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ABSTRACT  

 A numerical heat transfer analysis of encapsulated phase change material 

(EPCM) capsules was conducted by employing the enthalpy-porosity and VOF 

methods simultaneously to capture the complex multi-phase heat transfer that occurs 

within the capsules. The results of the numerical methods employed were validated by 

comparing the final shape of the solid phase change material (PCM) predicted to that 

seen within sectioned experimental capsules. The validated methods were used to 

study the effect that an internal void space has on the heat transfer within an EPCM 

capsule. Its effect is immediately noticeable as the isotherms no longer form the 

concentric rings predicted by the unsteady diffusion  equation since the void acts as an 

insulator reducing the conduction rate in the upper portion of the capsule. 

Additionally, the increased melting rate resulting from convection in the molten PCM 

further reshapes the solid-liquid interface. In contrast, the solidification process is 

conduction-dominated and limited by the thermal conductivity of the chosen PCM 

resulting in considerably longer solidification times.  

 The impact of an internal void on the overall heat transfer was further 

examined by considering three limiting cases of an upper void, central void, and 

random void distributions where the upper void is positioned opposite to the 

orientation of the gravitational vector. Since the PCM for the central void distribution 

is in direct contact with the entire capsule shell, it has the highest heat transfer rate 

during the initial melting stages leading to it having a melting time that is 22% and 

39% faster than the random and upper void distributions. In an ideal world, one would 

like to keep the void located as close to the center of the capsule as possible. The 
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vastly different evolution of the solid-liquid interface for the three cases considered 

highlights the profound impact an internal void has on the temporal and spatial 

evolution of the solid-liquid interface.  

 The results for a single EPCM capsule were extended by evaluating the 

performance of a pilot-scale EPCM-based latent heat thermal energy storage (TES) 

system. The capsules sequentially showed the same evolution of the melting front 

within the capsules over the course of the charging process. The numerical results 

were compared to experimental recorded values for the temperature in the furthest 

downstream EPCM capsule. Agreement within 3% was seen during the initial solid 

sensible heating stages, however as the capsules began to melt the discrepancy 

increased due to a poor estimate for the values of the latent heat of fusion of NaNO3. 

This resulted in a 8% faster predicted melting time. However, this has minimal effect 

on the overall energy storage of the system due to the large operational temperature 

range applied in the current experiment. 65% of the 22 MJ of energy release by the 

heat transfer fluid (HTF) was stored in the 17.7 kg of NaNO3; 20% of this energy can 

be attributed to latent heat energy storage. Therefore, the system is able to store a large 

fraction of energy supplied by the HTF with a significant contribution from latent 

heat. Furthermore, if the operational temperature range were smaller the fraction of 

latent heat energy storage would have been significantly larger.  

 The second law analysis of an example TES system was conducted to 

determine the benefit of s system employing a multiple PCMs. As expected, the latent 

heat-based systems were able to store more energy and exergy with comparable 

efficiencies than systems that rely on sensible heat only. Furthermore, when the 
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overall cycle performance is examined, systems with multiple PCMs perform better 

than corresponding single PCM-based systems. While for the operating conditions and 

PCMs chosen the 2-PCM system was superior, great care is required during the design 

of an EPCM-based TES system as the difference between the melting point of the 

PCMs and the inlet temperatures during charging and discharging greatly affect the 

performance of the system.  

 Lastly, experimental evaluations of the use of metallic oxides as new novel 

PCMs were conducted. In particular, the eutectic compounds in the Na2O-B2O3 system 

were investigated as they offer higher energy storage densities at melting temperatures 

comparable to the previously investigated nitrate and chloride salts. However, the 

material that was formed during the preparation of the samples was not a eutectic 

compound due to sodium evaporation and therefore did not melt congruently. Once 

the initial composition of the material was determined, the discrepancy between the 

theoretical and experimental energy storage were shown to be within the ±2% 

uncertainty of the calorimetry system. While these initial results are promising, further 

research is required before these metallic oxides can be integrated into EPCM-based 

latent heat TES systems as a superior alternative to the currently employed nitrate and 

chloride salts.  
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CHAPTER I: INTRODUCTION  

 Prior to the advent of coal-based power during the industrial revolution, all 

energy was produced via renewable means. The development of fossil fuel-based 

power generation rendered these renewable means of energy inefficient. For 200 years 

the cost and abundance of fossil fuels made the notion of using renewable energy 

uneconomical and therefore research focused on ways of improving the technology 

behind fossil fuel-based power. However, the world has come to the realization that 

fossil fuel resources are in fact limited, spurring a return to renewable power 

generation. Despite this revival, grid-scale electricity generation through renewable 

means is simply not cost-competitive with the currently operating fossil fuel power 

plants. Therefore, while the concept of using hydro, wind, and solar energies as means 

of power are not new ones, further research into improving their efficiency is required.  

 Of the various renewable resources, solar power is particularly attractive 

because while its intensity may vary it is available across the globe. There are two 

ways to generate electricity from solar radiation: either through the use of photovoltaic 

(PV) cells or at solar thermal power plants such as concentrating solar power (CSP) 

plants. PV cells directly convert the sun’s rays into electricity by utilizing the 

photovoltaic effect of a material. At a CSP plant, the sun’s rays are used to heat a 

thermal fluid that is then used to drive a power generation cycle such as the Brayton or 

Rankine cycle. Both of these approaches to electricity generation have to overcome 

the transient nature of solar radiation. This results in solar power plants having a low 

capacity factor (18%) when compared to fossil fuel plants (85%). The capacity factor 
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is a measure of the percentage of a plant’s potential output that is actually output over 

a period of time. 

 One can improve the capacity factor of solar power plants if a means of energy 

storage was employed. Since electrical energy cannot be stored directly, excess 

electrical energy must be converted into either heat, mechanical, or chemical energy to 

be stored. This conversion results in energy losses not only during the storage process 

but also during energy retrieval, and reduces the effectiveness of the storage process 

and thus limits the amount of energy that can be retrieved. This is where solar thermal 

power has an advantage over most other forms of renewable energy; it has the ability 

to easily integrate storage in the means of thermal energy without costly conversation 

processes. This makes the use of CSP plants with thermal energy storage (TES) a 

highly attractive form of grid-scale electricity generation. 

1.1 Thermal Energy Storage 

 TES is divided into three branches based on the principal behind the energy 

storage process. In sensible heat storage systems, energy is stored and released by 

raising and lowering the temperature of a material. The amount of energy stored 

depends on the heat capacity of the material and the temperature difference applied to 

the material. While sensible heat storage systems rely on large temperature 

differences, latent heat-based storage systems can store energy under nearly isothermal 

conditions by utilizing the vast quantities of energy required to induce a state change 

within a material. In a similar way, thermochemical energy storage systems use 

reversible endothermic/exothermic reactions to store and release energy. To reduce the 

cost of the storage system, a material with a high energy storage density should be 
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used. While thermochemical systems have the highest energy storage density of the 

three forms of TES, research into its usage is still in the early stages and uncertainties 

in the thermodynamic properties as well as reaction kinetics limit its usage.  

 Currently only sensible heat storage systems are used at operating CSP plants 

around the world. These systems use either a large volume of a solid material such as 

concrete, or a single- or two-tank molten salt-based storage system [1, 2]. These 

systems require an immense volume of material to store enough energy to efficiently 

operate the power plant for eight hours. For example, 28,500 tons of molten salt is 

required to operate the Andasol power plant in Spain for 7.5 hours. If a latent heat-

based storage system was used instead, the amount of storage material could be 

greatly reduced yielding a lower system cost. This would result in a decrease in the 

levelized cost of electricity at CSP plants leading to them being not only cost-

competitive with current fossil fuel-based plants but with other means of renewable 

energy as well.  

1.2 Phase Change Materials  

 The main component of a latent heat-based TES system is the phase change 

material (PCM) that is used. Any material that undergoes a state change can 

potentially be used as a PCM for TES applications. Four different state or phase 

changes can occur: solid-solid, solid-liquid, liquid-gas, and solid-gas. During a solid-

solid phase change the crystal structure of a material changes from one lattice 

configuration to another. While the small volumetric changes that occur during solid-

solid phase changes make them ideal candidates for TES, the transitions are typically 

slow and have low transformation enthalpies relative to the other state changes. The 
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state change that is typically studied for TES applications is that of solid-liquid phase 

changes due to their relatively small volume changes and moderate enthalpy changes. 

Although liquid-gas transitions have high transformation energies, the large volume 

changes that occur and the complexity of storing the gaseous medium limit their use 

for TES applications. The last state transformation is when a solid material directly 

turns into a gas, such as dry ice. Solid-gas transitions have the same drawbacks as the 

use of liquid-gas transitions. Therefore the solid-liquid phase change is best suited for 

TES.  

 Whereas numerous materials exist that have melting temperatures in any 

desired temperature range, this alone does not make them a viable PCMs for TES 

applications. The material must also exhibit other desirable thermo-physical, kinetic, 

and chemical properties such as a high latent heat of fusion, small volume change, 

sufficient crystallization rate, and chemical stability, all while being abundant at low 

cost [3]. Generally, PCMs can be divided into three groups: organic, inorganic, and 

eutectic materials. A diagram of the classification of PCMs is shown in Figure 1. 

Extensive research has been conducted into potential materials for use in latent heat-

based TES at temperatures below 120 °C that include paraffin waxes, fatty acids, and 

salt hydrates [4-9]. While these low temperature PCMs have numerous applications, 

materials with a melting point in excess of 300 °C are required for use at CSP plants 

[3]. Research into this high temperature area has primarily focused on the use of 

inorganic salts with some of the most notable materials being NaNO3, KNO3–NaNO3 

eutectics, and MgCl2–NaCl eutectics [1, 3, 10, 11]. A comparison of the latent heat 

energy storage capacity of various PCMs is presented in Figure 2. Despite their 
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attractiveness all of these materials have the same drawback; a low thermal 

conductivity in the solid state [1].  

 
Figure 1. Classification of phase change materials [3] (figure reproduced with 

permission)  
 

 
Figure 2. Latent heat based heat storage capacity of various PCMs [12] (figure 

reproduced with permission) 
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 During the solidification process, the PCM has a tendency to stick to the heat 

exchanger surface. As time progresses, the solid layer increases in size, and due to the 

low thermal conductivity of the material it has a limiting effect on the heat transfer 

rate, prolonging the solidification process. Thus extensive research into different 

methods of improving the heat transfer within PCM-based systems has been 

conducted [13, 14]. These enhancements can be broken down into either material or 

system enhancements. Material enhancements are aimed at increasing the effective 

thermal conductivity of the base PCM by adding a secondary highly conductive 

material typically in the form of nanoparticles. System enhancements on the other 

hand increase the surface area of the heat exchanger to increase the heat transfer rate 

either usually by implementing fins or via encapsulation. While system enhancements 

may yield a more complex geometry, they do not experience the loss of energy storage 

capacity that occurs with material-based enhancements. Of particular interest is the 

use of encapsulated phase change material (EPCM) capsules.  

1.2.1 Encapsulated Phase Change Materials  

The encapsulation of PCMs into individual capsules improves the performance 

of the PCM since it results in a decrease in the charging/discharging time of the 

system due to the increase in the area over which heat transfer can occur [15, 16]. 

Nevertheless, the encapsulation of PCMs leads to its own unique difficulties that need 

to be overcome before it can be utilized efficiently and cost effectively at CSP plants 

as part of large scale TES. Careful consideration is required in the choice of a PCM 

and shell material pair as the two materials need to be chemically and metallurgically 

inert to prevent a loss of storage capacity from occurring over repeated thermal 
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cycling at elevated temperatures. Additionally, the shell material needs to withstand 

not only its own thermal stresses but the increase in internal pressure that results from 

the expansion of the PCM during melting [17]. Given the high temperatures 

experienced at CSP plants, metal encapsulation materials such as stainless steel, 

carbon steel, and nickel-based alloys are preferred [18]. To obtain the desired capsule 

characteristics, such as a high PCM to shell ratio and stability, there are two ways the 

PCMs can be encapsulated: by coating of a PCM pellet or filling a prefabricated shell 

with the desired PCM [11]. The disadvantage with the technique of coating PCM 

pellets is the ability to leave a sufficient void space such that the capsules do not 

rupture upon melting without the use of a sacrificial layer. This is not the same when 

prefabricated shells are used.  

Research into both methods of encapsulation with various PCMs and shell 

materials have been conducted [2, 3, 18]. Zheng et al. [10] used conventional 

calorimetry to evaluate the performance of both sodium nitrate (NaNO3) and a sodium 

chloride and magnesium chloride eutectic (NaCl-MgCl2, 57 %mol NaCl) as PCMs that 

were encapsulated in carbon or stainless steel. They evaluated the storage capacity of 

the EPCM capsules over both short (~5 hours) and long term (~ 300 hours) cycling 

and the results indicated that the combination of the PCM and encapsulation material 

can be used for high temperature TES as no loss of storage capacity occurred [10]. As 

an increase in the operational temperature of a Rankine cycle increases its efficiency, a 

material that can store energy at higher temperatures is desirable. Zhao et al. [19] 

evaluated the performance of MgCl2-stainless steel EPCM capsules. The capsules 

showed no deterioration of storage capacity after 480 hours of high temperature 
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exposure above 700 °C. Increasing the temperature even higher, NaCl-stainless steel 

EPCM capsules were evaluated and after 1,000 hours of exposure at 850 °C no 

degradation of the storage material could be detected [20-22].  

While these results are promising, they were conducted on small (25.4 mm or 

50.8 mm) laboratory-scale capsules. Zheng et al. [23] tested a pilot scale latent heat 

TES system that consisted of 10 cylindrical EPCM capsules with dimensions of 76.2 

mm diameter and 254 mm long that were horizontally placed in a vertical test section. 

Hot air was forced over the capsules with a flow rate of 0.038 kg/s. They considered 

the use of NaNO3, a NaCl-MgCl2 eutectic, and a cascaded system of both NaCl-MgCl2 

and NaNO3 [23, 24]. The system stored 211 kJ/kg of energy using NaNO3 as the PCM 

over the temperature range of 250 to 386 °C and no reduction in storage capacity was 

seen after 40 hours of operation. When compared to a system that only had NaCl-

MgCl2 eutectic capsules, the cascaded system stored more energy after the first 30 min 

of operation, emphasizing the benefit of using multiple PCMs with varying melting 

temperatures. The results presented by Zheng et al. [23, 24] demonstrate the scalability 

of EPCM-based latent heat TES systems.  

The results above were all conducted on prefabricated capsules that were filled 

with the desired amount of PCM and then sealed. While this process works for 

centimeter or larger capsules, it is difficult for sub-millimeter sized capsules. The 

advantage to smaller capsules is the reduction in discharging time as the characteristic 

length of the system is smaller; however these capsules tend to have smaller ratios of 

PCM to capsule shell which reduces the percentage of energy stored that is attributed 

to latent heat. These capsules are typically manufactured by coating PCM pellets first 
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with a sacrificial polymer layer to accommodate PCM expansion, and then depositing 

a thin layer of metal onto the capsules to prevent leakage. Alam et al. [25] presented a 

novel method of encapsulation that does not require this sacrificial layer by using a 

highly elastic polymer with a nickel coating. Using NaNO3 as the PCM, these capsules 

were able to withstand 2,200 thermal cycles with no loss of storage capacity. 

Additionally, they tested a packed-bed system that held 770 capsules with a 2.7 cm 

diameter that survived 300 hours of testing without showing signs of mechanical or 

chemical deterioration [25].  

While these results indicate that both nitrate- and chloride-based PCMs can be 

used for high temperature TES using EPCMs, they still have a low thermal 

conductivity in the solid phase that prolongs the solidification process. This led Zhao 

[21] and Solomon [20] to evaluate the use of metal-based PCMs by using zinc and 

aluminum. However, due to intermetallic reactions a loss of storage capacity occurred 

for both PCMs when encapsulated within a stainless steel shell. While this effect can 

be mitigated via the use of a protective paint, a non-metal based shell should be used. 

Despite the promising research that has been conducted, further research into new 

novel materials is required to further improve the technology of EPCM-based high 

temperature latent heat TES.  

1.3 Numerical Modeling of Phase Change Materials 

 Various techniques have been employed to study heat transfer that involves a 

solid-liquid phase change. The progression of the solid-liquid interface can be tracked 

either directly or indirectly. The most popular method is the enthalpy-porosity method 

that was developed by Voller et al. [26] which indirectly tracks the location of the 
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solid-liquid interface using a parameter called the liquid fraction. The enthalpy-

porosity method is also referred to as the volume tracking method [27]. Brent and 

Voller [28] conducted a fixed-grid solution of the coupled momentum and energy 

equations without resorting to variable transformations, and by utilizing a two-

dimensional dynamic model they studied the influence of laminar natural convection 

on the melting process of gallium in rectangular cavities. Mackenzie and Robertson 

[29] solved the nonlinear enthalpy equation using a semi-implicit moving mesh 

discretization at each time step. Kholdadadi and Zhang [30] used an iterative finite-

volume method to study the effect of buoyancy-driven convection on the constrained 

melting of PCMs within spherical containers by using primitive-dependent variables 

and Darcy’s law to govern convection in a porous medium. Their results demonstrated 

the importance of the Prandtl number on the melting process at a fixed Rayleigh 

number and that natural convection in the molten PCM accelerates the melting process 

in comparison to pure diffusion models. Ismail et al. [31] characterized the 

solidification of various PCMs within cylindrical and spherical shells by examining 

the how different shell materials, capsule diameters, and surface temperatures affected 

the overall solidification process. Tan et al. [32] studied the effect of buoyancy-driven 

convection both experimentally and numerically by considering the constrained 

melting of n-octadecane inside a spherical glass shell.  

 Pinelli and Piva [33] incorporated the enthalpy-porosity method into Ansys 

FLUENT to investigate the use of n-octadecane in cylindrical capsules that were 

subject to a uniform exterior heat transfer coefficient. Assis et al. [34] conducted a 

parametric investigation of the melting of a paraffin wax PCM encapsulated within 
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spherical shells. Using the enthalpy-porosity method within FLUENT they were able 

to model a 15% void fraction, volumetric expansion of the PCM upon melting, and 

convection within the fluid media by simultaneously solving the conservation 

equations for the air void, solid PCM, and liquid PCM. Their model included a vent at 

the top of the capsule that expelled the air void as the PCM expanded. They validated 

their model using experimental results and were able to accurately capture the 

propagation of the solid-liquid interface [34]. Assis et al. [35] also conducted an 

analogous study on the solidification process within the same EPCM capsules.  

 Recently, Archibold et al. [36] extended the results of Assis et al. [34] to 

higher temperatures by employing NaNO3 as the PCM. They obtained similar results 

and were able to capture the compression of the air void by considering a sealed 

capsule. The effects of radiative heat transfer within EPCM capsules was studied by 

Archibold et al. [37] by using NaCl as the PCM and their results indicate that radiative 

heat transfer increases the melting rate within the capsules. Bellan et al. [38] used an 

effective packed bed model to study the heat transfer that occurs in a bed of 

centimeter-sized spherical EPCM capsules and the effect of heat transfer fluid (HTF) 

flow rate, Stefan number, shell thickness, and shell material. Zhao et al. [39] compared 

the results of using both a front tracking and enthalpy-porosity method for the melting 

of NaNO3 in both horizontally and vertically orientated cylindrical EPCM capsules 

and concluded that both models are able to accurately capture the propagation of the 

solid-liquid interface for both the melting and solidification processes.  

 While these numerical investigations lend insight into the complex heat 

transfer that occurs in latent heat based TES systems, they tend to make 
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simplifications that limit their accuracy such as neglecting convection in the molten 

PCM and the inclusion of an internal void space. The development of a model that 

incorporates all aspects of an EPCM-based latent heat TES system is required to 

further understand how these systems operate under real world conditions and can aid 

in the optimization of these systems to allow for cost-competitive electricity 

generation at CSP plants.  

1.4 Exergy Analysis 

 While the energy efficiency of a TES system is an important factor in its 

performance and system cost, the exergy efficiency of the system needs to be 

considered as well since the purpose of TES systems is to store useful work and not 

just energy [40]. An energy analysis of latent heat-based TES systems does not reflect 

the quality of the energy that is stored or released and hence a second law analysis is 

required [41]. Exergy is the maximum useful work that can be produced by a system 

as it comes to equilibrium with the surroundings. Since the exergy efficiency (the ratio 

of exergy output to exergy input) of a system accounts for internal irreversibility, it is 

often lower when compared to the energy efficiency of the system [42-49]. 

 El-Dessouky and Al-Juwayhel [50] studied the effect the HTF inlet 

temperature had on the exergy efficiency and showed that the maximum efficiency 

occurs when the smallest possible temperature difference between the initial PCM 

temperature and incoming HTF is used during charging. Ramayya and Ramesh [43] 

studied the effect of sensible heating and sub-cooling on the performance of a shell 

and tube-based latent heat system. Their results showed that sensible heating improves 

the efficiency of the melting process, the optimal melting temperature is higher for 
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systems that include sensible heating and sub-cooling, and that increasing the inlet 

HTF temperature during discharging increases the efficiency. Recently, Singh et al. 

[51] reported on the effect of varying inlet temperatures in the exergy performance of 

graphite foam impregnated with NaCl. They saw a similar trend and concluded that 

the optimal inlet temperature was 880 °C. In addition to the inlet temperature, the flow 

rate of the HTF is an important factor toward the performance of a latent heat-based 

TES system. An increase in the Reynolds (Re) number of a flow increases the required 

pumping power and the resulting pressure drop across the system leading to higher 

entropy generation and lower efficiency. However, Erek and Dincer [48] showed the 

opposite to be true possibly due to the smaller temperature drop seen in the HTF as it 

spends less time in the system as Re increases, although it should be noted that their 

analysis did not include the pumping power required in the exergy analysis.  

 While using multiple PCMs with varying melting temperatures has been 

shown to improve the energy efficiency of latent heat based TES systems [52-56], 

only a few investigations have also looked at the exergy efficiency of these systems as 

well [57-61]. As the HTF decreases in temperature along the streamwise direction in a 

single-PCM system, multi-PCM systems utilize PCMs with decreasing melting 

temperatures to improve the performance of the system. Watanabe and Kanzawa [57] 

showed that the rapid charging and discharging seen in multi-PCM systems leads to 

high charging, discharging, and overall exergy efficiencies. Domanski and Fellah [60] 

reported a 40% increase in overall efficiency for a two-PCM system over that of a 

single-PCM system. Gong and Mujumdar [61] reported similar results that showed a 

74% increase for a three-PCM system due to the decrease in the charging and 
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discharging time of the system. Li et al. [62] studied the use of a two-PCM system for 

TES using finite-time thermodynamics and showed that an increase between 19-54% 

in efficiency is possible over that of a single-PCM system. Shabgard at el. [63] 

examined a cascaded latent heat storage system with gravity-assisted heat pipes and 

reported that the cascaded system recovered 10% more exergy over a 24 hour cycle 

compared to the best non-cascaded system considered. Recently, Mosaffa et al. [64] 

reported on the energy and exergy performance of a multi-PCM system for free 

cooling applications. Their study showed that higher exergy efficiency was achieved 

when using multiple PCMs and that decreasing the temperature difference between the 

HTF and PCM yielded an increase in efficiency with time. While these initial studies 

are a starting point, there are no reported studies on the exergy performance of EPCM-

based latent heat TES systems for high temperature applications. 

1.5 Current Objectives 

The objective of this research has been two-fold; first to develop a numerical 

method that can be used to capture the complex multi-phase heat transfer that occurs 

within EPCM capsules in order to increase the accuracy of the model’s ability to 

analyze the performance of EPCM capsules under real world conditions, and secondly 

to experimentally evaluate the use of metallic oxides as a new novel material for use 

as a PCM in high temperature TES applications.  

The majority of the numerical investigations that have been conducted 

previously make assumptions that limit their accuracy. In particular it has been widely 

established that an internal void space is required within EPCM capsules to prevent 

rupturing, but it has mostly been ignored in part due to the added numerical 
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complexity. This causes the current numerical models to fail at accurately predicting 

the heat transfer within the EPCM capsules under real world operating conditions. 

This research aims to develop a numerical model that can incorporate not only this 

void space but also convection in the fluid media as well as volumetric expansion of 

the PCM upon melting. This model will then be used to study the impact of various 

void locations on the evolution of the solid-liquid interface within EPCM capsules as 

well as the performance of a pilot scale EPCM-based heat exchanger. Furthermore, the 

model can be used to optimize an EPCM-based latent heat TES system on both the 

energy and exergy performance of single- and multi-PCM systems.  

 Additionally, the previous experimental investigations into materials that can 

be used as high temperature PCMs have focused on the use of chloride- and nitrate-

based salts. While these materials have yielded promising results, they have low 

thermal conductivities and are highly corrosive [11]. Metallic oxides offer a novel new 

choice of material to use as PCMs as they offer higher energy storage densities at 

comparable melting temperatures while being less reactive with metal-based 

encapsulation shells. Eutectic materials outside of the glass formation range in the 

Na2O-B2O3 binary system are considered as potential PCMs for high temperature 

TES. Laboratory scale EPCM capsules are manufactured and their performance is 

evaluated by using an immersion calorimeter. As these materials exhibit the ability to 

form amorphous as well as crystalline materials, characterization of the PCM after 

thermal cycling is conducted via the use of x-ray diffraction, differential scanning 

calorimetry, and energy-dispersive x-ray spectroscopy. Successful competition of this 
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research would further advance the technology of high temperature latent heat-based 

TES for use at CSP plants leading to cost-competitive electricity generation.   
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CHAPTER II: NUMERICAL METHODS 

 Transient two- and three-dimensional simulations of the melting and 

solidification within EPCM capsules of various geometries and sizes were conducted 

by employing the appropriate combination of the enthalpy-porosity, volume of fluid 

(VOF), and turbulence models required for a desired system. The required set of 

governing equations was discretized in accordance with the finite-volume method and 

a pressured-based solver was employed within Ansys FLUENT.  

2.1 Discretization Methods  

 The finite-volume method was used to convert the partial differential 

governing equations into a set of algebraic expressions that can be numerically 

evaluated. This technique consists of integrating the transport equations about each 

control volume (or cell) leading to a discrete equation that expresses the conservation 

law on a control volume basis. This discretization process can be illustrated by 

considering the unsteady conservation equation for the transport of a scalar quantity ϕ. 

To demonstrate, the integral form for an arbitrary control volume V is given in 

equation (1).  

   




V
dVSAdAdvdV

t
 

 
 (1) 

where ρ is the density, v


is the velocity vector, A


is the surface area vector, Γϕ is the 

diffusion coefficient, ∇ϕ is the gradient of ϕ, and Sϕ is a source term. An example 

control volume for illustration purposes is presented in Figure 3. When equation (1) is 

discretized it yields equation (2) for any given cell.  
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where Nfaces is the number of faces enclosing the cell, ϕf is the value of ϕ convected 

through face f, fff Av


 is the mass flux through the face, fA


is the area of the face f, 

∇ϕf is the gradient of ϕ at face f, and V is the cell volume. Equation (2) contains not 

only the unknown scalar ϕ at the center of the given cell but also the unknown values 

from the neighboring surrounding cells and typically this equation is non-linear in 

nature. Therefore a linearized form can be written as:  

baa nb

nb

nbp    (3) 

where the subscript nb refers to the neighbor cells and ap and anb are the linearized 

coefficients for ϕ and ϕnb. Similar equations are written for each cell in the grid which 

results in a set of algebraic equations that can be solved with a Gauss-Seidel based 

linear equation solver. 

 

Figure 3. Example computational domain for illustration purposes 
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 FLUENT stores the discrete values of the scalar quantity for the center of a 

cell; however face values are required for the convection term in equation (2) and 

therefore must be interpolated from the cell center values. This can be accomplished 

using an upwind scheme where the face value is derived from quantities in the cell 

upstream relative to the direction of the normal velocity vn. Unless otherwise stated, a 

first-order upwind scheme is used for the spacial discretization of the numerical 

domain. Using this method, the face value of a cell is determined by assuming that the 

cell-center values of any field variable represent a cell-average value and therefore 

hold throughout the entire cell, thus the face values are identical to the cell quantities. 

Hence, for this scheme ϕf is set equal to the cell center value of ϕ for the upstream cell. 

It should be noted that the diffusion terms in equation (2) are central-differenced and 

therefore always have a second order accuracy independent of the spacial 

discretization scheme chosen. 

 Not only are gradients needed for constructing values of a scalar quantity at the 

cell faces, they are required for computing the diffusion terms and velocity derivative 

present in the governing equations. The Green-Gauss theorem is used to compute the 

gradient of the scalar quantities at the center of the cell via:  

  
f

ffc A






1

0  (4) 

The value of the face centroid ϕf is computed using the Green-Gauss cell-based 

method. For this method the face value in equation (4) is taken as the arithmetic mean 

of the values at the neighboring cell centers. For the example domain in Figure 3 it can 

be evaluated using the following equation:  
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 The only remaining term to be discretized in equation (2) is the time 

derivative, V
t


. Temporal discretization requires the integration of every term in 

the differential equation by the time step ∆t. For example, the temporal evolution of ϕ 

can be represented by equation (6) where the function F(ϕ) incorporates the spacial 

discretization. The temporal discretization is given by equation (7). The only question 

that remains is whether to evaluate F(ϕ) at the current time step n or the future time 

step n+1. Implicit time integration was used due to its independent stability with 

respect to the chosen time step. This method evaluates F(ϕ) at a future time and 

therefore the right hand side of equation (7) becomes F(ϕ
n+1

). Using an implicit 

technique, ϕ
n+1

 in any given cell is related to ϕ
n+1

 in the neighboring cells and hence 

cannot be solved for explicitly at the current time step n. Therefore equation (8) is 

solved iteratively at each time step until the solution is converged before preceding to 

the next time step.  
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2.2 Flow Solvers 

 FLUENT allows for the choice between density-based and pressure-based 

solvers. The only difference between these solvers is the linearization process used to 
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solve the discretized equations. However, since all of the numerical simulations 

conducted involve a phase change process, only pressure-based solvers can be used. 

These pressure-based solvers employ algorithms which belong to a general class of 

methods called the projection method in which the conservation of mass within the 

velocity field is achieved by solving a pressure equation [65]. A segregated algorithm 

is used in which the governing equations are solved sequentially within an iterative 

loop until convergence is obtained via the process outlined below: 

1. Update fluid properties 

2. Solve the momentum equations sequentially for u, v, and w 

3. Solve the pressure correction (continuity) equation  

4. Update face mass fluxes, pressure, and velocity field 

5. Solve additional scalar equations (energy and turbulence)  

6. Check for convergence  

Since the discretized equations are solved in a decoupled manner, convergence is 

slower than if a coupled algorithm was used; however, the segregated algorithm is 

more memory-efficient.  

 For a pressure-based solver, the discretization scheme described above for a 

scalar transport equation is used to discretize the momentum equation yielding an 

equation for the x-momentum in the form:  

  
nb

fnbnbp SiApuaua ˆ  (9) 

where ap and anp linearized coefficients, pf is the pressure at the face of the cell, and S 

is a momentum source term. If the pressure field and mass fluxes were known a priori, 
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equation (9) could be solved in a similar manner as previously described. However, 

these are unknown and therefore a pressure interpolation scheme is required. The 

standard pressure interpolation scheme interpolates the pressure at the faces of a cell 

using the momentum equation coefficients [66]. For the example domain in Figure 3 

this yields: 
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where pc0 and pc1 are the cell center pressures and ap,c0 and ap,c1 are the momentum 

coefficients for the cell center.  The above procedure works well provided the pressure 

variation between cell centers is smooth. When the stand pressure interpolation 

scheme fails, the pressure staggering option (PRESTO!) scheme can be used. This 

scheme uses the discrete continuity balance for a staggered control volume to compute 

the face pressure in a similar manner to the staggered-grid schemes used for structured 

meshes [67].  

 Due to the way the continuity and momentum equations are discretized for a 

pressure-based solver, the pressure and velocity field become coupled. The semi 

implicit method for pressure linked equations (SIMPLE) algorithm uses a relationship 

between the velocity and pressure corrections to enforce mass conservation and obtain 

the pressure field. Alternatively, the pressure-implicit with splitting of operators 

(PISO) pressure-velocity coupling scheme can be used. It is based on a higher degree 

approximation of the relation between the corrections for the pressure and velocity 

field. It incorporates neighbor corrections that increase the stability of the solution 
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when larger time steps are used. Both the SIMPLE and PISO pressure-velocity 

coupling schemes were used in the numerical evaluations conducted.  

2.3 Enthalpy Porosity Method  

 In order to model a phase change process, the standard energy conservation 

equation needs to be modified to include the latent energy released during the phase 

change. There are two ways to numerically track the evolution of the melting front 

within a computational domain: either explicitly or indirectly. The most common 

method is that of the enthalpy-porosity method developed by Voller et al. [26] which 

indirectly tracks the progression of the solid-liquid interface using a parameter called 

the liquid fraction, γ. In regards to the enthalpy-porosity method the computational 

domain is broken down into a solid region, a liquid region, and a mushy zone based on 

the value of the liquid fraction within a given cell. The liquid fraction is defined as:  
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where Tsolidus and Tliquidus are the solidus and liquidus temperatures, respectively, of the 

material. The difference between the solidus and liquidus temperature defines the size 

of the mushy zone; for a congruently melting material they are equal. A value of γ = 0 

corresponds to a solid region while a value of γ = 1 defines a liquid region and a value 

of 0 < γ < 1 represents the mushy zone. The mushy zone is treated as a “pseudo” 

porous material by placing a source term in the momentum equation that dampens the 

velocity to zero as the liquid fraction decreases. Applying the liquid fraction to the 
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momentum and energy conservation equations for laminar flow yields the following 

set of governing equations:  
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where i ranges from 1 to 3, ui is the velocity vector, ρ is the density, μ is the viscosity, 

p is the pressure, gi is the gravitational acceleration vector, H is the total enthalpy 

(sensible + latent), k is the thermal conductivity, T is the temperature, hsref is the 

sensible reference enthalpy, Tref is the reference temperature, cp is the specific heat 

capacity, and L is the latent heat of fusion. The last term in equation (13) is the source 

term added to model the mushy zone. The model constant c corresponds to the 

amplitude of the damping effect where higher values yield quicker reductions in the 

velocity. For the numerical investigations carried out, this constant was set to a value 

of 5×10
6
 kg/m

3
s. Lastly ε is a small computational constant taken to be 0.001 that 

prevents a singularity when γ=0. Using the finite volume method described above, 

these equations are discretized and solved iteratively at each node until a convergence 

of 10
-3

 is reached for the continuity and momentum equations and 10
-6

 for the energy 

equation.  
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2.4 Volume of Fluid Method  

 In order to study the compression of an internal void space resulting from the 

volumetric expansion of the PCM upon melting, the above set of governing equations 

for a solid-liquid phase change must be extended to multiple phases. While FLUENT 

offers three multiphase models only the volume of fluid (VOF) model can be used in 

conjunction with the enthalpy-porosity based melting and solidification model. The 

VOF model can be used to model domains that consist of two or more immiscible 

fluids. The model tracks the volume fraction of each fluid present in the domain and 

then solves a single momentum and energy equation over the entire domain using 

volume weighted properties [68-70].  

 The volume fraction of the n
th

 fluid, αn, is used to determine the fraction of the 

n
th

 fluid present within a given cell. When αn equals zero the given cell is empty of the 

n
th 

fluid. Similarly, when αn is 1 the cell is full of the n
th

 fluid. If a cell contains the 

interface been the n
th

 fluid and one or more other fluids, αn is between 0 and 1. 

Tracking on the interface between the fluids or phases is accomplished by solving a 

modified continuity equation for the volume fraction of n-1 secondary phases, thus 

replacing equation (12) with  
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The volume fraction of the primary phase is calculated based on the principal that 

within a given cell the sum of the volume fraction must be equal to 1 as seen in 

equation (17). After the volume fraction of each phase is known throughout the entire 

domain, volume weighted properties are calculated. An example of how these volume-
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weighted properties are calculated is given in equation (18) for density. As the energy 

equation is also shared among the phases, the enthalpy (H) and temperature (T) are 

taken to be mass-averaged variables given by equation (19). The enthalpy of each 

phase (Hn) is calculated based on the specific and latent heat of that phase and the 

shared temperature.  
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 Using these weighted properties, equations (13) - (15) are iteratively solved to 

capture a solid-liquid phase change within a multiphase domain. It should be noted 

that while these equations are written for laminar flow, the process is the same when a 

turbulence model is used. A single set of governing transport equations are solved 

over the entire domain and the turbulence variables, such as the turbulence kinetic 

energy and specific dissipation rate, are shared by all the phases present.  

 The governing equations are discretized in the manner described above and 

both implicit and explicit schemes were used in the calculation of the volume fraction 

in the various simulations conducted. The first order upwind scheme was used to 

calculate the face fluxes when implicit VOF was employed. When explicit VOF was 

used the face fluxes are calculated using either interface reconstruction or finite 

volume discretization schemes. For the interface reconstruction method the geometric 

reconstruction approach was employed. When this method is used the standard 
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interpolation schemes are used in a completely filled cell whereas for cells that contain 

the interface, the interface is represented using a piecewise-linear approach [68]. 

When the viscosity between two fluids in the domain is high, the compressive 

interface capturing scheme for arbitrary meshes (CICSAM) method can be used to 

ensure convergence. The CICSAM method is a finite volume-based high resolution 

differencing scheme based on the work of Ubbink [69]. Lastly, for explicit time-

dependent VOF calculations, equation (16) is solved using an explicit time-marching 

scheme where FLUENT automatically refines the time step based on the maximum 

Courant Number. 

2.5 Turbulence Modeling 

 When the flow around a cylinder is turbulent, the heat transfer coefficient 

around the capsule is increased, thus turbulence is beneficial in TES systems; however 

it adds an added level of complexity to the numerical simulations. Reynolds (Re) 

number is used to determine whether a flow is in the laminar or turbulence regime. Re 

based on the diameter of the cylindrical EPCM capsules is defined as:  



vD
Re

 

(20) 

where, ρ is the density of the HTF, v is the superficial velocity, D is the diameter of 

the capsule, and μ is the viscosity of the HTF. Flow past a cylinder can be considered 

in transition when Re is greater than 100.  For the flow conditions seen at CSP plants 

it is likely that this will be the case and therefore a turbulence model must be 

employed.  
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 The choice of a turbulence model depends on the physics of the problem, the 

level of accuracy required, available computational resources, and the time required to 

complete a simulation. The difficulty with modeling turbulence is that it occurs over a 

wide range of length and time scales which increases the computational demand. 

While a direct numerical simulation (DNS) can be used to fully resolve all of the 

turbulent length scales and directly solve the Navier-Stokes equations, the 

computational demand required scales with the cube of Re. Large eddy simulations 

(LES) reduce the time and length scales that are solved by utilizing low-pass filtering 

of the Navier-Stokes equations. Therefore by filtering out the smallest time and length 

scales LES models reduce the computational cost at the expense of some degree of 

accuracy. The oldest turbulence modeling method is using the Reynolds-averaged 

Navier-Stokes (RANS) equations. RANS models are able to capture the entire range 

of turbulent length scales by governing the transport of the average flow quantities. 

The RANS-based models have the lowest computational requirement and are widely 

used in engineering applications.  

2.5.1 Reynolds Averaged Navier-Stokes  

 Due to its low computational demand and wide use, a RANS-based turbulence 

model was chosen. RANS-based models use Reynolds averaging to decompose the 

instantaneous variables into their time-averaged and fluctuating components. For 

example the velocity vector u can be defined as the sum of the mean velocity ū and the 

fluctuating velocity uʹ, equation (21).  

iii uuu 
 

(21) 
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The same process can be used for the scalar properties like pressure or energy. 

Therefore the time averaged continuity and momentum equations are written as: 
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The above equations have the general form of the instantaneous Navier-Stokes 

equations only with time averaged variables and additional terms that represent the 

effects of turbulence; mainly the Reynolds stresses, ''

jiuu , which must be modeled 

in order to close the problem [71].  

2.5.2 k-ω SST Model  

 In order to close the RANS equations the Reynolds stresses need to be 

modeled. The Boussinesq hypothesis relates the Reynolds stresses to the mean 

velocity gradients such that [72]: 
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where μt is the turbulent viscosity and k is the turbulent kinetic energy. The k-ω shear-

stress transport (SST) model closes the problem by relating the turbulent viscosity to 

the turbulence kinetic energy (k) and specific dissipation rate (ω) and solving transport 

equations for both k and ω.   

 The major differences between the k-ω and k-ω SST models are a gradual 

change from the standard k-ω model in the inner region of the boundary layer to a 

high-Re  k-ε model in the outer part and a modified turbulence viscosity formulation to 
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account for the transport effects of the principal turbulent shear stress. Developed by 

Menter [73] the k-ω SST model blends the accuracy of the k-ω model in near-wall 

regions with the free-stream independence of the k-ε model in the far field. The 

turbulent kinetic energy and specific dissipation rate transport equations are listed in 

equation (25) and (26) respectively and the turbulent viscosity is defined in equation 

(27)  
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where Ω is the vorticity magnitude (equation (34)) and σk, β*, σω, β, and a1 are closure 

constants. Unlike in the standard k-ω model, the constants in the k-ω SST model are a 

blend of the k-ω and k-ε model constants as defined in equation (28) for a constant ϕ. 

Additional functions are defined in equations (29) to (33) and the model constants are 

listed in Table 1. The first-order upwind discretization method outlined previously is 

used to discretize and iteratively solve the turbulence model equations in conjunction 

with the enthalpy-porosity and VOF methods to solve for both the internal and 

external heat transfer in an EPCM based latent heat TES system.  
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Table 1. Model constants employed in the closure of the k-ω SST model 
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CHAPTER III: CALORIMETRY SYSTEM 

In an effort to push TES applications to higher temperatures, additional 

research into candidate high temperature melting PCMs is required. While it is 

possible to evaluate the thermal properties of a material using differential scanning 

calorimetry (DSC) or differential thermal analysis (DTA), these methods do not allow 

for the study of the compatibility of the PCM with the encapsulation material. 

Therefore, in an effort to evaluate the performance of the entire EPCM capsule, a 

specially designed immersion calorimeter was constructed, calibrated, and used for all 

testing required of the candidate PCMs [10, 20, 21, 24]. 

3.1 Calorimeter System Design  

The calorimetry system that was used consists of a cylindrical metal container 

with a diameter of 21 cm and a height of 24 cm. The container holds approximately 

4.5 kg of silicone oil. In an effort to reduce heat loss from the system to the 

surroundings, the metal container was insulated using 4 mm polymer foam. To further 

isolate the system from its surrounds, the insulated container was housed within two 5 

mm thick foam board lidded guard boxes. The interior guard box is 30 cm high by 28 

cm wide and the exterior guard box is 36 cm high by 36 cm wide. A schematic of the 

calorimetry system is shown in Figure 4.  
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Figure 4. Calorimeter system a schematic (right) and photograph (left) 

The mass of silicone oil in the system allows for a suitable temperature 

increase that ensures the enthalpy transferred to the system from the hot EPCM 

samples can be measured accurately. If the temperature increase is too small the 

temperature measurements will not be as accurate, but if the change is too large 

problems can arise such as the generation of bubbles that result in inaccuracies. It was 

determined that a mass of approximately 4.5 kg would be sufficient to yield desirable 

results [10, 21, 24]. Dynalene 600 was chosen as the silicone oil for use due to its 

relatively high flash point (315 °C), its low vapor pressure (333 Pa), and its favorable 

thermal conductivity (0.156 W/mK) [74]. The thermal conductivity helps to ensure a 

uniform temperature distribution within the system whereas the low vapor pressure 
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reduces energy loss caused by nucleation of the silicone oil when the hot sample is 

submerged.  

In order to ensure there was a uniform temperature distribution within the 

calorimeter system, an electric mixer was used throughout the duration of the 

experiment. The temperature of the calorimeter is taken to be the temperature of the 

silicone oil and was measured using a thermistor. In order to determine the amount of 

heat lost from the system, the ambient air temperature was measured between the 

metal container and the first guard box. As laboratory conditions and final sample 

temperature differ with each experiment, the heat loss from the system varies and was 

therefore calculated for each individual experiment. In order to suspend the EPCM 

sample in the calorimeter and avoid heat loss through conduction to the container, a 

wire rod was welded to the top of each sample.  

3.2 Experimental Procedure 

Prior to each experiment, the mass of the silicone oil was measured as losses 

occur when the sample is removed at the conclusion of the experiment. These losses 

are on the order of a few grams. Additionally, the samples were weighed to ensure that 

leakage of the PCM had not occurred during the experiment. To begin the experiment, 

the samples were heated from room temperature to approximately 50 degrees above 

the material’s melting temperature, and then held at that temperature for 2 hours to 

ensure a uniform temperature within the sample and complete melting of the PCM. In 

an effort to promote uniform heat transfer, the sample was either covered with an 

insulating fiber mat or placed within a carbon steel cylinder, Figure 5. The temperature 
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of the sample was measured during the heating process by securing three 

thermocouples around the sample using copper wire, as seen in Figure 6.   

 

Figure 5. Sample placed in carbon steel cylinder during heating process  
 

 

Figure 6. Thermocouples used to measure sample temperature secured with copper wire 

After being held at the desired temperature, the charged sample is quickly 

submerged into the calorimeter in an effort to reduce heat loss. Once the sample is 

submerged, the lids are placed on the guard boxes and any remaining gaps are sealed 

using additional pieces of foam board and weights. An example of the temperatures 

recorded during the length of an experiment are shown in Figure 7. While the 
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temperature of the calorimeter and air are measured over the entire experiment, the 

temperature of the sample is only recorded during the heating phase. A typical heating 

phase has a duration of approximately 3 hours, whereas the cooling phase is 

completed after 2 hours. In Figure 7, after 9,000 sec the sample was submerged in the 

calorimeter, at which point its temperature began to increase.  

 

Figure 7. Calorimeter, air, and sample temperature over the course of an experiment 

The increase in temperature of the calorimeter system is more readily seen in 

Figure 8. As soon as the sample is submerged in the calorimeter, it begins to transfer 

its stored thermal energy, increasing the system’s temperature. After a period of time 

the sample and calorimeter will have reached equilibrium. This is called the 

equilibrium time, te. The time it takes the system to reach equilibrium is dependent on 

the sample size, the material being tested, the final temperature of the sample, and the 

initial temperature of the calorimeter. In an effort to ensure that the sample and 

calorimeter have reached equilibrium, only the last 3,000 sec of the cooling process 
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are used. Once equilibrium has been reached, the temperature of the sample and 

calorimeter decreases slowly due to heat lost to the environment. The rate at which 

heat is lost from the system is related to the rate of the temperature decrease. 

Therefore, the amount of heat lost from the system can be calculated and the 

theoretical equilibrium temperature can be determined. Using this zero loss 

equilibrium temperature and the initial calorimeter temperature, the amount of energy 

transferred to the system from the sample is calculated. This value is then compared to 

the theoretical energy stored in the sample during heating based on the material’s 

properties.  

 
Figure 8. Temperature measurements during a typical calorimetry experiment [20] 

 

3.3 Energy Analysis  

The temperature data recorded during each experiment was input into 

MATLAB in order to calculate the heat loss and equilibrium temperature, as well as 

the energy transferred to the calorimeter, the energy stored in the sample, and the 
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discrepancy between them [20, 21, 24]. The equations governing the conservation of 

energy for the calorimetry system are:  
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where mcal is the mass of calorimeter; cp,cal is the effective heat capacity of the 

calorimeter; Tcal is the temperature of the calorimeter; Tcal,0 is the initial calorimeter 

temperature; mcap is the mass of the capsule; cp,cap is the heat capacity of the capsule; 

mPCM is the mass of the PCM; 
s

PCMpc ,  is the solid heat capacity of the PCM; 
l

PCMpc ,  is 

the liquid heat capacity of the PCM; L is the latent heat of the PCM; Ts,0 is the initial 

sample temperature; Ta is the air temperature; and Tm is the melting temperature of the 

PCM.  

In order to calculate both the theoretical energy stored by the EPCM sample 

(QEPCM_theo) and the energy transferred to the calorimetry system (QEPCM_EXP), the 

theoretical equilibrium temperature of the system (calorimeter and cooled sample) is 

required. However, in order to find the theoretical equilibrium temperature, the heat 

lost (Qloss) from the system during the experiment is needed. Due to variations in 
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experimental conditions, the heat loss must be calculated for each experiment 

individually. This is accomplished by using the rate at which the temperature of the 

system decreased over the last 3,000 sec of the experiments. 

However, the rate at which heat is lost from the calorimeter requires a transient 

heat transfer analysis. While there are several ways to solve a transient heat transfer 

problem, the simplest is the method of lumped capacitance. Lumped capacitance 

assumes that the temperature difference inside the substance is negligible. This can be 

expected in our system due the moderate thermal conductivity of the silicone oil and 

the presence of the electric mixer. A uniform temperature distribution within the 

system is verified using several thermal couples placed at various heights and radii 

during a cooling period [20, 21, 24]. Therefore, the temperature of the calorimeter at 

any time after the equilibrium time is represented by the following equation: 
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where Tcal,0 is the initial calorimeter temperature, Ta is the air temperature, h is the heat 

transfer coefficient, A is the surface area of the calorimeter, mso is the mass of the 

silicone oil, cp is the effective heat capacity of the system, and t is the time at which 

the temperature is desired. While some of the constants in equation (43) are unknown, 

they can be determined by curve fitting the recorded temperature of the calorimeter 

over the course of the experiment. Then, by differentiating the equation found for 

temperature, the total heat loss rate in the system, including the now-cooled EPCM 

sample, is determined by using the following equation: 
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Additionally, as seen in equation (37), Q̇net is also equal to the rate of heat lost 

from the system to the surroundings through convection plus the heat input to the 

calorimeter by the mixer. By plotting the heat rate determined from equation (44) 

versus the difference in temperature between the calorimeter and the surrounding air, 

the two unknown coefficients in equation (37), hA and Q̇mixer, are determined. 

Knowing these coefficients, the cumulative heat loss from the calorimeter (Qloss) at 

any time is calculated by integrating Q̇net from the initial time the sample was 

submerged in the system, t0, to any subsequent time t later.  

After the heat loss has been determined, the theoretical equilibrium 

temperature of the system at any time after the equilibrium time can be determined 

using equation (45). 
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The temperature T in the above equation is calculated by using equation (43). The 

theoretical temperature was then used as Tcal in equations (38) - (42) to calculate the 

theoretical and experimental enthalpies.  

In addition to the heat loss, the effective heat capacity of the calorimeter is 

required. The heat capacity of the calorimetry system cannot simply be taken as that of 

the silicone oil alone because it only accounts for 83% of the mass of the system. The 

other 17% is made up of the metal container (0.6kg), the foam insulation (0.242kg), 
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and the mixer blade (0.0966kg). These three components each have their own heat 

capacity and contribute to the calorimeter’s storage ability. 

Therefore, the heat capacity of the calorimeter system was determined via 

calibration using two solid standard stainless steel 304 samples that were heated to 

various temperatures. The dimensions and masses of these samples are listed in Table 

2. Stainless steel 304 was chosen because of its well-documented thermal properties 

and high melting point, thus allowing for the samples to store only sensible heat over a 

wide range of temperatures. The thermal properties of stainless steel are listed in Table 

3 [75]. Due to the variation of the specific heat over the applied temperature range, 

integration was applied to calculate the energy stored in the stainless steel samples. 

The results of the calibration tests, depicted in Figure 9, were well represented by the 

following equation, in the operational range of 25-60 
°
C 

6.13125297.2,  calcalp Tc  (46) 

where cp, cal is the effective heat capacity of the entire calorimeter system in J/kg K and 

Tcal is the calorimeter temperature in 
°
C. 

Table 2. Specifications of stainless steel calibration samples 

 Mass of Sample (g) Size (Diameter × Height) 

Sample 1 834.3 3.81 cm × 10.16 cm  

Sample 2 185.1 2.53 cm × 4.64 cm  

 

Table 3. Thermal properties of stainless steel 304 [75] 

Melting Point (
°
C) Heat Capacity (J/kg K) 

1397 

300 K 400 K 600 K 800 K 1000 K 1200 K 1500K 

477 515 557 582 611 640 682 

 



45 

 
Figure 9. Calibration results (R

2
=0.97) [20] 

 

3.4 System Verification 

After calibration of the effective heat capacity of the system was completed, 

the overall performance of the calorimeter was determined by performing several 

verification tests. The calorimeter’s ability to accurately measure sensible heat and 

latent heat was determined by calculating the energy stored in the two stainless steel 

samples used for calibration and an aluminum sample that contained 42.45 g of 

aluminum by using the experimental procedure describe above. The discrepancy 

between the theoretical and experimental enthalpies was calculated using the 

following equation;  
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A positive discrepancy indicates that less energy was transferred to the calorimeter 

than predicted based on material properties. Conversely, a negative discrepancy means 

that more energy was transferred to the calorimeter than theoretically stored in the 
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sample. Due to inaccuracies in the measurements of temperature both positive and 

negative discrepancies can occur.  

 The results of the verification tests for both sensible and latent heat storage are 

tabulated in Table 4. It can be seen that the energy balance between the theoretical and 

experimental energy storage was satisfied with less than ±2% discrepancy, lending 

confidence to both the experimental method and calorimetry measurements used to 

determine the performance of candidate PCMs.  

Table 4. Results of verification testing 

Sample 
Charged 

Temperature  

Theoretical 

Equilibrium 

Temperature 

Theoretical 

Energy 

Stored 

Measured 

Energy 

Stored 

Discrepancy  

 Stainless 

Steel #1 
256 °C 37.7 °C 94.1 kJ 94.7 kJ -0.64 % 

Stainless 

Steel #1 
390 °C 46.1 °C 153.0 kJ 152.6 kJ 0.26 % 

Stainless 

Steel #2 
480 °C 31.7 °C 44.8 kJ 44.5 kJ 0.70 % 

Stainless 

Steel #1 
555 °C 56.7 °C 228.0 kJ 227.4 kJ 0.26 % 

Aluminum 

#1 
720 °C 32.2 °C 76.1 kJ 74.6 kJ 1.9 % 

Aluminum 

#1 
700 °C 33.0 °C 74.7 kJ 76.0 kJ -1.7 % 

      

3.5 Summary 

A conventional immersion calorimeter was specially designed for use in the 

testing of candidate PCMs for use in high temperature TES at CSP plants. The 

designed system consisted of an insulated container of approximately 4.5 kg of 

silicone oil that was further insulated using foam board boxes. The effective heat 
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capacity of the calorimeter was determined through calibration by using standard 

stainless steel samples in the temperature range of 25-60 
°
C. The results of calibration 

showed that 90% of the effective heat capacity of the system was from the silicone oil. 

 Additionally, using the stainless steel samples and an aluminum EPCM 

sample, the accuracy of the calorimeter measurements for both sensible heat and latent 

heat was evaluated by performing an energy balance analysis between the theoretical 

storage capability of each sample and the experimentally measured value. Additional 

details on the use of aluminum as a PCM were presented by Zhao [21] and Solomon 

[20]. From the results of the verification tests, it was determined that the overall 

accuracy of the designed calorimeter was ±2%. These results make not only the 

calorimeter's ability to measure the thermal energy stored in an EPCM sample credible 

but also the experimental method used.   
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CHAPTER IV: CALORIMETRY SIMULATIONS  

 In an effort to validate the use of the enthalpy-porosity and VOF methods’ 

ability to accurately capture the heat transfer within EPCM capsules, simulations of 

the laboratory-scale calorimetry experiments were conducted.  

4.1 Calorimetry Simulation Set Up  

 Two-dimensional axisymmetric numerical simulations were conducted to gain 

a greater understanding of the heat transfer that occurs both within the EPCM capsules 

and in the calorimeter. A schematic of the experimental setup is presented in Figure 4 

and the computational domain considered is shown in Figure 10. A detailed 

description of the calorimetry system is presented in section 3.1. The main component 

of the system is the 4.5 kg of Dynalene 600 silicone oil. The temperature of the 

calorimeter was measured throughout the entire experiment using thermistors, and in 

order to ensure a uniform temperature distribution within the system an electric mixer 

was used. The EPCM capsules used for the laboratory scale testing have a diameter of 

2.54 cm and a height of 5.08 cm with a 1.5875 mm thick stainless steel capsules shell. 

A 20-30% approximate void space was left within the capsules to allow for the 

thermal expansion of the PCM upon melting and ensure the capsules do not rupture. 

 Two sodium chloride (NaCl) and thee aluminum (Al) EPCM capsules were 

experimentally tested to evaluate their performance as PCMs for use in high 

temperature TES applications. The experimental results were reported by Solomon 

[20] and Zhao [21] and showed that while NaCl showed no deterioration of storage 

capacity after prolonged thermal cycling, the Al capsules showed a significant loss of 

storage capacity. The simulations were conducted using the experimental data from 
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the third cycle for the third Al sample and for the second cycle for the first NaCl 

sample after 1,000 hours of high temperature exposure. The relevant thermal 

properties used in the simulations are listed in Table 5. 

Table 5 Physical properties of air, stainless steel, calorimeter, aluminum and sodium 

chloride used in the calorimetry simulations  

Air Aluminum 

Specific Heat 

Capacity (J/kg °C) 
1,006 [75] Density (kg/m

3
) 

2855.8 − 0.5126𝑇 300 < 𝑇 < 973
2614.8 − 0.0265𝑇 973 < 𝑇 < 1200

 

[76] 

Thermal 

Conductivity 

(W/m K) 

0.0242 [75] 

Solid Specific 

Heat Capacity 

(J/kg °C) 

903 [77] 

Viscosity (kg/m s) 1.79×10-5 [75] 

Liquid Specific 

Heat Capacity 

(J/kg °C) 

1177 [77] 

Stainless Steel 304 
Viscosity  

(kg/m s) 
0.0012  [76] 

Density (kg/m
3
) 7,900 [75] 

Thermal 

Conductivity 

(W/m K) 

237 [76] 

Specific Heat 

Capacity (J/kg °C) 
477 

Latent Heat 

(kJ/kg) 
397.3 [77] 

Thermal Conductivity 

(W/m K) 
14.7

 
[75] Sodium Chloride 

Calorimeter Density (kg/m
3
) 2137.9 – 0.5418×T [78] 

Density (kg/m
3
) 

1252.6 – 

0.9983×T [74] 

Solid Specific Heat Capacity 

(J/kg °C) 
931 [78] 

Specific Heat 

Capacity (J/kg 

°C) 

2.47×T + 640.13 

[10, 19] 

Liquid Specific Heat 

Capacity (J/kg °C) 
1215 [78] 

Viscosity  

(kg/m s) 
0.0486 

Thermal Conductivity (W/m 

K) 
0.5 

Thermal 

Conductivity 

(W/m K) 

0.147 
Viscosity  

(kg/m s) 
0.001008 [78] 

  Latent Heat (kJ/kg) 430 [78] 
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Figure 10. Computational domain used for calorimetry simulations 

 

4.2 Internal Heat Transfer Results 

 When the hot EPCM samples are submerged within the calorimeter they begin 

to transfer their stored energy to the silicone oil and the PCM begins to rapidly 

solidify. The PCM begins to solidify along the side and bottom of the capsule, Figure 

11a. Since the solidification process is conduction-dominated, the solid-liquid 

interface slowly propagates radially inwards and the ever-increasing solid layer has a 

limiting effect on the heat transfer within the capsule, Figure 11b. As the PCM cools it 

contracts however the solidified PCM sticks to the capsule surface at the expanded 

height; therefore as the air void expands it forms a “V”-shaped depression in the 

center of the capsule, Figure 11c and d. The upward increase in the solid seen in 

Figure 11 is a byproduct of the way the density of the PCM is modeled and it flattens 

over the course of the simulation.  
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 A photograph of a sectioned magnesium chloride (MgCl2) sample [19] after 

experimentation is shown in Figure 11e. There is a strong visual agreement in the final 

shape of the solid PCM from both the simulation and experimental capsule. The 

bottom of the dip is 1.4 cm above the bottom of the capsule compared to 1.7 cm in the 

experimental capsule. The thickness of the solid layer at the top of the dip is 0.6 cm in 

both cases. Ideally, a comparison would be made using the NaCl capsules but 

regretfully a photo of the sectioned capsule was not taken. However, NaCl and MgCl2 

have similar thermal conductivities (~5 W/mK) and thermal expansion coefficients 

(~3 × 10
-4

/K), therefore a similar dip would form within both EPCM capsules. It takes 

165 sec for the NaCl capsule to solidify completely. A similar evolution of the solid-

liquid interface is seen within the aluminum capsule and it has a total solidification 

time of 35 sec due to its vastly higher thermal conductivity compared to that of NaCl.  

     
a) Liquid 

Fraction 

@ 30 sec 

(SteFo=0.078) 

b) Liquid 

Fraction  

@ 60 sec 

(SteFo=0.155) 

c) Liquid 

Fraction  

@ 120 sec 

(SteFo=0.310) 

d) Liquid 

Fraction  

@ 200 sec 

(SteFo=0.517) 

e) Sectioned MgCl2 

Capsule [19] 

Figure 11. Evolution of the solid–liquid interface in the NaCl capsule (a-d) and sectioned 

MgCl2 sample [19] 
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4.3 External Heat Transfer Results 

 Once the EPCM sample is immersed in the calorimeter, there is a rapid 

increase in the temperature of the system before the system slowly approaches 

equilibrium. After the EPCM capsule is submerged in the system, a large thermal 

gradient forms in the silicone oil directly above the EPCM sample, Figure 12a. This 

results in the formation of a large vortex above the sample due to convection in the oil, 

Figure 12f. There are also two small vortices forming in the air gap at the top of the 

system as the air is heated as well as a vortex around the outside of the EPCM capsule. 

As the sample continues to cool, a thermal gradient has formed within the silicone oil, 

Figure 12b. Additionally, the strength of the vortex above the EPCM sample is 

decreasing as after 300 sec the EPCM sample has released the majority of its stored 

energy, Figure 12g. After 1800 sec the EPCM sample has transferred all of its stored 

energy to the calorimeter and now has the same temperature as the surrounding 

silicone oil, Figure 12c. From this point forward, the temperature gradient within the 

system slowly decreases towards equilibrium, Figure 12d and e. Furthermore, there is 

no convection present in the system after the sample has given up all of its stored 

energy except for two weak recirculating vortices present in the air gap near the edge 

of the system, Figure 12h-j. A similar temperature evolution is seen within the 

calorimeter system for the NaCl simulation and therefore the results are not pictured 

here.  

 



53 

     
a) Isotherms @ 

30 sec 

b) Isotherms @ 

300 sec 

c) Isotherms @ 

1800 sec 

d) Isotherms @ 

3600 sec 

e) Isotherms @ 

7200 sec  

     
f) Velocity @ 

 30 sec 

g)Velocity @ 

300 s 

h) Velocity @ 

1800 s 

i) Velocity @ 

3600 s  

j) Velocity @ 

7200 s  

Figure 12. Isotherms (a-e) and velocity magnitude (f-j) for the aluminum sample 3 cycle 

3 simulation at various times 
 

 An electric mixer is used during the duration of the experiments to ensure there 

is a uniform temperature present throughout the entire calorimeter system; however 

due to the added computational demand it was neglected leading the simulations to 

predict a large temperature gradient within the system. Therefore, in order to compare 

the predicted temperatures with the experimentally recorded values, a volume-

weighted average temperature is calculated at various discrete time steps. The results 

are shown in Figure 13 along with the raw experimental data. Good agreement is 

obtained during the initial rapid temperature increase. After 200 sec however, the 

experimental temperature begins to decrease due to heat lost to the environment. After 

the heat loss has been accounted for, the experimental equilibrium temperature that the 

sample and calorimeter would have reached under ideal conditions is calculated. For 
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the third cycle of the third aluminum sample experiment the theoretical equilibrium 

temperature was 308 K, shown by the dashed red line in Figure 13. The simulations 

predicted a value of 307 K which is a less than 1% difference from the experimental 

value, shown by the green dash-dot line in Figure 13. Good agreement is also seen 

between the experimental and predicted equilibrium temperature for the NaCl case 

with values of 307 K and 308 K respectively.  

 

Figure 13. Experimental temperature, predicted volume averaged temperature, and 

theoretical equilibrium temperature for aluminum sample 3 cycle 3 

 

 The agreement between the experimental and predicted temperatures along 

with the final shape of the solid-liquid interface demonstrate that the numerical 

methods employed are capable of accurately capturing the complex multiphase heat 

transfer that occurs both within the EPCM capsules and the calorimetry system. A 

combination of the enthalpy-porosity and VOF methods have been used to study the 

characteristics of high temperature PCMs in literature [36, 39, 79, 80]; however the 
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method was validated for low temperature PCMs only. The results presented here 

extend the validation of the methods used to higher temperatures and lend further 

credence to the experimental methods used.  

4.4 Conclusions 

 A numerical model of the calorimetry system used to experimentally evaluate 

the energy storage capability of potential PCMs for high temperature TES was 

developed. This model lends insight into the complex heat transfer that occurs during 

the conducted experiments. The impact of the thermal conductivity of a PCM is 

emphasized by the vastly shorter solidification time for the Al capsule compared to the 

NaCl. The final shape of the solid NaCl predicted by the simulation matched that seen 

in a sectioned MgCl2 capsule, demonstrating the ability of the model to capture the 

contraction of the PCM upon solidification and expansion of the void space within the 

capsule. Additionally, the difference between the experimental and predicted 

equilibrium temperatures was under 1% and good agreement was seen during the 

initial temperature increase of the system. Therefore the model is also accurately 

capturing the heat transfer in the calorimeter in addition to the heat transfer within the 

EPCM capsule. Thus the enthalpy-porosity and VOF methods can be used 

simultaneously to further investigate the behavior of EPCM capsules used for high 

temperature TES applications.   
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CHAPTER V: SPHERICAL EPCM CAPSULES  

To examine the effect that an internal void has on the heat transfer within an 

EPCM capsule, a three-dimensional simulation of a 22 mm diameter sphere with a 1 

mm thick shell was conducted using NaNO3 as the PCM and stainless steel as the 

encapsulation material. Air is considered as the void material and is modeled as an 

ideal gas. The thermal properties of NaNO3, air, and stainless steel are listed in Table 

6. The melting point of NaNO3 is 308 °C. The properties of NaNO3 at the desired 

temperatures are not precisely known as there is a wide range reported in literature 

[81]; therefore the properties used were determined experimentally by Zheng et al. 

[10]. The size of the internal void is dependent on the coefficient of thermal expansion 

of the PCM which for NaNO3 is 4.0×10
-4

 1/K. Therefore, an air void of approximately 

20% is considered at the top of the capsules. A constant temperature boundary 

condition was applied to the surface of the capsule. For the melting process the 

capsules had an initial temperature of 523 K and the surface temperature was set to 

750 K. The temperatures are reversed for the solidification process. The enthalpy-

porosity and VOF methods were employed simultaneously to solve for the heat 

transfer within the capsule while considering convection in the fluid media and 

expansion of the PCM upon melting.  
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Table 6. Physical properties of NaNO3, stainless steel, and air 

 
Density 

(kg/m
3
) 

Thermal 

conductivity 

(W/m·K) 

Specific 

Heat 

(J/kg·K) 

Viscosity 

(kg/m.s) 

Latent 

Heat 

(kJ/kg) 

 Solid 

NaNO3 
2,260[81] 0.5 [78] 1,588 [10] --- 

162.5 [10] 
Liquid 

NaNO3 
1,900 [78] 0.5 [78] 1,650 [10] 2.85×10

-3 
[78] 

Stainless 

Steel 
7900 [75]

 
14.9[75]

 
477 [10]

 
--- --- 

Air Ideal Gas 0.0242 [75] 1,006  [75] 1.79×10
-5

 [75] --- 

      

5.1 Mesh Independence 

The use of the enthalpy-porosity and VOF methods, described in Chapter II, to 

capture the complex heat transfer within EPCM capsules has been previously 

validated in literature [34-36, 79] using experimental results and in Chapter IV. Both 

mesh independence and time step independence were tested for a 25.4 mm capsule 

with a 773 K constant surface temperature and 523 K initial capsule temperature. 

Mesh refinement was tested by using three meshes with a decreasing nominal cell size 

that resulted in meshes with 2290, 4276, and 8736 uniformly distributed nodes. The 

results are presented in Figure 14 where blue is the remaining solid region and red is 

the molten PCM. The overall shape of the remaining solid is the same in all three 

cases with the only difference being the refinement of the mushy zone. Furthermore, 

the total melting time for all three cases was the same; 49.5 sec (SteFo=0.05) using a 

time step of 0.02 sec. The Stefan and Fourier numbers are defined in equations (48) 

and (49) respectively in the next section. Using a mesh with 4276 nodes, the time step 

independence was tested using time steps of 0.01, 0.02, and 0.03 sec. The results 

showed insignificant differences and thus a time step of 0.01 sec was chosen to carry 
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out the calculations. A similar process was carried out for the spherical EPCM capsule 

and a tetrahedral mesh with a max cell size of 6×10
-4

 m was chosen yielding a total of 

15,376 nodes.  

 

 
 

 

a) 2290 nodes b) 4276 nodes c) 8736 nodes 

Figure 14. The location of the liquid/solid interface with 20% void for various mesh sizes 

 

5.2 Melting of Spherical EPCM Capsules  

 Due to symmetry about the Y-axis, the heat transfer in the XY and YZ planes 

are identical and therefore, only the results for the XY plane are shown. However, the 

presence of the void at the top of the capsule removes the symmetry about the X-axis 

that would result from a uniformly heated capsule. The isotherms, velocity magnitude, 

liquid fraction, and specific heat capacity 5 sec into the melting process are shown in 

Figure 15. The specific heat capacity is used to depict the evolution of both the solid-

liquid interface and the void-PCM interface as a constant value was used for both the 

solid and liquid NaNO3 phases as well as for the air. The results have been non-

dimensionalized with respect to the product of Stefan (Ste) number and Fourier (Fo) 

number. Ste is the ratio of sensible heat to latent heat, equation (48). For melting, the 

liquid heat capacity is used and ∆T is the difference between the surface temperature 



59 

and the melting point of NaNO3 (581 K). Therefore, Ste has a constant value of 1.72 

during melting. Fo is the ratio of diffusive transport to the energy storage rate of a 

material, equation (49). Based on the properties of NaNO3, Fo equals 0.001318t, 

where t is time.  

L

Tc
Ste

p
  (48) 

2rc

kt
Fo

p
  

(49) 

 The impact of the void is immediately noticeable as the isotherms in the XY 

and ZX planes are different. In the ZX plane, they take on the circular concentric rings 

predicted by the solution of the unsteady diffusion equation. In the XY plane however, 

the air acts as an insulator reducing the heat transfer in the upper part of the capsule 

leading to the isotherms being “U”-shaped in the PCM, Figure 15a. At this early stage, 

the natural convection in the molten PCM is minimal as only a small fraction of the 

PCM has melted; however two recirculating vortices have formed in the air void, 

Figure 15b. In the ZX plane, the solid-liquid interface is always circular in shape and 

propagates radially inward whereas in the XY plane it is “U”-shaped as it is truncated 

at the void-PCM interface, Figure 15d. Here and throughout blue denotes a solid 

region and red a liquid region. The solid-liquid and void-PCM interface are shown in 

Figure 15c where blue is the stainless steel shell, green is the air void, orange is solid 

NaNO3, and red is molten NaNO3. As the PCM melts it expands and slowly 

compresses the void as it now occupies approximately 13% of the capsule’s volume.  
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(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0113 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 5 sec 

SteFo=0.0113 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0113 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0113 

Figure 15. Temperature, liquid fraction, velocity magnitude, and interface contours at 5 

sec into melting (SteFo=0.0113) 
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 As melting progresses, natural convection occurs within the molten PCM and 

enhances the heat transfer rate. This leads to the isotherms in the XY plane being 

reshaped from a “U”-shape into a teardrop shape within the remaining solid PCM 

whereas in the molten PCM the temperature has begun to stratify, Figure 16a. In 

addition to the recirculating vortices in the air void, two vortices have formed within 

the molten PCM: one along the capsule edge where the molten PCM is heated and 

rises and the other along the remaining solid PCM where it is cooled and sinks, Figure 

16b. The recirculating vortices result in a faster melting rate along the air-PCM 

interface than in the bottom of the capsule despite the poor conductance of heat 

through the air. As the PCM melts, it continues to compress the air void further at the 

top of the capsule as it is now only 8% of the capsule volume, Figure 16c. The 

presence of convection within the molten PCM has also changed the shape of the 

solid-liquid interface into a teardrop shape in the XY plane, Figure 16d. In the ZX 

plane there is still a uniform heat transfer rate and thus the isotherms and solid-liquid 

interface remain circular as they propagate radially inward. Vortices have also formed 

along the capsule edge and the remaining solid PCM; however these vortices are of a 

lower magnitude as the ZX plane is perpendicular to the gravitational force vector 

minimizing the effects of natural convection.  
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(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 15 sec 

SteFo=0.0339 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 15 sec 

SteFo=0.0339 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 15 sec 

SteFo=0.0339 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 15 sec 

SteFo=0.0339 

Figure 16. Temperature, liquid fraction, velocity magnitude and interface contours at 15 

sec into melting (SteFo=0.0339) 
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(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 25 sec 

SteFo=0.0565 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 25 sec 

SteFo=0.0565 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 25 sec 

SteFo=0.0565 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 25 sec 

SteFo=0.0565 

Figure 17. Temperature, liquid fraction, velocity magnitude and interface contours at 25 

sec into melting (SteFo=0.0565) 
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 As the melting process nears completion the temperature within the capsule is 

stratified in the XY plane and uniform in the ZX plane, Figure 17a. The vortices in the 

air void remain as well as those along the capsule edge and the remaining solid. As the 

remaining solid is close to the bottom of the capsule, a recirculating vortex has formed 

in the molten PCM in between the capsule edge and the remaining solid, Figure 17b. 

A higher heat transfer rate in the ZX plane results in a slightly faster melting time 

compared to that of the XY plane where a small oval-shaped solid remains, Figure 

17d. The remaining solid PCM is also off center due to the insulating effect of the air 

void. The air void has been compressed to half its original size and now occupies only 

6% of the total capsule volume, Figure 17c. It takes a total of 30 sec for the capsule to 

melt completely. The evolution of both the solid-liquid interface and void-PCM 

interface over both the melting and solidification process is presented in Figure 21.  

5.3 Solidification of Spherical EPCM Capsules   

 Upon completion of the melting process, the capsule was allowed to heat to a 

uniform temperature of 750 K before the solidification process was initiated by 

switching the surface temperature to 523 K. After the surface temperature is switched, 

the temperature within the molten PCM decreases rapidly resulting in a linear 

temperature distribution in the XY plane and a nominal temperature of 650 K in the 

ZX plane, Figure 18a. During this initial period, a recirculating vortex forms along the 

capsule edge but it is much weaker than that seen during the melting phase, Figure 

18b. The PCM begins to solidify along the bottom of the capsule and the solid 

gradually grows up the capsule sides, Figure 18d.  



65 

 
 

(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0039 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 5 sec 

SteFo=0.0039 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0039 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 5 sec 

SteFo=0.0039 

Figure 18. Temperature, liquid fraction, velocity magnitude and interface contours at 5 

sec into solidification (SteFo=0.0039) 
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 One minute after the surface temperature has been changed the solid PCM has 

decreased to the melting temperature (581 K). The results are again non-

dimensionalized using the product of Ste and Fo numbers, however this time the solid 

specific heat capacity is used leading to a constant Ste of 0.567 and a Fo number of 

0.00137t. Much like during the initial stages of the melting process, the isotherms in 

the XY plane are “U”-shaped whereas they are circular in the ZX plane, Figure 19a. 

The only convection present in the capsule are the two vortices in the air void as the 

remaining molten PCM is a uniform temperature, Figure 19b. This results in the 

solidification process being conduction-dominated. In the ZX plane the solid-liquid 

interface is again circular in shape and it slowly propagates radially inward. In the XY 

plane however, the presence of the void results in a “U” shaped interface, Figure 19d. 

As the PCM solidifies it contracts which allows the compressed air void to expand 

slowly and now occupies 10% of the capsule, Figure 19c.  

 As the PCM continues to solidify, the increasing solid region asymptotically 

decreases the heat transfer rate which results in an increase in the total solidification 

time. The air void has greatly reduced the amount of heat that is transferred from the 

shell to the PCM leading to the PCM solidifying from the bottom up, Figure 20d. As 

was seen during the melting process, the heat transfer rate is greater in the ZX plane 

than the XY plane resulting in a faster solidification time. Upon complete 

solidification the air void has fully expanded back to its original size, Figure 20c. The 

total solidification time is 300 sec. Again, the evolution of both the solid-liquid and 

air-PCM interface are presented in Figure 21 for both the melting and solidification.  
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(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 60 sec 

SteFo=0.0466 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 60 sec 

SteFo=0.0466 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 60 sec 

SteFo=0.0466 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 60 sec 

SteFo=0.0466 

Figure 19. Temperature, liquid fraction, velocity magnitude and interface contours at 60 

sec into solidification (SteFo=0.0466) 
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(a) Temperature on XY (upper) & ZX 

(lower) Planes @ 240 sec 

SteFo=0.1864 

(b) Velocity Magnitude on XY (upper) & 

ZX (lower) Planes @ 240 sec 

SteFo=0.1864 

  

(c) Interfaces on XY (upper) & ZX 

(lower) Planes @ 240 sec 

SteFo=0.1864 

(d) Liquid Faction on XY (upper) & ZX 

(lower) Planes @ 240 sec 

SteFo=0.1864 

Figure 20. Temperature, liquid fraction, velocity magnitude and interface contours at 

240 sec into solidification (SteFo=0.1864) 
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(a) t = 5 sec (12.9% void) 

SteFo=0.0113 

(b) t = 15 sec (7.9% void) 

SteFo=0.0339 

(c) t = 25 sec (6.1% void) 

SteFo=0.0565 

   

(d) t = 5 sec (6.7% void) 

SteFo=0.0039 

(e) t = 60 sec (9.9% void) 

SteFo=0.0466 

(f) t = 240 sec (11.4% void) 

SteFo=0.1864 

 Figure 21. The interfaces during (a-c) melting and (d-f) solidification at various times 

 

5.4 Conclusions  

 The effect of an internal void and natural convection on the heat transfer that 

occurs within EPCM capsules is numerically investigated using a three-dimensional 

model of a 22 mm diameter spherical capsule with a constant surface temperature and 

using NaNO3 as the PCM. The presence of a void at the top of the capsule removes the 

symmetry about the X-axis that is usually present for a uniformly heated sphere. This 

leads to the solid-liquid interface behaving differently in the XY and ZX planes. In the 

ZX plane, the isotherms form concentric circular rings as per the solution of the 

unsteady diffusion equation; thus the solid-liquid interface is always circular in shape 

and propagates radially inward. In the XY plane, the solid-liquid interface is “U”-
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shaped during the conduction-dominated phase of the heat transfer during melting due 

to the insulating effect of the void. As convection becomes the dominant mode of heat 

transfer, it increases the heat transfer rate along the air-PCM interface resulting in a 

teardrop-shaped remaining solid. The overall melting process is also slightly faster in 

the ZX plane. As the PCM melts it expands and compresses the void from an initial 

15% to 6% when melting is completed, over a 50% reduction in size.  

 Unlike the melting process, solidification is conduction-dominated and is 

therefore limited by the thermal conductivity of the solid PCM. The ever-increasing 

solid asymptotically decreases the heat transfer rate prolonging the solidification 

process. For the considered case, complete solidification takes 300 sec which is 10 

times longer than the melting process. It should be noted that the difference between 

the melting point of the PCM and the capsule wall is 100 K smaller during 

solidification than it was during melting resulting in a smaller Ste. The resulting 

slower heat transfer rate coupled with the lack of natural convection in the liquid PCM 

contribute to the increased solidification time. At the end of solidification, the void 

expanded back to its original volume fraction as the PCM contracted.  

 These results highlight the impact that both natural convection and an internal 

void have on the heat transfer and therefore evolution of the solid-liquid interface 

within EPCM capsules. Accurate predictions of the performance of an EPCM-based 

TES system cannot be made unless a model that captures the resulting complex multi-

phase heat transfer caused by these effects is used.   
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CHAPTER VI: EFFECT OF INITIAL VOID LOCATION 

The way an EPCM capsule is manufactured can result in different initial void 

locations. To study the effect of the initial void location on the heat transfer that 

occurs within EPCM capsules, three initial void locations (a central void, random 

void, and upper void) were considered. The computational domain is presented in 

Figure 22 for a 25.4 mm diameter cylindrical EPCM capsule horizontally orientated in 

a cross-flow with the HTF. A convective boundary condition was applied that 

corresponds to a turbulent exterior flow and the heat transfer coefficient based on the 

local Nusselt number [82, 83] is shown in Figure 23. NaNO3 was considered as the 

PCM and stainless steel was used for the encapsulation material. The thermal 

properties of both materials are listed in Table 6; additionally the melting temperature 

of NaNO3 is 308 °C. To model convection in the molten PCM, the following 

expression was used for the density of NaNO3 in the liquid phase: 

T..l 760562341   (50) 

To accommodate the thermal expansion of NaNO3 (β = 4.0×10
-4

 1/K) upon melting, 

an air void of approximately 20% was considered. The density of air was modeled in 

accordance with the ideal gas law and the heat capacity, thermal conductivity, and 

viscosity used are listed in Table 6. A free stream temperature of 500 °C was used for 

the HTF with an initial capsule temperature of 25 °C. A triangular mesh with 8442 

nodes and an element size of 1×10
-4

 m was used. Using the methods described 

previously, the enthalpy-porosity and VOF models were used to track the evolution of 

the solid-liquid and air-PCM interfaces.  
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Figure 22. Computational domain of EPCM capsule with various void locations  

 

 
Figure 23. Heat transfer coefficient applied to EPCM capsule surface  
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6.1 Initial Random Void 

Compression of a powder PCM into a pellet offers control over the void 

fraction by varying the force applied. This results in an initial uniform distribution of 

air throughout the entire PCM. The given HTF arrangement results in the heat transfer 

coefficient being highest at the top of the capsule, thus the PCM begins melting along 

the capsule shell in the upper portion of the capsule. The isotherms, liquid fraction, 

volume fraction, and velocity magnitude at 90 sec into the melting process are 

presented in Figure 24a-20d. The results have also been non-dimensionalized using 

the product of the Ste and Fo numbers. The isotherms within the capsule are initially 

concentric due to the uniform thermal conductivity within the PCM, Figure 24a. The 

liquid fraction is depicted in Figure 24b. As the PCM melts, the air diffuses to the top 

of the capsule due to the difference in their respective densities, and an air void begins 

to form at the top of the capsule, Figure 24c. Here blue is air and red is the NaNO3 

PCM. The initial solid PCM is yellow which corresponds to the initial 20% void 

fraction. Natural convection in the molten PCM is enhanced due to the separation of 

the air and NaNO3, increasing the melting rate along the forming void-PCM interface.  

 As melting progresses, convective effects within the molten PCM coupled with 

the insulating effect of the forming air void have reshaped the initially concentric 

isotherms into more of a teardrop shape, Figure 24e. This results in the solid-liquid 

interface taking on a teardrop shape as well as it propagates radially inward, Figure 

24f. The air and NaNO3 have continued to separate as the PCM melts leading to the 

formation of a distinct air void at the top of the capsule, Figure 24g. Two recirculating 

vortices have formed within the molten PCM, one along the capsule edge where the 
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molten PCM is heated and rises and the other along the remaining solid PCM where 

the molten PCM cools and sinks, Figure 24h.  

 The convection induced due to the separation of the air and NaNO3 phases is 

so intense that it results in the remaining solid PCM splitting into two regions. The 

temperature within the capsule has become stratified within the molten PCM with 
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Figure 24. Contours of the temperature, liquid fraction, volume fraction, & velocity 

magnitude for an EPCM capsule with an initially random void distribution at 90 sec 

(a-d), 185 sec (e-h) and 277 sec (i-l) into the melting process.  
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minor deviations resulting from the presence of the remaining solid PCM, Figure 24i. 

Convection in the molten PCM increased the melting rate in the upper portion of the 

capsules despite the insulating effect of the air void resulting in an oval-shaped solid 

PCM, Figure 24j. The small remaining solid PCM at the top of the capsule melts from 

the bottom up and as the air and NaNO3 separate it results in an area of high velocity 

that is an order of magnitude larger than previously seen during the melting process, 

Figure 24l. It takes 308 sec for the 20% random void capsule to melt completely, and 

as one would expect the air diffused to the top of the capsule as the PCM melted due 

to the difference in their respective densities.   

6.2 Initial Central Void   

 If a solid PCM is used to fill the capsule shell, the center can be drilled out to 

leave sufficient void space within the capsule; therefore an initial central void location 

was considered. Since the PCM is in direct contact with the capsule shell it has the 

highest heat transfer rate at the start of melting. Furthermore, the uniform thermal 

conductivity in the PCM results in concentric circular isotherms per the solution to the 

unsteady diffusion equation for pure diffusional heat transfer, Figure 25a. Much like in 

the case of a random void distribution, the PCM beings to melt along the upper portion 

of the capsule shell, Figure 25b. As the air is completely encased within the solid 

PCM, it cannot diffuse until the PCM melts along the air-PCM interface, however 

recirculating vortices can be seen within the air void, Figure 25c and d.  

 As time progresses, convection in the molten PCM has increased the heat 

transfer rate in the upper portion of the capsule, causing the solid-liquid interface to 

flatten, Figure 25f. The isotherms have remained primarily circular with a 
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stratification forming in the molten PCM in the upper portion of the capsule, Figure 

25e. As the PCM has yet to melt along the air-NaNO3 interface, the air is still trapped 

at the center of the capsule. The two recirculating vortices have again formed along 

the capsule shell and solid PCM, Figure 25h.  
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Figure 25. Contours of the temperature, liquid fraction, volume fraction, & velocity 

magnitude for an EPCM capsule with a void initially located at the center of the EPCM 

capsule at 74 sec (a-d), 147 sec (e-h) and 221 sec (i-m) into the melting process.  
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 As soon as the PCM melts along the air interface, the air begins to diffuse 

rapidly due to pressure buildup and results in an erratic velocity field. However, after 

this initial period, there is little to no convection present in the upper half of the 

capsule due to the lack of a temperature gradient to drive natural convection, Figure 

25k. The only convection present within the capsule during the late stages of melting 

is the vortices along the capsule shell and remaining solid PCM that were seen 

previously; additionally two smaller vortices have formed in the bottom of the capsule, 

Figure 25m. The isotherms within the capsule have been distorted as a result of 

convection with a stratification of temperature present in the molten PCM, Figure 25i. 

The remaining solid PCM is “C”-shaped and as the diffused air lowers the effective 

thermal conductivity in the upper portion of the capsules, the remaining solid melts 

primarily from the bottom up, Figure 25j. 

 It takes 252 sec for the central void capsule to melt completely. At the 

completion of melting, less than 10% of the air has fully diffused to the top of the 

capsule. If the capsule is solidified shortly after the melting process has completed, the 

air does not have time to diffuse fully from the molten salt. After several additional 

melting and solidification cycles the fraction of air at the top of the capsule increased 

minimally. However, if the capsule is allowed to reach a uniform temperature of 773 

K before solidification begins, 95% of the air is able to diffuse fully before the initial 

solidification process.  

6.3 Initial Upper Void  

 Due to gravitational effects, it is likely that the air would diffuse to the top of 

the EPCM capsule and for a horizontally orientated cylindrical capsule would result in 
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the upper void distribution. This initial void location could be manufactured by filling 

the EPCM capsules with the desired mass of molten PCM and then cooling the 

capsules horizontally or by machining a solid PCM into the desired shape. The effect 

of the void space at the top of the capsule is immediately seen as the isotherms within 

the capsule are no longer circular but are “U”-shaped, Figure 26a. The air acts as an 

insulator reducing the heat transfer rate in the upper half of the capsule and as the 

capsules are heated from the top it retards the initial heating of the capsule, therefore it 

takes longer for the PCM to begin melting. When melting finally starts, it begins along 

the capsule shell at the air-PCM interface, Figure 26b. As the PCM melts it expands 

and compresses the air void, Figure 26c. In addition to convection within the air, two 

recirculating vortices have formed along the capsule edge and solid PCM, Figure 26d. 

These vortices increase the heat transfer along the air-NaNO3 interface increasing the 

melting rate despite the poor conductive heat transfer from the air to the PCM.  

 The effect of the increase in heat transfer from convection in the molten PCM 

is more evident later into the melting process as the PCM has melted across the entire 

air-PCM interface despite poor the conductive heat transfer. The isotherms have been 

reshaped into a teardrop shape, Figure 26e. The solid-liquid interface is also teardrop 

shaped, however vortices that have begun to form in the bottom of the capsule have 

accelerated the melting process leading to two circular indents, Figure 26f. The initial 

20% air void has been further compressed as the PCM continues to expand upon 

melting, Figure 26g. The two vortices along the capsule edge and solid PCM have 

increased in intensity, Figure 26h.  
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 As the melting process nears completion, the temperature distribution within 

the molten salt has begun to stratify, Figure 26i. Convection in the molten PCM has 

continued to increase the melting rate in the upper portion of the capsule and 

additionally, a large vortex has formed at the bottom of the capsule leading to a 
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Figure 26. Contours of the temperature, liquid fraction, volume fraction, & velocity 

magnitude for an EPCM capsule with an initial void located at the top of the EPCM 

capsule at 180 sec (a-d), 260 sec (e-h) and 320 sec (i-l) into the melting process.  

 



80 

crescent-shaped remaining solid, Figure 26j. The void space has been compressed to 

approximately 50% of its original size due to the expansion of the PCM, Figure 26k. 

The vortices at the bottom of the capsule have joined together to form one large vortex 

that is accelerating the melting of the bottom of the solid PCM; additionally the two 

recirculating vortices along the capsule edge and remaining solid remain, Figure 26l. It 

takes 350 sec for the capsule to melt completely, which is the longest melting time of 

the three cases considered. 

6.4 Case Comparison  

The ideal void location would be for it always to be located at or near the 

center of the capsule as to avoid the low thermal conductivity of air. For the initial 

central void location, the entire PCM is in contact with the capsule shell, and since the 

capsules are heated from the top it has the highest initial heat transfer rate. During the 

initial stages of the melting process, conduction is the dominant mode of heat transfer 

and thus the isotherms and therefore solid-liquid interface are circular in shape. As 

convection begins to dominate the heat transfer the increase in heat transfer flattens 

the isotherms and solid-liquid interface in the top of the capsule. The air remains 

trapped at the center of the capsule until the PCM melts along the air-PCM interface. 

Once this occurs there is an initially rapid expansion of the air into the molten salt. 

However, after this initial period the diffusion process is slow as there is no strong 

thermal gradient to drive the process. The presence of air within the molten salt 

reduces the effective thermal conductivity in the upper half of the capsule leading to a 

reduction in the heat transfer rate. Therefore the remaining solid PCM melts from the 

bottom up. Upon completion of the melting process less than 10% of the air is able to 
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fully diffuse to the top of the capsule with a minimal increase seen after multiple 

thermal cycles. It takes a total of 252 sec for the central void capsule to melt.  

A common method of making EPCM capsules involves the use of a 

compressed powder PCM. This method allows for control over the void fraction by 

varying the pressure applied and results in a uniform distribution of air throughout the 

entire PCM. Like in the case of a central void, the PCM is in contact with the entire 

capsule shell; however the presence of air in the PCM results in a lower effective 

thermal conductivity. This leads to a slower heat transfer rate during the initial 

conduction period. When the capsule begins to melt, the air and NaNO3 phases start to 

separate leading to an increase in the natural convection within the molten PCM. 

Unlike in the central void case with the random void distribution, the diffusion of the 

air and NaNO3 occurs slowly as the PCM melts instead of all at once. This allows for 

complete diffusion to have occurred by the end of the melting process. The formation 

of the air void at the top of the capsule during melting has an insulating effect on the 

top of the capsule. Despite the resulting poor conductive heat transfer, convection in 

the molten PCM accelerates the melting process along the void-PCM interface. It 

takes 308 sec for the random void capsule to melt which is 22% slower than the 

central void case due to the reduction in the effective thermal conductivity resulting 

from the presence of air throughout the PCM and the insulating effect of the void that 

forms at the top of the capsule.  

Due to gravitational effects, one would expect that upon the completion of 

melting the air will diffuse to the top of the capsule creating a void that is always 

located at the top of the capsule. The effect of a void located at the top of the capsule 
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on the heat transfer within the capsule is immediately evident as the air acts as an 

insulator and retards the heat flux into the PCM during the initial conduction-

dominated stage. Therefore it takes the upper void capsule the longest amount of time 

to start melting and when it finally does so it beings at the air-PCM interface along the 

capsule shell. Until significant melting occurs, the majority of the heat received by the 

PCM is from the sides and bottom of the capsule. However, once the PCM melts 

across the entirety of the air-PCM interface convection in the molten salt increases the 

heat transfer rate in the upper portion of the capsule. This leads to the remaining solid 

PCM melting primarily from the top down. The upper void capsule exhibits the 

highest level of convection in the bottom of the capsule during the late stages of 

melting. The upper void case had the longest melting time of 350 sec which is 39% 

slower than the central void and 14% slower than the random void distribution. These 

results emphasize the impact that the location of the internal void has on the heat 

transfer that occurs within an EPCM capsule.   

6.5 Conclusions 

Despite the fact that an internal void space is necessary within an EPCM 

capsule to mitigate the rise in internal pressure, its effect on the heat transfer that 

occurs within the capsules has mostly been ignored in the various numerical 

evaluations conducted. To investigate the impact of the void location, three limiting 

cases of void placement were examined. A heat transfer analysis of the melting within 

25.4 mm diameter stainless steel-NaNO3 EPCM capsules was conducted that included 

an initial 20% void faction and convection within the fluid media. The simulations 

were conducted by simultaneously employing the VOF and enthalpy-porosity methods 
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to accurately capture the multiphase heat transfer within the capsule. The initial 

temperature of the capsule was set to 25 °C since the void distributions are only 

feasible during the initial charging of the capsule due to diffusion of the air within the 

capsule. A turbulent convective boundary condition with a liquid HTF was applied 

with a freestream temperature of 500 °C. 

Although the cases of an initial central or random void are not repeatable upon 

cycling of the EPCM capsule, the results highlight the impact the location of the void 

has on the overall heat transfer. The capsule with the central void has the shortest 

melting time for the initial melting of the capsules. It was 22% and 39% faster than the 

random void and upper void capsules, respectively. Since pure PCM is in direct 

contact with the EPCM shell until the air can diffuse, it has the highest rate of heat 

transfer into the PCM of the three cases presented specifically during the initial 

conduction-dominated phase.  

The random void distribution presents a middle ground between the central and 

upper voids. Like the central void the PCM is in direct contact with the capsule shell. 

However the presence of air throughout the PCM lowers the effective thermal 

conductivity which results in a slower conductive heat transfer rate. As the PCM 

melts, the air and NaNO3 phases separate which increases the strength of the natural 

convection which occurs within the molten PCM. The random void melts 22% slower 

than the central void and 12% faster than the upper void capsule. The upper void has 

the longest melting time as the void has an insulating effect and reduces the 

conductive heat transfer in the top of the capsules where the heat transfer coefficient is 

the highest.  
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While under the influence of gravity, one would expect the air to diffuse to the 

top of the capsule. However, the behavior of the void is not only dependent on the 

operating conditions of the EPCM capsule but on the PCM that is used as well. Thus, 

depending on the design of the TES storage system the initial location of the void can 

impact the performance of the system for numerous cycles. Ideally, one would like for 

the void always to be located at or near the center of the EPCM capsule as to limit its 

negative effects on the overall charging time. These results emphasize the impact an 

internal void has on the overall heat transfer within EPCM capsules. Additionally, the 

initial location of the void has a profound effect on both the spatial and temporal 

evolution of the solid-liquid interface. In order to evaluate the performance of EPCM 

capsules under realistic operating conditions, a numerical model that accounts for all 

aspects of the internal (natural convection and an internal void) and external 

(convective boundary condition) heat transfer must be considered.   
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CHAPTER VII: PILOT SCALE EPCM-BASED LATENT HEAT TES SYSTEM 

 A heat transfer analysis of a pilot scale EPCM-based latent heat TES system 

that was designed and tested by Zheng at al. [23] was conducted. Unlike in previous 

investigations, the heat transfer within the EPCM capsules as well as the exterior flow 

is modeled simultaneously to capture the full behavior of the system. 

7.1 System Description  

 The designed test section has a height of 111.8 cm, a width of 26 cm, and a 

depth of 9.3 cm. The walls of the test section are stainless steel 304 with a thickness of 

3.175 mm. The EPCM capsules are 7.62 cm in diameter with a length of 25.4 cm. A 

schematic of the system and the computational domain considered are presented in 

Figure 27. A three-dimensional model of one-quarter of the test section was used as 

the computational domain. To reduce the computational requirements, the 15 cm of 

insulation was neglected and the thickness of the test section wall was doubled to 

account for the sensible heat stored in both the walls and insulation over the course of 

the experiment. Additionally, heat lost from the test section to the surrounding was 

ignored and a perfectly insulated boundary condition applied.  

 The 10 EPCM capsules are horizontally oriented and vertically stacked within 

the test section. In order to match the experimental flow rate of 0.038 kg/s, a mass flux 

boundary condition of 1.6 kg/m
2
s was applied at the inlet of the numerical model. The 

temperature of the entering HTF is shown in Figure 28, where it increases from room 

temperature to 440 °C. The initial temperature of the system was 22 °C. NaNO3 was 

used as the PCM, stainless steel was used for the capsule shell, and air was used as the 

HTF. The thermal properties used are listed in Table 7. Each capsule was filled with 
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1.77 kg of NaNO3, therefore a 26% void is considered within each capsule. The 

turbulent flow in the test section was modeled using the k-ω SST model and the 

enthalpy-porosity and VOF methods were used to capture the heat transfer within the 

EPCM capsules. The cut cell meshing technique in Ansys was employed with a max 

face size of 6.4×10
-3 

m resulting in 4.3 million quadrilateral elements with 5.3 million 

nodes.  

Table 7. Temperature dependent properties of air, stainless steel, and NaNO3 (all 

temperatures are in Kelvin)  

Air 

Density (kg/m
3
) − 5.74 × 10

−9 
T

3
 +1.20 × 10

−5 
T

2  
− 9.13 × 10

−3 
T  + 2.98 [75] 

Specific Heat Capacity (J/kg K) 3 × 10
−5 

T
2 
 − 1.34 × 10

−2 
T +1006.5 [75] 

Thermal Conductivity (W/m K) 2.201 × 10
−8 

T
2 
+ 6.31 × 10

−5 
T + 4.79 × 10

−3 
[75] 

Viscosity (kg/m s) 4 × 10
−8 

T
  
+ 7.98 × 10

−6 
 [75] 

Stainless Steel 304 

Density (kg/m
3
) 7,900 [75] 

Specific Heat Capacity (J/kg K) −0.0002 T
2
 + 0.4101 T +376.44 [75] 

Thermal Conductivity (W/m K) 15
 
[75] 

NaNO3 

Density (kg/m
3
) 2341.56 – 0.76 T [78] 

Solid Specific Heat Capacity (J/kg K) 1,588 [10] 

Liquid Specific Heat Capacity (J/kg K) 1,650 [10] 

Solid Thermal Conductivity (W/m K) 0.55 [84] 

Liquid Thermal Conductivity (W/m K) 0.68 [85] 

Latent Heat (kJ/kg) 162.5 [10] 
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Figure 27. Schematic of test section [24](upper), 10 EPCM capsules with deflectors [24]  

(left), and computational domain (right) 
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Figure 28. Transient inlet temperature of the test section for both the experiment and 

simulation 

 

7.2 HTF Results  

 The chosen mass flow rate results in a superficial inlet velocity of 3.2 m/s and 

a Re of 3285 based on capsule diameter; thus the flow within the test section is 

turbulent. To prevent the large wakes that occur behind a cylinder when it is placed in 

a turbulent flow, metal deflectors are employed. These deflectors direct the HTF 

around the capsules minimizing the wake region as seen in Figure 29. The highest 

velocity occurs 90 degrees down from the top of the capsule with a velocity magnitude 

6 times that of the inlet velocity, Figure 29. A stagnation point occurs at the top and 

bottom of the capsules. A small fraction of the HTF is able to bypass the capsules into 

the gap between the deflectors and the test section wall. This fluid expands and forms 

a weak recirculating vortex between the deflectors. A larger vortex forms between the 

fifth and sixth capsules where there is a larger space between the capsules. However, 

as the bulk of the HTF is still directed onto the sixth capsule and a large wake is 
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prevented, the deflections are performing as intended. A similar vortex was seen at the 

bottom of the test section after the tenth capsule. Additionally, two counter-circulating 

vortices form between each capsule near the colder test section wall.  

  

Figure 29. Velocity magnitude in the XY (left) and YZ (right) symmetry planes at 4,000 

sec (Re = 3285) 

 

 The hot HTF enters the test section where it is directed around the EPCM 

capsules by the deflectors. As the HTF begins to transfer its energy to the cold EPCM 

capsules a large temperature drop over the length of the test section occurs, Figure 

30a. Although the HTF enters with a uniform temperature distribution across the width 

of the test section, there is a diagonal temperature gradient in the HTF from the bottom 

corner upwards towards the middle of the EPCM capsules, Figure 30b. As the 

charging process continues and the capsules begin to melt, the temperature drop 

experienced by the HTF decreases, Figure 30c. The temperature gradient in the HTF 



90 

around the capsules has decreased particularly in the upper portion of the test section, 

Figure 30d. Additionally, there is a linear temperature distribution forming in the 

outlet region due to the velocity distribution resulting from the use of the deflectors as 

the warm HTF is directed towards the center of the system.  

 Midway through the charging process, there is now only an approximate 100 

degree temperature drop in the HTF as all the capsules have begun to melt, Figure 30e. 

There is also now a near-uniform temperature distribution around the first five 

capsules with a decrease in the gradient around the last five capsules in addition to a 

decrease in the gradient at the outlet of the system, Figure 30f. After 3000 sec, the first 

three capsules are completely melted resulting in the inlet portion of the test section 

having a uniform temperature close to that of the inlet temperature, Figure 30g. There 

is now only a small gradient remaining in the last five capsules, Figure 30h. Near the 

end of the charging process only the last three capsules are not completely melted 

leading to the entire top half of the system having the same temperature as the inlet, 

Figure 30i. A small temperature gradient is still present around the last three capsules 

as they continue to store energy, Figure 30j. Furthermore, the temperature change 

across the width of the outlet has decreased significantly.  
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Figure 30. Isotherms in the HTF in the XY (upper) and YZ (lower) symmetry planes 
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7.3 EPCM Capsule Results 

 The use of the deflectors promotes a near uniform heat transfer coefficient 

around the 10 EPCM capsules, but the presence of the void at the top of the capsule 

reduces the heat transfer rate in the upper portion of the capsules. This results in the 

XY plane isotherms being “U”-shaped instead of circular as seen during the initial 

conduction-dominated sensible heating phase, Figure 31a. In the YZ plane there is a 

nearly symmetric temperature variation about the center of the capsules with a higher 

temperature variation in the upper portion of the capsule due to the presence of the air 

void; additionally the warmer capsule end leads to “L”-shaped isotherms in the solid 

PCM, Figure 31b. As the PCM melts, convection in the molten PCM accelerates the 

heat transfer rate in the upper portion of the EPCM capsule causing the isotherms first 

to become vertical and then angle inward as seen in the first five capsules, Figure 31c. 

The isotherms remain “U”-shaped in the bottom five capsules as there has not been a 

significant amount of melting to allow for convection to take effect. In a similar 

manner, convection has increased the heat transfer near the capsule end rounding the 

isotherms inward in the first and second capsules whereas the isotherms remain 

unchanged in the bottom capsules, Figure 31d.  
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Figure 31. Isotherms in the EPCM capsules in the XY (upper) and YZ (lower) symmetry 

planes 
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 After 3000 sec the first, second, and third capsules are completely melted and 

therefore the isotherms have become stratified within the capsules in both the XY and 

YZ planes. Convection in the fourth, fifth, and sixth capsules has started to accelerate 

the heat transfer in the upper half of the capsules and near the capsule edge in a similar 

manner seen previously in the first three capsules, Figure 31e and f. The isotherms in 

the bottom capsules have remained “U”- and “L”-shaped in the XY and YZ planes 

respectively as those capsules are still in the conduction-dominated sensible heating 

phase of the charging process. This shape can be seen clearer by examining the liquid 

fraction. As the charging process nears completion, all but the last three capsules are 

completely melted; therefore the isotherms in the first eight capsules have become 

stratified. The same increase in the heat transfer rate from convection has occurred in 

the ninth and tenth capsules reshaping the isotherms in the same manner as the in the 

eight previous capsules as they melted, Figure 31g and h. As with the results in the 

previous chapters, the results presented for the heat transfer within the EPCM capsules 

have been non-dimensionalized using the product of the Ste and Fo number. 

 All ten EPCM capsules exhibit very similar evolution in the velocity field over 

the course of the charging process, therefore only the results for the fifth and sixth 

capsules are shown in Figure 32 for the XY plane and Figure 33 for the YZ plane. 

Prior to the PCM melting the only convection present in the EPCM capsules are the 

two recirculating vortices present in the air void in the XY plane, Figure 32a, and the 

vortex in the YZ plane near the capsule edge, Figure 33a. After 2000 sec the fifth and 

sixth capsules have just begun to melt and therefore there is insufficient molten PCM 

for convective cells to form, Figure 32b. After 2500 sec however, two vortices have 
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formed in the molten PCM, one along the capsule shell and the other along the colder 

solid PCM in the XY plane, Figure 32c. As there is a larger fraction of molten PCM in 

the fifth capsule than the sixth, the vortices in the fifth capsule are stronger. In the YZ 

plane, a vortex has begun to form along the edge of the fifth EPCM capsule, Figure 

33b.  
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(SteFo=0.50) 
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(SteFo=0.60) 

3500 sec 

(SteFo=0.70) 

Figure 32. Velocity magnitude in the fifth and sixth EPCM capsules in the XY plane 

 

 By 3000 sec a significant portion of the PCM has melted in both capsules and 

the two vortices along the capsule shell and the remaining solid PCM have intensified, 

Figure 32d. The vortex at the end of the fifth capsule has spilt in two with one vortex 

remaining along the hotter capsule end cap and the other around the remaining solid 

PCM. Additionally, small recirculating vortices have formed in the bottom of the fifth 

EPCM capsule, accelerating melting, Figure 33c. Furthermore, the vortices at the end 

of the capsule have begun to form in the sixth capsule as it melts. After the fifth 

capsule has completely melted, a small vortex remains along the bottom capsule edge 
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in addition to several small vortices that are present at the PCM-void interface and the 

PCM is at a lower temperature compared to the air void. In the sixth capsule, the two 

previously seen vortices remain as well as the same small vortices forming along the 

PCM-void interface, Figure 32e. While there is minimal velocity in the fifth capsules 

in the YZ plane, in the sixth capsule however, the vortices along the capsule end have 

intensified as the PCM melts and small vortices have begun forming in the bottom of 

the capsule, Figure 33d. In both capsules the convection present at the PCM-void 

interface is seen along the entire length of the capsule.  

  

a) 1000 (SteFo=0.20) b) 2500 (SteFo=0.50) 

  

c) 3000 (SteFo=0.60) d) 3500 (SteFo=0.70) 

Figure 33. Velocity magnitude in the fifth and sixth EPCM capsules in the YZ plane 
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 The first EPCM capsule begins to melt at 750 sec and by 1000 sec the first 

three capsules have begun to melt. The PCM begins to melt along the capsule edge at 

the PCM-air interface, Figure 34a and b. As the charging process continues, melting 

has started in all capsules. In the first three capsules, convection in the molten PCM 

has accelerated the melting rate in the upper portion of the capsule causing the solid-

liquid interface to slant inward, Figure 34c. In the fourth and fifth capsules the solid-

liquid interface is “U”-shaped like the isotherms. In the YZ plane, melting starts at the 

capsule end and due to convection the solid-liquid interface becomes curved as the 

melting front propagates towards the center of the capsule, Figure 34d.  

 After 3000 sec the first three capsules are entirely melted. A small oval-shaped 

solid remains near the bottom of the fourth capsule as convection in the molten PCM 

accelerated melting in the upper portion of the capsule. The solid-liquid interface in 

the bottom five capsules evolves in the same manner as previously seen in the upper 

capsules where convective effects have accelerated melting in the upper half of the 

capsule angling the solid-liquid interface inward, Figure 34e. Additionally convection 

in the molten PCM has accelerated melting along the capsule bottom and near the 

capsule end, Figure 34f. As the charging process nears completion, only the last three 

capsules remain un-melted. In the eighth capsule a small circular solid region remains 

near the bottom of the capsule in the XY plane and in the YZ plane the remaining 

solid is an oblong oval due to the effects of convection, Figure 34h. The solid-liquid 

interface in the last two capsules exhibits the same characteristics that were seen in the 

previous eight capsules.  
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a) XY plane  

1000 sec 

 (SteFo=0.20) 

c) XY plane  

2000 sec  

(SteFo=0.40) 

e) XY plane  

3000 sec 

 (SteFo=0.60) 

g) XY plane  

4000 sec  

(SteFo=0.80) 

    
b) YZ plane  

1000 sec  

(SteFo=0.20) 

d) YZ plane  

2000 sec 

(SteFo=0.40) 

f) YZ plane  

3000 sec 

 (SteFo=0.60) 

h) YZ plane  

4000 sec  

(SteFo=0.80) 

Figure 34. Liquid fraction in the EPCM capsules in the XY (upper) and YZ (lower) 

symmetry planes 
 



99 

    
a) 2000 sec 

(SteFo=0.40) 

b) 2500 sec 

(SteFo=0.50) 

c) 3000 sec 

(SteFo=0.60) 

d) 3500 sec 

(SteFo=0.70) 

Figure 35. Void-PCM interface in the XY plane in the fifth and sixth EPCM capsules 

 

 The 10 EPCM capsules consecutively experience the same evolution in the 

melting front; therefore the results for the expansion of the PCM upon melting are 

examined only for the fifth and sixth capsules. When the PCM first begins to melt it 

expands into the air void causing the edge of the PCM-air interface to push upwards, 

Figure 35a. The void now occupies 22% of the fifth capsule whereas it occupies 23% 

in the sixth capsule as a greater portion of the PCM has melted in the fifth capsule. At 

this point in time, the PCM has yet to melt near the capsule end and therefore the 

PCM-void interface remains completely flat, Figure 36a. As the PCM continues to 

melt it further compresses the void to 21.6% and 22% in the fifth and sixth capsule 

respectively, Figure 35b. After 2500 sec the PCM has begun to melt near the capsule 

ends pushing the PCM-void interface upwards at the end of the capsule, Figure 36b. 

The fifth capsule is about halfway melted after 3000 sec which has compressed the 

void to 20.6% whereas the void occupies 21.6% in the sixth capsule, Figure 35c and 
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Figure 36c. Once the PCM is fully melted in both capsules the void has been 

compressed to nearly 30% of its original size and now occupies 19% of the capsule 

volumes, Figure 35d & Figure 36d. 

 

  

a) 2000 sec 

(SteFo=0.40) 

b) 2500 sec 

(SteFo=0.50) 

  

c) 3000 sec 

(SteFo=0.60) 

d) 3500 sec 

(SteFo=0.70) 

Figure 36. Void-PCM interface in the fifth and sixth EPCM capsules in the YZ plane 
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7.4 Comparison of Simulation with Experimental Results  

 A comparison of the experimental and predicted temperatures at the inlet and 

outlet of the test section as well as 6 mm above the bottom of the tenth capsule are 

presented in Figure 37. During the first 2000 sec the difference between the predicted 

and experimental results for the temperature in the tenth capsule was less than 3%. 

After the tenth capsule starts to melt the simulation begins to predict a higher 

temperature than the experimental results. A similar trend is seen with the outlet 

temperature of the system. Additionally, the simulation predicts a total melting time of 

4612 sec which is 7.6% faster than the 4992 sec melting time indicated by the 

experiments. After the capsules are fully melted both the experiments and simulations 

show the same rate of temperature increase within the capsules offset by the difference 

in melting time. Given the good agreement during the solid sensible heating phase the 

likely cause of the faster predicted melting time is the use of an incorrect value for the 

latent heat of NaNO3. Bauer et al. [81] reported that the average value is 172 kJ/kg 

which is 8% higher than the 162.5 kJ/kg that was used during the numerical analysis.  

 A total of 22 MJ of energy was lost by the HTF over the course of the charging 

process. The EPCM capsules stored a total of 17.5 MJ which accounts for 79.5% of 

the energy lost by the HTF. The remaining 20.5% goes into sensibly heating the test 

section walls and deflectors. The total energy stored in the capsules is 4.9% less than 

the 18.4 MJ reported by Zheng et al. [23]; however it is within their estimated 

calculation error. Of the energy stored by the capsules, 3.3 MJ is stored in the stainless 

steel capsule shell and 14.2 MJ is stored in the 17.7 kg of NaNO3 which accounts for 

81.1% of the total energy stored by the capsules. This is 13.6% higher than the 12.5 
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MJ reported by Zheng et al. [23] which is likely caused by the way Zheng et al. 

calculated the total energy storage as they only measured the temperature of the tenth 

capsule and therefore had to estimate the temperature distribution within the test 

section based on the inlet and outlet temperatures. Furthermore, of the 142 MJ of 

energy stored in the NaNO3, 20.3% is attributed to the latent heat of fusion.  

 

Figure 37. Comparison between experimental and numerical results for the inlet, outlet, 

and tenth capsule temperature 

 

7.5 Conclusions  

 A numerical analysis of a pilot scale EPCM-based latent heat TES system was 

conducted. In order to improve the heat transfer around the capsules and avoid the 

large wake that is present with cross flow around cylindrical capsules, metal deflectors 

are employed. Despite the uniform heat transfer around the capsules promoted by the 
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deflectors the presence of the void at the top of the capsule reduces the heat transfer 

rate in the upper half of the capsule. This leads to the isotherms being “U”-shaped in 

the solid PCM while conduction is the dominant mode of heat transfer. Once the PCM 

begins to melt, natural convection in the molten PCM increases the heat transfer rate 

accelerating melting along the PCM-void interface. This causes the isotherms, and in 

turn the solid-liquid interface, to slant inward in the upper portion of the capsule. 

While the capsules initially begin melting along the capsule edge in the center of the 

channel, the increased heat transfer from the capsule end to the PCM results in the 

solid-liquid interface propagating from the ends towards the center of the capsule. In 

addition to the vortices that are present in the air void, two recirculating vortices form 

in the molten PCM, one along the capsule edge and the other around the remaining 

solid PCM, both in the XY and YZ planes. The 10 EPCM capsules consecutively 

experience the same evolution in the solid-liquid interface and therefore show the 

same expansion of the PCM and compression of the void from an initial 26% to 19% 

when the PCM is fully melted.  

 Good agreement is seen between the predicted and measured temperature of 

the tenth capsule and test section outlet during the sensible heating phase of the 

charging process. However, the simulation predicted a total melting time that was 8% 

faster than indicated by the experimental results. The good agreement obtained during 

the sensible heating phase indicates that an incorrect value of the latent heat of fusion 

was used during the simulation. Indeed the value established previously via 

calorimetry experiments is 8% lower than the average value reported in literature. 

After melting has completed and the PCM begins to super heat both the predicted and 
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measured temperatures show the same rate of temperature increase just offset in time 

by the early completion of melting. It should be noted that the value of latent heat used 

only slightly under predicts the total energy stored due to the large fraction of sensible 

heat stored by the system.  

 A total of 17.5 MJ of energy was stored in the 10 EPCM capsules which 

accounts for 80% of the energy given up by the HTF. The remaining energy goes into 

sensibly heating the test section walls and the metal deflectors. Of the total energy 

stored in the EPCM capsules 14.2 MJ is stored in the 17.7 kg of NaNO3 and 3.3 MJ is 

stored in the stainless steel capsule shells. Additionally, 20% of the energy stored by 

the PCM is attributed to the latent heat of fusion of NaNO3. Therefore the system is 

able to store a large fraction of energy supplied by the HTF where a significant portion 

is from latent heat. Furthermore, if the system was to consist of either a greater 

number of capsules, larger capsules, or a smaller operating range was applied then the 

fraction of energy stored via latent heat would be increased. These results demonstrate 

the scalability of an EPCM-based latent heat TES system for use at CSP plants.   
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CHAPTER VIII: EXERGY ANALYSIS OF EPCM-BASED TES SYSTEMS  

 The purpose of a TES system is just not to store energy but to store useful 

work, therefore performing a first law analysis of the system does not give a true 

indication of its overall performance and thus a second law analysis is required. The 

quality of the energy stored is a measure of the useful work that can be produced from 

the system as it reaches equilibrium with the surroundings, i.e. exergy. A first and 

second law analysis of an example EPCM-based TES system was conducted to 

investigate the benefit of using a multi-PCM system as well as to identify key aspects 

of the system’s performance.  

8.1 System Description 

 A two-dimensional simulation on the cross section of a system that consists of 

72 76.2 mm diameter EPCM capsules was conducted. The computational domain is 

presented in Figure 38. A perfectly insulated boundary condition was applied to the 

exterior wall and therefore irreversibilities associated with heat loss are neglected. A 

20% void space was considered within each capsule; however the effect of natural 

convection in the molten PCM was neglected. The turbulent flow around the capsules 

was modeled using the k-ω SST model and the phase change within the capsules was 

captured using the enthalpy-porosity method. Air was used as the HTF with an inlet 

mass flux of 0.2607 kg/m
2
s. The initial temperature of the system was set to 551 K for 

the start of the charging cycle. The capsules were then heated for a 12 hour duration 

where the inlet temperature of the HTF was a constant 611 K. At the end of the 

charging process, the direction of the HTF was reversed and it now enters the system 

from the bottom with a temperature of 551 K. The capsules are then allowed to cool 
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for 12 hours. Six systems are considered: a pure sensible heat system, all NaNO3, all 

NaNO2, all KNO3, a 2 PCM system (NaNO3/NaNO2), and a 3 PCM system 

(KNO3/NaNO3/NaNO2). The thermal properties used are listed in Table 8. 

 

 

Figure 38. Computational domain used for exergy evaluation 
 

Table 8. Properties of air, NaNO3, NaNO2, and KNO3 used in exergy simulations 

 NaNO3 NaNO2 KNO3 Air 

Density (kg/m
3
) 

[78] 
1900 [78] 1812 [86] 1870 [86] 0.5214 [75] 

Viscosity 

(Ns/m
2
) 

0.00285 [78] 0.002666 [86] 0.002367 [86] 3.65 × 10
-5 

[75] 

Thermal 

Conductivity 

(W/mK) 

0.550/0.680 
[85] 

0.665/0.765 

[86] 

0.481/0.878 

[86] 
0.0242 [75] 

Solid Heat 

Capacity(kJ/kg) 
1.588 [23] 1.733 [86] 1.240 [86] --- 

Liquid Heat 

Capacity(kJ/kg) 
1.650 [23] 2.553 [86] 1.341 [86] 1006.4 [75] 

Latent Heat 

(kJ/kg) 
162.5 [23] 180.12 [86] 99.73 [86] --- 

     

8.2 Results 

8.2.1 Charging Process 

 The HTF enters the system with a velocity of 0.5 m/s which results in a Re  of 

544 for the system based on the diameter of the capsule. After an initial transient 

period, approximately 10 sec, the velocity field reaches steady state conditions and 

remains unchanged over the remainder of the charging process, Figure 39. The 
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staggered arrangement of the capsules reduces the wake that forms behind the 

cylinders as it effectively directs the HTF onto the next row of capsules promoting a 

uniform heat transfers coefficient around the capsules. A stagnation point forms at the 

top of the first row of capsules. Additionally, large wakes form behind the last row of 

capsules. Since the first column of EPCM capsules is next to the wall of the system, 

there is a slight increase in the velocity magnitude of the HTF between the capsules 

are the wall compared to the rest of the system. The maximum velocity is 2.8 times the 

inlet velocity and occurs 90 degrees down from the top of the EPCM capsules. 

 

 

 

 

Figure 39. Velocity field after 5 sec (top), 100 sec (middle), and 40,400 sec (bottom). Re = 

544 

 

 The outlet temperatures for the six systems over the entire charging process are 

shown in Figure 40. For a system that includes only sensible heating, the outlet 

temperature asymptotically approaches the inlet temperature over the course of the 

charging process. For systems that involve a phase change, one would expect the 

outlet temperature to increase until the melting point is reached at which time the 

outlet of the system remains relatively constant until the entire system has melted at 

which time the outlet temperature again begins to increase asymptotically to the inlet 
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temperature. This behavior was seen for the NaNO3 system. The outlet temperature of 

the KNO3 system however behaves in a manner similar to the sensible heat system 

since the melting point of the PCM (610 K) is extremely close to the inlet temperature. 

The NaNO2 system on the other hand has the largest difference between the inlet 

temperature and the melting point as it is only 555 K. This leads to a larger slope in 

the outlet temperature during the melting process than seen in the NaNO3 case due to 

the higher heat transfer rate. The 2-PCM system presents a middle ground between the 

NaNO3 and NaNO2 systems as it has a higher outlet temperature than the NaNO2 

system and a higher slope than the NaNO3 system indicating that more energy was 

being stored at a quicker rate. The 3-PCM system has the most consistent energy 

storage rate over the course of the charging process and the two inflection points 

indicate when the NaNO2 and NaNO3 capsules have completed melting. A third point 

would be seen for the KNO3 capsules if a higher inlet temperature was used that would 

allow the capsules to superheat. 
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Figure 40. Outlet temperatures during the charging process for the NaNO3 (solid), 

NaNO2 (square), KNO3 (circles), NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-

dot) , and sensible heat (dot) systems 

 

 While the evolution of the outlet temperature lends insight into the behavior of 

the system, a greater understanding can be gained by looking at the temperature 

evolution of the entire system. The temperature contours for all six systems after 

10,400 sec are shown in Figure 41. The sensible heat only and KNO3 systems have the 

smallest temperature drop in the HTF fluid across the system with a row-wise linear 

distribution in the temperature of the EPCM capsules, Figure 41a and d. In the NaNO3 

system, a larger temperature difference in the HTF was seen and the capsules are at a 

uniform temperature of 581 K, Figure 41b. An even greater temperature drop was 

present in the NaNO2 system and while the EPCM capsules are at a nominal 

temperature of 555 K, the capsules in the top half of the system show a radial 

temperature gradient as the molten PCM begins to superheat, Figure 41c. A similar 

temperature drop was seen in the HTF for the 2- and 3-PCM systems as in the NaNO2 
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system. For the 2-PCM case, the first 36 capsules are at the 581 K and the bottom 36 

capsules are at 555 K which represents the melting point of the respective PCMs, 

Figure 41e. Additionally a radial temperature gradient forms in the bottom capsules as 

seen in the NaNO2 system. In the 3-PCM case while the NaNO3 (middle) and NaNO3 

(bottom) capsules show a temperature distribution akin to the 2-PCM system, the 

KNO3 capsules in the top of the system have a decreasing row-wise nominal 

temperature as the capsules are sensibly heated to the 610 K melting point, Figure 41e. 

 

 

 

 

 

 

 

Figure 41. Isotherms at 10,400 sec for a) sensible heat only, b) NaNO3 (SteFo=0.47), c) 

NaNO2 (SteFo=0.94), d) KNO3 (SteFo=0.034), e) NaNO3/NaNO2 (SteFo=0.75), f) 

KNO3/NaNO3/NaNO2 (0.65) systems 

 



111 

The results presented have been non-dimensionalized in the same manner as in 

previous chapters using a product of Ste and Fo number where an average value of Ste 

and Fo numbers are used for the multi-PCM cases.  

 After 20,400 sec the temperature drop in the HTF of the sensible heat system 

has greatly reduced, Figure 42a. A greater reduction was seen in the KNO3 system for 

both the HTF and EPCM capsules, Figure 42d. A marginal change was seen in the 

thermal gradient in the HTF for the NaNO3 system as the capsules are still melting, 

Figure 42b. A similar decrease in the temperature drop within the HTF fluid was seen 

for the NaNO2 system, however as the capsules in the top of the system have finished 

melting there is now a row-wise temperature distribution in the capsules and the radial 

thermal gradient in the bottom capsules has increased, Figure 42c. The temperature 

drop for the 2-PCM system is between the NaNO3 and NaNO2 cases and while the 

NaNO3 capsules remain at 581 K, the NaNO2 capsules show the same radial 

distribution seen in the NaNO2 case, Figure 42e. For the 3-PCM case, the KNO3 

capsules have a row-wise decreasing capsule temperature, the NaNO3 capsules are at 

581 K, and the NaNO2 capsules have a radial gradient similar to the 2-PCM case, 

Figure 42f.  
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Figure 42. Isotherms at 20,400 sec for a) sensible heat only, b) NaNO3 (SteFo=0.93), c) 

NaNO2 (SteFo=1.85), d) KNO3 (SteFo=0.066), e) NaNO3/NaNO2 (SteFo=1.48), f) 

KNO3/NaNO3/NaNO2 (SteFo=1.27) systems 

 By 30,400 sec the entire KNO3 system has reached a near uniform temperature 

distribution and the EPCM capsules have started melting, Figure 43d. The temperature 

drop in the sensible heat system has further decreased and now only has a slightly 

greater temperature drop than the KNO3 system, Figure 43a. The majority of the 

capsules in the NaNO3 system are still melting and therefore remain at 581 K; 

however the first few capsules have completely melted and have begun to superheat 

yielding a higher capsule temperature, Figure 43b. At this point all of the NaNO2 

capsules have finished melting and therefore a row-wise linear temperature 
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distribution has formed in the capsules, Figure 43c. Although only half of the NaNO3 

capsules in the 2-PCM case have melted, a similar temperature distribution was seen 

within the EPCM capsules as seen in the NaNO2 system, Figure 43e. The temperature 

drop of the HTF in the NaNO3, NaNO2, and 2-PCM systems are nearly identical. A 

smaller drop in temperature was seen for the 3-PCM case. Additionally, while the 

KNO3 capsules are at a uniform temperature and have just begun melting, the NaNO2 

and NaNO3 capsules have finished melting resulting in a row-wise thermal gradient, 

Figure 43f.  

 

 

 

 

 

 

 
Figure 43. Isotherms at 30,400 sec for a) sensible heat only, b) NaNO3 (SteFo=1.38), c) 

NaNO2 (SteFo=2.75), d) KNO3 (SteFo=0.098), e) NaNO3/NaNO2 (SteFo=2.21), f) 

KNO3/NaNO3/NaNO2 (SteFo=1.89) systems 
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Figure 44. Isotherms at 40,400 sec for a) sensible heat only, b) NaNO3 (SteFo=1.84), c) 

NaNO2 (SteFo=3.66), d) KNO3 (SteFo=0.13), e) NaNO3/NaNO2 (SteFo=2.93), f) 

KNO3/NaNO3/NaNO2 (SteFo=2.52) systems 

 

As the charging process nears completion, the systems are approaching a 

uniform temperature distribution. There is now no temperature drop in either the 

sensible heat or KNO3 systems, Figure 44a and d respectively. The largest temperature 

in the HTF was seen in the NaNO3 case as the EPCM capsules have still not fully 

melted, Figure 44b. However, a row-wise temperature distribution has formed in the 

capsules. This row-wise distribution has decreased in the NaNO2 system, Figure 44c. 

Again the 2-PCM system resembles the average of the NaNO2 and NaNO3 systems 
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while the temperature gradient was larger than the NaNO2 case it was smaller than the 

NaNO3 system and it has completely melted, Figure 44e. While being larger than the 

pure KNO3 system, the temperature drop of the 3-PCM system was significantly 

smaller than the 2-PCM system, Figure 44f. Additionally, as the system is also entirely 

melted, the row-wise thermal gradient continues to decreases towards a uniform 611 K 

value.  

 While the staggered arrangement of the EPCM capsules promotes a near 

uniform heat transfer coefficient around the capsules, the void space at the top of the 

capsules acts as an insulator and reduces the rate of heat transfer in the upper half of 

the capsules. Furthermore since convection within the fluid media was neglected, the 

solid-liquid interface is “U”-shaped throughout the entire melting process as it 

propagates radially inward. Note that in the liquid fraction contours blue is solid and 

red is liquid. There is also a void space at the top of the capsule that always remains 

liquid. After 10,400 sec the first 36 capsules in the NaNO3 system have begun melting, 

Figure 45a; whereas in the NaNO2 system all of the capsules have started melting with 

the first 24 capsules being approximately half melted, Figure 45b. The capsules in the  

KNO3 system however have yet to start melting as they have not reached the 610 K 

melting point, Figure 45c. In the 2-PCM system a similar melt fraction was seen 

within the NaNO2 capsules as in the middle of the NaNO2 system while the NaNO3 

capsules have just begun melting, Figure 45d. The NaNO3 and NaNO2 capsules in the 

3-PCM system have a lower melt fraction than those in the 2-PCM system and the 

KNO3 capsules have yet to begin melting, Figure 45e. 
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Figure 45. Liquid fraction at 10,400 sec for a) NaNO3 (SteFo=0.47), b) NaNO2 

(SteFo=0.94), c) KNO3 (SteFo=0.034), d) NaNO3/NaNO2 (SteFo=0.75), e) 

KNO3/NaNO3/NaNO2 (SteFo=0.65) systems 

 As the charging process continues, the melt fraction within the NaNO3 system 

has increased as all the capsules have now started melting and the first 24 capsules are 

halfway melted, Figure 46a. In the NaNO2 system the top half of the system is 

completely melted and the bottom capsules are over halfway melted, Figure 46b. The 

capsules in the KNO3 system have still yet to begin melting, Figure 46c. The fraction 

of molten PCM in the NaNO3 in the 2-PCM system has increased and there is only a 

small solid portion remaining in the NaNO2 capsules, Figure 46d. As with the all 

KNO3 system, the KNO3 capsules in the 3-PCM system have yet to start melting 

whereas the NaNO3 capsules are now nearly halfway melted and half the NaNO2 
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capsules are completely melted with the remaining capsules being nearly melted, 

Figure 46e. 

 

 

 

 

 

 

Figure 46. Liquid fraction at 20,400 sec for a) NaNO3 (SteFo=0.93), b) NaNO2 

(SteFo=1.85), c) KNO3 (SteFo=0.066), d) NaNO3/NaNO2 (SteFo=1.48), e) 

KNO3/NaNO3/NaNO2 (SteFo=1.27) systems 

 
 

 By 30,400 sec all of the capsules in the NaNO2 system are completely melted, 

whereas the capsules in the top of the KNO3 system have just begun to melt, Figure 

47b and c respectively. Note the lines present in the fully melted capsules are the  

PCM-void interfaces. While partial melting was observed throughout the capsules in 

the other systems as they fully melt from the top of the system to bottom, the capsules 

in the KNO3 system melt sequentially without displaying partial melting in the lower 
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capsules. The fraction of molten PCM in the NaNO3 system has continued to increase 

where first 24 capsules are nearly completely melted, the middle 24 are approximately 

halfway melted, and the bottom 24 are a quarter melted, Figure 47a. For the 2-PCM 

system, a similar liquid fraction was seen in the NaNO3 capsules as seen in the NaNO3 

system while the NaNO2 capsules are completely melted, Figure 47d. The KNO3 

capsules in the 3-PCM system have finally begun melting in the same sequential 

manner as the KNO3 system where only one diagonal row shows signs of melting at a 

time. Additionally, the NaNO3 and NaNO2 capsules have completely melted by this 

time, Figure 47.  

 

 

 

 

 

 
Figure 47. Liquid fraction at 30,400 sec for a) NaNO3 (SteFo=1.38), b) NaNO2 

(SteFo=2.75), c) KNO3 (SteFo=0.098), d) NaNO3/NaNO2 (SteFo=2.21), e) 

KNO3/NaNO3/NaNO2 (SteFo=1.89) systems 
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Figure 48. Liquid fraction at 40,400 sec for a) NaNO3 (SteFo=1.84), b) NaNO2 

(SteFo=3.66), c) KNO3 (SteFo=0.13), d) NaNO3/NaNO2 (SteFo=2.93), e) 

KNO3/NaNO3/NaNO2 (SteFo=2.52) systems 
 

 

 As the charging process nears completion, the first 48 NaNO3 capsules have 

melted completely and the remaining capsules are over halfway melted, Figure 48a. 

Despite the prolonged onset of the melting in the KNO3 system, only the last 12 

capsules remain un-melted at this point in time, Figure 48c. The 2-PCM and 3-PCM 

systems have completely melted with melting times of 36,245 sec and 35,050 sec 

respectively. The NaNO2 system had the shortest melting time of 30,411 sec which 

can be attributed to the large temperature difference between the inlet temperature and 

the melting point of the system. The NaNO3 system melts in 41,100 sec whereas the 
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KNO3 system barely completes melting by the end of the charging process (43,200 

sec). With the exception of the NaNO2 system, the multi-PCM system decreases the 

total melting time of the system. 

 A uniform temperature distribution within the EPCM capsules was assumed to 

simplify the energy and exergy calculations. The temperature at the center of all 72 

capsules for the 3-PCM system is presented Figure 49. The energy and exergy stored 

in the PCM for each capsule in the system was individually calculated using the 

following equations and the temperature at the capsule center [41]:  
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where the subscript i is used to denote the properties of one of the three PCMs used. 

The energy stored in the capsules for the 3-PCM case as a function of time is shown in 

Figure 52. Since the energy calculation uses the capsule center temperautre, there is a 

jump in the energy storage when the melting point is reached followed by a period of 

time during which the energy remains constant as the melting front propigates inward. 
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Once the melting front has passed the energy stored in the capsules begins to increase 

as the capsules superheat. 

 
Figure 49. Temperature at the center of each EPCM capsule for the 

KNO3/NaNO3/NaNO2 system 
 

 

Figure 50. Energy stored in each EPCM capsule for the KNO3/NaNO3/NaNO2 system 
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 The individual energy stored by the EPCM capsules was summed to determine 

the total energy stored in the system as a function of time. The total exergy stored was 

calculated in the same way. The total energy and exergy stored in the six systems 

considered are presented in Figure 51 and Figure 52. For the 3-PCM case, the first 

jump in energy storage occurs at 3,750 sec when the NaNO2 capsules begin to melt. 

From this point until 10,000 sec the increase in energy storage is from the sensible 

heating of the NaNO3 and KNO3 capsules. At 10,000 sec the NaNO3 capsules begin to 

melt resulting in the second jump in energy storage. The energy storage rate then 

levels off as the only increase is from the sensible heating of the KNO3 capsules. At 

20,000 sec the NaNO2 capsules sequentially complete melting leading to an increase 

in stored energy from liquid superheating. The NaNO3 capsules complete melting at 

the same time that the first KNO3 capsule begins melting at 25,000 sec; however as 

the KNO3 capsules melt sequentially the increase in energy storage occurs over a 

greater period of time. A similar trend was seen in the energy storage of the other 

systems. The NaNO2 system stores the most energy (142 MJ) whereas the KNO3 

system stores the least (84.4 MJ) due to a lack of liquid superheating and its lower 

value of latent heat. Additionally, as the systems all store energy at roughly the same 

temperature, the exergy stored by the PCMs follows the same trend as the energy 

storage. Again the NaNO2 system has the highest exergy content at the end of the 

charging process while the KNO3 system has the lowest.  
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Figure 51. Energy stored in the NaNO3 (solid), NaNO2 (square), KNO3 (circles), 

NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-dot), and sensible heat (dot) 

systems during the charging process 

 
 

 

Figure 52. Exergy stored in the NaNO3 (solid), NaNO2 (square), KNO3 (circles), 

NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-dot), and sensible heat (dot) 

systems during the charging process 
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 The efficiency of the charging process is defined as the rate of exergy stored in 

the PCM divided by the exergy rate possessed by the HTF before contact with the 

PCM [41]. The exergy possessed by the HTF is given by equation (53) and neglects 

the input power required to pump the HTF through the system. Using this definition 

the exergy stored is compared to the maximum possible exergy that is being supplied.  
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The charging efficiency for the six systems considered is presented in Figure 53. The 

large amounts of energy and therefore exergy stored when the PCM melts results in a 

spike in the efficiency. Since the NaNO2 system has a large temperature difference 

between the inlet temperature and melting point and the highest latent heat value, it 

has a higher energy and therefore exergy storage rate when the capsules melt. This 

leads to the NaNO2 system having the highest charging efficiency of 38%. The high 

latent heat of NaNO2 also allows the 2-PCM system to have a higher efficiency than 

the 3-PCM system due to the higher number of NaNO2 capsules in the system. The 

efficiency of the sensible heat system increases during the initial heating stages but 

then decreases over the remainder of the charging process as the exergy storage rate 

decreases as the system slowly approaches the inlet temperature. The KNO3 system 

behaves in a similar manner to the sensible heat system except there is an increase in 

the efficiency when the capsules finally begin to melt at 25,000 sec. Additionally, as 

the capsules melt sequentially the increase occurs at a slower rate than in the other 
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systems. The low value of latent heat and small temperature difference make the 

KNO3 system have the worst performance of the latent heat-based systems.  

 
Figure 53. Exergy efficiency of the charging process 

8.2.2 Discharging Process  

 At the conclusion of the charging process, the direction and temperature of the 

HTF was reversed and now enters the system from the bottom at 551 K, Figure 38 

bottom. After the initial transient period, the velocity field reaches steady state 

conditions and resembles the mirror image of the velocity field seen during charging 

in Figure 39. The evolution of the outlet temperature during the discharging process 

for the systems considered is presented in Figure 54. Similar to the charging process, 

the outlet temperature of the sensible heat system asymptotically decreases towards 

the 551 K inlet temperature. The outlet of the NaNO3 system also behaves in a similar 

way to that of the charging process where now it decreases to the melting point of 
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NaNO3 and then slowly decreases until all of the capsules have completely melted at 

which time it then begins to decrease asymptotically to the inlet temperature.  

 

Figure 54. Outlet temperatures during the discharging process for the NaNO3 (solid), 

NaNO2 (square), KNO3 (circles), NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-

dot), and sensible heat (dot) systems 

 The biggest differences are seen in the NaNO2 and KNO3 systems as their roles 

have been reversed as now the NaNO2 system has the smallest temperature difference 

between the inlet temperature and melting point causing the outlet temperature to 

behave in the same manner as the sensible heat only system. The large temperature 

difference seen in the KNO3 system leads to a high-energy retrieval rate and a larger 

slope during the solidification process than seen in the NaNO3 case before the outlet 

temperature decreases rapidly after the capsules have solidified. The 3-PCM system 

has the same consistent energy release rate during discharging as seen during the 

charging process. Furthermore, the 2-PCM system was again in the middle of the pure 

NaNO3 and NaNO2 systems with a higher temperature than the NaNO2 case and larger 
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slope than the NaNO3 system. The inflection point at 70,000 sec denotes the point at 

which the NaNO3 capsules have solidified completely. 

 At the start of the discharging process, there was a rapid drop in the 

temperature of the EPCM capsules in the sensible heat, NaNO3, NaNO2, and 2-PCM 

systems. The temperature increase of the HTF across these systems was nearly 

identical, Figure 55a-c and e. The EPCM capsules in the bottom half of the NaNO3 

system are now at 581 K and have begun to solidify, Figure 55b. Similarly the NaNO3 

 

 

 

 

 

 

 

Figure 55. Isotherms at 50,000 sec for a) sensible heat only, b) NaNO3 (SteFo=0.025), 

c) NaNO2 (0.038), d) KNO3 (0.71), e) NaNO3/NaNO2 (0.031), f) KNO3/NaNO3/NaNO2 

(0.25) systems (6800 sec into discharging) 
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capsules in the 2-PCM case have started to solidify as well, Figure 55e. The 

temperature increase in the HTF for the KNO3 system was higher as all of the capsules 

have begun to solidify, Figure 55d. In the 3-PCM case the increase in the temperature 

of the HTF was higher than the 2-PCM case although it is still lower than the KNO3 

system, Figure 55f. Additionally, a radial thermal gradient forms in the solidified 

KNO3 capsules in both the KNO3 and 3-PCM systems.  

 

 

 

 

 

 

 

 

Figure 56. Isotherms at 60,000 sec for a) sensible heat only, b) NaNO3 (SteFo=0.061), 

c) NaNO2 (0.093), d) KNO3 (1.75), e) NaNO3/NaNO2 (0.078), f) KNO3/NaNO3/NaNO2 

(0.63) systems (16,800 sec into discharging) 
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 As the discharging process continues the temperature increase in the HTF has 

decreased in all of the systems where the largest decrease was seen in the sensible heat 

system, Figure 56a. A slightly larger temperature increase was seen in the NaNO2 

system, Figure 56c, while a minimal change in the temperature distribution of the 

NaNO3 has occurred as the EPCM capsules continue to solidify, Figure 56b. The 

KNO3 capsules have finished solidifying leading to a row-wise increasing capsule 

temperature from the bottom to the top of the system while the capsules in the top 

rows still have a radial temperature gradient, Figure 56d. The 2-PCM system has a 

slightly smaller temperature increase within the HTF than the NaNO3 case, Figure 

56e. The NaNO3 capsules are at the 581 K melting point while there is a row-wise 

temperature gradient in the NaNO2 capsules. A similar temperature increase was seen 

in the 3-PCM case where there is a row-wise distribution in the NaNO2 and KNO3 

capsules, and the NaNO3 capsules are still at 581 K, Figure 56f. 

 26,800 sec into the discharging process there is no longer a temperature 

increase in the HTF for the sensible heat system; however a row-wise distribution still 

remains in the EPCM capsules, Figure 57a. The largest increase in the HTF 

temperature was seen with the NaNO3 system as the capsules are still releasing energy 

as they solidify, Figure 57b. A slight temperature increase remains in the HTF for the 

NaNO2 and KNO3 systems, Figure 57c and d respectively. While both systems have a 

row-wise thermal gradient in the EPCM capsules, the capsules in the KNO3 system are 

completely solidified whereas the NaNO2 capsules have just begun to melt. The 

second largest temperature increase was seen in the 2-PCM system where the NaNO3 

capsules are at 581 K and the row-wise gradient in the NaNO2 capsules has decreased, 
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Figure 57e. There was a slightly smaller temperature increase in the 3-PCM system 

and as all of the capsules have solidified, there is a row-wise temperature distribution 

in the three sets of PCMs, Figure 57f. 

As the discharging process nears completion the temperature distribution in the 

EPCM capsules of the sensible heat system has decreased to the point where the entire 

system is now at a near uniform temperature, Figure 58a. Despite having decreased, 

the temperature increase in the NaNO3 system was still the largest as the capsules in 

the top of the system are still solidifying, Figure 58b. At this point there was no 

 

 

 

 

 

 

 

Figure 57. Isotherms at 70,000 sec for a) sensible heat only, b) NaNO3 (SteFo=0.098), c) 

NaNO2 (0.15), d) KNO3 (2.80), e) NaNO3/NaNO2 (0.12), f) KNO3/NaNO3/NaNO2 (1.00) 

systems (26,800 sec into discharging) 
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temperature increase in the HTF in the NaNO2 system, however as with capsules in 

the NaNO3 system there was still a row-wise thermal gradient as the capsules continue 

to melt, Figure 58c. The temperature increase in the KNO3 system has decreased to the 

point where it has only a slightly larger temperature variation in the EPCM capsules 

than in the sensible heat system, Figure 58d. A similar trend was seen in the 2- and 3-

PCM cases as well, Figure 58 e and f. 

  

 

 

 

 

 

 

 

Figure 58. Isotherms at 80,000 sec for a) sensible heat only, b) NaNO3 (SteFo=0.13), c) 

NaNO2 (0.20), d) KNO3 (3.84), e) NaNO3/NaNO2 (0.17), f) KNO3/NaNO3/NaNO2 (1.37) 

systems (36,800 sec into discharging) 
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Figure 59. Liquid fraction at 50,000 sec for a) NaNO3 (SteFo=0.025), b) NaNO2 (0.038), 

c) KNO3 (0.71), d) NaNO3/NaNO2 (0.031), e) KNO3/NaNO3/NaNO2 (0.25) systems (6800 

sec into discharging) 

 

The solid-liquid interface is “U”-shaped throughout the solidification process 

and although convection in the molten PCM is neglected, previous results have shown 

that the solidification process is conduction-dominated and therefore the shape of the 

solid-liquid interface is unaffected. Additionally, since the HTF enters the system from 

the bottom, solidification begins along the bottom edge of the capsules and then 

propagates radially inward. The capsules in the NaNO3 system begin to solidify almost 

immediately after the discharging process begins, Figure 59a. The capsules in the 

NaNO2 system have not yet cooled to the 555 K melting point and therefore have not 
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started to solidify, Figure 59b. In the KNO3 case however, all of the capsules are 

partially solidified where the capsules in the bottom of the system are approximately 

halfway solidified, Figure 59c. There was a thin solid layer in the bottom of the last 

NaNO3 capsules in the 2-PCM system whereas the NaNO2 capsules are still 

completely molten, Figure 59d. For the 3-PCM system, the KNO3 capsules are 

halfway solidified, there was a thin solid layer at the bottom of the NaNO3 capsules, 

and the NaNO2 capsules have yet to melt, Figure 59e. 

 

 

 

 

 

 

Figure 60. Liquid fraction at 60,000 sec for a) NaNO3 (SteFo=0.061), c) NaNO2 (0.093), 

d) KNO3 (1.75), e) NaNO3/NaNO2 (0.078), f) KNO3/NaNO3/NaNO2 (0.63) systems 

(16,800 sec into discharging) 
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 As the discharging process continues, the solid fraction in the NaNO3 capsules 

increases where the last 24 capsules are now halfway solidified, Figure 60a. While the 

NaNO2 system has still yet to start solidifying, the capsules in the KNO3 system are 

completely solid, Figure 60b and c. Likewise, the NaNO3 capsules in the 2-PCM 

system are still completely molten while the solid fraction in the NaNO3 capsules has 

increased, Figure 60d. The same trend was observed in the 3-PCM case where the 

KNO3 capsules have finished solidifying, the fraction of solid in the NaNO3 capsules 

has increased, and the NaNO2 capsules remain completely melted, Figure 60e. 

After 26,800 sec the solid fraction in the NaNO3 has continued to increase and now 

the last 24 capsules are completely solid and the middle capsules are approximately 

50% solidified, and the first 24 are only 25% solidified, Figure 61a. The capsules in 

the NaNO2 system have just begun to solidify and due to the small temperature 

difference between the melting point and inlet temperature the capsules solidify row 

by row like seen with the KNO3 system during the melting process, Figure 61b. The 

NaNO3 capsules in the 2-PCM system have almost completed solidified while the 

NaNO2 capsules have just started solidification, Figure 61d. The KNO3 and NaNO3 

capsules in the 3-PCM system have finished solidifying while the NaNO2 capsules 

have finally started to solidify, Figure 61e.  
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 As discharging draws to a close two-thirds of the capsules in the NaNO3 

system are completely solid and the remaining capsules are over halfway solidified, 

Figure 62a. Only half of the capsules in the NaNO2 system have solidified, Figure 62b. 

The first six NaNO2 capsules in the 2-PCM system have yet to solidify completely 

while all of the capsules in the 3-PCM system have finished solidifying, Figure 62d 

and e respectively. The KNO3 system has the shortest solidification time of 61,505 

sec. The NaNO3 system takes 82,900 whereas the NaNO2 system does not solidify 

completely over the course of the 12-hour discharging process. With the exception of 

 

 

 

 

 

 

Figure 61. Liquid fraction at 70,000 sec for a)  NaNO3 (SteFo=0.098), c) NaNO2 (0.15), 

d) KNO3 (2.80), e) NaNO3/NaNO2 (0.12), f) KNO3/NaNO3/NaNO2 (1.00) systems (26,800 

sec into discharging) 
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the KNO3 system, the 2- and 3-PCM systems offer an improvement over the single 

PCM systems and have total solidification times of 81,695 sec and 80,020 sec 

respectively. 

 As with the charging process, a uniform temperature distribution was assumed 

for the energy calculations and the temperature at the center of the EPCM capsule was 

used. The evolution of the capsule temperature of the 3-PCM system during 

discharging evolves in a similar manner as during the charging process, only 

 

 

 

 

 

 

Figure 62. Liquid fraction at 80,000 sec for a)  NaNO3 (SteFo=0.13), c) NaNO2 (0.20), d) 

KNO3 (3.84), e) NaNO3/NaNO2 (0.17), f) KNO3/NaNO3/NaNO2 (1.37) systems (36,800 sec 

into discharging) 
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decreasing to the melting point instead of increasing. The energy and exergy released 

from the PCM was calculated using the following equations: 
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where Tchar is the final temperature of the EPCM capsule at the end of the charging 

process. The energy released by the individual capsules for the 3-PCM case during the 

discharging process is shown in Figure 63. As the KNO3 capsules have the highest 

melting temperature, they begin to solidify first and do so almost simultaneously. As 

with the charging process, there is a jump in the energy released when the center of the 

capsule reaches the melting point followed by a period of constant energy as the solid-

liquid interface propagates inward before further energy can be released from the 

capsules. The row-wise solidification of the NaNO2 capsules is shown by the 

sequential jumps in energy released from 65,000 to 77,500 sec seen in Figure 63.  
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Figure 63. Energy released in each EPCM capsule for the KNO3/NaNO3/NaNO2 system 

 

 As with the charging process the individual energy released by the EPCM 

capsules are summed to determine the total energy released by the system. The 

evolution of the total energy released for the systems considered is shown in Figure 

64. Although energy is being released from the PCM, the shape of the curves is similar 

to the charging process where large increases are seen when a set of capsules begins to 

solidify and the slope changes depending on the number of capsules that have 

solidified completely and are now sub-cooling. The most energy was released by the 

2-PCM system (128 MJ) followed closely by the NaNO2 system (125 MJ). The KNO3 

system releases the least amount of energy (83.8 MJ); however it had the smallest 

amount of stored energy. The exergy extracted from the PCM is shown in Figure 65 

and as was seen during charging follows the same trend as the energy released.  
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Figure 64. Energy released in the NaNO3 (solid), NaNO2 (square), KNO3 (circles), 

NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-dot), and sensible heat (dot) 

systems during the discharging process 
 

 

Figure 65. Exergy extracted in the NaNO3 (solid), NaNO2 (square), KNO3 (circles), 

NaNO3/NaNO2 (dashed), KNO3/NaNO3/NaNO2 (dash-dot), and sensible heat (dot) 

systems during the discharging process 
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 For the discharging process, the efficiency is defined as exergy gained by the 

HTF divided by the initial exergy available within the PCM [41]. The exergy gained 

by the HTF is given in equation (57).  

The efficiency of the systems considered during the discharging process is shown in 

Figure 66. The NaNO3 system has the highest efficiency (74%) while the NaNO2 

system has the lowest (26%). For all of the systems, the efficiency increases during the 

beginning of the discharging process due to the large temperature increase in the HTF 

between the inlet and outlet as it extracts energy from the PCM. As the temperature 

increase in the HTF decreases to the inlet temperature the efficiency of the systems 

decreases. The 2-PCM system has a slightly larger efficiency than the 3-PCM system.  

 
Figure 66. Exergy efficiency of the discharging process 
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8.3 Overall Cycle Efficiency 

 The performance of a TES system cannot be determined simply by looking at 

the charging or discharging process alone, therefore the overall cycle efficiency needs 

to be determined. The overall energy and exergy efficiencies are defined as: 

These efficiencies depend on the temperature change of the HTF and thus a smaller 

difference would lead to an increase in efficiency as well as increase the percent of 

energy stored via latent heat. However, it should be noted that for the three materials 

considered here the temperature range can only be minimally decreased due to the 

melting points of the materials. A key example of the importance of the overall cyclic 

performance is seen by looking at the NaNO2 system. When you look at the charging 

process alone, the system stores the most energy at the highest rate. During the 

discharging process however while it releases the second highest amount of energy, its 

efficiency was the lowest and the system does not completely solidify. This leads to 

the NaNO2 system only recovering 88% of the energy and exergy that was stored. The 

energy stored, exergy stored, energy released, exergy released, charging and 

discharging Ste, overall charging and discharging efficiencies, and the percent energy 

stored via latent heat are listed in Table 9. Although the KNO3 system was the worst 

performer during the charging process, its good performance during discharging leads 

to it having the highest overall energy and exergy efficiencies. It is closely followed 

by the 2- and 3-PCM systems. The multi-PCM systems not only store more energy 
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than the KNO3 and NaNO3 single PCM systems but they do so in a more efficient 

manner. Furthermore, while it is possible to recover all of the energy stored in the 

sensible heat system, it can only store 40% of the energy the NaNO3 system stores. 

This highlights the improvement latent heat-based systems offer over pure sensible 

heat TES systems.  

Table 9. Results of the charging and discharging process for the NaNO3, NaNO2, 

KNO3, 2-PCM, 3-PCM, and sensible heat systems  

 NaNO3 NaNO2 KNO3 2-PCM 3-PCM 
Sensible 

Heat 

Energy Stored 

(MJ) 
116 142 84.4 130 118 47.1 

Exergy Stored 

(MJ) 
55.9 66.4 42.0 61.4 56.5 22.8 

Stechar 0.30 0.79 0.013 0.55 0.37 --- 

Energy Released 

(MJ) 
107 125 83.8 128 116 46.5 

Exergy Released 

(MJ) 
51.9 58.5 41.7 61.6 55.8 22.5 

Stedis 0.029 0.038 0.73 0.034 0.27 --- 

ηQ-overall (%) 92 88 99 98 98 98 

ηEx-overall (%) 93 88 99 100 99 99 

%LH 69 60 57 64 60 --- 

       

8.4  Conclusions  

 A two-dimensional analysis of an example EPCM-based TES system was 

conducted to evaluate the improvement of its performance by employing a multi-PCM 

system. Six systems were considered: three single PCM systems (NaNO3, NaNO2, and 

KNO3), a 2-PCM system (NaNO3 and NaNO2), a 3-PCM system, and a sensible heat 

only system as a comparison. The performance of the charging and discharging 

processes are investigated as well as the overall cyclic performance of the systems. 

The cyclic performance is dependent on the temperature difference of the HTF. 

Therefore if a smaller operational temperature range is considered there will be an 
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increase in the efficiency of the system as well as an increase in the fraction of energy 

stored via latent heat. As expected the latent heat systems are able to store more 

energy than the sensible heat system. Due to the thermal properties of NaNO2 and the 

large temperature difference experienced during the charging process, the NaNO2 has 

the highest efficiency, stores the most energy, and has the highest exergy content at 

the end of the charging process. The small temperature difference between the melting 

point of the PCM and the inlet temperature for the KNO3 system coupled with the low 

values of latent heat leads to the system having the worst performance of the latent 

heat systems. With the exception of the NaNO2 system, the multi-PCM systems 

outperform the single PCM systems by storing more energy at a higher rate and 

having a higher final exergy content.  

 Despite being the best system during the charging process, the NaNO2 system 

has the worst performance during the discharging process as the HTF fails to retrieve 

all of the stored energy. The prolonged solidification time of the NaNO3 system leads 

to it having the highest discharging efficiency. The performance of the NaNO2 system 

during the discharging process highlights the importance of looking at the overall 

cyclic performance of the system. Since the system fails to solidify fully, only 88% of 

the energy and exergy stored was able to be recovered and turned into useful work. 

The NaNO3 system releases 92% of the stored energy while the HTF in the remaining 

systems are able to extract all of the stored energy. Furthermore, the system cannot be 

judged on efficiency alone and the total energy and exergy stored is an important 

factor in determining the best-suited system. For the systems considered, the 2-PCM 

system does not only store the most energy, but it also released the highest amount. 
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This was partly due to the extremely small temperature difference between the melting 

point of KNO3 and the 611 K inlet temperature. It was also due to the higher energy 

storage density of NaNO2 compared to KNO3. The 2-PCM system also has the second 

highest fraction of energy stored via latent heat behind the NaNO3 system.  

 These results show that a cascaded multi-PCM has a better energy and exergy 

performance over that of a single PCM system. While these results indicate a 2-PCM 

system to be best, as the length of the system is increased the number of PCMs used 

will have a greater impact. Furthermore, care needs to be taken as to the inlet and 

melting temperatures of the PCMs as they impact the performance. While the results 

of this investigation lend insight into key aspects of the performance of EPCM-based 

latent heat TES systems, additional research is required to determine the optimal 

operating conditions.   
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CHAPTER IX: USE OF METALLIC OXIDES AS PCMS FOR TES 

While encapsulation of a PCM has many advantages, it poses its own unique 

obstacles. Great care needs to be taken to ensure that the encapsulation shell and PCM 

are thermally compatible such that chemical and metallurgical interactions do not 

occur at the elevated temperatures experienced during thermal cycling of the EPCM 

capsule. Additionally, the shell must withstand the thermal stresses it will experience 

as well as allow for the thermal expansion of the PCM upon melting. Given the high 

temperatures at CSP plants, metal encapsulation shells are preferred, such as stainless 

and carbon steel or nickel-based alloys [18]. However, when used in conjunction with 

the currently proposed chloride- and nitrate salt-based PCMs a loss of storage capacity 

can occur after prolonged exposure to high temperatures due to reactions between the 

metal shell and molten PCM. Metallic oxides on the other hand are less reactive and 

corrosive when in contact with materials like stainless steel. Additionally, they offer 

higher energy storage densities at comparable melting temperatures.  

9.1 Determination of a Suitable Metal Oxide for Use as a PCM 

Even though having a melting temperature within a desired range is a key 

factor in the use of a material as a PCM, it is by no means the only one. An ideal 

material should exhibit further desirable thermo-physical, kinetic, and chemical 

properties such as a high latent heat of fusion, small volumetric changes, chemical 

stability, and be in abundance at a low cost [3]. Twelve binary metal oxide systems 

were considered as potential PCMs. These were the Na2O-SiO2, Na2O-B2O3, Na2O-

P2O5, CaO-SiO2, CaO-B2O3, CaO-P2O5, Al2O3-SiO2, Al2O3-B2O3, Al2O3-P2O5, K2O-

SiO2, K2O-B2O3, and K2O-P2O5 systems. To be considered for use in high temperature 
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TES applications, a melting temperature in the range of 300 °C to 1,000 °C was 

imposed which reduced the number of available systems to five; the Na2O-B2O3, 

Na2O-P2O5, K2O-SiO2, K2O-B2O3, and K2O-P2O5 systems. As these materials possess 

the ability to form amorphous as well as crystalline solids, eutectic materials outside 

of the glass formation range were considered [87, 88]. 

For TES applications, a congruently melting material is preferred; therefore the 

thermodynamic properties of the eight eutectic materials in these systems (Na2B4O7, 

NaBO2, Na4B2O5, K2B4O7, KBO2, Na4P2O7, KPO3, and K2SiO3) were compared to 

determine which material would be best suited for TES applications. The melting 

temperature, latent heat, solid specific heat, and liquid specific heat are listed in Table 

10 along with other commonly studied PCMs for comparison. From Table 10 it can be 

seen that materials from the borate systems have higher latent heat values than those 

from the phosphate systems. Similarly, sodium oxide materials have higher values 

than potassium oxide materials. Therefore materials in the Na2O-B2O3 systems are best 

suited for TES applications.  

When these materials are compared to the studied nitrate and chloride salts, the 

sodium borate materials have comparable melting temperatures while offering a 

higher energy storage density. For example, the energy storage per unit mass over a 

100 °C temperature range centered about the melting temperature for NaNO3 is 324.4 

kJ/kg whereas Na4B2O5 stores 778.1 kJ/kg. This higher energy storage density allows 

for a reduction in system size and thus cost. Therefore the materials in the Na2O-B2O3 

system are the most attractive for use as a PCM for TES. 
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Table 10. Physical properties of potential PCMS 

 
Melting 

Temperature (°C) 

Latent Heat 

(kJ/kg) 

Solid Specific 

Heat (J/kg K) 

Liquid Specific 

Heat (J/kg K) 

NaNO3 308 [89] 162.5 [89] 1,588 [89] 1,650 [89] 
MgCl2 714 [78] 454 [78] 798 [90] 974 [78] 
NaCl 800 [78] 481 [78] 987 [91] 1200 [78] 

Al 660 [75] 397.3 [77] 903 [77] 1177 [77] 
Zinc 420 [92] 113  [92] 389 [93] 505 [93] 

Na2B4O7 742 [94] 403.5 [94] 1174.3 [94] 2213.3 [94] 
NaBO2 967 [94] 509.1 [94] 1349.8 [94] 2218.8 [94] 

Na4B2O5 641 [95] 617.3 [94] 1166.4 [94] 2048.8 [94] 
K2B4O7 816 [94] 446.4 [94] ---- ---- 

KBO2 947 [94] 383.4 [94] ---- ---- 

Na4P2O7 970 [96] 220.4 [96] ---- ---- 

KPO3 810 [96] 74.5 [96] ---- ---- 

K2SiO3 976 [96] 325.4 [96] ---- ---- 

     
9.2 Testing of Na4B2O5 Capsules 

Of the three eutectic materials in the non-glass formable region (38–66.5% 

mol. Na2O) of the Na2O-B2O3 system, Na4B2O5 (66.5% mol. Na2O) has the lowest 

melting temperature and the highest latent heat, making it an ideal candidate PCM, 

Figure 67. The energy storage capability of Na4B2O5 as a PCM over repeated thermal 

cycling was evaluated using the immersion calorimeter and experimental methods 

described in Chapter III. 
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Figure 67. Na2O-B2O3 phase diagram [97] 

9.2.1 Design of Na4B2O5 EPCM Capsules 

Since Na4B2O5 has the ability to form an amorphous solid, care must be taken 

in the size of the calorimetry sample to avoid rapid cooling that could result in glass 

formation above a critical temporal thermal gradient. An extensive study of the critical 

cooling rates within the Na2O-B2O3 system was carried out by Ota and Soga [98] and 

it showed that for Na4B2O5 the critical cooling rate is 2 °C/s. It should be noted that 

while the cooling rate within a CSP plant is likely to be well below this critical cooling 

rate, cooling rates within the immersion calorimeter experiments may not. Therefore, 

to reduce the probability of glass formation during experimentation, a two-

dimensional analytical calculation was used to determine the optimal capsule size.  
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Various capsule sizes with a diameter of 25.4 or 50.8 mm and a height of 50.8, 

76.2, 101.6 or 127.0 mm were considered. With these capsule dimensions and the 

thermal conductivity of the material (taken as 0.8 W/m·K) the Biot number (Bi) is 

much greater than 0.1 and therefore the lumped capacitance method cannot be used. 

Additionally, since the Fourier number (Fo) is less than 0.2 a first term approximation 

of the series solution cannot be assumed. Therefore, an n-term series solution was used 

by superimposing the 1-D solutions for a plane wall and an infinite cylinder using the 

following set of equations:  
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Equations (61) to (64) govern transient heat transfer in a plane wall and equations (65) 

to (68) are for an infinite cylinder. θ is the non-dimensional temperature, x is the 

distance from the plane wall center line, L is the half thickness of the plane wall, λn is 

the n
th 

solution to the characteristic equations for a plane wall or infinite cylinder, J0 
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and J1 are Bessel functions of the first kind, r is the radial distance from the axis of 

symmetry, r0 is the radius of the cylinder, h is the surface heat transfer coefficient, k is 

the thermal conductivity of the PCM material, α is the thermal diffusivity of the PCM 

material, and t is time. A schematic of the capsule is given in Figure 68.  

 
Figure 68. Schematic of EPCM capsule for analytical analysis  

 The cooling rate for various sample diameters and heights was calculated for 

an initial sample temperature of 691 °C, 50 degrees above the 641 °C melting 

temperature of Na4B2O5 and the target experimental temperature. Figure 69 shows the 

results for capsules with a diameter of 25.4 or 50.8 mm with a height of 50.8 or 76.2 

mm along with the critical cooling rate using the first 300 roots of the characteristic 

equations. As both the diameter and height of the capsules increase, the cooling rate at 

the center of the capsules decreases. The cooling rates within all the capsule sizes 

considered varied from 1.3 °C/s for the smallest capsules to 0.2 °C/s for the largest 

and therefore were slower than the 2 °C/s critical cooling rate and therefore the 
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formation of glass during the experimental testing of samples with these dimensions is 

unlikely.  

 

Figure 69. The temperature at the center of the EPCM capsule for a 25.4 mm by 50.8 

mm (diameter by height), 25.4 mm by 76.2 mm, 50.8 mm by 50.8 mm, and 50.8 mm by 

76.2 mm capsule size along with the critical cooling rate for Na4B2O5 

 

While the cooling rate analysis indicates the use of a capsule with the largest 

diameter and height possible, limitations on the maximum dimensions are imposed as 

not to exceed the maximum allowable temperature increase within the calorimeter 

system. For the proposed capsule sizes, an energy balance was conducted to determine 

the maximum temperature increase of the calorimeter. The enthalpy stored in the 

capsule is determined by using equations (40), (41), and (42). The enthalpy transferred 

to the calorimeter (Qcal) is set equal to the energy stored in the EPCM sample 

(QEPCM,theo). Then equation (39) is solved for Tcal. Stainless steel 304 was used as the 
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encapsulation material and the thermal properties used are listed in Table 3. Using the 

solid and liquid heat capacities listed in Table 10 the maximum calorimeter 

temperature was calculated and the results are listed in Table 11. Based on a desirable 

temperature increase within the calorimeter, a sample with a diameter of 50.8 mm and 

a height of 50.8 mm was chosen. 

Table 11. Final temperature of calorimeter for various capsule sizes 

Capsule Size Temperature 

25.4 mm by 50.8 mm 33.70 °C 

25.4 mm by 76.2 mm 38.04 °C 

50.8 mm by 50.8 mm 59.60 °C 

50.8 mm by 76.2 mm 76.86 °C 

9.2.2  Initial Calorimeter Testing   

 Two 50.8 mm by 50.8 mm capsules were prepared for calorimetry testing. A 

3.175 mm thick end cap was welded onto the bottom of the 50.8 mm cylinder to create 

a “cup” that the molten PCM was poured into. Approximately 300 g of Na4B2O5 was 

prepared by mixing the appropriate amounts of Na2CO3 and H3BO3 together and 

heating the material in a furnace above 1,000 °C in a platinum crucible. The molten 

material was poured into the pre-fabricated stainless steel “cups”, Figure 70, and then 

placed into a furnace at 100 °C overnight to prevent water absorption as the samples 

cooled. It should be noted that the molten oxide appears pink in Figure 70 due to the 

hot stainless steel capsules as the melt was transparent. Once the material had 

solidified, the capsules were purged with Argon and the top end cap was welded in 

place and the hanging wire attached. The samples were weighed both prior and after 

the filling process to determine mass of both the capsule and PCM; these values are 

listed in Table 12 for both samples.   
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Table 12. Specifications of Na4B2O5 EPCM samples 

 Mass of PCM (g) Mass of Shell (g) 

Sample 1 128.39 194.61 

Sample 2 128.23 194.17 
 

 

Figure 70. EPCM sample during the filling process 
 

 The electric furnace was heated from room temperature to 700 °C at a rate of 

1,000 °C/hr. and then held at 700 °C for 2 hours. After approximately 10,500 sec, the 

samples were submerged into the calorimeter causing its temperature to increase as 

seen in Figure 71. For the first three experiments the samples did not quite reach the 

desired 691 °C sample temperature, therefore for the fourth experiment the furnace 

temperature was increased to 750 °C to ensure complete melting of the sample. The 

results of the calorimetry experiments are listed Table 13.  

Table 13. Initial results of Na4B2O5 calorimetry testing 

Sample # 
Charged 

Temperature  

Theoretical 

Equilibrium 

Temperature 

Theoretical 

Energy 

Stored 

Measured 

Energy 

Stored 

Discrepancy  

1 667.6 °C 54.21 °C 243.9 kJ 212.9 kJ 12.7% 

1 688.7 °C 54.67 °C 248.0 kJ 215.0 kJ 13.4% 

2 661.2 °C 55.67 °C 236.9 kJ 218.7 kJ 7.7% 

2 749.7 °C 57.40 °C 270.28 kJ 230.9 kJ 14.6% 
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Figure 71. Calorimeter & air temperature during sample 1 cycle 1 

 

 The discrepancy between the theoretically stored energy and the measured 

energy was approximately 10% higher than the anticipated ±2% precision of the 

system. As the discrepancy was always positive, it indicates that the theoretical energy 

storage calculation or the underlying assumptions were not fully valid. This can be 

caused by one or more of the following: 

1. Incorrectly reported material properties 

2. Glass formation during solidification 

3. Contamination during sample preparation 

4. Unaccounted phases present  

5. Hydration of the sample 

To determine the source or sources of the discrepancy the samples were first sectioned 

and visually examined. Based on this inspection an odd coloring was noticed that 
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seemed to indicate either a two-phase material or a crystalline material (white) with an 

amorphous surrounding (gray), as seen in Figure 72. To determine the composition of 

the material present a scanning electron microscope (SEM) with energy-dispersive X-

ray spectroscopy (EDS) capabilities was used and x-ray diffraction (XRD) was 

performed to determine the crystallinity of the material. Additionally, differential 

scanning calorimetry (DSC) was conducted to determine the melting temperature of 

the material.  

  

Figure 72. Sectioned Na4B2O5 sample 1 (left) and sample 2 (right) 

9.2.3 SEM Results 

 Fifteen locations from four areas (top, middle, edge, and dip) of sample 1 were 

examined using EDS. The atomic percentage of each element present in the area the 

beam was focused on was reported. The results showed that only oxygen and sodium 

were present in the samples hence contamination from another material did not occur. 

It should be noted that the EDS cannot detect Hydrogen or Boron, therefore the SEM 

results of sample 1 do not rule out hydration of the material. Trace amounts of iron 

were detected in the second sample which explains the green discoloration seen in 
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Figure 72, however the oxygen and sodium ratios did not correspond to those seen in 

sample 1. The EDS results are listed in Table 14 and Table 15 and photos of the 

microstructure in the middle and edge regions of both samples are shown in Figure 73.  

  
a)Sample 1 Middle b) Sample 2 Edge 

  
c) Sample 2 Middle d) Sample 2 Edge 

Figure 73. SEM photos of two locations in both sample 1 and sample 2. Scale bar for a-c 

are 5 microns while d is 1 micron 
  

Table 14. Sample 1 SEM EDS results 

Location O At% Na At% Location O At% Na At% 

Top 

63.0 36.7 

Middle 

62.0 37.9 

63.0 36.7 62.0 37.9 

64.1 35.9 64.2 35.8 

54.5 45.5 62.0 38.0 

55.5 44.5    

Edge 

56.1 43.9 
Dip 

54.9 45.1 

56.1 43.9 54.1 45.8 

55.3 44.7    

58.5 41.5    
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Table 15. Sample 2 SEM EDS results 

Location O At% Na At% Fe At% Location O At% Na At% Fe At% 

Edge 45.3 54.7 0 Edge 44.2 55.7 0.2 

Edge 45.0 54.8 0.2 Edge 51.3 48.6 0.1 

Edge 47.8 52.0 0.1 Edge 44.0 55.4 0.6 

Edge 51.7 48.2 0.1 Edge 39.2 58.8 2.0 

Edge 44.8 55.0 0.2 Middle 47.4 52.6 0 

Middle 49.3 50.8 0 Middle 47.5 52.5 0 

        

 Based on the visual color appearance and assuming an axisymmetric 

distribution, it was determined that the sample was roughly 59.3% phase 1 (gray) and 

40.7% phase 2 (white). With the exception of the top surface, the SEM results for 

sample 1 in the two regions presented distinct ratios of sodium and oxygen that would 

indicate the formation of a two-phase material resulting from the partial melting of a 

non-eutectic initial compound. The average volume-weighted oxygen percentage 

using the results of Sample 1 was 58.4% which yields a composition that is 62.4% 

mol. Na2O. This is lower than the 66.6% mol Na2O of the desired compound due to 

sodium evaporation during the perpetration of the material. This was calculated using 

equations (69) to (71) to determine the amount of Na2O required in order to obtain the 

desired oxygen percentage assuming 1 mol of B2O3. It should be noted that this 

calculation was done assuming that there was no hydration of the storage material 

during EDS. Furthermore, if the SEM results from sample 2 are included the overall 

composition change is minimal from 62.4% mol Na2O to 64.0% mol Na2O.  
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9.2.4 DSC Results  

 While the SEM results provided insight into the initial makeup of the material 

and lent credence to the formation of two distinct regions within the material, further 

evaluation is required. By performing DSC on the different regions of the sample, 

their thermal properties can be verified with those reported in literature. Additionally, 

based on the melting temperature reported, the initial composition of the material can 

be determined. One sample from each section of sample 1 underwent a heating cycle 

from room temperature to 1,000 °C at a rate of 5 K/min. Prior to the DSC run the 

material was heated in a 150 °C furnace for approximately 30 min to dehydrate the 

samples. The two samples had a mass of 20.3 mg and 21.3 mg for the middle and edge 

locations respectively. A sample from edge the second sample with a mass of 22.4 mg 

was cycled within the DSC by heating the sample to 1000 °C at a rate of 5 K/min and 

then cooling it back to 20 °C at a rate of 20 K/min and then reheating it to 1000 °C. 
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a) Edge of Sample 1 

  

b) Middle of Sample 1 

Figure 74. DSC of Na4B2O5 Sample 1 
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Figure 75. DSC of Na4B2O5 Sample 2 

 The DSC curves for the two locations for sample 1 presented in Figure 74 are 

extremely similar. The peaks at 102 °C, 256 °C, and 300 °C correspond to the 

dehydration of NaBO2•Y H2O [99] as the samples are highly hydroscopic and were 

exposed to the atmosphere post-sectioning prior to the DSC runs. The peak at 590 °C 

is the onset of melting of the material. Due to the incongruent melting of the material a 

large dome over a range of temperatures from 700 °C to 1000 °C is formed centered 

on the liquidus temperature of the compound. The results of the DSC for sample 1 

indicate that the liquidus temperature of the tested material is 830 °C for the edge and 

840 °C for the middle based on peak position. The only noticeable difference between 

the two DSC curves is that the edge material began melting right after the 590 °C peak 

whereas for the middle a period of additional sensible heating occurred until about 700 
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°C before melting started. As the edge material had already undergone a phase change 

previously, it would be more inclined to melt whereas the un-melted center material 

would require additional energy. The reported liquidus temperature of approximately 

835 °C corresponds with the average composition found via the SEM results based on 

the phase diagram presented in Figure 67. The DSC run for sample 2 was conducted 

less than 24 hrs. after the samples were sections and therefore only a small peak at 

approximately 300 °C is seen during the initial heating cycle and it showed the same 

peak at ~590 °C, Figure 75. However this increased to 630 °C during the second 

heating cycle. This would indicate that some sort of change is occuring after the initial 

melting and solidification cycle. Additionally, a small amount of water could have 

remained wtihin the PCM that results in a lower soldius temperautre and is only fully 

expelled when the DSC sample is heated above 1,000 °C. Furthermore the 

solidification temperature was only roughly 460 °. There is limited literature on the 

melting and solidification of Na4B2O5 where there is a reported melting temperature of 

641 °C [95, 100].  

9.2.5 XRD Results 

 Neither the DSC nor SEM results could completely rule out the formation of 

glass within the sample as they only reported on the melting temperature and the 

oxygen to sodium ratio of the composition. However, XRD can be used to determine 

whether a material is crystalline or amorphous as well as its composition and unlike 

EDS it can detect Boron. The XRD pattern for a sample from the middle of sample 1 

is seen in Figure 76. The sample was scanned from 10 to 70 degrees at a rate of 2 

°/min. The flat background of the pattern indicates that the material is crystalline. 
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When the XRD results are compared to a database of known materials, it most closely 

matches that of NaBO2•2H2O, also shown in Figure 76.  

 

 

Figure 76. XRD of Middle of Sample 1 (upper) and NaBO2·2H2O ICDD Card No. 00-

006-0122 (lower) 
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Figure 77. XRD of sample 2 (top), NaBO2 (middle) ICDD Card No. 00-012-0492, and 

Na4B2O5 ICDD Card No. 00-036-0878 
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XRD was also performed on a sample from the second EPCM sample and the 

results are shown in Figure 77. These results did not show the high intensity peak at 

angles below 25° that were seen in sample 1. The pattern showed peaks of both 

NaBO2 and Na4B2O5, which is consistent with the fact that the material composition is 

between those two limits. This emphasized how the first sample had become hydrated 

during the time between sectioning and testing. It also lends credence to the 

calculation of the initial sample composition from the initial SEM results as peaks 

from both end components are seen in the XRD pattern. 

9.2.6 Revised Calorimeter Results  

Based on the results of the SEM, DSC, and XRD analyses the calorimetry 

energy analysis was updated to include a two-phase material resulting from 

incongruent melting. Using the weighted average of the SEM results, the initial 

composition of the material was determined to be 62.44% mol. Na2O. Since the 

experimental sample temperatures were below the liquidus temperature of the material 

a tie line was used to determine the percentage of solid and liquid material present 

based on the final sample temperature. Additionally there was no liquid superheating 

present during the experiments. The solid specific heat and latent heat of the liquid 

phase were determined by mass averaging the properties of Na2O and B2O3 based on 

the previously determined initial composition using equations (72) and (73)  
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While the XRD and DSC results for sample 1 show that the material was 

hydrated, they were conducted three months after the sample was sectioned whereas 

the SEM was conducted only a week after the samplers were sectioned. The samples 

were kept within a hand-pumped vacuum desiccator and the contamination occurred 

over a prolonged period of time. Furthermore, the oxygen to sodium ratio of the six 

hydrated forms of NaBO2 is greater than that seen during the EDS analysis. The 

lowest ratio is for NaBO2•⅓H2O which is 0.7. Therefore, it is unlikely that the 

material was hydrated during the EDS analysis of sample 1 and the results present a 

reasonable portrayal of the initial material composition. 

The updated results are in Table 16 and Table 17 for both a melting 

temperature of 641 °C and 592 °C. While the discrepancy of the calorimetry 

experiments is still higher than the expected ±2%, it is now under 5%. If the solidus 

temperature reported by the DSC results is used, the discrepancy is within the 

expected limits for all but sample 2 cycle 1. However, as the furnace during this 

experiment was set to 700° °C and the thermocouples only reported a temperature of 

661 °C so it is likely that the furnace malfunctioned during the experiment and its 

results should be discarded. While there is still some uncertainly as to the solidus 

temperature of the initial compound, these results indicate that materials from the 

Na2O-B2O3 system can be used as PCM for TES applications and still present a better 

option over the currently used nitrate and chloride based salts.  
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Table 16. Updated results of Na4B2O5 calorimetry testing with Tm= 641 °C 

Sample # 
Charged 

Temperature  

Theoretical 

Equilibrium 

Temperature 

Theoretical 

Energy 

Stored 

Measured 

Energy 

Stored 

Discrepancy  

1 667.6 °C 54.2 °C 224.2 kJ 212.9 kJ 5.0% 

1 688.7 °C 54.7 °C  227.1 kJ 218.8 kJ 3.7% 

2 661.2 °C 55.7 °C  219.1 kJ 220.2 kJ -0.50% 

2 749.7 °C 57.4 °C  239.2 kJ 232.6 kJ 2.8% 

 

Table 17. Updated results of Na4B2O5 calorimetry testing with Tm= 592 °C 

Sample # 
Charged 

Temperature  

Theoretical 

Equilibrium 

Temperature 

Theoretical 

Energy 

Stored 

Measured 

Energy 

Stored 

Discrepancy  

1 667.6 °C 54.2 °C  216.0 kJ 212.9 kJ 1.4% 

1 688.7 °C 54.7 °C  219.0 kJ 218.8 kJ 0.05% 

2 661.2 °C 55.7 °C  210.9 kJ 220.2 kJ -4.4% 

2 749.7 °C 57.4 °C  231.0 kJ 232.6 kJ -0.69% 

 

9.3 Conclusions  

The eutectic materials in the Na2O-B2O3 system are promising materials for 

use as PCMs for high temperature TES applications. These materials offer a higher 

energy storage density at comparable melting temperatures to the commonly used 

nitrate and chloride salts while being less reactive with the encapsulation materials. 

While initial testing of the Na4B2O5 EPCM capsules did not go as excepted further 

analysis of the samples indicated that Na2O evaporated during the formation of the 

material yielding a non-eutectic compound. This yielded an initial high experimental 

discrepancy, roughly 10% higher than expected. The causes of these unexpected 



167 

results were invested by examining the sample via EDS, DSC, and XRD to determine 

the composition and crystallinity of the material.  

The EDS results of the first sample corroborated the visual inspection that two 

distinct areas formed within the sample. The center had a composition close to that of 

a 1:1 ratio of Na2O to B2O3 whereas the edges were closer to the desired 2:1 ratio. 

DSC showed the liquidus temperature of the material to be approximately 835 °C, 

which yields a composition in agreement with the EDS results. The possibility of glass 

formation was examined using XRD. The XRD pattern of the middle indicated that 

the material was a crystalline form of hydrated NaBO2, most likely NaBO2•2H2O. 

This is likely the result of improper storage of the samples during the time between the 

samples being sectioned and the XRD being performed. The second sample was 

examined less than 24 hours after sectioning and the XRD and DSC results did not 

show any hydration of the material. However, the DSC data did show a shift in the 

melting temperature after the first heating cycle.  

The experimental energy analysis was modified to accommodate the partial 

melting of the PCM since the experiments were conducted below the liquidus 

temperature of the compound with the initial composition. This yielded results closer 

to the ±2% precision of the calorimetry system depending on the value used as the 

solidus temperature. The difference in the solidus temperature reported via the DSC 

and that reported on the phase diagram could be a result of a small fraction of water 

vapor remaining in the PCM from the initial formation of the PCM. While the results 

of these initial experiments indicate that sodium borate oxides can be used a PCMs for 

high temperature TES, further testing is required to evaluate their performance after 
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prolonged thermal cycling to ensure that they are still a better alternative to the 

currently used nitrate and chloride salts.   
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CHAPTER X: SUMMARY AND CONCLUSIONS 

 Numerical investigations were conducted into the heat transfer that occurs 

within EPCM capsules to improve the technology of EPCM-based latent heat TES 

systems. The ability of the enthalpy-porosity and VOF methods to accurately capture 

the heat transfer that occurs within EPCM capsules was examined by modeling 

previously conducted calorimetry experiments. Good agreement was obtained with 

respect to the final shape of the solid PCM within the capsules between the 

simulations and those seen in a sectioned sample after experimentation. Additionally, 

the difference between the experimental and predicted equilibrium temperatures was 

under 1%. The good agreement obtained proves that the numerical methods employed 

are able to capture the complex heat transfer that occurs within EPCM capsules during 

a state change and can be used to investigate means of improving their performance. 

 While the inclusion of an internal void space within an EPCM capsule is 

required to prevent the capsules from rupturing, its effect on the heat transfer within 

the capsules has largely been ignored. To investigate the impact of an internal void as 

well as natural convection within the molten PCM, a three-dimensional model of a 

spherical EPCM capsule was conducted using the enthalpy-porosity and VOF methods 

simultaneously. The presence of the void within the capsule acts as an insulator and 

distorts the isotherms and thus the solid-liquid interface from being circular to “U”-

shaped during the conduction-dominated phase of the melting process. Furthermore, 

as the PCM melts convection becomes the dominant mode of heat transfer both 

increasing the melting rate and further changing the spatial evolution of the solid-

liquid interface. While the melting process is convection-dominated, the solidification 
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process is conduction-dominated and therefore is limited by the thermal conductivity 

of the PCM used. As the solid PCM sticks to the capsule surface, the ever-increasing 

solid layer asymptotically decreases the heat transfer rate leading to significantly 

longer solidification times compared to melting times. Thus during the design of 

EPCM-based systems, the discharging process needs to be carefully examined.  

 The results of the spherical EPCM capsule investigation highlight the impact 

an internal void space has on the performance of the capsule. To further investigate its 

impact on the internal heat transfer of EPCM capsules, three limiting initial void 

distributions were considered: an upper void, a central void, and a random void. As the 

PCM in the central void distribution is in direct contact with the capsule shell during 

the initial stages of the melting process, it has the highest initial heat transfer rate and 

the shortest melting time; 22% faster than the random void distribution and 39% faster 

than the upper void. The random void distribution is a middle ground between the 

central and upper void cases; although the PCM is in direct contact with the entire 

capsule shell it has a lower effective thermal conductivity. Furthermore, the air and 

PCM phases slowly diffuse as the PCM melts resulting in the formation of an air void 

at the top of the capsule.  

 While due to gravitational effects one would expect the air to diffuse to the top 

of the capsule forming an upper void, the behavior of the void is dependent on the 

operating conditions of the system and can potentially impact the performance of the 

TES system for numerous cycles. Ideally, one would like for the void to always be 

located at near center of the capsule as to mitigate its negative effects on the melting 

rate. The location of the internal void has a profound effect on the temporal and spatial 



171 

evolution of the solid-liquid interface. Thus, to accurately evaluate the performance of 

EPCM capsules in a TES system the internal void and its effects must be included. 

 To extend the results from the performance of a single EPCM capsule to that 

of an entire system, a pilot scale EPCM-based latent heat TES system was numerically 

evaluated. Metal deflectors were used to promote uniform heat transfer around the 

capsules. Despite this, the same “U”-shaped solid-liquid interface was seen within the 

capsules during the initial stages of melting prior to convection becoming the 

dominate mode of heat transfer due to the void located at the top of the capsules. The 

solid-liquid interface not only propagates radially inward but due to the increase in 

heat transfer from the warm test section walls, it also propagates towards the center of 

the channel. The ten EPCM capsules sequentially experience the same evolution of the 

melting front resulting in the internal void being compressed from 26% to 19% of the 

capsule volume over the course of the charging process. 

 The results of the numerical investigation were compared to the experimental 

results for the charging process. The agreement between the predicted and measured 

temperature of the tenth capsule during the solid sensible heating phase was under 3%; 

however the difference between the predicted and measured temperature started to 

increase as the capsules within the test section began to melt. Although the simulation 

predicted an 8% quicker melting time, the rate of temperature increases during the 

liquid superheating phase matched that of the experiments. Therefore, the shorter 

melting is a result of using an incorrect value for the latent heat of fusion of NaNO3 

that was 8% lower than the actual value. However, the large operational temperature 

range results in a significant amount of energy being stored via sensible heat; thus the 
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incorrect latent heat value used had a negligible effect the total energy storage of the 

system. Of the 22 MJ of energy given up by the HTF over the course of the charging 

process, 80% was stored in the 10 EPCM capsules. Of the 17.5 MJ of energy stored by 

the capsules, 14.2 MJ is stored by the 17.7 kg of NaNO3. Furthermore, 20% of the 

energy stored by the NaNO3 was stored via latent heat. Thus the system is capable of 

storing a large fraction of the energy supplied by the HTF with a significant 

contribution from latent heat. Furthermore, if the operational temperature range of the 

system was reduced, the percentage of latent heat energy stored would vastly increase.  

 As the purpose of a TES systems is to store useful work and not just simply 

store energy, a second law analysis must be conducted along with a first law analysis 

to truly evaluate the performance of the system. Six systems were numerically studied 

to determine if employing a multi-PCM system is beneficial to the overall 

performance. In addition to their performance during the charging and discharging 

process, the overall cycle efficiency of the system was also considered. The overall 

cycle efficiency is dependent on the temperature change of the HTF and thus a smaller 

change leads to an increase in efficiency. This also increases the amount of energy that 

is stored through latent heat. The latent heat-based systems were able to store vastly 

more energy and exergy than the sensible heat only system at comparable efficiencies. 

With the exception of the NaNO2 system, the multi-PCM systems offered an 

improvement over single PCM systems. The notable performance of the NaNO2 

system is due to its high energy storage density and the high heat transfer rate resulting 

from the large temperature difference between the inlet and melting temperatures.  
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 The exceptional performance of the NaNO2 systems is overshadowed by its 

dismal performance during the discharging process emphasizing the importance of 

looking at the overall cycle efficiency. The HTF was only able to recover 88% of the 

energy and exergy that was stored in the capsules. The HTF is able to recover 92% of 

the energy stored in the NaNO3 systems while all of the energy and exergy was 

recovered in the remaining systems. In addition to the overall efficiency, it amount of 

energy stored and the exergy content at the end of charging should be considered 

when determining the highest performing system. The 2-PCM system has the highest 

exergy content at the end of the charging process and coupled with its cycle efficiency 

makes it the best suited system for the chosen operating conditions. While these 

results indicate that a multi-PCM system is more efficient than a single-PCM system, 

care must be taken as to the difference between the inlet conditions and the melting 

points of the PCMs as they highly impact the overall results. Therefore further 

research is required to determine the optimal operating conditions and PCM properties 

to yield the most efficient system.  

 In addition to the numerical investigations conducted, the use of eutectic 

materials in the Na2O-B2O3 system as PCMs for high temperature applications was 

experimentally evaluated. These metallic oxides have a higher energy storage density 

at comparable melting temperatures to the commonly investigated nitrate and chloride 

salts while being less corrosive. Although the initial calorimetry testing of the 

Na4B2O5 samples did not go as expected further investigation via EDS, DSC, and 

XRD revealed the initial composition of the material was off from the eutectic point 

due to sodium evaporation and therefore an incongruently melting material formed. 
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Since all of the experiments took place below the liquidus temperature of the material, 

the samples did not undergo a complete phase change leading to the high initial 

experimental error. The experimental energy analysis was modified to account for the 

partial melting of the sample and this significantly reduced the discrepancy between 

the experimental and theoretical energy storage to within the ±2% precision of the 

system. These results show that the eutectic materials in the Na2O-B2O3 system and 

other metallic oxides have the potential to revolutionize the technology of EPCM-

based latent heat TES. However additional extensive research is required before the 

materials can be used at operational CSP plants.  

 The results of the research presented here greatly advance the technology of 

latent heat-based TES systems. However, additional investigations are required to 

optimize the operating conditions of EPCM-based TES systems and increase their 

overall efficiency. Additionally, research into new novel high temperature materials 

such as metallic oxides is required to not only decrease the overall system size but also 

increase the lifetime of the systems. This additional research coupled with the results 

presented will allow for EPCM-based latent heat TES system to be integrated into 

operational CSP plants and reduce the levelized cost of electricity making grid scale 

electricity generation via solar thermal power competitive with current fossil fuel 

based-systems.   
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