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Abstract 

Advanced semiconductor materials for thermoelectric applications often comprise 

of nanostructured grains in order to take advantage of phonon scattering phenomenon at 

the grain boundaries and thus increase the thermoelectric figure of merit for the material. 

Opportunities for further improvements in the figure of merit are available via usage of 

appropriate dopants. In this report, thermal transport across low-angle, symmetric tilt grain 

boundaries in β-SiC is studied and the influence of dopants, introduced at these grain 

boundaries, on the phononic transmission across the grain boundary is investigated. 

Non-equilibrium molecular dynamics (NEMD) simulation are used to gain insights 

into the impact of grain-boundary segregation on Kapitza resistance of doped β-SiC at 

high-temperature. In particular, the role of dopant concentration and dopant/matrix 

interaction strength in determining the resistance is assessed. Dopants that adhere to the 

matrix material with the same strength as they adhere to other dopant atoms are determined 

to spread out across the grain boundary cross-section forming a layered structure and 

resulted in a concomitant gradual increase in resistance with increase in dopant 

concentration. Whereas, for relatively weak dopant/matrix interaction strengths, dopant 

clustering predominates, and the Kapitza resistance increases significantly for small 

changes in dopant concentration. The different interaction strength regimes are investigated 

by mapping the spatial distribution of temperature at the grain boundary cross-section and 

calculating the degree of structural disorder. It was found that the dopant clusters lead to a 

heat flux parallel to the grain boundary plane and a significant increase in boundary 

disorder, partly explaining the observed increase in Kapitza resistance at the boundary.  
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A comparison of the local vibrational density of states for the weak and strong 

dopant/matrix interaction strength cases is performed and a subset of modes that are 

significant for thermal transport in this system are identified. It is determined that for the 

nano-structures studied, the loss of optical phonon modes that have typically been ignored 

for thermal transport analyses, resulted in a more significant increase in Kapitza resistance 

at the grain boundary. This analysis is complemented by calculations of the projected 

density of states and a corresponding eigenmode analysis of the dynamical matrix that 

highlight important phonon polarizations and propagation directions. We also examine the 

dependence of the Kapitza resistance on temperature, dopant mass and dopant/matrix 

interaction strength, the latter parameter affecting grain-boundary structure and, hence, 

phonon scattering. 

The study concludes with an investigation into the effects of grain boundary 

orientation and the local grain boundary energy on phonon scattering at the boundaries. 

More specifically, the impact of dopants on the interface resistance is examined for these 

boundaries. It is observed that for the methodology used to create the grain boundary 

systems, the interface resistance was independent of the grain boundary orientation 

irrespective of the dopant concentration. However, grain boundary energy had distinct 

effects on the interface resistance. Layering dopant caused an increase in disorder at the 

grain boundaries in higher energy system resulting in an increase in phonon scattering and 

therefore higher interface resistance. 
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Chapter 1 
 

1. Introduction 

1.1. Motivation 

The most germane aspect of many technologies used in our day to day activities is 

the management of heat in a system. While some technologies require efficient removal of 

heat in order to obtain best performance, others aim at retaining as much heat as possible. 

As the demand for oil continues to soar for a myriad of applications and the focus has been 

shifting to alternative sources of energy, there is an increasing interest in waste heat 

management and recovery. For example, a typical engine is able to convert only 25% of 

fuel energy to useful energy to move the vehicle and power the accessories. Furthermore, 

about 40% of the energy generated from the combustion of fuel is directly expelled with 

exhaust gases[1]. A similar observation can be made for technologies like solar towers[2], 

thermal power plants, industrial furnaces [3, 4], and even microchips and data centers[5-

7], where heat generation is an inherent part of the process. The use of thermoelectric 

generators (TEGs) to recover some of the waste heat in the processes mentioned above can 

potentially enable the automobile industry to improve engine fuel economy by as much as 

5% [8]. 

Historically, TEGs were primarily used in military and space applications since the 

late 1950s, primarily due to the ease of scalability and simplicity to use [9]. TEGs have 

been researched for several decades now to harvest waste heat from environments like 

automotive exhaust into electricity available to the automobile [10], owing in part to the 
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absence of moving parts, importing high reliability and simplicity. The first prototype 

geared toward such an application dates back to the 1960s and has been pursued by 

automobile manufacturers like BMW, GM and Nissan. These companies have been 

experimenting with PbSeTe/PbTe, Bi2Te3/Sb2Te3 based alloys among several others for 

use as thermoelectric material in TEGs [11-13]. However, most materials available so far 

that offer sufficiently high thermoelectric performance can only be used in relatively low 

temperature scenarios; although candidate materials have been explored for high 

temperature thermal management applications, most contain either toxic elements like lead 

(Pb) or other elements that make them less attractive from a mass manufacturing 

perspective (i.e. because of cost/availability, toxicity, or environmental impact). Thus, 

great motivation exists to advance thermoelectric materials usable at high temperature and 

familiar to existing manufacturing practices.  

1.2. Problem Description 

Thermoelectric materials are characterized by a figure of merit ZT=S2Tσe/κ, which 

essentially quantifies the efficiency with which a material converts heat to electricity. Here 

 

Figure 1: Schematic representation of the energy usage in a typical, modern automotive system 

[1] (Reproduced with permission) 
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S is the Seebeck coefficient for the material, T is the absolute temperature, σe and κ are the 

electrical and thermal conductivity, respectively [14-16]. It is customary to include 

absolute temperature T on both sides of the figure of merit expression. S measures how 

well electronic and phononic degrees of freedom couple in a material; it can be crudely 

interpreted to characterize how well electrons carry heat. The sign of S is determined by 

the sign of the predominant charge carrier and the magnitude of S is related to the entropy 

per charge carrier. High S and σe mean electronic transport is both facile and associated 

with coupled thermal transport. Because, the most efficient thermoelectric materials will 

also maintain a temperature gradient across the material, lower κ is desirable. S, σe and κ 

are all sensitive to materials chemistry and a primary path to optimizing thermoelectric 

materials is through tailored chemistry, including controlled doping. However, increases 

in σe are typically accompanied by increases in κ, giving potentially minimal effect on ZT 

[17, 18]. Although thermal transport through the bulk of the material is governed by 

Fourier’s law, on the atomistic level, it is the phononic movement through the system that 

is responsible for heat conduction and Fourier’s law gives a more simplistic result from the 

overall phononic movement. A path that has therefore been proposed for reducing κ while 

leaving σ relatively unchanged is to increase phonon scattering at microstructure defect 

features, like grain boundaries (GBs), by reducing the grain size in the microstructure [19, 

20]. For example, in bulk Si at 300K, 50% or more heat is carried by phonons of mean free 

path about 600 nm whereas only 10% heat is carried by phonons of mean free path less 

than about 90 nm. With the grain size reduced, it is evident that the overall thermal 

conductivity of the material is extensively reduced [21]. This may be an effective path for 

optimizing ZT because the mean free path for phonons is significantly larger than that for 
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electrons. This is particularly true for semiconducting materials, whose thermal transport 

is dominated by phononic modes rather than electronic. Since such materials are candidates 

for emerging thermoelectric applications, great potential exists to tune ZT through 

controlled processing of nanometer scale grain structure materials. By processing grain 

sizes down into the nanometer regime, potentially significant reductions in κ may be 

achieved without affecting σe or S. Further influence can be had by preferential inclusion 

of dopant atoms at GBs, though much remains unknown about the coupled role of 

scattering due to microstructure defects (GBs) and due to dopant species, both in the 

material matrix as well as near GBs. 

1.3. Literature Review 

Thermal boundary resistance, also called Kapitza resistance (Rk), is the resistance 

to heat flow across interfaces like those between two nano grains, and was first pointed out 

by P.L. Kapitza while investigating super-fluidity of Helium [22]. In other words, Rk is the 

measure of drop in temperature at the interface as heat current passes from one grain to 

another. This reflects as a reduction in the overall thermal conductivity of the system 

(discussed in more details in Chapter 4). Rk has since been investigated both experimentally 

and numerically for a wide variety of materials. Rk, has been determined to hold the key to 

taking advantage of nano-structuring the material for different applications. For this reason, 

thermoreflectance techniques have been developed which measure the change in surface 

reflectivity with time at the temperature of interest using high-resolution thermal 

microscopy to calculate Rk [23-25]. This non-destructive, non-contact method has been 

used extensively to examine the interfacial phonon scattering and subsequently thermal 
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conductivity of engineered materials. In experiments conducted by Koh and Cahill, it was 

demonstrated that for semiconductor alloys of InGaP, InGaAs and SiGe, the thermal 

conductivity of samples decreased with the decrease in the thickness of the layers as 

phonons with wavelength greater than the sample thickness were scattered at the interface 

[26]. The sample sizes that have been developed and tested range from a several hundred 

nm to few μm. With the reduction in size, Fourier’s law ceases to apply as the thermal 

contribution of phonons with mean free path longer than the grain size are scattered 

resulting in a deviation from the bulk thermal conductivity. Thermal conductivity 

accumulation functions have been developed to calculate the thermal conductivity by 

integrating over the density of state of phonons with mean free path within the grain size 

limits in good agreement with the experimental observations [27-29]. In a different work, 

Cheaito et al. advanced a thermal boundary conductance accumulation function to study 

the phononic transmission across dissimilar material interfaces [30]. 

Experimental work performed thus far has been admirable in both the advancement 

of techniques and the usage of those techniques to probe thermal transport effects of 

microstructure scale defects like GBs. Experimental efforts to elucidate thermal boundary 

resistance and theoretical developments in this realm have benefitted greatly from 

companion work using atomic scale simulations. A significant body of research has been 

advanced to understand phonon scattering by GBs in semi-conductor materials via models 

with atomic scale resolution. Much of this work was based on non-equilibrium molecular 

dynamics simulations where either a highly characterized phonon wave packet or a heat 

flux is made to impinge on a boundary. In the former case, the spectral dependence of 

phonon transmission and reflection can be computed; in the latter case, Rk can be computed 
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via the discontinuous temperature drop that occurs at GBs subject to a heat flux. Topics 

explored in this realm include effects of mass mismatch at the GB [31-33], grain orientation 

[34-36], grain size [32, 37, 38], vacancy defects [39, 40], and dislocations [41-43]. Duda 

et al. observed that the cut-off radius and the strength of interaction between the atoms 

about a mass mismatched GB on Rk, for example, reduces with an increase in temperature 

[44]. High strains in materials resulting from dislocations have been identified to cause 

significant increase in Rk with larger Berger vector dislocations scattering more phonons 

[41]. The effects due to dopants at GBs have also been looked at but most of the prior work 

focused on low (up to 400 K) or moderate temperature (500 K – 800 K) regimes. Volz et 

al. used Non-equilibrium Green’s function to demonstrate that the transmission through 

the interface can be controlled by introducing impurity atoms and by controlling the 

strength of bonds between the materials comprising the interface. They noted that the 

transmission is maximum when the mass of the impurity atom is the arithmetic mean of 

the masses on either side of the interface or when the strength of the bonds across the 

interface is harmonic mean of the bond strength on either sides of the interface [41]. 

Variation in mass, concentration, and the strength of bonds between impurity atoms have 

also been identified to have substantial impact on Rk [45], however, Duda et al. also noted 

that contrary to their earlier work involving chemical etching of substrate [46], Rk increased 

with increase in impurity concentration. In many cases where materials are either 

intentionally or unintentionally doped with chemical species different from the matrix 

elements, dopant atoms will preferentially segregate to GBs in the material. For example, 

dopant atoms of significantly greater size than matrix atoms have a driving force to be near 

GBs where crystallographic mismatch results in additional free volume. Lower stress level 
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due to the dopant inclusion reduces system energy [47-50]. Given this behavior in some 

systems, it is of interest to understand how dopants at GBs influence thermal transport 

across interfaces and if they can be used to maneuver thermal conductivity of the material. 

1.4. Objectives and Thesis Structure 

The objective of this thesis is to develop an understanding of thermal transport at 

nano-scale, particularly the impact of dopants on thermal conductivity across grain 

boundaries. The focus is primarily on β–SiC due to its high endurance and strength at high 

temperatures. We note that for β–SiC, the ZT is of the order of ~10-3 at 500 K, and has 

therefore not been identified as a promising material for thermoelectric applications. We 

wish to determine whether its thermal properties may be substantially altered by the 

presence of segregating dopants. Thus, we perform large-scale molecular dynamics (MD) 

simulations of β–SiC bicrystals in which dopants segregate to the grain boundary to 

calculate thermal interface resistance using the massively parallel LAMMPS code [51]. 

The outline of the remainder of the thesis is as follows: 

In Chapter 2, a brief history and details pertaining to the MD simulations method 

are discussed. Subsequently, the interatomic potential functions used to model the 

interactions between the constituent atoms of the matrix material as well as those with the 

dopant atoms are described. Finally, the equilibrium Green Kubo method and non-

equilibrium direct method for predicting thermal conductivity and interfacial thermal 

resistance using MD simulation are introduced. 

In Chapter 3, a brief introduction to grain boundaries is given. Particular emphasis 

is given on description of a grain boundary and the fine differences between different 
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possible boundaries. In this chapter, the procedure of boundary creation for our simulation 

cells is explained in detail. The chapter concludes with the details pertinent to introducing 

dopants at the grain boundary. 

Chapter 4 commences with breaking down thermal conductivity in a material 

between contributions coming from electrons and phonons. Subsequently, the underlying 

physics behind thermal transport in material is used to calculate the thermal interface 

resistance. A detailed procedure is provided to ensure that results obtained are statistically 

accurate. The chapter concludes with various sources of errors in the calculations along 

with the appropriate measures taken to account for them. 

In Chapter 5, the MD simulations procedure is validated by calculating thermal 

conductivity of β–SiC. The results obtained are compared to previously published work as 

well as experimentally obtained data. It is noted that the MD simulations performed under 

predict the thermal conductivity for the system and that corrections need to be performed 

to account for the quantum effects. 

In Chapter 6, the effect of dopant segregation at the grain boundary on Kapitza 

resistance is explored [52]. Comparison is drawn with respect to Kapitza resistance at 

undoped grain boundaries as well as in systems where dopant segregation is not observed. 

Structure factor calculations are performed to explain the dependence of Kapitza resistance 

on the structural changes introduced by the dopants at the grain boundary. The chapter 

concludes with development of a parametric expression that accounts for the effects of 

different concentrations of dopants, nano-structuring, and the grain boundary disorder on 

Kapitza resistance. 
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Chapter 7 delves deeper into dopant/matrix interaction strength and discusses 

several cases to draw on its effect on Kapitza resistance. Phonon density of state analyses 

are performed to determine the key phonon modes responsible for thermal transport and 

the contributions from optical and acoustic phonon modes are compared. This chapter is 

particularly intriguing as contrary to general belief, it is found that optical modes had a 

much more significant contribution to thermal transport than acoustic modes. The other 

aspects evaluated in the chapter include effect of temperature dopant mass on Kapitza 

resistance. 

Chapter 8 discusses the effect of grain boundary orientation on Kapitza resistance. 

The only grain boundary studied in chapters VI and VII is 7.5891° symmetric tilt boundary. 

In this chapter, four more symmetric tilt grain boundary systems are evaluated at three 

different temperatures. With focus maintained on the effect of dopants, three of the five 

symmetric tilt systems are evaluated with different dopant concentrations. Although, the 

undoped systems appear to be independent of grain boundary orientation, the effect of 

dopants becomes discretely evident at high concentrations. Phonon density of state 

calculations are used to explain the observations in greater detail. 

In Chapter 9, the major contributions of the work presented in this thesis and 

suggestions for future study are discussed. 
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Chapter 2 
 

2. Molecular Dynamics Simulations 

2.1. Introduction 

Computer simulation techniques have seen a significant advancement given that 

the application of computers for numerical solution is only a few decades old, with the 

earliest atomistic simulation performed by Metropolis et al. at Los Alamos National Lab 

using the then most powerful computer MANIAC in 1953 [53]. Computer simulations are 

currently used to study a wide array of phenomenon and properties like thermal and mass 

transport in condensed matter, fracture progression, protein folding and phase transitions. 

Computer simulations can be divided in to two different types: Monte Carlo (MC) 

simulations and molecular dynamics (MD) simulations. The idea behind MC simulations 

is to determine the probability of a specific outcome over several random trials. A simple 

example pertaining to an atomic arrangement in a system would be the potential energy of 

the system. MC simulations use a random number generator to randomly move atoms in 

the system. For each new position, the changes in potential energy of the system can be 

probed. Subsequently, the new atomic position is accepted if the potential energy of the 

system decreased. If the potential energy of the system increased, an additional probe can 

be done by generating a new random number between 0 and 1 and comparing it with the 

Boltzman factor of the energy difference between the old system state and the new system 

state. More details about the method can be found in Ref [53]. Although MC simulations 
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traditionally do not include model dynamics, newer methods that combine MC with other 

simulation techniques like quantum calculations are continuously being developed. 

MD simulations on the other hand need a model describing atomic interactions in 

the material. Two of the most commonly used methods to do this are: a) ab-initio (first 

principle) methods and b) using classical interatomic potentials. Ab-initio method is based 

on quantum mechanical treatment of electrons and is therefore very advantageous in 

studying chemical effects. Although ab-initio methods are backed by strong physical 

underpinnings, they are computationally expensive and the N3 scaling limits the system 

size to few hundreds of atoms. On the other hand, classical interatomic potentials not only 

permit access to significantly larger systems with millions of atoms, but are also much 

faster. Classical MD simulations also enable studying processes like melting, deformation 

and diffusion, which are presently inaccessible by ab-initio methods. 

The properties measured in continuum scale simulation as well as from experiments 

are typically “averaged” properties or bulk properties that are averaged over a large number 

of particles and also averaged over duration of measurement. MD simulations allow us to 

measure the instantaneous parameters like position and velocity of atoms, which when 

averaged over appropriate statistics can provide the equilibrium and transport properties of 

a classical many-body system as measured from experiments. This scale of resolution has 

given the researchers the opportunity to not only verify the theory and the underlying 

physics, but has also enabled them to explore new ideas that can’t be tested experimentally 

due to either technological limitations or logistics. 

MD simulations are similar to a real experiment in many respects. In MD 

simulation, a representative model is created for the sample based on the arrangement of 
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particles specific to that sample, and the system is evolved using Newton’s equation of 

motion, as discussed in Section 2.2, until the properties of the system do not change with 

time [54]. The only other required input is the specification of interatomic interactions. 

These interactions are typically obtained either through ab-initio calculation or empirical 

relations and are element specific. The interatomic interaction potential functions used in 

this work are described in Section 2.4. The first successful MD simulation was performed 

by Alder and Wainwright, where they solved the classical equations of motion for a system 

composed of hard spheres [54]. They have since come a long way.  

However, MD simulations still suffer from two distinct limitations. As mentioned 

above, MD simulations are strictly classical. That is, for the analyses where the 

temperatures are below the Debye temperature for the material, quantum effects should 

ideally be accounted for in order to get the correct results. Several models have been 

proposed to account for the quantum effects [55, 56]. However, these corrections have not 

been made in this study. Secondly, MD simulations does not take into account the 

electronic effects. This means that the contribution of electrons in thermal transport is 

neglected. This limitation is of little impact on this study as the focus is on semiconductor 

materials where the thermal transport is dominated by phonons [21, 57].  

2.2. The MD Algorithm & Newton’s Equations of Motion 

The core idea behind MD simulations is that any two particles placed in proximity 

of each other exert certain force on each other, the strength of which depends on the 

separation distance between them. Furthermore, if the separation distance between the 

particles increases beyond certain cutoff radius, the forces experienced by each of the 
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particles due to the other, becomes negligible. As such, given the masses of constituent 

particles, interatomic potentials that closely capture the strength of interatomic forces with 

the separation distance, can be used to calculate the positions and velocities of the particles 

at a future time t + δt by numerically integrating the Newton’s second law of motion. 

Several integration methods are available to numerically integrate Newton’s equations in 

MD simulations: velocity Verlet algorithm, leap frog algorithm, reversible reference 

system propagator algorithms (RESPA) etc. [53, 54]. The choice of the algorithm is critical 

to accurately predict the trajectory of all particles as well as conserve the energy for both 

the short and the total duration of the simulation to prevent any energy drift. Here, velocity 

Verlet algorithm is used for its superior energy conservation compared to the other 

mentioned algorithms as well as the ability to work with large time steps, resulting in a 

comparatively lower number of force evaluations per unit of simulation time. 

For MD simulations, a system of N particles can be identified by the positions 

(r1…rN) and momentum (p1…pN) and a classical description for the total energy of the 

system can be formed by the Hamiltonian, H . This total energy is a sum of the kinetic 

energy, Κ(p), and potential energy, Φ(r). From the velocity Verlet algorithm, positions and 

momentum at time t + δt are obtained from their value at time t in the following steps [53, 

54]: 

ttFtpttp iii  )()
2

1
()()2/(   (1) 

iiii mtttptrttr /)
2

1
()()(    (2) 

tttFttpttp iii  )()
2

1
()

2

1
()(   (3) 



16 

where mi is the mass of the atoms i, Fi is the force experienced by the atom and is obtained 

from the interatomic potential as described in Section 2.4. The force evaluation is carried 

out after calculating the new positions at t + δt, to calculate )( ttFi  , to be used in 

equation (3). 

The time taken to evaluate the forces or potential energy is proportional to N2 due 

to the double loop used in the evaluation. Therefore, for a bulk material that is composed 

of Avogadro’s number of atoms per mole, the current state of the art computational 

resources would be inadequate not only due the storage requirements to handle such a huge 

system, but also due to the computation time. A solution to this limitation is to employ 

periodic boundary conditions which approximate the large system by using a small 

simulation space. The use of periodic boundary conditions also solves the potential issue 

of edge and surface effects which arise from abrupt termination of the system boundaries. 

A 2D representation of periodic boundary condition is shown in Figure 2. These nine 

sections in the figure are identical as they have the same number of atoms and the same 

relative position of atoms within each simulation space. If an atom moves in the central 

section, its periodic image in all other sections also move in the same way. If an atom 

leaves the periodic bound of the section, its images from all other sections also move across 

their corresponding boundaries as shown in the figure where the dashed atom shows the 

new position of atom coming in from the opposite boundary. As a result, the number 

density in the central section is conserved. 
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Figure 2: Schematic Representation of three-dimensional periodic simulation cell for calculation 

of Kapitza resistance 

Although, the use of periodic boundary conditions substantially reduces the size of 

the system, it must be noted that the use of periodic boundary conditions inhibits the long 

wavelength phonons. That is, for the simulation system of size L, any phonons with 

wavelength greater than L are suppressed [53]. Although, this raises doubts on the accuracy 

of results, the common experience in simulation work has been that the equilibrium 

thermodynamic properties are little affected. Another important issue to keep in mind with 

periodic systems is that the total length of the system should be at least six times the 

maximum cut-off distance of the interatomic potential to prevent the atoms from 

experiencing forces from their own image.  
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2.3. NPT, NVT, and NVE Ensembles 

In MD simulations, different ensembles can be used to characterize the 

thermodynamic states like constant volume or constant pressure, and constant energy. 

These properties are independent of the instantaneous position and velocity of the atoms, 

and are determined by statistical averaging over the simulation time. For example, for the 

NVE (micro-canonical) ensemble, the number of atoms, N, the system volume, V, and the 

system energy, E, are maintained constant whereas the temperature and the pressure are 

allowed to evolve with time and equilibrate to the respective average values. A simulation 

running with a thermostat but without a barostat will similarly be NVT (canonical) 

ensemble, or vice versa in NPT (isothermal-isobaric) ensemble. However, for both NPT 

and NVT ensembles, the total system energy is not conserved due to the application of 

thermostat and/or barostat. 

2.4. Interatomic Potentials 

In MD, interatomic potential functions are used to describe how the potential and 

kinetic energy of system depends on the coordinates of the constituent particles. The 

interatomic potentials are generally obtained by empirical methods and fitting the 

parameters of the potential function to experimental data. Another method to obtain the 

interatomic potential is by using the first principles ab-initio calculations which require the 

calculation of forces while taking into account the electronic structure of atoms. For this 

work, we used the Tersoff’s potential to describe the matrix material SiC and Lennard 

Jones 6-12 potential to describe the interactions with dopant atoms. 
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2.4.1. Tersoff’s Potential 

Many body interatomic potential developed by Jerry Tersoff was used to describe 

the interatomic interactions between Silicon and Carbon atoms in SiC [58, 59]. Tersoff’s 

potential is widely used because of its bond order nature. It is formulated so that the 

interaction between atoms becomes weaker as the distance between them increases, which 

is consistent with the physical behavior of chemical bonds between atoms. The interatomic 

interactions between any two atoms i and j, in the bond order potential described by Tersoff 

[60, 61], consists of a repulsive component and an attractive component: 
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Bond order parameter bij is a measure of the strength of the bonds between the ith and the 

jth atom. It depends on the presence of other atoms in the neighborhood of the interacting 

pair and has the following form: 
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where ij determines the strength of the heteropolar bonds, relative to the value obtained 

by simple interaction,  β and n are fitting parameters as provided in Table 1, and 
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Here, the function 𝑓𝑐(𝑟𝑖𝑘) determines the cut-off distance between the central atom (ith) and 

the neighboring atom (kth). It is also evident that the bond order parameter is environment 

dependent, i.e., the increase in number of neighbors weakens the bond between ith and jth 

atom and can be controlled by modulating 𝑓𝑐(𝑟𝑖𝑘). In this work, the value of 𝑓𝑐(𝑟𝑖𝑘) was 

determined so that all Si-Si second neighbor interactions are completely excluded [55]. 

Due to this modification, the potential has been referred to as modified Tersoff 1994 

potential in this study. The function 𝑔(𝜃𝑖 𝑗𝑘) determines the impact of bond geometry on 

the strength of bonds and is given by 
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here c, d and h are fitting parameters as provided in Table 1. 

To find the maximum cut-off value for second neighbor interactions, radial 

distribution function, RDF, was calculated in LAMMPS using the Tersoff 1994 potential 

and a maximum cut-off of 2.65 Å was determined to be appropriate. The data from the 

RDF is provided in Appendix A. 
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Table 1: Parameters for the Tersoff potential, for atoms of carbon and 

silicon. 

  C Si  

 A (eV) 1393.6 1830.8  

 B (eV) 346.7 471.18  

 λ (Å-1) 3.4879 2.4799  

 µ (Å-1) 2.2119 1.7322  

 β 1.5724×10-7 1.1×10-6  

 n 0.72751 0.78734  

 c 3.8049×104 1.0039×105  

 d 4.384 16.217  

 h -0.57058 -0.59825  

 R (Å) 1.8 2.7  

 S (Å) 2.1 3.0  

 

2.4.2. Lennard Jones 6/12 Potential 

The pairwise Lennard Jones (LJ) 6/12 interatomic potential was used to describe 

dopant-dopant and dopant-matrix interactions. Although LJ potential provides a realistic 

description of only a limited number of materials, it is often used to model systems where 

general effects are of greater interest rather than specific properties of the material. For 

example, the thermal transport properties for LJ solids have also been thoroughly 

characterized in numerous studies [45, 62, 63]. In this context, the LJ interaction is 

employed as it captures generically some of the anharmonic effects that govern phonon 

scattering and, thereby, thermal transport properties. In this analysis, we employed a shifted 
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LJ potential, (rij), with energy and length parameters  and , respectively, for atoms i 

and j separated by a distance rij to obtain the pair potential E(rij) given by 
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and the cut-off distance Rc = 4.5σ.  

In this case, either i or j (or both) must be a dopant atom. The potential parameters 

used in this study were σ = 2.0 Å (approximately half the lattice constant of SiC at 1000 

K). Different dopant atoms were modelled by changing the ε and mass, m. The interaction 

strength between dopant-dopant atoms was kept constant, εdd = 0.3 eV, whereas, the 

interaction strength between dopant and matrix atoms (either Si or C) was varied between 

0.03 eV < εdm < 0.3 eV. A time step of 0.1 femtoseconds was used in all simulations to 

ensure energy conservation.  

2.4.3. Accuracy of Interatomic Potentials 

The accuracy of the MD results is heavily influenced by the accuracy of the 

interatomic potential functions used. Tersoff’s potential has been extensively used to 

describe interactions in Silicon, Carbon, and Germanium. However, the potential was not 

specifically created for SiC. Jerry Tersoff used various fitting parameters to match the 

results predicted by the potential to experimental values. Though, the parameterization 

advanced by Porter et al. provides good agreement with experimental results, the 
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“modified” Tersoff’s potential used in this work still under-predicts the thermal properties 

in SiC. In light of these observations, the MD predictions for thermal transport in SiC are 

only used to qualitatively explore doping as possible solution to maneuvering thermal 

conductivity of the material. LJ potential is very well established for its high accuracy when 

used to model noble gases. The dopants modelled using LJ potential are an artificial 

material and are used only to explore qualitative impact of dopants on thermal transport. 

2.5. Equilibrium and Non-Equilibrium Methods 

The Green-Kubo method [64-72] and the direct method [66, 73-79] are the two 

most commonly used approaches to study thermal transport in MD simulations. The Green-

Kubo method is an equilibrium technique that uses the fluctuation-dissipation theorem to 

calculate thermal conductivity, κ, from the heat current fluctuations. The direct method, on 

the contrary, is a non-equilibrium MD method that is analogous to experimental setup, 

wherein a thermal gradient is set up across the simulation cell and measurements on κ are 

made using the temperature gradient. Although, both of these methods require long 

simulation time to achieve a thermal equilibrium state and therefore reduce uncertainties 

due to thermal fluctuations, calculations using the direct method faces additional 

complications due to finite size effects. κ calculated from an MD system depends on the 

phonon mean free path, which is comparable to the system size and therefore, for small 

system sizes, phonon transport occurs partially in the ballistic regime. This necessitates 

performing multiple simulations with different system lengths to obtain results for a bulk 

system through extrapolation to infinite system size. The bulk value of κ can be calculated 

using Matthiessen’s rule: 
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where κ is the calculated thermal conductivity for the system of length L and α is a length 

independent coefficient. The extrapolation technique has been used by Schelling et al. [66] 

where they obtained satisfactory agreement between the calculated values of κ using 

Green-Kubo method and the direct method. However, similar studies conducted by Zhou 

et al [73] and Sellan et al [80] observed some discrepancies in the results obtained by the 

two methods. The Green-Kubo method has a major disadvantage as it requires a detailed 

expression for heat flux which in turn depends on the interatomic interactions. As such, 

each new system with a new class of interatomic potential necessitates rebuilding the 

expression for heat flux for use in Green-Kubo method [81]. Direct method on the contrary 

does not require the details of the interactions for studying local phenomenon, and is 

therefore straight forward to use. 

In the work presented here, we use non-equilibrium MD method for our 

calculations as we will focus on grain boundary thermal (Kapitza) resistance Rk and we 

explore means to scatter phonons and reduce the effective κ of the system. Therefore, the 

finite size effects are not extremely critical. The direct method used and the procedure are 

discussed in detail in Section 4. 
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Chapter 3 
 

3. Grain Boundary: Structure and Dynamics 

3.1. Introduction 

Crystalline solids are characterized by the unique and uniform atomic arrangement 

in the solid and in general are formed from the single nucleation point. More generally, 

when solids are formed for any application, they have multiple points of nucleation and as 

these multiple crystals grow in the process of solidification, they come in contact with each 

other resulting in the formation of grains. Grains are therefore crystals without the smooth 

edges or faces because of the impedance experienced in growth due to the adjacent 

(differently oriented) grains. The interface between different grains is called Grain 

Boundary (GB). The size of grains depends on many factors including the temperature, 

manufacturing technology etc., and which has a non-trivial effect on the mechanical, 

thermodynamic, and transport properties of the material [82]. 

3.2. Grain Boundary Structure 

The structure of a grain boundary depends on the factors like the size and 

orientation of the grains that the GB interface is separating, energy of the GB, any special 

characteristics like the faults, defects, and dislocations, and the relative grain orientation. 

GBs, in general, can be fully described by five independent macroscopic degrees of 

freedom (DoF) and three microscopic DoF. Of the five macroscopic DoF, three determine 

the mutual orientation of the adjoining grains, that is, the rotation axis (2 DoF) and the 
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angle of rotation (1 DoF). The other two DoF are normal to the GB plane from the grains 

on either side of the plane [83, 84]. The three microscopic DoF are associated with the 

translation of the grains (2 DoF ∥ GB normal and 1 DoF ⊥ GB normal). The microscopic 

DoF are independent of the macroscopic DoF, resulting in a geometrical increase in the 

number of possible configurations for the same GB. However, the choice of the translation 

configuration is determined by the resulting energy of the GB. The translation 

configuration and the three microscopic DoF will be discussed in greater detail in Section 

3.3.2. 

Miller indices of the grain described by the DoF mentioned above, and the relative 

twist angle between the grains, the GBs can be classified into four simplified 

categories[83]. Symmetric tilt GBs are obtained when grains on either side of the GB plane 

can be described by the same Miller indices, such that the GB plane forms a plane of mirror 

symmetry. However, when grains form different angles with the direction normal to the 

GB plane, each grain will have a different Miller index and the GBs thus obtained are called 

asymmetric tilt grain boundaries. Twist grain boundaries are obtained when grains are 

rotated about the axis normal to the GB plane. Figure 3a) and b) show an example of the 

tilt and the twist grain boundary respectively. Grains in a ‘real’ system, however, have 

boundaries, when grains on either side of the GB plane are randomly oriented such that 

they have different Miller indices, and are rotated by different angles about the axis normal 

to the GB plane. Such grain boundaries are also called as general boundaries. Figure 3c) 

shows an example of grains as observed in a real system. In a real system, the chances of 

any two GBs being identical are extremely low. Such boundaries are extremely hard to be 

created on an atomistic scale, and have widely been studied in experimental work thus far. 



27 

MD simulations require an orthogonal simulation domain and thus creating general 

boundaries on atomistic scale would require an extremely large computational domain so 

that the lattice mismatch between the grains and the resulting stresses could be avoided. 

For example, for a GB with grains of periodic unit length √3 and √2 respectively we will 

need an infinite number of repeats on each grain on either side of the GB plane till we get 

the orthogonal edge of the simulation box to be the same length on either side of the GB 

plane. Furthermore, although the computational capabilities of the state of the art HPC 

resources has substantially increased in recent years, they are still insufficient to handle 

 

 

Figure 3: Example of a) tilt, b) twist and c) general grain boundary [82] Copyright © 2001 by 

John Wiley & Sons limited. (Reproduced with Permission) 
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general boundary system of this scale. As such, the scope of the work presented here has 

been limited to symmetric tilt grain boundaries. More details about the GB systems studied 

are provided in Section 3.3. 

Other than the systems built with nano-grains to control the material properties, the 

GBs in a real system are also formed due to the presence of defects like point defects, line 

defects, and planar defects [85]. These defects disrupt the atomic arrangement in the lattice 

and therefore affect the bulk properties of the material. The presence of impurities also 

disrupts the lattice arrangement and this phenomenon is frequently exploited to enhance 

the material performance for specific applications like those in batteries and 

semiconductors. However, impurities have also been shown to migrate to the GB, which 

can have a detrimental effect on the macroscopic properties. Through a subtle control of 

chemistry, Harmer et al. [47, 48] created several different structures at the GB, also called 

complexion phases, which caused material strengthening and enhancement. The focus of 

this work is to understand why and how different impurities behave differently at the GB 

and if that can be used to maneuver the thermal transport across the GB 

3.3. Grain Boundary Construction 

The material of interest in this work is 3C-SiC (β-SiC), which has a Zinc blend 

structure. Such a structure can be visualized as two offset FCC lattices, one each for Si and 

C, such that each Si atoms is connected with four C atoms and vice versa. 3C-SiC primitive 

unit cell has 8 atoms (4 C and 4 Si), the bravais lattice can be built with primitive vectors: 

 0,21,21a ,  21,21,0a , and  21,0,21a  for a system with lattice constant a and axis 

along the low indices. The pairing carbon atom for each Si atom is offset by  41,41,41a
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from the corresponding Si atom. An infinite array of discrete lattice points can be generated 

by using the equation: 

332211  nnnR   (12) 

where R is the array of lattice points, ni are integers and αi are the primitive vectors 

mentioned above. The atoms in 3C-SiC crystals have ‘abc’ stacking along the  111  

direction. In order to probe the impact of dopants at the GB, it was desirable to avoid 

stacking faults between the planes of atoms. As such, the crystals were modelled such that 

the  111  direction was maintained along the Z axis and the other two orthogonal 

directions  211  and  011  were oriented towards the X and Y axis respectively.  

3.3.1. Rotation Matrix and Crystal Orientation 

In this work, five different misorientation angles (1.8038°, 3.9632°, 7.5891°, 

12.2163°, and 16.1021°) are studied. Each of the stated misorientation angles is the angle 

that  211  and  011  vectors subtend to the X and Y axis, respectively.  111  

direction is the axis of rotation. For example, a mono-crystal with 7.5891° misorientation 

angle was created by using a code that determined that the vector  176 would subtend 

the requisite misorientation angles with the  011  direction and subsequently the third 

orthogonal vector  1358  was also calculated, keeping  111  fixed. Rotation matrix 

was then created using the unit vectors along each of the three new and original directions 

as follows: 
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here the unit vectors i, j, k are along the X, Y and Z axis respectively and the subscripts 1 

and 2 represent the original and the new vector directions respectively. This rotation matrix 

when multiplied with the lattice array R in equation (12) gives the new lattice positions for 

the rotated monocrystal. An illustration of the rotated vectors and the lattice array are 

shown in Figure 4. Here the circles represent the atoms in a layer in the  111  plane. In 

MD simulations, it is desired to maintain the periodicity in the system, particularly when 

studying the bulk properties like thermal transport. Lack of periodic boundary can result in 

undesirable surface effects. As such, when rotating the crystal, the grain must reside 

perfectly within the orthogonal cell. This can be achieved by ensuring that the magnitude 

of the new vector that defines the X or the Y axis, is large enough that the cell defined by 

the vector length reaches another atom that would represent the periodic pair of the atom 

at the origin of that vector. In other words, the new unit cell created with the rotated vectors 

must be repeatable in all three directions.  

 

Figure 4: Schematic showing atomic arrangement is [1 1 1] plane for 3C-SiC. 
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The lattice constant used to form the initial crystal system is the zero-pressure value 

for the desired temperature, as determined from previously performed isobaric/isothermal 

(NPT) simulations using the Nosé-Hoover thermostat. This unit cell is then replicated in 

three dimensions to give a single rotated crystal system. This half crystal is then relaxed in 

constant volume/temperature (NVT) simulations for 40ps to allow for any artificial stresses 

in the system to be removed. Following equilibration, this half crystal was mirrored about 

the YZ plane to create a second half crystal, thus creating the GB between the two crystals. 

One such symmetric tilt GB system with misorientation angle of 7.5891° with the GB plane 

is shown in Figure 5. Here the light grey spheres are Silicon atoms and the darker grey 

atoms are the Carbon atoms. 

 

Figure 5: XY plane view of the symmetric 7.5891° tilt system (i.e., along [111]).  With periodic 

boundary conditions at the ends, there are two GBs: one in the middle and one split at either 

ends. 

A bicrystal created in this manner can often times be unstable. Since these systems 

are created artificially by placing two monocrystals adjacent to each other, there is a 

significant possibility that the atoms at the two GBs might not be at the equilibrium 

molecular separation distance from each other, i.e. can be closer to each other than the 

equilibrium bond length between the atoms. Such atoms are referred to as overlapping 

atoms. This can result in high interatomic forces between the atoms at the GB, resulting in 

ballistic movement of atoms which makes the system unstable. Also, when the grains are 

formed in a real material, the size and shape of grains continuously changes till the grains, 
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and the material in general attains a low overall energy. In the same line of thought, the 

GB created above might not be at the minimum energy system as the GB was not allowed 

to evolve for significant amount of time to equilibrate. Olmsted et al. studied the different 

GBs created by iterating over the microscopic DoF to determine the lowest energy 

configurations of the systems[86, 87]. The same procedures are followed to created 

symmetric tilt GB systems in this work.  

3.3.2. Olmsted’s Method and Microscopic Degrees of Freedom 

Minimum energy systems are created in two steps. First, the problem of 

overlapping atoms is addressed. When creating a GB, since SiC is diatomic, there are three 

possible overlap possibilities: Si overlapping Si, C overlapping C, and Si overlapping C. 

The minimum equilibrium bond length between these combinations of atoms is determined 

from the lattice constant for 3C-SiC. The distance between atoms at both the GB is 

measured as a function of the minimum atomic bond length for each of the overlap 

possibility. Subsequently, atomic deletion criterion is determined as a percentage of the 

bond length. For example, consider the atomic deletion criteria of 85% of the bond length. 

The Si-Si and C-C bond length is given as   a22 , while that between Si-C is given as 

  a43 . C atoms that are determined to be closer to each other than 85% of the C-C 

bond length are determined, and the one closer to the GB plane is removed along with its 

pairing Si atom and vice-versa. Since each C atom is bonded to four Si atoms, the Si atom 

closest to the GB plane is regarded as the pairing Si atom for removal with C. The process 

is repeated for the overlapping Si-Si atoms and overlapping Si-C atoms as well. After all 

the overlapping atoms are removed, the energy of the system is minimized using the 

minimize routine in LAMMPS. This routine uses the Polak-Ribiere version of the 
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conjugate gradient algorithm and calculates the local potential energy minimum by 

iteratively adjusting the atom coordinates. The process is repeated for several deletion 

criteria between 0% and 90% of the equilibrium bond length. The GB energy, EGB, is the 

internal energy of the boundary per unit area of the GB [86, 88]and can be calculated from 

the following equation: 

GB

BulkSystem

GB
A

EE
E

2


  (14) 

where ESystem is the potential energy of the system obtained from the energy minimization, 

EBulk is the potential energy of a bulk crystal with the same number of Si and C atoms as 

the GB system and AGB is the cross-sectional area of the GB. Since we have two GBs in 

the system due to the periodic boundary conditions, the area of the GB also doubles. Hence, 

the factor 2 in denominator in the above equation. EBulk is also called as the energy of the 

ideal crystal used as a reference system. Such a system minimizes in a single iteration and 

can be used to calculate the energy per atom for the bulk system. This energy per atom, 

EatomIdeal, of the reference system can be used to calculate EBulk by multiplying it with the 

number of atoms, N, in the GB system. Equation 14 can then be re-written as: 

GB

IdealSystem

GB
A

EatomNE
E

2


  (15) 

Figure 6 shows the EGB for symmetric 7.5891° GB system, at 500 K, for several 

atomic deletion criteria. From the plot, the deletion criteria which returned the minimum 

GB energy was determined to be 35%. Atomic deletion criteria of 30% and 40% of the 

equilibrium bond length were also selected for further evaluation using Olmsted’s method. 

It was also observed that the bicrystals created with different lattice constant for different 

temperatures did not necessarily have the same atom deletion criteria. For each temperature 
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case, the lattice constant was determined individually and a new system was built from 

scratch each time. It is possible that temperatures altered the equilibrium position of the 

atoms at the GB, resulting in a different atomic overlap at the GB. 

 

Figure 6: GB energy for 7.5891° symmetric tilt system, at 500 K, with different overlapping 

atom deletion criteria and zero lateral scroll. 

The system obtained after removing the overlapping atoms might still not be lowest 

energy configuration. Therefore, in the second step, we take advantage of the microscopic 

DoF to translate one half of the bicrystal in the X and Y direction, while keeping the second 

half of the bicrystal fixed. Consider the schematic shown in Figure 7. Keeping the half 

crystal ‘A’ fixed, the half crystal ‘B’ is iteratively translated along the positive X and Y 

directions by 1 Å at a time. Keeping in mind the periodic boundary conditions applied in 
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both the X and Y directions, any atom that moves outside the simulation cell is wrapped 

back into the simulation cell by subtracting LY (upon crossing the Y simulation cell bound) 

and LX/2 (upon crossing the X simulation cell bound). Subtracting LX/2 in X direction 

ensures that the half crystal B does not lose atoms to half crystal ‘A’ and any atom leaving 

the outer GB returns to the central GB in half crystal ‘B’. 

 

Figure 7: Schematic for obtaining low energy GB system by iterating over the microscopic DoF 

Once the translation of atoms is completed, the minimum energy of the system is 

calculated for each of the three atomic deletion criteria from the first step. In other words, 

all the three atomic deletion criteria are tested for each translation in X and Y directions. It 

must be noted that the translation along the Z direction is not performed. As mentioned 

earlier, any rotation or translation along the Z direction can result in stacking faults in the 

‘abc’ lattice arrangement and the focus of this work is to evaluate the impact of dopants on 

GB thermal resistance. The iteration over the entire half crystal lengths in X and Y direction 

can become computationally expensive for large systems. Therefore, the iterations are only 

performed for the periodic lengths of the unit cells. Any translation beyond that would be 

redundant as further translations in X or Y would produce identical crystal as previously 
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analyzed. The minimum energy for each of the iteration analyzed is then plotted for each 

of the atomic deletion criteria to determine configuration with the least energy. A plot for 

the analysis done for the symmetric 7.5891° tilt system at 500 K is shown in Figure 8. 

 

Figure 8: GB energy vs. GB configuration iteration (sorted by increasing GB energy) for atomic 

deletion criteria of 30%, 35%, and 40% of the equilibrium bond length in 7.5891° symmetric tilt 

GB. 

Similar plots were obtained for all the tilt angle GBs studied in this work. It was 

observed that the GB energy for ceramic material was much higher than those in metals 

studied by Olmsted et al. [86, 87]. This observation can be attributed to the higher material 

stiffness for ceramics. It must be pointed out here that the minimum energy system, 

determined from the process above, might not be the absolute minimum energy 

configuration. One should ideally perform several more atomic overlaps in tandem with 
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iteration over the microscopic DoF or use Monte-Carlo methods to obtain true minimum 

energy systems. Once the minimum energy configuration was found, the GB system was 

constructed and allowed to relax using the minimization routine in LAMMPS. The system 

was then equilibrated using the canonical and the micro-canonical ensemble before turning 

on the dynamics and pumping flux in to the system as described in Section 4.2. Rk is 

relatively insensitive to system length at higher temperatures given the relatively short 

phonon mean-free paths and low-frequency phonon GB scattering[62], the system length 

was limited to LX =27.6 nm perpendicular to the boundary. 

3.3.3. Dopants at Grain Boundary 

The foreign particles present in a material are often times alternately called dopants 

and impurities. However, impurities generally refers to the particles that are usually present 

from the processing and raw material stage, whereas, dopants refers to particles that are 

deliberately added in controlled concentration to obtain an intended beneficial effect on 

material properties. While the presence of impurities has detrimental effect on material 

properties, controlled doping is extensively used to obtain a host of benefits. For example, 

the presence of metallic dopants aids in increasing the electrical conductivity of 

semiconductors, or the most common observation vis a vis mechanical properties of alloys 

with different dopant concentrations[85]. The choice of dopants is most critical for any 

application as the addition of dopants can result in increased stresses in the system as well. 

The focus of this work is to probe the effect of dopants on the thermal conductivity 

of the material. The two most commonly used dopants for SiC are Bismuth and Aluminum. 

However, in this study dopant atoms were modelled as Lennard Jones solid in order to steer 

clear of any chemical interactions between the matrix atoms and the dopant atoms. For 
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each symmetric tilt GB studied, the minimum energy system with the required tilt angle, 

created using Olmsted method, was used as the base system and dopant atoms were 

substituted into the atomic positions at the GB. More specifically, a Si atom was randomly 

selected close to the GB along with its pairing C atom to which it was bonded. Similar to 

atomic deletions criteria described in the previous section, if more than one pairing C atoms 

were identified, the C closes to the GB was determined as the pairing C atom. Each SiC 

pair was then removed, and a dopant atom was inserted at the Si atom’s coordinates. It 

must be acknowledged that Monte Carlo method is the ideal method for dopant insertion 

but with the intent to observe only the impact of dopant concentration and dopant-dopant 

interactions, a random number generator was used to identify Silicon atoms close to the 

GB. The process is repeated to obtain the required dopant concentration at GB. For 

concreteness, dopant concentration is defined relative to the areal density of the  111

plane. In particular, the number of LJ atoms in one  111  plane of dopant atoms with 

the cross-sectional area 40 Å × 44 Å was calculated and denoted as one monolayer (1 ML). 

GB system with 7.5891° misorientation angle was the first and most extensively examined 

system in this study. The dopant concentration was thus calculated based on the plane of 

LJ atoms, with the same area of the cross section as that of the 7.5891° misorientation 

system as reference. In all simulations performed, dopants were inserted at each of the two 

GBs to maintain periodicity and several analyses were done with dopant concentration 

varying from zero to 1.007 ML. The different dopant concentrations studied are provided 

in Table 2. The other parameters varied include the dopant-dopant interaction strength as 

well as the mass of the dopant material as described in the later chapters. 
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Table 2: List of dopant concentrations studied. 1 ML = 432 LJ dopant atoms 

Concentration 

(C) in ML 
0.048 0.12 0.167 0.25 0.33 0.412 0.567 0.896 1.007 

No. of dopant 

atoms 
21 52 72 108 144 180 245 387 435 
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Chapter 4 
 

4. Calculating Kapitza Resistance using NEMD 

4.1. Introduction 

In an isotropic crystalline material with a constant heat flux, q, maintained across 

its either ends, a temperature gradient is obtained in the direction of the heat flux and can 

be directly calculated from the Fourier’s law:  dxdTq  . Here is the bulk thermal 

conductivity and is dictated by two contributions: electronic heat conduction e and lattice 

wave (or phonon) heat conduction p (i.e.  = e + p). In conductive materials (i.e. metals), 

electronic degrees of freedom contribute significantly to ; however, for insulators and 

semiconductors,  is largely determined by phonon contributions (i.e. p). Phonons are 

elastic waves that propagate through the bonding network of an atomic assembly. Atoms 

at higher temperature have greater vibrational energy than atoms at lower temperature. In 

the presence of a temperature gradient, atoms transfer vibrational energy from hot regions 

to relatively colder regions through their interactions with nearby atoms. The energy 

carried by phonons is proportional to the phonon mean free path, which is the defined as 

the average distance of phonon propagation between non-momentum conserving scattering 

events. Nano-crystalline materials trim the bulk phonon mean free path by a few orders to 

the size of the grain, thereby effectively reducing the p.  

Alternately, phonon scattering at the GB can also be described through thermal GB 

resistance, Rk. When a constant heat flux is maintained across a GB, a characteristic 
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discontinuity exists at the GB, in the otherwise linear temperature gradient. The Kapitza 

resistance of a GB is obtained by dividing the magnitude of the temperature discontinuity 

Δ𝑇 by the imposed heat flux, q as follows: qTRk  . Several advances have been made 

for experimental determination of Rk [89]. However, the current knowledge of thermal 

transport at internal material boundaries is greatly limited owing to the inability to probe 

the transport behavior of a specific boundary and connect that behavior to the structure of 

the GB. Recent work using nanocrystalline assemblies demonstrated some promise to 

probe thermal boundary effects in experiment [90]. Theoretical attempts to describe 

thermal boundary resistance include the acoustic mismatch model (AMM) and the diffuse 

mismatch model (DMM) [91]. While both have proven useful for understanding some 

aspects of the phenomenon, they are unable to make predictions in agreement with existing 

experiments [92]. An alternate approach is to directly model thermal boundary resistance 

in atomic scale, MD simulations. The first such work in this area was advanced over a 

decade ago [66, 76], and this has been followed by many studies demonstrating the efficacy 

of this approach. The NEMD approach used for calculating Rk in the work presented here 

is described in the next section. 

4.2. Procedure 

All the simulations were performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS), open source molecular dynamics package 

developed by Sandia National Lab [51] and a simulation time step size of 0.1 fs is used 

throughout. All the GB systems are built in the form of an orthogonal box as described in 

detail in the previous chapter. Once the system was built, the general procedure for 
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calculating Rk is the same for both the undoped and the doped systems. Figure 9 shows the 

3D schematic of the simulation cell with the third dimension pointing out of the paper 

labelled as Z axis in the figure.  

 

Figure 9: Schematic representation of three-dimensional periodic simulation cell for calculation 

of Kapitza resistance. 

As mentioned earlier, Rk can be calculated from the temperature discontinuity at 

the GB, which in turn requires that the system be subject to a temperature gradient. There 

are two commonly followed techniques to achieve that, the EMD and the NEMD. The two 

methods were described very briefly in Section 2.5. In both the methods, the simulation 

cell is generally long along one dimension (along the X direction in this work) while the 

other two dimensions are much smaller. Each simulation cell contains a heat source and a 

heat sink in order to establish a heat current parallel to the direction of the longer 

dimension. In the EMD technique, both the heat reservoirs are maintained at the respective 

desired temperatures using a suitable thermostat and the system is evolved till a steady heat 

current through the system is established, i.e., the system reaches equilibrium. The thermal 

conductivity of the material can then be calculated using the heat current auto-correlation 

function (HCACF), which can in turn be used to determine the temperature drop at the GB. 



43 

(For the details regarding calculation of the heat current vector see Ref [53, 64, 93-95]). 

Significant amount of data is required to get good auto-correlations, thus making the 

simulations extremely long and often tedious. NEMD technique, used in this study, is much 

simpler to apply. In this technique, a known heat flux is generated by adding energy to the 

atoms in the heat source and removing the same amount of energy from the atoms in the 

heat sink at a pre-determined rate. In response to the heat current generate this way, a 

temperature gradient is obtained through the system. 

 

Figure 10: Plots for a) temperature, b) pressure, c) PE/atom and d) KE/atom in 7.5891° tilt GB 

system after NVT and NVE equilibration at 1000 K. Plotted on the same plot, first 20 ps show 

the evolution over NVT and the following 20 seconds show evolution over NVE. 
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The minimum energy system created using the Olmsted’s method, as described in 

Chapter 3, is first allowed to relax at the desired temperature using the canonical ensemble 

for 20 ps. The relaxed system was then evolved with a constant energy at fixed volume for 

another 20 ps, and temperature and pressure plots are generated to ensure the system 

reached equilibrium. Figure 10 shows the temperature, pressure and energy plots for 

7.5891° symmetric tilt GB system after the NVT and NVE equilibration at 1000 K. It is 

seen that the system is stable and fully evolved after the first 15 ps as both the Kinetic and 

potential energies as well as the temperature of the system appear to have reached a stable 

state. Also, the system has a negative pressure, indicating that the system is under tensile 

stress. This is due to the deletion of atoms from the atomic deletion criteria which creates 

some room for atoms at the GB to stretch the system. It was determined that the resulting 

strain in the system was negligible to cause any concern for the stability of the system. 

Further, turning on the dynamics in the system is also expected to relieve some of these 

stresses. 

The schematic in Figure 9 also shows the general location of the heat reservoirs 

with respect to the GBs and the direction of the resulting heat current. Two slabs of 

thickness δ = 8 Å each are defined perpendicular to the X axis, centered at a distance X = 

– Lx/4 and X = + Lx/4 from the GB, with GB assumed at the X =0. Here, Lx is the total 

length of the simulation cell. Notice a second GB is also present and is split at the either 

ends of the simulation cell. When Periodic boundary conditions are imposed on the system, 

it can be visualized as an infinitely long system with the two crystals (along with their 

respective reservoir) present alternatingly. The slab at X = – Lx/4 is treated as the heat 

source while that at X = + Lx/4 is treated as the heat sink. The atoms inside the slabs are 
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identified and a heat increment ∆ε is added by rescaling velocities at every MD time step 

to the atoms in the heat source slab and removed from the atoms in the heat sink slab, as 

described by Jund et al. [66, 78]. This method ensures that no artificial drift develops by 

conserving the total momentum of the slabs. This is achieved by adjusting the velocity of 

each atom, iv , in the heat source and heat sink slabs with respect to the velocity of the 

center of mass, Gv , of the ensemble of atoms in the respective slab using the formula: 

 GiGi vvcvv   (16) 

 GKE EEc  /1   (17) 

where EKE is the instantaneous total kinetic energy of the atoms in the slab and EG is the 

kinetic energy associated with their center of mass. 

The corresponding heat current is generated is calculated as tAJ  2/ , where 

the factor 2 accounts for the flow of heat on either side of the flux, resulting in twice the 

surface area, A. The system is evolved for 4 ns with a simulation time step size of 0.1 fs, 

and the heat current moving from the heat source to the heat sink and a steady-state energy 

distribution is generally obtained between the 1 and 2 ns of the simulation. To calculate the 

local temperature, the system is divided into bins of equal length along X, and the average 

temperature in each bin, Tp, is calculated from the instantaneous kinetic energy, KEP, of 

the NP atoms in each bin using the equipartition theorem,  

PPBP KETkN 
2

3
 (18) 

where kB is the Boltzmann’s constant. Bin-wise Tp samples were obtained every 100 time 

steps and averaged over 2 x 105 time steps, or 2000 temporal samples per bin. Time and 

bin averaged data were stored to memory, enabling subsequent additional temporal 
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averaging. At the high temperatures considered here, this classical determination of the 

temperature was determined to be satisfactory. 

The averaging technique used for computing the temperature gradient and the 

temperature discontinuity developed at the boundary is illustrated in the two sets of sample 

data for undoped 7.5891° misorientation GB system. Figure 11 shows the average bin-wise 

temperature profile along the length of the system, perpendicular to the GB. The bin-wise 

temperature distribution was formed by post-process averaging over the temperature data 

generated for the final 1 ns of the simulation. As described above, this ensured that a steady 

state ensemble was sampled; furthermore, this significant temporal averaging resulted in a 

very small error. From Figure 11, it can be seen that the average error in temperature for 

each bin was less than 1 K. 

 

 

 

Figure 11: Time- and space-averaged 

temperature distribution in the undoped 

7.5891° GB system at 1000 K generated from 

a total of 100,000 samples taken every 100 

time steps. 

 Figure 12: The temperature distribution 

obtained by averaging the data used in Figure 

11 about the flux planes with the first GB 

located at X=0 Å 

It can also be seen that non-linearities exist and that a discontinuous drop in 

temperature occurred across the GBs, as expected. In order to calculate the steady-state 
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flux, a region of width 10-12 Å was excluded on either side of the flux planes, depending 

on dopant concentration. Furthermore, given the symmetry of the system, data were 

averaged on either side of the heat source and sink planes (see Figure 12). These highly 

averaged data were then used to compute the Kapitza resistance via a least-squares fit of 

the temperature profile and determining the interfacial temperature jump, T, and Rk is 

calculated by: 

J

T
Rk


  (19) 

The same procedure was used for calculating Rk for the doped systems. 

4.3. Sources of Error 

While the NEMD is a straightforward and conceptually very simple approach, it 

requires careful consideration of several aspects for sound results. Some of these aspects 

along with the appropriate measures that were taken to address them are discussed below: 

4.3.1. Periodic Boundary Conditions 

In practice, periodic boundary conditions are generally applied in two different 

variations. While both the variations use periodic boundary conditions in the directions 

orthogonal to the direction of heat flux (parallel to the GB plane), one variation applies 

periodic boundary condition in the direction of the heat current as well (referred to as 

periodic system in this work) while the other doesn’t (referred to as non-periodic system 

in this work). Figure 9 above is a schematic of a periodic system. A schematic of the non-

periodic system is shown in Figure 13. In a periodic system a heat source and a sink are 

symmetrically spaced within the simulation cell, whereas in a non-periodic system, a heat 

source and a sink are placed at the ends with either ends terminated using a very thin layer 
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of atoms to cap the ends. The lattice positions of these atoms (in the end caps) are kept 

fixed, by reducing the velocity of the atoms to zero, throughout the simulation to prevent 

any loss of atoms across the boundary.  

 

Figure 13: Schematic representation of Non-periodic simulation cell. 

For a given sample size and number of atoms in the system, non-periodic boundary 

conditions allow for longer separation between the heat source and the heat sink, resulting 

in a longer temperature gradient for a better statistics. However, at the same time, it can 

also introduce scattering of phonons from the fixed boundaries which can cause artificial 

effects in the results. We use the periodic system in all our simulations as shown in Figure 

9 as it provides two independent temperature gradients between the heat source and the 

heat sink, which can be used to obtain better statistics due to symmetry about the heat 

reservoirs (Refer temperature plot in Figure 11). Both options have been successfully used 

in several studies [66, 74, 76, 80, 96, 97]. The choice primarily depends on the finite size 

limitation for the materials, for example nano-wires; and the material properties like 

conductivity. Phonon dynamics are especially important when evaluating a semi-conductor 

material for thermal transport applications. In such a case it is deemed important to avoid 
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the unwanted phonon scattering from the fixed boundary in non-periodic system. It is 

reasonable to argue that a periodic system will have gradient regions of half the length 

compared to a non-periodic system, however, the system size has very limited effect on 

this work as explained in Section 4.3.2. 

4.3.2. Simulation Cell Finite Size Effect 

As pointed out earlier in the chapter, thermal transport in a material can either be 

due to the electrons or the phonons, depending on the material. In semiconductor materials 

where phonons are responsible for majority of the heat transfer in the material, one is 

ideally required to use simulation cells that are larger than the longest phonon mean free 

path. Simulations with cell size smaller than the phonon mean free path can result in 

scattering of these phonons at the interfaces of heat reservoirs. System size can limit the 

thermal conductivity of the system significantly. Chapter 5 discusses the thermal 

conductivity work done as a part of this study in more detail. 

Although, previously explored finite size effects on Rk have provided reason to 

speculate that Rk is dependent on system size [32, 37, 80, 98, 99], its sensitivity to system 

size has not been established. The effect of system size on Rk depends on many factors like 

GB energy and type of GB interface[76], besides the material, geometry, and temperature. 

For example, Jones et. al. determined that while Rk was proportional to the ratio of lengths 

of the two monocrystals that comprise the bicrystal in low temperature regimes, it was 

insensitive to system size at high temperatures [62]. It is also determined that the presence 

of periodic boundary conditions in the directions orthogonal to the direction of heat current 

allows the phonons to travel freely across the simulation cell limits, thus making Rk 

independent of the cross-sectional area of the simulation cell [62, 66]. Since, majority of 
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the work performed in this study is at 1000 K, we expect the results presented here to be 

independent of any finite size effects. Therefore, the simulation cells were modelled such 

that each monocrystal was at least 14 nm × 4 nm × 4 nm. Refer Table 5 for specific system 

dimensions. 

4.3.3. Size of Heat Reservoir and Rate of Heat Addition 

The size of heat reservoir and the rate of heat addition have a non-trivial influence 

on the temperature drop between the heat source and heat sink. In MD simulations, it is not 

out of the ordinary to observe a temperature drop of the order of 100K or more for systems 

of size tens of nanometers. Although unreal, this kind of temperature gradient is needed 

because a large gradient can help minimize the thermal fluctuations and help achieve a 

steady state in a shorter simulation run time, i.e., reach convergence faster. However, the 

larger the temperature gradient, the larger the non-linearities in the system. The effect of 

non-linearities, as relevant to this work, is discussed in Section 4.3.4.  

There are no established rules or standard practices for the size of the reservoirs. In 

the absence of widely accepted guidelines, we decided to size the thermal reservoirs big 

enough to comprise at least 4 planes of atoms. For a rotated system where discrete planes 

of atoms cannot be identified along the direction of rotation, the reservoirs width is kept 

constant at 8 Å. Planes of this width and spanning the entire cross-section of the simulation 

cell had more than 2000 atoms in them. Although the size of the heat reservoirs doesn’t 

change the observed Rk at the GB, for a given rate of heat addition, small reservoirs can 

result in sharp rise of drop in temperature in the reservoirs resulting in an increase in non-

linear temperature distribution in the region adjacent to the reservoir [81]. In a recent work 

published by P. C. Howell, it was observed that the size of the thermal reservoirs had 



51 

qualitatively similar effect on the temperature profiles for both periodic boundary systems 

as well as the non-periodic boundary systems. 

Independent studies performed by Schelling et al. [66] and Zhou et al. [73] have 

demonstrated that the rate of heat flux does not have a significant affect the thermal 

conductivity of the crystal. In simulations for Rk, equation (18) indicates inverse 

relationship between heat flux and Rk. Also, the ∆T is also proportional to the heat flux. 

Higher the heat flux, more is the ∆T obtained at the grain boundary. As a result, the overall 

effect of heat flux on Rk is negligible. However, high heat flux causes increase in non-

linearities in the regions adjacent to the thermal reservoirs. Therefore, the rate of heat flux 

was determined based on the area of cross-section of the simulation cell and the 

temperature of evaluation. It was also observed that the same heat flux resulted in greater 

non-linearities at low temperature of the order of 300K, for example, compared to the non-

linearities in the analyses done at 1000 K. In this work, the energy added or removed from 

the thermal reservoirs was between 3 eV/ps – 17 eV/ps depending on the area of cross-

section and the simulation temperature. 

4.3.4. Non-Linearities 

In the presence of thermal reservoirs, strong non-linearities are observed in the 

regions adjacent to the reservoirs. These non-linearities have been attributed to the 

increased phonon scattering caused by the heat source and the heat sink [66, 74, 75, 100]. 

These observations are particularly true for good thermal conductors. Thermal diffusivity 

of a material is directly proportional to the thermal conductivity as per the formula: 

pc


   (20) 



52 

here κ is the thermal conductivity, ρcp is the volumetric heat capacity. As mentioned earlier, 

κ is affected by the size of the system. This in turn affect the thermal diffusivity from the 

thermal reservoirs to the rest of the simulation cell domain. Subsequently, the rate of 

thermal diffusion is not able to keep up with the high rate at which heat flux is added to, 

and removed from, the reservoirs. This results in thermally overdriving the regions adjacent 

to the reservoirs. Figure 14 shows the temperature distribution in the monocrystal that 

contains the heat source region. A similar distribution is obtained in the other monocrystal 

of the bicrystal system with the temperature dropping as we get closer to the heat sink.  

 

Figure 14: Non-linear and linear temperature regions of temperature distribution in 7.5891° 

symmetric tilt GB system at 500 K. Only one monocrystal has been shown in the figure here. 

From the Figure 14, it can be seen that the non-linear regions slowly decay to 

produce a linear temperature gradient as we move away from the reservoirs, deeper into 
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the simulation cell. These non-linear regions must be excluded and all calculations must 

be performed on the section with a roughly linear temperature gradient in accordance with 

the Fourier’s law. From Figure 14, it is also noted that there is no distinct boundary between 

the regions of linear and non-linear temperature gradient. Therefore, the choice of the width 

of excluded region is somewhat arbitrary. Howell performed a short analysis to determine 

the impact of the width of excluded region on the calculated thermal conductivity but a 

consistent result was not obtained between systems with periodic boundary conditions and 

those with non-periodic boundary conditions [81]. There are also some non-linearities in 

the temperature distribution in region adjacent to the GB. These non-linear regions are also 

excluded. In the work presented here, the width of excluded region was decided on a case 

by case basis. However, it was ensured that in all the analyses, the linear region selected 

for computation was more than half the length between the center of the heat reservoir and 

the GB.  

4.3.5. Temperature Transients and Time Evolution of System Temperature 

After the heat source and the heat sink are turned on, the well equilibrated system 

obtained after NVT and NVE equilibration starts evolving as the heat starts diffusing from 

the hot region to the cold region. The system takes some time for the thermal transients to 

subside and reach a steady state again. It is important to ensure that the data over the 

transient state are not included in the calculations. The time taken by the system to reach 

steady state depends on several system variables like the heat current, system dimensions, 

boundary conditions etc. It becomes even harder to predict the time taken to reach steady 

state for a system at nano scale due to the change in thermal conductivity of the material. 

Therefore, the traditional approach to avoid the temperature transients is to run the 
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simulation long enough to presume that the system reached a steady state, before gathering 

the data. In this study, all the simulations were run for a total simulation time of 4 ns. For 

each system developed a temporal evolution plot of temperature was generated to ensure 

that the system indeed reached a steady state condition.  

 

Figure 15: Evolution of temperature in simulation system in heat source (blue) and heat sink 

(cyan) regions as well as planes of width 8 Å in the middle of the GB and heat reservoirs on the 

hot (green) and the cold (red) side. 

Figure 15 shows the evolution of temperature in a 7.5891° symmetric tilt GB 

system at 500 K. and shows the temperatures in 4 different regions, namely, the heat source 

or the flux in region (blue), the region in the middle of the heat source and the central GB 

(referred to as left middle in the plot and modelled in green color), the region in the middle 

of the heat sink and the central GB (referred to as right middle in the plot and modelled in 

red color), and the heat sink region (referred to as flux out in the plot and modelled in cyan 

color). For the majority of the simulations, the steady state was obtained with in the first 1 
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ns of simulation time. The simulation was allowed to evolve for another 3 ns and 

calculations were performed on the last 1 ns of the data. It must be noted here that the 

temperature plotted in Figure 15 is not the instantaneous temperature in the stated regions, 

but the temperature sampled over every 100 time steps for 2000 samples and averaged to 

gain good statistics. 

4.3.6. Statistics and Error Bars 

Molecular dynamics simulations use an extremely small simulation time step of the 

order of pico-seconds and femto-seconds. Since, it is currently impossible to observe heat 

flow at these timescales in an experimental setting, one can argue that the experimentally 

measured quantities are time averaged quantities. In Section 2.2, it was described how MD 

simulations apply Newton’s law of motion to obtain discrete set of data for atomic 

arrangement in the simulation cell. The results obtained are the instantaneous positions and 

the corresponding energy of the system. However, the atomic positions obtained are 

normally distributed in accordance with statistical physics due to the NVE and NVT 

integrators used in the calculations. Even so, the instantaneous values cannot be directly 

used to predict the properties investigated and need to be time-averaged for comparison 

with experimental results. 

P.C. Howell studied the different methods to calculate thermal conductivity in 

semi-conductor materials with good confidence intervals and determined that simulations 

performed over large simulation cells had smaller error when compared to smaller sized 

simulations run for much longer duration [101]. The simulation cell size in this study is 

limited to smaller sizes for the reasons elaborated in Section 4.3.2. Therefore, this work 
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relies on collecting samples over long simulation durations with sampling rates large 

enough so that the data is de-correlated to the values at the previous time step.  

Averaging over the data is done in three different steps. In the first step, the 

averaging is done in parallel with the ongoing computation using LAMMPS. A data sample 

is collected every 100 time steps and stored to memory until 2,000 such samples are 

collected. These samples are then averaged to obtain the energy of each atom and printed 

to file. In the second step, 50 such files are collected between the 3 ns and 4 ns of simulation 

run time and for each file, the simulation cell is divided in to bins to calculate temperature 

as described in Section 4.2. The choice of number of bins is dependent of the choice of 

spatial resolution desired. While increasing the number of bin results in lesser number of 

atoms per bin and could result in higher noise in the system, choosing a few thicker slices 

can provide better spatial resolution. However, the two effects generally counteract each 

other [101]. We chose to divide the simulation cell into 52 bins, after excluding the non-

linear regions. The temperature of each bin is an average over all the atoms in that bin. 

Subsequently, we take advantage of the symmetry in temperature gradient about the flux 

planes and the temperature distribution on either side of the reservoir is averaged to obtain 

temperature gradient between the two reservoirs and calculate Rk. This is repeated for each 

of the 50 data files and the data is stored to memory. In the third and final step, mean Rk 

and its standard deviation are calculated using the least squares method over the 50 data 

files. This amount of averaging is determined to be very significant and the error bars 

obtained for the results were extremely small. Figure 11 shows the temperature distribution 

obtained in 7.5891° symmetric tilt GB system where the error bars can barely be identified 

as minor indentations in data.  
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Chapter 5 
 

5. Thermal Conductivity of β-SiC  

5.1. Introduction 

It is long since known from experiments that the thermal conductivity of crystals 

depends on the size of the crystal examined, due to the confinement of the bulk phonon 

mean free path. This phenomenon is referred to as the Casimir limit [66, 75]. With the 

advent of nano-technology and advancements in manufacturing technologies, several 

applications like space technology, data servers, and many more area that use semi-

conductors, are observing a shrinking in equipment sizes. Even larger devices are designed 

to obtain benefits from nano-technology through material grain structures customized for 

the said application. Thus, much effort is being spent on developing multi-scale 

methodologies to extend techniques from nano-scale regime to macro scale. One example 

would be the thermal conductivity in nano-structured material. By thoroughly 

understanding the thermal transport in nano-grains, one can obtain a parametric equation 

that can be used in finite element models to describe the thermal conductivity of individual 

grains in a material. This equation can be built so as to account for the grain size as well as 

structure. Subsequently, finite element method can be used to calculate the effective 

thermal conductivity of a material with nano-grains. Although non-trivial, the development 

of methods that would enable such multiscale modeling are already a hot topic of research 

in computational modeling. In this chapter, we strive to predict the thermal conductivity of 
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β-SiC and in the process describe the finite size effects as relevant to MD simulation 

systems. 

5.2. Simulation Cell Size Effects and Matthiessen’s Rule 

The flow of heat by phonons can be obstructed by other phonons, electrons, 

impurities and boundaries or defects. At higher temperatures, the phonon-phonon Umklapp 

processes limit the phonon mean free path to a much smaller value, making the size effects 

irrelevant. Therefore, κ is not expected to vary significantly with the system size as high 

temperatures. However, at lower temperatures, the reduction in system size to lengths 

comparable or smaller than the phonon mean free path in an infinite system (bulk), limits 

the mean free path of phonons, causing them to scatter at the surfaces or edges [102]. 

System size effects or Finite size effects become even stronger in computer simulations of 

nano-scale systems as briefly discussed in Section 4.3.2. One way to deal with this 

phenomenon is to perform simulations for several different system sizes and extrapolate 

the κ calculated for a system of infinite size as described by Schelling et al. [66]. It is 

assumed that the Matthiessen’s rule can be used to determine effective phonon mean free 

path, 
eff , in the system of given size Lx, from the phonon mean free path in the bulk (or a 

system of infinite length),  , and the effect of the finite length of the system, as per the 

equation: 

xeff L

411



 (21) 

here, factor 4 with the boundary scattering term depends on the way the simulation is set 

up. Figure 16 shows the schematic of the simulation cell used for the calculation of κ and 

it can be seen that the phonons travelling between the heat source and the sink will travel 
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an average distance of Lx/4 before scattering at the heat reservoir. From the kinetic theory, 

κ is given by [103]: 

xvvLC
3

1
  (22) 

where Cv is the heat capacity per unit volume, v is the phonon velocity and Lx is the phonon 

mean free path. Equation (21) can then be restated as: 













 xv LvC

4131


 (23) 

The above equation suggests that by plotting 1/κ vs 1/Lx, finite size effects can be 

avoided. As xL , 1 / κ will attain a constant value based on the phonon mean free path 

in the bulk for the material, and can in turn provide the bulk thermal conductivity. This 

method has been verified and used in many works [66, 75, 104, 105]. In a different study, 

Sellan et al. [80] applied Matthiesen’s rule to draw the system finite size effects on κ, and 

using the Taylor series expansion approximated a relationship similar to that drawn by 

Schelling et al. [66]. We use the same method to calculate the thermal conductivity of β-

SiC at 500 K to verify the Tersoff’s interatomic potential by comparing with the results 

obtained by Porter et al. [67]. 

5.3. Interatomic Potential Validation 

There are several empirical potentials developed for the matrix material, SiC, and 

a comparative study of these potentials was performed by Crocombette et al. to assess their 

thermal transport behavior [106]. We employ a modified Tersoff potential based on a 

parameterization by Porter et al. [55] as it accurately reproduces the observed acoustic 

phonon spectrum [67]. Tersoff used the parameters from pure elemental Si and C to 
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describe the interactions between elements in SiC [61]. Porter et al pointed out that unlike 

elemental Si and C, since each Si atom in β-SiC is bonded to a C atom (and vice versa) to 

form a Zinc Blende structure, the choice of parameters could result in a weakening of the 

Si-C bond due to the second neighbor Si atoms falling within the cut-off distance 

(especially at higher temperatures). In the event that the second neighbor Si atoms falls 

within the cut-off distance, the effective coordination number of Si atom can potentially 

jump up to 16 from 4 originally. This could significantly increase the energy of the 

neighboring atoms, while the extent of impact would depend on the proximity of the second 

neighbor Si to the SiC pair. In order to prevent this, Porter et al. suggested the cut-off 

distance should be reduced to exclude all Si-Si interactions.  

The modified Tersoff’s potential has been validated by calculating the thermal 

conductivity of β-SiC at 500 K [67, 105]. A similar evaluation was performed as a part of 

this work. Thermal conductivity of β-SiC was calculated using the modified Tersoff 

potential with the cut-off distance reduced to 2.65 Å (as alluded to in Section 2.4.1). The 

simulation set up for calculating κ is similar to that for calculating Rk, with the exception 

that the simulation consists of only one monocrystal. The crystals are oriented such that 

the X, Y, and the Z axis correspond to the (1 0 0), (0 1 0), and the (0 0 1) directions. 

Simulations are performed on systems of varying lengths along the X direction, as detailed 

in Table 3, and each simulation system is 10 × 10 unit cells in the transverse direction.  
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Table 3: Dependence of κ on system size using NEMD method 

Dimensions Lx (nm) Ly (nm) Lz (nm) 
Number of 

Atoms 

48 × 10 × 10 20.6 4.3 4.3 38,400 

96 × 10 × 10 41.2 4.3 4.3 76,800 

144 × 10 × 10 61.8 4.3 4.3 115,200 

192 × 10 × 10 82.4 4.3 4.3 153,600 

240 × 10 × 10 103.0 4.3 4.3 192,000 

288 × 10 × 10 123.6 4.3 4.3 230,400 

336 × 10 × 10 144.2 4.3 4.3 268,800 

The lattice constant was obtained from zero-pressure value from 

isobaric/isothermal (NPT) simulation at 500 K using the Nosé-Hoover thermostat. Each 

system created, was then relaxed at 500 K using the canonical ensemble for 20 ps. and then 

further evolved with a constant energy & constant volume NVE ensemble for another 20 

ps. Periodic boundary conditions were applied in all three directions and the method by 

Jund and Julien [78] was used to develop a heat current through the system as shown in 

Figure 16. The width δ of thermal reservoirs was chosen such that the edges of the flux 

region did not split planes of atoms. The number of planes of atoms that comprised the flux 

region was determined by the applied heat flux as explained in Section 4.3.3. For larger 
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systems, heat flux value used was generally higher to ensure that the system reached steady 

state within 1 to 2 ns of simulation time. 

 

Figure 16: Schematic representation of three-dimensional periodic simulation cell for calculation 

of Thermal Conductivity. 

The simulations were run for a total of 4 ns using a time step of 0.1 fs. Such a small 

time step was used to prevent any velocity drift in the system. A steady-state energy 

distribution was generally obtained between the 1 and 2 ns of the simulation time. 

Subsequently, the temperature distribution across the length was obtained using the 

Equipartition theorem as described in detail in Section 4.2. The final temperature 

distribution was obtained by averaging over the data generated for final 1 ns of the 

simulation. The averaging performed provided good statistics as the error bars on the data 

points obtained were very small. The 1/κ calculated for the seven different systems is 

plotted against the inverse length, 1/Lx, for each system in Figure 17. A linear relationship 

between 1/κ and 1/Lx is observed in the plot. The intercept obtained by extrapolating the fit 

determined κ = 125 W/mK at 500 K temperature. The error bars provided on the plot show 

the observed standard deviation in the value of thermal conductance for each simulation 

and were mostly smaller than the size of the symbols on the plot. The bulk value obtained 



63 

is less than the experimentally measured κ ~ 210 W/mK at 500 K [67]. However, other 

published MD calculations for κ for β-SiC have reported similar values of bulk κ using the 

same potential and parametrization [105, 106]. 

 

Figure 17: System size dependence of 1/κ on 1/Lx for β-SiC at T=500K using modified Tersoff’s 

potential. Some error bars are of the size of the symbol and are therefore not visible. 

There are several reasons for the under-prediction of κ from NEMD simulations. 

Besides the description of the interatomic potential used, Schelling et al. [66] pointed out 

that though, the phonons should not be scattered at the boundaries with the periodic 

boundary conditions applied in the directions perpendicular to the direction of heat current, 

in order to obtain κ within 10% of the bulk value, systems with size at least 10 times that 

of the bulk phonon mean free path would be required. Another reason is the classical nature 

of MD simulations as explained in the next section. 
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5.4. Quantum Effects and Temperature Correction 

The Debye temperature for β-SiC is ~1200 K. Therefore, at lower temperatures 

where temperature effects on Bose-Einstein distribution are more significant, the quantum 

effects on phonon mode population become important. Including the quantum effects in 

MD simulations is an extremely difficult task. Several models have been proposed to 

correct the MD simulation results to include quantum effects. One such method is by 

scaling the MD temperature to real temperature [55, 67, 93]. In MD simulations, the total 

system energy in a harmonic system of N particles at temperature TMD is given as: 

  MDbTkNE 13   (24) 

The MD simulation temperature TMD can then be directly related to the real 

temperature Treal by equating the total energy in equation (24) to the energy of a quantum 

phonon system. 
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where  is Planck’s constant divided by 2π and ωk is the kth normal mode frequency. For 

the simulation setup used to calculate κ, the heat current, Jq, can be assumed to be the same 

as one would observe in an experiment to obtain the relationship: 

realMDMDq TTJ    (26) 
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here dTMD/dTreal is the gradient correction that must be multiplied to the κ calculated from 

MD simulations. These temperature corrections were however not performed on the κ 



65 

calculated in this study as the primary focus of the work is determination of Kapitza 

resistance Rk.at the grain boundaries in nanostructured system. 

5.5. Summary 

Thermal conductivity of β-SiC was calculated using non-equilibrium MD method 

at 500 K. Tersoff’s potential was used to describe the interactions between Si and C atoms. 

Slight modifications were made to the cut-off distance in the interatomic potential file to 

completely ignore second neighbor interactions based on the parametrization proposed by 

Porter et al. [55]. Finite size effects were observed due to the presence of thermal reservoirs 

which reduced the largest allowed phonon wavelength in the system significantly. 

Matthiessen’s rule was applied to extrapolate the results obtained from simulations of 

multiple system sizes and the bulk thermal conductivity was obtained as 125 W/mK. 

Although less than the experimentally obtained bulk thermal conductivity of β-SiC, 

opportunities to get better agreement with experimental results exist by making further 

improvements in the interatomic potential by including the explicit electronic structure 

effects. However, the results obtained are sufficiently encouraging to use the “modified” 

Tersoff’s potential to study thermal interface Kapitza resistance in β-SiC. 
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Chapter 6 
 

6. Effect of Grain Boundary Segregation 

6.1. Introduction 

The interface between dissimilar materials has been known to produce thermal 

resistance due to the difference in the densities of the two materials. The thermal resistance 

is results of mismatch in the speed of sound through the material on either side of the 

interface. This observation intuitively gives rise to the idea of thermal resistance from the 

GB interface in nano-structured material as they should also cause a similar interruption in 

the propagation of phonons through the material. However, the interaction of the phonons 

with the GB interface is much more complex, as the phononic transmission can be 

interrupted due to multiple factors like point defects or lattice defects in the crystal, 

presence of dopants, and vacancies. While, each of these factors might cause phonons to 

scatter to different extents, it is nevertheless important to elucidate the correlation between 

GB structure resulting from these defects and the thermal transport properties, to be able 

to tailor make the material with required thermal properties per the specific application 

requirements. Interpretation of the contributions from individual defects from experimental 

observations can be difficult as they are hard to de-convolute from each other. MD 

simulations are proven to be suitable for studying these issue as they allow to study each 

defect individually. In this Chapter, we explore how dopants with different strengths of 

interaction affect the GB structure and its subsequent effect on the GB resistance. The 
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observations are explained using structure factor calculations and the atomic number 

density at the GB. 

6.2. Kapitza Resistance for Undoped Grain Boundary 

Crocombette et al. [34] employed the Tersoff potential with the parametrization 

proposed by Porter et al. [55] to study the thermal resistance of different symmetric tilt 

GBs in β-SiC. They observed that the Rk changed significantly with the tilt angles for low 

angle GBs while the change in Rk was inconsistent for the large angle GBs. They created 

low angle boundaries by inserting edge dislocations, and used a shift procedure to create 

low energy high angle boundaries. More importantly, they analyzed symmetric 8° tilt angle 

boundary created by both the edge dislocation as well as the shift procedure. Although the 

8° tilt boundaries created using the two methods had a significant difference in the GB 

energy, they measured the almost the same Rk for both the cases. Using the work done by 

Crocombette et al as foundation, 8° symmetric tilt angle was used to study the impact of 

dopants at GB. In our work, the exact angle of the tilt boundary is 7.5891°. The GB was 

built with the lattice constant at 1000 K using the procedure outlined in Section 3.3. The 

undoped system was studied first. Using the simulation set up schematic shown in Figure 

9, a heat increment ∆ε = 8x10-4 eV was added by rescaling velocities at every MD time 

step in a thin layer of width δ = 8 Å centered at X = – Lx/4 and removed from a layer of 

same thickness at X = + Lx/4. This manifested a heat current flowing from the hot reservoir 

to the cold reservoir. The system was evolved for a total of 3.6 ns and a steady-state energy 

distribution was obtained between the first 1 and 2 ns of the simulation time. Rk was 

calculated at the GB by measuring the temperature drop at the GB, obtained by calculating 
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the temperature distribution through the length of the system using Equipartition theorem. 

More detailed specifics of the procedure are provided in Section 4.2.  

Figure 11 shows the temperature distribution in the undoped 7.5891° symmetric tilt 

angle GB system at T =1000 K. Rk was calculated from the intercept at the GB by 

extrapolating the slopes in the average temperature distribution in Figure 12. For this GB 

system Rk was calculated to be 5.8 × 10-10 m2K/W. The average error for Rk was ±0.3 × 10-

10 m2K/W for this undoped GB system. Rk was calculated for the second GB as well and 

difference between the measured Rk for the two GBs was determined to be negligible. For 

the 8° tilt system at 300 K, Crocombette et al. measured Rk ~ 4.6 × 10-10 m2K/W. The 

authors noted that at a temperature of 1273 K, the Rk was half the value of obtained at 300 

K. The Rk at 1000 K should therefore lie between these two values for their system and in 

the absence of confidence intervals, the results obtained in this work for the undoped 

system are within the statistical error. It should be noted that there are some differences in 

the GB creation methodologies such as different temporal and spatial averaging procedures 

and different boundary conditions as Crocombette et al. employed a free surface boundary 

condition whereas we employed a periodic boundary condition. Nevertheless, the results 

are still in good agreement with each other.  

6.3. Effect of Dopants on Kapitza Resistance. 

The presence of dopant atoms has been shown in earlier low-temperature studies to 

alter the Kaptiza resistance. In particular, impurity mass, concentration, and the bond 

strength have been identified as important factors in determining Kapitza resistance. Duda 

et al. [45] observed that for a given set of parameters defining the impurities, Rk increased 
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non-linearly with the increase in impurity concentration. They also determined that the 

strength of bonds between impurity atoms did not have a statistically significant impact on 

Rk. In the simulations performed by Duda and company, the strength of interaction between 

the impurity atoms and the matrix atoms were calculated from the Larentz Bertholet mixing 

rules. Given the importance of GBs in determining Rk, it is of interest to investigate the 

impact of boundary segregation on the resistance. Dopant atoms preferentially segregate 

to GBs owing, for example, to the elastic driving force associated with a relative size 

mismatch with lattice atoms [47-50]. 

In this Chapter, doped GBs are evaluated at 1000 K. Dopant atoms are 

preferentially inserted at the GB by replacing a SiC pair as described in Section 3.3.3. 

Described as LJ solid, the zero energy separation distance between the dopant particles and 

the strength of interaction between dopant atoms were held fixed at σ = 2.0 Å and εdd = 0.3 

eV, and two cases of dopant/matrix interaction, εdm, were explored: In one case the 

dopant/matrix interaction strength is the same as that of the dopant/dopant interaction 

(strong interaction case) ,and in the second case, the dopant/matrix interaction strength is 

one tenth that of the dopant/dopant interaction (weak interaction case). The concentrations 

employed here range from C = 0.048 to C = 1.007 ML. We note that, although the time 

scales of the simulation do not permit long-ranged diffusion, dopant atoms with a radius 

comparable to that of a Si atom will have considerable mobility at the GB and enable 

structural changes. These structural changes at GBs in the simulations occur over 1 to 2 ns 

and T data used for computing Rk were obtained well after GBs reached a steady state. The 

percent error in Rk for doped systems was estimated to be 3% on average at low 

concentrations and less than 1% at high concentrations.  
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Figure 18 illustrates the atomic arrangement of dopants and matrix atoms at one 

GB (located at X = 0) for the weak interaction limit (a1 through a5) and for the strong 

interaction limit (c1 through c5); images are shown for (from top to bottom) C = 0.048, 

0.167, 0.33, 0.567, and 1.007 ML at 3.2 ns for the constant heat flux simulation. Two 

distinct morphologies were evident. In the weak interaction limit, dopant atoms rearranged 

to form clusters whereas, in the strong interaction limit, dopant atoms remain more spread 

out forming layers like distribution. At the highest concentration studied, the size of the 

cluster shown for the weak interaction limit was approximately 2.5 nm in Y by 4 nm in Z; 

for the strong interaction limit, dopants were distributed fairly evenly across the entire GB 

plane. Also shown in Figure 18 are the corresponding density profiles perpendicular to the 

boundary plane, b1-b5 for the weak interaction limit and d1-d5 for the strong interaction 

limit. It is evident from these figures that as dopant concentration increased, dopant atoms 

increased their extent in X for both weak and strong interaction cases; however the extent 

in X was somewhat larger for the weak interaction case. The full-width at half-maximum 

of the dopant density distribution at the highest concentration is approximately 0.35 nm for 

the strong interaction case and approximately 0.5 nm for the weak interaction case. 

Hereafter, the weak and strong interaction cases are referred to as clustered and layered 

cases. As the resulting segregation profiles are qualitatively similar for the well-separated 

GBs after equilibration, Rk is calculated as an average over the two boundaries.  
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(a1) (b1) (c1) (d1) 

    
(a2) (b2) (c2) (d2) 

    
(a3) (b3) (c3) (d3) 

    
(a4) (b4) (c4) (d4) 

    
(a5) (b5) (c5) (d5) 

Figure 18: (a and c) Atomic arrangement at GB (at X = 0) and (b and d) density profiles across the 

GB. Data are shown for the weak (a and b) and strong dopant/matrix interaction limit (c and d). 

Data shown are for dopant concentrations 0.048, 0.167, 0.33, 0.567, and 1.007 ML (1-5). Large 

dark spheres are dopant atoms; Si and C atoms \whereas bright red atoms are dopants 
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From the density distribution data for the matrix material near the GB it can be 

observed that in the layered limit, the lowest density of the matrix material observed at the 

GB was ~35% of the bulk crystalline value whereas, for the clustered limit, the density of 

matrix material at the boundary goes nearly to zero. This is particularly true at the highest 

dopant concentrations shown. If a summation of matrix atoms and dopant atoms is 

considered, the number density at the GB in the layered limit increased, whereas it 

decreased in the clustered limit. 

The dependence of Rk on C in the clustered and layered limits is shown in Figure 

19. In both limits, Rk increased with the increase in C. The increase was substantially more 

pronounced in the clustered limit as the dopant concentration increase beyond a certain 

value C > 0.4 ML. In particular, it was noted that for C = 1.007 ML (the highest 

concentration explored), Rk was nearly 10 times greater than the value for the undoped GB 

system, indicated as a green triangle on the plot. By contrast, for the same large value of 

C, Rk in the layered limit is slightly more than 1.5 times that of the undoped GB system. 

This was true for both the GBs in each system even though the cluster shapes assumed by 

the dopants at each GB was different in the weak interaction limit for all the different 

dopant concentrations simulated. The density distribution obtained at either GBs was 

however similar for any given dopant concentration evaluated in both the limits. The error 

in presented values of Rk are of order the symbol size in all cases. 
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Figure 19: Kapitza resistance versus dopant concentration for the clustered (circles), the layered 

(squares) limits and the undoped system (triangle); a fit to the clustered data is also shown 

To have a better understanding of the observed differences in Rk and their 

dependence on dopant concentration (and structure), 2D temperature contour plots were 

computed in the YZ plane for a 0.6 nm thick slab (in X) centered on the GB at X=0, as well 

as for slabs adjacent to and far from the GB. Figure 20a is a schematic of the simulation 

cell that also shows the slabs selected for computing planar temperature contours (though 

analysis bins were 0.6 nm thick in X, they are denoted as contour planes, or CPs). These 

plots were generated for C = 1.007 ML cases at both clustered and layered limits. To obtain 

these CPs, the slabs were divided into 15x15 bins in Y and Z and the temperature within 

each bin was computed using the equipartition theorem using velocities sampled every 100 

time steps, with 100,000 samples used to calculate each bin temperature. In the layered 
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limit, the CPs (see Figure 20c) exhibit temperature uniformity within the plane, even for 

the CP centered on the GB. Given the simulation setup, the temperature at the GB CP 

should nominally be near 1000 K, and this was indeed observed in this limit. The ~50% 

increase in Rk observed for this system likely results from alterations in phonon modes due 

to doping. By contrast, in the clustered limit, while the temperature was relatively uniform 

in CPs away from (and even adjacent to) the GB, substantial temperature variations 

occurred for the CP centered on the GB (see Figure 20b). By comparing CP3 from Figure 

20b to the image shown in Figure 18(a5), it was found that regions occupied by dopant 

clusters had temperatures near 1000 K while other regions showed significant variations in 

temperature. These variations result in significant lateral temperature gradients that result 

in reduced phonon transport across the GB. It is important to highlight that the analysis 

grid defined is such that some bins only sample small clusters of matrix atoms. Thus, the 

meaning of local temperature should be carefully considered. Though the number of atoms 

in certain bins was consistently small, significant temporal averaging was employed such 

that the largest error observed in computed T was less than 10 K. Moreover, spatial 

averaging is implicit in the interpolation used to generate Figure 20. To determine the 

impact of binning on our results, the presented analysis was repeated with coarser grids (10 

x 10 and 8 x 8) and found that lateral T variations existed still existed within the matrix 

material in the plane of the GB.  
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Figure 20: Temperature contours in different planes perpendicular to the direction of heat flux 

for a) clustered limit and b) layered limit for the contour planes (CPs) 1 through 5, from left to 

right. CP1 and CP5 are half way between the GB and the flux in and out planes, respectively, 

while CP2 and CP4 are adjacent to the GB and CP3 is on the GB. 

One can understand the impact of these lateral gradients on the Kapitza resistance 

by examining a lattice dynamics expression for the Kapitza conductance given by 
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where w l,k( )  are phonon frequencies for wavevector k and branch  N
lk
T( )  is the 

average phonon occupation number, vx l,k( ) is the phonon group velocity normal to the 

grain boundary, and t l,k( )  is a transmission coefficient for phonons across the boundary. 

The integration is performed over the entire Brillouin zone[74, 107]. The presence of lateral 
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temperature gradients results in a net decrease in t l,k( )and therefore, assuming that other 

factors in the integrand in equation (36) change less dramatically, a concomitant reduction 

(increase) in s k  (Rk). The effect of dopants on phonon density of states is explored in 

greater detail in Chapter 7 

6.4. Structure Factor and Atomic Number Density 

Diffraction measurement techniques have been extensively used to experimentally 

determine the planar arrangement of atoms in material. Each atom j in a crystal, for 

example, will diffract any incident radiation in a characteristic phase pattern depending on 

the coordinates of the atom (xj, yj, zj) and atomic scattering amplitude ‘fj ’. The sum of all 

the waves scattered by all the atoms in a given unit cell is called the Structure factor S 

[108], 

    jjj

j

j lzkyhxifhklS   2exp      
(29) 

where  hkl  is the incident wave vector. From the above equation, a simple geometric rules 

can be applied to identify if for a given combination of the coordinates of the atom would 

reflect the incident wave or not. Consider the atomic coordinates (1, 1, 1). Substituting for 

(xj, yj, zj) in the above equation, the exponential will depend only on the wave vector hkl . 

Now if  lkh   are odd, the exponential will reduce to -1. However, if  lkh   are 

even, the exponential will reduce to 1. The concept can be extended to SiC where Zinc-

Blende crystal structure causes the above equation to depend independently on whether 

 hkl  are all even or odd or mixed. Table 4 provides the geometrical rules as they apply to 

structure factor. 
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Table 4: Geometrical rules for Structure factor 

Crystal Structure Observed reflection Structure factor, (S) 

Primitive (1 atom per unit cell) all h, k, l f  

Body centered cubic 

(2 atom per unit cell) 

lkh  = even 2f  

lkh  = odd 0 

Face centered cubic 

(2 atom per unit cell) 

h, k, l all even 4f 

h, k, l all odd 4f 

h, k, l mixed 0 

To highlight the role of boundary structure in determining Rk, we calculated the 

normalized structure factor, S ka( ) / Ns , in a 3Å-thick layer adjacent to the GB having Ns 

atoms. The rotation of the crystal to form GBs causes to modify the wave vector to 

highlight ordering in a direction perpendicular to the GB normal. The Structure factor is 

normalized with respect to the scattering amplitude and is given as 

    
 


s sN

j

N

i

ji
s

rrki
N

kS
1 1

exp
1

    


  (30) 

where ka is a wave vector allowed by the periodic boundary conditions. Figure 21 shows 

the Bragg peak heights for two face-centered cubic (fcc) reciprocal lattice vectors, 

and , where a is the lattice parameter for the clustered 

and layered limits. It is evident from the figure that there is generally greater order in the 

layered limit of dopant segregation. In the clustered limit, the peak heights decrease 

significantly relative to those for the layered limit after 4.0C  ML, suggesting that 

)1,1,1) (/2(1 ak 


)2,2,2) (/2(2 ak 

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phonon scattering from boundary disorder may be an important factor in determining the 

GB resistance.  

 

Figure 21: Bragg peak α = 1 (solid line) and α = 2 (dashed line) for the clustered (squares) and 

the layered (circles) limit 

Further information about boundary chemistry in the vicinity of this critical 

concentration can be obtained from the normalized density calculation shown in Figure 22. 

The atomic density was calculated in a 6 Å-thick layer at the grain boundary, normalized 

with respect to the bulk atomic density in an identical layer in the undoped system. It is 

observed that for 4.0C  ML the atomic density increases for both limiting cases while, 

for 4.0C  ML, the density increases (decreases) for the layered (clustered) limit. This 

sharp decrease in density in the clustered limit for large C also reflects the high degree of 

disorder at the GBs. 
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Figure 22: Normalized density in a 6Å thick layer at the GB for the clustered (squares) and the 

layered (circles) limit. 

Having identified various factors that influence Rk, it is useful to assume that the 

contributions to Rk can be expressed, using Mathiessen’s rule[109], as 

Rk   =  Rk
GB  +  Rk

C C( ) + Rk
disorder C( ) (31) 

where contributions from different source of phonon scattering by grain boundaries, by 

impurities, and by boundary disorder are given by Rk
GB, Rk

C , and Rk
disorder  respectively, 

defined as a function of dopant concentration C. Equation (31) is expected to be a good 

approximation to the extent that phonon scattering from each source is independent. For 

the system considered here, the various contributions, estimated from the data in Figure 19 

are found to be approximately (in units of 10-10 m2K/W) 
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  79.5CRGB
k  (32) 

  CCRC
k 76.3  (33) 

  245.45 CCRdisorder
k   (34) 

where the last contribution applies only in the clustered limit. The corresponding fit to the 

clustered case data is shown in Figure 19 and satisfactory agreement is observed. The 

emergence of the disorder term for the clustered case is in accord with structural data in 

Figure 21 

6.5. Summary 

Non-equilibrium MD (NEMD) simulations were performed to compute the Kapitza 

resistance, Rk, for segregated grain boundaries in β-SiC; to quantify the impact of boundary 

dopant concentration, C, on Rk for different dopant/matrix interaction strengths. For the 

symmetric tilt grain boundary considered here, it was found that in the limit where the 

dopant/matrix interaction strength equals that of the dopant/dopant interaction, the 

segregation profile comprises dopant layers. In this limit, Rk was found to be relatively 

insensitive to C owing to the similar size of dopant and matrix atoms. By contrast, in the 

limit where the dopant/matrix interaction strength is less than that of the dopant/dopant 

interaction, the segregation profile exhibits clustering. In this limit, the dependence of Rk 

on C is more complex as clustering induces boundary disorder and, hence, increased 

phonon scattering. In particular, for 4.0C , relatively large values for Rk are observed. 

Another important observations about data presented was that the significant 

increases in Rk were accompanied by a reduction in density at the GBs; the formation of 

dopant clusters resulted in a more significant exclusion of matrix material from the GB 
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region for the clustered dopant case compared to the layered dopant case. Thus, 

modifications to thermal transport achieved via structural changes at GBs such as observed 

here for the clustered limit may result in reduction of mechanical properties. Further, no 

attempt was made here to control cluster size (via, e.g., modifications to the interatomic 

potential employed to describe dopant interactions). An interesting remaining question is 

whether significant increases in Rk occur predominantly due to reduction in the area 

fraction at GBs occupied by matrix material (and the corresponding cohesive area loss) or 

if there exists an additional non-trivial dependence on dopant cluster size. 
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Chapter 7 
 

7. Effect of Temperature and Dopant Description 

7.1. Introduction 

Thermal transport in any material is attributed to the movement of electrons and/or 

lattice vibrations (phonons), when subject to a temperature gradient. In semiconductor 

materials like β-SiC, where very few free charge carriers are available, the contributions 

from phonons significantly dominates that from electrons[21]. Further, large wavelength 

phonons have been demonstrated to be the major contributor to thermal transport in the 

entire spectra at any temperature. Phonons with mean free path larger than the size of the 

grain get scattered at the grain boundary (GB), while σ remains relatively unchanged 

because of their much smaller mean free path compared to the phonons [19, 20].  

Zhou et al. performed phonon density of states calculations to study the interface 

between metal and GaN semiconductor substrate by varying the mass of the metal and the 

bond stiffness between the metal and semiconductor material [31]. They observed that with 

the increase in mass of the metal, the density of states shifted towards the lower frequencies 

and therefore exhibited a better overlap with the vibrational spectra of GaN resulting in a 

decrease in Rk. They also observed that Rk decreased with the increase in cross-bond 

stiffness between the metal and the semiconductor, eventually levelling off beyond a 

certain limit. Duda et al. investigated the effect of cross-species interaction and its cut-off 

distance on the temperature dependence of Rk in a mass mismatch GB system. They 

determined that although Rk had linear dependence on temperature for all combinations of 
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the interaction strength and the cut-off distance, any reduction in cut-off distance or 

weakening of the cross-species interaction strength resulted in a decline on the temperature 

dependence of Rk[44]. The presence of impurities has also been investigated. Particularly, 

dopant mass, concentration, and the bond strength have been identified as important factors 

in determining Rk[45]. However, these effects were studied at very low temperatures. 

Kapitza resistance, Rk, for any doped system is influenced by how strongly dopants 

at the GB interfere with the transmission of phonons through the GB. It is shown by the 

present study that the reduction in the phonon transmission was more significant in the 

cases where dopants segregated to the boundary. That is attributed to the stronger affinity 

towards neighboring dopant atoms compared to the matrix SiC atoms. The work presented 

in this chapter investigates how the dopants influence the phonon density distribution in 

the system. It is also investigated here that the influence of dopant mass and temperature 

of application on Rk. 

7.2. Influence of Temperature 

The sensitivity of thermal conductivity to temperature has long been known. 

Stevens et al. studied the temperature dependence of Kapitza conductance, k  using 

NEMD simulations and observed that k  increased linearly with the increase in 

temperature[63]. This observation can be explained from the Bose-Einstein distribution 

which determines the number of phonons at high temperature as: 
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Here n  is the expected number of phonons, ω is the frequency of the phonon and kb and 

  are the Boltzman and Planck’s constants respectively. From the above equation, it is 

noted that the number of phonons for a given mode increases with the increase in 

temperature. However, despite the low frequency phonons getting scattered at the GB, the 

increase in number of high frequency phonons results in an increased thermal transport 

across the GB. Young and Maris further demonstrated that with the increase in temperature, 

the rate of increase in k  decreased due to the increase in number of high frequency 

phonons which have a lower transmission coefficient and group velocity[110]. Dopant 

effects on Rk at higher temperatures were evaluated for both undoped and doped systems. 

Lattice constants were calculated for a wide range of temperatures from 300K and 1500 K, 

and bicrystals with 7.59° misorientation angle were created with the corresponding lattice 

constant at a given temperature. Least energy configuration were determined for each 

bicrystal, using Olmsted’s methodology[86] as explained in Section3.3.2 above. Keeping 

the other simulation parameters constant, it was observed that Rk decreased with the 

increase in temperature. Figure 23 shows k as calculated as a function of temperature for 

the undoped, lightly doped (C=0.048ML) and heavily doped (C=1.007ML) systems, and 

weak dopant matrix interaction strength εdm = 0.03 eV. It was observed that the k  

increased linearly with the increase in temperature for all three cases. However, this 

enhancement was mitigated by boundary segregation, especially at high dopant levels. This 

observation proves particularly important for high temperature applications where majority 

of the materials indicate a high κ. Addition of dopants above a certain concentration can 

counteract the undesired high κ at high temperatures. 
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Figure 23: Effect of dopant concentration on temperature on 
k for 7.59° symmetric tilt GB 

system in the cluster limit (εdm = 0.03) 

 

7.3. Influence of Dopant Mass 

Klemens theory states that the rate of phonon scattering, τ, due to the presence of 

dopants is inversely proportional to the square of the atomic mass difference between the 

dopant and the host material[111]   21
hostdopanthost mmm  . However, Duda et al. 

determined that the Klemens theory does not hold for GB systems where the scattering of 

phonons also depends on the overlapping phonon spectra between the two grains[45]. The 

frequency range of the vibrational spectra of the dopants is proportional to dopantmK . 

Here K is the stiffness constant for the dopants and depends on the strength of interatomic 
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interactions between the dopant atoms εdd. For a given εdd, with the increase in mass of the 

dopants, the range of frequency of the phonon spectra would decrease. If the dopant phonon 

spectra overlaps the vibrational spectra for the matrix material, a region of graded 

vibrational states will be obtained at the interface leading to a decrease in Rk. The influence 

of dopant mass on Rk at 1000 K was evaluated for the clustered and the layered limits. 

Keeping the other system variables constant, Rk was calculated for five different dopant 

mass systems, 6, 12, 20, 28 and 56 a.m.u. It was observed that for each dopant mass, Rk 

was consistently higher for the clustered limit than the layered limit. It was also observed 

that for a given dopant mass, although Rk increased with the increase in the dopant mass 

for both the clustered and the layered limit, the increase was much more significant in the 

clustered limit than in the layered limit. Figure 24 shows the influence of mass of dopant 

atoms for the both the strong and weak interaction cases and dopant concentration of 1.007 

ML. It is evident that in both the layered and the clustered limit cases, Klemens theory is 

not applicable due to the presence of dopants at GB. Moreover, besides the stiffness of 

dopant atoms, the affinity between the dopant and matrix atoms has a clear significant and 

compounded effect on the Rk at the GB. 
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The normalized structure factor, S(kα)/Ns, was calculated in a 3 Å thick layer 

adjacent to the GB having Ns atoms using the same procedure as described in Section 6.4, 

to understand the behavior of heavier dopant atoms on Rk, where kα is a wave vector 

allowed by the periodic boundary conditions. Figure 25 shows the Bragg peak heights for 

two face-centered cubic (fcc) reciprocal lattice vectors, )1,1,1)(/2(1 ak 


 and

)2,2,2)(/2(2 ak 


, a is the lattice parameter. It is observed that the Bragg peak heights 

do not change significantly with the change in mass of the dopant atoms indicating that the 

change in dopant mass might not be a contributing to structural changes at the GB and that 

the effect of dopant mass only reflects in the spectra associated with the dopant phonons. 

 

Figure 24: Influence of mass of dopant atoms on Kapitza resistance for in the layered (red 

squares) and clustered (blue circles) limit and dopant concentration of 1.007ML. Error bars are 

the size of the symbols for the data presented in this plot. 
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Figure 25: Bragg peak α=1 (solid line) and α=2 (dashed line) for the clustered (squares) and the 

layered (circles) limit 

 

7.4. Influence of Dopant/Matrix Interaction Strength 

The bond strength and atomic radius of LJ dopant atoms can be controlled by 

modifying the energy parameter epsilon and the length parameter sigma. A change in the 

interatomic interaction strength ε will change the interatomic force constant that determine 

the forces experienced by neighboring atoms. Duda et al. [45] noted that modifying the 

dopant/dopant interaction strength, εdd, did not have significant impact on Rk. However, 

their study was limited to very low temperatures and the dopant/matrix interaction strength 

were obtained using Lorentz-Berthelot mixing rules. In chapter 6, the impact of varying 

εdm was explored for a set of values nearly 10 times compared to ± 25% variation in εdd as 
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studied by Duda et al. It was observed that dopants that interact weakly with the matrix 

tend to cluster together due to higher affinity towards other dopant atoms, resulting in a 

surge in Rk. However, for the strong dopant/matrix interactions, dopants did not exhibit 

segregation at the GB. In this chapter, six additional dopant/matrix interaction strengths 

were examined to determine the critical interaction strength where dopants begin 

segregating to the GB. Keeping the εdd constant at 0.3 eV, the influence of dopant/matrix 

interaction strength, εdm, on Rk was examined. The length parameter was kept constant at  

= 2.0 Å. From Figure 26, it was noted that Rk decreased linearly with the increase in εdm till 

it reached εdm = 0.17 after which the rate of reduction in Rk decreased gradually.  

 

Figure 26: Kapitza resistance for different dopant/matrix interaction strengths and a dopant 

concentration of 1.007ML at 1000 K. The insets show the corresponding segregation profiles for 

the two limiting cases with Si atoms (blue), carbon atoms (black) and dopant atoms (red). Error 

bars were determined by averaging over well separated 50 data points. 
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Since the interaction between real dopants and matrix is a characteristic of the dopant 

material used, the approximately six-fold increase in Rk suggests that the boundary 

resistance may be tuned by a judicious choice of dopant. 

7.5. Vibrational Density of States  

Kapitza conductance, k  which is the inverse of Kapitza resistance Rk at 

temperature T is defined as the ratio of the heat flux across the interface per unit time to 

the temperature difference across the interface. Young and Maris expressed k  in terms of 

the group velocity of phonons of frequency ω,  zv  and the average transmission 

coefficient of the phonons,  t  as[107, 110]: 
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where C(ω,T) is the specific heat per unit volume of the phonons, D(ω) is the phonon 

density of states, alternately called vibrational density of states, and the n(ω,T) is the Bose-

Einstein occupation number. From equations (36) & (37), it is evident that k  is directly 

proportional to the integral of the vibrational density of states. Vibrational density of states 

calculations were performed for the undoped, and heavily doped systems at both the 

clustered and the layered limits, to further explore the mechanisms responsible for the 

significant change in Rk for the different dopant interaction cases.  

In order to draw good comparison, besides the GB, vibrational density of states 

calculations were performed for four additional planes (CP1, CP2, CP3, CP4, and CP5) 

strategically placed along the direction of heat current, as illustrated in Figure 27(a). Each 
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of these planes is 6 Å thick with CP1 (CP5) placed midway between the heat in (out) region 

and the GB, CP2 & CP4 placed adjacent to the GB on either sides, and CP3 at the GB. The 

vibrational density of states was calculated by taking the Fourier transform (F  ) of the 

velocity autocorrelation function, [53, 112]. Atomic velocities in each plane were 

obtained at each MD time step for 1,000,000 time steps and  was calculated for segments 

of 20,000 points with 90% overlap according to the Welch method of calculating power 

spectral density [113, 114]. For a multi-species system like doped β-SiC, it is vital to take 

into account the individual contribution of each species. Therefore, for each segment, the 

power spectral density of each species was calculated by averaging  for that species 

and then taking the Fourier transform of it [112]. The normalized   for the species  ( 

= Si, C, & Dopant) is given as: 
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where  tvi


 is the velocity of the atom i of the species z and  is the long time average 

of the data from MD simulation as described above. The power spectral density can then 

be calculated from the weighted Fourier transform using the mole fraction, c, of the 

species in the plane 
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Of the 20,000 data point in velocity autocorrelation function, Fast Fourier transform 

was performed over the first 16,384 points, and the remaining data points were discarded. 

vibrational density of states is proportional to the power spectral density[45], and was 
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calculated by scaling the individual contribution of each species by their mole 

fraction[115]. The vibrational density of states for undoped, clustered limit, and the layered 

limit systems respectively are illustrated in Figure 27(b), (c), and (d) respectively. For the 

undoped system, phonons with mean free paths greater than the distance between the heat 

reservoir and the GB were scattered, causing a sharp drop in vibrational density of states 

at the GB (CP3). Moving away from the GB, In CP2 and CP4, vibrational density of states 

started recovering and eventually assumed the same outline as that in the pseudo bulk β-

SiC in CP1 and CP5 for the simulation system. Focusing at the GB, it can be seen that in 

the frequency range 180 THz – 200 THz, the peak for vibrational density of states were no 

longer distinct for clustered limit case whereas in the layered limit some vibrational density 

of states can be seen in the same frequency range shown in Figure 27(c) & (d) respectively. 
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Figure 27: a) Sketch showing the location of 5 different planes for which vibrational density of 

states is calculated perpendicular to the direction of heat flux for b) undoped system, c) clustered 

limit, and d) layered limit. 
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A closer investigation of the individual contribution from the different species at 

the GB indicated that each species had a different contribution over any given frequency 

range. Figure 28a) show the individual contribution from each species as in ideal β-SiC 

crystal of same cross-sectional area as the undoped system at equilibrium. It is observed 

that the contribution to vibrational density of states from carbon and silicon atoms was 

highest for 180 THz < ω < 200 THz, as shown in Figure 28a). However, the presence of 

grain boundary results in loss of these peaks as can be seen from vibrational density of 

states contributions from the constituent species at the GB in an undoped system as shown 

in Figure 28b).  

 

Figure 28: Individual contribution of the constituent species Si (blue), C (red) to vibrational 

density of states in a) as well as the total vibrational density of states (black) for a monocrystal 

at equilibrium. and b) at the GB in an undoped system at steady state 

This observation becomes particularly important for doped systems. Figure 29a) 

and Figure 29b) show the vibrational density of states plots for the clustered and layered 

limit cases respectively, for different dopant concentrations. From left to right, the dopant 

concentration increases from 0.048 ML to 1.007 ML as indicated above the respective 
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plots. For the clustered limit, it was observed that with the increase in dopant concentration, 

the contribution from carbon to the total vibrational density of states decreased in the 

frequency range 180 THz – 200 THz, resulting in a decrease in the total vibrational density 

of states for the mentioned frequency range. At the same time, given the dopant atoms have 

the same mass as that of Silicon atoms, the vibrational density of states in the frequency 

range 60 THz – 90 THz increases even though the contribution from Silicon decreases in 

that frequency range. For the layered limit, Figure 29b) shows that the drop in vibrational 

density of states contribution from carbon and silicon were lower compared to those at the 

clustered limit for any given concentration.  

 

Figure 29: Individual contribution of the constituent species Si (blue), C (red) and dopant (green) 

to vibrational density of states in as well as the total vibrational density of states (black) for a) 

clustered limit (εdm = 0.03) and b) layered limit (εdm = 0.3) for the dopant concentrations (left to 

right) 0.048 ML, 0.567 ML and 1.007 ML. 
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Speed of sound calculations were performed for the monocrystal at equilibrium to 

determine the wave mode contributing the peak in density of states in the frequency range 

of 180 THz – 200THz. The bulk modulus for β-SiC was determined from the elastic 

constant at 0 K, as calculated by Tersoff [61] for the interatomic potential used in this work. 

The wave mode, λ = 2.714 Å was obtained for angular frequency of 190 THz. Given that 

the second neighbor C-C and Si-Si separation distance at 1000 K is 3.04 Å, and the wave 

mode obtained above is based on the elastic constants at 0 K, it can be argued that the wave 

mode corresponds to the phononic transmission between C-C and Si-Si atoms. 

Projected vibrational density of states calculations were performed to obtain 

additional information about the important vibrational modes that affect heat transport. 

These calculations were performed for an ideal crystal using the methodology described 

by Meyer et al. [116]. Plane waves with wave vector q parallel to (100), (110) and (111) 

family of vectors were identified and the projection of the velocities on the plane waves 

were calculated from: 
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here ri
0  is the average position of the ith atom and p  is the polarization vector. Projected 

vibrational density of states were then calculated from the Fourier transform (F  ) of the 

projected velocity autocorrelation function  p
q

g

 as follows: 
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Sharp peaks were obtained at frequencies corresponding to the phonons with wave 

vectors q  and polarization p . From an analysis of several high-symmetry directions, peaks 

were observed at ω = 200 THz from the projected vibrational density of states for q ||  110

family of vectors as shown in Figure 30. As is evident from the figure, modes with a 

polarization p 111  make a significant contribution to this peak. Given the zincblende 

structure of β-SiC, it can be seen that this direction is associated with the Si-C bond.  

 

Figure 30: Projected vibrational density of states for an ideal crystal at 1000 K averaged over 

wave vectors q


 = [1 1 0], [1 0 1] and [0 1 1], and polarization vectors p  = [1 0 0] (red), [1 1 0] 

(blue) and [1 1 1] (green). 

A more detailed analysis of the relevant vibrational modes was obtained by an 

eigenmode analysis of the force-constant (i.e., Hessian) matrix for an undoped, perfect 

crystal of size 3×2×2 unit cells[57, 117, 118]. Small perturbations were introduced in all 

three dimensions for each atom and the Hessian matrix was built from the resulting forces 
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on all other atoms for each perturbation. For an N atom system, the Hessian matrix (Φτ) is 

a 3N × 3N matrix given by: 
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where  refers to the perturbation along the αth cartesian coordinate component of the ith 

atom. The eigenvalues obtained from diagonalizing the Hessian matrix, are the relevant 

phonon modes for the system in accordance with the equation: 
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It was determined that for the frequency range of 180 THz – 200 THz, majority of 

the phonon waves are travelling along the through the vibrational interaction between the 

second neighbor C-C and Si-Si atoms. From this analysis, the modes 180 THz <<200 

THz were found to be optical modes in which the Si and C atoms vibrate in opposite 

directions; by contrast, the low-frequency peak comprises acoustic modes in which the Si 

and C atoms vibrate in the same direction. One optical eigenmode for which 204 THz 

is illustrated in Figure 31.  
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Figure 31: Atomic vibrations for Silicon (red) and Carbon (blue) from eigenmode analysis at 

204 THz 

Given that 204 THz corresponds to the frequency most significantly affected 

by dopant segregation as alluded to in the discussion above, it is clear that dopant 

segregation reduces the number of optical modes in the system, most especially in the 

clustered limit. Details about the normal mode analysis performed as well as atomic 

vibration modes are provided in Appendix B. 

7.6. Summary 

In summary, various doping scenarios were investigated to assess the role of 

dopants on the degree of disorder and segregation at a grain boundary. System parameters, 

such as temperature and dopant/matrix interaction strength, were varied and the resulting 

effect on Rk was examined. It was determined that the dopant/matrix interaction strength 
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affected the GB structure, thereby causing different degrees of phonon scattering, and 

therefore both the dopants and boundary disorder were associated with an increase in Rk. 

Moreover, it was found that while the boundary conductance increased with increasing 

temperature, this enhancement was mitigated by boundary segregation, especially at high 

dopant levels. Finally, from an analysis of the local vibrational density of states and a 

complementary eigenmode analysis, it was found that doping decreased the number of 

optical modes, and therefore the conversion from optical to acoustic modes is an important 

mechanism in dictating boundary resistance. 
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Chapter 8 
 

8. Effect of Grain Boundary Orientation & Energy 

8.1. Introduction 

Crystallographic orientation has been determined to significantly affect the thermal 

properties of the material. Several naturally existing crystals have been identified to exhibit 

different thermal conductivity along different directions. For example, Pyrolytic graphite 

exhibits a thermal conductivity of 2000 W/mK in-plane along the a-axis and the b-axis 

directions, however, the cross-plane thermal conductivity along the c-axis direction is only 

6.8 W/mK [119]. This is primarily due to the weak van der Waals forces between the 

atomic layers in the c-axis direction. More recently, Zhao et al. observed that the naturally 

occurring Tin-Selenide (SnSe) crystals have a much higher thermal conductivity along the 

a-axis direction of orthorhombic structure at room temperature, compared to the thermal 

conductivity along the b-axis and c-axis directions [120]. Similarly, chalcogen materials 

like Yb14MnSb11 [121], Ag6TlTe5 [122], and AgSbTe2 [123] are some of the state of the art 

materials that exhibit intrinsically low thermal conductivity. However, the special 

properties of these materials is only limited to crystalline form of the material. A non-

crystalline material consists of grains that are very irregular and arranged in an extremely 

complex three dimensional structure.  

From the discussions earlier in this report, it is evident that each grain will have a 

characteristic thermal conductivity. However, each boundary between the adjacent grains 

will have a distinct Rk because of the size of the grains comprising the boundary, as well 



102 

as the orientation that the grains subtend to each other. Experimental evidence has been 

advanced that indicates k can vary significantly with the change in GB orientation due to 

the different phonon group velocities in different directions. Hopkins et al. observed that 

k differed by as much as 40% between Al:Al2O3 (0001) and (112̄0) interfaces [124], but, 

no orientational dependence was observed Al:Si (001) and (111) interfaces. Similarly, 

Contescu et al. used time domain thermos-reflectance technique to measure k  in 

TiN:MgO interfaces and reported no crystallographic orientation dependence between 

(001) and (111) interfaces [125]. Crocombette et al. [34] studied Rk in low angle as well as 

large angle symmetrical tilt GB systems using MD simulations. The low angle GBs were 

created by inserting edge dislocations whereas the large angle GB systems were created by 

applying mirror symmetry and shifting the system to low energy configuration. For the low 

angle GB systems, they observed large variations in the thermal interface resistance Rk, 

increasing monotonously by nearly 5 times as the GB tilt angle increased from 2° to 8°. 

However, for the large angle systems, the change is Rk was no longer monotonous and 

appeared to be independent of the GB tilt angle. In a different study, Duda et al. [126] 

determined that the GB resistance depended on the atomic packing of the constituent 

grains. While bicrystals with fcc crystal structure did not show strong dependence of Rk on 

the crystal orientation, Rk at GBs between a fcc crystal and a tertragonal crystal were 

strongly influenced by relative orientation of the two crystals comprising the GB. 

The work presented in this chapter investigates the influence of symmetric tilt angle 

forming the GBs on Rk. Of particular interest is the influence of temperature on the Rk for 

each of these GBs. Subsequently, dopants are inserted at the GB to determine their 
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influence on Rk for three different tilt angle GBs. Lastly, from the discussion in Section 

3.3.2, it is reasonable to assume that there is always a distinct possibility that not all GBs 

will be at the lowest energy, perhaps resulting in slightly elevated stresses. It is therefore 

of interest to build an understanding of the influence of GB energy on Rk is explored. 

8.2. Grain Boundary Misorientation Angle 

Five different tilt angle GBs were created using the methodology described in 

Section 3.3 with the Z axis along the [1 1 1] direction. The misorientation angles were 

chosen such that the GBs ranged from coherent and ordered boundaries at low angles to 

more vicinal and general boundaries at large angles. Figure 32 shows the free surface plots 

for mono crystals with 3.9632°, 7.5891°, and 16.1021° misorientation angles along with  

  

  

  

Figure 32: Free surface plots (left) and density distribution along the length (right) for 3.9632° 

(top), 7.5891° (middle), and 16.1021° (bottom) tilt angle about (1 1 1) plane in β-SiC mono 

crystal. Blue spheres are Silicon atoms and red spheres are Carbon atoms. 
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the atomic density distribution along the length of the mono crystal (horizontal direction in 

the page). The GB is formed by mirroring the mono crystal at the end. It is evident from 

the atomic structure adjacent to the edge that the GBs formed from these inclinations will 

differ with respect to the atomic proximity and occupation at the GB. From the density 

distribution plots on the right, it is observed that between 3.9632° and 7.5891° 

misorientation systems, it can be seen that the 7.5891° system is more densely packed, 

whereas the 16.1021° system has characteristic sharp planes of atoms which could 

potentially have an impact on local vibrational density of states. Table 5 provides the 

vectors along the X and Y axis for each symmetric tilt angle, and the dimensional details 

of these systems at 1000 K temperature.  

Table 5: System dimensions and X and Y rotation vectors for different symmetric tilt angle GBs. 

Z Vector along [1 1 1] 

Tilt Angle 

(θ) 
Lx (Å) Ly (Å) Lz (Å) X Vector Y Vector 

1.8038 268.988 77.6504 44.7281  512427   12625  

3.9632 264.194 38.1332 44.7281  251114   11312  

7.5891 276.528 39.9133 44.7281  1358   176  

12.2163 258.882 49.8219 44.7281  16511   297  

16.1021 263.352 38.0115 44.7281  1239   275  

The fcc structure of β-SiC in (1 1 1) has a hexagonal ring shape. This shape reduces 

the interval of possible misorientation angles in the plane to [0°, 30°] for each mono crystal 

due to symmetry consideration and the GB should disappear when the tilt angle is 0°. 
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Figure 33 shows Rk as determined for each of the five different GB systems at different 

temperatures. Contrary to the notion that Rk should increase rapidly with an increase in the 

tilt angle as the grains become increasingly incoherent, Rk is observed to be relatively 

independent of the tilt angle. One reason for this observation lies in the methodology used 

to create these GB systems. The bicrystal was created by mirroring a mono crystal. 

However, if the system were to be created by replicating the mono crystal and then 

reversing the direction of rotation in the replicated second mono crystal, things might have 

been slightly different. Furthermore, with the current methodology of creating a bicrystal, 

the atoms appearing on the other side of the GB will not be in the ideal lattice positions 

even if the system rotation angle was reduced to zero. Additionally, since the atoms were  

 

Figure 33: Influence of temperature on Kapitza resistance at different symmetric tilt GBs 
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shifted laterally in the transverse direction, this also causes the atomic positions to be 

different from what one would expect from a typical system. These actions possibly have 

a cumulative effect on the vibrational mismatch at the GB that overshadows the effect of 

GB tilt angle.  

From Figure 33, it is observed that the temperature effect on Rk for different tilt 

angle GBs was very peculiar. At low temperature, Rk was observed to increase with an 

increase in the tilt angle for the low angle GB systems, and eventually levelled off for the 

high angle incoherent GB systems. However, the overall change in Rk was insignificant. 

With an increase in temperature, this effect appeared to wean off and for the tilt angles 

evaluated, the Rk for each system was within the statistical error of each other. However, it 

stands to argue that the error bars on the above data points only serve to prove the good 

statistics obtained on the data. These results are still preliminary and have not been verified 

for repeatability. It is possible that Rk calculated for different cases might turn out to be 

within the error bar range of each other. To resolve this issue, vibrational density of states 

calculations were performed for 3.9632°, 7.5891°, and 16.1021° undoped GB systems, as 

depicted in Figure 34. 

As is evident from the figure, the vibrational density of states profiles closely 

followed each other for the three GBs evaluated with only small difference in the height of 

the peaks, indicating that the scattering of phonons can be assumed to be independent of 

the grain orientation for the symmetric tilt boundaries studied. However, this might hold 

only for symmetric tilt GB systems considered in the present study. On the contrary, 

Crocombette et al. [34] observed that in low angle GB systems obtained from edge 

dislocations Rk increased as the GB misorientation angle increased. 
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Figure 34: Vibrational Density of States at the GB for 3.9632° (green), 7.5891° (blue), and 

16.1021° (red) symmetric tilt GB systems. 

 

8.3. Effect of Misorientation Angle on Dopant Contributions 

The effect of dopants at the GB was discussed in detail in Chapter 6. The 

observations in the chapter were limited to symmetric 7.5891° tilt GB system. It is of 

interest to determine if Rk remains independent of the GB tilt angle in the presence of 

dopants at the GB. Dopants were characterized in the identical manner as done for the 

7.5891° tilt angle system and selectively inserted at the GB in 3.9632° and 16.1021° tilt 

angle systems. Five different dopant concentrations, C, between 0.047 ML and 1.007 ML 

were examined. Keeping the strength of interaction between dopants, εdd, constant at 0.3 

eV, Rk was calculated for the dopant/matrix interaction strengths, εdm, of 0.03 eV, and 0.3 

eV. Following the procedure described in Section 4.2, simulations were run for 4 ns at 1000 

K. For the 7.5891° symmetric tilt GB, it was found that while the dopant segregation profile 
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comprised of layers in the limit where εdm = εdd = 0.3 eV, and Rk was relatively insensitive 

to C; in the limit where the εdm is less than εdd, the dopants segregated to form clusters. 

Similar observations were made for the 3.9632° and 16.1021° tilt angle GB systems. In the 

layered limit, it was observed that Rk changed nearly identically with the increase in C 

irrespective of the GB orientation, as can be seen in Figure 35. The dopants were 

determined to be spread out in layered structure at the GB cross section. More interesting 

observation was made at the clustered limit. At low dopant concentrations, the increase in 

Rk was determined to be independent of the GB orientation. However, once the dopant 

concentration increased past a certain critical concentration, Rk increased with the decrease 

in GB orientation.  

 

Figure 35: Influence of dopant concentration on Kapitza resistance at different symmetric tilt 

GBs 
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Rk increased by consistently by about 10% as the GB misorientation angle 

decreased from 16.1021° to 3.9632°. The percentage gain in Rk cannot be considered 

significant and the variation in Rk was examined by calculating the vibrational density of 

states distribution for the three systems at the GB for both the clustered and the layered 

limits and the highest dopant concentration. Similar to previous analyses, a 6 Å thick plane 

identified to straddle the GB region and vibrational density of states were calculated by 

taking the Fourier transform of the velocity correlation function. The procedure is 

described in detail in Section 7.5. Vibrational density of states obtained at the GB for the 

three misorientation angle systems is shown in Figure 36. In the clustered limit the 

vibrational density of states distribution for the 16.1021° tilt angle GB system observed a 

relative decline in the frequency range 180 THz – 200 THz, while the vibrational density 

of states distribution for the three different symmetric tilt angle GBs largely overlapped for 

the remaining frequencies. This observation is in somewhat contradiction to the observed 

trend for Rk from Figure 35 indicating that a difference of about ±10% between Rk might 

not be as significant and could potentially be within the error bars obtained from 

simulations performed for similar degenerate systems. 

In the layered limit, the vibrational density of states distribution for 3.9632° and 

16.1021° misorientation angle GB systems closely overlapped each other, and the 7.5891° 

misorientation angle GB system had vibrational density of states distribution consistently 

higher than those of the other two systems, despite the observed Rk for 16.1021° 

misorientation angle system about 10% higher than the other two systems in the layered 

limit. These observations only highlight that the presence of dopants at the GB potentially 

affects the sensitivity of Rk on the vibrational density of states at the GB. 



110 

  

Figure 36: Vibrational density of states at the GB in a) clustered limit and b) layered limit for 

3.9632° (green), 7.5891° (blue), and 16.1021° (red) symmetric tilt GB systems at highest dopant 

concentration 

 

8.4. Influence of Grain Boundary Energy 

Grain boundary energy was briefly discussed in Section 3.3.2. As pointed out in the 

previous section, each GB in a stable nano-structured material will likely have a different 

GB energy associated with it. Schelling et al. [76] investigated three different twist 

boundaries that inherently exhibit different energy at GB due to the differences in the 

degree of disorder associated with the twist angles. They observed that for the systems with 

higher disorder at the GB had a significantly higher Rk compared to the lower energy and 

more order twist GBs. GB created using symmetry and shift as well as introducing small 

edge dislocations were studied by Crocombette et al. [34] and they observed that for the 

low angle dislocation generated GBs, both Rk and the GB energy increased monotonously 

with an increase in the angle, whereas no clear relationship was observed between GB 

energy and Rk for the symmetric tilt GB systems. 
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Building off of the available literature, the effect of dopants in degenerate 

symmetric tilt GBs with small differences in GB energy on Rk was examined in the work 

presented here. From the shift procedure used to build 3.9632° tilt angle boundary, two 

different scroll combinations were chosen that resulted in a low GB energy. Figure 37 

shows the minimum energy for each of the iteration of lateral scroll analyzed plotted in the 

increasing order of GB energy for three different atomic deletion criteria. Besides the 

bicrystal configuration with the lowest GB energy of 4.2214 eV, a second configuration 

was randomly selected (GB energy 4.7076 eV). From Figure 37, given the stiffness of SiC 

and the resulting higher slope for increase in GB energy, the two low energy (LE) and high 

energy (HE) configurations can be regarded as degenerate. 

 

Figure 37: GB energy vs. GB configuration iteration (sorted by increasing GB energy) for atomic 

deletion criteria of 25%, 30%, and 35% of the equilibrium bond length in 3.9632° symmetric tilt 

GB 
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Simulations were performed for calculating Rk for undoped systems built for both 

the LE and HE configuration at 1000 K and was determined to be 5.8491 ± 0.2132 W/m2K 

and 6.5196 ± 0.1764 W/m2K for the LE and HE systems, respectively. Although Rk 

increased with an increase in GB energy, the increase was not significant. Dopant atoms 

were introduced at the GBs in both the LE and HE systems to examine if dopant segregation 

profiles are affected by the GB energy. Five different dopant concentrations, C, of 0.048 

ML, 0.167 ML, 0.33 ML, 0.576ML and 1.007ML were evaluated using the procedure 

described in Section 4.2 for both the clustered and the layered limit. Figure 38 shows Rk 

plotted against C and undoped cases for both the LE and HE systems  

 

Figure 38: Kapitza resistance versus dopant concentration for high energy (squares) and low 

energy (circles) configurations; and the clustered (solid lines), the layered (dashed lines) limits 

and the undoped systems (triangle) 
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For both HE and LE systems, Rk was increased nearly identically with the increase 

in C until C = 0.567 ML, beyond which Rk for the LE system had a more significant rise 

compared to the HE system. For the highest concentration, Rk for the LE system was about 

35% greater than that for the HE system. The layered limit exhibited very different trend 

for Rk compared to the clustered limit. The HE systems in the layered limit had consistently 

higher Rk than the LE systems for all C. More importantly, the HE systems in the layered 

limit exhibited rapid increase in Rk for lower dopant levels which eventually subsided with 

further increase in C. On the contrary, LE systems exhibited a much smaller rate on 

increase in Rk with the increase in C. A closer inspection of GB structure revealed that the 

HE systems observed a higher loss of order at the GB. Figure 39 shows the atomic structure 

at both the GBs in a simulation cell for the undoped system and the doped systems with 

dopant concentration C=0.33 ML and C=1.007 ML in HE and LE cases. It was determined 

that for the undoped systems, the loss of order at the GBs was not very significant which 

explained the negligible difference in Rk as mentioned earlier. For the clustered limit, at 

C=0.33 ML, it can be seen that the HE systems exhibit higher loss of order at the GBs 

compared to the LE systems as the matrix atoms near the GB are no longer at the ideal 

lattice positions. This explains the slightly higher Rk for the HE system compared to the LE 

system as seen in Figure 38. However, at C=1.007 ML, the HE systems did not exhibit a 

loss of order similar to what was observed for C=0.33ML. 
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Figure 39: GB disorder at GB1 (columns a & c) and GB2 (columns b & d) as indicated 

in Figure 20 a) for undoped and doped systems in the clustered limit. The first two 

columns are for the LE systems and the last two columns are for HE systems. 

For the layered limit, a much more significant loss or order in observed at the GBs 

as shown in Figure 40. The loss of order for C=0.33 ML case was higher than that for the 

case C=1.007 ML. Moreover, while for all the simulation results presented earlier, the 

resistance at the two GBs was with in ±1×10-10 m2K/W, the different degrees of disorder 
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at the two GBs in HE systems resulted in a non-trivial difference between the 

corresponding Rk between the two GBs. While these observations are important, a more 

conclusive result requires additional simulations to be performed for the dopant 

concentrations studied at a few more degenerate GB energy levels. 

 
Figure 40: GB disorder at GB1 (columns a & c) and GB2 (columns b & d) as indicated 

in Figure 20 a) for doped systems in the layered limit. The first two columns are for the 

LE systems and the last two columns are for HE systems. 

 

8.5. Summary 

To summarize, several GB misorientation angles were investigated to assess the 

role of GB orientation on Rk. For the methodology used to build the GB system, Rk was 

determined to be insensitive of the GB orientation for the range of system temperatures 

examined. This was further confirmed from the vibrational density of states analyses. The 
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presence of dopants at the GBs appeared to result in different degree of phonon scattering, 

however, the vibrational density of states analyses performed for the doped systems did 

not reveal any difference in distinct loss of phonon modes between the three misorientation 

angle systems examined. To build a better understanding of the observed results, more 

simulations with other degenerate systems and the same dopant concentrations needs to be 

performed.  

Finally, the effect of GB energy on Rk was investigated for 3.9632° misorientation 

angle symmetric tilt GB. Dopants in the layered limit caused a greater loss of order at the 

GBs in high GB energy systems. It was also observed that with the loss of order, the GB 

were no longer distinct and appeared to broaden, resulting in dopants occupying a larger 

section of the system. The lack of prominence of the loss of order in the undoped and 

clustered limit cases of the high energy system serve to bolster the need to better understand 

the influence of GB energy on thermal transport across the GB. 
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Chapter 9 
 

9. Conclusions and Future Work 

9.1. Conclusions 

Phonon scattering at grain boundary interfaces is a proven solution to lowering 

thermal conductivity in semi-conductor materials for applications focusing on harvesting 

energy from high temperature surfaces and exhausts using thermoelectric generators. The 

continued miniaturization of microelectronics takes advantage of this effect and with 

additional opportunities of improvement in the figure of merit available via usage of 

appropriate dopants; understanding thermal transport at the phonon level will be required 

to enable further improvements in the design of nanostructured semiconductors. This will 

allow reducing the thermal conductivity, and thus the potential for high ZT. 

In this dissertation, thermal transport across segregated grain boundaries in β-SiC 

was examined using non-equilibrium MD (NEMD) simulations. The aim of this study was 

to quantify the impact of boundary dopant concentration on Kapitza resistance for different 

dopant/matrix interaction strengths. These results indicate that dopants can significantly 

affect thermal transport in polycrystalline β-SiC by increasing Rk at GBs. The magnitude 

of the change observed in Rk greatly depends on the strength of the dopant interactions and 

the shape of the segregation profile. 

Another determination from the work was that the degrees of phonon scattering is 

affected by the dopant/matrix interaction strength, thereby causing different GB structure 

and the associated Rk. Moreover, it was found that boundary segregation also mitigated the 
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increase in boundary conductance with increasing temperature, especially at high dopant 

levels. It was also found that doping decreased the number of optical modes, and therefore 

the conversion from optical to acoustic modes is an important mechanism in dictating 

boundary resistance. Finally, it was observed that while the GB orientation did not appear 

to have substantial impact on Rk, given the probability of different boundaries having 

different local energy, could influence the degree of segregation at the GB and thus 

influence Rk. 

The results suggest that it may be possible to tailor the thermal response of other 

polycrystals by controlling the degree of boundary segregation. For example, one avenue 

for controlling segregation exploits the occurrence of complexion transitions at boundaries. 

By varying parameters, such as the temperature or the applied stress, it is possible to induce 

transitions between different complexions having, for example, different interfacial 

chemistry and/or structure[127]. Furthermore, by controlling the chemistry and 

composition of dopants as well as system temperature, one may be able to effectively tune 

boundary resistance by dictating segregation profiles. In particular, given that a reduction 

in elastic energy is a driving force for segregation, it may be advantageous to select dopants 

with relatively large atomic radii to promote segregation. It may also be possible to induce 

layering (complexion) transitions at a grain boundary to control the segregation profile and, 

thereby, the boundary resistance[128]. 

9.2. Suggestions for Future Work. 

Some interesting contributions were made in this work. Most importantly, it was 

showcased that opportunities are indeed available to improve the performance of materials 
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that have not been considered for thermoelectric applications. However, this work also 

opened several questions that need to be answered for better understanding of the 

underlying principles before a suitable application. Some of these are listed below: 

9.2.1. Selective Matrix Element/Dopant Affinity 

In the entirety of this work, dopant were modelled such that they interacted 

identically with both Si and C. However, given the difference in atomic size between Si 

and C, dopant might have a stronger affinity to one of the two matrix elements than the 

other. Two smaller simulations were performed to probe the effect of selective 

dopant/matrix element affinity on Rk in symmetric 7.5892° tilt angle GB system at 1000 K 

and dopant concentration of 1.007 ML. Keeping dopant/dopant interaction strength 

constant for both cases, εdd = 0.3 eV, dopants/matrix interaction strengths were defined as 

εdSi = 0.3 eV and εdC =0.03 eV and vice-versa. The mass of dopant atoms was defined to be 

the same as that of elemental Si. It was observed that Rk was reduced to nearly half of what 

was presented in Chapter 6 in both the cases. However, of the two analyses, the one where 

dopants had stronger affinity towards C compared to Si exhibited a higher Rk. A possible 

explanation for this observation is that the identical mass of dopants and Si possibly 

provided a greater overlap in the phonon density of states to reduce phonon scattering at 

dopant/Si interface. More analyses with different variations in strengths of interaction as 

well as mass of the dopant should be able to explain the phenomenon more completely. 

9.2.2. Phonon Dispersion Curves Analysis 

In Chapter 7, it was determined that the dopants segregating at the GB resulted in 

a reduction of the number of optical modes in the system. It is of great interest to determine 

which specific optical modes are lost at the GB and how they are affected by the different 
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dopant/matrix interaction strength and dopant mass. Schelling et al. [98] determined that 

the lack of transmission channels corresponding to any particular phonon mode across the 

GB can result in an interconversion between optical and acoustic phonon modes. Phonon 

dispersion analyses should be able to provide the information regarding which new 

acoustic modes are created as optical modes get scattered at the GB. 

9.2.3. Multiple Dopant Layers 

Super-lattices have been studied in great length and have been determined to be 

very promising in semi-conductor applications. An offshoot of the same concept as 

applicable to this work is multiple dopant species. In the work presented in this report, only 

one dopant species was used in any simulation. It is of interest to see how either a binary 

dopant species or multiple layers of different dopant species would affect thermal transport 

across the GB. It is also of interest to see if an advantage can be drawn from the presence 

of clustering and layering dopants present at the GB at the same time, particularly given 

the effect of boundary energy on dopant segregation behavior. 

9.2.4. Real Dopants 

The thermal transport properties for LJ solids have also been thoroughly 

characterized in numerous studies. However, the use of LJ interatomic potential to describe 

the dopant atoms does not provide results specific to any material. In order to draw accurate 

performance of SiC for thermoelectric applications, it is necessary to identify real materials 

for dopants and ascertain their impact on thermal transport across the GBs. Some of the 

dopants that are of interest for the future work are Boron and Aluminum. While good 

interatomic interactions potential descriptions are available for Si-Al as well as B-C, new 

interatomic interaction potentials will need to be developed to describe the interactions 
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between Si-B as well as C-Al. The results corresponding the effect of dopant mass and 

dopant/matrix interaction strength should prove useful is identifying more promising 

dopant materials. 
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Appendix A 

Radial Distribution Function 

Radial distribution function, g(r) or RDF, is an example of pair correlation function 

which describes the atomic packing in a system. In a homogenous system of N atoms in a 

given volume V, g(r) represents the probability of finding an atom at distance r from a 

given atom. RDF is an effective way of describing the average structure of a molecular 

system like liquids and solid crystals. 

To calculate g(r), an atom is chosen at random and a sphere of radius equal to the 

cut-off distance from the interatomic interaction potential used to describe the material, 

and the chosen atom as center is constructed. The sphere is then subdivided into smaller 

shells of thickness dr at a distance r from the chosen atom as shown in the in Figure 41. 

 

Figure 41: Space discretization for the evaluation of the radial distribution function. 
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For each shell, the number of atoms n(r) in that shell are determined. g(r) is then calculated 

by dividing the number by the volume of each shell and the average density of atoms ρ in 

the system as: 

 
 

drr

rn
rg

24
  (45) 

The process is repeated over all the atoms in the system to obtain a statistically 

good g(r). To further improve the statistics in the calculations, a snapshot of atomic 

positions was saved every 1000 time steps using LAMMPS and the average position of the 

atoms was obtained by averaging over 100 such snapshots. The process was repeated for 

Si–Si, Si-C and C-C pairs. The g(r) and the coordination number as a function of distance 

r from the central atom are provided in Table 6. Coordination number is a cumulative 

quantity that determines the total number of atoms within a radial distance r from the 

central atom.  

Table 6: Radial Distribution function and coordination number for β-SiC at 500 K 

Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

0.01 0 0 0 0 0 0 

0.03 0 0 0 0 0 0 

0.05 0 0 0 0 0 0 

0.07 0 0 0 0 0 0 

0.09 0 0 0 0 0 0 

0.11 0 0 0 0 0 0 

0.13 0 0 0 0 0 0 

0.15 0 0 0 0 0 0 

0.17 0 0 0 0 0 0 

0.19 0 0 0 0 0 0 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

0.21 0 0 0 0 0 0 

0.23 0 0 0 0 0 0 

0.25 0 0 0 0 0 0 

0.27 0 0 0 0 0 0 

0.29 0 0 0 0 0 0 

0.31 0 0 0 0 0 0 

0.33 0 0 0 0 0 0 

0.35 0 0 0 0 0 0 

0.37 0 0 0 0 0 0 

0.39 0 0 0 0 0 0 

0.41 0 0 0 0 0 0 

0.43 0 0 0 0 0 0 

0.45 0 0 0 0 0 0 

0.47 0 0 0 0 0 0 

0.49 0 0 0 0 0 0 

0.51 0 0 0 0 0 0 

0.53 0 0 0 0 0 0 

0.55 0 0 0 0 0 0 

0.57 0 0 0 0 0 0 

0.59 0 0 0 0 0 0 

0.61 0 0 0 0 0 0 

0.63 0 0 0 0 0 0 

0.65 0 0 0 0 0 0 

0.67 0 0 0 0 0 0 

0.69 0 0 0 0 0 0 

0.71 0 0 0 0 0 0 

0.73 0 0 0 0 0 0 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

0.75 0 0 0 0 0 0 

0.77 0 0 0 0 0 0 

0.79 0 0 0 0 0 0 

0.81 0 0 0 0 0 0 

0.83 0 0 0 0 0 0 

0.85 0 0 0 0 0 0 

0.87 0 0 0 0 0 0 

0.89 0 0 0 0 0 0 

0.91 0 0 0 0 0 0 

0.93 0 0 0 0 0 0 

0.95 0 0 0 0 0 0 

0.97 0 0 0 0 0 0 

0.99 0 0 0 0 0 0 

1.01 0 0 0 0 0 0 

1.03 0 0 0 0 0 0 

1.05 0 0 0 0 0 0 

1.07 0 0 0 0 0 0 

1.09 0 0 0 0 0 0 

1.11 0 0 0 0 0 0 

1.13 0 0 0 0 0 0 

1.15 0 0 0 0 0 0 

1.17 0 0 0 0 0 0 

1.19 0 0 0 0 0 0 

1.21 0 0 0 0 0 0 

1.23 0 0 0 0 0 0 

1.25 0 0 0 0 0 0 

1.27 0 0 0 0 0 0 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

1.29 0 0 0 0 0 0 

1.31 0 0 0 0 0 0 

1.33 0 0 0 0 0 0 

1.35 0 0 0 0 0 0 

1.37 0 0 0 0 0 0 

1.39 0 0 0 0 0 0 

1.41 0 0 0 0 0 0 

1.43 0 0 0 0 0 0 

1.45 0 0 0 0 0 0 

1.47 0 0 0 0 0 0 

1.49 0 0 0 0 0 0 

1.51 0 0 0 0 0 0 

1.53 0 0 0 0 0 0 

1.55 0 0 0 0 0 0 

1.57 0 0 0 0 0 0 

1.59 0 0 0 0 0 0 

1.61 0 0 0 0 0 0 

1.63 0 0 0 0 0 0 

1.65 0 0 0 0 0 0 

1.67 0 0 0 0 0 0 

1.69 0 0 0 0 0 0 

1.71 0 0 7.60E-04 2.75E-05 0 0 

1.73 0 0 7.56E-03 3.08E-04 0 0 

1.75 0 0 0.075 0.003 0 0 

1.77 0 0 0.445 0.020 0 0 

1.79 0 0 1.742 0.089 0 0 

1.81 0 0 5.001 0.292 0 0 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

1.83 0 0 10.301 0.719 0 0 

1.85 0 0 15.702 1.384 0 0 

1.87 0 0 18.270 2.175 0 0 

1.89 0 0 16.531 2.905 0 0 

1.91 0 0 11.800 3.438 0 0 

1.93 0 0 6.855 3.754 0 0 

1.95 0 0 3.274 3.908 0 0 

1.97 0 0 1.300 3.970 0 0 

1.99 0 0 0.433 3.992 0 0 

2.01 0 0 0.127 3.998 0 0 

2.03 0 0 0.031 3.9996 0 0 

2.05 0 0 0.007 3.99994 0 0 

2.07 0 0 8.96E-04 3.99999 0 0 

2.09 0 0 2.31E-04 4 0 0 

2.11 0 0 0 4 0 0 

2.13 0 0 0 4 0 0 

2.15 0 0 0 4 0 0 

2.17 0 0 0 4 0 0 

2.19 0 0 0 4 0 0 

2.21 0 0 0 4 0 0 

2.23 0 0 0 4 0 0 

2.25 0 0 0 4 0 0 

2.27 0 0 0 4 0 0 

2.29 0 0 0 4 0 0 

2.31 0 0 0 4 0 0 

2.33 0 0 0 4 0 0 

2.35 0 0 0 4 0 0 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

2.37 0 0 0 4 0 0 

2.39 0 0 0 4 0 0 

2.41 0 0 0 4 0 0 

2.43 0 0 0 4 0 0 

2.45 0 0 0 4 0 0 

2.47 0 0 0 4 0 0 

2.49 0 0 0 4 0 0 

2.51 0 0 0 4 0 0 

2.53 0 0 0 4 0 0 

2.55 0 0 0 4 0 0 

2.57 0 0 0 4 0 0 

2.59 0 0 0 4 0 0 

2.61 0 0 0 4 0 0 

2.63 0 0 0 4 0 0 

2.65 0 0 0 4 0 0 

2.67 0 0 0 4 0 0 

2.69 0 0 0 4 0 0 

2.71 0 0 0 4 0 0 

2.73 0 0 0 4 0 0 

2.75 0 0 0 4 0 0 

2.77 0 0 0 4 1.05E-04 1.00E-05 

2.79 0 0 0 4 1.04E-04 2.00E-05 

2.81 0 0 0 4 4.61E-04 6.50E-05 

2.83 0 0 0 4 0.002 2.40E-04 

2.85 0 0 0 4 0.009 0.001 

2.87 0 0 0 4 0.033 0.005 

2.89 0 0 0 4 0.120 0.017 
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Distance 

(in Å) 

g(r) 

Si-Si 

coord(r) 

Si-Si 

g(r) 

Si-C 

coord(r) 

Si-C 

g(r) 

C-C 

coord(r) 

C-C 

2.91 4.77E-05 5.00E-06 0 4 0.341 0.053 

2.93 7.53E-04 8.50E-05 0 4 0.862 0.144 

2.95 0.057 0.006 0 4 1.944 0.353 

2.97 1.150 0.132 0 4 3.794 0.768 

2.99 6.826 0.887 0 4 6.505 1.487 

From the Table above, it was observed that for either Si or C as central atom, the 

four corresponding first neighbor pairing C/Si atoms were within a distance of 2.1 Å from 

the central atom. For Si as the central atom, the second neighbor Si atoms don’t surface 

until 2.89 Å away from the central atom whereas for C as the central atom, the second 

neighbor C atoms start cropping up at about 2.75 Å from the central atom. As such a cut-

off distance of 2.65 Å was determined appropriate to ensure that all second neighbor 

interactions were discarded from the simulations. 

The process was repeated for 900 K and the cut off distance determined to hold 

even after accounting for the lattice expansion at the higher temperature. 
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Appendix B 

Lattice Dynamics: Normal mode analysis  

MD simulations are ideal for predicting properties such as thermal conductivity and 

thermal resistance. However, model level details such as identifying individual 

contribution of different phonons to thermal transport is more easily obtained from lattice 

dynamics (LD) calculations that involve a focused study of atomic vibrations in a crystal. 

LD calculations are performed in reciprocal-space coordinates instead of the real space 

coordinates of atomic positions. Reciprocal lattice allows scaling down the phonon 

wavelengths that can be infinitely large to distances comparable to interatomic spacing, 

making it more manageable. 

Harmonic approximation is one of the key approximations in LD calculations 

where the Taylor series expansion of the potential energy E between two atoms  is truncated 

after the second-order term [129]. Although, harmonic approximation fails to provide 

information pertaining to inelastic phonon scattering, it is very powerful as it provides an 

exact solution and can be easily adapted to incorporate quantum mechanics. Under the 

harmonic approximation, the potential energy term can be written as: 
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where u is a small displacement vector from the equilibrium position    turtr ii  0  and 

  = (i, α) refers to the perturbation along the αth carterian coordinate component of the ith 

atom. When evaluating at equilibrium, the first derivative reduces to zero as the atoms 

don’t experience any net force in equilibrium. Therefore the equation can be rewritten as: 
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Φ is called the force constant matrix or the Hessian matrix [57, 117, 118]. For an 

N atom system in three dimensions, Φ will be a 3N × 3N matrix as   varies from 1 to 3N. 

The Newtonian equations of motion resulting from the perturbations for each atom can 

then be derived from the expression for potential energy in equation (48) as: 
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The system can be assumed similar to a mass spring system and the linear notation of the 

equation allows to seek a solution of the form 

     tetu cos  (50) 

The resulting set of equations define the vibrational modes of the system with amplitude 

e and frequencies ω. The linear system of equations will have a solution for e if the 

determinant of the matrix 2

,    mm is equal to zero. The system has 3N 

eigenvalues and for each eigenvalue, there is an eigenvector of 3N components. The 

eigenvalues obtained from diagonalizing the Hessian matrix, are the relevant phonon 

modes for the system in accordance with the equation: 
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Relevant vibrational modes for β-SiC was obtained by an eigenmode analysis of 

the Hessian matrix for an undoped, perfect crystal of size 3×2×2 unit cells. Small 

perturbations were introduced in all three dimensions for each atom and the Hessian matrix 
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was built by taking the negative of the resulting forces on all other atoms with respect to 

the perturbation introduced in any atom. The expanded hessian matrix is shown in Table 

7.  

Table 7: Hessian Matrix for 3D N atom system. The subscript for τ shows the direction for the 

perturbation and the force vector (X, Y or Z) on atom (1, 2, 3, …N) 
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In the Hessian Matrix, each element was divided by the  mm  where the two masses are 

the mass of the atom on which perturbation is introduced and the mass of the atom on 

which forces is measured as per the equation (51). The phonon modes were obtained by 

taking the square root of the eigenvalues of the above matrix. The histogram plot in Figure 
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42 shows the phonon density of states for β-SiC obtained by binning together the phonon 

modes obtained from LD calculations. 

 

Figure 42: Vibrational density of states for β-SiC using LD calculations. 

The eigenvectors were used to determine the direction of atomic vibration and wave 

propagation in order to differentiate between the optical and acoustic phonon modes. A 

characteristic of the acoustic phonon modes is that in a diatomic system, the two constituent 

atoms vibrate in the same direction. Whereas, the constituent atoms vibrate in the opposite 

direction when propagating via optical modes. A few examples observations are provided 

below: In the images below, Silicon is shown in red and carbon is shown in blue. The 

yellow arrows indicate the direction of motion, scaled to their corresponding magnitude as 

obtained from the eigenvector. 
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Figure 43: Atomic vibrations in acoustic mode for silicon (red) and carbon (blue) from an 

eigenmode analysis at 55.2 THz. The vibrations in Silicon atoms are higher than those in 

their pairing carbon atoms 

 

 

Figure 44: Atomic vibrations for acoustic mode silicon (red) and carbon (blue) from an 

eigenmode analysis at 61.8 THz. The higher vector magnitude for silicon indicates greater 

contribution to vibrational density of states. 
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Figure 45: Atomic vibrations for silicon (red) and carbon (blue) from an eigenmode analysis at 

92.5 THz. The entirely different direction of vibration for silicon and Carbon indicate an 

overlap in q


 

 

 

Figure 46: Atomic vibrations for optical mode for silicon (red) and carbon (blue) from an 

eigenmode analysis at 188.7 THz. The contribution from Carbon atoms to vibrational 

density of states is higher than that from Silicon 
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Figure 47: Atomic vibrations for optical mode for silicon (red) and carbon (blue) from an 

eigenmode analysis at 191.6 THz 
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