 (𝜕𝜕𝑖𝑖+1/2,𝑗𝑗

𝑛𝑛 − 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗−1
𝑛𝑛 + 𝜕𝜕𝑖𝑖+1,𝑗𝑗−1/2

𝑛𝑛 − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2
𝑛𝑛 )

� 
(51) 

 and 

 

�𝐷𝐷𝑦𝑦�𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛

= 

1
ℎ2
�

2𝜇𝜇𝑖𝑖,𝑗𝑗+1𝑛𝑛 �𝜕𝜕𝑖𝑖,𝑗𝑗+3/2
𝑛𝑛 − 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2

𝑛𝑛 � − 2𝜇𝜇𝑖𝑖,𝑗𝑗𝑛𝑛 �𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2

𝑛𝑛 �
+𝜇𝜇𝑖𝑖+1/2,𝑗𝑗+1/2

𝑛𝑛 �𝜕𝜕𝑖𝑖−1/2,𝑗𝑗+1
𝑛𝑛 − 𝜕𝜕𝑖𝑖−1/2,𝑗𝑗

𝑛𝑛 + 𝜕𝜕𝑖𝑖,𝑗𝑗+1/2
𝑛𝑛 − 𝜕𝜕𝑖𝑖−1,𝑗𝑗+1/2

𝑛𝑛 �
−𝜇𝜇𝑖𝑖−1/2,𝑗𝑗+1/2

𝑛𝑛 (𝜕𝜕𝑖𝑖+1/2,𝑗𝑗
𝑛𝑛 − 𝜕𝜕𝑖𝑖+1/2,𝑗𝑗−1

𝑛𝑛 + 𝜕𝜕𝑖𝑖+1,𝑗𝑗−1/2
𝑛𝑛 − 𝜕𝜕𝑖𝑖,𝑗𝑗−1/2

𝑛𝑛 )
� 

(52) 
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As the viscosity is stored at the center of the control volume, the viscosities at the points 

where it is not defined are calculated by the geometric mean.  

 𝜇𝜇𝑖𝑖+1/2,𝑗𝑗+1/2
𝑛𝑛 = �𝜇𝜇𝑖𝑖+1,𝑗𝑗

𝑛𝑛 ×𝜇𝜇𝑖𝑖+1,𝑗𝑗+1
𝑛𝑛 ×𝜇𝜇𝑖𝑖,𝑗𝑗+1𝑛𝑛 ×𝜇𝜇𝑖𝑖,𝑗𝑗𝑛𝑛

4  (53) 

3.3 Level set function advection and re-initialization 

First we employed a simpler monotone upwind scheme, such as Godunov’s scheme, to 

determine  the evolution of the level set function. However, this scheme quickly became 

unstable. In order to have a stable and accurate advection of the level set function, we 

looked into the essentially non-oscillatory (ENO) and the weighted essentially non-

oscillatory (WENO) scheme[20–22]. The WENO method provides a higher order accuracy 

in smooth regions and maintains a stable, non-oscillatory, and sharp discontinuous 

transition. 

For the advection of the level set function, the following hyperbolic conservation law and 

the initial condition are used: 

 �𝜙𝜙𝑡𝑡 + 𝛻𝛻 ∙ 𝑓𝑓(𝜙𝜙) = 0
𝜙𝜙(𝜕𝜕, 0) = 𝜙𝜙0(𝜕𝜕)  (54) 

Let  

 𝜙𝜙𝚤𝚤� (𝜕𝜕) =
1
𝛥𝛥𝜕𝜕𝑖𝑖

�𝜙𝜙(𝜕𝜕, 𝜕𝜕)
𝐼𝐼𝑖𝑖

𝑙𝑙𝜕𝜕 (55) 

After integration, the hyperbolic equation on a cell 𝐼𝐼𝑖𝑖 

 
𝑙𝑙
𝑙𝑙𝜕𝜕
𝜙𝜙𝚤𝚤� (𝜕𝜕) +

1
𝛥𝛥𝜕𝜕𝑖𝑖

�𝑓𝑓 �𝜙𝜙�𝜕𝜕𝑖𝑖+1/2, 𝜕𝜕�� − 𝑓𝑓 �𝜙𝜙�𝜕𝜕𝑖𝑖−1/2, 𝜕𝜕��� = 0 (56) 

The flux 𝑓𝑓 �𝜙𝜙�𝜕𝜕𝑖𝑖+1/2, 𝜕𝜕�� is replaced with a monotone numerical flux 𝑓𝑓(𝜙𝜙𝑖𝑖+1/2
− ,𝜙𝜙𝑖𝑖+1/2

+ ). 

Hence, the monotone numerical flux is reconstructed. 



 

26 

The basic idea behind the WENO, the same as the ENO, is an approximation procedure. 

For the ENO, a polynomial of degree at most two, 𝛻𝛻1(𝜕𝜕), is used to interpolate the function 

𝜙𝜙(𝜕𝜕)  with a stencil 𝑓𝑓(𝜙𝜙𝑖𝑖+1/2
− ,𝜙𝜙𝑖𝑖+1/2

+ ). Hereinafter, the 𝜙𝜙
𝑖𝑖+12

(1) ≡ 𝛻𝛻1(𝜕𝜕𝑖𝑖+12
) is used as the 

approximation of 𝜙𝜙�𝜕𝜕𝑖𝑖+1/2�, which is explicitly given as 

 

𝜙𝜙𝑖𝑖+1/2
(1) =

1
3
𝜙𝜙𝑖𝑖−2 −

7
6
𝜙𝜙𝑖𝑖−1 +

11
6
𝜙𝜙𝑖𝑖 

𝜙𝜙𝑖𝑖+1/2
(2) = −

1
6
𝜙𝜙𝑖𝑖−1 +

5
6
𝜙𝜙𝑖𝑖 +

1
6
𝜙𝜙𝑖𝑖+1 

𝜙𝜙𝑖𝑖+1/2
(3) =

1
3
𝜙𝜙𝑖𝑖 +

5
6
𝜙𝜙𝑖𝑖+1 −

1
6
𝜙𝜙𝑖𝑖+2 

(57) 

This approximation is a linear combination of three third order approximation. 

 𝜙𝜙
𝑖𝑖+12

= 𝛾𝛾1𝜙𝜙𝑖𝑖+12
(1) + 𝛾𝛾3𝜙𝜙𝑖𝑖+12

(2) + 𝛾𝛾3𝜙𝜙𝑖𝑖+12
(3)  (58) 

where 𝛾𝛾1 = 1
10

, 𝛾𝛾2 = 3
5

 , 𝛾𝛾3 = 3
10

. 

This method is usually referred to as the linear weighted ENO with the smooth function  in 

stencil S. If there is any discontinuity for the function in 𝑆𝑆1,𝑆𝑆2, 𝑆𝑆3, the approximation will 

not be good. To alleviate this, a nonlinear combination of weight is used with the 

introduction of the smoothness indicator, 𝛽𝛽 . The nonlinear weights with smoothness 

indicator are 

 𝑤𝑤𝑗𝑗 =
𝑤𝑤𝚥𝚥

𝑤𝑤1� + 𝑤𝑤2� + 𝑤𝑤3�
�

,          𝑤𝑤𝑖𝑖𝜕𝜕ℎ       𝑤𝑤𝚥𝚥� =
𝛾𝛾𝑗𝑗

�𝜖𝜖 + 𝛽𝛽𝑗𝑗�
2 (59) 

3.4 Time step restrictions 

With the explicit algorithm described above, a relatively stringent limitation should apply 

to the time step. For the convective terms, the Courant-Friedrichs-Lewy condition limits 

the time step to  
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Δ𝜕𝜕𝑐𝑐 ≡ min ( ℎ
|𝑢𝑢��⃗ |

) 

The viscous term, the stiff source term, the gravity, the surface tension, and the heat 

diffusion influence the choice of time steps; leading to following restriction: 

Δ𝜕𝜕𝑣𝑣 ≡
𝐶𝐶𝑣𝑣ℎ2

𝜈𝜈
,   Δ𝜕𝜕𝑠𝑠 ≡ �(𝜌𝜌𝑙𝑙+𝜌𝜌𝑔𝑔)𝐵𝐵

8𝜋𝜋
ℎ3/2,  Δ𝜕𝜕𝑇𝑇 ≡

1
4
ℎ2

𝐾𝐾
 

Δ𝜕𝜕 = 1
2

min (Δ𝜕𝜕𝑐𝑐,Δ𝜕𝜕𝑣𝑣,Δ𝜕𝜕𝑠𝑠,Δ𝜕𝜕𝑇𝑇)  
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Chapter 4 

Results 

Numerical simulations are carried out in two and three dimensional geometries. Two-

dimensional lid-driven cavity flows of a single phase fluid are used for the algorithm 

validation. For multiphase flows in a two-dimensional domain, a rising gas bubble and 

rising multiple bubbles are used for validation and testing solver’s capability for multiphase 

flows. Later, analysis for 2D multiphase flow is presented by benchmarking with ANSYS 

Fluent for a quantitative comparison on the ellipticity of the gas bubble. With added energy 

equation and Boussinesq approximation, the 2D and 3D Rayleigh-Bénard convections are 

studied.  

4.1 Single Phase-Lid driven cavity flow 

The lid-driven cavity flow is often used as a benchmark for code verification and 

validation, due to its simple geometry and complicated flow behavior. The motion of a 

fluid inside a rectangular cavity is created by a constant translational velocity of one of the 

boundary while others are at rest. The  computational domain with boundary conditions 

imposed on the velocity field is shown in the figure below. 
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Figure 5 Lid driven cavity flow with Dirichlet boundary condition. 

 

Figure 6 x-component of the velocity at center line of the domain for Re = 100. The line denotes 
results predicted by the present study and red symbols denote experimental results documented 
by Ghia et al. 

In 1982 Ghia et al reported a set of data by using a non-primitive variable approach. The 

result generated by using our staggered discretization method is compared against Ghia’s 

data for Reynolds number of 100. In Figure 6, profile of x-component of the velocity at 

x/L = 0.5is plotted in the  y-direction. The velocity is normalized by the lid-speed. A 
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maximum 3% difference in the velocity profile between our prediction and Ghia reported 

data is obtained; demonstrating a reasonably good agreement with previous results. This 

validates our mathematical model and numerical methods employed to solve flows of a 

single phase fluid.. 

4.2 Multiphase-Bubble rising & droplet 

4.2.1 Validation with ANSYS Fluent 

Next we compare our algorithm for the two-phase flows quantitatively against results 

obtained using the ANSYS Fluent commercial package. Fluent provides a wide range of 

well-established and validated CFD solvers. The semi-implicit SIMPLEC algorithm is 

selected for solving the N-S equations. The under-relaxation factor for pressure correction 

in SIMPLEC is generally chosen to be 1 for an accelerated convergence. The phase 

interface is modelled with the VOF method by solving the transport equation. With the 

determined the volume of fraction in each cell, the interface is interpolated by the geometric 

reconstruction (piecewise linear) scheme. 

A numerical experiment of tracking the evolution of a single 2D gas bubble in a liquid 

column is proposed. The topological change on the interface and other quantities such as 

the velocity and the center of mass, are presented in this experiment. Initially, a gas bubble 

with radius 𝑟𝑟0 = 0.25 resides at the lower part of the liquid column. At the top and the 

bottom wall, the no-slip boundary condition is used. The vertical walls are imposed with 

the free slip condition. The dimensions and configurations are detailed in Figure 7. The 

table below list the physical properties for the two fluids and the dimensionless numbers. 

Table 1 Physical properties used in the algorithm validation.  
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Fluid 𝜌𝜌 𝜇𝜇 𝑔𝑔 𝜎𝜎 𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸 𝜌𝜌1/𝜌𝜌2 𝜇𝜇1/𝜇𝜇2 

1 1000 10 
0.98 24.5 35 10 10 10 

2 100 1 

 

 

Figure 7 Initial configuration and boundary conditions for the benchmark problem. 

The evolution of the bubble is tracked for three time steps and the benchmark quantities 

are measured during the simulation. We test a case for a bubble rising with a finite 

Reynolds number 𝑅𝑅𝑅𝑅 = 35, and both density and viscosity ratios are set to 10. A visual 

verification of the bubble shapes obtained by the level set method and the Fluent 

simulations are shown in Figure 8. Most challenging part for this comparison is from the 

sides at the lower part of the bubble, where significant deformations occurred. From the 

visual examination of the shapes, we have a good match between predictions by our 

numerical algorithm and Fluent. 
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Furthermore, the circularity of the bubble and the rise velocity are defined and compared. 

For a perfectly circular bubble, the circularity is equal to 1 and will decrease as the bubble 

is deformed. The circularity is defined as 

 ℂ =
𝑃𝑃𝑤𝑤
𝑃𝑃𝑏𝑏

=
𝛻𝛻𝑅𝑅𝑟𝑟𝑖𝑖𝑝𝑝𝑅𝑅𝜕𝜕𝑅𝑅𝑟𝑟 𝐸𝐸𝑓𝑓 𝑔𝑔𝑟𝑟𝑅𝑅𝑔𝑔 − 𝑅𝑅𝑙𝑙𝜕𝜕𝑖𝑖𝜕𝜕𝑔𝑔𝑙𝑙𝑅𝑅𝑛𝑛𝜕𝜕𝑒𝑒𝑖𝑖𝑟𝑟𝑒𝑒𝑙𝑙𝑅𝑅

𝛻𝛻𝑅𝑅𝑟𝑟𝑖𝑖𝑝𝑝𝑅𝑅𝜕𝜕𝑅𝑅𝑟𝑟 𝐸𝐸𝑓𝑓 𝑏𝑏𝜕𝜕𝑏𝑏𝑏𝑏𝑙𝑙𝑅𝑅
=
𝜋𝜋𝑙𝑙𝑤𝑤
𝑃𝑃𝑏𝑏

 (60) 

 

 
Figure 8 Bubble shape comparison at t = 3 
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Figure 9 Circularity comparison for Re=35 

Another good quantity to compare is the rise velocity, which does not only show how well 

of the performance of the tracking algorithm but also represent the convergence of the 

overall solution. The mean rising velocity is defined as 

 𝑈𝑈𝑐𝑐 =
∫ 𝜕𝜕Ω𝑔𝑔

𝑙𝑙𝜕𝜕

∫ 1Ω𝑔𝑔
𝑙𝑙𝜕𝜕

 (61) 

where 𝛺𝛺𝑔𝑔 denotes the regionoccupied by the bubble. 
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Figure 10 Mean rise velocity comparison for Re=35 

With the two quantities comparison shown in Figure 9 and Figure 10, our numerical 

algorithm achieved a good accuracy and consistently matched with the validated CFD 

package. Now we can expand this method for more challenging problems. 

 

  

4.2.2 Gas bubble 

A small spherical gas bubble starts to rise in the heavy surrounding liquid from a stationary 

state. The motion of the gas bubble is influenced by buoyancy, surface tension and viscous 

effects. For the dynamics of the interfacial flow, the numerical stability problem may arise 

from the diffusion across the interface, due to the density ratio. The higher order 

discretization scheme and accurate interface representation would be needed to ensure the 
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mass conservation of the gas bubble if a numerical instability occurs. Simulations for a gas 

bubble with a low & high density ratio to the surrounding liquid are performed. The 

influence of the density ratio on the motion and the deformation of the bubble is discussed.  

The physical properties and dimensionless number for simulating gas bubble in a low-

density ratio environment are listed in Table 2 below. 

Table 2 Physical properties for low density ratio gas bubble. 

Fluid 𝜌𝜌 𝜇𝜇 𝑔𝑔 𝜎𝜎 𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸 𝜌𝜌1/𝜌𝜌2 𝜇𝜇1/𝜇𝜇2 

1 998.2 1e-3 
9.8 0.078 8838 45 10 10 

2 99.82 1e-4 

As the bubble starts to rise due the buoyancy, the formation of a jet starts to emerge at the 

bottom of the bubble, which pushes the bubble upwards, and the flow is circulating around 

the bubble, as depicted in Figure 11. When the bubble ascends with time, the velocity of 

the upper surface decreases. With the difference in velocity between the upper and lower 

surface, the bubble is deformed. The shape of the gas bubble at various time steps are 

shown in Figure 12. As time progresses the skirt of the bubble shrinks and eventually two 

smaller bubbles are separated from the skirt. The larger size bubble continues to move 

upwards, and the two smaller ones are slowed and trapped in the wake generated by the 

larger bubble, as shown in Figure 12. 
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Figure 11 Bubble shape and the streamwise component of the velocity of gas bubble at t = 0.04 
second for low 𝜌𝜌 ratio. 
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Figure 12 Gas bubble shape at various time steps for 𝜌𝜌 ratio = 10. The instantaneous velocity 
vector field is shown at various times.  
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Figure 13 Vorticity contour at various time steps for 𝜌𝜌 ratio = 10. 
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Figure 14 Streamwise velocity contour at various time steps for 𝜌𝜌 ratio = 10. 
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If the density ratio is changed to 1000, the gas bubble starts to lose volume after limited 

time steps. The mass of the bubble diffused into the denser surrounding liquid due to the 

high diffusion across the interface. A finer mesh is used to reduce the interface thickness 

and the diffusion is constrained within the thinner interface. Instead of using the second 

order upwind scheme, the 5th order WENO method is implemented to reconstruct the 

velocity field and ensures an accurate advection of the level set function. Also, the level 

set function is reinitialized at a higher frequency, from every 10 time steps to 5. Figure 15 

shows the comparison for a conserved and non-conserved gas bubble at different time.  

 

Figure 15 Conserved and non-conserved gas bubble for high density ratio at t = 0.05 s and t = 
0.29 s 
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The dashed dot lines in Figure 15 represent the shapes and locations of non-conserved gas 

bubble. During the simulation, the bubble lost about 10 percent of the volume, which 

diffused into the surrounding fluid. The mass conserved bubble is portrayed by the solid 

lines. Figure 16 shows the history of the mass for conserved and non-conserved gas bubble.

 

Figure 16 Mass conservation for bubble vs time 

A slightly different sequence of shapes is observed when the bubble ascends in a denser 

fluid. A higher density does not significantly affect the shape of the bubble. However, with 

a stronger jet flow from the lower surface the bubble, the bubble moves faster and the 

smaller bubble separated from the larger one at an earlier time. The bubble shape and 

position history are shown in the right column of Figure 17.  
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Figure 17 Bubble shape history comparison between the density ratio = 10 (left column) and the 
density ratio = 1000 (right column). (a) t = 0.06 s, (b) t =0.10 s, (c) t = 0.14 s 
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Figure 18 Vorticity contour at various time for the density ratio = 1000. 
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Figure 19 Streamwise velocity contour at various time for the  density ratio = 1000. 
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In Figure 17 (a), a larger deformation is observed for the lighter bubble in the right column 

for t = 0.06 second. As the bubble rising upwards, the skirt of the lighter bubble is curling 

rapidly inside and separated from the bubble about 0.03 seconds earlier than the denser 

bubble shown in the right column. The denser bubble could maintain the skirt for a longer 

time before it was pierced.  

4.2.3 Liquid droplet 

When the fluid inside the circular region is heavier, the motion is reversed and driven by 

the gravitational field. Hence, a liquid droplet is formed under this situation. For each 

density ratio setup, the liquid droplet and gas bubble exhibit totally different dynamics, 

comparing to the gas bubble. In the same confined region, the droplets reached to the 

upstream boundary faster than the bubbles did. Contrary to what have been observed for 

the deformation of gas bubbles, the liquid droplets will easily deform at a low-density ratio 

environment.  

The droplet shape history shown in Figure 22 and Figure 25 demonstrated the influence of 

the density onto the droplet deformation. In comparison, the droplet density is maintained 

same as the liquid water and the fluid surrounding the water droplet are set to 10 and 0.1 

percent of the water density. In Figure 22, the water droplet is descending in a heavier fluid, 

comparing to the fluid in Figure 25. Combined with the streamwise component of the 

velocity in Figure 24, the deformation of the droplet started from its upper surface, where 

a jet flow is observed. The jet stream grows wider and stronger as time progresses. If the 

water droplet presents in a much lighter fluid, where the density ratio is dramatically 

increased from 10 to 1000, the droplet shows a different behavior in shape evolution, as 
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well as the flow dynamics in Figure 25 and Figure 27. Instead of being depressed and 

expanded laterally, the droplet is elongated streamwise direction by the gravity.  

Figure 23 shows the evolution of vorticity field generated by the droplet movement. After 

the droplet is released and pulled downwards by the gravity, the lighter fluid surrounding 

the droplet is pushed away and starts to circulate at the back. As the droplet continued 

evolving, vortical structure is observed to be entrained downstream fluid and bring it 

upstream to impinge on the back of the droplet, as shown in Figure 23. The counter rotating 

vortex, as shown in Figure 20, is formed from the forehead of the droplet. Along the 

indented surface of the droplet, a vortex rotating the clock-wise direction is also generated. 

These two  counter rotating vorticity interact to form the wake recirculation region, which 

is attached to the droplet. The wake recirculation region persists through the droplet 

deformation and appears to contribute to the lateral-stretching mechanism. 

 

Figure 20 Vorticity contour near wake region for droplet at t = 0.13 second. 
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Similarly, the evolution vorticity field for the droplet descending in a lighter fluid is 

depicted in Figure 26. Two counter-rotating vorticity are also observed. The clock-wise 

rotating vortex is much weaker and not interacting with the counter clock-wise rotating 

vortex. The counter clockwise rotating vortex starting from the forehead of the droplet is 

extensively stretched further downstream. 

 

Figure 21 Vorticity contour near wake region for droplet at t = 0.10 second 
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Figure 22 Droplet shape history for the density ratio = 10. 
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Figure 23 Vorticity contour of liquid droplet at various time for the density ratio = 10. 
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Figure 24 Streamwise velocity contour at various time steps for the density ratio = 10 
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Figure 25 Droplet shape history for the density ratio = 1000. 
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Figure 26 Vorticity contours around the droplet at various time for the density ratio = 1000. 
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Figure 27 Streamwise velocity contour of droplet at various time for the density ratio = 1000 
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4.2.4 Effect of a surface tension 

Studying interfacial flows, the surface tension needs to be modelled properly to represent 

the forces acting the interface for the Eulerian-based computational algorithm. Brackbill et 

at introduced the continuum surface force (CSF) model which incorporate the effect of the 

surface tension into the momentum equation[15]. The CSF model has successfully 

addressed a large variety of flow problems. However, when the surface tension strength 

increases to a magnitude, the CSF model will generate a parasitic current which may  affect 

the flow field. Lafaurite et al carried out a series of numerical experiments and pointed out 

these spurious currents scale with the inverse of the capillary number[23]. Scardovelli and 

Zaleski proposed that the large currents may occur due to the dominance of surface tension 

over the inertial forces[24]. Harvie et al[25] presented a correlation to quantify the parasitic 

current in VOF simulations by using Vincent’s method in implementing the CSF 

model[26]. When the Laplace number 𝐿𝐿𝑔𝑔 = 𝜎𝜎𝜌𝜌𝑟𝑟/𝜇𝜇2 is larger than 106, which is equivalent 

to a 1 cm water droplet in air, the spurious currents is needed to be addressed. Figure 28 

represents a typical parasitic flow around a static water droplet[27] and the currents are 

clearly visible.  
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Figure 28 Illustration of parasitic flow surrounding a static bubble. 

These spurious currents are mainly caused by two sources: inconsistent discretization of 

the surface tension force & the pressure gradient and inaccurate approximation of the 

curvature. Many researchers have presented various modifications on the CSF model to 

decrease the parasitic flow magnitude[28–31]. In our study, we implement the method 

proposed by Sussman et al [14] in conjunction with the balanced force discretization 

mentioned by Meland in [27]. Also, the approximation to the curvature is diverted by 

finding it at point of the interface corresponding to the discretization point, instead of the 

smeared region by regular CSF model implementation. In 2D, the curvature at the interface 

is given by 
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 𝜅𝜅0 ≈
1

1/𝜅𝜅 − 𝜙𝜙
 (62) 

where  

𝜅𝜅 =
𝜙𝜙𝑦𝑦𝑦𝑦𝜙𝜙𝑥𝑥2 − 2𝜙𝜙𝑥𝑥𝜙𝜙𝑦𝑦𝜙𝜙𝑥𝑥𝑦𝑦 + 𝜙𝜙𝑥𝑥𝑥𝑥𝜙𝜙𝑦𝑦2

�𝜙𝜙𝑥𝑥2 + 𝜙𝜙𝑦𝑦2�
3/2  

as the level set curves can be treated locally as concentric circles. Since there are two 

independent principal radii of the curvature in 3D, the method in 2D will not work. Instead, 

the curvature is calculated in a narrow region of the interface by solving the following 

hyperbolic equation 

 
𝜕𝜕𝜅𝜅𝑒𝑒𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑔𝑔𝑔𝑔𝑛𝑛(𝜙𝜙)n ∙ ∇𝜅𝜅𝑒𝑒𝑥𝑥 = 0 (63) 

with the initial condition 𝜅𝜅𝑒𝑒𝑥𝑥(𝜕𝜕 = 0) = 𝜅𝜅 to the steady state. The solved 𝜅𝜅𝑒𝑒𝑥𝑥 is used for the 

surface tension calculation. With the velocity vector fields in Figure 12, Figure 22 and 

Figure 25, the magnitude of the parasitic flow is minimized and no spurious current is 

captured. 

The surface tension allows the fluid surface to acquire the least possible surface area and 

hold its shape at a static state if no other force is presented. In the dynamics of rising bubble 

or falling droplet, the presence of gravity field significantly deformed the fluid interface 

under the same surface tension coefficient. The surface tension is usually not strong enough 

to maintain the shape. However, with an increased surface tension strength, its effect can 

be captured obviously. The effects of surface tension are studied for the water droplet free 

falling in a fluid whose density is 10 times less dense than water. Two different surface 

tension coefficients are used in the numerical experiments.  
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Table 3 Physical properties for surface tension experiment 

Case 𝜌𝜌1 𝜇𝜇1 𝑔𝑔 𝜎𝜎 𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸 𝜌𝜌1/𝜌𝜌2 𝜇𝜇1/𝜇𝜇2 

1 998.2 1E-3 
9.8 

0.078 
8838 

45 
10 10 

2 998.2 1E-3 0.78 5 

The shape of the droplets with different surface tension coefficient is compared at various 

instance. Figure 29 (a) and (b) depict the shape history for low and high surface tension, 

respectively. The time sequence shows that the droplet with high surface tension descends 

faster than the one with low surface tension. The cause is due to the larger drag acting on 

the stretched droplet with low surface tension.  
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Figure 29 Droplet shape history comparison for different surface tension coefficient. Image on 
the left column is for low surface tension effect; image on the right is for high surface tension 
effect. 



 

59 

4.3 Multiphase-Merging 

When multiple bubbles are in the same space, a more complicated dynamic is presented. 

As bubbles moving, they may collide and merge into a lager bubble. The collision and 

merging process involves two steps. Firstly, the interface is allowed to rupture on contact 

with another interface of the same fluid. Secondly, the two bubbles will merge together 

and new interface is formed. To accurately simulate the bubble merging process, the 

challenge to the numerical algorithm is to capture the interfacial structures during the 

topological transition. To ease the numerical simulation and have a better convergence of 

the solution, a finer mesh is applied. Also, the smoothing parameter, 𝜖𝜖, is adjusted to 2.5 

times of the gird size. For the following two examples, the interaction of two gas bubbles 

with the same density driven by the buoyancy is computed. The density inside the two 

bubbles is equal to 1 and the density for the enclosed fluid is set as equal to 10. In the first 

example, the surface tension is ignored and set to zero. The effect of surface tension is 

considered in the second example. Other physical properties used in the two simulations 

are listed in Table 4. 

Table 4 Physical properties for two bubble merging test case 

Case 𝜌𝜌1 𝜌𝜌2 𝜇𝜇1 𝜇𝜇2 𝑔𝑔 𝜎𝜎 𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸 

1 5 1 0.05 0.01 
9.8 

0 
51 

44 

2 5 1 0.05 0.01 0.08 20 

Initially, the fluid is at rest and the initial positions of the two bubbles correspond to two 

circles, represented by the zero level set. The upper bubble is centered at (0.5, 0.57) with 

radius 0.15. The lower bubble is centered at (0.5, 0.3) with radius 0.1. 
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In figure, the evolution of the two bubbles are plotted at time t = 0.02, 0.08, 0.10, 0.16, 

0.18, 0.20, 0.22, 0.26 second. The lower surface of the bubbles move faster than the upper 

part. As time evolves, the small bubble residing in the lower portion the domain produces 

a jet and pushes the smaller bubble moving upward. In the wake of the larger bubble, we 

observed the similar counter rotating vortices form which is also observed in the single 

rising bubble. In this lower pressure region, the smaller bubble is deformed and becomes 

narrower and sharper. For time t = 0.18 s, the elongated smaller bubble reaches to the lower 

surface of the larger bubble. At t = 0.2 s, the interface of the two bubbles makes a contact 

and ruptures. The two bubbles merge into a single bubble. A sharp cusp singularity is 

formed by the interface conjunction and smoothed out the viscosity in time. The skirt of 

the large bubble rolls upward due to the counter rotating vorticity field. The jet starting 

from the lower surface of the small bubble tried penetrating through the stem of the newly 

merged bubble.  
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Figure 30 Shape evolution for gass bubble merging without surface tension. 

Now, we include the surface tension into the simulation. The surface tension is set to be    

𝜖𝜖 = 0.08 and other parameters are remained the same. The results shown in Figure 31  

indicates a longer time for the merging process when the surface tension presents. The two 

bubbles merge into a single bubble at time t = 0.22 s. The cusp singularity generated during 

the bubble merging is quickly smoothed out by the surface tension and the viscosity, shown 

at t = 0.26 s.  
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Figure 31 Shape evolution for gass bubble merging without surface tension. 

We demonstrated that our proposed algorithm can handle complex phenomena such as 

coalesence, interface ruptures, interface contacts and resulting singulrities effectively. 

4.4 Rayleigh-Bénard convection 

Single layer Rayleigh-Bénard convection is one of the most studied transport system.. After 

Bénard’s experimental results [1], the theoretical framework was presented by Lord 

Rayleigh in 1916 [2]. In Rayleigh’s work, the system stability is characterized by a 

dimensionless number, Rayleigh number (Ra), which represents the ratio of buoyancy and 

viscous forces.  

𝑅𝑅𝑔𝑔 =
𝑔𝑔𝛽𝛽
𝜈𝜈𝛼𝛼

(𝜕𝜕𝑠𝑠 − 𝜕𝜕∞ )𝑙𝑙3 
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where 𝑙𝑙  is the characteristic length of the flow, 𝑔𝑔  is the gravity acceleration, 𝛽𝛽  is the 

thermal expansion coefficient, 𝜈𝜈 is the kinematic viscosity, 𝛼𝛼 is the thermal diffusitivity, 

and 𝜕𝜕𝑠𝑠 − 𝜕𝜕∞ is the temperature gradient across the fluid in the direction of the gravitational 

acceleration. The heat is transported in the fluid by conduction when the Ra is below a 

certain critical value. The onset of the convection is set and the flow transition occurs when 

Rayleigh number exceeds the critical value. Above the critical value, the heat will be 

transported vby both conduction and convection. Many different methods emerged to 

investigate the onset of the flow transition and the secondary flows induced by the 

transition. Among those methods, the linear stability analysis is the most commonly used 

due to its simplicity. However, when the non-linear terms become strong in the system as 

the later stages of the flow transition are reached, the drawbacks of LSA studies will be 

emerged. For a single layer RB system, the critical Rayleigh number (𝑅𝑅𝑔𝑔𝑐𝑐 ) and the 

associated critical wave number (𝛼𝛼𝑐𝑐) can be defined through the linear stability analysis. 

According to Pellew and Southwell [32], the critical values for a single layer RB system 

are list in Table 5. 

Table 5 Critical parameters for a single layer Rayleigh-Bénard convection 

Boundary condition 𝑅𝑅𝑔𝑔𝑐𝑐 𝛼𝛼𝑐𝑐 𝜆𝜆𝑐𝑐 

Rigid-rigid 1707.8 3.117 2.016 

Rigid-free 1100.7 2.682 2.342 

Free-free 657.5 2.221 2.828 

When a second layer of fluid presents in the system, the complexity is drastically increased 

and influence of the second layer on the stability manifests itself so many different 
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mechanisms, like the competition between convective modes in each layer and the 

dominance of the flow in one layer over in another. The problem of multiple layer 

convection is composed of density staratification as well as stratifications of other thermal 

properties. Many systems in nature are modeled with the multiple layers of convecting 

fluids. The earth mantle is modeled as a two-layer convecting system. There are several 

stable or unstable layers of air in atmosphere. These systems exhibit complex nonlinear 

dynamics involving competing instabilities and interfacial effects. From a basic science 

perspective, the multiple layer problems are more closely related to the behaviors in real 

world.  

Instead of applying the linear instability analysis, which would only capture when the flow 

transition is onset, the direct numerical simulation is carried out to study the flow dynamics 

and heat transfer characteristics of the system. A schematic of the 2D system is shown in 

Figure 32. The 3D system can be established with a third dimension added into the space.  

 

Figure 32 System schematic for two layer 2D Rayleigh Bénard convection system. 
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4.4.1 Critical Rayleigh number and wave number 

As shown in Figure 32, the system is stratified by the two fluids with different physical 

properties, e.g. density, viscosity and thermal diffusivity. A constant vertical temperature 

gradient is applied to the system and our analysis is limited to the case 𝛥𝛥𝜕𝜕 > 0. Like single 

layer system, the dominant heat transfer mechanism in the system with two immiscible 

fluid layers will change from the conduction to convection when the Rayleigh number is 

beyond the critical value. Although with a large number of theoretical studies and 

experiments on multiple layer convection [12,33–37], the critical Rayleigh number is not 

clearly defined as the single layer system for each layer. For the system in Figure 32, the 

interface between layers plays as a similar stress-free boundary in the single layer system. 

Therefore, a double layer convecting Rayleigh-Bénard system can be crudely treated as of 

two single layer systems with rigid-free boundary stitched together by the interface. For 

our numerical experiments, we can reference the critical Rayleigh number for the single 

layer system and setup the simulations beyond the critical value to observe the instabilities. 

Another fundamental feature of Rayleigh-Bénard convection is the critical wave number 

𝛼𝛼𝑐𝑐, associated with the critical Rayleigh number. Experimental studies on wave number 

measurement is done by Luijkx and shows a decreased convective roll number with the 

increased temperature for the same aspect ratio [38]. The wave number selection for 

Rayleigh-Bénard convection in various aspect ratio is studied numerically [39,40]. Again, 

all these studies are performed with a single convecting layer setup. As stated above, we 

can reference the data for the single layer system by assuming the system being composed 

by two single convecting layers. The critical Rayleigh number, wave number and wave 
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length obtained by linear stability analysis for different boundary conditions are listed in 

Table 5. 

4.4.2 Air-Water double layer system 

Historically, the free boundary in the Rayleigh-Bénard convection experiments is 

approximated by a thin air layer. However, air is has poor thermal conductivity, which 

made the theoretical boundary condition unrealistic. Our numerical experiments are 

inspired by this mismatch between the theoretical studies and real world experiments. 

Instead of eliminating the air layer, we extend the thickness of air and adjust the 

temperature difference imposed on the system. By manipulating the boundary conditions, 

the thin poorly conductive air layer is replaced by the convecting air layer. The bottom 

layer is filled with liquid water with the same height as air. The parameters used in the 

simulation is list in Table 6. 

Table 6  Material properties fro air-water system. 

Fluid 𝜌𝜌(𝑘𝑘𝑔𝑔/𝑝𝑝3) 𝜇𝜇 𝑔𝑔 𝑙𝑙(𝑝𝑝) 𝑅𝑅𝑔𝑔 𝐿𝐿(𝑝𝑝) 

1 1.225 1.789e-5 
9.8 

0.01 2205 
0.06 

2 998.2 1.002e-3 0.01 290877 

The whole domain is initialized by 293 K. The top non-slip boundary is constantly cooled 

at 293 K and bottom non-slip boundary is constantly heated at 313 K, with two isolated 

lateral walls. A sequence of contours for isotherm, u-velocity, v-velocity and streamline 

plots are depicted in Figure 33, Figure 34, Figure 35 and Figure 36. The isotherms in the 

first column of Figure 33 show the interface temperature is maintained at 293 K and the 

Rayleigh number for the water is kept at 290877. The warmer water fluid starts to rise from 
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the bottom boundary and forms the classic plume structures. Multiple small convection 

cells are observed in the water layer and the magnitude of velocity increases in time.. The 

interface temperature starts to increase when the first batch of plume structures reach the 

upper bound of water. The plume heads are spread laterally along the interface, which heat 

the contact area evenly. With more plume structures being generated, the rising warmer 

plumes merge with the falling cooler fluid and the movements of merged plumes quickly 

brings up the layer temperature. The smaller Bénard cells are being compressed and 

converted to larger cells together with the neighbor cells. The contours for u and v velocity 

components become much chaotic, following the merging process of the plumes structures. 

Although the Rayleigh number starts decreasing with the heated interface, it is still over 

the critical value and visible thin plume structures are captured. The Bénard cells are 

getting more regular following more orderly flow structures are observed. The cells are 

thought to be separated by path of rising warmer fluid and merged following the thermal 

diffusion effect. 

In the air layer, the flow movement is balanced out by the diffusion term before the 

interface gets heated. The u and v velocity components show the flow is almost quiescent 

at early times. Contrary to the water layer, the Rayleigh number increases after the interface 

getting heated by the warmer water flow from below. Gradually, the buoyancy driven flow 

in the air layer overcomes the thermal diffusion effect when the temperature gradient is 

sufficiently large, and the temperature distribution is perturbed. Large and thick air plume 

structures emerge right above the interface. Comparing to flow characteristics in the water 

layer, the Rayleigh number for the air layer is significantly smaller and exhibit a more 

stable pattern of Benard convection cells. Similarly, the contours for u and v velocity 
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components clearly reflect the movement of air plumes and fluid motions within the Bénard 

cells. At later instances, the evolution of the cells settles down, as shown in Figure 36. 

Although the size of the cell in the water layer changes, the number of cells in each layer 

converges. With the same aspect ratio for each layer, this is expected to have a matching 

in the number of cells. The wave number is calculated 

𝛼𝛼 =
𝜋𝜋
𝐿𝐿
𝑁𝑁𝑙𝑙 

where N is number of cells, d and L are the depth and width of each fluid layer. Here we 

have the wave number 3.14 for each layer at t = 300 s.  
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(c) 

Figure 33 Isotherms for air-water system at various time. (a) t = 12, 13, 16, 17, 18 second; (b) t 
= 19, 20, 22, 45, 50 second; t = 75, 110, 130, 220, 300 second. 
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(c) 

Figure 34 x-component of velocity contour for air-water system at various time. (a) t = 12, 13, 
16, 17, 18 second; (b) t = 19, 20, 22, 45, 50 second; t = 75, 110, 130, 220, 300 second. 
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(b) 
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(c) 

Figure 35 y-component of velocity contour for air-water system at various time. (a) t = 12, 13, 
16, 17, 18 second; (b) t = 19, 20, 22, 45, 50 second; t = 75, 110, 130, 220, 300 second. 
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(b) 
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(c) 

Figure 36 Streamlines for air-water system at various time. (a) t = 12, 13, 16, 17, 18 second; (b) t 
= 19, 20, 22, 45, 50 second; t = 75, 110, 130, 220, 300 second. 
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4.4.3 Oil-Water system 

When air is replaced by a much denser fluid, like oil, the density ratio is significantly 

reduced. The potential for the numerical instability is alleviated. The flow dynamics are 

predicted by the numerical simulation with the parameters listed in Table 7. 

Table 7 Material properties fro oil-water system. 

Fluid 𝜌𝜌(𝑘𝑘𝑔𝑔/𝑝𝑝3) 𝜇𝜇 𝑔𝑔 𝑙𝑙(𝑝𝑝) 𝑅𝑅𝑔𝑔 𝐿𝐿(𝑝𝑝) 

1 800 0.2 
9.8 

0.01 4190 
0.06 

2 998.2 1.002e-3 0.01 290877 

The fluid domain is configured the same as the air-water system with the same dimensions, 

and the same boundary conditions are imposed. Compared to the light air layer, the denser 

oil layer applies larger level of hydrostatic pressure onto the water layer. Again, we start 

our evaluations about this numerical experiment from the bottom part, the water layer. The 

isotherm contours shown in Figure 37 indicate that the creation of the water plumes is 

delayed by about 7 seconds. Also, different dynamics of the plume structure are observed. 

When a plume is formed in the air-water system, it raised quickly up toward the interface 

and mixes with plumes arrived earlier. However, each single plume structure predicted in 

the oil-water system is much larger and wider. With the Boussinesq approximation, the 

density within the boundary of the plume is smaller than the surrounding fluids, due to its 

higher temperature. The motion of the plume can be treated as a gas bubble rising a heavy 

fluid. The larger the plume structure, the larger the curvature will be. With a larger 

curvature, the structure is more easily to be bent and flatten by the diffusion term. As 

observed in the isotherms, the plumes merge quickly and form new structures spreading 
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and as a result the surrounding fluid is  heated more efficiently. From the view of the 

molecular dynamics, with the presence of an external pressure on the fluids, the molecules 

are bonded more closely, and the path for energy exchange is shortened.  

The oil layer in this setup has a much higher thermal conductivity than the air used in the 

previous study. When the interface gets heated, the thermal energy is transferred across the 

interface more efficiently. With the increased interface temperature, the Rayleigh number 

for the oil increases and its competition against the thermal diffusion effect is gradually 

reflected by the perturbed temperature distribution in this layer. Although the calculated 

Rayleigh number for the oil layer almost doubles the value in the air layer, the thermal 

conductivity for oil is 5 times higher than air. By comparing the isotherms between Figure 

33 and Figure 37, it is easily seen that the buoyancy effect is struggling to overcome the 

viscous effects for fluid motion to onset, and thermal diffusion distributes the thermal 

energy evenly in the oil layer.  

By inspecting  streamlines shown in Figure 38, the overall dynamics in the Bénard cells 

for the oil-water system do not differ too much from the air-water system. Initially smaller 

cells are formed in the water layer and being pushed back and forth in the horizontal 

direction. Later, the cells group into a larger regular ones as the Rayleigh number gradually 

decreases. On the contrary, the larger cells in the oil layer indicate the redistribution of the 

flow by the thermal diffusion effect. However, with the increase of temperature at the 

interface, the larger cells are split into smaller ones, due to the increase influence of 

buoyancy effect. The wave number for each layer is calculated, 2.62 for the oil layer and 

3.14 for the water layer. 
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(c) 

Figure 37 Isotherms for oil-water system at various time. (a) t = 20, 25, 30, 35 second; (b) t = 50, 
60, 100, 150 second; (c) t = 200, 250, 300, 380 second. 
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(c) 

Figure 38 Streamlines for oil-water system at various time. (a) t = 20, 25, 30, 35 second; (b) t = 
50, 60, 100, 150 second; (c) t = 200, 250, 300, 380 second. 
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4.4.4 Liquid metal (Gallium) and air 

The advancement in manufacturing precision allows more transistors to be put into the 

chips. However, with dramatically increased energy density in the small packages the 

removal of dissipated heat becomes a challenge. The heat transfer problems in electronic 

devices are becoming so severe that they may slow, or even limit, the development of the 

entire chip and system design. Several investigators have developed methods to reduce 

heat generation in the dies. One of the approach is to quickly dissipate the heat and bring 

the package to a low temperature while it is in operation. Various high performance thermal 

compounds have been developed to transfer the dissipated heat from CPU/GPU to the heat 

sink. Among the choices, liquid metals, like Gallium, received tremendous interests in 

recent years. Figure 39 shows the solid gallium and the crystallization of gallium from 

melt. Thin layer of solid Gallium is applied onto the top of the component. Above 303 K, 

Gallium is melted and a gap is left between the liquid metal and heatsink. A double layer 

Rayleigh-Bénard convection system is formed when the gap is filled by air. Here we study 

a 2D system with slightly larger dimensions and the parameters used for the 2D two phase 

liquid metal-air Rayleigh-Bénard system are listed in  

Table 8. The density, thermal conductivity and viscosity data for Gallium at liquid state is 

given in Refs [41–43]. 
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Table 8 Material properties fro air-gallium system. 

Fluid 𝜌𝜌(𝑘𝑘𝑔𝑔/𝑝𝑝3) 𝜇𝜇 𝑔𝑔 𝑙𝑙(𝑝𝑝) 𝑅𝑅𝑔𝑔 𝐿𝐿(𝑝𝑝) 

1 1.225 1.789e-5 
9.8 

0.01 2205 
0.06 

2 6095 1.369e-3 0.01 8165 

 

 

Figure 39 Metal Gallium. (a) Brittle solid gallium; (b) Crystallization of gallium from melt. 

The whole domain is initialized with constant temperature at 313 K, above the melting 

point of Gallium. The bottom plate is kept at 333 K and the top plate is at 313K. Figure 40 

shows contours of temperature, x-component of the velocity, and y-component of the 

velocity at t = 4, 5, 8, 12, 15, 18 seconds. For the bottom layer, fluid temperature rises 

evenly in the lateral direction. Initially, the Rayleigh number is 8165 for the liquid gallium. 

The heat is transferred at a higher rate in the gallium transfers large brings up the interface 

temperature within a short period of time. Rapid increase of interface temperature quickly 
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reduces the Rayleigh number below the critical value for the bottom layer. Hence, only 

conduction is observed in this layer. The x- and y-component of the velocity illustrate that 

the flow structure in the Benard cells is smeared out by the thermal diffusion effects. 

Contrary to what is found in the bottom layer, at t = 5, the Rayleigh number increases to 

1654 for the air layer. Clear ascending and descending flows are found from contours of y-

component of the velocity, which is generated by the Boussinesq term. And the x-

component of the velocity exemplifies the effect of the thermal diffusion. With the 

decomposed velocity, the driven mechanism of this flow pattern and the competition 

between the thermal diffusion and buoyancy induced convection are well explained. With 

the simulation going forward, for the air layer, the Rayleigh number continues to increase 

and the system starts to get disturbed by large bulk of fluids with higher temperature. The 

streamline plot in Figure 41 shows the evolution the convection cells. Large cells are 

formed at earlier time step and break into smaller ones with the increase of Rayleigh 

number. Away from the lateral walls, the cells are more orthogonal and wall effect is 

depicted by the compressed cells besides the walls.  
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(e) 
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(f) 

Figure 40 Contours of Gallium-Air system for u, T and v at various instances. (a) t = 4 s; (b) t = 
5 s; (c) t = 8 s; t = 12 s; t = 15 s; t = 18 s. 
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Figure 41 Streamlines of Gallium-Air system at various instances. (a) t = 4 s; (b) t = 5 s; (c) t = 8 
s; t = 12 s; t = 15 s; t = 18 s. 
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Temperature at the interface increases with time. In the meantime, the Rayleigh number 

also changes accordingly for each layer of fluids. In the previous discussion, we can treat 

this binary system as two separate Rayleigh-Bénard convection layer with rigid-free 

boundary and being stitched by the immiscible interface. The linear stability analysis for 

the single layer rigid free system indicates that the system will break the equilibrium above 

the critical value. Here we calculated the Rayleigh number and wave number at various 

time units for each case and plotted the data on the stability diagram obtained by linear 

stability analysis for rigid-free boundary condition. 

 

Figure 42 Stability diagram for the rigid-free Rayleigh-Bénard convection. 
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4.5 Three-dimensional result 

Results of two-dimensional simulations presented in the previous section clearly show the 

capability of our level set method algorithm to characterize flow structures of multiphase 

fluids. With the results presented and analyses conducted, the mechanism responsible for 

flow phenomena are well explained. Results presented in the last section for the Rayleigh-

Bénard convections illustrate that the presence of lateral walls strongly influence the 

dynamics in these systems. It will be even more interesting to consider three dimensional 

domain that has rigid side walls. The wall effects on the Rayleigh-Bénard problem in three-

dimensional geometries will be reflected by the changes in flow structures and dynamics. 

In theory, the extension into a 3rd direction is easy and intuitive. However, the cost on the 

computational work is expanded exponentially, which directly lengthens the simulations 

significantly. The 3D schematic of the system is shown in Figure 43.  

 

Figure 43 Schematic for two-layer 3D Rayleigh Bénard convection in a three dimensional 

geometry. 
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Recall the setups in the 2D air-water system, the prescribed thickness gives the Rayleigh 

number for the water layer up to 29087, whose magnitude is relatively large compared to 

the air layer. For the first set of simulations in a three dimensional geometry, the depth of 

the water layer is set to a value such that the Rayleigh number is 4393 which is comparable 

with Rayleigh number of the air layer. The parameters used in these simulations are listed 

in Table 9.  

Table 9 Material properties fro 3D air-water system. 

Fluid 𝜌𝜌(𝑘𝑘𝑔𝑔/𝑝𝑝3) 𝜇𝜇 𝑔𝑔 𝑙𝑙(𝑝𝑝) h 𝐿𝐿(𝑝𝑝) 𝑅𝑅𝑔𝑔 

1 1.225 1.789e-5 
9.8 

0.01 0.0125 
0.06 

2205 

2 998.2 0.001003 0.0025 0.0125 4393 

The 3D domain is initialized with constant temperature 303 K. The top and the bottom 

boundaries are set to constant temperature, 323 K and 303 K, respectively. Other walls of 

the domain are insulated. With the extension into the third dimensional space, the 

characteristics of the flow are no longer planar. Figure 44 and Figure 45 depict the 

isosurfaces temperature field. The center cross section of XY plane is rendered by the 

isotherms. Although isotherms illustrate the general trend of the temperature distribution, 

some 3D plume structures are not projected on the 2D contour. The four temperature 

isosurfaces, at T = 312 K, 315K, 318K and 321K, represent the formation of the 3D plume 

structures very well. At t = 11 s, a group of swells are found in the near wall region. The 

temperature field starts to get perturbed by the buoyancy effect. Away from the wall in x-

direction, light ripples also show up on the same isosurface, T = 312 K. As time progresses, 

these structures continue to expand in every direction. When the rippled surface reach the 

adiabatic wall in z-direction, it is being flattened. At t = 18 s, non-uniform 3D plume 
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structures are clearly observed. The isotherms at the center cross section can only capture 

those long-stripped plume structures. If the plume is more circular and resides away from 

the center plane, it will not be found in the 2D isotherm contour. Different behaviors are 

shown in the plume development. The long-stripped ones are more self-constrained and 

grow simultaneously in height, length and width. The scattered circular plumes quickly 

group and merge together, and they exhibit more irregular structures compared to those of 

the long-stripped ones. At later instances, it is shown that the newly merged structures align 

in a skewed direction to the axis (see Figure 45).  

The Bénard convection cells also show the non-uniformity of the flow. If the dimension in 

the z-direction is infinitely long, the streamlines should follow the 2D pattern and 

superpose layer by layer. For our system, the finite distance between the walls in z-

direction severely distorts the streamlines. From Figure 46, the streamlines are tilted 

following the direction of the skewed plume structures. When approaching to the walls, 

the streams are rectified and become parallel to the wall. For the air layer, the planar 

dimensions and Rayleigh number (2205) are the same with the setup in 2D studies. Hence, 

it is presumably to observe the similar characteristics in the Bénard cells. Figure 46 depicts 

six rolls of convection cells similar as in the two dimensional Rayleigh Bénard problem of 

the fluid system. This implies that the side walls would only affect the orientation of the 

cells for limited wave number. The streamline distribution in the water layer is more 

chaotic. Twenty four rolls of small Bénard cells are observed at a stable state and the 

number of rolls in the layers is proportional to the depth ratio of the geometry.  
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Figure 44 Temperature isosurfaces for 3D air-water system at t = 11, 12, 13, 14, 15, 16, 17, 18 
second. 
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Figure 45 Temperature isosurfaces for 3D air-water system at t =19, 20, 22, 23, 24, 30, 33, 37 
second. 
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Figure 46 3D streamlines for air-water system at t = 37 second. 
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Results in a three dimensional geometry illustrates that the narrow wall in the z-direction 

has strong influence on the convection cells. The streamlines are much tilted and non-

uniform plume structures are observed. It is interesting to see the influence from the two 

sets of lateral walls when they are equally spaced. The physical and geometric parameters 

for the equally spaced 3D lateral walls are listed in Table 10. 

Table 10 Material properties fro air-water system with equal spaced lateral walls 

Fluid 𝜌𝜌(𝑘𝑘𝑔𝑔/𝑝𝑝3) 𝜇𝜇 𝑔𝑔 𝑙𝑙(𝑝𝑝) h 𝐿𝐿(𝑝𝑝) 𝑅𝑅𝑔𝑔 

1 1.225 1.789e-5 
9.8 

0.01 0.06 
0.06 

2205 

2 998.2 0.001003 0.01 0.06 290877 

The same boundary conditions as in the previous geometry are applied. The isosurfaces 

shown in Figure 47 exhibits a more uniform formation of the plume structures at early 

times. As the simulation progresses, small perturbations quickly lead to a non- uniformity 

in the water layer. The wall effects from the equal spaced lateral boundaries compete to 

align and guide the flow in its own direction. Here, the wall effects acting on the flow 

should be equal and we find that the plume structures align in the diagonal direction, as 

shown in Figure 48. The diagonal alignment of Bénard cells is revealed by instantaneous 

streamlines depicted in Figure 49. Although the cells are aligned differently, the number 

of Bénard cells remain the same at the same Rayleigh number. The number of cells was 

six in each direction within the air-layer. 
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Figure 47 Temperature isosurfaces for 3D air-water system at t = 15, 16, 18, 27, 32, 36 second. 
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Figure 48 Temperature isosurfaces for 3D air-water system at t = 83 second. 

 

Figure 49 3D instantaneous streamlines for air-water system at t = 83 second 
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Chapter 5 

Conclusion 

 
 
We introduced the 5th order WENO Level Set Direct Numerical Simulation solver in this 

work to accurately predict the flow behavior of multiple incompressible fluids. The 

tracking of the interface is accomplished without to find the front explicitly. The numerical 

diffusion is controlled within a finite constant thickness Ο(ℎ). The smoothness of the level 

set function is guaranteed by reinitialization throughout the solving process. This algorithm 

is coded with staggered spatial discretization, which reduced the odd-even decoupling 

problem in traditional collocated method. 4th order Runge-Kutta method is also used to 

help stabilize the time stepping process. The implicit interface tracking technique handles 

the merging and breaking-up easily and no added method is required to make this happen. 

The surface tension is incorporated as a source term by using the CSF model and can be 

easy to compute. The validation of this method is carried out by comparing the result 

obtained from ANSYS Fluent in simulating a rising gas bubble. And good agreements are 

found between our method and Fluent quantitively and qualitatively. The movement and 

mechanism for 2D bubbles, drops and multiple bubble-merging are studied by using the 

method presented in this work. The method is further extended to simulate a binary 

Rayleigh-Bénard convecting system by coupling the energy equation. Multiple numerical 
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experiments are carried out in two and three-dimensional geometries. The classic plume 

structures are captured in two-dimensional and three dimensional geometries. The 

dynamics and flow behavior of the binary Rayleigh-Bénard convecting system are 

discussed. The 2D results are also compared with linear stability analysis and shows the 

system would go unstable for any wave number as along as the Rayleigh number exceeded 

the critical value. The competition between the buoyancy and thermal diffusion effects is 

clearly depicted by the 2D results. The 2D Bénard cells are skewed and compressed when 

the cells approach the lateral walls. With the geometry expanded into the third direction, 

the plume structure started with a thin neck and expanded spanwisely in all directions at a 

later time. The raised 3D plume structures quickly entangled and merged together under 

the effect of thermal diffusion. The presence of orthogonal lateral walls in three 

dimensional geometry shows the rivalry of the wall effects from the diagonal aligned cells. 

5.1 Future work 

Numerical study on Marangoni Bénard convection under microgravity 

The surface tension effect was not included in simulating the binary Rayleigh-Bénard 

convecting system. Under normal gravity, the magnitude of Marangoni force is negligible. 

However, the surface tension force may severely affect the interface or even dominate the 

flow with reduced gravitational forces under the micro gravity environment. Couple of 

recent experiments performed under the micro gravity environment show many interesting 

flow behavior. An experiment on a wickless heat pipe operated under the microgravity 

shows a fluid sustained by high Marangoni stress will condense rather than vaporize along  

the surface at 160 K which is about the boiling point [44]. Although many experiments 
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have been performed and observed some unusual transport phenomenon, little numerical 

works are out there for the binary system or a multi-component system with more than two 

phases or components. One likely reason for not many numerical studies exist may be due 

to the complication of the interfacial characteristics. For the two layer Rayleigh-Bénard 

system, the interface is widely spanned initially. A small disturbance on the interface will 

lead to steep changes in curvature, which could cause serious numerical instabilities. A 

finer mesh may be utilized to alleviate the problem. However, the characteristics of 

multiphase Rayleigh-Bénard or Marangoni-Bénard convection indicates the chaotic 

dynamics are distributed across the whole domain and a global refinement of mesh might 

be necessary. The current SOR Poisson solver works fine with the present mesh resolution. 

However, the convergence will be slowed exponentially with the mesh elements increase 

in 3D. It is imperative to adapt a more efficient Poisson solver, like parallel SOR[45], which 

utilize a black/red ordering method to avoid the self-recursion, or flexible preconditioned 

conjugate gradients method [46–48]. The level set method may couple with the VOF 

method to reduce the bandwidth on the mass conservation [49,50]. It is expected that a 

method would be more accurate if more information were obtained from the simulation 

with a reasonable numerical stability and acceptable computational cost. 
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