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Abstract 

Hollow fiber (HFM) and spiral wound membrane modules are among the most 

common separation devices employed in reverse osmosis gas separation and desalination 

applications. Three-dimensional steady state computational fluid dynamics (CFD) 

simulations are carried out to study flow past hollow fiber membrane banks (HFMB). This 

work focuses on enhancing the membrane performance by improving the momentum 

mixing in the feed channel by placing hollow fiber membranes in different arrangements 

and spacings. The current study investigates the effects of flow behavior on membrane 

performance during binary mixture separations. Carbon dioxide (CO2) removal from 

methane (CH4) is examined in the staggered and inline arrangement of HFMs. The most 

common HFM module arrangement in industrial applications is the axial flow 

configuration. However, this work focuses on the radial crossflow configuration. 

Membrane surface is treated as a functional boundary where the suction rate and 

concentration of each species are coupled and are functions of the local partial pressures, 

the permeability, and the selectivity of the membrane. The CFD simulations employed the 

turbulent k-𝜔 Shear Stress Transport (k-𝜔 SST) model to study membrane performance for 

a wide range of the Reynolds number. The efficiency of the inline and staggered 

arrangements in the separation module is evaluated by the coefficient of performance and 

the rate of mass flow per unit area of CO2 passing across the membrane surface. This work 

demonstrates that the module with staggered arrangements outperforms the module with 

inline arrangements. 

This study also considers a three-dimensional hybrid separation module consisting 

of two parallel spiral wound membranes bounding the feed channel that contains hollow 
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fiber membranes with various arrangements. The results of numerical simulations indicate 

that the hybrid membrane system with a net hollow fiber membrane provides profoundly 

improved membrane flux performances for both spiral wound membranes and HFMs. The 

removal of CO2 from CH4 is enhanced by the presence of net hollow fiber membranes in 

the feed channel. 

This work also numerically characterizes flux performance of the membrane, 

concentration polarization, and potential fouling sites in the reverse osmosis desalination 

module, which contains hollow fiber membranes arranged in an inline and a staggered 

configuration. An accurate membrane flux model, the solution-diffusion model, is 

employed. Hollow fiber membrane surface is treated as a functional boundary where the 

rate of water permeation is coupled with local concentration along the membrane surface. 

The rate of water permeation increases and concentration polarization decreases as the feed 

flow rate is increased. Hollow fiber membranes in the staggered geometry perform better 

than those in the inline geometry. 

It is proven by the present study that gas separation and desalination modules 

containing hollow fiber membranes should be designed and optimized by careful 

consideration of their configurations.  
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Chapter 1: INTRODUCTION 

In the last decade, the demand for energy has significantly increased and 

dramatically escalated the world’s fuel consumption, which inevitably raises the total cost 

of energy production. Natural gas is a hydrocarbon gas mixture widely used as an energy 

source for electricity generation. Separation membranes are crucial in the purification and 

processing of natural gas by facilitating removal of impurities such as water, ethane, 

propane, butanes, pentanes, and other gasses that prevent crude natural gas from meeting 

market specifications. Additionally, many of the deleterious gas impurities present in crude 

natural gas cause pipe corrosion and ultimately infrastructure failure [1]. In order to 

economize the purification and handling of natural gas, separation membrane efficiency 

and performance must be improved. Selection of membrane configuration and the resultant 

flow structures are essential for optimizing species separation and system reliability. Three 

membrane arrangements may be examined: countercurrent flow, concurrent flow, and 

radial crossflow [2]. The most common HFM module arrangement is the axial flow 

configuration, in which the flow and the axial direction of the HFM banks are parallel. The 

performance characteristics of the axial flow modules have been studied by our research 

group. However, this work focuses on the radial crossflow configuration, in which the flow 

is normal to the HFM axial direction, and investigates the effectiveness of this arrangement 

on the membrane performance. 

 Spiral wound membrane modules are considered one of the most common 

commercially available membrane modules used in desalination and gas separation 

processes. Several researchers considered flow past impermeable membrane surfaces in 

differing arrangements in spiral wound membrane modules for desalination processes. 
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Saeed et al. [3] studied three-dimensional laminar flows in a narrow channel with ladder 

spacers . In that study, the shear stress and the mass transfer coefficient were determined 

for various filament spacing. Mojab et al. [4] combined numerical and experimental 

techniques to examine unsteady laminar and turbulent flows in a spacer-filled channel. This 

work utilized CFD simulations, and identified four distinct flow regimes in a spacer-filled 

channel for values of Reynolds number between 100 and 1000. Karode and Kumar [5] 

studied steady three-dimensional laminar flow in a rectangular channel containing 

cylindrical spacers. In that work, bounding surfaces were considered impermeable, and the 

effectiveness of the spacers was determined in terms of the pressure drop through the 

channel and the average shear exerted on the top and bottom membranes. Koutsou et al. 

[6] introduced a novel approach for minimizing the contact area between novel 3D net-

type structure spacers and the membrane surface. The aim of that work was to promote a 

high mass transfer rate along the membrane surface and mitigate concentration polarization 

on the membrane surface. Shakaib et al. [7] conducted three-dimensional flow simulations 

for desalination processes and proved that membrane performance is affected by 

momentum mixing. The authors showed that there is a significant influence of spacer 

geometry on wall shear stress rates and mass transfer coefficients.  

Other investigators considered membrane surfaces to be permeable in desalination 

processes. Subramani et al. [8] used a finite element model of crossflow membrane 

filtration systems to study momentum and mass transport. Pressure losses, fluid flow 

structures, and concentration polarization phenomena were simulated in open and spacer-

filled channels in two dimensions. Kaya et al. [9] utilized a CFD 𝑘 − 𝜀 turbulence model 

to investigate the effects of shear stress distribution and pressure loss on various HFM 
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modules. Anqi et al. [10–12] studied the effect of the flow characteristics on membrane 

efficiency, concentration polarization, and possible fouling along the membranes in 

desalination processes. They studied two- and three- dimensional steady flows in a channel 

containing circular spacers in various configurations, and the pressure, concentration, and 

velocity fields were modeled using k-ω SST turbulence model. Recently, Usta et al. [13] 

studied desalination process in a module containing corrugated membranes and 

demonstrated that corrugated membranes improve membrane flux performance, and help 

mitigating the concentration polarization and the membrane fouling. 

Several investigators, including present author, [10,12,14–18] have studied velocity 

and concentration field in the feed channel to characterize membrane performance in spiral 

wound membrane modules. Shakaib et al.  [16] conducted three-dimensional flow 

simulations in a feed channel that contains spacers. They reported that the membrane 

performance is influenced by momentum mixing in the feed channel bounded by the 

impermeable walls. Geraldes et al. [17] have numerically studied velocity and 

concentration field in a feed channel of a reverse osmosis (RO) desalination module. The 

water flux through the membrane was determined by implementing pre-determined 

permeate velocity along the membrane surface. Geraldes et al. proved that the placement 

of spacers closer to the membrane surface enhances membrane performance. Ma and Song 

[18] employed a membrane flux model that couples salt concentration and water permeate 

along the membrane surface in a spiral wound membrane module. Ma and Song 

demonstrated that membrane flux performance is influenced by the arrangement of spacers. 

Experimental and numerical characterization of hollow fiber membranes has been 

documented [19–29]. Recently, Alrehili et al. [19] characterized membrane performance in 
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a gas separation module containing an array of hollow fiber membranes. Velocity and 

concentration profiles over a bank of hollow fiber membrane are calculated for various 

flow rates. Alrehili et al. [19] showed that the arrangement of the hollow fiber membranes 

in a gas separation module has profound influence on the membrane performance. 

Alkhamis et al. [20] studied the process of separating carbon dioxide from methane in a 

membrane module containing porous medium and selective membranes. Marcovecchio et 

al. [21] characterized concentration polarization in a hollow fiber membrane module for 

reverse osmosis desalination process by conducting computational fluid dynamics 

simulations. Marcovecchio et al. concluded that the performance of the desalination using 

hollow fiber membranes is strongly dependent on the concentration and pressure 

distribution in the feed channel. Ghidossi et al. [22] examined the pressure drop and 

membrane characteristics for various operating conditions in a hollow fiber membrane 

module. High performance hollow fiber membranes similar to those considered in the 

present study have been fabricated and tested in laboratories. Sukitpaneenit and Chung [23] 

fabricated high performance thin-film composite forward osmosis hollow fiber 

membranes. They reported that the water flux increases with an increase in draw solution 

concentration since a larger effective osmotic pressure difference provides a greater driving 

force. Chou et al. [24] designed and fabricated pressure retarded osmosis hollow fiber 

membrane. Chou and his co-workers have built thin-film composite hollow fiber 

membrane with high permeability and high rejection rate. 

Experimental and computational studies were conducted for modules containing a bank 

of hollow fiber membranes for humidification and dehumidification processes 

[25,26,29,30]. Huang and his co-workers [25,26] reported that the membrane performance 
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is improved by the proposed elliptical hollow fiber membrane. Zhang et al. [29] conducted 

experiments to study heat and mass transfer in a module containing a bundle of hollow 

fiber membranes with different arrangements. They concluded that the flow inside the 

hollow fiber bank is turbulent and that heat and mass transfer performance of module 

containing hollow fibers in a staggered arrangement is better than that containing inline 

arrangements of fibers. An experimental study by Huang et al. [28] revealed that the 

staggered configurations with high packing fraction perform better heat and mass transfer. 

Teoh et al. [30] have conducted experimental study to investigate the effect of various 

hollow fiber membrane geometries on the performance of the distillation process. Teoh et 

al. documented that the module with twisted and braided hollow fibers design provides 

permeate flux that is 35% greater compared to other designs considered. 

Recently, Alkhamis et al. [14,31] considered membrane surfaces to be permeable 

in gas separation processes. These investigators introduced a new model to determine the 

membrane flux conditions for a binary mixture of CO2 and CH4 that captured the mass 

transports through the membrane. Baseline Reynolds stress (k-ω BSL) and large eddy 

simulation (LES) turbulence models were used to simulate the flow for 𝑅𝑒 ≤ 1000. The 

membrane wall was treated as functional surface, and the mass fluxes of species were 

calculated based on local partial pressure, selectivity, and membrane permeability. The 

results revealed that membrane performance improved due to momentum mixing induced 

by the presence of spacers in the feed channel. 

Hollow fiber membrane modules are among the most common commercially 

available membrane modules utilized in desalination and gas separation applications. 

Several researchers considered flow past permeable membrane surfaces in differing 
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arrangements in hollow fiber membrane modules for gas separation processes [2,14,19,32]. 

Katoh et al. [32] developed a new simulation model to predict the dynamic performance of 

HFM modules for gas separation processes using the relaxation method. The relaxation 

method is a technique used to solve the governing equations for transport across the 

membrane, mass balance, and pressure distributions in an HFM module. They examined 

flow patterns by changing various operating conditions and showed fluid mixing in the 

feed channel increased the performance more than mixing on the permeate side of the 

membrane. Alkhamis et al [20] employed Baseline Reynolds Stress (BSL Reynolds Stress) 

turbulence model and the Brinkman–Forchheimer equations to investigate spatial structure 

of the flow inside the lumen and the porous layer. The results showed that the hollow fiber 

membrane performance is improved due to the influence of the momentum mixing induced 

by the presence of orifices. Thundyil et al. [2] came up with a mathematical model of gas 

separation to examine which design optimizes the performance of the three flow patterns: 

radial crossflow, countercurrent, and concurrent HFM modules. That work showed that the 

radial crossflow arrangement was more effective than the concurrent and countercurrent 

arrangements due to the higher feed concentration distribution and notable thermal impacts 

influencing permeation rates.  

Recently, the current author and Anqi et al., [19,33] have studied velocity and 

concentration field in the feed channel to characterize membrane performance in hollow 

fiber membrane modules. Alrehili et al. considered steady state and transient two-

dimensional radial crossflows past HFMBs for varying arrangements.  In that work, the 

membrane surface was considered permeable and the mass flux and concentration were 

determined as a function of the local partial pressures, the permeability, and the selectivity 
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of the membrane. Anqi et al. [33] studied two-dimensional steady-state and transient flows 

in a channel containing HFMs in various configurations for desalination processes. The 

pressure, concentration, and velocity fields were modeled using the k-ω SST turbulence 

model. The results from both works elucidate that staggered geometries for HFMBs enable 

greater performance than inline geometries in gas separation and desalination processes.  

Several researchers developed a mathematical model to investigate the effects of 

concentration polarization in gas separation hollow fiber modules [34,35]. Concentration 

polarization phenomena occur when the membrane enables only CO2 molecules to pass 

through while CH4 molecules are rejected. The rejection of CH4 from membrane causes an 

accumulation of CH4 near the membrane surface. Such phenomena are referred as 

concentration polarization occurring at the surface or near the surface of the membrane. 

Mourgues and Sanchez [34] studied the influence of concentration polarization in gas 

separation processes for co- and counter-current configurations. The impacts of 

concentration polarization were analyzed based on the permeation flux, selectivity, 

pressure of operation, and feed velocity. That work demonstrated the necessity of 

considering concentration polarization effects in a binary gaseous mixture separation for 

process analysis and apparatus design. Behling et al. [35] studied the effects of 

concentration polarization in gas separation both theoretically and experimentally and also 

concluded concentration polarization effects must be considered to accurately assess 

membrane performance. The authors showed that higher flow rates in the feed channel 

decrease the concentration polarization. 

The present work considers three-dimensional HFM modules that facilitate gas 

separation to probe the effects of physically relevant three-dimensional geometries on 
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membrane performance. In this study, we investigate the spatial characteristics of radial 

crossflows around HFM modules to show that membrane performance is enhanced due to 

momentum mixing in the flow domain. CFD simulations utilizing the k-ω SST turbulence 

model for steady state three-dimensional flows are performed for a binary mixture 

containing CO2 and CH4 to characterize the velocity and concentration fields. Membrane 

performance is determined for varying Reynolds number from 200 to 1000, and for varying 

arrangements of hollow fibers as a staggered or an inline and for varying spacing of 

periodically placed hollow fibers in the feed channel.  

The present study is the first to consider a hybrid module of spiral wound and HFM 

membranes. Steady state flow simulations are conducted in a three-dimensional channel 

that is bounded by two parallel spiral wound membranes and that contains hollow fiber 

membranes. Different arrangement and spacing of HFMs in the hybrid module are 

simulated for different flow rates. The primary flow is parallel to the spiral wound 

membranes and perpendicular to the hollow fiber membrane axes. Membrane performance 

is determined for modules containing the hollow fiber array with the inline, staggered, and 

net arrangements. 

In addition, the present work examines the velocity and concentration fields to evaluate 

the membrane flux performance, concentration polarization characteristics of the 

membrane and potential fouling sites in a hollow fiber membrane desalination module for 

a wide range of flow rates. The solution-diffusion model is employed to determine the 

water permeate through membranes. The salt concentration and the permeate water flux 

along the membrane surface are coupled. 

 



11 
 

Chapter 2: GOVERNING EQUATION 

Steady-state three-dimensional simulations for HFMBs comprised of circular cross-

sectioned HFMs are conducted for the Reynolds number (𝑅𝑒)  ≤ 1000 for both inline 

and staggered geometries. The binary mixture of CH4 and CO2 is considered to be 

isothermal and incompressible. The fluid is assumed to have constant physical properties 

such as, density, 𝜌, dynamic viscosity, 𝜇, and the mass diffusion coefficient, 𝐷. The velocity 

and concentration fields in the flow domain are given by the conservation of mass, 

conservation of momentum, and mass transport equations of any species “𝑎”, respectively: 

𝜕𝑢𝑗

𝜕𝑥𝑗
= 0                                                                                                                                                                                  (1) 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

1

𝜌

𝜕

𝜕𝑥𝑗
(𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
)                                                                                           (2)                                                                                                               

𝜕𝑁𝑎

𝜕𝑡
+ 𝑢𝑗

𝜕𝑁𝑎

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝐷

𝜕𝑁𝑎

𝜕𝑥𝑗
)                                                                        (3) 

 The subscript 𝑖 = 1, 2, and 3, and 𝑢1, 𝑢2 and 𝑢3 are the stream-wise, span-wise, and 

cross-flow components of velocity, respectively. 𝑥1, 𝑥2, and 𝑥3 are the spatial coordinates 

in the stream-wise, span-wise and cross-flow directions, respectively. 𝑗 is the summation 

index, 𝑡 is time, 𝜈 is the kinematic viscosity (𝜈 = 𝜇/𝜌), and 𝑝 is the pressure. 𝐶 = 𝐶𝑎 +

𝐶𝑏 is the concentration of the binary mixture where 𝐶𝑎 and 𝐶𝑏 are the concentrations of 

species “𝑎” and “𝑏”, respectively. 𝑁𝑎 = 𝐶𝑎 𝐶⁄  is the mole fraction of any species “𝑎”. 

The Shear Stress Transport (SST) 𝑘-𝜔 turbulence model proposed by Menter [36] 

can be employed to characterize turbulent flow structures. The present author and other 

investigators [10,19,33] successfully employed the k-𝜔 Shear Stress Transport (k-𝜔 SST) 

turbulence model to characterize flows in the feed channel of a spiral wound membrane 

module containing spacers and HFMB for desalination and gas separation applications.  It 
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is well known that the SST k-𝜔 turbulence model can predict turbulent flow, capture 

turbulent flow structures near boundaries, and elucidate flow behavior for separating flows 

and flows driven by pressure gradients [23,24]. The SST 𝑘-𝜔 turbulence model is used to 

characterize the steady three-dimensional turbulent flow structures in the feed channel. The 

eddy viscosity is defined as 

𝜇𝑡 = 𝜌
𝑎1𝑘

max(𝑎1𝜔;𝛺𝐹2)
             (4) 

The turbulent SST 𝑘-𝜔 momentum transport equation may be written as: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+

1

𝜌

𝜕

𝜕𝑥𝑗
((𝜇 + 𝜇𝑡)

𝜕𝑢𝑖

𝜕𝑥𝑗
)                                                                    (5) 

The equations governing the turbulent kinetic energy, 𝑘, and the specific dissipation 

rate, 𝜔, are: 

𝜕(𝜌𝑘)

𝜕𝑡
+ 𝑢𝑗

𝜕(𝜌𝑘)

𝜕𝑥𝑗
= 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽∗𝜌𝜔𝑘 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝑘1

𝜇𝑡)
𝜕𝑘

𝜕𝑥𝑗
]                                              (6) 

𝜕(𝜌𝜔)

𝜕𝑡
+ 𝑢𝑗

𝜕(𝜌𝜔)

𝜕𝑥𝑗
=

𝛾
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𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑗
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
] + 

2𝜌(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
                               (7) 

The equation governing mass transport of species “𝑎” for turbulent flow is: 

𝜕𝑁𝑎

𝜕𝑡
+ 𝑢𝑗

𝜕𝑁𝑎

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
((𝐷 + 𝜎𝐷𝑡)

𝜕𝑁𝑎

𝜕𝑥𝑗
)                                                                                (8) 

where Ω is the magnitude of the vorticity, 𝑎1, 𝛽, 𝛽∗, 𝜎𝑘1
, 𝜎𝜔, 𝜎𝜔2

 are closure 

coefficients and  𝐹1, 𝐹2 are blending functions. Detailed description of the turbulence 

parameters is provided in Ref [36]. 𝐷𝑡 is the eddy diffusion coefficient, the turbulent 

Schmidt number, ScT, is defined as 

 𝑆𝑐𝑡 = 𝜈𝑡 𝐷𝑡⁄                   (9) 
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where ScT and  are selected to be 0.85 and 0.09, respectively 

2.1. MEMBRANE MODELING AND BOUNDARY CONDITIONS 

2.1.1. GAS SEPARATION 

Following the membrane flux model introduced by Alkhamis et al. and Alrehili et al. 

[14,19,20,31], the boundary conditions applied on the velocity and the concentration field 

along the surface of the HFMs are determined from first principles. The molar flux of the 

species “𝑎” across the membrane per unit area extracted from the inlet flow is determined 

as 

 𝐽𝑎 =
𝐴𝑎̈∆𝑝𝑎

𝑙
                 (10) 

where 𝑙 is the thickness of the HFM, 𝐴𝑎̈is the molar permeability of species “𝑎”, and the 

partial pressure difference of species “𝑎” through the HFM at a locations 1 and 2 not on 

the same side of the membrane can defined by 

 ∆𝑝𝑎 = (𝑝𝑎
(1)

− 𝑝𝑎
(2)

)               (11) 

The total molar flux, 𝐽, per unit area across the HFM can be expressed as 

 𝐽 = 𝐽𝑎 + 𝐽𝑏 = 𝐴𝑏∆𝑝𝑡𝑜𝑡[𝛼 + (1 − 𝛼)𝑁𝑏]           (12) 

Here 𝐽𝑎 and 𝐽𝑏 are the molar fluxes of species of “𝑎” and “𝑏”, respectively. ∆𝑝𝑡𝑜𝑡 = ∆𝑝𝑎 +

∆𝑝𝑏 is the total pressure difference across the HFM. The HFM selectivity is defined as 𝛼 =

𝐴𝑎̈ 𝐴𝑏̈⁄ = 𝐴𝑎 𝐴𝑏⁄ , where 𝐴𝑎 =
𝐴𝑎̈

𝑙
 and 𝐴𝑏 =

𝐴𝑏̈

𝑙
 are the permeability of species “𝑎” and “𝑏”, 

respectively. The relationship between the total pressure and the partial pressure of a 

species “𝑎”, ∆𝑝𝑎 = 𝑁𝑎∆𝑝𝑡𝑜𝑡. The suction rate is determined from local pressure and mole 

fraction. 𝑉𝑤 may be written as: 
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𝑉𝑤 = 𝐽 𝐶⁄ =
𝐴𝑏∆𝑝𝑡𝑜𝑡

𝐶
[𝛼 + (1 − 𝛼)𝑁𝑏]                                                                               (13) 

The suction rate along the HFM surfaces is a function of the selectivity of the 

membrane, the permeability of the membrane, the total pressure drop across the membrane, 

and the local mass fractions of the species. At the surface of the HFM, the no slip and 

suction boundary conditions are applied on the velocity field. The boundary conditions at 

the surface of the membrane applied on the concentration field are obtained from the 

conservation of mass for a species “𝑎,  

𝐽𝑎 = −𝐷
𝜕𝐶𝑎

𝜕𝑟
               (14) 

The mass flux through membrane surface is modeled in term of the rejection rate: 

 −𝐷
𝜕𝐶𝑎

𝜕𝑟
= 𝑅𝑉𝑤𝐶𝑎                              (15)       

The rejection rate can be expressed as the ability of membrane to separate the species 

of a binary mixture; it can be determined in term of selectivity as 

 𝑅 = 𝛼/(𝛼 + (1 − 𝛼)𝑁𝑏)             (16) 

The detailed derivation of the suction rate and the flux condition applied at the 

surface of the HFM is provided by [19,20].   

The velocity and mole fraction profiles are assumed to be uniform at the inlet, and 

constant pressure and constant gradient boundary conditions are imposed at the outlet. 

Periodic boundary conditions are imposed on the longest side faces of the computational 

domain to model an infinitely wide HFMB region.  

The module is operating at a pressure 5 𝑀𝑃𝑎. The physical properties of the fluid 

are assumed to be constant, but are adjusted to the module pressure: the density 𝜌 = 50.3 

kg/m3, the dynamic viscosity 𝜇 = 12.09−6 Pa.s, and the binary diffusion coefficient of the 

mixture is 3.57x10-7 m2/s. The Schmidt number is calculated to be 𝑆𝑐 = 𝜈/𝐷 = 0.67. The 
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permeance of the HFM is chosen as 𝐴𝐶𝑂2
= 3.06x10−8   𝑘𝑔 𝑚2 ∙ 𝑠 ∙ 𝑃𝑎⁄  and a total 

pressure difference across the membrane is chosen as ∆𝑝𝑡𝑜𝑡 = 5 𝑀𝑃𝑎. Spacing parameter 

𝑆 𝑑⁄  and the membrane selectivity also influences membrane performance. The membrane 

mass selectivity is 𝛼 = 𝐴𝐶𝐻4
𝐴𝐶𝑂2

⁄ = 0.01415 and the mole fraction of CH4 at the inlet is 

selected to be 0.7.  

2.1.2. DESALINATION 

Several membrane flux models have been developed and used by researchers to study 

separation processes in membrane modules. An extensive review of these membrane flux 

model is reported by Malaeb and Ayoub [39]. Flux models for the reverse osmosis process 

are categorized into three distinct groups: irreversible thermodynamics models, porous 

models, and homogeneous membrane models. Irreversible thermodynamics model is one 

of the early membrane transport models which defines the transport with mechanical and 

osmotic pressure gradients. This model assumes that the membrane operates near 

equilibrium [40]. Phenomenological thermodynamic relationships are used to derive 

solution and solute flux equations [41]. A key membrane transport model was introduced 

by Kedem-Karchalsky [42] based on the irreversible thermodynamics principles. They 

proposed that the flux is a function of the trans-membrane pressure gradient as a driving 

force [42]. Kargol et al. used this model and mechanistic transport equations to estimate 

RO membrane performance successfully [43]. They have demonstrated that the irreversible 

thermodynamic model proposed by Kedem-Karchalsky and the mechanistic transport 

models are mutually equivalent. Many variations of this model have been introduced by 

other investigators. Models based on the porous models assume that transport through the 

membrane pores is carried out by the contribution of both diffusion and convection. It 
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assumes that membrane contains straight cylindrical pores with the thickness of the 

membrane and a specific radius. Recently developed modified pore-flow models factoring 

in the contribution of Knudsen flow to vapor transport exhibit an accurate estimation of 

mass transport through the membrane [44]. Nonporous or homogeneous membrane models 

assume that solute and solvent transport occurs between the interstitial space of the polymer 

chains or modules, typically by diffusion [39]. This model also includes size exclusion and 

charge or dielectric exclusion principles in order to describe the solute separation [45]. 

There are several proposed approaches based on the nonporous membrane models that deal 

with electro-migration forces [46]. This includes the interaction between the rejection of 

co-ions and fixed electric charges attached to the membrane matrix. The combined model 

that takes into account solute diffusive and convective fluxes and fluxes induced by electric 

charges may provide a better estimation of the membrane flux. 

The solution-diffusion flux model employed by the present study is derived from 

irreversible thermodynamic principles. Wijmans and Baker [47] have shown that the 

solution-diffusion model can capture the rate of permeation through membrane reasonably 

well and can be used to predict the membrane performance in a reversible osmosis process. 

The present study considers the Solution-Diffusion model and treats membrane as a semi-

permeable functional surface where the water permeation rate and salt concentration are 

coupled. The boundary conditions at the membrane surface are as follows: 

The local water flux through the membrane can be written as: 

𝑣𝑤  =  𝐴[∆𝑝 − ∆𝜋]              (17) 

where 𝐴 is the water permeability through the membrane, ∆𝑝 is the transmembrane 

pressure difference, and ∆𝜋 is the osmotic pressure. 
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The salt concentration gradient at the membrane surface can be determined as: 

𝐷
𝜕𝐶

𝜕𝑦
  =  𝑣𝑤(𝐶𝑤 − 𝐶𝑝)             (18) 

where 𝐶𝑤 is the local salt concentration at the membrane surface, and 𝐶𝑝 is the salt 

concentration in the production side. It is important to note that the membrane is assumed 

to be a semipermeable surface where only water permeates. 

At the inlet, velocity and concentration profiles are assumed to be uniform. At the 

outlet, constant pressure and constant velocity gradient boundary conditions are applied. 

Symmetric boundary conditions are imposed on both velocity and the concentration fields 

at the side boundaries of the computational domain. The salt concentration at the inlet, 𝐶0, 

is selected to be 4000 ppm.  

The physical properties of the fluid are assumed to be constant: the density 𝜌 = 1000 

kg/m3, the dynamic viscosity 𝜇 = 10−3 Pa s., and the diffusion coefficient of the water-

salt solution 𝐷 = 1.5×10−9 m2/s. The Schmidt number is calculated to be 𝑆𝑐 = 𝜈/𝐷 =

667. The transverse pressure difference across the hollow fiber membranes is ∆𝑝 = 1.25 

MPa and the osmotic pressure coefficient is set to 𝜿 = 75 kPa m3/kg. The membrane 

permeability is 𝐴 = 2.3×10−11 m/(s Pa), and production side salt concentration 𝐶𝑝 = 0. 

2.1.3. DIMENSIONLESS PARAMETERS 

The performance of the HFM module is determined in terms of several dimensionless 

quantities. The local Sherwood number, 𝑆ℎ is defined as: 

𝑆ℎ =
ℎ𝑚𝑑

𝐷
                                                                                                                               (19) 

Where d is the hydraulic dimeter, D is the binary diffusion coefficient of the mixture, 

and hm is the mass transfer coefficient and can be defined as: 
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ℎ𝑚 =
−𝐷

𝜕𝑁𝑎
𝜕𝑟

(𝑁𝑚−𝑁𝑤)
                                                                                                                     (20) 

Here Nm is the bulk mole fraction of the species “a”, Nw is the mole fraction of species 

“a” at the membrane surface. 

The average friction factor across the hollow fiber bank is given by:  

𝑓𝑟 =
2𝑑

𝜌𝑈𝑖𝑛𝑙𝑒𝑡
2

𝛥𝑝𝐿

𝐿
                                                                                  (21)  

where 𝛥𝑝𝐿 is the pressure drop across the hollow fiber bank, L is the length of the 

computational domain and 𝑈𝑖𝑛𝑙𝑒𝑡 is the average inlet fluid velocity. 

 The Reynolds number is defined as: 

             𝑅𝑒 = 𝑈𝑖𝑛𝑙𝑒𝑡𝑑 𝜈⁄                                                                                                                             (22) 

In this study, for all geometries considered, only 𝑅𝑒 is varied and the rest of the 

dimensionless parameters are fixed. 
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CHAPTER 3:  THREE DIMENSIONAL FLOWS CROSS FLOW 

ARRANGEMENT - GAS SEPARATION  

3.1. GEOMETRY 

Two three-dimensional HFM module flow geometries are examined – staggered 

and inline arrangements. The corresponding HFM bank (tow or group of individual fibers) 

schematics exhibiting inline and staggered arrangements of the HFMs are illustrated in Fig. 

1a and Fig. 1b, respectively.  The rectangular cuboid illustrated in Fig. 1 represents the 

computational flow domain where the flow inlet and outlet are indicated. The HFMB is 

comprised of the individual HFMs, whose cross-sections are indicated by the circles on the 

longest face of the cuboid.  The HFMB is oriented so that the individual HFMs are oriented 

perpendicular to the flow direction thereby facilitating the crossflow regime.  The 

dimensions of the cuboid are given in terms of the HFM hydraulic diameter, d, and are 

shown in Fig. 1.  The length of the computational domain is indicated by L, and S illustrates 

the spacing between adjacent HFMs measured center-to-center. The stream-wise direction 

is measured by the x-axis, the y-axis measures the span-wise direction, and the cross flow 

direction is measured by the z-axis that coincides with the axis of the HFMs.  Lastly, both 

HFMB arrangements are comprised of nine HFM columns and four HFM rows. 
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Fig. 1.  Schematic of computational flow domain of S/d=2 for (a) inline geometry and (b) staggered 

geometry. Dimensions of the flow domain and HFMB are illustrated. 

 

Quantities in this work are made dimensionless by scaling with the appropriate 

fundamental values. HFMBs in both staggered and inline arrangements are considered for 

the values 𝑆 𝑑⁄ =2 and 𝑆 𝑑⁄ =3 with corresponding flow domain lengths of 𝐿 = 50𝑑 and 𝐿 =

58𝑑, respectively.  For both considered values of 𝑆 𝑑⁄ , the distance from the inlet to the 

center of the first HFM column as well as the breadth of the HFMB is 6𝑑.  The height, h, 

of the HFMB is 6𝑑 and 9d for 𝑆 𝑑⁄ =2 and 𝑆 𝑑⁄ =3, respectively. The distance from the 

center of the last HFM column to the outlet is 28𝑑 for both values of 𝑆 𝑑⁄ .  

3.2. MESH STUDY  

In order to assess the spectral convergence of the HFM simulations, a mesh 

optimization study is performed utilizing three mesh densities for the aforementioned 

computational flow domain: 24, 35, and 52 million (M) mesh elements. Molar fraction of 
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CH4 and normalized suction rate profiles along HFM cross-sections are plotted in Fig. 2a 

and Fig. 2b, respectively, where the profiles are obtained at the 𝑥 = 16𝑑 plane for 𝑅𝑒 =

1000 in the staggered geometry with 𝑆 𝑑⁄ = 2 for the three mesh densities. Fig. 2c 

illustrates the normalized stream-wise velocity component profiles, where velocity is 

normalized by the inlet velocity, and the profiles are obtained at the 𝑥 = 17𝑑 plane for 

𝑅𝑒 = 1000 in the staggered geometry with 𝑆/𝑑 = 2 for the three mesh densities. The 𝑥 =

16𝑑 plane corresponds to the HFMB cross-section intersecting the sixth HFM column, and 

𝑥 = 17𝑑 plane is situated in the space in between the sixth and seventh HFM column.   

Molar fraction of CH4, suction rate, and velocity profiles utilizing 35M and 52M mesh 

elements are nearly identical as shown, however the profiles obtained for simulations 

utilizing 24M mesh elements deviate slightly. Discrepancies between data obtained for 

35M and 52M mesh elements are sufficiently small that spectral convergence is achieved 

for 35M mesh elements. All results presented in the current work utilize 35M mesh 

elements for the steady SST simulations. Fig. 3 illustrates the mesh discretization near a 

HFM surface. The mesh rendering is finer for the boundary layer region in order to better 

characterize flow and concentration phenomena. The mesh discretization structure 

illustrated for the regions outside of the HFM boundary layer is employed in this study; the 

number of mesh elements for the computational flow domain totals to 35 million. 
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Fig. 2. HFM cross-section profiles at the x=16d plane for varying mesh densities in the staggered 

geometry with S/d=2 at Re=1000 for (a) molar fraction concentration and (b) suction rate. Profiles are 

calculated for the HFM located in the 6th column at the z=3d plane. (c) Normalized stream-wise velocity 

component profiles of the HFMB at the x=17d plane for varying mesh densities in the staggered 

geometry with S/d=2 at Re=1000, where velocity is normalized by the inlet velocity. 
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Fig. 3. Mesh discretization structure for any given HFM, where the mesh elements total to 35M for the 

entire domain. 

 

3.3. RESULTS 

To better understand steady state mass transport phenomena associated with the 

separation of CO2 from CH4, CFD simulations of CO2 diffusion through permeable HFMs 

are conducted. The Navier-Stokes and mass transport equations are solved to determine the 

flow and concentration fields in the three-dimensional feed channel containing HFMs 

arranged in either an inline or staggered geometry for two values of 𝑆 𝑑⁄  and 200≤Re≤1000. 

The CO2 permeation rate through the membrane varies with the local concentration. 

Fig. 4 illustrates iso-surfaces of the stream-wise velocity component at Re=1000 

and S⁄d=2 for the inline and staggered geometry, respectively. The velocity field becomes 

repeated behind each column of HFM in the stream-wise direction almost immediately 

after the flow has passed the second HFM column in both configurations.  

The inline arrangement flow structure exhibits two distinct characteristics – a jet 

flow region in the stream-wise direction occupying the open channels in between HFM 
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rows, indicated by the orange iso-surfaces, and a circulating wake flow region occupying 

any given HFM row that spans the space behind a HFM and the immediately adjacent 

downstream HFM, indicated by the blue iso-surfaces. In the inline geometry, the high-

speed jet flow region exists because the flow is free to traverse the HFMB uninterruptedly 

in the open channels created by the HFM columns, thereby enabling the full development 

of the velocity boundary layer and permitting the flow to attain moderately high speeds. 

The inline arrangement of HFMs facilitates minimal interaction between the wake and jet 

flow regions, which abets the development of isolated longitudinal “strips” that alternate 

between regions of wake flow and jet flow indicated in Fig. 4a by the blue and orange 

strips, respectively. Interestingly, Fig. 4a illustrates three-dimensional flow structures 

existing behind HFMs that unexpectedly vary in the z-direction and resemble a sort of 

“velocity bump” in the iso-surfaces.  It has not been illustrated here but is worth noting that 

the size of these structures increases with flow rate – the flow illustrated in Fig. 4a is at 

Re=1000. These three-dimensional structures enhance the performance of the separation 

module for the inline geometry, especially for high flow rates. 

The velocity field in the HFMB arranged in the staggered geometry, seen in Fig. 

4b, is more complex, and lacks the characteristically long jet flow regions in the stream-

wise direction observed previously for the inline arrangement – rather two smaller jet flow 

regions higher in velocity engulf the leading edge of the HFMs, and are referred to as the 

double jet flow region indicated in Fig. 4b by the orange and red iso-surfaces. The flow in 

the staggered arrangement is constantly impeded by subsequent HFMs, and is forced to 

accelerate significantly as it diverges around the HFM leading edges (near the locations of 

flow separation) during the downstream journey thereby creating numerous dispersed 
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regions of high and low shear near the forward and backward stagnation points, 

respectively. The staggered HFMB geometry effectively acts to scatter the fluid with each 

passing HFM column and can be thought of as a means to increase the momentum mixing 

within the fluid. The increased momentum mixing subsequently disrupts HFM boundary 

layer development as well as decreases the size of wake flow regions, which we will later 

show acts to increase separation module efficiency.  Interestingly, the regions of circulating 

wake flow decrease in size from the inline to the staggered geometry, however, the 

staggered geometry introduces a small region of recirculating back flow, indicated in Fig. 

4b by the dark blue regions that did not exist for the flow in the inline geometry. 

 

 

  

Fig. 4. Normalized stream-wise velocity component for Re= 1000 at S⁄d=2 for (a) inline geometry and 

(b) staggered geometry.  Velocity was normalized by the inlet velocity. 

 

Fig. 5 illustrates normalized vorticity component iso-surfaces for Re=1000 at S⁄d=2 

for inline and staggered geometries, where the vorticity is normalized by the HFM 

hydraulic diameter divided by the inlet velocity, d/Uinlet. All three spatial vorticity 
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components exhibit periodic behavior in the flow direction. For both the x- and y- 

components of vorticity, the vortical structures observed for the inline geometry are 

considerably larger than the vortical structures in the staggered geometry.  The flow in the 

staggered geometry is unable to develop the larger vortical structures in the HFMB because 

the flow is repeatedly forced to scatter and navigate around the obstacle-like HFMs, 

thereby inhibiting the flows ability to develop large vortical structures.  The resulting 

vortical structures for the staggered geometry are numerous, small vorticity pockets in the 

flow.  The presence of the smaller vortical structures in the staggered geometry indicates 

that momentum mixing occurs most readily in the staggered geometry – this mixing 

enhances separation module performance. Lastly, it is clear that the z-component of 

vorticity is dominating the flow structures for both inline and staggered geometries, 

illustrated in Fig. 5e and Fig. 5f. The vorticity field in both geometry clearly illustrates the 

presence of strong three dimensional effects at higher flow rates. 
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Fig. 5. Illustrations of the normalized vorticity components for Re=1000 at S⁄d=2 in the inline geometry: 

(a) 𝒙 − (c) 𝒚 − and (e) 𝒛 − component of vorticity in the staggered geometry: (b) 𝒙 − (d) 𝒚 −, and (f) 

𝒛 − component of vorticity. Vorticity is normalized by the HFM hydraulic diameter divided by the 

inlet velocity, d/Uinlet. The vorticity level -0.21 is indicated in blue, and 0.21 is indicated in red.  
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The 𝑄-criterion is employed in order to characterize the vortex structures in the 

flow field. The 𝑄-criterion is defined as 

 𝑄 =
1

2
(‖𝑆‖2 − ‖𝛺‖2)             (23) 

where 𝑆 is the strain tensor and 𝛺 is the rotation tensor. Fig. 5 and Fig. 6 indicate that the 

z-component of the normalized vorticity and the 𝑄-criterion are strongly correlated for both 

inline and staggered geometries. There is also a strong correlation between iso-surfaces of 

the concentration and the 𝑄-criterion, as shown in Fig. 6 and Fig. 7. They do display the 

similar structures. One significant difference is that iso-surfaces of the 𝑄-criterion clearly 

shows that the momentum layer quickly settles and becomes repeated passing each row of 

HFM in both geometry, on the other hand, concentration layer develop slower becomes 

repeated after 6-th row in the inline geometry and after 7-th row in the staggered geometry. 

For the inline geometry, the jet flow region at each side the HFM along each row improves 

membrane performance. However, there is significant concentration polarization near the 

forward and backward stagnation regions for the inline geometry; additionally, there is 

vortex shedding in the area where the boundary layer detaches from HFM surface. In the 

staggered geometry, there is a strong vortex shedding around HFM surface. These large 

vortex shedding activities indicate that the staggered geometry perform better compared to 

the inline geometry. This clearly illustrates the importance of studying the vorticity field 

to indicate concentration behavior and separation regions along the HFM surface.  
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Fig. 6. The Q-criterion for Re= 1000 at S⁄d=2 (Q=0.01) for (a) inline and (b) staggered geometries.  
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Fig. 7. Mole fraction concentration iso-surfaces for Re= 1000 at S⁄d=2 for (a) inline (NCH4=0.76) and 

(b) staggered geometries (NCH4=0.74).  

 

Fig. 8 illustrates steady state three-dimensional 𝐶𝐻4 mole fraction contours for 

various 𝑅𝑒 at 𝑆 𝑑⁄ = 2 for inline and staggered geometries. Fig. 8 illustrates an uniformly 

low CH4 concentration in the jet flow region, and a slightly higher concentration in the 

vicinity of the backward stagnation point for the inline case at all values of 𝑅𝑒. The flow 

for the inline HFM arrangements is free to traverse the HFMB uninterruptedly in the jet 

flow region, thus fluid mixing is minimal at these locations and abets significant 

concentration polarization along HFM surfaces.  HFM surfaces near to the jet flow regions 
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are subjected to high shearing and suction that result in low CH4 concentrations at these 

surface locations for inline geometries. Conversely, the HFM surfaces near the forward and 

backward stagnation points are subjected to low shearing and suction that result in high 

CH4 concentrations at these surface locations for inline geometries. The differences in 

shearing, suction rate, and vorticity cause concentration polarization along HFM surfaces. 

As flow rate increases from 𝑅𝑒 = 400 to 𝑅𝑒 = 1000, the degree of concentration 

polarization is lessened, but is present nonetheless. There is a higher level of concentration 

polarization near the region where the boundary layer detaches from the surface of the 

HFMs. The staggered arrangement exhibits significantly less concentration polarization in 

the region near the forward stagnation point and near to where the flow separates from the 

HFM surface. This demonstrates that concentration boundary layer disruption by the 

presence of HFMs in the staggered geometry effectively reduces concentration polarization 

by retarding the full development of the concentration boundary layer.  

In both geometries, the concentration is higher in the downstream region behind the 

HFMs, and the concentration polarization is reduced as the flow rate is increased to 𝑅𝑒 =

1000, which agrees with results from [35]. Momentum mixing induced by the presence of 

HFMs in the feed channel is the main factor contributing to concentration polarization 

reduction at higher feed flow rates, especially for staggered geometries as compared to 

inline geometries. The degree of momentum mixing in the staggered configuration is 

higher than that in the inline configuration. As the mixture flows further downstream in the 

HFMB, it becomes gradually CH4 rich as CO2 diffuses into the membranes. 

The concentration near the backward stagnation point for all HFMs remains 

elevated throughout the entire HFMB as compared to the forward stagnation point region.  
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Increased mixing in the HFMB for staggered geometries diminishes the concentration 

polarization, which is expected to improve the membrane performance. 
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Fig. 8. CH4 mole fraction concentration contours at S⁄d=2 for: Re=200 in the (a) inline geometry, and 

(b) staggered geometry, Re=400 in the (c) inline geometry and, (d) staggered geometry, and Re=1000 

in the (e) inline geometry, and (f) staggered geometry. 
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 Fig. 9 illustrates the normalized suction rate along the surface of HFM at S/d=2 for 

various Re in inline and staggered geometries, where the suction rate is normalized by the 

pressure difference across the membrane times the permeability, Δp.A. Suction rate in both 

geometries increases with Re. For all flow rates, HFMs arranged in staggered geometries 

exhibit significantly higher suction rates as compared to those in inline geometries. In both 

geometries, the suction rate is lowest where the boundary layer detaches from the HFM 

surface. Flow separation characteristics differ significantly between geometries and the 

locations where boundary layers detach vary with the feed flow rate – especially for inline 

geometries. For the inline geometry at Re=200, the suction rate drastically decreases after 

the first two columns then exhibit a lower uniform value until the last column. At Re=400, 

a similar suction phenomenon is observed but with larger suction rates. As the flow rate is 

increased to Re=1000, the suction rate becomes higher at locations where flow separation 

occurs. As illustrated in Fig. 9, the suction rate assumes the lowest value in the region most 

near to the backward stagnation point in both geometries. Interestingly, as the flow 

propagates through the HFMB the suction rate gradually decreases for the staggered 

geometry but significantly decreases for the inline geometry. Fig. 9 illustrates that the 

suction rates are significantly higher for HFMB arranged in staggered geometries as 

compared to inline geometries for all flow rates.  
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Fig. 9. Normalized suction rate at S/d=2 for: Re=200 in the (a) inline and (b) staggered geometries, 

Re=400 in the (c) inline and (d) staggered geometries, and Re=1000 in the (e) inline and (f) staggered 

geometries. The suction rate is normalized by the pressure difference across the membrane times the 

permeability, Δp.A. 

 

Fig. 10 illustrates CH4 mole fraction, suction rate, vorticity magnitude, and wall 

shear stress profiles along the surface of the HFM in the seventh column and third row 

down from the top for inline and staggered geometries for 𝑅𝑒 = 200 at S/d=2. HFM 

surface regions exhibiting high vorticity also exhibit low CH4 mole fraction, high suction 
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rate, and high shearing for both geometries. Low shear regions occur near to where 

boundary layers detach from the HFM surface. Throughout the HFMB for both geometries, 

wall shear is largest in regions where a surface is near to a high-speed, or jet flow, region 

– such as the jet flow and double jet flow regions in the inline and staggered arrangements 

illustrated in Fig. 4a and Fig. 4b, respectively. 

Fig. 10e and Fig. 10f illustrates the streamtraces for the aforementioned HFM for 

the inline and staggered geometry. The flow structures near the forward stagnation region 

differ between geometries; the streamtraces indicate two small slowly circulating wake 

flow regions just upstream of the HFM leading edge in the inline arrangement, and a 

strongly impinging flow that is forced to diverge around the HFM leading edge with high 

speeds in the staggered arrangement. Fig. 10 illustrates the interdependence of the flow 

characteristics on the membrane performance – the regions where the flow velocity is large, 

indicated by the streamtraces in Fig. 10e and Fig. 10f, correspond to regions of low CH4 

mole fraction, high suction, and high vorticity, which indicate the HFM surfaces interfacing 

these regions have high performance.  That is it say, HFMs perform most efficiently when 

the neighboring flow exhibits significant momentum mixing within the fluid.  Both 

geometries exhibit unfavorable flow structures in the circulating wake flow regions near 

the backward stagnation point, however, favorable flow structures are recovered quickly 

in the staggered geometry because the downstream peripheral HFMs act to diverge the 

flow into the circulating wake flow region, illustrated in Fig. 10f.  The feed channel flow 

rate and resulting flow structures near the HFM surfaces for a given HFM arrangement are 

of crucial importance for achieving high separation module performance. 
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Fig. 10. (a) CH4 mole fraction, (b) suction rate, (c) vorticity magnitude, and (d) wall shear stress profiles 

along the HFM surface for inline and staggered geometries as well as streamtraces for (e) inline and 

(f) staggered geometries of the HFM in the seventh column and third row down from the top for 

Re=200 at S/d=2 in the z=3d plane. 
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Sherwood number, Sh, represents the ratio of convective mass transfer to the rate 

of diffusive mass transfer and is presented in this work to assess the overall CO2 diffusion 

into HFM surfaces. Fig. 11 illustrates Sh profiles along the surface of the HFM in the 

seventh column and the third row down from the top at the z=3d plane for inline and 

staggered geometries at various values of Re and S/d. Fig. 11 indicates that Sh is 

consistently larger for the staggered geometry, and increases with the feed flow rate for 

both geometries. The HFM spacing ratio S/d=2 facilitated the greatest difference in Sh 

profiles between staggered and inline geometries. The Sh profiles strongly resemble the 

suction rate profiles shown previously in Fig. 10, which suggests that regions with greater 

suction rate exhibit greater momentum mixing thereby enabling greater mass transfer 

through the HFMs. For the staggered geometry, Sh is largest at the HFM leading edge 

where CH4 mole fraction concentration, suction rate, and vorticity magnitude are also large. 

However, for the inline arrangement, Sh assumes the largest value slightly further along 

the HFM surface near to where suction rate is large and boundary layer separation occurs. 

Sh is small at the localized forward stagnation points for the inline geometry. On the other 

hand, Sh is large at the localized forward stagnation point in the staggered geometry.  The 

Sh value in both geometries increases with Re near the backward stagnation point.  

The entire backside of the HFM surface is exposed to the wake flow region and 

exhibits a smaller Sh as compared to the leading edge HFM surface for both spacings 

because the suction rate and vorticity are generally higher in the leading edge region for 

both geometries as illustrated in Fig. 10. Sherwood number and separation module 

performance are higher in regions where high-speed flows are observed – such as the jet 

flow region in the inline geometry and the double jet flow region in the staggered geometry 
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(see Fig. 11). The staggered geometry allowed for the HFM surface in the leading edge 

region to achieve considerably higher Sh, and therefore perform significantly better 

compared to the inline geometry. Interestingly, the HFM surface in the trailing wake flow 

region exhibited very similar Sh profiles for all values of Re and S/d.  
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Fig. 11. Sherwood number profiles along the surface of the membrane for inline and staggered 

geometries for Re=200 at (a) S/d=2 and (b) S/d=3, Re =400 at (c) S/d=2 and (d) S/d=3, and Re =1000 at 

(e) S/d=2 and (f) S/d=3. Profiles are calculated for the HFM located at the seventh column and the third 

column down from the top at the z=3d plane. 
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The local 𝑆ℎ was calculated for all regions in the HFMB, but was not illustrated in 

this work. It was observed that the local 𝑆ℎ for the first, second, and last HFM columns 

would differ significantly from the interior HFMs of columns three to eight, which we 

expected. The first and the second HFM columns are the first to encounter the incoming 

feed fluid, which explains the increased local 𝑆ℎ for these columns, especially in the 

leading edge region, because the fluid is more uniformly mixed here. The average 

Sherwood number, 𝑆ℎ̅̅ ̅, for the third to eighth HFM columns is calculated for the inline and 

staggered geometry at various values of 𝑅𝑒 and 𝑆 𝑑⁄  and is shown in Table 1. 𝑆ℎ̅̅ ̅ increases 

with 𝑅𝑒, and is consistently larger for the staggered geometry. At large 𝑅𝑒, the difference 

in 𝑆ℎ̅̅ ̅ becomes quite large between the staggered and inline geometries –  at 𝑅𝑒=1000, 

𝑆ℎ̅̅ ̅ is about two times larger in the staggered geometry compared to the inline geometry. 

𝑆ℎ̅̅ ̅  is not sensitive to the spacing between HFM in both geometries, as depicted in Table 

1. Clearly, the arrangement of HFMs is of crucial importance when designing and 

optimizing separation modules. 

 

Table 1. Average Sherwood number of the third to eighth HFM columns in the inline and staggered 

geometries at various values of 𝑹𝒆 and 𝑺/𝒅. 

 

The friction factor across the HFMB is given in Table 2 for the inline and staggered 

geometries at various values of 𝑅𝑒 and 𝑆/𝑑, and represent a measure of the energy loss for 

the system. Energy losses are lower in the inline geometry compared to the staggered 

geometry for the tabulated 𝑅𝑒 and 𝑆/𝑑 combinations. Table 2 indicates that the friction 

Re 
Average Sherwood Number –  Sh̅̅ ̅ 

S/d=2 S/d=3 

Inline Staggered Inline Staggered 

200 4.91 9.88 4.67 8.62 

400 6.10 14.46 6.33 12.45 

1000 14.23 25.40 13.16 21.50 
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factor is not particularly sensitive to changes in flow rate for the considered range of 𝑅𝑒. 

The inline arrangement facilitates a smaller pressure drop across the HFMB length. The 

friction factor is significantly higher in the module with a tighter spacing of HFM in both 

geometry. 

 

Table 2. Friction factor across the HFMB length for the inline and staggered geometries at various 

values of 𝑹𝒆 and 𝑺/𝒅. 

 

The coefficient of performance (COP) is introduced to compare modules 

containing HFM with the inline and staggered arrangements. COP is defined as: 

COP =
𝑆ℎ𝑠 𝑆ℎ𝑖⁄

(𝑓𝑟𝑠 𝑓𝑟𝑖⁄ )1 3⁄                                                                  (24) 

The COP is the parameter employed to measure membrane flux improvement for a fixed 

pumping power. Here 𝑆ℎ𝑠 and 𝑆ℎ𝑖 are the average Sherwood numbers for all HFMs in the 

staggered and inline geometries, respectively. 𝑓𝑟𝑠 and 𝑓𝑟𝑖 are the friction factors for the 

staggered and inline HFMB geometries, respectively. Table 3 shows the COP for various 

values of 𝑅𝑒 and 𝑆/𝑑, which are all greater than unity and indicate that the efficiency of 

the staggered geometry outweighs the efficiency of the inline geometry as well as the 

inefficiency of the staggered geometry. Table 3 indicates that the staggered arrangement 

of HFMs increases separation module performance compared to the inline arrangement. 

The staggered module performs better when HFM is tightly spaced. Performance 

comparison of modules is nearly the same at all flow rates considered. 

𝑹𝒆 
Friction Factor – 𝒇𝒓 

S/d=2 S/d=3 

Inline Staggered Inline Staggered 

200 0.039 0.079 0.013 0.057 

400 0.035 0.072 0.012 0.056 

1000 0.045 0.060 0.017 0.054 
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Re 
Coefficient of Performance – 

COP 

S/d=2 S/d=3 

200 1.58 1.12 

400 1.86 1.19 

1000 1.63 1.12 
Table 3. Coefficient of performance values for various values of 𝑹𝒆 and 𝑺/𝒅.  

Another way to measure the HFM performance is by calculating 𝑚̇, which is the 

mass flow rate of CO2 per unit area diffusing through the membrane surface.  𝑚̇ is defined 

as: 

𝑚̇ =
1

𝐴𝑚
(

𝐴𝑎̈

𝑙
∆𝑝𝑡𝑜𝑡) ∫ 𝑁𝐶𝑂2 𝑑𝐴𝑚

 

𝐴𝑚
                                                           (25)   

where 𝐴𝑚 is the membrane surface area. Table 4 tabulates values of mass flow rate 

of CO2 per unit area diffusing through the membrane surface for the inline and staggered 

arrangement for various values of 𝑅𝑒 and 𝑆/𝑑. Table 4 confirms the HFM spacing ratio 

𝑆/𝑑=2 for the staggered geometry yields the greater mass flow rate. Examination of the 

average Sherwood number, coefficient of performance, and mass flow rate confirm that 

HFMs arranged in the staggered geometry facilitate the greatest separation module 

performance as compared to the inline geometry.  Further, these results emphasize the 

importance of considering HFM arrangement in separation module design and 

optimization. 

Re 

Mass Flow Rate – ṁ 

S/d=2 S/d=3 

Inline Staggered Inline Staggered 

200 0.0203 0.0242 0.0245 0.0241 

400 0.0219 0.0295 0.0229 0.0289 

1000 0.0311 0.0356 0.0310 0.0348 
Table 4. CO2 mass flow rate per unit area across HFM surface for the staggered and inline 

arrangements at various values of 𝑹𝒆 and 𝑺/𝒅. 
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3.4. CONCLUSION 

Steady-state three-dimensional CFD simulations of carbon dioxide (CO2) removal 

from a binary mixture with methane (CH4) are performed using the steady 𝑘-𝜔 SST 

turbulence model in order to characterize HFM performance.  The separation module is 

arranged in the radial crossflow configuration, where the flow direction is normal to the 

HFM axes.  Two different HFM arrangements within the module are examined, inline and 

staggered, and three values of Reynolds numbers are probed, 𝑅𝑒 = 200, 400, and 1000.  

Membrane performance is assessed based on species mass flux across the HFM surface 

and the friction factor associated with the HFM arrangement.  HFM surfaces are treated as 

a functional boundary where the mass flux of a species is calculated from the local partial 

pressure, permeability, and selectivity of the HFM. This work shows that three-

dimensional analysis of flow through a HFMB is important because characterization of the 

velocity, vorticity, and concentration fields indicate the existence of three-dimensional 

flow structures that cannot be captured through two-dimensional analysis.  Suction rate 

along the HFM surface is also affected by three-dimensional flow structures, chiefly for 

the inline HFM arrangement, and assumes a minimum value near to where boundary layer 

detachment occurs from the membrane surface for both HFM arrangements.  Increased 

momentum mixing achieved with the staggered arrangement enhances HFM performance, 

and is observed through comparison of the x- and y-directions of vorticity that illustrate 

considerable differences in vortical structure size.  Concentration polarization is influenced 

by the local flow around the HFMs.  The staggered HFM arrangement displays a more 

uniform concentration distribution along the membrane surface, and abets a lesser degree 

of concentration polarization than the inline geometry.  For the inline geometry, significant 
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concentration polarization exists near the forward stagnation point where wake flow tends 

to be trapped and continuously recirculated.  For both HFM arrangements however, high 

concentration polarization exists in regions of low speed flow, and low concentration 

polarization exists in regions of high speed flow.  As the inlet flow rate increases in both 

HFM arrangements, concentration polarization is alleviated.  Shear rate, suction rate, and 

vorticity magnitude are highest in regions of high speed flow, and lowest in regions of low 

speed flow. The averaged Sherwood number increases with the inlet flow rate, but is 

relatively insensitive to the change in membrane spacing.  Sherwood number is high in 

regions of high speed flow, and low in regions of low speed flow.  As the inlet flow rate 

increases for the inline geometry, Sherwood number assumes a minimum value at the 

forward stagnation point and near to where boundary layer detachment occurs from the 

membrane surface.  However, for the staggered geometry, the Sherwood number greatly 

increases in the region of the forward stagnation point with the flow rate.  For the larger 

HFM spacing, the COP is insensitive to flow rate and is near to unity, suggesting similar 

membrane performance.  For the tighter HFM spacing, the COP is relatively insensitive to 

changes in Reynolds number, but has increased in value, indicating that the staggered HFM 

arrangement outperforms the inline arrangement for tighter the HFM spacing.  Lastly, 

examination of the mass flow rate of CO2 across the HFM surface also suggests the 

staggered HFM arrangement permits for increased species separation. 

 

 

 

 



46 
 

CHAPTER 4: HYBRID REVERSE OSMOSIS GAS 

SEPARATION MODULE 

4.1. GEOMETRY 

 Steady state flow simulations are conducted to study a gas separation process in a 

hybrid reverse osmosis module. The module contains a three-dimensional feed channel 

bounded by two parallel spiral wound membranes. The feed channel contains hollow fiber 

membranes with different arrangements and with a fixed spacing. The primary flow is 

parallel to the spiral wound membranes and perpendicular to the hollow fiber membrane 

axes. The schematic of the three-dimensional computational domain is shown in Fig. 12. 

An inline, a staggered and a 45° net arrangement of HFMs are illustrated in Fig. 12a, b, 

and c, respectively. The diameter of the membrane is d, the spacing between two adjacent 

hollow fiber membranes measured center-to-center is S. The height, thickness, and length 

of the computational domain are 4d, 10d, and 140d, respectively. The vertical gap between 

two adjacent hollow fiber membranes is 2d from center to center. All three arrangements 

are designed for a fixed value of hollow fiber spacing distance, S/d = 10.  
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Fig. 12.  Schematic of computational flow domain of S/d=10 for (a) an inline geometry (b) a staggered 

geometry and (c) a net of HFMs with 45° geometry. Dimensions of the flow domain and HFMB are 

illustrated. 

 

4.2. MESH STUDY  

The numerical simulations are conducted for flow through a three-dimensional 

hybrid membrane geometry using the commercial software, CFX. A mesh optimization 

study is performed to ensure a spatial convergence. The grid mesh is refined in regions near 

membrane surface where high velocity and concentration gradients are expected. A mesh 

study is employed using three mesh densities in order to assess the spectral convergence of 

the HFM simulations. The three different mesh sizes selected for mesh convergence are 
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 24, 32, and 50 million (M) mesh elements. Molar fraction of CH4 and normalized suction 

rate profiles along HFM cross-sections are shown in Fig. 13a and b, respectively. The 

profiles are obtained at 𝑥 = 60𝑑 plane for 𝑅𝑒 = 1000 in the inline geometry and 𝑆 𝑑⁄ =

10 using three mesh densities. The plane at 𝑥 = 60𝑑 corresponds to the HFMB cross-

section intersecting the sixth HFM column. Fig. 13c illustrates profiles of the stream-wise 

component of the velocity. It is normalized by the inlet average velocity, and the profiles 

are obtained at 𝑥 = 65𝑑 plane. The plane 𝑥 = 65𝑑 is situated between the sixth and 

seventh HFM column. Profiles of the mole fraction, the suction rate, and the stream-wise 

velocity obtained using 32M and 50M mesh elements are nearly the same as depicted in 

Fig. 13. Deviations between profiles for 32M and 50M mesh elements are sufficiently small 

that spectral convergence is achieved for 32M mesh elements. In other words, the 

numerical solution becomes nearly independent of mesh size as 32M mesh elements are 

used. Hence simulation results presented in this chapter are acquired utilizing 32M mesh 

elements.  
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Fig. 13. HFM cross-section profiles at x=60d for (a) the molar fraction of CH4 and (b) the suction rate. 

Profiles are calculated for the HFM located in the 6th column at the z=5d plane. (c) Normalized stream-

wise velocity component profiles of the HFMB at the x=65d. Velocity profiles are normalized by the 

inlet velocity. Profiles are obtained for varying mesh densities in the inline geometry with S/d=10 at 

Re=1000. 
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 4.3. RESULTS 

The iso-surfaces of normalized stream-wise velocity component for Re= 1000 and 

S⁄d=10 for the inline, the staggered and the net arrangement of HFM are depicted in Fig. 

14. The iso-surfaces of u/Uinlet=1 are depicted. It is shown that the flow structures changes 

passing first two columns of HFM but becomes periodic after passing the third column of 

HFM. This indicates that flow becomes spatially periodic and fully developed after passing 

the third column of HFM. It is also shown that high velocity region is observed in the 

middle part of the feed channel and in the area around HFMs leading edge and in the 

intersection region between HFM and bottom membrane surfaces for flows in the inline 

geometry. Fig. 14b shows that the flow follows a zigzag pattern near the middle region of 

the channel for the staggered geometry. The presence of high velocity and recirculation 

regions at different locations throughout the computational domain can be observed in the 

geometry with the net of HFM, as shown in Fig. 14c. Flow velocity becomes higher away 

from the inlet in the region behind the backward stagnation point of HFMs surfaces, as 

depicted in Fig. 14c. The high velocity area extends throughout columns inside the bulk 

region. It is also noticed that strong three-dimensional effects exist due to the presence of 

net HFM, this indicates that a higher level of mixing occurs in the net HFMs geometry.  
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Fig. 14. The iso-surfaces, u/Uinlet=1, of normalized stream-wise velocity component for Re= 1000 at 

S⁄d=10 for (a) inline geometry (b) staggered geometry and (c) net of HFMs in the 45° arrangement.  

 

The iso-surfaces of the y component of the vorticity in the inline, staggered and net 

geometry are shown in Fig. 15 for Re=1000 and S⁄d=10. Low level of vorticity is observed 

inside the flow domain for the inline and staggered geometry compared to that in the net 

geometry. Repeated flow patterns are observed passing the third row of HFM. In the inline 

and staggered geometry, vortical activities are mostly limited to the region near the vicinity 

of HFM’s. However, in the net type of geometry high level of vortical activities occupy 

the entire feed channel that implies that the net arrangement of HFMs promotes a 
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significantly higher level of mixing in the entire feed channel; see Fig. 15. It is expected 

that the presence of the net HFM inside the feed channel improves the membrane 

performance and can be more suitable for the hybrid gas separation modules. 
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Fig. 15. Iso-surfaces of the y component of the vorticity for Re=1000 and S⁄d=10 (a) in the inline, (b) in 

the staggered: (c) in the net geometry. Vorticity is normalized by d/Uinlet. The iso-surfaces of -0.21 is 

indicated in blue and 0.21 is indicated in red. Images are rendered for the HFM located in the 7th and 

8th columns. 
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 Fig. 16 and Fig. 17 illustrates iso-surfaces of the Q-criterion (Q=0.02) and mole 

fraction of CH4 (NCH4=0.76) for Re= 1000 and S⁄d=10 in the inline, staggered and net 

geometry. The Q-criterion and the mole fraction iso-surfaces are rendered in the region 

near the HFM located in the 7th column. There is vortex shedding behind each HFM and 

the flow separates and the boundary layer detaches from the HFM surface near the 

backward stagnation point in the inline and staggered geometry, as shown in Fig. 16a, and 

b. Similar patterns are observed in the iso-surfaces of the mole fraction around each HFM, 

as illustrated in Fig. 17a, and b. It is abundantly clear that the net arrangement of HFMs 

shows a profoundly higher level of mixing around HFM and in the bulk flow of feed 

channel, as shown in Fig. 16c and Fig 17c. This is attributed to the mixing induced by the 

vortical activities. The vorticity field illustrates that momentum mixing in the feed channel 

significantly improved by the presence of the net HFM. The presence of high levels of 

mixing activities and strong three-dimensional effects varies significantly in z-direction 

implies that the net geometry performs much better along the HFM surface and in the bulk 

flow compared to the inline and staggered geometry.  
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Fig. 16. The Q-criterion (Q=0.02) for (a) inline (b) staggered and (c) net geometry. Images are 

rendered for the HFM located in the 7th column at Re= 1000 and S⁄d=10. 
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Fig. 17. Iso-surfaces of the mole fraction (NCH4=0.76) for (a) inline (b) staggered and (c) net geometry. 

Images are rendered for the HFM located in the 7th column at Re= 1000 and S⁄d=10. 
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The contours of the CH4 mole fraction at S⁄d=10 and Re=1000 in the inline, 

staggered and net geometry of HFMs are illustrated in Fig. 18.  The inline geometry shows 

that the fluid becomes increasingly rich in 𝐶𝐻4 in the bulk region around the narrow space 

between hollow fiber membrane rows.  The staggered geometry shows high concentration 

in the area near the top and the bottom membrane surface. In the net hollow fiber 

membranes geometry, the formation of the concentration boundary layer at the membrane 

surface is influenced by the high velocity flows and the high level of vortical activities near 

HFMs. The flow structures induced by net HFMs have strong influence on the 

concentration field, as shown in Fig. 18c. The net geometry shows that the fluid becomes 

increasingly richer in 𝐶𝐻4 than the inline geometry in the bulk region. The mixing, caused 

by the net HFM, influences the distribution of the concentration in the wake region.  The 

net hollow fiber membrane helps the mixture to become gradually 𝐶𝐻4 rich away from the 

inlet and close to the outlet in the net geometry. All geometries exhibit significantly low 

concentration polarization along HFM surface. This demonstrates that concentration 

boundary layer disruption induced by HFM in the feed channel in the all geometries 

successfully mitigates concentration polarization. These results confirm the importance 

and effective design of the hybrid membrane system to enhance membrane performance.  
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Fig. 18. CH4 mole fraction contours at S⁄d=10 and Re=1000 in (a) the inline geometry, (b) the staggered, 

and (c) the net geometry. Images are rendered for the HFM located in the 7th and 8th columns. 

 

 



59 
 

Fig. 19 shows the normalized suction rate at S/d = 10 and Re=1000 for a hybrid 

module that is containing the inline, staggered, net arrangement of HFMs. The inline 

geometry has a higher suction rate compared to the staggered geometry through the 

membrane. The influence of the net arrangement of HFMs on the mass flux across the 

membrane is more pronounced than both inline and staggered geometry at the higher flow 

rates. It is also clearly noticed that the influence of net HFM on the mass flux along the 

membrane is more profound in the regions away from the inlet. 
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Fig. 19. Normalized suction rate at S/d=10 and Re=1000 in (a) the inline geometry, (b) the staggered, 

and (c) the net geometry. The suction rate is normalized by Δp.A. Images are rendered for the HFM 

located in the 7th and 8th columns. 
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Since the feed channel of membrane module consists of only nine hollow fiber 

membrane columns, the local 𝑆ℎ of the first to the sixth, and last HFM columns would 

differ from the remaining hollow fiber membranes illustrating that the choice of these 

columns for Sherwood number prediction would not be good to represent the entire hybrid 

membrane module. Therefore, we determine the Sherwood number of HFMs at the seventh 

and eighth columns of the module to determine the mass fux performance of the separation 

system. Comparisons of the coefficient of performance of different designs of the hybrid 

hollow fiber and spiral wound membrane module are performed.  

 Table 5 illustrates the average Sherwood number, 𝑆ℎ̅̅ ̅, of HFMs for each 

arrangement at values of Reynolds number of 400, 700 and 1000 and for S/d=10. The 

average value of the Sherwood number is determined using hollow fiber membranes at the 

seventh and the eighth column. Table 5 shows also the pressure drop in each geometry. 

The level of pressure drop is significantly higher compared to both the staggered and the 

net geometry at all flow rates. The friction factor is nearly the same for all flow rates in 

each geometry. It is also noted that the similar level of pressure drop in staggered and the 

net geometry, as listed in Table 5. The Sherwood number increases with increasing 

Reynolds numbers in each geometry.  

Re 

Average Sherwood 

Number –  Sh̅̅ ̅ 
Friction Factor – 𝒇𝒓 

Coefficient of 

Performance – COP 

45 

degree 
Inline 

Staggere

d 

45 

degree 
Inline Staggered 

𝑺𝒉𝟒𝟓 𝑺𝒉𝒊⁄

(𝒇𝒓𝟒𝟓 𝒇𝒓𝒊⁄ )𝟏 𝟑⁄
 

𝑺𝒉𝟒𝟓 𝑺𝒉𝒔⁄

(𝒇𝒓𝟒𝟓 𝒇𝒓𝒔⁄ )𝟏 𝟑⁄
 

400 16.29 14.96 11.44 0.014 0.044 0.013 1.595 1.443 

700 23.50 20.99 16.52 0.013 0.043 0.013 1.668 1.422 

1000 30.14 25.95 20.57 0.011 0.042 0.011 1.815 1.465 
Table 5. The averaged Sherwood number, the friction factor across the hollow fiber membrane and 

the coefficient of performance for the different geometries at 𝑺/𝒅 = 𝟏𝟎 and various values of 𝑹𝒆. 
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Table 6 shows the average Sherwood number, 𝑆ℎ̅̅ ̅, averaged along the surface of 

the spiral wound membrane in the net, inline and staggered geometry at various values of 

𝑅𝑒 for 𝑆 𝑑 = 10⁄ . The Sherwood number increases as Reynolds numbers increase in each 

geometry. Coefficient of performance is calculated as:  

COP =
𝑆ℎ45 𝑆ℎ𝑖⁄

(𝑓𝑟45 𝑓𝑟𝑖⁄ )1 3⁄                                                                  (26) 

and 

COP =
𝑆ℎ45 𝑆ℎ𝑠⁄

(𝑓𝑟45 𝑓𝑟𝑠⁄ )1 3⁄                                                                  (27) 

Here 𝑆ℎ45, 𝑆ℎ𝑖, and 𝑆ℎ𝑠are the average Sherwood numbers for all HFMs in the net , inline 

and staggered geometries, respectively. 𝑓𝑟45, 𝑓𝑟𝑖, and 𝑓𝑟𝑠are the friction factors for the net, 

inline, and staggered HFMB geometry at S/d=10, respectively. Coefficient of performance 

compares the module with net arrangement of HFM against those with the cross flow inline 

and staggered arrangement of HFM, For all cases considered, the coefficient of 

performance is greater than unity. That indicates that the mass flux performance of hybrid 

separation unit is better with the design of the net arrangement of HFMs.  

Re 

Average Sherwood 

Number –  Sh̅̅ ̅ 
Friction Factor – 𝒇𝒓 

Coefficient of 

Performance – COP 

45 

degree 
Inline Staggered 

45 

degree 
Inline Staggered 

𝑺𝒉𝟒𝟓 𝑺𝒉𝒊⁄

(𝒇𝒓𝟒𝟓 𝒇𝒓𝒊⁄ )𝟏 𝟑⁄
 

𝑺𝒉𝟒𝟓 𝑺𝒉𝒔⁄

(𝒇𝒓𝟒𝟓 𝒇𝒓𝒔⁄ )𝟏 𝟑⁄
 

400 12.16 9.04 9.01 0.014 0.044 0.013 1.970 1.316 

700 15.45 13.64 12.28 0.013 0.043 0.013 1.687 1.258 

1000 20.28 17.60 16.43 0.011 0.042 0.011 1.800 1.234 
Table 6. The average Sherwood number, the average friction factor across the spiral wound membrane 

and the coefficient of performance for the different geometries at 𝑺/𝒅 = 𝟏𝟎 and various values of 𝑹𝒆. 

 

Another way to measure the HFM performance is by calculating the mass flow rate 

of CO2 per unit area permeating through the membrane surface. Table 7 depicts the values 

of the mass flow rate of CO2 per unit area diffusing through the membrane surface for the 

net, inline, and staggered arrangement for various values of 𝑅𝑒 and 𝑆/𝑑 = 10. Table 7 
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confirms the net geometry yields the greater mass flow rate of CO2. Examination of the 

average Sherwood number, coefficient of performance, and mass flow rate confirm that 

HFMs arranged in the net geometry facilitate the greatest separation module performance 

as compared to the inline and staggered geometry.  Further, these results emphasize the 

importance of considering net hybrid HFM configuration in separation module design and 

optimization. 

Re 
Mass Flow Rate – ṁ 

45 degree Inline Staggered 

400 0.0523 0.0506 0.0518 

700 0.0654 0.0638 0.0636 

1000 0.0744 0.0726 0.0719 
Table 7. CO2 mass flow rate per unit area across membranes surface for the net 45 arrangement, inline, 

and staggered arrangements at various values of 𝑹𝒆 and S/d=10. 

 

The influence of hollow fiber membrane spacing on flow and mass transfer in the 

feed channels has been investigated for S/d=2.5. There is a strong correlation between the 

normalized stream-wise velocity component, the normalized y vorticity component, the Q-

criterion (Q=0.02), and the mole fraction iso-surfaces (NCH4=0.76), as shown in Fig. 20 and 

Fig. 21 for Re= 1000 and S⁄d=2.5 in the net geometry. It can be noted that the size of 

recirculation regions is smaller when compared to the S/d=10. For tighter spacing 

(S/d=2.5), the effect of three-dimensional structure is less and local enhancement is not as 

much as the wider spacing (S/d=10).  
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Fig. 20. Images of (a) the iso-surfaces, u/Uinlet=1, of the normalized stream-wise velocity component, 

and (b) the iso-surfaces of the y component of the vorticity for Re= 1000 at S⁄d=2.5 for net of HFMs in 

the 45° arrangement. Vorticity is normalized by d/Uinlet. The iso-surfaces of -0.21 is indicated in blue 

and 0.21 is indicated in red.  
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Fig. 21. Images of (a) the Q-criterion (Q=0.02), and (b) iso-surfaces of the mole fraction (NCH4=0.76) for 

Re= 1000 at S⁄d=2.5 for the net type of HFMs in the 45° arrangement. 

 

The contours of CH4 mole fraction and the normalized suction rate on the hollow 

fiber membranes and the bottom spiral wound membrane for S⁄d=2.5 and Re=1000 are 

shown in Fig. 22 and Fig. 23, respectively. It is noticed that the level of concentration 

enhancement in the bulk region less compared to that in a wider spacing (S/d=10) 

geometry. The comparison of two spacing shows that the mole fraction and the suction rate 



66 
 

are higher for spacing (S/d=10). Hence, the wider spacing (S/d=10) is a more favorable 

design for the hybrid modules.  

 

Fig. 22. CH4 mole fraction concentration contours at S⁄d=2.5 for: Re=1000 in the net HFMs.  

 

Fig. 23. Normalized suction rate contours at S⁄d=2.5 for Re=1000 in the net HFMs. The suction rate is 

normalized by the pressure difference across the membrane times the permeability, Δp.A. 
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Table 8 shows the averaged Sherwood number, the averaged friction factor across 

the spiral wound membrane and the coefficient of performance for 𝑆/𝑑 = 2.5 and 𝑅𝑒 =

1000. Coefficient of performance is calculated as:  

COP =
𝑆ℎ45 𝑆ℎ45𝑡⁄

(𝑓𝑟45 𝑓𝑟45𝑡⁄ )1 3⁄                                                                  (28) 

Here 𝑆ℎ45𝑡 is the average Sherwood numbers and 𝑓𝑟45𝑡 is the friction factors for the net 

HFMB geometry at 𝑆/𝑑 = 2.5 (tight spacing). 𝑆ℎ45 is the average Sherwood numbers and 

𝑓𝑟45 is the friction factors for the net HFMB geometry at 𝑆/𝑑 = 10. The coefficient of 

performance is greater than unity which indicate that wider spacing, S/d=10, is more 

effective for the net geometry.   

Re 

45 degree 
Coefficient of 

Performance – COP 

Average Sherwood 

Number –  Sh̅̅ ̅ 
Friction Factor – 𝒇𝒓 

𝑆ℎ45 𝑆ℎ45𝑡⁄

(𝑓𝑟45 𝑓𝑟45𝑡⁄ )1 3⁄
 

1000 17.19 0.018 1.390 
Table 8. The average Sherwood number, the average friction factor across the spiral wound membrane 

and the coefficient of performance for the net 45 arrangement at 𝑺/𝒅 = 𝟐. 𝟓 and 𝑹𝒆 = 𝟏𝟎𝟎𝟎. 

 

Table 9 shows the averaged Sherwood number, the averaged friction factor across 

the hollow fiber membrane and the coefficient of performance for 𝑆/𝑑 = 2.5 and 𝑅𝑒 =

1000 in the net geometry. The coefficient of performance is greater than unity which 

indicate that wider spacing (S/d=10) is also more effective in a net hollow fiber membrane 

geometry.   

Re 

45 degree 
Coefficient of Performance – 

COP 

Average Sherwood 

Number –  Sh̅̅ ̅ 

Friction Factor – 

𝒇𝒓 

𝑆ℎ45 𝑆ℎ45𝑡⁄

(𝑓𝑟45 𝑓𝑟45𝑡⁄ )1 3⁄
 

1000 26.59 0.018 1.428 
Table 9. The average Sherwood number, the average friction factor across the hollow fiber membrane 

and the coefficient of performance for the net 45 arrangement at 𝑺/𝒅 = 𝟐. 𝟓 and 𝑹𝒆 = 𝟏𝟎𝟎𝟎. 
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Table 10 illustrates the mass flow rate of CO2 per unit area permeating through the 

membrane surface for the net arrangement for 𝑅𝑒 = 1000 and 𝑆/𝑑 = 2.5. Hybrid module 

with tighter HFM spacing in the net geometry yields a lower mass flow rate than that for 

S/d=10. Furthermore, these outcomes emphasize the necessity of including net hybrid 

HFM with wider spacing ratio configuration in separation module design. 

Re 
Mass Flow Rate – ṁ 

45 degree 

1000 0.0543 
Table 10. CO2 mass flow rate per unit area across membranes surface for the net 45 arrangement at 

𝑹𝒆 = 𝟏𝟎𝟎𝟎 and S/d=2.5. 
 

4.4. CONCLUSION  

CFD simulations have been conducted to characterize the effect of arrangement and 

spacing in hybrid separation module containing hollow fiber and spiral wound membranes. 

Modules consist of arrays of hollow fiber membranes in a feed channel bounded by two 

parallel spiral wound membranes.  The literature in the area of heat transfer show that the 

spacers enhance the momentum mixing and heat transfer. This study replaces spacers with 

hollow fiber membranes in the feed channel. The objectives of utilizing hollow fiber 

membranes are to enhance momentum mixing in the feed channel and to increase the rate 

of mass flow of CO2 passing across the hybrid membrane surface. The feed channel 

consists of three different arrangements of hollow fiber membranes: an inline, a staggered 

and a cross-linked membrane (45 degrees) with the spacing 𝑆 𝑑⁄  of 10 and 2.5. The 

separation module design studied for the Reynolds number from 400 to 1000 using a k-𝜔 

Shear Stress Transport (k-𝜔 SST) turbulence model. The primary flow is parallel flow to 

the spiral wound membranes and perpendicular to the hollow fiber membrane axes in the 

feed channel; this study is the first in implementing membrane flux boundary conditions in 



69 
 

hybrid membrane geometry to study reverse osmosis process of gas separation. The results 

show that three-dimensional flows generated by the net hollow fiber membranes have 

profound effects on the membrane performance.  The iso-surfaces of normalized stream-

wise velocity component, the y-component of vorticity, the Q-criterion, and mole fraction 

iso-surfaces clearly illustrate that higher momentum mixing achieved with the net hollow 

fiber membranes arrangement improves membranes performance. The mixing, caused by 

the net HFM, influences the distribution of the concentration.  The net arrangement helps 

the mixture becomes 𝐶𝐻4 richer than inline and staggered geometries.  Moreover, the net 

HFM show higher mass flux through the module compared to the inline and staggered 

geometries. This work illustrates that the hybrid system with a net hollow fiber membrane 

arrangement could be an effective way of designing gas separation modules.  Hybrid 

separation module outperforms modules with only spiral wound membranes and modules 

with only hollow fiber membranes. 
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CHAPTER 5: TWO DIMENSIONAL FLOWS CROSS FLOW 

ARRANGEMENT- DESALINATION  

5.1. GEOMETRY 

The schematic of the feed channel containing an array of hollow fiber membranes is 

shown in Fig. 24 Hollow fiber membranes are arranged with an inline (see Fig. 24a) and 

with staggered (see Fig. 24b) geometry. Dimensions of the computational domain 

consisting of the bank of hollow fibers, the inlet, and the outlet are illustrated in Fig. 24. 

The hydraulic diameter is 𝑑, the length of the membrane module is 𝐿 = 44𝑑, and the 

spacing between two consecutive hollow fiber membrane is 𝑆. The inline and staggered 

arrangement of the hollow fiber banks with the spacing 𝑆 𝑑⁄  of 1.5 and 2 are considered. 

The height of the hollow fiber bundle, 𝐻, is 4.5𝑑 for banks with 𝑆 𝑑⁄ = 1.5 and is 6𝑑 for 

banks with 𝑆 𝑑⁄ = 2. The distance 8𝑑 is assigned between the inlet and the bank of hollow 

fiber membrane. The distance between the outlet and the hollow fiber membrane bank is 

24𝑑 for 𝑆 𝑑⁄ = 1.5 and 30.5𝑑 for 𝑆 𝑑⁄ = 2. The inlet and outlet region is long enough to 

assure that the inlet and outlet conditions have minimal effect on the velocity and the 

concentration field in the bank of the hollow fiber membranes. Steady state simulations are 

conducted for values of the Reynolds number up to 1000 in both inline and staggered 

geometry. 
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Fig. 24. The schematic of flow domain: (a) the inline geometry and (b) the staggered geometry for 

𝑺 𝒅⁄ = 𝟏. 𝟓. Dimensions of the inlet region, the outlet region and the bank of the hollow fiber 

membranes are illustrated. 

5.2. MESH STUDY  

A mesh optimization study is conducted using three mesh sizes: 4, 6 and 8 million 

elements for SST model and 1.8, 2.8 and 4 million lattices for LES-LBM model. Profiles 

of the normalized stream-wise component of velocity, obtained for various meshes, are 

plotted in Fig. 25. Profiles are acquired at 𝑥/𝑑 = 18 for 𝑅𝑒 = 100 in the staggered 

geometry with 𝑆/𝑑 = 2. Reynolds number is defined as 𝑅𝑒 = 𝑈𝑖𝑛𝑑 𝜈⁄ , where 𝑈𝑖𝑛 is the 

average fluid velocity at the inlet and 𝑑 is the hydraulic diameter. Velocity profiles 

predicted by SST turbulence model using all three meshes are nearly the same; implying 

that 4 million-element mesh is sufficient to ensure spatial convergence for steady SST 

simulations. Similarly, time averaged velocity profiles predicted by LES-LBM using 2.8 

million and 4 million lattices are nearly the same, as shown in Fig. 25b. This suggests that 

2.8 million lattices are sufficient to provide reasonably accurate solution with LES-LBM 

method. SST results presented in this study are obtained using 4 million elements while 
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LES-LBM results are obtained using 2.8 million lattices. The time step is selected to be 

5.6 x 10-7 second to attain temporal convergence for LES-LBM simulations. 

 Fig. 25. Profiles of the stream-wise component of the velocity calculated using three mesh size using 

(a) SST and (b) LES-LBM model in the staggered geometry with 𝑺/𝒅 = 𝟐 at 𝑹𝒆 = 𝟏𝟎𝟎𝟎. 

5.3. TRANSIENT FLOWS  

Lattice Boltzmann method (LBM) is relatively new and innovative method that 

employs kinetic theory to simulate fluid flows [48]. The method is essentially equivalent 

to a direct numerical solution (DNS). The discretized equations by the lattice Boltzmann 

method can easily be parallelized; that makes the method to be an effective computational 

tool. The method is very versatile and it can be used to simulate complex flow systems 

[49]. The present study employs LBM to study two-dimensional transient flows in a 

channel containing arrays of impermeable cylinders. The objectives of utilizing lattice 

Boltzmann method are two folds: (1) to validate the turbulence model employed here and 

(2) to characterize temporal characteristics of the flow inside the hollow fiber bank. 
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The commercial software, CFX 14.5, is employed to conduct the numerical 

simulations. This software implements the finite volume discretization method. The solver 

that fully couples the velocity and pressure field is applied. The CEL expression language 

is deployed to implement the boundary conditions at the inlet and along the surface of the 

membrane. 

Results presented in this section are obtained for surfaces that are impermeable so that 

there is no water permeation through the membrane. It is also important to note that only 

flow field is simulated in this section to determine the transient characteristics of the flow. 

Profiles of the stream-wise component of the velocity obtained by LES-LBM and SST 

turbulence models are depicted in Fig. 26 in the inline and the staggered geometry at 𝑅𝑒 =

100 and 1000. Detailed description of the LES-LBM method is provided in Ref [33]. 

Velocity profiles normalized by the inlet velocity are attained at 𝑥/𝑑 = 14 in both 

geometries with 𝑆/𝑑 of 1.5. Time-averaged velocity profiles predicted by LES-LBM match 

reasonably well with those predicted by steady SST simulations at 𝑅𝑒 = 100. Slight 

deviations between these profiles are observed in the high speed regions of both 

geometries. Deviation between time-averaged and steady profiles increases as 𝑅𝑒 is 

increased to 1000, as shown in Fig. 26. The overall spatial characteristics of the time-

averaged velocity profiles predicted by transient and steady state simulations are similar. 

The velocity profiles presented in Fig. 26 clearly indicate that flow field inside the hollow 

fiber bank is transient in nature, especially at high flow rates. 
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Fig. 26. Profiles of the stream-wise component velocity predicted by steady SST turbulence model and 

LES-LBM model in the inline and the staggered geometry with 𝑺/𝒅 = 𝟏. 𝟓. Profiles are obtained at 

𝒙/𝒅 = 𝟏𝟒 at (a) 𝑹𝒆 = 𝟏𝟎𝟎 and at (b) 𝑹𝒆 = 𝟏𝟎𝟎𝟎. 

Contours of the stream-wise component of the velocity in the bank of hollow fiber 

membranes are shown in Fig. 27 for the inline and the staggered geometry with 𝑆/𝑑 = 1.5 

at 𝑅𝑒 = 100 and 1000. Images on the left column denote velocity contours in the inline 

geometry while images on the right column denotes velocity contours in the staggered 

geometry. Images at top two rows are contours obtained at 𝑅𝑒 = 100 while images at the 

bottom two rows are contours obtained at 𝑅𝑒 = 1000. The time-averaged velocity field 

predicted by LES-LBM is very similar to the steady state velocity field predicted by SST 

model. As illustrated above by velocity profiles (see Fig. 26) there are minor differences 

between the transient and steady velocity field in the high speed regions in both geometry. 

This demonstrates that SST turbulence model characterizes the flow field reasonably well 

in the hollow fiber bank region. The velocity field in the hollow fiber bank is repeated after 

each column of hollow fiber membranes after the first column in both geometry. It is noted 

that there are two distinct flow types in the inline geometry: jet-like flows and wake flows. 
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Jet-like flows are obtained in the region between rows of hollow fiber membranes and wake 

flows are obtained in the region behind and front of hollow fiber membranes. In the 

staggered geometry double layer of jet is observed between cylinders. Jets are interrupted 

approaching hollow fibers at the successive column. Also seen in the staggered geometry 

is the distinct flow pattern behind each hollow fiber membrane influenced by flow 

separations. 

Fig. 27. Contours of the stream-wise component of the velocity predicted by SST and LES-LBM model 

in the inline geometry (a, c) and in the staggered geometry (b, d). The normalized velocity contours are 

acquired at 𝑹𝒆 = 𝟏𝟎𝟎 (a, b) and at 𝑹𝒆 = 𝟏𝟎𝟎𝟎 (c, d). 
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Instantaneous drag coefficient is calculated for the hollow fiber membrane located at 

the 6th column and the middle row for the inline and the staggered geometry with 𝑆/𝑑 =

1.5. The drag coefficient is plotted as a function of time in Fig. 28 for 𝑅𝑒 = 100 and 1000. 

At 𝑅𝑒 = 100 fluctuations in the drag coefficient is very small in both geometry, as shown 

in Fig. 28a. On the other hand, at 𝑅𝑒 = 1000 drag coefficient fluctuates with large 

amplitudes in both geometries, as shown in Fig. 28b. This is a clear indication that the flow 

inside the tube bank is strongly time dependent. Hence hydrodynamic forces such as drag 

and lift coefficient, pressure coefficient, wall stress, water permeation, concentration along 

the surfaces of hollow fiber membranes are expected to depend on time strongly. These 

properties dictate the performance of the hollow fiber membranes in the desalination 

module. Drag coefficient predicted by the steady SST simulations is also plotted in Fig. 28. 

At both feed flow rates the time-averaged value of drag coefficient agrees with the drag 

coefficient predicted by steady SST simulations. This is another validation of the 

turbulence model utilized to study membrane performance presented below. Dimensionless 

time used in Fig. 28 is defined as 𝜏 =
𝑡𝑈

𝑑
. 
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Fig. 28. The drag coefficient predicted by SST and LBM model in the inline and the staggered geometry 

with 𝑺/𝒅 = 𝟐 at (a) 𝑹𝒆 = 𝟏𝟎𝟎 and (b) 𝑹𝒆 = 𝟏𝟎𝟎𝟎. The drag coefficient is calculated for the hollow 

fiber membrane located on the 6-th column and the middle row. 

Instantaneous contours of pressure, stream-wise component of the velocity and y-

component of the vorticity are shown in Fig. 29 in the staggered geometry with 𝑆/𝑑 = 1.5 

at 𝑅𝑒 = 1000. Contours are shown in two separate instants of a given periodic cycle: at 

𝜏 = 40.41 when drag coefficient assumes nearly maximum and at 𝜏 = 40.83 when drag 

coefficient assumes nearly minimum. Pressure and flow field show immensely different 

characteristics at these instants, as shown in Fig. 29. These patterns are repeated in time at 

each cycle. More importantly flow separation pattern around the hollow fiber membranes 

varies significantly with time. It is well-documented by the present author and other 

investigators that characteristics of the concentration polarization are strongly dependent 

on the separation patterns of the boundary layer [10,12,50]. It is clearly illustrated in Fig. 

29 that transient effects are very strong in these flows at high feed flow rates. 
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Fig. 29. Instantaneous contours of normalized pressure (a, b), stream-wise component of the velocity 

(c, d) and y-component of the vorticity (e, f) in the staggered geometry with 𝑺/𝒅 = 𝟏. 𝟓 at 𝑹𝒆 = 𝟏𝟎𝟎𝟎. 

Images are acquired at 𝝉 = 𝟒𝟎. 𝟒𝟏 (a, c, e) and at 𝝉 = 𝟒𝟎. 𝟖𝟑 (b, d, f). 



79 
 

5.4. HOLLOW FIBER MEMBRANE PERFORMANCE  

Steady-state velocity and concentration field in the hollow fiber bank are simulated 

using SST turbulence model. The hollow fiber membrane is treated as a functional 

permeable surface where the rate of water permeates through the membrane is coupled 

with the local concentration along the surface of the hollow fiber membrane. Simulations 

are conducted at 𝑅𝑒 of 100, 200, 300, 500 and 1000 for the inline and the staggered 

geometry.  

Fig. 30 depicts contours of the normalized concentration (𝐶/𝐶0) at 𝑅𝑒 = 100 and 1000 

in the inline and the staggered geometry with 𝑆 𝑑⁄ = 1.5. The distribution of the 

concentration is very different at these geometries. In the inline geometry near the front 

stagnation region, there is a high level of concentration polarization while the level of 

concentration in the region near the forward stagnation point is much lower in the staggered 

geometry. In the region near the backward stagnation region, however, the level of 

concentration is higher in both geometries. It is also important to note that the concentration 

polarization occurs where flow separates and the boundary layer is detached from the 

surface of the hollow fiber membrane. Fig. 30a and 30c show the contours of the 

normalized concentration in the whole hollow fiber membrane bank at 𝑅𝑒 = 100 while 

Fig. 30b and 30d show the enlarged images at around the hollow fiber located at the 6th 

column and the middle row. Fig. 30e and 30f show contours of the concentration around 

the same hollow fiber membrane at 𝑅𝑒 = 1000. In each geometry, the concentration 

polarization is mitigated significantly as the feed flow rate is increased to 𝑅𝑒 = 1000. This 

is due to the fact that momentum mixing induced by the presence of hollow fiber membrane 

in the feed channel is enhanced at higher feed flow rates. The level of momentum mixing 
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in the staggered geometry is much higher than that in the inline geometry at all flow rates, 

as evident from flow images presented above. That in turn results in better polarization 

mitigation in the staggered geometry compared to the inline geometry at all feed flow rates. 

It is also important to note that the level of concentration polarization is much smaller in 

the desalination module containing hollow fiber membrane banks than that in the 

desalination module containing spiral wound membranes [10,12,50]. The level of 

concentration polarization and its distribution along the surface of the membrane is very 

important in the overall performance of the desalination module. It is well-known that 

concentration polarization over the membrane surfaces influences the performance of the 

hollow fiber membranes adversely in the desalination process. Better momentum mixing 

in the hollow fiber bank in the staggered geometry is expected to improve hollow fiber 

membrane flux performance as well. 
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Fig. 30. Contours of the normalized concentration at 𝑹𝒆 = 𝟏𝟎𝟎  in the inline geometry (a, b) and in the 

staggered geometry (c, d) with 𝑺 𝒅⁄ = 𝟏. 𝟓. Images shown in (e, f) are concentration contours at 𝑹𝒆 =
𝟏𝟎𝟎𝟎  in the inline and the staggered geometry, respectively. Images shown in (b, d, e and f) are 

concentration contours around the hollow fiber membrane located at the 6-th column and the middle 

row. 

The normalized permeate water flux along the surface of hollow fiber membranes 

is calculated for the inline and the staggered geometry and is plotted in Fig. 31 as a function 

of angle, 𝜃. 𝜃 = 0 denotes the forward stagnation point while 𝜃 = 180 denotes the 

backward stagnation point. Fig. 31 shows the profiles of the normalized water flux and 

normalized concentration along the hollow fiber membrane located at the 8th column and 
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the middle row for 𝑆 𝑑⁄ = 1.5 at 𝑅𝑒 = 100 and 1000. The concentration displayed in Fig. 

31 is normalized by the average value of the concentration over the surface of the hollow 

fiber membrane, 𝐶̅. In the region near both forward and backward stagnation point the rate 

of water permeation is higher in the staggered geometry compared to that in the inline 

geometry at each flow rate. The permeate water flux assumes local minimum where the 

flow separates and the boundary layer is detached from the membrane surface. Flow 

separation characteristics differ significantly in these geometries and the locations where 

boundary layer is detached varies as the feed flow rate is changed. There is a clear transition 

occurring in the inline geometry as the flow rate is changed. At the low feed flow rate 

(𝑅𝑒 = 100) the permeate water flux is the lowest at the forward stagnation point. As the 

flow rate is increased to 𝑅𝑒 = 1000 the water flux becomes lowest at locations where flow 

separation occurs, as shown in Fig. 31a and 31b. It should also be noted that the rate of 

water permeate is increased significantly as the feed flow rate is increased. The 

concentration profiles show very similar characteristics. At each flow rate the 

concentration distribution along the surface of the membrane is very different in the inline 

geometry compared to that in the staggered geometry. It is clear from Fig. 31 that regions 

where concentration polarization occurs coincide with low flux regions. There is nearly 

16% reduction in the concentration polarization as 𝑅𝑒 is increased from 100 to 1000. It is 

obvious that the flow characteristics in the hollow fiber membrane bank directly influence 

the membrane flux performance and the characteristics of the concentration polarization of 

the separation module. As it is presented above flow field in the hollow fiber bank becomes 

strongly time dependent and these transient effects are expected to influence the membrane 

performance. Transient analyses including the mass transport with an accurate membrane 
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flux model should be performed as a future study to investigate hollow fiber membrane 

performance in these separation modules. 

 

Fig. 31. The normalized water flux profiles along the surface of the membrane in the inline and the 

staggered geometry at (a) 𝑹𝒆 = 𝟏𝟎𝟎 and (b) 𝑹𝒆 = 𝟏𝟎𝟎𝟎. The normalized concentration profiles along 

the surface of the membrane for the inline and the staggered geometry at (c) 𝑹𝒆 = 𝟏𝟎𝟎 and (d) 𝑹𝒆 =
𝟏𝟎𝟎𝟎. Profiles are calculated for the hollow fiber membrane located at the 8th colmun and the middle 

row. 
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Fig. 32 and Fig. 33, respectively, illustrate velocity vectors near the hollow fiber 

membrane located at the 8th column and the middle row at 𝑅𝑒 = 100 and 1000. Flow 

structures near the forward stagnation region are strikingly different in the inline geometry 

and in the staggred geometry. High speed flow is observed in the region near the forward 

stagnation point in the staggered geometry while in the region near the forward stagnation 

point there is a low recirculating vortex pair in the inline geometry. The intensity of the 

flow in that region is increased as the feed flow rate is increased and that improves the 

concentration polarization and increases the permeate water flux. The water flux and 

concentration polarization are directly tied to flow structures, specifically flow separation 

patterns, around the hollow fiber membranes. 
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Fig. 32. Velocity vector field near the hollow fiber membrane located at the 8-th column and the middle 

row at (a, b) 𝑹𝒆 = 𝟏𝟎𝟎 in the inline geometry (a) and in the staggered geometry (b).  
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Fig. 33. Velocity vector field near the hollow fiber membrane located at the 8-th column and the middle 

row at (a, b) 𝑹𝒆 = 𝟏𝟎𝟎𝟎 in the inline geometry (a) and in the staggered geometry (b). 
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Local Sherwood number is calculated along the surface of the hollow fiber membranes 

in the inline and staggered geometry at all feed flow rates considered here. Sherwood 

number profiles are plotted in Fig. 34 for 𝑆 𝑑⁄ = 1.5 at 𝑅𝑒 = 100 and 1000 as a function 

of angle (𝜃) along the surface of hollow fiber membrane located at the 8th column and the 

middle row. Sherwood number profile in the staggered geometry displays the maximum 

near the forward stagnation point and the minimum at points where the boundary layer is 

detached. Overall, Sherwood number is lower in the wake of the hollow fiber membrane 

in both geometries. Sherwood number increases drastically as the feed flow rate is 

increased in both geometries. Sherwood number of the staggered geometry is greater than 

that of the inline geometry at all feed flow rates. The difference in Sherwood number is 

greater at lower values of the Reynolds number. At 𝑅𝑒 = 100, Sherwood number of the 

staggered geometry is more than doubled compared to that in the inline geometry, as shown 

in Fig. 34. Especially, part of the membrane surface near the forward and backward 

stagnation point in the staggered geometry performs much better than those in the inline 

geometry. Sherwood number in each geometry is lowest where boundary layer is detached 

from membrane surface. In the inline geometry surfaces of the hollow fiber membranes 

subject to high speed flows (jet like flows) perform so much better than surfaces subject to 

low speed flows (wake flows). On the other hand, front-side surfaces of hollow fiber 

membranes in the staggered geometry perform better at each feed flow rates. These are the 

surfaces subject to high speed flows in the staggered geometry. High Sherwood number 

regions coincide perfectly with low concentration polarization regions at all flow rates in 

each geometry. Fig. 34 also depicts the normalized wall shear stress as a function of angle 

(𝜃). The wall shear stress is normalized by the maximum shear obtained along the surface 



88 
 

of the hollow fiber membrane. Low wall shear is observed at or near the forward stagnation 

and backward stagnation point in both geometries at each flow rate. Overall, at the back 

side of the hollow fiber the wall shear stress is lower in both geometries. Low shear is also 

obtained where the boundary layer is detached from the surface of the hollow fiber 

membrane. These areas are more susceptible to the fouling buildup. Studies by Koutsou et 

al. [51], Radu et al. [52] and Park et al. [53] show that fouling most likely occurs at low 

shear regions along the surface of the membrane. It should be mentioned that wall shear is 

generally higher in regions where high speed flows are observed. This study clearly 

demonstrates that arrangement of the hollow fiber membranes in the feed channel of 

desalination modules is vital in design and optimization of these separation modules. 
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Fig. 34. Sherwood number profiles along the surface of the membrane in the inline and the staggered 

geometry at (a) 𝑹𝒆 = 𝟏𝟎𝟎 and (b) 𝑹𝒆 = 𝟏𝟎𝟎𝟎. The normalized wall shear stress profiles along the 

surface of the membrane for the inline and the staggered geometry at (c) 𝑹𝒆 = 𝟏𝟎𝟎 and (d) 𝑹𝒆 =
𝟏𝟎𝟎𝟎. Profiles are calculated for the hollow fiber membrane located at the 8th colmun and the middle 

row. 

Coefficient of performance (COP) is introduced to compare the hollow fiber membrane 

flux performance of the separation module with the inline and the staggered geometry. The 

coefficient of performance is based on the membrane flux performance for the same 

pumping power and it is defined as 
𝑆ℎ𝑠 𝑆ℎ𝑖⁄

(𝑓𝑠 𝑓𝑖⁄ )1 3⁄ . Here 𝑆ℎ𝑠 is the average value of the Sherwood 

number of hollow fiber membranes in the staggered geometry while 𝑆ℎ𝑖  is the average 

Sherwood number of the inline geometry. 𝑓𝑠 is the average friction factor in the staggered 

geometry and 𝑓𝑖 is the friction factor in the inline geometry. Values of the coefficient of 
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performance are listed in Table 11 at various values of Reynolds number in the range of 

100 to 1000 for 𝑆 𝑑 = 1.5⁄  and 2. The coefficient of performance is greater than unity at 

all feed flow rates for both spacing of membranes; indicating that hollow fiber membranes 

in the staggered geometries perform better than those in the inline geometries. Hollow fiber 

membrane in the staggered geometry performs even better when the fibers are packed 

tighter, as indicated by the greater value of COP in Table 11. Performance of the module 

with the staggered geometry is much better at lower feed flow rates. As the flow rate is 

increased the coefficient of performance approaches to unity, so both geometry performs 

similar at higher flow rates. It is also important to note that mitigation of the concentration 

polarization is better in the staggered geometry at all feed flow rates, especially at higher 

flow rates. The results presented here agrees well qualitatively with experimental results 

reported by both Huang et al. and Zhang et al. [28,29] in a similar separation process. The 

experimental data showed that the flux performance of the module with staggered fibers is 

better than that of the module with inline fibers. The performance of the staggered modules 

is much better at lower feed flow rates. It was also reported that staggered module performs 

much better when hollow fibers are packed tightly. 

Re 
COP (S/d = 

1.5) 

CP (S/d = 

2) 

100 1.224 1.120 

200 1.167 1.118 

300 1.139 1.112 

500 1.125 1.109 

700 1.114 1.007 

1000 1.102 1.003 

Table 11. The coefficient of performance, COP, is listed as a function of Re for 𝑺 𝒅⁄  of 𝟏. 𝟓 and 𝟐. COP 

compares performance of hollow fiber membranes in the staggered geometry against hollow fiber 

membranes in the inline geometry. 
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5.5. CONCLUSION 

Numerical simulations are conducted to characterize flux performance of the 

membrane, concentration polarization and potential fouling sites for the water desalination 

process by reverse osmosis hollow fiber membrane using steady 𝑘-𝜔 SST turbulence 

model. Surface of hollow fiber membranes is modeled as a functional boundary where 

permeate water flux is determined from the local concentration, and the permeability and 

the selectivity of hollow fiber membranes. Velocity and concentration field are 

characterized in the bank of hollow fiber membrane in the inline and the staggered 

geometry. Profiles of the permeate water flux and concentration along the surface of the 

hollow fiber membranes are presented for a wide range of the Reynolds number. The 

permeate water flux and Sherwood number increases as the feed flow rate is increased and 

concentration polarization is alleviated significantly with increasing feed flow rate. Hollow 

fiber membranes in the staggered geometry performs better than those in the inline 

geometry, especially at lower flow rates. This conclusion is consistent with the observations 

made by Huang and Zhang and their co-workers. Large Eddy simulations using lattice 

Boltzmann method show that flows in the bank of hollow fiber membrane are strongly time 

dependent. Such transient effects could have profound influence on the membrane flux 

performance, concentration polarization and fouling. It is worth investigating transient 

effects in the future studies. Time averaged flow properties predicted by transient LES-

LBM simulations agree reasonably well with those predicted by steady SST turbulence 

model; validating the turbulence model and the numerical methods used to characterize 

performance of the separation module. It is demonstrated by the present study that the 
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arrangement and the spacing of hollow fiber membranes in the desalination module are 

essential in the design and optimization of these systems. 
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CHAPTER 6:  SUMMARY  

6.1. SUMMARY OF CURRENT RESULTS  

The gas separation using reverse osmosis membranes had been studied extensively 

by several investigators. Enhancing the performace of separation modules and enhancing 

the selectivity and the permeability of the hollow fiber and spiral wound membrane 

modules are some of these studies.  In present work, the focus is more on improving the 

membrane performance utilizing momentum mixing and less on these aspects of 

separation. This is a well-known and well-studied alternative method for enhancing 

membrane performance.   

Computational study is conducted to investigate the flow and mass transport process 

utilizing hollow fiber (HFM) membrane and spiral wound modules in gas separation and 

desalination applications. The studies consist of two- and three-dimensional flow 

computational fluid dynamics (CFD) simulations. The membrane surface is treated as a 

functional boundary where the mass flux and concentration of each species are coupled. 

Simulations are conducted using the steady Shear Stress Transport (k-𝜔 SST) turbulence 

model in order to characterize hollow fiber membrane and spiral wound membrane 

performance.  The separation module is arranged in the radial crossflow configuration, 

where the flow direction is normal to the HFM axes.  In this study, we examined different 

hollow fiber membrane arrangements within the module at different values of Reynolds 

numbers. 

Hollow fiber membrane modules are among the most common separation devices 

employed in membrane separation applications. Three-dimensional steady-state 

computational fluid dynamics simulations are carried out to study flow past hollow fiber 
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membrane banks. The current study investigates the effects of flow behavior on membrane 

performance during binary mixture separations. Carbon dioxide (CO2) removal from 

methane (CH4) is examined for various arrangements of HFMs in staggered and inline 

configurations. The most common HFM module arrangement is the axial flow 

configuration, however, this work focuses on the radial crossflow configuration. The 

hollow fiber membrane surface is a functional boundary where the suction rate and 

concentration of each species are coupled, and are functions of the local partial pressures, 

the permeability, and the selectivity of the HFM. CFD simulations employed the turbulent 

k-𝜔 Shear Stress Transport (k-𝜔 SST) model to study HFM performance for Reynolds 

numbers, 200≤Re≤1000. The efficiency of the inline and staggered arrangements in the 

separation module is evaluated by the coefficient of performance and the rate of mass flow 

per unit area of CO2 passing across the membrane surface. As a result of numerical 

simulations, increased momentum mixing achieved with the staggered arrangement 

enhances HFM performance, and is observed through comparison of the x- and y-directions 

of vorticity that illustrate considerable differences in vortical structure size. This work 

demonstrates that the module with staggered arrangements outperforms the module with 

inline arrangements. 

The influence of hollow fiber membrane arrangement on fluid dynamics and mass 

transfer in feed channels bounded by two parallel spiral wound membranes have been 

studied. This study is the first in implementing membrane flux boundary conditions in 

hybrid membrane geometry to study reverse osmosis process of gas separation. The results 

show that three-dimensional flows generated by the net type of hollow fiber membranes 

have profound effects on the membrane performance. The net type of hollow fiber 
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membrane with angle θ=45° induces higher velocity, vorticity, Q-criterion, and mole 

fraction concentration at the membrane surface when compared to the inline, and staggered 

arrangements. The momentum mixing generated by the net type of hollow fiber membrane 

enhances the mass transfer rates. These hybrid membrane systems have higher 

performance and found to be more effective when compared to the conventional hollow 

fiber or spiral wound modules.  

Reverse osmosis (RO) desalination is a common process to produce fresh water. 

The process requires high pressure in a feed channel of the separation module. The applied 

pressure has to be larger than the osmotic pressure of the dissolved salt. The selective 

hollow fiber membrane passes water and rejects dissolved salt. The rejected salt can 

accumulate near the surface of the membrane and can result in a concentration polarization. 

It is well-known that the salt concentration polarization at the RO membrane surface 

adversely affects the pure water production. It has been documented that the concentration 

polarization reduction at the membrane surface increases membrane life time [54,55]. It is 

reported that the concentration polarization and the fouling buildup can be mitigated by the 

promotion of the momentum mixing in the feed channel in desalination modules 

[10,12,50]. For design and optimization of these separation modules the membrane flux 

performance, concentration polarization and fouling-buildup/scaling need to be 

characterized. There are many studies documented that the momentum mixing in the feed 

channel help improves the membrane flux performance in both gas separation and 

desalination modules [10,12,14,15,19,20,50].  

Water desalination by reverse osmosis hollow fiber membrane has been widely used to 

produce fresh water. This work numerically characterizes flux performance of the 
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membrane, concentration polarization and potential fouling sites in the reverse osmosis 

desalination module containing hollow fiber membranes arranged in an inline and a 

staggered configuration. Steady k-ω SST turbulence model is utilized to study membrane 

performance. An accurate membrane flux model, the solution-diffusion model, is 

employed. Hollow fiber membrane surface is treated as a functional boundary where the 

rate of water permeation is coupled with local concentration along the membrane surface. 

The rate of water permeation increases and concentration polarization decreases as the feed 

flow rate is increased. Hollow fiber membranes in the staggered geometry perform better 

than those in the inline geometry. It is proven by the present study that desalination modules 

containing hollow fiber membranes should be designed and optimized by careful 

consideration of their configurations. It is demonstrated here that flows in the hollow fiber 

bank become strongly time-dependent at high flow rates and that transient effects could 

profoundly influence hollow fiber membrane flux performance and characterization of 

concentration polarization.  

  6.2. FUTURE WORK 

 High fidelity Large Eddy Simulations (LES) should be conducted to study gas 

separation process in modules considered in this study. These simulations can identify 

flow structures in the feed channel more accurately. More importantly, transient effects 

on the membrane performance can be captured with LES simulations. Large eddy 

simulations conducted by our group for desalination process revealed that transient 

nature of flows have profound influence on membrane performance. It is worth 

investigating transient effects in the future studies for gas separation using reverse 

osmosis membranes. Also, LES technique is more accurate model that can capture 
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three-dimensional flow structures better than k-𝜔 SST turbulence model employed in 

the current study.  

 The current work assumes constant total concentration of the mixture in the feed 

channel. Hence, in this work the mass transport equation is solved only for one of the 

speices. With an assumption of constant total concentration the distribution of other 

species concentration is determined. This assumption should be relaxed for future 

studies. Since both species can diffuse through the membrane with a different rate the 

total concentration varies inside the feed channel and this variation could be significant 

enough that it should not be neglected. Mass transport model should be improved by 

considering varations of each species for the future work. A better understanding of the 

influence of varying concentration and pressure could allow us to further enhancment 

of the membrane module and to better understanding of the membrane performance.  

 The current study can be extended by conducting an experimental investigation because 

there is a lack of experimental investigation studying the influence of momentum 

mixing on the membrane performance. Experimental measurements with 

computational predictions can work very well to optimize and design the next 

generation of gas separation modules. 

 It is anticipated that this work would be the basis for further studies and enhancement 

of the hollow fiber membrane module in desalination and gas separation applications. 
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