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Abstract

In the first part of this dissertation, we develop some basic principles to investigate per-

formance deterioration of dynamical networks subject to external disturbances. First, we

propose a graph-theoretic methodology to relate structural specifications of the coupling

graph of a linear consensus network to its performance measure. Moreover, for this class

of linear consensus networks, we introduce new insights into the network centrality based

not only on the network graph but also on a more structured model of network uncer-

tainties. Then, for the class of generic linear networks, we show that the H2-norm, as

a performance measure, can be tightly bounded from below and above by some spectral

functions of state and output matrices of the system. Finally, we study nonlinear autocat-

alytic networks and exploit their structural properties to characterize their existing hard

limits and essential tradeoffs.

In the second part, we consider problems of network synthesis for performance enhance-

ment. First, we propose an axiomatic approach for the design and performance analysis

of linear consensus networks by introducing a notion of systemic performance measure.

We build upon this new notion and investigate a general form of combinatorial prob-

lem of growing a linear consensus network via minimizing a given systemic performance

measure. Two efficient polynomial-time approximation algorithms are devised to tackle

this network synthesis problem. Then, we investigate the optimal design problem of dis-

1



tributed system throttlers. A throttler is a mechanism that limits the flow rate of incoming

metrics, e.g., byte per second, network bandwidth usage, capacity, traffic, etc. Finally, a

framework is developed to produce a sparse approximation of a given large-scale network

with guaranteed performance bounds using a nearly-linear time algorithm.
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Chapter 1

Introduction

In dynamical networks, improving the global performance and robustness to exogenous

disturbances are critical for sustainability and energy efficiency in engineered infrastruc-

tures; examples include formation control of a group of autonomous vehicles, distributed

emergency response systems, interconnected transportation networks, energy and power

networks, metabolic pathways, cloud-based services, and sociotechnical networks [2–9].

One of the outstanding analysis problems in the context of dynamical networks is to

investigate and characterize their intrinsic fundamental limits and tradeoffs on global per-

formance. Providing solutions to this important challenge will enable us to develop un-

derpinning principles to design efficient-by-design dynamical networks.

There are several related work in the literature that address performance and robust-

ness issues in noisy linear consensus networks; for example see [2, 9–17] and the refer-

ences therein. In [2], the authors investigate the deviation from the mean of states of a

network on tori with additive noise inputs. The performance and robustness of networks

on tori are analyzed in [10], in which the effect of imperfect communication links is con-

sidered. A rather comprehensive performance analysis of noisy linear consensus networks

with arbitrary graph topologies has been recently reported in [12]. In [9, 17], the authors
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consider the H2 performance measure for a class of consensus networks with exogenous

inputs in the form of process and measurement noises. The proposed analysis method

in [9,17] applies the edge agreement protocol by considering a minimal realization of the

edge interpretation system for simple unweighted coupling graphs.

This dissertation consists of two parts (see Figure 1.1). In Part I, we investigate perfor-

mance deterioration of dynamical networks subject to external disturbances and related

fundamental limits and tradeoffs. The issue of fundamental limits and their tradeoffs in

large-scale interconnected dynamical systems lies at the very core of distributed feedback

control systems theory as it reveals what is achievable, and conversely what is not achiev-

able by distributed feedback control laws. In Part II, we consider problems of network

synthesis for performance enhancement. Performance improvement in interconnected

networks of coupled dynamical systems as well as reducing their design complexity by

sparsifying their underlying coupling structures are two of the important design issues,
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which have been subject of active research in past few years [4, 6, 18–23].

In Sections 1.1 and 1.2, we provide an overview of Parts I and II, respectively.

1.1 Performance Analysis and Tradeoffs (Part I)

The recent interest in understanding fundamental limitations of feedback in complex in-

terconnected dynamical networks from biological systems and physics to engineering and

economics has created a paradigm shift in the way systems are analyzed, designed, and

built. Typical examples of such complex networks include metabolic pathways [24], ve-

hicular platoons [25–29], arrays of micro-mirrors [30], micro-cantilevers [31], and smart

power grids. These systems are diverse in their detailed physical behavior. However, they

share an important common feature that all of them consist of an interconnection of a

large number of systems. There have been some progress in characterization of funda-

mental limitations of feedback in this class of systems. For example, only to name a few,

reference [32] gives conditions for string instability in an array of linear time-invariant

autonomous vehicles with communication constraints, [33] provides a lower bound on

the achievable quality of disturbance rejection using a decentralized controller for stable

discrete time linear systems with time delays, [34] studies the performance of spatially

invariant plants interconnected through a static network.

In what follows in this section, we describe our contribution in each chapter of Part I.

Chapter 2

In this chapter, we are particularly interested in the class of first-order linear consensus

networks that are driven by exogenous stochastic disturbance inputs. We quantify inher-

ent fundamental limits on the best achievable levels of performance in such networks and

5



show how the performance of a network in this class depends on the topology of the un-

derlying coupling graph. The topology of the underlying coupling graph of a consensus

network depends on the coupling structure among the subsystems, which are usually im-

posed by governing physical laws and/or global objectives. We consider linear consensus

networks that are operating in closed-loop, i.e., networks that have been already stabilized

by a linear state feedback control law. In some applications such as formation control of

autonomous vehicles, sparsity pattern of the underlying information structure in the con-

troller array determines communication requirements among the vehicles, and as a result,

it defines the sparsity pattern of the coupling graph topology of the closed-loop network.

In Section 2.4, the steady state variance of the output of a noisy consensus network

is adopted as a performance measure to quantify performance deterioration of the net-

work. This performance measure is equal to the square of the H2-norm of the network

from the disturbance input to the output [5]. There have been several recent studies on

the H2-based performance analysis of linear consensus networks [2, 5, 11, 17, 35–38] and

references in there. The H2-norm of a system can be interpreted as a macroscopic perfor-

mance measure, that captures the notion of coherence in dynamical networks [2].

Our first contribution shows that how the performance measure scales with the net-

work size. For consensus networks with unweighted coupling graphs, it is shown that the

performance measure is Ω(n) for networks with “fairly” sparse interconnection topolo-

gies such as tree and unicyclic graphs1, where n is the network size. The performance

measure scales in order of Ω(1) for networks with “fairly” dense graphs such as com-

plete bipartite and complete graphs. In the worst case, the performance measure scales

1We employ the big omega notation in order to generalize the concept of asymptotic lower bound in

the same way as O generalizes the concept of asymptotic upper bound. We adopt the following definition

according to [39]:

f(n) = Ω(g(n)) ⇔ g(n) = O(f(n)), (1.1)

where O represents the big O notation. In the left hand side of (4.1), the Ω notation implies that f(n) grows

at least of the order of g(n).
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in order of O(n2), where networks with path-like graphs experience the worst levels of

performance. Our second contribution is to reveal the importance of the graph topology

in emergence of fundamental limits on the best achievable values for the performance

measure. In Section 2.5, we prove that by subsuming more detailed graph specifications

in our calculations, tighter lower bounds can be obtained for the best achievable values of

the performance measure. In order to verify meaningfulness of our theoretical results, we

performed extensive simulations and the results assert that our theoretical lower bounds

are tighter for networks with rather dense coupling graphs. The impacts of the presented

fundamental limits usually appear as intrinsic interplays between the performance mea-

sure and various sparsity measures in linear consensus networks. In our third contribution

that is discussed in Section 2.6, we formulate several uncertainty-principle-like inequal-

ities which assert that networks with more sparse coupling graphs incur higher levels of

performance loss. The results presented in this chapter have been published in [12].

Chapter 3

In this chapter, we consider a class of noisy consensus networks that can be completely

characterized by their coupling graphs and the structure of their noise inputs. The H2-

norm square of the noisy network is used as the performance measure– we refer to

[2, 4, 5, 10, 37, 38, 40] for related discussions. Motivated by realistic uncertain opera-

tional environment for a network with consensus dynamics (e.g., see [41]), six noise

structures are investigated in this work. Uncertainties can arise from noisy dynamics,

sensors, emitters, receivers, communication channels, and measurements. To the best of

our knowledge, with an exception of the dynamics noise, the comprehensive analysis of

performance measures with closed-form formulae for different types of noise for an ar-

bitrary weighted graph has not been carried out previously in the literature. Our results
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show that the impact of all these uncertainties can be encapsulated in the structure of the

input matrix. Our main contribution is the introduction of a new class of agent and link

centrality indices with respect to the adopted performance measure. The key idea is to

measure the infinitesimal change in the value of the performance measure with respect to

the variance of the noise input. For all of the six noise structures, we calculate explicit

formulae for the centrality indices and show how they depend on the topology of the cou-

pling graph of the network. In Section 3.7, we discuss that for each noise structure all

agents or links can be ranked in ascending order according to the value of the correspond-

ing centrality index. As a result, every node has four different rankings and each link has

two different rankings. It is argued that modification of the underlying coupling graph of

the network (for example by rewiring, weight adjustment, sparsification, and adding new

links) may result in emergence of fundamental tradeoffs among these rankings. Several

supporting numerical simulations are shown in Section 3.8 to illustrate the key point that

centrality rank of an agent or link may significantly be different with respect to various

noise structures. The results presented in this chapter have been published in [42].

Chapter 4

In this chapter, we derive explicit lower and upper bounds for this performance mea-

sure. Our proposed bounds are spectral functions of state and output matrices of the

system. Furthermore, our proposed bounds are utilized to quantify bounds on the H2-

norm squared of some network models with specific dynamical structures, e.g., systems

with normal state matrices, linear consensus networks with directed graphs, and cyclic

linear networks with negative feedback. As an important application, our results are ap-

plied to a general class of linear consensus networks over directed graphs. Most recent

studies [2, 43] investigate the performance of noisy linear consensus networks over undi-
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rected graphs. We prove that our performance bounds are tight if the underlying directed

graph of the networks is strongly connected and balanced. Moreover, we apply our results

to a class of cyclic networks with asymmetric structures. These networks has been used

to model certain biochemical pathways [44]. We particularly show how the H2-norm of

a cyclic linear dynamical network scales with the network size. It is shown that when all

subsystems are identical, the network attains the best achievable performance among all

cyclic networks with the same secant criterion. Finally, we compare our proposed bounds

to all existing bounds in the literature and use some numerical simulations to show that

our bounds are tighter than all previously reported bounds in [45–47]. The results pre-

sented in this chapter have been published in [48].

Chapter 5

In this chapter, our goal is to build upon our previous results [49,50] and develop methods

to characterize hard limits on performance of autocatalytic pathways. First, we study the

properties of such pathways through a two-state model, which obtained by lumping all the

intermediate reactions into a single intermediate reaction (Figure 5.1). Then, we general-

ize our results to autocatalytic pathways, which are composed of a chain of enzymatically

catalyzed intermediate reactions (Figure 5.2). We show that due to the existence of au-

tocatalysis in the system (which is necessary for survival of the pathway), a fundamental

tradeoff between fragility and net product of the pathway emerges. Also, we show that as

the number of intermediate reactions grows, the price for performance increases.

The results presented in this chapter are based on [51].
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1.2 Network Synthesis for Performance Enhancement (Part

II)

Improving global performance as well as robustness to external disturbances in large-scale

dynamical networks are crucial for sustainability, from engineering infrastructures to liv-

ing cells; examples include a group of autonomous vehicles in a formation, distributed

emergency response systems, interconnected transportation networks, energy and power

networks, metabolic pathways and even financial networks. One of the fundamental prob-

lems in this area is to determine to what extent uncertain exogenous inputs can steer the

trajectories of a dynamical network away from its working equilibrium point. To tackle

this issue, the primary challenge is to introduce meaningful and viable performance and

robustness measures that can capture essential characteristics of the network. A proper

measure should be able to encapsulate transient, steady-state, macroscopic, and micro-

scopic features of the perturbed large-scale dynamical network. To do so, in the first

chapter of Part II, we introduce the notion of systemic performance measures. We briefly

outline our contributions and the structure of each chapter in Part II as follow.

Chapter 6

In the first chapter of this part, we propose a new methodology to classify proper per-

formance measures for a class of linear consensus networks subject to external stochastic

disturbances. We take an axiomatic approach to quantify essential functional properties of

a sensible measure by introducing the class of systemic performance measures and show

that this class of measures should satisfy monotonicity, convexity, and orthogonal invari-

ance properties. It is shown that several existing and widely used performance measures

in the literature are in fact special cases of this class of systemic measures [9,11,19,38,52].
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The first main contribution of this chapter is introduction of a class of systemic perfor-

mance measures that are spectral functions of Laplacian eigenvalues of the coupling graph

of a linear consensus network. Several gold-standard and widely used performance mea-

sures belong to this class, for example, to name only a few, spectral zeta function, Gamma

entropy, expected transient output covariance, system Hankel norm, convergence rate to

consensus state, logarithm of uncertainty volume of the output, Hardy-Schatten system

norm or Hp-norm, and many more. All these performance measures are monotone, con-

vex, and orthogonally invariant. Our main goal is to investigate a canonical network

synthesis problem: growing a linear consensus network by adding new interconnection

links to the coupling graph of the network and minimizing a given systemic performance

measure. In the context of graph theory, it is known that a simpler version of this combi-

natorial problem, when the cost function is the inverse of algebraic connectivity, is indeed

NP-hard [53]. There have been some prior attempts to tackle this problem for some

specific choices of cost functions (i.e., total effective resistance and the inverse of alge-

braic connectivity) based on semidefinite programing (SDP) relaxation methods [54, 55].

There is a similar version of this problem that is reported in [56], where the author stud-

ies convergence rate of circulant consensus networks by adding some long-range links.

Moreover, a continuous (non-combinatorial) and relaxed version of our problem of in-

terest has some connections to the sparse consensus network design problem [6, 57, 58],

where they consider ℓ1-regularized H2-optimal control problems. There are some related

works [23, 59], it is shown that some metrics based on controllability and observabil-

ity Gramians are modular or submodular set functions, where they show their proposed

simple greedy heuristic algorithms have guarantees suboptimality bounds.

In our second main contribution, we propose two efficient polynomial-time approx-

imation algorithms to solve the above mentioned combinatorial network synthesis prob-
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lem: a linearization-based method and a simple greedy algorithm based on rank-one up-

dates. Our complexity analysis asserts that computational complexity of our proposed

algorithms are reasonable and make them particularly suitable for synthesis of large-scale

consensus networks. To calculate sub-optimality gaps of our proposed approximation al-

gorithms, we quantify the best achievable performance bounds for the network synthesis

problem in Section 6.7. Our obtained fundamental limits are exceptionally useful as they

only depend on the spectrum of the original network and they can be computed a priori. In

Subsection 6.9.2, we classify a subclass of differentiable systemic performance measures

that are indeed supermodular. For this subclass, we show that our proposed simple greedy

algorithm can achieve a (1− 1/e)-approximation of the optimal solution of the combina-

torial network synthesis problem. Our extensive simulation results confirm effectiveness

of our proposed methods.

The results presented in this chapter are based on [60].

Chapter 7

In this chapter, our goal is to develop a unified framework for analysis and design of

discrete-time distributed rate-limiting systems with a local aggregated view of usage met-

rics. We investigate performance deterioration (e.g., over-throttling, mismatch, conver-

gence rate) of DSTs with respect to external uncertainties and the update cycle of servers.

We develop a graph-theoretic framework to relate the underlying structure of the sys-

tem to its overall performance measure. We then compare the performance/robustness

of DSTs with different topologies. In this work, in addition to the overall performance

measure for a network, each node has its own performance measure, which is one of the

main differentiators between this work and some other related work [2, 12, 42, 61].

The rest of this chapter is organized as follows. In Section 7.3, we present some basic
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mathematical concepts and notations employed in this chapter. In Section 7.4, we define

and study a distributed system throttler (DST). In Section 7.5, we evaluate the overall

performance of a DST with a given nodal performance measure. In Section 6.9, we focus

on throttling algorithms which are used by servers. In Section 7.7, we study the impact

of the server update cycle on performance. In Section 7.8, two synthesis problems are

studied. In Section 7.9, some numerical results are demonstrated. In Section 7.10, we

conclude our work and suggest directions for future research.

The results presented in this chapter are based on [62].

Chapter 8

In this chapter, we specifically address the following network design problem: given a

linear consensus network with an undirected connected underlying graph, the network

sparsification problem seeks to replace the coupling graph of the original network with

a reasonably sparser subgraph so that the behavior of the original and the sparsified net-

works is similar in an appropriately defined sense. Such situations arise frequently when

real-world large-scale dynamical networks need to be simulated, controlled or redesigned

using efficient computational tools that are specifically tailored for optimization problems

with sparse structures. We develop a general methodology that computes sparsifiers of a

given consensus network using a nearly-linear time Õ(m)2 algorithm with guaranteed

systemic performance bounds, where m is the number of links. Unlike other existing

work on this topic in the literature, our proposed framework: (i) works for a broad class

of systemic performance measures including H2-based performance measures, (ii) does

not involve any sort of relaxations such as ℓ0 to ℓ1, (iii) provides guarantees for the ex-

2We use Õ(.) to hide poly log log terms from the asymptotic bounds. Thus, f(n) ∈ Õ (g(n)) means

that there exists k > 0 such that f(n) ∈ O
(

g(n) logk g(n)
)

.
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istence of a sparse solution, (iv) can partially sparsify predetermined portions of a given

network; and most importantly, (v) gives guaranteed systemic performance certificates.

While our approach is relied on several existing works in algebraic graph theory

[63, 64], our control theoretic contributions are threefold. First, we show that every given

linear consensus network has a sparsifier network such that the two networks yield com-

parable performances with respect to any systemic performance measure. Second, we

develop a framework to find a sparse approximation of large-scale consensus networks

using a fast randomized algorithm. We note that while the coupling graph of the sparsi-

fied network is a subset of the coupling graph of the original network, the weights of links

(the strength of each coupling) in the sparsified network are adjusted accordingly to reach

predetermined levels of systemic performance. Third, we prove that our development can

also be applied for partial sparsification of large-scale networks, which means that we can

sparsify a prespecified subgraph of the original network to find an approximation of the

network with fewer links. This is practically plausible as our algorithm can be spatially

localized, if necessary, and it does not require to receive information of the entire coupling

graph of the network.

The results presented in this chapter are based on [65].
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Performance Analysis and Tradeoffs
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Chapter 2

Fundamental Limits and Tradeoffs in

Linear Consensus Networks

2.1 Abstract

We investigate performance deterioration in linear consensus networks subject to external

stochastic disturbances. The expected value of the steady state dispersion of the states of

the network is adopted as a performance measure. We develop a graph-theoretic method-

ology to relate structural specifications of the coupling graph of a linear consensus net-

work to its performance measure. We explicitly quantify several inherent fundamental

limits on the best achievable levels of performance and show that these limits of perfor-

mance are emerged only due to the specific coupling topology of the coupling graphs.

Furthermore, we discover some of the inherent fundamental tradeoffs between notions of

sparsity and performance in linear consensus networks.
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2.2 Introduction

In this chapter, we are particularly interested in the class of first-order linear consensus

networks that are driven by exogenous stochastic disturbance inputs. We quantify inherent

fundamental limits on the best achievable levels of performance in such networks and

show how the performance of a network in this class depends on the topology of the

coupling graph. The topology of the coupling graph of a consensus network depends on

the coupling structure among the subsystems, which are usually imposed by governing

physical laws and/or global objectives. We consider linear consensus networks that are

operating in closed-loop, i.e., networks that have been already stabilized by a linear state

feedback control law. In some applications such as formation control of autonomous

vehicles, sparsity pattern of the information structure in the controller array determines

communication requirements among the vehicles, and as a result, it defines the sparsity

pattern of the topology of the coupling graph of the closed-loop network.

In Section 2.4, the steady state variance of the output of a noisy consensus network is

adopted as a performance measure to quantify performance deterioration of the network.

This performance measure is equal to the square of the H2-norm of the network from the

disturbance input to the output [5]. Our first contribution shows that how the performance

measure scales with the network size. For consensus networks with unweighted coupling

graphs, it is shown in Section 2.5 that the performance measure is Ω(n) for networks with

“fairly” sparse interconnection topologies such as tree and unicyclic graphs, where n is

the network size. The performance measure scales in order of Ω(1) for networks with

“fairly” dense graphs such as complete bipartite and complete graphs. In the worst case,

the performance measure scales in order of O(n2), where networks with path-like graphs

experience the worst levels of performance. Our second contribution is to reveal the im-

portance of the graph topology in emergence of fundamental limits on the best achievable
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values for the performance measure. In Section 2.5, we prove that by subsuming more

detailed graph specifications in our calculations one can obtain tighter lower bounds for

the best achievable values of the performance measure. In order to verify meaningfulness

of our theoretical results, we performed extensive simulations and the results assert that

our theoretical lower bounds are tighter for networks with rather dense coupling graphs

(see Figures 2.4-2.6 for more details). The impacts of the presented fundamental limits

usually appear as intrinsic interplays between the performance measure and various spar-

sity measures in linear consensus networks. In our third contribution that is discussed in

Section 2.6, we formulate several uncertainty-principle-like inequalities that assert that

networks with more sparse coupling graphs incur higher levels of performance loss.

2.3 Mathematical Notations

Matrix Theory: The set of all nonnegative real numbers is denoted by R+. The n × 1

vector of all ones is denoted by 1n, the n × n identity matrix by In, the m × n zero

matrix by 0m×n, and the n× n matrix of all ones by Jn. We will eliminate subindices of

these matrices whenever the corresponding dimensions are clear from the context. The

centering matrix of size n is defined by Mn := In − 1
n
Jn. The transposition of matrix A

is denoted by AT and the Moore-Penrose pseudo-inverse of matrix A by A†. For a square

matrix A, Tr(A) refers to the summation of on-diagonal elements of A. The following

definitions are from [66].

Definition 2.3.1. For every x ∈ Rn
+, let us define x↓ to be a vector whose elements are

a permuted version of elements of x in descending order. We say that x majorizes y,

which is denoted by x ☎ y, if and only if 1Tx = 1

Ty and
∑k

i=1 x
↓
i ≥ ∑k

i=1 y
↓
i for all

k = 1, . . . , n− 1.
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The vector majorization is not a partial ordering. This is because from relations x☎ y

and y ☎ x one can only conclude that the entries of these two vectors are equal, but

possibly with different orders. Therefore, relations x☎ y and y ☎ x do not imply x = y.

Definition 2.3.2. The real-valued function F : Rn
+ → R is called Schur–convex if F (x) ≥

F (y) for every two vectors x and y with property x☎ y.

Graph Theory: Throughout this chapter, we assume that all graphs are finite, simple,

and undirected. A weighted graph G is represented by a triple G = (VG , EG, wG), where

VG is the set of nodes, EG ⊆
{
{i, j}

∣
∣ i, j ∈ VG , i 6= j

}
is the set of edges, and wG :

EG → R+ is the weight function. An unweighted graph G is a graph with constant weight

function wG(e) ≡ 1 for all e ∈ EG . For each i ∈ VG , the degree of node i is defined by

di :=
∑

e={i,j}∈EG wG(e). The sum of all edge weights in graph G is denoted by W (G).

The adjacency matrix AG = [aij ] of graph G is defined by setting aij = wG(e) if e =

{i, j} ∈ EG , otherwise aij = 0. The Laplacian matrix of G is defined by LG := DG −AG ,

whereDG = diag(d1, . . . , dn) is a diagonal matrix. The eigenvalues of a Laplacian matrix

LG are indexed in ascending order 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. If G is connected, then

λ2 > 0. The class of all connected unweighted graphs with n nodes is denoted by Gn

and GW
n represents the set of all connected weighted graphs with n nodes. The centering

graph is a complete graph with Laplacian matrix Mn and is denoted by Mn.

For comparison purposes throughout the chapter, we consider some of the standard

graphs such as complete graph Kn, star graph Sn, cycle graph Cn, path graph Pn, bipartite

graph Bn1,n2 , and complete bipartite graph Kn1,n2 . Every one of these graphs has its own

comparable characteristics. For instance, among all graphs in Gn a complete graph has

the maximum number of edges and a star graph has the maximum number of nodes with

degree one. A path graph is a tree with minimum number of nodes of degree one. We

refer to reference [67] for more details and discussions. A tree is a connected graph on n
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nodes with exactly n− 1 edges. A unicyclic graph is a connected graph with exactly one

cycle. A d-regular graph is a graph where all nodes have identical degree d. A subgraph

F of a graph G is a spanning subgraph if it has the same node set as G. An edge is called

a cut-edge whose deletion increases the number of connected components.

For a given Laplacian matrix LG , the corresponding resistance matrix RG = [rij ] is

defined using the Moore-Penrose pseudo-inverse of LG by setting rij = l†ii+ l
†
jj − l†ji− l†ij ,

where L†
G = [l†ij ]. The quantity rij is so called the effective resistance between nodes i

and j. Finally, the total effective resistance rtotal is defined as the sum of the effective

resistances between all distinct pairs of nodes, i.e.,

rtotal =
1

2
1

T
nRG1n =

1

2

n∑

i,j=1

rij. (2.1)

2.4 Linear Consensus Networks and their Performance

Measures

We consider a class of first-order consensus (FOC) networks whose dynamics are de-

fined over coupling graphs G = (VG , EG, wG) with n nodes. For this class of networks,

each node corresponds to a subsystem with a scalar state variable and the interconnection

topology between these subsystems is defined by the coupling graph G. The state of the

entire network is represented by x = [x1, x2, . . . , xn]
T

where xi is the state variable

of subsystem i for all i = 1, . . . , n. The dynamics of this class of FOC networks are

governed by

N (LG;LQ) :







ẋ = − LGx + ξ

y = CQx

, (2.2)
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where x is the vector of state variables, ξ is an exogenous white Gaussian noise with zero-

mean and identity covariance matrix, y is the performance output of the network, LG is

the Laplacian matrix of G, and CQ is the output matrix of the network.

Definition 2.4.1. A given graph Q = (VQ, EQ, wQ) is the output graph of a linear con-

sensus network N (LG ;LQ) if Q admits

LQ := CT
QCQ (2.3)

as its Laplacian matrix.

The output graph Q exists if the output matrix CQ has zero row sums. In general,

the output graph can be a disconnected graph with real-valued edge weights. The output

graphs help us to better understand how the specific choice of performance output will af-

fect a given performance measure. We adopt the following class of performance measures

that are defined using the performance outputs.

Definition 2.4.2. Suppose that Q is an output graph of N (LG ;LQ). The performance

measure of N (LG ;LQ) is defined as the steady state variance of the performance output

of the network, i.e.,

ρss(LG ;LQ) := lim
t→∞

E
[
y(t)Ty(t)

]
. (2.4)

In order to ensure that (2.4) is well-defined, marginally stable and unstable modes

of N (LG;LQ) must be unobservable from the performance output y. The following two

assumptions are made for this reason.

Assumption 2.4.3. For all networks N (LG ;LQ) in this chapter, it is assumed that Q is

an output graph according to Definition 2.4.1.
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According to this assumption, LQ is the Laplacian matrix of the output graph Q.

Examples of admissible output matrices include incidence and centering matrices. When

the output matrix is the centering matrix, i.e., CQ = Mn, the corresponding output graph

is a centering graph, i.e., Q = Mn.

Assumption 2.4.4. For all N (LG ;LQ) networks in this chapter, the corresponding cou-

pling graph G is assumed to be connected.

Based on Assumption 6.3.5, one can verify that consensus network N (LG;LQ) has

only one marginally stable mode with eigenvector 1 and all other modes are stable. The

marginally stable mode is unobservable from the performance output y, because the out-

put matrix of the network satisfies CQ1 = 0. Therefore, the performance measure (2.4)

is well-defined (cf. [2, Sec. III]).

The performance measure (2.4) quantifies the performance of the network in the aver-

age. This is because (2.4) is indeed equivalent to the square of the H2–norm of the system

from the exogenous noise input to the performance output [2, 11, 17, 36]. When there is

no exogenous noise input, the steady state of N (LG ;LQ) converges to the consensus state

and the value of the performance measure becomes zero. In the following, we quantify

performance measure (2.4) for the class of FOC networks.

Theorem 2.4.5. For a given network N (LG ;LQ), the performance measure (2.4) can be

quantified as

ρss(LG ;LQ) =
1

2
Tr(LQL

†
G), (2.5)

where L†
G is the Moore–Penrose pseudo inverse of LG .

Proof. Let us define the disagreement vector by [20]

xd(t) := Mnx(t) = x(t)− 1

n
Jnx(t). (2.6)
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By multiplying a vector by the centering matrix, we actually subtract the mean of all the

entries of the vector from each entry. The dynamics of N (LG ;LQ) with respect to the

new state transformation (8.16) is so called disagreement form of the network, which is

given by

Nd(LGd
;LQ) :







ẋd = −LGd
xd +Mnξ

y = CQxd

in which LGd
= LG +

1
n
Jn and the new state matrix is indeed stable. One can easily verify

that the transfer functions from ξ to y in both networks N (LG ;LQ) and Nd(LGd
;LQ) are

identical. Therefore, the H2–norm of the system from ξ to y in both representations are

well-defined and equivalent. Let us consider the integral form of the output of network

Nd(LGd
;LQ) as follows

y(t) = CQ

∫ t

0

e−LGd
(t−τ)Mnξ(τ)dτ. (2.7)

By substituting y(t) from (2.7) in (2.4), calculating the expected value, and finally taking

the limit, the value of the performance measure can be calculated using the trace formula

Tr(PcLQ), where matrix Pc is the controllability Gramian of the disagreement network

Nd(LGd
;LQ) and it is the solution of the Lyapunov equation

LGd
Pc + PcLGd

−Mn = 0.

Since −LGd
is stable, the above Lyapunov equation has a unique positive definite solution

[68, Th. 7.11]. Using the fact that L†
GLGd

= LGd
L†
G = Mn, we get Pc = 1

2
L†
G and the

desired result follows.

If the output graph is a centering graph, then the performance measure (2.5) reduces
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(a) (b) (c)

Figure 2.1: This figure illustrates the results of Theorems 2.5.1 and 2.5.2 for the following ex-

treme cases. The performance measure (2.10) is (a) maximal for P5 among all graphs as well as

among all trees in G5, (b) minimal for S5 among all trees in G5, and (c) minimal for K5 among

all graphs in G5.

to

ρss(LG ;Mn) =
1

2
Tr(L†

G) =
1

2

n∑

i=2

λ−1
i , (2.8)

where λi for i = 2, . . . , n are nonzero eigenvalues of LG and λ1 = 0 according to As-

sumption 6.3.5.

Remark 2.4.6. The performance measure (2.5) relates to the concept of coherence in

consensus networks and the expected dispersion of the state of the system in steady state

[2,11]. It also has close connections to the total effective resistance of graph G as follows

ρss(LG ;Mn) =
1

2n
rtotal, (2.9)

where the total effective resistance of G is given by rtotal = n
∑n

i=2 λ
−1
i ; we refer to [2,69]

for more details.
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2.5 Fundamental Limits on the Performance Measure

We evaluate the performance of the class of FOC networks (2.2) with respect to the cen-

tering output graph with the following corresponding performance measure

ρss(LG ;Mn) =
1

2

n∑

i=2

λ−1
i . (2.10)

In this section, several scenarios are investigated in order to reveal the important role of

the coupling graphs of FOC networks on emergence of fundamental limits on (2.10).

2.5.1 Universal Bounds and Scaling Laws

The following result presents universal lower and upper bounds for the best and worst

achievable values for (2.10) among all FOC networks with arbitrary unweighted coupling

graphs.

Theorem 2.5.1. For a given FOC network with an unweighted coupling graph G ∈ Gn,

the performance measure (2.10) is bounded by

1

2
− 1

2n
≤ ρss(LG ;Mn) ≤ n2 − 1

12
. (2.11)

Furthermore, the lower bound is achieved if and only if G = Kn, and the upper bound is

reached if and only if G = Pn.

Proof. We use the result of Theorem 2.6.1 that implies that for any graph G with n nodes,

we have ρss(LG ;Mn) ≥ ρss(LKn;Mn), because graph G is always a subgraph of Kn. A

straightforward computation shows that ρss(LKn ;Mn) = n−1
2n

. On the other hand, every

connected graph G contains a spanning tree T . Using Theorem 2.6.1 and the fact that T is

a subgraph of G, we get ρss(LG ;Mn) ≤ ρss(LT ;Mn). Moreover, Theorem 2.5.2 provides
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an upper bound for ρss(LT ;Mn), which is valid for all trees T . Hence, this upper bound

provides the desired upper bound.

The bounds in inequalities (2.11) only depend on the network size and it is assumed

that nothing specific is known about the interconnection topology of the network. These

bounds can be tightened if we consider more specific subclasses of graphs. In the follow-

ing three theorems, we improve upon the bounds in Theorem 2.5.1 for three important

classes of graphs.

Theorem 2.5.2. For a given FOC network with an unweighted tree coupling graph T ∈

Gn and n ≥ 5, the performance measure (2.10) is bounded by

(n− 1)2

2n
≤ ρss(LT ;Mn) ≤ n2 − 1

12
. (2.12)

Moreover, the lower bound is achieved if and only if T = Sn and the upper bound is

achieved if and only if T = Pn.

Proof. We consider the characteristic polynomial of the Laplacian matrix of the coupling

graph T

ΦT (λ) =
n∑

k=0

(−1)n−k ck(T )λk. (2.13)

From (6.52) and Vieta’s formulas for (2.13), it follows that

ρss (LT ;Mn) =
c2(T )

2c1(T )
. (2.14)

We also know that c1(T ) =
∏n

i=2 λi and it is equal to n for trees. Therefore, one can

rewrite (2.14) as follows

ρss (LT ;Mn) =
c2(T )

2n
. (2.15)
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One of the invariant characteristics of a graph is its Wiener number that is denoted by

W (T ) [70]. This quantity is equal to the sum of distances between all pairs of nodes of

T . It is well known that the second coefficient of the Laplacian characteristic polynomial

of a tree coincides with the Wiener number, i.e.c2(T ) = W (T ). According to this fact

and (2.15), it follows that

ρss(T ) =
W (T )

2n
. (2.16)

According to [71], if T is a tree with n nodes that is neither Pn nor Sn, then

W (Sn) < W (T ) < W (Pn). (2.17)

Furthermore, it is shown that [71]

W (Pn) =

(
n+ 1

3

)

and W (Sn) = (n− 1)2. (2.18)

From (2.16), (2.17) and (2.18), we have

(n− 1)2

2n
< ρss(LT ;Mn) <

n2 − 1

12
.

On the other hand, it follows from (2.18) and (2.16) that

ρss(LPn ;Mn) =
n2 − 1

12
and ρss(LSn ;Mn) =

(n− 1)2

2n
.

Therefore, the lower bound in (2.12) is achieved if and only if T = Sn, and the upper

bound is achieved if and only if T = Pn.

The lower bound in (2.12) implies that if the value of the performance measure for

some FOC network is strictly less than
(n−1)2

2n
, then the unweighted coupling graph of the

network must contain at least one cycle. The next result quantifies tight bounds for FOC
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(a) (b)

Figure 2.2: The unicyclic graphs that achieve the lower and upper bounds in Theorem 2.5.3: (a)

G = S(K3;K1, . . . ,K1), and (b) P(K3;K1, . . . ,K1).

networks with exactly one cycle in their coupling graphs.

Theorem 2.5.3. For a given FOC network with an unweighted unicyclic coupling graph

in Gn and n ≥ 13, the performance measure (2.10) is bounded by

(n− 1)2

2n
− 1

3
≤ ρss(LG ;Mn) ≤ n2 − 1

12
+

3

2n
− 1. (2.19)

Moreover, the lower bound is achieved if and only if G = S(K3;K1, . . . ,K1), which is a

star-like graph that is formed by replacing the center of Sn by a clique K3, and the upper

bound is achieved if and only if G = P(K3;K1, . . . ,K1), which is a path-like graph that

is formed by replacing one of the end nodes of Pn by a clique K3.

Proof. According to (2.9), the performance measure (2.10) can be expressed based on the

total effective resistance of the coupling graph G. Moreover, the total effective resistance

of a graph is the same as its Kirchhoff index. The rest of the proof is a revised version of

proof of [72, Th. 4.4]. We omit the details due to space limitations.

The lower and upper bounds in (2.19) are tight, in the sense that if the value of the

performance measure for a FOC network does not satisfy (2.19), then the coupling graph

of this network is either a tree (with no cycle) or has at least two cycles. The following

result investigates the performance of a FOC network with a bipartite coupling graph. In

this case, the network consists of two disjoint sets of nodes and the states of one set depend
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on the states of the other set and vice versa. Bipartite graphs appear in several applications

such as networks of electricity sellers and buyers [73, Ch.12], power networks [74, Sec.

2], and networks of leaders and followers agents where leaders are only influenced by

their followers and vice versa.

Theorem 2.5.4. For a given FOC network with an unweighted bipartite graph G ∈ Gn,

the performance measure (2.10) is bounded by

1− ⌊n
2
⌋

n⌈n
2
⌉ ≤ ρss(LG ;Mn) ≤ n2 − 1

12
.

Furthermore, the lower bound is achieved if and only if G = K⌊n
2
⌋,⌈n

2
⌉, and the upper

bound is achieved if and only if G = Pn, where ⌊.⌋ and ⌈.⌉ are the floor and ceiling

operators, respectively.

Proof. According to Theorem 2.5.1, a path graph Pn has the maximal level of perfor-

mance measure among all graphs with n nodes. Moreover, Pn is in fact a bipartite graph.

Therefore, we get

ρss(LG ;Mn) ≤ n2 − 1

12
.

The best achievable lower bound can be obtained by some calculations from (2.9) and the

result of [75, Th. 3.1], which provides bounds on Kirchhoff index of a bipartite graph.

The lower bound in Theorem 2.5.4 is tight. This is because if the value of the perfor-

mance measure is strictly less than 1− ⌊n
2
⌋

n⌈n
2
⌉ for a given FOC network with an unweighted

coupling graph, then the coupling graph of the network cannot be a bipartite graph.
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2.5.2 Bound Calculations via Exploiting Structure of Coupling Graphs

In the previous subsection, we derived lower and upper bounds for the performance mea-

sure of networks with unweighted graphs. These bounds are only functions of the network

size. In this subsection, we incorporate additional knowledge of graph specifications in

calculating lower and upper bounds for the performance measure. We consider five im-

portant graph specifications and extend our analysis for FOC networks with weighted and

unweighted coupling graphs.

Graph diameter and number of edges

The diameter of a graph is the largest distance between every pair of nodes in that graph.

Theorem 2.5.5. For a given FOC network with an arbitrary unweighted graph G ∈ Gn,

the performance measure (2.10) is bounded by

LG ≤ ρss(LG ;Mn) ≤ UG , (2.20)

where LG = (n−1)2

4m
and

UG =
1

2n

(

n− 1 +

[(
n

2

)

−m

]

diam(G)
)

,

where diam(G) is the diameter and m is the number of edges of G.

Proof. For the lower bound, we apply the inequality of arithmetic and harmonic means

and (6.52)

ρss (LG ;Mn) =
1

2

n∑

i=2

λ−1
i ≥ (n− 1)2

2
∑n

i=2 λi
=

(n− 1)2

4m
.
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On the other hand, using (2.9) and (2.1) for the upper bound, we get

ρss (LG ;Mn) =
1

2n

∑

i 6=j

rij =
1

2n




∑

e∈EG

re +
∑

e/∈EG

re



 . (2.21)

Moreover, based on [76, Lemma 2] for unweighted graph we have
∑

e∈EG re = n − 1.

From this fact and (2.21), it follows that

ρss (LG ;Mn) =
n− 1

2n
+

1

2n

∑

e/∈EG

re. (2.22)

We note that the distance between two nodes of graph G is less than or equal to diam(G).

Therefore, we have rij = r{i,j} ≤ diam(G). Using this fact and (2.22), we get the desired

upper bound

ρss (LG ;Mn) ≤ 1

2n

(

n− 1 +

[(
n

2

)

−m

]

diam(G)
)

.

Remark 2.5.6. We note that a star graph Sn achieves the upper bound in (2.20), which

means that among all unweighted connected graphs with diam(G) = 2 and n − 1 links

graph Sn has the maximal performance measure. Also If G = Kn, then the lower and

upper bounds in (2.20) coincide and ρss(LKn ;Mn) = n−1
2n

.

Total weight sum

The sum of all edge weights in a weighted graph G is defined by W (G) :=∑e∈EG wG(e).

Proposition 1. For a given FOC network with an arbitrary weighted coupling graph
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G ∈ G
W
n , the performance measure (2.10) is bounded from below by

ρss(LG ;Mn) ≥ (n− 1)2

4W (G) . (2.23)

Proof. It can be shown that ρss(LG ;Mn) is a Schur–convex function with respect to

[λ2, . . . , λn]
T ∈ R

n−1
++ , where λi for i = 2, . . . , n are eigenvalues of LG . On the other

hand, we have

Tr(LG)

n− 1
1

T
n−1 ✂ [λ2, . . . , λn]

T.

Therefore, according to the definition of Schur–convex functions, we can conclude in-

equality (2.23).

Number of spanning trees

A spanning subgraph of G is called a spanning tree if it is also a tree. The weighted

number of spanning trees of a connected graph G = (VG , EG, wG) is defined by

T(G) :=
∑

T

∏

e∈ET

wG(e), (2.24)

where the summation runs over all spanning trees T of G. For unweighted graphs, the

total number of spanning trees of a connected graph is an invariant graph specification.

Proposition 2. For a given FOC network with an arbitrary weighted coupling graph

G ∈ GW
n , the performance measure (2.10) is bounded from below by

ρss(LG ;Mn) ≥ n− 1

2 n−1
√

nT(G)
, (2.25)

where T(G) is the number of spanning trees of G defined by (2.24).
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Figure 2.3: A schematic graph of S(K4;K1,K1,K1) that has the minimal value of performance

measure among all graphs in G7 with exactly 3 cut edges (highlighted by red color).

Proof. By applying the inequality of arithmetic and geometric means to (6.52), we get

ρss(LG ;Mn) =
1

2

n∑

i=2

λ−1
i ≥ n− 1

2
n−1

√
√
√
√

n∏

i=2

λ−1
i . (2.26)

Using Kirchhoff’s matrix tree theorem the number of spanning trees of graph can be

expressed as T(G) = 1
n

∏n
i=2 λi. Then, using this fact and (2.26), we get the desired

lower bound.

The result of this proposition holds for general weighted connected graphs. However,

for some particular classes of unweighted connected graphs, the total number of spanning

trees can be calculated explicitly as a function of n. For example, for an unweighted

complete graph Kn the total number of spanning trees is T(G) = nn−2. In fact, the lower

bound in (2.25) is tight for weighted and unweighted graphs and it can be achieved by

complete graphs. Nonetheless, our analysis shows that the proposed lower bound in (2.25)

is not tight for the class of unweighted tree, cycle, and complete bipartite graphs. As we

discussed earlier, our results in Subsection 2.5.1 are tight for these classes of graphs.

Number of cut edges

An edge e is called a cut edge of G if removing e from G results in more than one con-

nected component. The total number of cut edges in G is denoted by κ(G).
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Theorem 2.5.7. For a given FOC network with an arbitrary unweighted coupling graph

G ∈ Gn that has κ(G) cut edges, the performance measure (2.10) is bounded from below

by

ρss(LG ;Mn) ≥ 1

2n
+
κ(G) + 1

2
− 1

n− κ(G) . (2.27)

The equality holds if and only if G = S(Kn−κ(G);K1, . . . ,K1), i.e.G is a star graph that is

formed by replacing the center of the star with a clique Kn−κ(G).

Proof. It is shown that the performance measure of (2.2) can be calculated by

ρss(LG ;Mn) =
rtotal

2n
.

Moreover, in reference [77] it is shown that the rtotal can be bounded from below as

rtotal ≥ n (κ(G) + 1) + 1− 2n

n− κ(G)

for all connected graphs with n nodes and κ(G) cut edges. The lower bound can be

achieved if and only if G = S(Kn−κ(G);K1, . . . ,K1).

For a given graph in Gn, the number of cut edges satisfies 0 ≤ κ(G) ≤ n− 1, where

a tree with n−1 cut edges has the maximum and a complete graph with zero cut edge has

the minimum number of cut edges among all graphs in Gn. A simple calculation reveals

that the lower bound in (2.27) gains its maximum value for tree and its minimum value

for complete graphs. This asserts that the lower bound in (2.27) is tight according to the

results of theorems 2.5.1 and 2.5.2.
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Degree sequence

A degree sequence is a monotonic nonincreasing sequence of the node degrees of the

coupling graph.

Theorem 2.5.8. For a given FOC network with an arbitrary weighted coupling graph

G ∈ GW
n and degree sequence

{
di
}n

i=1
, the performance measure (2.10) is bounded from

below by

ρss(LG ;Mn) ≥ ∆(G), (2.28)

where

∆(G) := max
α>0

{

− 1

nα
+

n∑

i=1

1

2di + α

}

. (2.29)

For an arbitrary unweighted coupling graph G ∈ Gn, the quantity (2.29) reduces to

∆(G) = − 1
2n

+ n−1
2n

∑n
i=1

1
di

, where the equality holds if G is a complete graph or

complete bipartite graph.

Proof. The proof is done for two different cases as follows.

Weighted graph: Let us assume that L̃G = LG + αJn and α > 0. The eigenvalues of L̃G

are nα, λ2, · · · , λn, where λi’s are eigenvalues of LG . Based on Schur–Horn theorem the

diagonal elements of L̃G are majorized by its eigenvalues. Therefore, we have

n∑

i=1

1

di + α
≤ 1

nα
+

n∑

i=2

λ−1
i . (2.30)

From the definition of ρss(LG ;Mn) and (2.30), it follows that

−1

nα
+

n∑

i=1

1

2di + α
≤ ρss (LG ;Mn) . (2.31)

Unweighted graph: Using the same idea in the proof of Theorem 2.5.5, we can rewrite
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the performance measure of (2.2) as follows

ρss(LG ;Mn) =
n− 1

2n
+

1

2n

∑

e/∈EG

re.

Note that rij = r{i,j} ≥ 1
di
+ 1

dj
. This implies that

ρss(LG ;Mn) ≥ n− 1

2n
+

1

2n

∑

{i,j}/∈EG

(
1

di
+

1

dj

)

=
−1

2n
+

n− 1

2n

n∑

i=1

1

di
.

The interested reader is referred to [78] for similar arguments.

For unweighted coupling graphs, the lower bound given by Theorem 2.5.8 is tighter

than the lower bound given by Theorem 2.5.5. For d-regular weighted coupling graphs,

the lower bound is ∆(G) = (n−1)2

2nd
. This lower bound is tight for FOC networks with

weighted coupling graphs, in the sense that the performance measure of a FOC network

with the weighted coupling graph Kn with identical edge weights d/(n − 1) meets the

lower bound.

Remark 2.5.9. In Theorem 2.5.1, it is shown that the performance measure of a FOC

network with an arbitrary unweighted coupling graph in Gn is always less than or equal

to (n2 − 1)/12. In the following, we show by means of three simple examples that the

performance measure of a FOC network with a weighted coupling graph can be made

arbitrarily large. We consider a FOC network with three nodes and path coupling graph.

The edge weights are given by w({1, 2}) = a and w({2, 3}) = 1 − a, where a > 0. For

different values of parameter a, the total sum of edge weights is equal to 1. However, we

have ρss(LG ;Mn) → ∞ as a → 0. Which implies that the performance measure cannot

be uniformly bounded from above. Now for this graph, let us change the edge weights to
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Figure 2.4: The gray shaded area depicts the value of the performance measure for all FOC

networks with coupling graphs in G
W
7 and star markers correspond to performance measures of all

FOC networks with unweighted graphs in G7. The red dashed curve portrays the lower bound in

(2.23).

w({1, 2}) = a and w({2, 3}) = a−1. According to (2.24), the total number of spanning

trees of this graph is equal to 1. It is straightforward to verify that ρss(LG ;Mn) → ∞

as a → 0. In the third scenario, let us consider a cyclic graph with four nodes and edge

weights w({1, 2}) = w({3, 4}) = a and w({2, 3}) = w({1, 4}) = 1− a. In this case, the

weighted degree sequence is d1 = d2 = d3 = d4 = 1. A simple calculation shows that

ρss(LG ;Mn) → ∞ as a→ 0. These examples explain why the performance measure of a

FOC network with a weighted coupling graph can be arbitrarily large.

2.5.3 Interpretation of Bounds as Fundamental Limits

The value of the performance measure (2.4) for linear consensus network (2.2) is equal

to the average output energy of the network when ξ(t) = 0 for all t ≥ 0 and with a white

Gaussian random initial condition x(0) that satisfies E
[
x(0)x(0)T

]
= In. In fact, it can

be shown that

ρss(A;LQ) = E

[∫ ∞

0

y(t; x(0))Ty(t; x(0))dt

]

, (2.32)
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Figure 2.5: The gray shaded area depicts the value of the performance measure for all FOC

networks with coupling graphs in G
W
7 and star markers correspond to performance measures of

all FOC networks with unweighted graphs in G7. The red dashed curve depicts the lower bound

in (2.25).

where y(t; x(0)) is the output of the linear dynamical network with respect to initial condi-

tion x(0). This relationship enables us to equivalently interpret the performance measure

(2.4) as the average energy needed to be consumed throughout the network in order to

render the state of the randomly perturbed linear dynamical network to its equilibrium

(i.e., consensus) state. Therefore, our theoretical bounds in Subsections 2.5.1 and 2.5.2

can be viewed as quantification of inherent fundamental limits on the minimum average

energy required to be dissipated in the network in order to reach the consensus state again

in steady state. The use of term fundamental (or equivalently hard) limits for lower and

upper bounds in Subsections 2.5.1 and 2.5.2 is appropriate and meaningful. The reason

is that according to our results, the performance measure of a linear consensus network

whose coupling graph has some known graph specification (e.g., number of nodes, num-

ber of spanning trees, total sum of edge weights, degree sequence, etc.) cannot be better

and worse than our theoretical lower bounds and upper bounds, respectively. The phi-

losophy behind our several results presented in Subsection 2.5.2 can be explained by
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portraying the value of performance measure for FOC networks versus various known

graph specifications. In order to conceptualize the idea, we only focus on three graph

specifications in our analysis. Figures 2.4, 2.5, and 2.6 depict the value of the perfor-

mance measures for FOC networks with coupling graphs in GW
7 . In these figures, the

points with star markers correspond to performance measures of all FOC networks with

unweighted graphs in G7. The total number of such networks are 1, 866, 256. In all three

figures, the gray shaded area above the red dashed curve corresponds to performance mea-

sures of FOC networks with weighted coupling graphs. In Figure 2.4, the performance

measure (2.10) is drawn for different values of weight sum W (G). The lower bound in

(2.23) is highlighted by a red dashed curve and it draws a fundamental limit on the best

achievable performance measures. One observes that the lower bound in (2.23) is tight

for a given value of weight sum. In fact, for a given W (G) there exists a weighted graph

with total weight sum W (G) whose performance measure reaches the exact value of the

fundamental limit
(n−1)2

4W (G) , where in this simulation n = 7. However, this lower bound is

loose for unweighted graphs. For unweighted graphs, the weight sum is equal to the total

number of edges in the coupling graph and it only assumes integer values. By exhaust-

ing all possible choices for unweighted graphs with identical number of edges in Figure

2.4, we show that there is a gap between the actual best achievable lower bound and our

theoretical fundamental limit in (2.23). It can be perceived that this gap is smaller for

denser coupling graphs. This observation suggests that our theoretical fundamental limit

in (2.23) is looser for sparse coupling graphs and have tighter gaps for dense coupling

graphs. Nevertheless, having more detailed knowledge about graph specifications helps

to close the gap. For example, the weight sums for FOC networks with tree and unicyclic

coupling graphs are equal to 6 and 7, respectively. In these cases, the actual minimum and

maximum achievable values of performance measure exactly matches with our theoretical
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Figure 2.6: The gray shaded area depicts the value of the performance measure for all FOC

networks with coupling graphs in G
W
7 and star markers correspond to performance measures of

all FOC networks with unweighted graphs in G7. The red dashed curve outlines the lower bound

in (2.28) for unweighted graphs.

fundamental limits in (2.19) and (2.12).

To summarize our discussion in this part, one can also set out similar arguments for

Figures 2.5 and 2.6 to infer that our theoretical fundamental limits in Subsection 2.5.2 are

looser for “fairly” sparse coupling graphs and have tighter gaps for dense coupling graphs.

As we discussed in Subsection 2.5.1, one can exploit the structural properties of networks

with sparse coupling graphs (e.g., trees and unicyclics) to quantify tight fundamental

limits.

2.6 Fundamental Tradeoffs Between Notions of Sparsity

and the Performance Measure

One of the design objectives for large-scale linear consensus networks is to optimize net-

work coherence by designing a coupling graph that has the best possible sparsity and

locality features. A fundamental property of performance measures (2.10) is that they
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are monotonically decreasing functions of the coupling graphs in the cone of positive

semidefinite matrices. This property implies that the value of the performance measure

increases by sparsifying the coupling graph, which is consistent with our results in Sub-

section 2.5.1. In this section, we quantify fundamental tradeoffs between the performance

measure (2.10) and sparsity measures of FOC networks. The results of the following the-

orem assert that the performance of a spanning subnetwork of a given FOC network never

outperforms the performance of the parent network.

Theorem 2.6.1. Suppose that G ∈ GW
n is the coupling graph of a given FOC network. If

F is a connected spanning subgraph of G, then

ρss(LG ;Mn) ≤ ρss(LF ;Mn), (2.33)

and the equality holds if and only if G = F .

Proof. Since graph F is a subgraph of graph G, we have the following inequality for

every x ∈ Rn:

xTLGx =
∑

e={i,j}∈EG

w(e) (xi − xj)
2

≥
∑

e={i,j}∈EF

w(e) (xi − xj)
2 = xTLFx. (2.34)

This inequality implies that LF ≤ LG , or equivalently we have L†
G ≤ L†

F . From the

linearity property of the trace operator and the fact that L†
F−L†

G is a positive semi-definite

matrix, we get

1

2
Tr(L†

F − L†
G) =

1

2
Tr(L†

F)−
1

2
Tr(L†

G)

= ρss(LF ;Mn)− ρss(LG ;Mn) ≥ 0.
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This completes the proof.

The result of this theorem implicitly asserts that adding new edges to the coupling

graph of a consensus network may improve the global performance of the network. In

the following, we identify several Heisenberg-like inequalities that quantify inherent fun-

damental tradeoffs between global performance and sparsity in FOC networks. First, we

consider the following sparsity measure

‖AG‖0 := card
{
aij 6= 0 | AG = [aij ]

}
, (2.35)

where AG is the adjacency matrix of the coupling graph G. For a given graph, the value

of this sparsity measure is equal to twice the number of the edges.

Theorem 2.6.2. For a given FOC network with an arbitrary unweighted coupling graph

G ∈ Gn, there is a fundamental tradeoff between the performance measure (2.10) and the

sparsity measure (2.35) that is characterized in the multiplicative form by the following

inequality

ρss(LG ;Mn)‖AG‖0 ≥ (n− 1)2

2
(2.36)

and in the additive form by

ρss(LG ;Mn)− 1
2
+ 1

2n

diam(G) +
‖AG‖0
4(n− 1)

≤ n

4
. (2.37)

Let us consider the class of networks with identical number of nodes and compare

several scenarios. The inequality (2.36) asserts that the best achievable values of per-

formance measure (2.10) for sparse FOC networks are comparably larger (worse) with

respect to less sparse FOC networks. For all FOC networks with identical diameters,
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inequality (2.37) implies that networks with more edges have smaller (better) values of

performance measures. Among all FOC networks with identical number of edges, the

ones with larger diameters can assume larger (worse) values of performance measures.

Theorem 2.6.3. Let us consider the class of FOC networks with arbitrary unweighted

coupling graphs in Gn and a given desired performance level ρ∗ss. Then, the sparsity

measure (2.35) for this class of networks satisfies

(n− 1)2

2ρ∗ss
≤ ‖AG‖0 ≤ (n− 1)

[

n− 4

(
ρ∗ss − 1

2
+ 1

2n

diam(G)

)]

. (2.38)

The result of this Theorem states that the graph diameter can be employed as a design

parameter to achieve a desirable level of performance and sparsity.

The second sparsity measure that we consider in this section is so called S0,1–measure

and defined by

‖AG‖S0,1 := max
{

max
1≤i≤n

‖AG(i, .)‖0, max
1≤j≤n

‖AG(., j)‖0
}

,

where AG(i, .) represents the i’th row and AG(., j) the j’th column of adjacency matrix

AG . The value of the S0,1–measure of a matrix is the maximum number of nonzero ele-

ments among all rows and columns of that matrix [79]. The S0,1–measure of adjacency

matrix of an unweighted graph is equal to the maximum node degree. The following

result quantifies an inherent tradeoff between the performance measure and this sparsity

measure.

Theorem 2.6.4. For a given FOC network with an arbitrary unweighted coupling graph

G ∈ Gn and n ≥ 3, there is a fundamental tradeoff between the performance measure
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(2.10) and the S0,1–measure that is characterized by

(

ρss(LG ;Mn) +
1

2n

)

‖AG‖S0,1 ≥ n− 1

2
. (2.39)

The value of the S0,1–measure reveals some valuable information about sparsity as

well as the spatial locality features of a given adjacency matrix, while sparsity measure

(2.35) only provides information about sparsity. The inequality (2.39) asserts that the best

achievable levels of performance measure (2.10) decreases by improving local connectiv-

ity in the coupling graph of a FOC network.

The third sparsity measure of our interest for the class of FOC networks with un-

weighted coupling graphs is defined by

σ(G) := max
i,j∈VG

{

card
{
N(i) ∪N(j)

}}

, (2.40)

where N(i) is the set of all nodes that are connected to node i by an edge. The value of

the sparsity measure σ(G) is equal to the maximum number of nodes that are connected to

any pair of nodes among all pairs of nodes in the graph. It is easy to verify that σ(G) ≤ n.

The following result quantifies an inherent tradeoff between the performance measure and

this sparsity measure.

Theorem 2.6.5. For a given FOC network with an arbitrary unweighted coupling graph

G ∈ Gn and n ≥ 3, there is a fundamental tradeoff between the performance measure

(2.10) and sparsity measure (2.40) that is quantified by

ρss(LG ;Mn)σ(G) ≥ n− 1

2
. (2.41)

Moreover, the equality holds if G = Kn.
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Proof. Based on the inclusion-exclusion principle, we have

card{N(i) ∪N(j)} = di + dj − card{N(i) ∩N(j)}, (2.42)

where di and dj are degrees of node i and node j, respectively. Using (2.40) and (2.42),

it follows that

σ(G) = max
i,j∈VG
i6=j

{

di + dj − |N(i) ∩N(j)|
}

.

Then, according to [80] for the maximum eigenvalue of LG we have λn ≤ σ(G). By

combining this inequality and (6.52), we get the desired lower bound.

To summarize our results in this section, we conclude that there are intrinsic fun-

damental tradeoffs between the two favorable design objectives in linear consensus net-

works: minimizing the performance measure and sparsifying the coupling graph.

2.7 Discussion

Several relevant network synthesis problems can be formulated in order to optimize the

performance measure of a linear consensus network. There has been some recent work

in this area, such as [6, 18, 43]. Some of these design problems are inherently combina-

torial and intractable. For instance, problems of minimizing the performance measure by

rewiring a given network with fixed number of edges or by adding a few new edges to the

network are generally NP-hard problems (see Chapter 6). Therefore, having some mean-

ingful estimates for the best achievable values of the performance measure is helpful in

evaluating the efficiency of a proposed approximate algorithm to solve such non-convex

and generally intractable design problems. Our lower and upper bounds in this chapter

provide sensible estimates for the best achievable values of the performance measure as
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a function of graph specifications. Moreover, if we consider the network size as design

parameter, our results in Section 2.5.1 show how rapidly the performance of a linear con-

sensus network deteriorates as the size of network grows larger.

One observes that the performance measure (2.10) has several interesting functional

properties. This measure is a convex function of Laplacian eigenvalues and monotonically

decreasing with respect to adding new edges to the coupling graph. The results of Section

2.6 highlight the importance of monotonicity property by quantifying inherent funda-

mental tradeoffs between sparsity and performance. A promising research direction is to

investigate whether these functional properties can be used to categorize larger classes of

admissible performance measures for linear consensus networks [18] (see Chapter 6).
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Chapter 3

Centrality Measures in Linear

Consensus Networks

3.1 Abstract

We propose new insights into the network centrality based not only on the network graph,

but also on a more structured model of network uncertainties. The focus of this chap-

ter is on the class of uncertain linear consensus networks in continuous time, where the

network uncertainty is modeled by structured additive Gaussian white noise input on the

update dynamics of each agent. The performance of the network is measured by the ex-

pected dispersion of its states in steady-state. This measure is equal to the square of the

H2-norm of the network and it quantifies the extent by which its state deviates away from

the consensus state in steady-state. We show that this performance measure can be ex-

plicitly expressed as a function of the Laplacian matrix of the network and the covariance

matrix of the noise input. We investigate several structures for noise input and provide

engineering insights on how each uncertainty structure can be relevant in real-world set-
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tings. Then, a new centrality index is defined in order to assess the influence of each agent

or link on the network performance. For each noise structure, the value of the centrality

index is calculated explicitly and it is shown that how it depends on the network topology

as well as the noise structure. Our results assert that agents or links can be ranked accord-

ing to this centrality index and their rank can drastically change from the lowest to the

highest, or vice versa, depending on the noise structure. This fact hints at emergence of

fundamental tradeoffs on network centrality in presence of multiple concurrent network

uncertainties with different structures.

3.2 Introduction

The notion of centrality in the context of complex networks determines the importance

of each element within a network [81–90]. There are numerous ways to characterize the

notion of importance in a dynamical network. One possible way is first to adopt a suitable

performance index for the entire network and then quantify influence of each individual

element in the network on the performance index. This view naturally leads to definition

of a centrality index and an ordered ranking of elements (e.g., agents and links) by their

importance. Depending on the choice of performance index, one can end up with different

centrality indices [81, 82].

There are several studies in the literature that aim at defining network centrality mea-

sures based on network graphs. The node degree centrality measure is one of the popular

centrality measures in the context of social networks [91,92], where nodes with higher de-

grees in the network graph are of greater importance. Another context in which the degree

centrality has found applications is scientific research indexing, where articles with higher

citations are respected to be the more influential ones. There are several other widely

used centrality indices, including eigenvector centrality [83], Katz centrality [84], close-

48



ness centrality [85], PageRank (used by Google) [86], betweenness centrality [87, 88],

percolation centrality [93], cross-clique centrality [94], Freeman centralization [91], and

topological centrality [95]. A comprehensive review of centrality measures can be found

in [82]. Despite the presence of a large body of work on the concept of centrality in the

literature, an extension of the concept to noisy dynamical networks is sorely missing.

There are several related works in the literature that address performance and robust-

ness issues in noisy linear consensus networks; for example see [2, 9–17] and the refer-

ences therein. In [2], the authors investigate the deviation from the mean of states of a

network on tori with additive noise inputs. The performance and robustness of networks

on tori are analyzed in [10], where the effect of imperfect communication links is consid-

ered. A rather comprehensive performance analysis of noisy linear consensus networks

with arbitrary graph topologies has been recently reported in [12]. In [9, 17], the authors

consider the H2 performance measure for a class of consensus networks with exogenous

inputs in the form of process and measurement noises. The proposed analysis method

in [9,17] applies the edge agreement protocol by considering a minimal realization of the

edge interpretation system for simple unweighted coupling graphs.

In this chapter, networks with linear consensus dynamics in the presence of struc-

tured additive noise inputs (as uncertainties) are considered. We consider a class of noisy

consensus networks that can be completely characterized by their coupling graphs and

the structure of their noise inputs. The H2-norm square of the noisy network is used

as the performance measure– we refer to [2, 4, 5, 10, 37, 38, 40] for related discussions.

Motivated by realistic uncertain operational environment for a network with consensus

dynamics (e.g., see [41]), six noise structures are investigated in this work. Uncertainties

can arise from noisy dynamics, sensors, emitters, receivers, communication channels, and

measurements. To the best of our knowledge, with an exception of the dynamics noise,

49



the comprehensive analysis of performance measures with closed-form formulae for dif-

ferent types of noise for an arbitrary weighted graph has not been carried out previously

in the literature. Our results show that the impact of all these uncertainties can be encap-

sulated in the structure of the input matrix. Our main contribution is the introduction of

a new class of agent and link centrality indices with respect to the adopted performance

measure. The key idea is to measure the infinitesimal change in the value of the perfor-

mance measure with respect to the variance of the noise input. For all of the six noise

structures, we calculate explicit formulae for the centrality indices and show how they de-

pend on the topology of the coupling graph of the network. In Section 3.7, we discuss that

for each noise structure all agents or links can be ranked in ascending order according to

the value of the corresponding centrality index. As a result, every node has four different

rankings and each link has two different rankings. It is argued that modification of the

underlying coupling graph of the network (for example by rewiring, weight adjustment,

sparsification, and adding new links) may result in emergence of fundamental tradeoffs

among these rankings. Several supporting numerical simulations are shown in Section

3.8 to illustrate the key point that centrality rank of an agent or link may significantly be

different with respect to various noise structures.

3.3 Preliminaries

Throughout the chapter, n is the number of agents and V = {1, . . . , n} is the set of agents.

The continuous time index is denoted by t. Capital letters, such as A and B refer to real-

valued matrices. The transposition, Moore-Penrose pseudo-inverse, and trace of a matrix

A are denoted by AT, A†, and Tr(A), respectively. Matrices In ∈ R
n×n and Jn ∈ R

n×n

are the identity matrix and the matrix of all ones, respectively. The centering matrix of
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size n is defined by

Mn := In −
1

n
Jn.

A graph can be represented by a triplet G = (V, E , w), where each agent is represented

by a node, E ⊆ {{i, j} | i, j ∈ V, i 6= j} is the set of edges, and w : E → (0,+∞) is the

weight function. The degree of each node i ∈ V is defined by

di :=
∑

e={i,j}∈E
w(e). (3.1)

The adjacency matrixA = [aij ] of graph G is defined by setting aij = w(e) if e = {i, j} ∈

E , and aij = 0 otherwise. The Laplacian matrix of G is defined by

L := ∆− A,

where ∆ = diag([d1 · · · dn]) is the degree matrix of G. Assuming that {e1, . . . , em} is

the link set of the graph G, we denote by E an n-by-m oriented incidence matrix of G

defined as the following: given an arbitrary direction for all the links of G, Eik = 1 if

the node i is the head end of the link ek, Eik = −1 if the node i is the tail end of the

link ek, and Eik = 0 if the link ek is not attached to the node i (for any orientation of

links of the graph). Moreover, W is the m-by-m diagonal matrix with diagonal elements

Wkk = w(ek) for every k, 1 ≤ k ≤ m. We note that

L = EWET.

Assumption 3.3.1. All graphs considered in this chapter are assumed to be undirected,

simple, and connected. The set of Laplacian matrices of all such graphs on n nodes are

denoted by Ln.
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The Moore-Penrose pseudo-inverse of L, denoted by L†, is a square, symmetric,

doubly-centered, positive semidefinite matrix [96]. The effective resistance between nodes

i and j is defined by:

rij := l†ii + l†jj − l†ji − l†ij . (3.2)

A sensible interpretation of this notion is to think of effective resistance rij as the electrical

resistance measured between the nodes i and j when the graph represents an electrical

circuit with branch conductances given by the corresponding link weights. The white

Gaussian noise with zero mean and variance σ2 is represented by ξ ∼ N(0, σ2).

3.4 Noisy Linear Consensus Networks

Consider a network of n agents with set of agents V . Assume that each agent i ∈ V has

scalar state variable xi(t) at time t ≥ 0. The governing dynamics of linear time-invariant

averaging algorithm in continuous-time is given by

ẋi(t) =
∑

j 6=i

aij (xj(t)− xi(t)) , (3.3)

where all coefficient aij’s are assumed to be nonnegative. Assuming symmetric commu-

nications, i.e, aij = aji for every i, j ∈ V , we refer to aij as the coupling weight between

agents i and j.

By imposing aii = 0 for all i ∈ V , matrix A = [aij] can be viewed as the adjacency

matrix of a weighted undirected and simple graph herein called the network coupling

graph and denoted by G. The system (3.3) can be rewritten in the following compact form

ẋ(t) = − Lx(t), (3.4)
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where x = [x1 · · · xn]T is the state vector. Consensus is said to occur if for some fixed

c ∈ R we have

lim
t→∞

x(t) = c1n,

where 1n ∈ R
n is the vector of all ones. According to Assumption 3.3.1, the dynamics

(3.4) achieves consensus [97, 98]. We now consider network dynamics (3.4) in presence

of structured noise

ẋ(t) = − Lx(t) + Bξ(t), (3.5)

where L ∈ Ln, and ξ(t) is the vector of stochastic disturbance inputs.

Assumption 3.4.1. All components of the vector of noise input ξ(t) are assumed to be

independent of each other for all t ≥ 0.

Each component of ξ(t) for all t ≥ 0 is assumed to be a white Gaussian noise with

zero mean and a known variance. The input matrix B captures the noise structure in the

network. The dimension and structure of matrix B may vary depending on the location

of noise sources in the network. In the rest of this chapter, we will refer to this matrix as

the noise structure matrix. Keeping in mind that reaching consensus is what is sought in

a consensus network, deviation from consensus in steady-state can be viewed as a viable

performance measure for (3.4) that can be quantified as follows

ρss := lim
t→∞

E

[(
x(t)− x̄(t)

)T(
x(t)− x̄(t)

)]

, (3.6)

where

x̄(t) :=

(

1

n

n∑

i=1

xi(t)

)

1n

is the vector with all elements equal to the empirical mean of states. The larger values of

ρss indicate inferior performance levels. In an ideal situation where noise input is absent,
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ρss is equal to zero.

Definition 3.4.2. For a noisy linear consensus network (3.5), suppose that ξi(t) ∼ N(0, σ2
i )

for all t ≥ 0 is the noise associated with agent i with a known noise structure matrix

B ∈ Rn×n. The centrality index of agent i ∈ V is defined by

ηi :=
∂ρss

∂(σ2
i )
. (3.7)

This quantity is equal to the rate at which ρss changes with respect to the change of

the variance of the white noise associated with agent i. Thus, the centrality index of an

agent quantifies the effect of agent noise on the performance of the network.

Definition 3.4.3. For a noisy linear consensus network (3.5), suppose that ξe(t) ∼ N(0, σ2
e)

for all t ≥ 0 is the noise associated with link e with variance σ2
e and a known noise struc-

ture matrix B ∈ Rn×m, where m is the total number of links in the underlying graph of

the network. The centrality index νe of link e ∈ E is defined by

νe :=
∂ρss

∂(σ2
e )
. (3.8)

This quantity is equal to the rate at which ρss changes with respect to the change of

the variance of the white noise associated with link e. Thus, the centrality index of a link

measures impact of a link noise on the overall network performance.

In the rest of the chapter, we calculate explicit values for the agent and link centrality

indices for the class of networks (3.5) subject to several realistic noise structures.

Theorem 3.4.4. For a noisy linear consensus network (3.5), the value of the centrality

indices (3.7) and (3.8) solely depend on the Laplacian matrix L and the noise structure

matrix B. Moreover, the value of the performance measure ρss is a linear function of
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the variance of the components of the vector of noise input. More specifically, for the

centrality index (3.7), we have

ρss =
∑

i∈V
σ2
i ηi, (3.9)

where

ηi =
∂ρss

∂(σ2
i )

=
1

2

[
BTL†B

]

ii
for all i ∈ V,

and for the centrality index (3.8), the following equation holds

ρss =
∑

e∈E
σ2
eνe, (3.10)

where

νe =
∂ρss

∂(σ2
e )

=
1

2

[
BTL†B

]

ee
for all e ∈ E .

Proof. Let us first consider dynamics (3.5) with a general noise structure B ∈ Rn×p and

obtain its performance. Define ξi(t) = σiψi(t) for every 1 ≤ i ≤ p and rewrite dynamics

(3.5) as:

ẋ(t) = − Lx(t) + B′ψ(t), (3.11)

where B′ = B diag
(
[σ1, · · · , σp]

)
. Notice that ψi’s are i.i.d Gaussian processes with

variance 1. To simplify our analysis, we define an output y for the network with dynamics

(3.11) as the following:

y(t) = x(t)− x̄(t) = Mnx(t). (3.12)

Performance ρss of the network with dynamics (3.11-3.12) is now equal to its squared

H2-norm from input ψ to output y. It is note worthy that the unique marginally stable

mode of dynamics (3.11-3.12) is not observable from the output, which results in the
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boundedness of the H2-norm. From the results of [99] on the H2-norm, we now conclude:

ρss =
1

2π

∫ ∞

−∞
Tr
(
G∗(jω)G(jω)

)
dω, (3.13)

where G(s) is the transfer function of system (3.11-3.12):

G(s) = Mn

(
sI + L

)−1
B′. (3.14)

Let Λ be a diagonal matrix with eigenvalues 0 = λ1 ≤ . . . ≤ λn of L on its diameter and

U be the corresponding orthonormal matrix of eigenvectors. Thus, we have L = UΛUT.

To calculate G(s), we shall replace L and Mn in (3.14) using the following equations:

Mn = Udiag
(
[0 1 · · · 1]

)
UT,

L = Udiag
(
[0 λ2 · · · λn]

)
UT.

Doing so, one concludes:

G(s) = Udiag

([

0
1

s+ λ2
· · · 1

s+ λn

])

UTB′.

Thus, since UUT = In, one can write:

Tr
(
G∗(jω)G(jω)

)
(3.15)

= Tr

(

Udiag

([

0
1

w2 + λ22
· · · 1

w2 + λ2n

])

UTB′B′T
)

On the other hand, we have that

∫ ∞

−∞

1

w2 + λ2i
dω =

π

λi
. (3.16)
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From (3.13), (3.15), and (3.16), one obtains:

ρss = 1
2π

Tr
(

B′B′TUdiag
([

0 π
λ2

· · · π
λn

])

UT
)

= 1
2
Tr
(
B′B′TL†) .

(3.17)

When B ∈ Rn×n, from relation (3.17) we have

ρss = 1
2
Tr
(
B′B′TL†)

= 1
2
Tr
(
Bdiag[σ2

1 · · · σ2
n]B

TL†)

= 1
2
Tr
(
diag[σ2

1 · · · σ2
n]B

TL†B
)
.

(3.18)

According to (3.18), it follows that

ηi = ∂ρss/∂(σ
2
i ) =

1

2

[
BTL†B

]

ii
, (3.19)

where the subscript [ . ]ii indicates the (i, i)th element and i ∈ V . According to (3.19), we

can rewrite (3.18) as follows

ρss =
∑

i∈V
σ2
i ηi.

When B ∈ R
n×m, in which m is the number of links, from relation (3.17) we have

ρss = 1
2
Tr
(
B′B′TL†)

= 1
2
Tr
(
diag[σ2

1 · · · σ2
m]B

TL†B
)
.

(3.20)

According to (3.20):

νi = ∂ρss/∂(σ
2
i ) =

1

2

[
BTL†B

]

ii
, (3.21)

where the subscript [ . ]ii indicates the (i, i)th element and i ∈ E . According to (3.21), we
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can rewrite (3.18) in the form of (3.10).

Our focus in this chapter is on consensus networks with undirected underlying graphs.

It is straightforward to generalize our results for strongly connected, balanced directed

graphs. For the general case, however, when the state matrix is not normal, i.e.LLT 6=

LTL, obtaining a succinct formula for the centrality measure seems to be more challeng-

ing. In [4], the authors proposed bounds that the H2-norm, as a performance measure,

can be tightly bounded from below and above by some spectral functions of state and

output matrices. Thus, one can obtain explicit bounds on the centrality measures. In

addition, [100] shows how one can approximate a strongly connected digraph by some

weighted undirected graph that inherits some specific properties of the original digraph.

These results may be utilized to approximate centrality measures for directed networks.

3.5 Agent Centrality Index

In this section, we consider four types of noise structures for network (3.5) and calculate

the agent centrality index (3.7) for each case. These noise structures usually appear when

one implements a consensus algorithm based on model (3.3) in noisy environments using

uncertain communication channels and noisy sensors. In order to execute each update

equation (3.3), each agent needs to operate in a noisy environment, sense its own state,

transmit its own state information to its neighboring agents, and receive state information

from its neighboring agents. In practical situations, all these steps involve uncertainties,

where in this chapter we model them by structured additive noise inputs.
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∫
−L

ξ(t)

x(t)

Figure 3.1: A representation of linear consensus network (3.22) with dynamics noises.

3.5.1 Dynamics Noise

This noise structure captures the effect of environment noise on dynamics of each agent.

In this case, the dynamics of agent i is described by

ẋi(t) =
∑

j 6=i

aij
(
xj(t)− xi(t)

)
+ ξi(t), (3.22)

where ξi(t) ∼ N(0, σ2
i ) for all i ∈ V . This class of noisy linear consensus networks has

been studied before in the literature (see [2, 4, 5, 38] and references in there). The net-

work dynamics (3.22) can be rewritten as a special case of (3.5) where B = In. Figure

3.1 depicts a block diagram representation of linear consensus network (3.22) with dy-

namics noise. This representation is meant to illustrate the underlying mechanism of the

dynamics and show how noise may affect the consensus process.

Theorem 3.5.1. For the consensus network (3.22) with dynamics noise, the value of the

centrality index (3.7) can be expressed by

ηi =
1

2
l†ii, (3.23)

where l†ii for i ∈ V are the diagonal elements of L†.
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Proof. From our arguments in Part 3.5.1, in case of the dynamics noise structure, one has

to deal with dynamics (3.11)-(3.12) where

B′ = diag
(
[σ1 · · · σn]

)
.

We now have:

B′B′T = diag
(
[σ2

1 · · · σ2
n]
)
. (3.24)

Relation (3.23) now immediately follows from (3.17) and (3.24).

3.5.2 Receiver Noise

The communication receiver noise is the second type of noise source that can be consid-

ered in updating law (3.3). If agents i and j are neighbors, agent i receives xj(t) + ξi(t)

as opposed to the clean state information xj(t), as a result of its noisy communication re-

ceiver. According to this noise model, the update equation of agent i takes the following

form

ẋi(t) =
∑

j 6=i

aij
(
xj(t)− xi(t) + ξi(t)

)
, (3.25)

where ξi(t) ∼ N(0, σ2
i ) for all i ∈ V . The network dynamics (3.25) can be written as a

special case of (3.5) where B is equal to the degree matrix ∆ = diag([d1 · · · dn]) of the

underlying coupling graph of the network.

Theorem 3.5.2. For the consensus network (3.25) with communication receiver noise,

the value of the centrality index (3.7) can be calculated as

ηi =
1

2
d2i l

†
ii. (3.26)

where di and l†ii for i ∈ V are the node degrees and the diagonal elements of L†, respec-
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tively.

Proof. Based on the description of receiver noises in Part 3.5.2, one has to now consider

dynamics (3.11-3.12) with

B′ = ∆ diag
(
[σ1 · · · σn]

)
, (3.27)

and calculate ρss using (3.17). From (3.27):

B′B′T = diag
(
[σ2

1d
2
1 · · · σ2

nd
2
n]
)
,

which together with (3.17) result in (3.26).

3.5.3 Emitter Noise

The third type of noise source in updating law (3.3) can be due to the communication

emitters of the neighboring agents. If agents i and j are neighbors, agent i now receives

xj(t) + ξj(t) rather than pure state information xj(t), due to the noisy communication

emitter of neighboring agent j. This noise model amounts to the following update equa-

tion for agent i:

ẋi(t) =
∑

j 6=i

aij
(
xj(t)− xi(t) + ξj(t)

)
, (3.28)

where ξi(t) ∼ N(0, σ2
i ) for all i ∈ V . One can reformulate the overall dynamics of the

network with individual dynamics (3.28) and show that it is a special case of (3.5) with

B = A, whereA is the adjacency matrix of the underlying coupling graph of the network.

Theorem 3.5.3. For the consensus network (3.28) with communication emitter noise, the
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∫
−L

ξ(t)

x(t)

Figure 3.2: A representation of linear consensus network (3.31) with sensor noises.

value of the centrality index (3.7) can be computed as

ηi =
1

2

(

d2i l
†
ii +

(
2

n
− 1

)

di

)

, (3.29)

where di and l†ii for i ∈ V are, respectively, the node degrees and the diagonal elements

of L†.

Proof. From our discussion in Part 3.5.3, the case of emitter noises corresponds to dy-

namics (3.11-3.12) with

B′ = A diag
(
[σ1 · · · σn]

)
.

We now have:

B′TL†B′ = (∆− L)L†(∆− L)

= ∆L†∆−Mn∆−∆Mn + L.

(3.30)

Finally, using the result of Theorem 3.4.4 and (3.30), we obtain the desired result (3.29).

3.5.4 Sensor Noise

The fourth type considered here is the case of noisy sensors, where each agent obtains a

noisy measurement of its own current state and transmit it to the neighboring agents. The
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update equation of agent i can now be described by

ẋi(t) =
∑

j 6=i

aij

[(
xj(t) + ξj(t)

)
−
(
xi(t) + ξi(t)

)]

, (3.31)

where ξi(t) ∼ N(0, σ2
i ) for all i ∈ V . In this scenario, agent i receives xj(t)+ξj(t) instead

of xj(t), due to the noisy sensors of its neighboring agents. On the other hand, agent i

also measures a contaminated version of its own current state. The overall dynamics of

the network with individual dynamics (3.31) can be rewritten as a special case of (3.5)

with B = −L. Figure 3.2 shows a representation of this linear consensus network with

sensor noises.

Theorem 3.5.4. For the consensus network (3.31) with sensor noise, the value of the

centrality index (3.7) can be computed as

ηi =
1

2
di, (3.32)

where di for i ∈ V are the node degrees.

Proof. In case of sensor noises, one again deals with dynamics (3.11-3.12), but this time:

B′ = − L diag
(
[σ1 · · · σn]

)
.

Thus,

B′B′T = Ldiag
(
[σ2

1 · · · σ2
n]
)
L. (3.33)
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∫

−EW

ET

ξ(t)

z(t)u(t) x(t)

Figure 3.3: A representation of linear consensus network (3.36-3.38) with communication chan-

nel noises.

From (3.17) and (3.33), we conclude:

ρss = 1
2
Tr (Ldiag ([σ2

1 · · · σ2
n])Mn)

= 1
2
Tr (diag ([σ2

1 · · · σ2
n])L)

= 1
2

∑n
i=1 σ

2
i d

2
i .

(3.34)

Finally, using the centrality index of an agent (3.7) and (3.34), we get the desired result.

Remark 3.5.5. For a connected, undirected graph with the damping factor α = 1, PageR-

ank is proportional to the centrality measure (3.32); see [101] for more details.

3.6 Link Centrality Index

Besides the above mentioned agent based noise inputs, there are two possible scenarios

for link noises that we will consider in the following.
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3.6.1 Communication Channel Noise

The first type of link noise is the communication channel noise that captures a passing

signal’s distortion through a communication channel between two agents in the network.

This type of uncertainty can be modeled as a white Gaussian noise ξe(t) ∼ N(0, σ2
e) for

each e ∈ E . More specifically, for an arbitrary link e = {i, j} ∈ E , one of the endpoints

of e, say i, receives xj(t) + ξe(t) instead of xj(t) at each time t, while the other endpoint,

i.e., j, receives xi(t)− ξe(t) as opposed to the clean state information xi(t). Attributing a

virtual orientation for e, that considers i as its head end, we derive an oriented incidence

matrix E and conclude that the update algorithm of agent i can be described by

ẋi(t) =
∑

e={i,j}∈E
aij
(
xj(t)− xi(t) + ξe(t)

)
. (3.35)

According to Assumption 3.4.1, all noises associated with distinct communication

channels are independent. The overall dynamics of the network can be rewritten as a

special case of (3.5) with B = EW , notice that L = EWET.Also, in this case, we

can recall the two-port representation of linear consensus network (3.5) as described in

[17, 102] that can be cast in the following compact form

ẋ(t) = u(t), (3.36)

z(t) = ETx(t) + ξ(t), (3.37)

where ξ(t) = [ ξe1, . . . , ξem ]T is the vector of noise input, ξe(t) ∼ N(0, σ2
e) for all

e ∈ E , and the internal feedback control law is given by

u(t) = −EWz(t), (3.38)
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as depicted in Figure 3.3.

Theorem 3.6.1. For the consensus network (3.36-3.37) with communication channel

noise, the value of the link centrality index (3.8) can be calculated as

νe =
1

2
a2ere, (3.39)

where re := l†ii + l†jj − 2l†ij is the effective resistance of edge e = {i, j} and ae = aij .

Proof. Using the same approach presented in the proof of Theorem 3.5.1, we can describe

the dynamics of network by (3.11-3.12) in which

B′ = EW diag([σ1 · · · σm]) (3.40)

whereE denotes the incidence matrix of underlying graph G andW is the diagonal matrix

whose diagonal elements are respectively w(e) = aij for all e = {i, j} ∈ E . The ordering

of diagonal elements in W complies with row ordering in the corresponding incident

matrix E. Then, calculating the squared H2–norm of the network reduces to

ρss =
1

2
Tr
(

B′B′TL†
)

. (3.41)

Using (3.40), we get

B′B′T = E diag([σ2
1a

2
e1

· · · σ2
ma

2
em])E

T. (3.42)

Substituting (3.42) into (3.41), we get

ρss =
1

2
Tr
(

E diag([σ2
1a

2
e1

· · · σ2
ma

2
em ])E

TL†
)
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∫

−EW
1
2

W
1
2ET

ξ(t)

z(t)u(t) x(t)

Figure 3.4: A representation of linear consensus network (3.43-3.45) with measurement noises.

=
1

2
Tr
(

diag([σ2
1a

2
e1 · · · σ2

ma
2
em ])E

TL†E
)

=
1

2

∑

e∈E
σ2
ea

2
ere.

The last equality holds as the diagonal elements of ETL†E are re’s for e ∈ E .

3.6.2 Measurement Noise

The second type of link noise model is used to mimic the effect of measurement noise

that occurs in practice. For this case, similar to the pervious case, we can use the two-port

representation of linear consensus network (3.5) as follows:

ẋ(t) = u(t), (3.43)

z(t) = W 1/2ETx(t) + ξ(t), (3.44)

where ξ(t) = [ ξe1, . . . , ξem ]T is the vector of noise input, ξe(t) ∼ N(0, σ2
e) for all

e ∈ E , and the internal feedback control law is given by

u(t) = −EW 1/2z(t), (3.45)
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as presented in Figure 3.4.

Theorem 3.6.2. For the consensus network (3.43-3.44) with measurement noise, the value

of the link centrality index (3.8) is given by

νe =
1

2
re, (3.46)

where re is the effective resistance of edge e in the underlying graph of the network.

Proof. Using the same approach presented in the proof of Theorem 3.6.1, we can describe

the dynamics of network by (3.11-3.12) in which

B′ = E diag ([σ1 · · · σm]) , (3.47)

where E denotes the incidence matrix of underlying graph G. We denote the row of E

corresponds with link e by Ee, then according to the definition of effective resistance, we

have

re = EeL
†ET

e = l†ii + l†jj − 2l†ij , (3.48)

where, e = {i, j} ∈ E . Then, calculating the squared H2–norm of the network reduces to

ρss =
1

2
Tr
(

B′B′TL†
)

=
1

2
Tr
(

E diag([σ2
1 · · · σ2

m])E
TL†
)

=
1

2
Tr
(

diag([σ2
1 · · · σ2

m])E
TL†E

)

=
1

2

∑

e∈E
σ2
ere.

where in the last equality we use (3.48).
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Noise structure Centrality index ηi

Dynamics noises 1
2 l

†
ii

Receiver noises 1
2d

2
i l

†
ii

Emitter noises 1
2

(
d2i l

†
ii + ( 2n − 1)di

)

Sensor noises 1
2di

Table 3.1: The centrality index of an agent in a noisy linear consensus network for various noise

structures.

Noise structure Centrality index νi

Communication noises 1
2a

2
ere

Measurement noises 1
2re

Table 3.2: The centrality index of a link for two noise structures.

Remark 3.6.3. In [95], the authors refer to quantity 1/l†ii as topological centrality of node

i that indicates its overall position as well as its overall connectedness in the network.

This measure is closely related to the centrality index of agent i in a linear consensus

network with dynamics noise (see Table 3.1). Moreover, [95] presents three alternative

interpretations for this measure in terms of: (i) detour overheads in random walks, (ii)

voltage distributions and the phenomenon of recurrence when the network is treated as an

electrical circuit, and (iii) the average connectedness of nodes when the network breaks

into two.

3.7 Centrality Rank and Inherent Tradeoffs

The results of Sections 3.5 and 3.6 are summarized in Tables 3.1 and 3.2. For a given noise

structure, agents and links in a consensus network with dynamics (3.5) can be ranked

according to the values of their corresponding centrality indices.

Definition 3.7.1. For a given noise structure, agent j ∈ V precedes i ∈ V in rank if
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ηi ≤ ηj . Similarly, link e2 ∈ E precedes link e1 ∈ E in rank if νe1 ≤ νe2 .

Fundamental tradeoffs on centrality rank of agents and links may emerge depending

on the noise structure. In the following result, we show that enhancing couplings (e.g., by

strengthening link weight or establishing new links) can improve centrality of an agent

or a link with respect to some noise structures and worsen it with respect to some other

types.

Theorem 3.7.2. For a given agent i ∈ V and link e ∈ E , suppose that functions φi, ψe, δi :

Ln → R are defined by φi(L) = l†ii, ψe(L) = re, and δi(L) = di. Then, functions φi and

ψe are monotonically decreasing and function δi is monotonically increasing as a function

of L, i.e., for all L1 � L2 it follows that

φi(L2) ≤ φi(L1), (3.49)

ψe(L2) ≤ ψe(L1), (3.50)

δi(L1) ≤ δi(L2). (3.51)

Proof. Let us consider the real-valued function f(L,Q) = Tr(QL). From matrix calcu-

lus, one gets

∂f(L,Q)

∂L
= Q. (3.52)

When Qi = diag[0, · · · , 1, · · · , 0], i.e., a diagonal matrix with only one nonzero element

on its i-th diagonal element, function f reduces to f(L,Qi) = δi(L) = di. According

to (3.52) and the fact that Qi � 0, one can conclude that function f(L,Qi) = δi(L) is

monotonically increasing.

In the next step, let us consider the real-valued function g(L,Q) = Tr(QL†). A direct

matrix calculation gives us

∂g(L,Q)

∂L
= − L†QL†. (3.53)
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Figure 3.5: The network topology for Example 3.8.1. The red labels on the links represent link

numbers.

The function g(L,Qi) is equal to l†ii. Therefore, φi(L) = l†ii is monotonically decreasing,

because −L†QiL
† � 0 for all i = 1, . . . , n. Furthermore, if Qe is the Laplacian matrix

of a graph with only one link e = {i, j}, then the function g(L,Qe) is equal to re. Using

(3.53) and the fact that −L†QeL
† � 0, we can conclude that ψe(L) = re is monotonically

decreasing.

According to this theorem, by enhancing couplings one may expect to observe drastic

changes in each agent’s and link’s ranking with respect to various noise structures. For

instance, suppose that for a given consensus network agent i is ranked s1 w.r.t. sensor

noise and t1 w.r.t. dynamics noise, where s1 > t1. It is likely that after adding new links

or increasing weight links, the same agent i gets ranked s2 w.r.t. sensor noise and t2 w.r.t.

dynamics noise, but this time t2 > s2. This key point is explained in details using several

numerical simulations in the following section.

The result of Theorem 3.7.2 can be leveraged further to identify inherent performance

tradeoffs due to direction of monotonicity for different types of uncertainties. From the
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Figure 3.6: The agent centrality indices for different noise structures and the coupling graph of

Figure 3.5.

result of Theorem 3.4.4, the value of performance measure can be equivalently character-

ized with respect to various centrality measures as follows

ρss =
1

2

∑

i∈V
σ2
i φi(L)

=
1

2

∑

i∈V
σ2
i δi(L)

=
1

2

∑

e∈E
σ2
eψe(L),

Therefore, according to Theorem 3.7.2, if L1 � L2, we can conclude that in presence

of dynamics and sensor noises the performance of network 2 is not worse than the per-

formance of network 1, whereas in presence of measurement noise the performance of

network 2 is not better than the performance of network 1. For a given network with

Laplacian matrix L1, inequality L1 � L2 can be realized via several possible scenar-

72



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Link label

C
en

tr
al

it
y

M
ea

su
re

Figure 3.7: The link centrality indices for the coupling graph of Figure 3.5. Since the coupling

graph is unweighted, both proposed link centrality indices in Table 3.2 are identical.

ios; for example, network 2 can be constructed by (i) adding new weighted edges to the

graph of network 1, (ii) increasing weights of some of the existing links in network 1,

(iii) rewiring topology of network 1 while ensuring L1 � L2. The final conclusion is that

strengthening couplings among the agents may improve or deteriorate the performance

depending on the noise structure.

3.8 Illustrative Numerical Examples

In this section, we support our theoretical results by illustrating several examples to pro-

vide better insight about agent and link centrality measures in noisy linear consensus

networks.

73



Example 3.8.1. Let us consider a noisy linear consensus network with coupling graph

shown in Figure 3.5. It is assumed that every link has weight 1. For this network, the

centrality index of all 10 agents are calculated for different noise structures according to

Table 3.1 and are depicted in Figure 3.6. One observes that while agents 1 and 10 are

the most central agents w.r.t. dynamics noise, they are the least central w.r.t. the other

remaining three noise structures. According to Figure 3.6 for uncertain sensors, one can

rank all agents based on their corresponding node degrees, which can be easily deduced

from the graph topology. However, we observe that in presence of dynamics, receiver, and

emitter noises there is no trivial way to relate topology of the underlying coupling graph

of the network to agents’ centrality rank. For the same network, the links are ranked

according to Table 3.2 and the result is depicted in Figure 3.7. Since the underlying

graph is unweighted, both centrality measures in Table 3.2 are the same. One observes

that links number 1 and 15 are the most central links. This is compatible with the fact that

by eliminating any of these two links the underlying graph becomes disconnected.

Example 3.8.2. We simulate a noisy linear consensus network with coupling graph shown

in Figure 3.8, where it is assumed that all link weights are equal to 1. This graph is indeed

a rewired form of the graph in Figure 3.5 – both graphs share the same number of nodes

and links. The agent centrality indices are drawn according to Table 3.1 in Figure 3.9. It

can be seen that all agents have equal ranks (i.e., importance) in the network for all four

noise structures. The link centrality indices are depicted in Figure 3.10, where it is shown

that all links have equal ranks. These observations are consistent with our results and

can be explained as follows: since the coupling graph in Figure 3.8 is symmetric (i.e.link-

transitive and node-transitive) and unweighted, all nodes and links contribute equally to

the performance of the network.
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Figure 3.8: The network topology for Example 3.8.2.

Example 3.8.3. In our last simulation, we study link centrality rank for a noisy linear

consensus network with coupling graph in Figure 3.11, where this graph consists of 108

links and three groups of 10 agents that each group is shown by red, green, and blue

colors. We calculate link centrality indices according to Table 3.2 for several scenarios.

In Figure 3.12, the link centrality indices are depicted when it is assumed that all links

in the graph have weights equal to 1, except for w(A) = w(B) = w(C) = w(D) = 0.2.

One observes that the intergroup links A,B,C, and D are significantly more important

than the intragroup links. Both links A and B are the most central ones as without them

the network graph will be disconnected.

The link centrality index of an edge with respect to measurement noise is proportional

to the effective resistance of that link from our results in Table 3.2. The result of Theorem

3.7.2 asserts that by increasing weights of links A, B, C, and D, their centrality rank will

drop accordingly. This can be clearly seen in our simulations in Figures 3.12, 3.13, 3.14,

and 3.15, where the weights of these four links are increased from 0.2 to 1, then to 3,
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Figure 3.9: The centrality indices of all agents for a noisy linear consensus network defined by

the coupling graph in Figure 3.8.

and finally to 10. These four links, however, remain the most central links with respect to

communication noises and their roles do not change by changing their weights.

3.9 Conclusion

A new definition of centrality, with respect to the H2-norm square, is introduced for net-

works with consensus dynamics subject to structured additive noise inputs. In such net-

works, the centrality of each agent or link depends on the underlying coupling graph of

the network as well as the structure of noise input. We model several noise structures

based on realistic operational situations. It is shown that the centrality index of agents

and links solely depends on the characteristics of the underlying coupling graph. We dis-

cuss that the centrality rank of agents or links may vary substantially when comparing

various noise structures. More importantly, it is argued that when one modifies the cou-
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Figure 3.10: Links’ centrality for the coupling graph of Figure 3.8. Since, the coupling graph is

unweighted both link centrality measures in Table 3.2 are the same.

pling graph of the network (for instance by rewiring, weight adjustment, sparsification,

and adding new links), the agent and link centrality ranks may drastically shift up or down

in the list. Since in real-world situations there are several possible sources of uncertain-

ties that can affect the dynamics of a consensus network simultaneously, it would be a

challenging task to determine the most central agents or links without taking into account

the existing fundamental tradeoffs among various centrality ranks. This inherent phe-

nomenon in uncertain consensus networks suggests revisiting and reformulating several

existing canonical network optimization problems in the literature by taking into account

the agent and link centrality ranks in the design process in order to synthesize more robust

consensus networks.
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Figure 3.11: The network topology for Example 3.8.3.
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Figure 3.12: The link centrality indices for the consensus network with graph topology

Figure 3.11. It is assumed that all link weights are equal to 1, except for w(A) = w(B) =
w(C) = w(D) = 0.2. The centrality indices of links A,B,C, and D are shown by red

bars.
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Figure 3.13: The link centrality indices for the consensus network with graph topology Figure

3.11, where all link weights are equal to 1. In this plot A, B, C, and D are labels of links between

three clusters. The centrality indices of links A,B,C, and D are shown by red bars.
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Figure 3.14: The link centrality indices for the consensus network with graph topology

Figure 3.11. It is assumed that all link weights are equal to 1, except for w(A) = w(B) =
w(C) = w(D) = 3. The centrality indices of these links A,B,C, and D are shown by red

bars.
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Figure 3.15: The link centrality indices for the consensus network with graph topology

Figure 3.11. It is assumed that all link weights are equal to 1, except for w(A) = w(B) =
w(C) = w(D) = 10. The indices of links A,B,C, and D are shown by red bars.
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Chapter 4

New Bounds on the H2-Norm of Linear

Dynamical Networks

4.1 Abstract

In this chapter, we obtain new lower and upper bounds for the H2-norm of a class of linear

time-invariant systems subject to exogenous noise inputs. We show that the H2-norm, as

a performance measure, can be tightly bounded from below and above by some spectral

functions of state and output matrices of the system. In order to show the usefulness of

our results, we calculate bounds for the H2-norm of some network models with specific

coupling or graph structures, e.g., systems with normal state matrices, linear consensus

networks with directed graphs, and cyclic linear networks. As a specific example, the H2-

norm of a linear consensus network over a directed cycle graph is computed and shown

how its performance scales with the network size. Our proposed spectral bounds reveal

the important role and contribution of fast and slow dynamic modes of a system in the

best and worst achievable performance bounds under white noise excitation. Finally, we
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use several numerical simulations to show the superiority of our bounds over the existing

bounds in the literature.

4.2 Introduction

The performance analysis of noisy linear systems has been the focus of numerous studies

over the past few decades [2, 5, 99, 103, 104] and the references therein. In a majority

of these works, quantifying the corresponding performance measures reduces to solving

some Algebraic Lyapunov Equations (ALEs). Although there are several efficient meth-

ods to compute the exact solutions of ALEs, their computational complexity increase

rapidly when dealing with linear systems with large dimensions. Thus, such algorithms

are only applicable to systems of moderate size [105]. There are some methods to esti-

mate bounds on the solutions of ALEs [47, 106–109]. Bounds on the solution of an ALE

can be used as an approximations of its exact solution, especially for large-scale linear

networks as these bounds can usually be calculated through inexpensive computations.

In [45], authors summarize some of the previous results up to that date.

The H2-norm of a noisy linear time-invariant system, from its noise input to the out-

put, has been considered as a viable performance measure in the literature [5, 99, 104].

This performance measure can be calculated using the solution of an ALE. In this chapter,

we derive explicit lower and upper bounds for this performance measure. Our proposed

bounds are spectral functions of state and output matrices of the system. Furthermore,

our proposed bounds are utilized to quantify bounds on the H2-norm squared of some

network models with specific dynamical structures, e.g., systems with normal state ma-

trices, linear consensus networks with directed graphs, and cyclic linear networks with

negative feedback. As an important application, our results are applied to a general class

of linear consensus networks over directed graphs. Most recent works [2, 43] investigate
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the performance of noisy linear consensus networks over undirected graphs. We prove

that our performance bounds are tight if the underlying directed graph of the networks

is strongly connected and balanced. Moreover, we apply our results to a class of cyclic

networks with asymmetric structures. These networks has been used to model certain

biochemical pathways [44]. We particularly show how the H2-norm of a cyclic linear

dynamical network scales with the network size. It is shown that when all subsystems are

identical, the network attains the best achievable performance among all cyclic networks

with the same secant criterion. Finally, we compare our proposed bounds to all existing

bounds in the literature and use some numerical simulations to show that our bounds are

tighter than all previously reported bounds in [45–47].

4.3 Mathematical Notations

R denotes the set of real numbers, C denotes the set of complex numbers, Re{.} denotes

the real part of a complex number, (.)T denotes transpose and (.)H denotes Hermitian

transpose. Matrix In ∈ Rn×n is the identity matrix and matrix 0 is the matrix of all

zeros. The n × 1 vector of all ones is denoted by 1n and the centering matrix is defined

by Mn := In − 1n1
T
n

n
. For a square matrix A, Tr(A) refers to the summation of on-

diagonal elements of A. We write λmax(M) (resp., λmin(M)) for the maximum (resp.,

minimum) eigenvalue of M , diag[v] for a square diagonal matrix with the elements of

vector v on its diagonal and zero everywhere else, and ‖.‖2 for the 2-norm of a vector. The

eigenvalues of a matrix X ∈ Rn×n are indexed according to their real-parts in ascending

order, i.e.Re{λ1(X)} ≤ Re{λ2(X)} ≤ · · · ≤ Re{λn(X)}. E[v] stands for the expected

value of random variable v. We employ the big omega notation in order to generalize

the concept of asymptotic lower bound in the same way as O generalizes the concept of
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asymptotic upper bound. We adopt the following definition according to [39]:

f(n) = Ω(g(n)) ⇔ g(n) = O(f(n)), (4.1)

where O represents the big O notation. In the left hand side of (4.1), the Ω notation

implies that f(n) grows at least of the order of g(n).

4.4 H2-Norm of Noisy Linear Systems

The steady-state variance of outputs of linear systems driven by external stochastic distur-

bances can be regarded as a measure of performance. We consider a linear time-invariant

system

ẋ(t) = Ax(t) + ξ(t), (4.2)

y(t) = Cx(t), (4.3)

with x(0) = 0, where x ∈ Rn is the state and y ∈ Rm is the output of the system. For all

linear systems in this chapter, it is assumed that the input signal ξ ∈ Rn is a white noise

process with zero mean and identity covariance, i.e.,

E
[
ξ(t)ξT(τ)

]
= Inδ(t− τ), (4.4)

where δ(.) is the delta function. It is assumed that the state matrix A is Hurwitz.

Definition 4.4.1. The H2–norm of linear system (4.2)-(4.3) from ξ to y is defined as the
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square root of the following quantity

ρss (A;Q) := lim
t→∞

E
[
xT(t)Qx(t)

]
, (4.5)

where Q = CTC.

For unstable linear systems, the outputs of the system have finite steady-state variance

as along as the unstable modes of the system are not observable from the output of the

system. The value of performance measure (4.5) for (4.2)-(4.3) can be quantified as

ρss (A;Q) = Tr(P ), (4.6)

where P is the unique solution of the following ALE

PA + ATP + Q = 0. (4.7)

4.5 New Spectral Bounds on the H2-Norm

For simplicity of our representations, we present our results for the performance measure

(4.5), instead of the H2-norm. According to Definition 4.4.1 by taking a simple square

root, all results can be converted to bounds for the H2-norm.

Theorem 4.5.1. Suppose that linear system (4.2)-(4.3) is stable with input noise covari-

ance (4.4) and Q = In. Then, we have

n∑

i=1

−1

2Re{λi(A)}
≤ ρss (A;Q) . (4.8)

The lower bound in (4.8) is achieved if and only if A is normal, i.e.ATA = AAT. In

87



addition, if the symmetric part of the state matrix A, defined by As := (AT + A)/2, is

Hurwitz, then we get

ρss (A;Q) ≤
n∑

i=1

−1

2λi(As)
. (4.9)

Proof. Since A is Hurwitz, all its eigenvalues have strictly negative real parts. Therefore,

the unique solution of ATP + PA + In = 0, can be expressed in the following closed

form

P =

∫ ∞

0

eA
TteAtdt. (4.10)

According to Schur decomposition theorem [110], there exists a unitary matrix V ∈ Cn×n

such that A = V (Γ + N)V H where Γ = diag [λ1(A), · · · , λn(A)], N is strictly upper

triangular, and V H is the conjugate transpose of V . Let us consider the integrand of (4.10)

Tr(eA
TteAt) = Tr(e(Γ

H+NH)tV HV e(Γ+N)tV HV )

= Tr(V HV e(Γ
H+NH)te(Γ+N)t)

= Tr(V e(Γ
H+NH)te(Γ+N)tV H). (4.11)

Furthermore, we have

e(Γ+N)t = eΓt +Mt and e(Γ
H+NH)t = eΓ

Ht +MH
t , (4.12)

where Mt is an upper-triangular Nilpotent matrix. From (4.12), we have

Tr(e(Γ
H+NH)te(Γ+N)t) = Tr(eΓteΓ

Ht +MtM
H
t )

≥ Tr(e(Γ
H+Γ)t). (4.13)
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From (4.11) and (4.13), it follows that

Tr(eA
TteAt) = Tr(V e(Γ

H+NH)te(Γ+N)tV H)

≥ Tr(e(Γ
H+Γ)t) = Tr(e2Re{Γ}t). (4.14)

Since Re{λi(A)} < 0 for all i = 1, . . . , n, we can conclude from (4.10) and (4.14) that

Tr(P ) =

∫ ∞

0

Tr(eĀ
TteĀt)dt ≥

n∑

i=1

−1

2Re{λi(A)}
. (4.15)

In the last inequality, we apply the fact that the trace and sum operators are linear and

they can commute with the integral. The lower bound is achieved if and only if equalities

in (4.14) and (4.13) hold, or equivalently,A is a normal matrix, i.e.ATA = AAT. In order

to prove inequality (4.9), we first use Bernstein inequality [111]

Tr(eA
TteAt) ≤ Tr(e(A

T+A)t). (4.16)

Then, by taking an integral from both sides of (4.16) we get

Tr(P ) =

∫ ∞

0

Tr(eA
TteAt)dt ≤

∫ ∞

0

Tr(e(A
T+A)t)dt. (4.17)

According to our assumptions A + AT is Hurwitz. Therefore, using this fact and (4.17)

we conclude that

Tr(P ) ≤
∫ ∞

0

Tr(e(A
T+A)t)dt =

n∑

i=1

−1

2λi(As)
.

The following theorem shows that the lower and upper bounds in Theorem 4.5.1 can
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be tightened further by assuming more structure on the state matrix.

Theorem 4.5.2. Suppose that linear system (4.2)-(4.3) is stable with input noise covari-

ance (4.4) and normal state matrix A. Then,

n∑

i=1

−λn−i+1(Q)

2Re{λi(A)}
≤ ρss (A;Q) ≤

n∑

i=1

−λi(Q)
2Re{λi(A)}

. (4.18)

Moreover, both bounds in (4.18) are achieved if Q has n identical eigenvalues.

Proof. Every symmetric matrix Q can be decomposed as Q = UDUT, where UUT =

UTU = I and D = diag [λ1(Q), · · ·λn(Q)]. Thus, we can rewrite (4.7) as

ĀTP̄ + P̄ Ā + D = 0, (4.19)

where Ā = UTAU and P̄ = UTPU . Since A is Hurwitz, the unique solution of (4.19)

can be expressed by

P̄ =

∫ ∞

0

eĀ
TtDeĀtdt. (4.20)

Since Ā is normal, there exists a unitary matrix V̄ ∈ Cn×n such that Ā = V̄ ΓV̄ H, where

Γ = diag [λ1(A), · · · , λn(A)] and V̄ H is the conjugate transpose of V̄ . Next, let us

consider the integrand of (4.20)

Tr(eĀ
TtDeĀt) = Tr(eĀ

HtDeĀt)

= Tr(eΓ
HtV̄ HDV̄ eΓtV̄ HV̄ )

= Tr(V̄ HDV̄ e(Γ
H+Γ)t). (4.21)

We observe that V̄ HDV̄ and e(Γ
H+Γ)t are Hermitian. Thus, according to [112, Theorem.
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II. 2 ], we get

Tr(V̄ HDV̄ e(Γ
H+Γ)t) ≥

n∑

i=1

λn−i+1(Q)e
2Re{λi(A)}t. (4.22)

Since Re{λi(A)} 6= 0 for all i = 1, . . . , n, from (4.20) and (4.22) we have

Tr(P ) ≥
∫ ∞

0

n∑

i=1

λn−i+1(Q)e
2Re{λi(A)}tdt

= −
n∑

i=1

λn−i+1(Q)

2Re{λi(A)}
. (4.23)

In the last inequality, we apply the fact that the trace and sum operators are linear and they

can be interchanged by the integral. When A is normal, then λi(A+AT) = 2Re{λi(A)}.

This is because according to the Schur decomposition for normal matrices, there exists a

unitary V ∈ Cn×n such that A = V ΓV H, where Γ = diag{λ1(A), . . . (A), λn(A)} and

V H denotes the conjugate transpose of matrix V . Using this fact, it follows that

As =
A+ AH

2
= V

(
Γ + ΓH

2

)

V H

= V diag
(
Re{λ1(A)}, . . . ,Re{λn(A)}

)
V H. (4.24)

This implies that λi(As) = Re{λi(A)} for all i = 1, . . . , n. In order to prove the RHS

inequality in (4.18), we use [113, Corollary 2.1.1], which gives us the upper bound in

(4.18). When Q has identical eigenvalues, then the upper and lower bounds have equal

values; therefore, both bounds in (4.8) are achieved.

All symmetric and orthogonal matrices are examples of normal matrices. One of the

outcomes of the Theorem 4.5.2 is that when A is normal and Q has n identical eigenval-

ues, the value of the performance measure (4.5) is exactly equal to the upper and lower
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bounds in (4.18) and can be calculated as a function of eigenvalues of the symmetric part

of A or equivalently the real parts of eigenvalues of A.

4.6 Applications to Some Network Models

In this section, we apply the results of the previous section to some systems with spe-

cific interconnection topologies. One of the challenging problems in the area of linear

dynamical networks is to discover relationships between the H2-norm of a linear network

and the structure of its underlying interconnection topology. In general, carrying out such

network analysis problems are difficult, if not impossible. In the following, we show that

because of the particular functional form of bounds in Theorems 4.5.1 and 4.5.2, one can

exploit structural properties of some classes of linear time-invariant networks in order

to calculate their H2-norm bounds in more explicit forms and relate them to their graph

topologies.

4.6.1 Linear Consensus Networks over Directed Graphs

We consider a class of linear consensus networks where the interconnection topology

between subsystems is defined using a directed graph [12, 114]. This class of networks

can be modeled by (4.2)-(4.3) with A = −L, in which L is the Laplacian matrix of the

underlying directed graph. We assume that all directed graphs in this section are weighted

and strongly connected [115]. As a result, we have λ1(L) = 0 and Re{λi(L)} > 0 for all

n = 2, . . . , n. In order to guarantee a well-defined and bounded H2-norm for this class

of networks, it is further assumed that only stable modes of the network are observable

from the output.We stress that in both Theorems 4.5.1 and 4.5.2, it is assumed that matrix

A is Hurwitz. Next result extends Theorem 4.5.1 to marginally stable linear consensus
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networks over directed graphs.

Theorem 4.6.1. Consider a linear system (4.2)-(4.3) with A = −L and input noise co-

variance (4.4), where L corresponds to Laplacian matrix of a directed weighted graph

that is strongly connected and balanced. Then, it follows that

n∑

i=2

1

2Re{λi(L)}
≤ ρss (−L;Q) ≤

n∑

i=2

1

λi(L+ LT)
, (4.25)

where Q = Mn is the centering matrix. Moreover, the lower bound in (4.25) is achieved

if and only if L is normal.

Proof. First, we show that if the underlying graph is balanced and strongly connected,

then L+ LT has only one zero eigenvalue and the rest of them are strictly positive. Since

the underlying graph is balanced, the row sum and column sum of Laplacian matrix L

is zero. Therefore, L + LT has zero row and column sums and it can be considered as

Laplacian matrix of an undirected graph. However, this undirected graph is connected

because L is the Laplacian matrix of a strongly connected graph. As a result, L+ LT has

only one zero eigenvalue, i.e., λ1(L + LT) = 0 and λ2(L + LT) > 0. Now, let us define

the disagreement vector by

xd(t) := Mnx(t) = x(t)− 1
n
1n1

T
nx(t). (4.26)

By multiplying a vector by the centering matrix, we actually subtract the mean of all

the entries of the vector from each entry. The dynamics of linear network (4.2)-(4.3)

with respect to the new state transformation (4.26) is so-called disagreement form of the

network that is given by

ẋd(t) = −
(
L+ 1

n
1n1

T
n

)
xd(t) +Mnξ(t), (4.27)
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y(t) = xd(t). (4.28)

It can be shown that the transfer function of the network from ξ to y stays invariant under

state transformation (4.26) [12]. We show that (4.27)-(4.28) and the following system

have identical performance measure (4.5):

ẋd(t) = −
(
L+ 1

n
1n1

T
n

)T
xd(t) + ξ(t), (4.29)

y(t) = Mnxd(t). (4.30)

Both state matrices in (4.27) and (4.29) are Hurwitz. Therefore, the H2-norm of both

systems from ξ to y are well-defined. The squared H2-norm of (4.27)-(4.28) is given by

ρss(A,Q) = 1
2
Tr(P ), where P is the unique solution of

P
(
L+ 1

n
1n1

T
n

)
+
(
L+ 1

n
1n1

T
n

)T
P = Mn. (4.31)

The squared H2-norm of (4.29)-(4.30) is given by

lim
t→∞

E
[
yT(t)y(t)

]
=

1

2
Tr(Po), (4.32)

where Po is the unique solution of

(
L+ 1

n
1n1

T
n

)T
Po + Po

(
L+ 1

n
1n1

T
n

)
= Mn. (4.33)

It is evident that both equations (4.31) and (4.33) return identical unique solutions, i.e.,

Po = P . Hence, by applying Theorem 4.5.1 to system (4.29)-(4.30), we get the desired

result.
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x1 x2 x3 xn

ξ1 ξ2 ξ3 ξn

Figure 4.1: Schematic diagram of a linear consensus network with a directed cycle graph with n

agents. Each agent i is subject to stochastic disturbance ξi.

The class of directed graphs with normal Laplacian matrices are balanced, but vice

versa is not true in general.

Theorem 4.6.2. Let us consider a linear consensus network over a strongly connected

graph with Laplacian matrix L. If we assume that L is normal and Q = CTC with

C1 = 0, then it follows that

n∑

i=2

λi(Q)

2Re{λi(L)}
≤ ρss (−L;Q) ≤

n∑

i=2

λn−i+2(Q)

2Re{λi(L)}
. (4.34)

Moreover, the lower and upper bounds in (4.34) are achieved if and only ifQ = q
(
In − 1

n
1n1

T
n

)

for all q ≥ 0.

The proof of Theorem 4.6.2 can be derived with some modifications from the proofs

of Theorems 4.5.2 and 4.6.1. Similar to the proof of Theorem 4.6.1, first we need to form

the disagreement network, and then, utilize Theorem 4.5.2 to conclude the proof.

Example 4.6.3. Let us consider a consensus network with a directed cycle graph given

by Figure 4.1, i.e.all the edges being oriented in the same direction with positive weight

w. Without loss of generality, we may assume that w = 1. The Laplacian matrix of this

graph is denoted by Lc which is a circulant matrix. According to results of [116], the

corresponding Laplacian eigenvalues are given by

λk(Lc) = 1 + e
iπ

(

1− (−1)k2⌊ k
2 ⌋

n

)

, (4.35)
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Figure 4.2: Schematic diagram of a noisy cyclic network. The dashed link indicates a negative

(inhibitory) feedback.

where k = 1, · · ·n. As a result, their real parts can be calculated as

Re{λk(Lc)} = 1 + cos
(

π − (−1)k2⌊k
2
⌋π

n

)

= 2 sin
(

2π⌊k
2
⌋

n

)

.

Since the corresponding underlying graph is strongly connected and its Laplacian matrix

is normal, we can apply Theorem 4.6.2 to get

n∑

k=2

λk(Q)

2 sin
(

2π⌊k
2
⌋

n

) ≤ ρss (−Lc;Q) ≤
n∑

k=2

λn−k+2(Q)

2 sin
(

2π⌊k
2
⌋

n

) .

When Q = In − 1
n
1n1

T
n , the performance measure can be calculated explicitly as a func-

tion of network size as ρss (−Lc;Q) = n2−1
12

. According to Definition 4.4.1, we conclude

that the H2-norm of a linear consensus network with directed cycle graph deteriorates by

O(n) as network size gets larger.

4.6.2 Linear Networks with Cyclic Interconnection Topology

The class of cyclic networks has been studied in the context of systems biology, e.g.,

in autocatalytic pathway with ring topology [4, 117–119]. In order to obtain analytical

bounds using our results from Section 4.5, we limit our attention to the class of linear

cyclic networks shown in Figure 4.2.

We can represent the dynamics of the overall cyclic network in the compact canonical
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form (4.2)-(4.3) with the following state matrix

A =
















−a 0 . . . 0 −cn
c1 −a . . . 0 0

...
...

. . .
...

...

0 0 . . . −a 0

0 0 . . . cn−1 −a
















, (4.36)

and output matrixC = In. In the next theorem, we use our results in Section 4.5 to exploit

structural properties of this class of linear dynamical networks in order to compute their

H2-norm bounds.

Theorem 4.6.4. For the cyclic linear dynamical network with state matrix (4.36) and

output matrix C = In, let us define c := n
√
c1c2 · · · cn and assume that the stability

condition γ := a/c > cos(π/n) holds. Then the corresponding performance measure is

lower bounded by

ρss (A;Q) ≥ L(n, β, c), (4.37)

where

L(n, β, c) =







n tan β
2

2c sin β
n

if γ < 1

n2

4c
if γ = 1

n tanh β
2

2c sinh β
n

if γ > 1

(4.38)

and

β :=







arcos(γ)n if γ ≤ 1

arcosh(γ)n if γ > 1
. (4.39)
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The equality in (4.37) is achieved if and only if c1 = . . . = cn, which means that all

subsystems of the network are identical.

Proof. The stability condition γ > cos(π/n) implies that A is Hurwitz [118,119]. There-

fore, the H2–norm squared is well-defined and finite. The characteristic polynomial of A

is given by

(λ+ a)n + c1c2 · · · cn = 0. (4.40)

Therefore, the eigenvalues of the matrix are

λk = − a + cei(
π
n
+ 2πk

n
) (4.41)

for k = 0, 1, · · · , n− 1. By substituting these eigenvalues into the lower bound (4.9), we

get

−
n∑

i=1

1

2Re{λi(A)}
=

n−1∑

k=0

1

2Re
{

−a + cei(
π
n
+ 2πk

n
)
}

=
n−1∑

k=0

1

2c
(
γ − cos(π

n
+ 2πk

n
)
) . (4.42)

First, let us assume that γ < 1 and substitute γ = cos(β/n) in (4.42). It follows that

−
n∑

i=1

1

2Re{λi(A)}
=

1

2c

n−1∑

k=0

1

cos(β
n
)− cos(π

n
+ 2πk

n
)

=
1

4c

n−1∑

k=0

csc( (2k+1)π
2n

+ β
2n
) csc( (2k+1)π

2n
− β

2n
)

=
n tan β

2

2c sin β
n

,
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Figure 4.3: The lower bound (4.38), which is depicted by small red circles (◦), is compared

asymptotically to its approximation in (4.43). It can be observed that (4.43) tightly approximates

(4.38).

where the Birkhoff Ergodic theorem is used to conclude the last equation. Similar steps

can be taken when γ > 1. In each case by substituting γ from (4.39) in (4.42), one can

obtain the desired result (4.37). According to Theorem 4.5.1, the equality in (4.37) is

achieved if and only if A is a normal matrix. On the other hand, based on the cyclic

structure of matrix (4.36), we conclude that A is normal if and only if c1 = . . . = cn.

The secant criterion reported in [118] and [119] for cyclic linear networks provides

a stability condition. This condition implies that the unperturbed system with ξ = 0 is

stable if and only if γ > cos(π/n). For a fixed parameter β, the stability condition of

the cyclic network is not affected when the number of intermediate subsystems changes.

However, the result of Theorem 4.6.4 asserts that the lower bound of the performance

measure (4.5) increases (i.e., the network performance deteriorates) when the network

size increases. More explicitly, we have the following approximation for the lower bound
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(4.38)

L(n, β, c) ≈







tan β
2

2cβ
n2 if γ < 1

1
4c
n2 if γ = 1

tanh β
2

2cβ
n2 if γ > 1

. (4.43)

According to Definition 4.4.1, we conclude that when parameter β is fixed, the H2-norm

of the cyclic network deteriorates in the order of Ω(n) as the network size becomes larger.

We should mention that the H2-norm of n-identical coupled subsystems may scale in

different orders depending on their underlying graph topology, for more details please

see [12].

Example 4.6.5. In order to support our theoretical results, we consider a cyclic network

(4.2)-(4.3) with state matrix (4.36), c := c1 = . . . = cn, and C = In. The asymptotic

scaling of the H2-norm for this class of networks is depicted in terms of network size

and parameter β in Figure 4.3. In this case, the H2-norm of the cyclic network can be

calculated by the square root of (4.38). These values are depicted by small red circles (◦)

versus the number of subsystems n. Moreover, these values are compared asymptotically

to their approximation given by the square root of (4.43). It can be observed that the

square root of (4.43) tightly approximates the H2-norm of the cyclic network.

4.7 Tightness of Our New Bounds

In this section, we compare our results with the existing results in the literature. In Table

4.1, we summarize several lower bounds on the H2-norm squared of system (4.2)-(4.3)

based on all existing works in the literature to the best of our knowledge. When Q = In,

the lower bound in Theorem 4.5.1 is tighter than all existing lower bounds reported in
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Table 4.1: Comparison of existing lower bounds on ρss in the literature.

Methods Lower Bounds

Theorem 4.5.1
∑n

i=1
−1

2Re{λi(A)}
Theorem 4.5.2

∑n
i=1

−λn−i+1(Q)
2Re{λi(A)}

[109] − Tr(Q)
2λmin(As)

[108] −n2λmin(Q)
2Tr(A)

[107] − Tr(Q)
2Tr(A)

[106] −
(

∑

i λi(Q)
1
2

)2

2Tr(A)

[47]
∑n

i=1 λi

(
Q
a
− AAT

a2

) 1
2

for Q ≻ AAT

a

reference papers [106–108]. In the following, we provide analytical proofs for our claim.

It is true that

−Tr(A) = −
n∑

i=1

Re{λi(A)}, (4.44)

and −Re{λi(A) are positive for all i = 1, . . . , n. From the arithmetic and harmonic mean

inequalities, it follows that

−n2

2Tr(A)
≤

n∑

i=1

−1

2Re{λi(A)}
. (4.45)

Moreover, we have that −n
2Tr(A)

≤ −n2

2Tr(A)
. As a result, when Q = In the following

ordering on bounds holds

−n
2Tr(A)
︸ ︷︷ ︸

[107]

≤ −n2

2Tr(A)
︸ ︷︷ ︸

[106,108]

≤
n∑

i=1

−1

2Re{λi(A)}
︸ ︷︷ ︸

Theorem 4.5.1

.

On the other hand, if A is normal, then the lower bound in Theorem 4.5.2 is tighter than

the lower bounds presented in [106–108]. In the next few lines, we will prove this claim.
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We know that

Tr(Q)

−2Tr(A)
=

∑n
i=1 λi(Q)

−2Tr(A)
≤

(
∑n

i=1 λi(Q)
1
2

)2

−2Tr(A)
(4.46)

and

Tr(Q)

−2Tr(A)
≤

(
∑n

i=1 λi(Q)
1
2

)2

−2Tr(A)
. (4.47)

From the Cauchy–Schwarz inequality, we get

(
n∑

i=1

λi(Q)
1
2

)2

≤
n∑

i=1

λn−i+1(Q)

−Re{λi(A)}

(

−
n∑

i=1

Re{λi(A)}
)

. (4.48)

Then, equation (4.44) and inequality (4.48) give us

−

(
∑n

i=1 λi(Q)
1
2

)2

2Tr(A)
≤ −

n∑

i=1

λn−i+1(Q)

2Re{λi(A)}
. (4.49)

According to (4.46), (4.47) and (4.49), we conclude that our proposed lower bound is

tighter than the lower bounds reported in [106–108]. In summary, we have

Tr(Q)

−2Tr(A)
︸ ︷︷ ︸

[107]

≤

(
∑n

i=1 λi(Q)
1
2

)2

−2Tr(A)
︸ ︷︷ ︸

[106]

≤
n∑

i=1

−λn−i+1(Q)

2Re{λi(A)}
︸ ︷︷ ︸

Theorem 4.5.2

and

n2λmin(Q)

−2Tr(A)
︸ ︷︷ ︸

[108]

≤

(
∑n

i=1 λi(Q)
1
2

)2

−2Tr(A)
︸ ︷︷ ︸

[106]

≤
n∑

i=1

−λn−i+1(Q)

2Re{λi(A)}
︸ ︷︷ ︸

Theorem 4.5.2

.
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To support our results, we illustrate by means of two simulation examples that our

lower bounds for the performance measure (4.5) are the tightest among the other known

bounds given in Table 4.1.

Example 4.7.1. Let us define the parametrized family of matrices Aα as follows

Aα = (1− α)A0 + αA1 (4.50)

for all 0 ≤ α ≤ 1, where A0 and A1 are given by

A0 =












−5 3 3 3

0 −5 2 2

0 0 −6 1

0 0 0 −6












and A1 =












−8 3 2 1

1 −8 3 2

2 1 −8 3

3 2 1 −8












.

We evaluate the performance of the parametrized family of linear system (4.2)-(4.3) with

state matrix Aα and output matrix C = I4 for all 0 ≤ α ≤ 1. In Figure 4.4, our lower

bound based on Theorem 4.5.1 is compared with other known bounds summarized in

Table 4.1. One observes from this figure that our lower bound outperforms all existing

lower bounds for all 0 ≤ α ≤ 1. For all 0 ≤ α < 1, the parametrized matrix Aα is not

normal. However, this matrix becomes normal for α = 1. Therefore, as it is seen in the

figure our lower bounds reach the exact value of the performance measure for α = 1.

Example 4.7.2. We illustrate tightness of our bounds on the performance measure of the

parametrized family of linear consensus networks over directed graph that are defined

using the following parametrized family of Laplacian matrices

Lα = (1− α)L0 + αL1 (4.51)
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Figure 4.4: A numerical comparison of the results presented in Table 4.1 for the family of linear

systems given in Example 4.7.1.

for all 0 ≤ α ≤ 1, where L0 and L1 are given by

L0 =












2 −1 −1 0

−1 3 −1 −1

−1 −1 4 −2

0 −1 −2 3












, L1 =












4 −2 0 −2

−2 2 0 0

0 0 1 −1

−2 0 −1 3












and the following output matrix

C =












1 −1 0 0

0 1 −1 0

0 0 1 −1

−1 0 0 1












.

In Figure 4.5, our lower bound is compared with other known bounds presented in Table
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4.1. The simulation results confirm that our proposed lower bound is tighter than all the

previously existing results in the literature. It should be noted that since Q = CTC is not

full-rank (i.e., singular) the result of [47] is not applicable to this family of systems.

4.8 Discussion and Conclusion

The proposed lower and upper bounds in Theorem 4.5.1 are functions of the real parts of

eigenvalues of the state matrix of the system and the eigenvalues of its symmetric part,

respectively. We have shown that the spectral lower bound in Theorem 4.5.1 is tighter

than all existing lower bounds reported in Table 4.1. Our proposed lower bound requires

computation of all eigenvalues of a n × n state matrix that in general has higher com-

putational complexity than those lower bounds in Table 4.1. This extra complexity is

the price of having comparably tighter estimates for the performance measure. Calcula-

tion of eigenvalues (modes) of some classes of linear dynamical networks with normal

or symmetric state matrices are inexpensive and may lead to closed-form expressions for

all eigenvalues, e.g., spatially invariant systems with lattice or ring topologies and linear

consensus networks with path, star, cycle, complete, and complete bipartite graph topolo-

gies; see Chapter 2, [2, 12] and references in there. For networks with generic n × n

state matrices, the best currently known bounds for arithmetic complexity of comput-

ing all eigenvalues and their associated eigenspaces is given by O
(
n3 + (n log2 n) log b

)

for an approximation within 2−b; see [120] for more details. This bound is reported to

be optimal up to a logarithmic factor, where it is shown that a much better randomized

arithmetic complexity of order O
(
n2 logn + (n log2 n) log b

)
can be achieved for some

important special classes of matrices such as Toeplitz, Hankel, Toeplitz-like, Hankel-like,

and Toeplitz-like-plus-Hankel-like matrices.

The value of having a spectral lower bound like (4.8) is beyond its computational

105



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

 

 
Exact value
Our lower bound
Kwon et. al. 1985
Komaroff 1988
Mori et. al. 1987
Wang et. al. 1986

α

ρ
ss

Figure 4.5: A numerical comparison of the results presented in Table 4.1 for the family of con-

sensus networks given in Example 4.7.2.

complexity as it provides valuable insight on how the expected output energy under white

noise excitation depends on the dynamic modes of the system, which is given by the

lower bound −1
2

∑n
i=1Re{λi}−1. We may think of term −1

2
Re{λi}−1 as a quantity that

can be associated with the energy of the i’th mode of the system, which is inversely

proportional to its distance from the imaginary axis in the complex domain. The first key

point is that for networks with a few slow modes, we can still obtain rather tight lower

bounds by only identifying those slow modes; for example see [121] for some efficient

identification algorithms. The second key point about the spectral lower bound is that it

helps to unravel the fundamental role of slow modes in performance deterioration: slower

modes are more energetic and dominant after transient phase in time, i.e., the high energy

components of the output signal are the ones that are temporally slow. This suggests some

useful insights on how to design inter-network feedback control laws by replacing slow

106



modes of the network in order to achieve better performance bounds. This is one of our

future research directions.
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Chapter 5

Performance Limitations in Nonlinear

Autocatalytic Networks

5.1 Abstract

In this chapter, we develop some basic principles to study autocatalytic networks and

exploit their structural properties in order to characterize their existing hard limits and

essential tradeoffs. In a dynamical system with autocatalytic structure, the system’s output

is necessary to catalyze its own production. We consider a simplified model of glycolysis

as our motivating example. First, we consider the properties of such pathways through a

two-state model, which obtained by lumping all the intermediate reactions into a single

intermediate reaction. Then, we generalize our results to autocatalytic pathways, which

are composed of a chain of enzymatically catalyzed intermediate reactions. We explicitly

derive the hard limit on the minimum L2-gain disturbance attenuation and the hard limit

of its minimum output energy. Finally, we show how these resulting hard limits lead to

some fundamental tradeoffs between transient and steady-state behavior of the network
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and its net production.

5.2 Introduction

The class of dynamical networks with autocatalytic structures can be found in most of

the planet’s cells from bacteria to human, engineered, and economic systems [103]. In

an interconnected control system with autocatalytic structure, the system’s product (out-

put) is necessary to power and catalyze its own production. The destabilizing effects of

such “positive” autocatalytic feedback can be countered by negative regulatory feedback.

There have been some recent interest to study models of glycolysis pathway which is

an example of an autocatalytic dynamical network in biology that generates adenosine

triphospate (ATP) which is the cell’s energy currency and is consumed by different mech-

anisms in the cell [49,103]. Other examples of autocatalytic networks include engineered

power grids whose machinery are maintained using their own energy product as well as

financial systems which operate based on generating monetary profits by investing money

in the market. Recent results show that there can be severe theoretical hard limits on the

resulting performance and robustness in autocatalytic dynamical networks. It is shown

that the consequence of such tradeoffs stems from the autocatalytic structure of the sys-

tem [49, 103, 122].

The recent interest in understanding fundamental limitations of feedback in complex

interconnected dynamical networks from biological systems and physics to engineering

and economics has created a paradigm shift in the way systems are analyzed, designed,

and built. Typical examples of such complex networks include metabolic pathways [24],

vehicular platoons [25–29], arrays of micro-mirrors [30], micro-cantilevers [31], and

smart power grids. These systems are diverse in their detailed physical behavior, how-

ever, they share an important common feature that all of them consist of an interconnec-
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tion of a large number of systems. There have been some progress in characterization of

fundamental limitations of feedback in this class of systems [32–34].

Most of the above cited research on fundamental limitations of feedback in intercon-

nected dynamical systems have been focused on networks with linear time-invariant dy-

namics. The main motivation of this chapter stems from a recent work presented in [103]

which shows that glycolysis oscillation can be an indirect effect of fundamental tradeoffs

in this system. The results of this work is based on a linearized model of a two-state model

of glycolysis pathway and tradeoffs are stated using Bode’s results. In this chapter, our

approach to characterize hard limits is essentially different in the sense that it uses higher

dimensional nonlinear models of the pathway. We interpret fundamental limitations of

feedback by using hard limits (lower bounds) on L2-gain disturbance attenuation of the

system [123–125], and L2-norm squared of the output of the system [49, 126].

In this chapter, our goal is to build upon our previous results [49,50] and develop meth-

ods to characterize hard limits on performance of autocatalytic pathways. First, we study

the properties of such pathways through a two-state model, which obtained by lumping

all the intermediate reactions into a single intermediate reaction (Figure 5.1). Then, we

generalize our results to autocatalytic pathways, which are composed of a chain of enzy-

matically catalyzed intermediate reactions (Figure 5.2). We show that due to the existence

of autocatalysis in the system (which is necessary for survival of the pathway), a funda-

mental tradeoff between fragility and net product of the pathway emerges. Also, we show

that as the number of intermediate reactions grows, the price for performance increases.
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5.3 Minimal Autocatalytic Pathway Model

5.3.1 Two-State Model

We consider autocatalysis mechanism in a glycolysis pathway. The central role of glycol-

ysis is to consume glucose and produce adenosine triphosphate (ATP), the cell’s energy

currency. Similar to many other engineered systems whose machinery runs on its own

energy product, the glycolysis reaction is autocatalytic. The ATP molecule contains three

phosphate groups and energy is stored in the bonds between these phosphate groups.

Two molecules of ATP are consumed in the early steps (hexokinase, phosphofructoki-

nase/PFK) and four ATPs are generated as pyruvate is produced. PFK is also regulated

such that it is activated when the adenosine monophosphate (AMP)/ATP ratio is low;

hence it is inhibited by high cellular ATP concentration [24,127]. This pattern of product

inhibition is common in metabolic pathways. We refer to [103] for a detailed discussion.

Experimental observations in Saccharomyces cerevisiae suggest that there are two

synchronized pools of oscillating metabolites [128]. Metabolites upstream and down-

stream of phosphofructokinase (PFK) have 180 degrees phase difference, suggesting that

a two-dimensional model incorporating PFK dynamics might capture some aspects of

system dynamics [129], and indeed, such simplified models qualitatively reproduce the

experimental behavior [24, 127].

We will first assume that a lumped variable, x, can capture the essence of all inter-

mediate metabolites. We consider a minimal model with three biochemical reactions as
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follows







PFK Reaction: s + αy
RPFK−−−→ x,

PK Reaction: x
RPK−−−→ (α+ 1)y + x′,

Consumption: y
RCONS−−−−→ ∅.

(5.1)

In the PFK reaction, s is some precursor and source of energy for the pathway with

no dynamics associated, y denotes the product of the pathway (ATP), x is intermediate

metabolites, x′ is one of the by-products of the second biochemical reaction (pyruvate

kinase/PK). ∅ is a null state, α > 0 is the number of y molecules that are invested in the

pathway, and α+ 1 is the number of y molecules produced. A
k−→ B denotes a chemical

reaction that converts the chemical species A to the chemical species B at rate k.

The PFK reaction consumes α + 1 molecules of ATP with allosteric inhabitation by

ATP. In the second reaction, pyruvate kinase (PK) produces α + 1 molecules of ATP for

a net production of one unit; Finally the third reaction models the cell’s consumption

of ATP. We refer to Figure 5.1 for a schematic diagram of biochemical reactions in the

minimal model.

A set of ordinary differential equations that govern the changes in concentrations x

and y can be written as







ẋ = RPFK(y) − RPK(x, y),

ẏ = −αRPFK(y) + (α + 1)RPK(x, y) − RCONS(y).

(5.2)

We choose the reaction rates as follows; for the PFK reaction we have

RPFK(y) =
2ya

1 + y2h
, (5.3)
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where a is the cooperativity of ATP binding to PFK and h is the feedback strength of ATP

on PFK. For the PK reaction we choose

RPK(x, y) =
2kx

1 + y2g
, (5.4)

where k is intermediate reaction rate and g is the feedback strength of ATP on PK. The

coefficients 2 in the numerator and feedback coefficient of the reactions’ rates come from

the normalization. Finally, the product y is consumed by basal consumption rate of 1+ δ,

i.e.

RCONS = 1 + δ, (5.5)

where δ is the perturbation in ATP consumption. These reaction rates are consistent with

biological intuition and experimental data in the case of the glycolysis pathway [103]. In

the final reaction, the effect of an external time–varying disturbance δ on ATP demand is

considered. The product of the pathway, ATP, inhibits the enzyme that catalyzes the first

and second reactions, and the exponents h and g capture the strength of these inhibitions,

respectively.

We now rewrite (5.2)–(5.5) in the following nonlinear dynamics







ẋ1 =
2xa

2

1+x2h
2

− 2kx1

1+x2g
2

,

ẋ2 = − α
2xa

2

1+x2h
2

+ (α + 1) 2kx1

1+x2g
2

− (1 + δ) ,

(5.6)

with output variable

y = x2 (5.7)

for x1, x2 ≥ 0.

In order to make several comparisons possible, we normalize all concentrations such
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PFK 6C-P PK ATP
1 + δ
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Figure 5.1: A schematic diagram of the minimal glycolysis model. The constant glucose

input along with αATP molecules produce a pool of intermediate metabolites, which then

produces α+ 1 ATP molecules.

that the equilibrium point of the unperturbed system (i.e., when δ = 0) becomes






x∗1

x∗2




 =






1
k

1




 . (5.8)

In the minimal glycolysis model (5.6) expression 2
1+x2h

2
can be interpreted as the effect

of the regulatory feedback control mechanism employed by nature, which captures inhi-

bition of the catalyzing enzyme. This observation suggests the following control system

model for the minimal model of the glycolysis pathway






ẋ1

ẋ2




 =






1

−α




 x

a
2u+






−1

α + 1






2kx1

1 + x2g2
−






0

1 + δ




 , (5.9)

where u is the control input and captures the effect of a general feedback control mech-

anism. Our primary motivation behind development and analysis of such control system

models for this metabolic pathways is to rigorously show that existing fundamental trade-

offs in such models are truly unavoidable and independent of control mechanisms used

to regulate such pathways. For glycolysis autocatalytic pathways, the results of the fol-

lowing sections assert that the existing fundamental limits on performance of the pathway

depend only on the autocatalytic structure of the underlying network.
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Stability properties of this model: According to [103], the equilibrium point (5.8) of

two-state glycolysis model (5.6) is stable if

0 < h− a <
k + g(1 + α)

α
.

Our aim is to show that for any stabilizing control input there is a hard limit on the

performance measure of the pathway.

5.3.2 Performance Measures

We use two different methods to quantify hard limits for the glycolysis pathway models.

We quantify hard limits (in the form of lower bounds) on measures of robustness and

performance by considering L2-gain disturbance attenuation and L2-norm squared of the

output of the system.

L2-Gain from Disturbance Input to Output

In order to quantify lower bounds on the best achievable robustness measure for two-

state model (5.9), we need to solve the corresponding regional state feedback L2-gain

disturbance attenuation problem with guaranteed stability. This problem consists of de-

termining a control law, u, such that the closed-loop system has the following properties.

First, the zero equilibrium of the system (5.9) with δ(t) = 0, for all t ≥ 0, is asymptoti-

cally stable with region of attraction containing Ω (an open set containing the equilibrium

point). Second, for every δ ∈ L2(0, T ) such that the trajectories of the system remain in

Ω , the L2-gain of the system from δ to y, is less than or equal to γ, i.e.

∫ T

0

(y(t)− y∗)2dt ≤ γ2
∫ T

0

δ2(t)dt, (5.10)
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for all T ≥ 0 and zero initial state.

It is well-known that there exists a solution to the static state feedback L2-gain distur-

bance attenuation problem with stability, in some neighborhood of the equilibrium point,

if there exists a smooth positive definite solution of the corresponding Hamilton-Jacobi

inequality (see [123, 125] for more details).

The simplest robust performance requirement for model (5.9) is that the concentra-

tion of y (ATP) remains nearly constant when there is a small constant disturbance in

ATP consumption δ (see [49, 103]). But even temporary ATP depletion can result in cell

death. Therefore, we are interested in a more complete picture of the transient response

to external disturbances.

We show that there exists a hard limit on the best achievable disturbance attenuation,

γ∗, for system (5.9) such that the problem of disturbance attenuation (5.10) with internal

stability is solvable for all γ > γ∗ and not for γ < γ∗. The interesting observation is

that the optimal disturbance attenuation γ∗ is indeed a hard limit function on robustness

of system (5.9). It is known that for linear systems, optimal disturbance attenuations can

be calculated based on the zero-dynamics subsystem of the system [126]. The hard limit

function is zero if and only if the disturbance δ does not influence the unstable part of the

zero-dynamics of the system (as defined in [124] for nonlinear systems).

Total Output Energy

We characterize fundamental limitations of feedback for system (5.9) with initial condi-

tion x(0) = x0 and zero external disturbances (i.e., δ(t) = 0) by considering the corre-

sponding cheap optimal control problem. This case consists of finding a stabilizing state
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feedback control which minimizes the functional

Jǫ(x0; u) =
1

2

∫ ∞

0

[
(y(t)− y∗)2 + ǫ2 (u(t)− u∗)2

]
dt, (5.11)

when ǫ is a small positive number. As ǫ → 0, the optimal value J∗
ǫ (x0) tends to J∗

0 (x0),

the ideal performance of the system. It is well-known (e.g., see [130], page 91) that this

problem has a solution if there exists a positive semidefinite optimal value function which

satisfies the corresponding Hamilton–Jacobi-Bellman equation (HJBE). The interesting

fact is that the ideal performance is indeed a hard limit on performance of system (5.9). It

is known that the ideal performance is the optimal value of the minimum energy problem

for the zero-dynamics of the system (see [126] for more details). The ideal performance

(hard limit function) is zero if and only if the system has an asymptotically stable zero-

dynamics subsystem.

5.3.3 Fundamental limits on the Performance Measures

L2-Gain Disturbance Attenuation

Theorem 5.3.1. Consider the optimal L2-gain disturbance attenuation problem for the

minimal glycolysis model (5.9). Then, the best achievable disturbance attenuation gain

γ∗ for system (5.9) satisfies the following inequality

γ∗ ≥ Γ(α, k, g), (5.12)

and the hard limit function is given by

Γ(α, k, g) =
α

k + gα
. (5.13)
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Proof. We recall that the optimal value of the achievable disturbance attenuation level γ∗

is a number with the property that the problem of disturbance attenuation with internal

stability is locally solvable for each prescribed level of attenuation γ > γ∗ and not for

γ < γ∗. In the first step, we introduce a new auxiliary variable z = x1 + 1
α
x2. By

transforming the dynamics of the system using the following change of coordinates






y

z




 =






0 1

1 1
α











x1

x2




 , (5.14)

we obtain the following form







ẏ = − α+1
α

2ky
1+y2g

+ (α + 1) 2kz
1+y2g

− αyau− (1 + δ)

ż = 1
α

2kz
1+y2g

− 1
α2

2ky
1+y2g

− 1
α
(1 + δ).

(5.15)

Note that the optimal L2-gain disturbance attenuation of transformed system (5.15) and

the original system are the same. Based on [131, Section 8.4] the optimal disturbance

level for the linearized problem will provide a lower bound for the optimal disturbance

of the nonlinear system. Furthermore, for the linear system this problem reduces to a

disturbance attenuation problem for the zero dynamics with cost on the control input.

Thus we consider the linearized zero dynamics of (5.15) as follows

˙̄z =
k

α
z̄ − gα+ k

α2
ȳ − 1

α
δ, (5.16)

where







z̄ = z − z∗ = z − (x∗ + 1
α
y∗)

ȳ = y − y∗
(5.17)
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We now calculate optimal disturbance attenuation problem (from δ to y) for the zero

dynamics with cost on its control input y. For system (5.16), the optimal value of γ is

given by (see [124, 132] for more details)

γ∗L =
α

k + gα
. (5.18)

Thus, we can conclude that

γ∗ ≥ γ∗L = H(α, k, g) =
α

k + gα
.

This completes the proof.

Remark 5.3.2. Theorem 5.3.1 illustrates a tradeoff between robustness and efficiency (as

measured by complexity and metabolic overhead). From (5.12) the glycolysis mechanism

is more robust efficient if k and g are large. On the other hand, large k requires either

a more efficient or a higher level of enzymes, and large g requires a more complex al-

losterically controlled PK enzyme; both would increase the cell’s metabolic load. The

obtained hard limit in Theorem 5.3.1 is increasing function with respect to α. It means

that increasing α (more energy investment for the same return) can result in worse per-

formance. It is important to note that these results are consistent with results in [103],

where a linearized model with a different performance measure is used.

Total Output Energy

In this subsection, we show that there exists a hard limit on the best achievable ideal

performance (output energy) of system (5.9). One can see that some minimum output

energy (i.e.ATP) is required to stabilize the unstable zero-dynamics (5.15). This output
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energy represents the energetic cost of the cell to stabilize it to its steady-state. In the

following theorem, we show that the minimum output energy is lower bounded by a

constant which is only a function of the parameters and initial conditions of the glycolysis

model. This hard limit is independent of the feedback control strategy used to stabilize

the system.

Theorem 5.3.3. Suppose that the equilibrium of interest is given by (5.8) and u∗ = 1.

Then, there is a hard limit on the performance measure of the unperturbed (δ = 0) system

(5.9) in the following sense

∫ ∞

0

(y(t; u0)− ȳ)2 dt ≥ α3k

(gα+ k)2
z20 + J(z0;α, k, g), (5.19)

where z0 = (x(0)− x∗) + 1
α
(y(0)− y∗), u0 is an arbitrary stabilizing feedback control

law for system (5.9), J(0;α, k, g) = J(z;α, k, 0) = 0 and |J(z;α, k, g)| ≤ c|z|3 on an

open set Ω around the origin in R.

Proof. By introduction of a new variable z = x1 +
1
α
y, we rewrite (5.9) in the canonical

form (5.15). We denote by π(y, z; ǫ) the solution of the HJB PDE corresponding to the

cheap optimal control problem to (5.9). We apply the power series method [133, 134] by

first expanding π(y, z; ǫ) in series as follows

π(y, z; ǫ) = π[2](y, z; ǫ) + π[3](y, z; ǫ) + . . . (5.20)

in which kth order term in the Taylor series expansion of π(y, z; ǫ) is denoted by π[k](y, z; ǫ).

Then (5.20) is plug into the corresponding HJB equation of the optimal cheap control
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problem. The first term in the series is

π[2](y, z; ǫ) =

[

y − y∗ z − z∗
]

P (ǫ)






y − y∗

z − z∗




 ,

where P (ǫ) is the solution of algebraic Riccati equation to the cheap control problem for

the linearized model (A0, B0). It can be shown that P (ǫ) can be decomposed in the form

of a series in ǫ (see [135] for more details)

P (ǫ) =






ǫP1 ǫP2

ǫP2 P0 + ǫP3




+O(ǫ2).

Since the pole of the zero-dynamics of the linearized model is located at the k
α

, we can

verify that P0 =
α3k

(gα+k)2
. Therefore, it follows that π[2](y, z; ǫ) = α3k

(gα+k)2
z20 +O(ǫ).

We only explain the key steps. One can obtain governing partial differential equations

for the higher-order terms π[k](y, z; ǫ) for k ≥ 3 by equating the coefficients of terms with

the same order. It can be shown that π[k](y, z) = π
[k]
0 (z)+ ǫπ

[k]
1 (y, z)+O(ǫ) for all k ≥ 3.

Then, by constructing approximation of the optimal control feedback by using computed

Taylor series terms, one can prove that π(y, z; ǫ) → α3

k
z20 + (higher order terms in z0) as

ǫ→ 0. Thus, the ideal performance cost value is α3

k
z20 + J(z0).

Remark 5.3.4. Based on Theorems 5.3.1 and 5.3.3, a fundamental tradeoff between

fragility and net production of the pathway emerges as follows: increasing α (number

of ATP molecules invested in the pathway), increases fragility of the network to small dis-

turbances (based on Theorem 5.3.1) and it can result in undesirable transient behavior

(based on Theorem 5.3.3). For instance, if the level of ATP drops below some threshold,
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Figure 5.2: A schematic diagram of a glycolysis pathway model with intermediate reac-

tions. The constant glucose input along with α ATP molecules produce a pool of inter-

mediate metabolites, which then produces α + 1 ATP molecules.

there will not be sufficient supply of ATP for different pathways in the cell and that can

result to cell death.

5.4 Autocatalytic Pathways With Multiple Intermediate

Metabolite Reactions

In this section, we consider autocatalytic pathways with multiple intermediate metabolite

reactions as shown in Figure 5.2. In Subsection 5.3.1, we studied the property of such

pathways with a two-state model (5.9), which is obtained by lumping all the intermediate

reactions into a single intermediate reaction (see Figure 5.2).







PFK Reaction: s + αy
RPFK−−−→ x1,

Intermediates: x1
RIR−−−→ x2 · · · RIR−−−→ xn,

PK Reaction: xn
RPK−−−→ (α + 1)y + x′,

Consumption: y
RCONS−−−−→ ∅.

(5.21)

A set of ordinary differential equations that govern the changes in concentrations of
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xi for i = 1, . . . , n and y can be cast as follows







ẋ1 = RPFK(y) − RIR(x1),

ẋ2 = RIR(x1) − RIR(x2),

· · ·

ẋn = RIR(xn−1) − RPK(xn, y),

ẏ = (α + 1)RPK(xn, y) − αRPFK(y) − RCONS,

(5.22)

for xi ≥ 0 and y ≥ 0.

Our notations are similar to those of the two-state pathway model (5.1). We choose

the reaction rates as follows







RPFK(y) = 2ya

1+y2h
,

RPK(xn, y) = 2Knxn

1+y2g
,

RIR(xi) = Kixi for n = 1, 2, . . . , n,

RCONS = 1 + δ

(5.23)

Furthermore, In the glycolysis model (5.22), similar to the minimal model (5.9), ex-

pression 2
1+x2h can be interpreted as the effect of the regulatory feedback control mech-

anism employed by nature, which captures inhibition of the catalyzing enzyme. Hence,

we can derive a control system model for the autocatalytic pathway with multiple inter-

mediate metabolite reactions as follows
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





ẋ1 = yau − K1x1,

ẋ2 = K1x1 − K2x2,

· · ·

ẋn = Kn−1xn−1 − 2Knxn
1+y2g ,

ẋn+1 = (α+ 1) 2Knxn

1+x2g
n+1

− αxan+1u − (1 + δ),

y = xn+1,

(5.24)

for xi ≥ 0 and y ≥ 0. In order to simplify our analysis, we assume thatK := K1 = · · · =

Kn > 0. We normalize all concentrations such that unperturbed steady states are

y∗ = x∗n+1 = 1, xi =
1

K
, 1 ≤ i ≤ n. (5.25)

5.4.1 L2-Gain Disturbance Attenuation

We extend our results in Theorem 5.3.1 to higher dimensional model of autocatalytic

pathways. In the following theorem, we show that there exists a hard limit on the best

achievable disturbance attenuation of system (5.24).

Theorem 5.4.1. Consider the optimal L2-gain disturbance attenuation problem for the

minimal glycolysis model (5.24). Then, the best achievable disturbance attenuation gain

γ∗ for system (5.24) satisfies the following inequality

γ∗ ≥ Γ(α,K, g, n), (5.26)
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and the hard limit function is given by

Γ(α,K, g, n) =
1

(
K + gα(α+1

α
)
n−1
n

)(
(α+1

α
)

1
n − 1

) .

Proof. First, by introducing a new variable z1 = x1 +
1
α
y, we can cast the zero-dynamics

of (5.24) in the following form







ż1 = −Kz1 + α+1
α

2Kxn

1+y2g
+ K

α
y − 1

α
(δ + 1),

ẋ2 = Kz1 − K
α
y − Kx2,

· · ·

ẋn = Kxn−1 − 2Kxn

1+y2g
.

(5.27)

Let us define

z :=

[

z1 x2 . . . xn

]T

,

and

z∗ :=

[

1
K
+ 1

α
1
K

. . . 1
K

]T

.

Then, we rewrite (5.27) in the following form

˙̄z = Az̄ + Bȳ + Cδ + f̄(z̄, ȳ), (5.28)

where

A =






−K 0 0 ... (1+ 1
α
)K

K −K 0 ... 0
0 K −K ... 0

...
. . .

...
0 0 0 ... −K




 ,
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B =





−α+1
α

g+K
α

−K
α

...
g



 , C =

[ − 1
α
0
...
0

]

, (5.29)

z̄ = z − z∗, ȳ = y − y∗, f̄(0, 0) = 0 and

‖∂f̄ (z̄, ȳ)
∂(z̄, ȳ)

‖ ≤ c|(z̄, ȳ)|, (5.30)

near the origin in Rn for c > 0. Now, according to [125] we know that if the system (5.28)

has L2-gain ≤ γ, then the linearized system has L2-gain ≤ γ. Hence, we only consider

the linearized system, i.e.

˙̄z = Az̄ + Bȳ + Cδ. (5.31)

Note that λ = K
[

(α+1
α

)
1
n − 1

]

is the eigenvalue of A with the greatest real part. And

the corresponding left eigenvector of λ, is v =

[

1 (α+1
α

)
1
n . . . (α+1

α
)
n−1
n

]T

. Now, we

consider the following subsystem of (5.31)

˙̃z = λz̃ +
[(
(1 +

1

α
)
n−1
n − (1 +

1

α
)
)
g − K

α

(
(1 +

1

α
)

1
n − 1

)]

ỹ − 1

α
δ.

Based on the result of [132] and [124], the formula to compute the optimal value of γ

reduces to

γ∗L ≥ 1
(
K + gα(1 + 1

α
)
n−1
n

)(
(1 + 1

α
)

1
n − 1

) .

Note that according to Proposition 6 of [125], γ∗L is a lower bound for the optimal γ∗ of

the nonlinear system (5.24).

Remark 5.4.2. It can be easily shown that Γ(α,K, g, n) ∈ O(n), and it can be approxi-
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mated for large n by

Γ(α,K, g, n) ≈ n
(
g(α+ 1) +K

)
ln(1 + 1

α
)
. (5.32)

This means that as the number of intermediate reactions n grows, the price paid for

robustness, Γ(α,K, g, n), increases linearly with n.

5.4.2 Total Output Energy

We now show that there exists a hard limit on the best achievable ideal performance

(output energy) of system (5.24).

Theorem 5.4.3. Suppose that the equilibrium of interest is given by (5.25) and u∗ = 1.

Then, there is a hard limit on the performance measure of the unperturbed (i.e., δ = 0)

system (5.24) in the following sense

∫ ∞

0

(y(t; u0)− y∗)2 dt (5.33)

≥ H(z0;α,K, g, n) + J(z0;α,K, g, n),

where

H(z0;α,K, g, n) =

α2K
(
1
α
(y(0)− y∗) +

∑n
i=1(

α+1
α

)
i−1
n (xi(0)− x∗i )

)2

(
(α+1

α
)

1
n − 1

)(
K + gα(α+1

α
)
n−1
n

)2 ,

and u0 is an arbitrary stabilizing feedback control law for system (5.24), J(0;α,K, g, n) =

J(z;α,K, 0, n) = 0 and |J(z;α,K, g, n)| ≤ c|z − z∗|3, where z is close enough to z∗.

Proof. The proof of this theorem is adjusted from [125, 126] and Theorem 5.3.3.
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Remark 5.4.4. In the case that n = 1, i.e.with only one intermediate reaction, the results

of Theorems 5.4.1 and 5.4.3 reduce to the results of Theorems 5.3.1 and 5.3.3, respec-

tively.

Remark 5.4.5. It can be easily shown that H(z0;α,K, g, n) ∈ O(n), and it is approxi-

mated by

H(z0;α,K, g, n) ≈
α2K

(
1
α
(y(0)− y∗) +

∑n
i=1(

α+1
α

)
i−1
n (xi(0)− x∗i )

)2

(
K + g(α+ 1)

)2
ln(α+1

α
)

n.

This means that as the number of intermediate reactions n grows, the price paid for

robustness, H(z0;α,K, g, n), increases linearly with n.

5.5 General Autocatalytic Pathways

In this section, we consider networks with autocatalytic structures as shown in Figure

5.3. We focus on a class of nonlinear dynamical networks with cyclic feedback structures

driven by disturbance. We consider a group of nonlinear systems with state-space models







ẋi = −fi(xi) + ui,

yi = gi(xi),
(5.34)

for 1 ≤ i ≤ n, and







ẋn+1 = −fn+1(xn+1) + un+1 − αu,

yn+1 = u,
(5.35)
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x1 x2 x3 xn, u

δ

Figure 5.3: The schematic diagram of the nonlinear network (5.36) with a cyclic feedback struc-

ture with an output disturbance δ and control input u.

where fi(·) and gi(·) for i = 1, . . . , n are increasing functions. Moreover, ui(t), yi(t)

and xi(t) are input, output and state variables of each subsystem, respectively. The state-

space representation of the nonlinear cyclic interconnected network shown in Figure 5.3

is given by







ẋ1 = − f1(x1) + yn+1,

ẋ2 = − f2(x2) + y1,

· · ·

ẋn+1 = − fn+1(xn+1) + yn − αu+ δ,

y = xn+1.

(5.36)

Assumption 5.5.1. We assume that x∗i ’s and y∗ are equilibrium points of the unperturbed

system (5.36), i.e., when δ = 0. Moreover, it is assumed that

a := f ′
1(x

∗
1) = f ′

2(x
∗
2) = · · · = f ′

n(x
∗
n), (5.37)

where f ′
i(x

∗
i ) :=

dfi
dxi

∣
∣
∣
xi=x∗

i

.
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Theorem 5.5.2. For cyclic networks (5.36), if

r :=

(
g′1(x

∗
1)g

′
2(x

∗
2) · · · g′n(x∗n)
α

) 1
n

> a, (5.38)

then there exists a hard limit on the best achievable disturbance attenuation (i.e., γ∗ > 0)

for system (5.36) such that the regional state feedback L2–gain disturbance attenuation

problem with stability constraint is solvable for all γ > γ∗ and is not solvable for all

γ < γ∗. Furthermore, the hard limit function is given by

γ∗ ≥ Γ(f ′
n+1(y

∗), r, a) =
1

f ′
n+1(y

∗) + r − a
. (5.39)

Proof. In the first step, we introduce a new auxiliary variable z1 = x1 +
1
α
xn+1. We can

cast the linearized zero-dynamics of (5.36) in the following form

ż = A0z + B0y + C0δ, (5.40)

where z = [z1, x2, · · · , xn]T,

A0 =
















−a 0 . . . 0 α−1g′n(x
∗
n)

g′1(x
∗
1) −a . . . 0 0

...
...

. . .
...

...

0 0 . . . −a 0

0 0 . . . g′n−1(x
∗
n−1) −a
















,
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B0 =
















a−f ′
n+1(y

∗)

α

−g′1(x
∗
1)

α

...

0

0
















, and C0 =
















α−1

0

...

0

0
















. (5.41)

Then, we consider the characteristic equation of matrix A0 which is given by

(λ+ a)n − rn = 0. (5.42)

From (5.38) and (5.42), it follows that λ1 = r− a is the eigenvalue of A0 with the largest

real-part value with left eigenvector

v1 =
[

1 ,
r

g′1(x
∗
1)
, . . . ,

rn−1

g′1(x
∗
1)g

′
2(x

∗
2) · · · g′n−1(x

∗
n−1)

]T

.

The unstable subsystem of (5.40) is characterized by

ż = λ1z + α−1
(
a− f ′

n+1(y
∗) − r

)
y + α−1δ. (5.43)

From the results of [132] and [124], the formula to compute the optimal value of γ reduces

to

γ∗L =
1

f ′
n+1(y

∗) + r − a
. (5.44)

We emphasize that according to [125, Proposition 6], γ∗L is a lower bound for the optimal

γ∗ for the nonlinear system (5.36).

In following example, we apply our results to metabolic pathway (5.1) and quantify

131



its existing hard limits. We assume that the second reaction in (5.1) has no ATP feedback

ATP on PK (i.e.g = 0). Also, in the following example, we consider two scenarios

for the consumption rate RCONS; First, we assume the product y is consumed by basal

consumption rate 1 + δ and then we consider the consumption rate depends on y.

Example 5.5.3. Consider the minimal representation of autocatalytic glycolysis pathway

given by (5.1). First, we assume that the second reaction in (5.1) has no ATP feedback

ATP on PK (i.e.g = 0). Then, we can rewrite (5.6) as follows

ẋ1 =
2ya

1 + y2h
− kx1, (5.45)

ẏ = −α 2ya

1 + y2h
+ (α + 1)kx1 − (1 + δ), (5.46)

for x1 ≥ 0, y ≥ 0. By considering expression 2ya

1+y2h
as the regulatory feedback control

employed by nature which captures inhibition of the catalyzing enzyme, a control system

model for glycolysis is derived as follows

ẋ1 = −k x1 + u, (5.47)

ẏ = (α + 1)k x1 − αu− 1− δ, (5.48)

where u is the control input. Using (5.47)-(5.48) and Theorem 5.5.2, it follows that

γ >
α

k
, (5.49)

where the equilibrium point of the unperturbed system is given by x1 = 1/k and y = 1.

As we expected (5.49) is consistent with the result of Theorem 5.3.1. Next, we consider

132



the consumption rate depends on y, and given by

RCONS = kyy + δ,

(see [122] for more details). Then, a set of ordinary differential equations that govern the

changes in concentrations x1 and y can be written as

ẋ1 = −k x1 +
2ya

1 + y2h
,

ẏ = −α 2ya

1 + y2h
+ (α + 1)k x1 − (kyy + δ) ,

for x1 ≥ 0, y ≥ 0. The exogenous disturbance disturbance input is assumed to be

δ ∈ L2([0,∞)). To highlight fundamental tradeoffs due to autocatalytic structure of the

system, we normalize the concentration such that steady-states are

y∗ = 1 and x1
∗ =

ky
k
. (5.50)

Similar to the first case, we can consider expression 2ya

1+y2h
as the regulatory feedback

control employed by nature which captures inhibition of the catalyzing enzyme. Hence,

we can derive a control system model for glycolysis as follows

ẋ1 = −k x1 + u, (5.51)

ẏ = (α+ 1)k x1 − α u− ky y − δ, (5.52)

where u is the control input. Now, applying Theorem 5.5.2 to this model, it follows that

γ >
α

k + αky
. (5.53)
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Equation (5.53) illustrates a tradeoff between robustness and efficiency (as measured by

complexity and metabolic overhead). From (5.53) the glycolysis mechanism is more ro-

bust efficient if k and ky are large. On the other hand, large k requires either a more

efficient or a higher level of enzymes, and large ky requires a more complex allosterically

controlled PK enzyme; both would increase the cell’s metabolic load. We note that the

existing hard limit is an increasing function of α. This implies that increasing α (more

energy investment for the same return) can result in worse performance. It is important to

note that these results are consistent with results in [122], where a linearized model with

a different performance measure is used.

5.6 Conclusion

By using blending ideas from biology and nonlinear control theory, our objective is to

develop a methodology to characterize fundamental limits on robustness and performance

measures in dynamical networks with autocatalytic structures. We study the hard limits of

the ideal performance of a glycolysis model. It is shown that glycolysis model can be used

as a basis for such study. Then, we explicitly derive hard limits on the performance of

the autocatalytic pathways with intermediate reactions which are characterize as L2-norm

squared of the output and L2-gain of disturbance attenuation.
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Part II

Network Synthesis for Performance

Enhancement
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Chapter 6

Growing Linear Consensus Networks

6.1 Abstract

We propose an axiomatic approach for design and performance analysis of noisy lin-

ear consensus networks by introducing a notion of systemic performance measure. This

class of measures are spectral functions of Laplacian eigenvalues of the network that are

monotone, convex, and orthogonally invariant with respect to the Laplacian matrix of the

network. It is shown that several existing gold-standard and widely used performance

measures in the literature belong to this new class of measures. We build upon this new

notion and investigate a general form of combinatorial problem of growing a linear con-

sensus network via minimizing a given systemic performance measure. Two efficient

polynomial-time approximation algorithms are devised to tackle this network synthesis

problem: a linearization-based method and a simple greedy algorithm based on rank-one

updates. Several theoretical fundamental limits on the best achievable performance for

the combinatorial problem is derived that assist us to evaluate optimality gaps of our pro-

posed algorithms. A detailed complexity analysis confirms the effectiveness and viability

of our algorithms to handle large-scale consensus networks.
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6.2 Introduction

The interest in control systems society for performance and robustness analysis of large-

scale dynamical network is rapidly growing [2, 5, 9–11, 25, 35, 36, 136, 137]. Improving

global performance as well as robustness to external disturbances in large-scale dynami-

cal networks are crucial for sustainability, from engineering infrastructures to living cells;

examples include a group of autonomous vehicles in a formation, distributed emergency

response systems, interconnected transportation networks, energy and power networks,

metabolic pathways and even financial networks. One of the fundamental problems in

this area is to determine to what extent uncertain exogenous inputs can steer the trajecto-

ries of a dynamical network away from its working equilibrium point. To tackle this issue,

the primary challenge is to introduce meaningful and viable performance and robustness

measures that can capture essential characteristics of the network. A proper measure

should be able to encapsulate transient, steady-state, macroscopic, and microscopic fea-

tures of the perturbed large-scale dynamical network.

In this chapter, we propose a new methodology to classify proper performance mea-

sures for a class of linear consensus networks subject to external stochastic disturbances.

We take an axiomatic approach to quantify essential functional properties of a sensi-

ble measure by introducing the class of systemic performance measures and show that

this class of measures should satisfy monotonicity, convexity, and orthogonal invariance

properties. It is shown that several existing and widely used performance measures in the

literature are in fact special cases of this class of systemic measures [9, 11, 19, 38, 52].

The performance analysis of linear consensus networks subject to external stochastic

disturbances has been studied in [2, 5, 8, 38, 50, 52], where the H2-norm of the network

was employed as a scalar performance measure. In [2], the authors interpret the H2-norm

of the system as a macroscopic performance measure capturing the notion of coherence.
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It has been shown that if the Laplacian matrix of the coupling graph of the network is

normal, the H2-norm is a function of the eigenvalues of the Laplacian matrix [2, 50, 52].

In [5], the authors consider general linear dynamical networks and show that tight lower,

and upper bounds can be obtained for the H2-norm of the network from the exogenous

disturbance input to a performance output, which are functions of the eigenvalues of the

state matrix of the network. Besides the commonly used H2-norm, there are several other

performance measures that have been proposed in [2, 9, 114].

The first main contribution of this chapter is introduction of a class of systemic perfor-

mance measures that are spectral functions of Laplacian eigenvalues of the coupling graph

of a linear consensus network. Several gold-standard and widely used performance mea-

sures belong to this class, for example, to name only a few, spectral zeta function, Gamma

entropy, expected transient output covariance, system Hankel norm, convergence rate to

consensus state, logarithm of uncertainty volume of the output, Hardy-Schatten system

norm or Hp-norm, and many more. All these performance measures are monotone, con-

vex, and orthogonally invariant. Our main goal is to investigate a canonical network

synthesis problem: growing a linear consensus network by adding new interconnection

links to the coupling graph of the network and minimizing a given systemic performance

measure. In the context of graph theory, it is known that a simpler version of this combi-

natorial problem, when the cost function is the inverse of algebraic connectivity, is indeed

NP-hard [53]. There have been some prior attempts to tackle this problem for some

specific choices of cost functions (i.e., total effective resistance and the inverse of alge-

braic connectivity) based on semidefinite programing (SDP) relaxation methods [54, 55].

There is a similar version of this problem that is reported in [56], where the author stud-

ies convergence rate of circulant consensus networks by adding some long-range links.

Moreover, a continuous (non-combinatorial) and relaxed version of our problem of in-
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terest has some connections to the sparse consensus network design problem [6, 57, 58],

where they consider ℓ1-regularized H2-optimal control problems. There are some related

works [23, 59], it is shown that some metrics based on controllability and observabil-

ity Gramians are modular or submodular set functions, where they show their proposed

simple greedy heuristic algorithms have guarantees suboptimality bounds.

In our second main contribution, we propose two efficient polynomial-time approx-

imation algorithms to solve the above mentioned combinatorial network synthesis prob-

lem: a linearization-based method and a simple greedy algorithm based on rank-one up-

dates. Our complexity analysis asserts that computational complexity of our proposed

algorithms are reasonable and make them particularly suitable for synthesis of large-scale

consensus networks. To calculate sub-optimality gaps of our proposed approximation al-

gorithms, we quantify the best achievable performance bounds for the network synthesis

problem in Section 6.7. Our obtained fundamental limits are exceptionally useful as they

only depend on the spectrum of the original network and they can be computed a priori. In

Subsection 6.9.2, we classify a subclass of differentiable systemic performance measures

that are indeed supermodular. For this subclass, we show that our proposed simple greedy

algorithm can achieve a (1− 1/e)-approximation of the optimal solution of the combina-

torial network synthesis problem. Our extensive simulation results confirm effectiveness

of our proposed methods.

6.3 Preliminaries and Definitions

6.3.1 Mathematical Background

The set of real numbers is denoted by R, the set of non–negative by R+, and the set of

positive real numbers by R++. The cardinality of set E is shown by |E|. We assume that
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1n, In, and Jn denote the n × 1 vector of all ones, the n × n identity matrix, and the

n× n matrix of all ones, respectively. For a vector v = [vi] ∈ Rn, diag(v) ∈ Rn×n is the

diagonal matrix with elements of v orderly sitting on its diameter, and for A = [aij ] ∈

Rn×n, diag(A) ∈ Rn is diagonal elements of square matrix A. We denote the generalized

matrix inequality with respect to the positive semidefinite cone S
n
+ by “� ” .

Throughout this chapter, it is assumed that all graphs are finite, simple, undirected,

and connected. A graph herein is defined by a triple G = (V, E , w), where V is the set

of nodes, E ⊆
{
{i, j}

∣
∣ i, j ∈ V, i 6= j

}
is the set of links, and w : E → R++ is the

weight function. The adjacency matrix A = [aij ] of graph G is defined in such a way

that aij = w(e) if e = {i, j} ∈ E , and aij = 0 otherwise. The Laplacian matrix of G

is defined by L := ∆ − A, where ∆ = diag[d1, . . . , dn] and di is degree of node i. We

denote the set of Laplacian matrices of all connected weighted graphs with n nodes by

Ln. Since G is both undirected and connected, the Laplacian matrix L has n − 1 strictly

positive eigenvalues and one zero eigenvalue. Assuming that 0 = λ1 < λ2 ≤ . . . ≤ λn

are eigenvalues of Laplacian matrix L, we define operator Λ : Sn
+ → R

n−1
++ by

Λ(L) =

[

λ2 . . . λn

]T

. (6.1)

The Moore-Penrose pseudo-inverse of L is denoted by L† = [l†ji], which is a square, sym-

metric, doubly-centered and positive semi–definite matrix. For a given link e = {i, j},

re(L) denotes the effective resistance between nodes i and j in a graph with the Laplacian

matrix L, where its value can be calculated as follows

re(L) = l†ii + l†jj − 2l†ij, (6.2)
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where L† = [l†ji]. For every real q, powers of pseudo inverse of L is represented by

L†,q :=
(
L†)q .

Definition 6.3.1. The derivative of a scalar function ρ(.), with respect to the n-by-n ma-

trix X , is defined by

▽ρ(X) :=












∂ρ
∂x11

∂ρ
∂x12

. . . ∂ρ
∂x1n

∂ρ
∂x21

∂ρ
∂x22

. . . ∂ρ
∂x2n

...
...

. . .
...

∂ρ
∂xn1

∂ρ
∂xn2

. . . ∂ρ
∂xnn












,

where X = [xij ]. The directional derivative of function ρ(X) in the direction of matrix Y

is given by

▽Y ρ(X) =
〈
▽ρ(X), Y

〉
= Tr (▽ρ(X)Y ) ,

where 〈., .〉 denotes the inner product operator.

The following Majorization definition is from [66].

Definition 6.3.2. For every x ∈ Rn
+, let us define x↓ to be a vector whose elements are

a permuted version of elements of x in descending order. We say that x majorizes y,

which is denoted by x ☎ y, if and only if 1Tx = 1Ty and
∑k

i=1 x
↓
i ≥ ∑k

i=1 y
↓
i for all

k = 1, . . . , n− 1.

The vector majorization is not a partial ordering. This is because from relations x☎ y

and y ☎ x one can only conclude that the entries of these two vectors are equal, but

possibly with different orders. Therefore, relations x ☎ y and y ☎ x do not imply x = y.

Definition 6.3.3 ( [66]). The real-valued function F : Rn
+ → R is called Schur–convex if

F (x) ≥ F (y) for every two vectors x and y with property x☎ y.
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6.3.2 Noisy linear consensus networks

We consider the class of linear dynamical networks that consist of multiple agents with

scalar state variables xi and control inputs ui whose dynamics evolve in time according

to

ẋi(t) = ui(t) + ξi(t) (6.3)

yi(t) = xi(t)− x̄(t) (6.4)

for all i = 1, . . . , n, where xi(0) = 0 is the initial condition and

x̄(t) =
1

n

(
x1(t) + . . .+ xn(t)

)

is the average of all states at time instant t. The impact of the uncertain environment on

each agent’s dynamics is modeled by the exogenous noise input ξi(t). By applying the

following feedback control law to the agents of this network

ui(t) =

n∑

j=1

kij
(
xj(t)− xi(t)

)
, (6.5)

the resulting closed-loop system will be a first-order linear consensus network. The

closed-loop dynamics of network (6.3)-(6.4) with feedback control law (6.5) can be writ-

ten in the following compact form

ẋ(t) = −Lx(t) + ξ(t) (6.6)

y(t) = Mn x(t), (6.7)
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with initial condition x(0) = 0, where x = [x1, . . . , xn]
T is the state, y = [y1, . . . , yn]

T is

the output, and ξ = [ξ1, . . . , ξn]
T is the exogenous noise input of the network. The state

matrix of the network is a graph Laplacian matrix that is defined by L = [lij ], where

lij :=







−kij if i 6= j

ki1 + . . .+ kin if i = j

(6.8)

and the output matrix is a centering matrix that is defined by

Mn := In −
1

n
Jn. (6.9)

The underlying coupling graph of the consensus network (6.6)-(6.7) is a graph G =

(V, E , w) with node set V = {1, . . . , n}, edge set

E =
{

{i, j}
∣
∣ ∀ i, j ∈ V, kij 6= 0

}

, (6.10)

and weight function

w(e) = kij (6.11)

for all e = {i, j} ∈ E , and w(e) = 0 if e /∈ E . The Laplacian matrix of graph G is equal

to L.

Assumption 6.3.4. All feedback gains (weights) satisfy the following properties for all

i, j ∈ V:

(a) non-negativity: kij ≥ 0,

(b) symmetry: kij = kji,

(c) simpleness: kii = 0.
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Property (b) implies that feedback gains are symmetric and (c) means that there is no

self-feedback loop in the network.

Assumption 6.3.5. The coupling graph G of the consensus network (6.6)-(6.7) is con-

nected and time-invariant.

According to Assumption 6.3.4, the underlying coupling graph is undirected and sim-

ple. Assumption 6.3.5 implies that only one of the modes of network (6.6) is marginally

stable with eigenvector 1n and all other ones are stable. The marginally stable mode,

which corresponds to the only zero Laplacian eigenvalue of L, is unobservable from the

output (6.7). The reason is that the output matrix of the network satisfies Mn1n = 0.

When there is no exogenous noise input, i.e., ξ(t) ≡ 0 for all time, the state of all agents

converges to the consensus state of the network [114, 138], which for our case the con-

sensus state is zero, i.e.,

lim
t→∞

x(t) = 0. (6.12)

When the network is fed with a nonzero exogenous noise input, the limit behavior (6.12)

is not expected anymore and the state of all agents will be fluctuating around the consen-

sus state without converging to it. Before providing a formal statement of the problem

of growing a linear consensus network, we need to introduce a new class of performance

measures for networks (6.6)-(6.7) that can capture the effect of noise propagation through-

out the network and quantify degrees to which the state of all agents are dispersed from

the consensus state.

6.4 Systemic Performance Measures

The notion of systemic performance measure refers to a real-valued operator over the set

of all linear consensus networks governed by (6.6)-(6.7) with the purpose of quantify-
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ing the quality of noise propagation in these networks. We have adopted an axiomatic

approach to introduce and categorize a class of performance measures that captures the

quintessence of a meaningful measure of performance in networks. Our approach has

been mainly motivated by our examination of functional properties of several existing

gold standard measures of performance in engineering and science literature. In order

to state our findings in a formal setting, we observe that every network with dynamics

(6.6)-(6.7) is uniquely determined by its Laplacian matrix. Therefore, it is reasonable to

define a systemic performance measure as an operator on the set of Laplacian matrices

Ln.

Definition 6.4.1. An operator ρ : Ln → R is called a systemic performance measure if it

satisfies the following properties for all Laplacian matrices in Ln:

1. Monotonicity: If L2 � L1, then

ρ(L1) ≤ ρ(L2);

2. Convexity: For all 0 ≤ α ≤ 1,

ρ(αL1 + (1− α)L2) ≤ αρ(L1) + (1− α)ρ(L2);

3. Orthogonal invariance: For all orthogonal matrices U ∈ Rn×n,

ρ(L) = ρ(ULUT).

Property 1 guarantees that strengthening couplings in a consensus network never

worsens the network performance with respect to a given systemic performance mea-

sure. The coupling strength among the agents can be enhanced by several means, for
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example, by adding new feedback interconnections and/or increasing weight of an indi-

vidual feedback interconnection. The monotonicity property induces a partial ordering1

on all linear consensus networks governed by (6.6)-(6.7). Property 2 requires that a viable

performance measure should be amenable to convex optimization algorithms for network

synthesis purposes. Property 3 implies that a systemic performance measure depends

only on the Laplacian eigenvalues.

Theorem 6.4.2. Every operator ρ : Ln → R that satisfies Properties 2 and 3 in Definition

6.4.1 is indeed a Schur-convex function of Laplacian eigenvalues, i.e., there exists a Schur-

convex spectral function Φ : Rn−1 → R such that

ρ(L) = Φ(λ2, . . . , λn). (6.13)

Proof. For every L ∈ Ln, the value of the systemic performance measure can be written

as a composition of two functions as follows

ρ(L) = (φ ◦ Λ)(L), (6.14)

where function Λ : Sn
+ → R

n−1
++ is defined by (6.1) and function φ : R

n−1
++ → R is

characterized by

φ(v) = ρ(W Tdiag(v)W ), (6.15)

for any matrix W = EU with U ∈ Rn×n being an orthogonal matrix satisfying

L = UTdiag([0,Λ(L)T])U

1This implies that the family of networks (6.6)-(6.7) can be ordered using a relation that has reflexivity,

antisymmetry, and transitivity properties.
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Systemic Performance Measure Matrix Operator Form

Spectral zeta function ζq(L)
(
Tr
(
L†,q)) 1

q

Gamma entropy Iγ(L) γ2Tr
(

L−
(
L2 − γ−2Mn

) 1
2

)

Expected transient output covariance

τt(L)

1

2
Tr
(
L†(I − e−Lt)

)

System Hankel norm η(L)
1

2
max

{
Tr(L†X)

∣
∣ X = XT, rank(X) =

1, Tr(X) = 1
}

Uncertainty volume of the output υ(L)
(1− n) log 2− Tr

(

log

(

L+
1

n
Jn

))

Hardy-Schatten system norm or Hp-

norm θp(L)
α0

(

Tr

(

L†, p−1
)) 1

p

Table 6.1: Some important examples of spectral systemic performance measures and their corre-

sponding matrix operator forms.

and E ∈ R(n−1)×n given by the following projection matrix

E =

[

0(n−1)×1

∣
∣ In−1

]

. (6.16)

Thus, we can conclude that (6.13) holds with Φ(λ2, . . . , λn) = φ(Λ(L)). In the next

step, we need to show that operator ρ is convex and symmetric with respect to Laplacian

eigenvalues λ2, . . . , λn. Property 2 indicates that ρ is convex on Laplacian matrices and

any convex function on Laplacian matrices is also convex function with respect to Lapla-

cian eigenvalues [139]. Property 3 implies that operator ρ is symmetric with respect to

λ2, . . . , λn as ρ is invariant under any permutation of eigenvalues. It is known that every

function that is convex and symmetric is also Schur-convex [139].

The Laplacian eigenvalues of network (6.6)-(6.7) depend on global features of the un-

derlying coupling graph. This is the reason why every performance measure that satisfies

Definition 6.4.1 is tagged with adjective systemic. Table 6.1 shows some important ex-
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amples of systemic performance measure and their corresponding matrix operator forms.

In Section 6.6, we prove functional properties and discuss applications of these measures

in details.

6.5 Growing a Linear Consensus Network

The network synthesis problem of interest is to improve the systemic performance of

network (6.6)-(6.7) by establishing k ≥ 1 new feedback interconnections among the

agents. Suppose that the underlying graph of the network G = (V, E , w) is defined

according to (6.10)-(6.11) and a set of candidate feedback interconnection links Ec =
{
ε1, . . . , εp

}
⊆V × V , which is endowed with a weight function ̟ : Ec → R++, is also

given. The weight of a link εi ∈ Ec is represented by ̟(εi) and we assume that it is

pre-specified and fixed. The network growing problem is to select exactly k feedback

interconnection links from Ec and append them to G such that the systemic performance

measure of the resulting network is minimized over all possible choices.

Let us represent the set of all possible appended subgraphs by

Ĝk :=
{

Ĝ = (V, Ê , ŵ)
∣
∣
∣ Ê ∈ Πk(Ec), ∀εi ∈ Ê : ŵ(εi) = ̟(εi)

}

,

where the set of all possible choices to select k links is denoted by

Πk(Ec) :=
{
Ê ⊆ Ec

∣
∣ |Ê | = k

}
.

Then, the network synthesis problem can be cast as the following combinatorial optimiza-

tion problem

minimize
Ĝ∈Ĝk

ρ(L+ L̂), (6.17)
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where L̂ is the Laplacian matrix of an appended candidate subgraph Ĝ and the resulting

network with Laplacian matrix L + L̂ is referred to as the augmented network. The role

of the candidate set Ec is to pre-specify authorized locations to establish new feedback

interconnections in the network.

The network synthesis problem (6.17) is inherently combinatorial and it is known that

a simpler version of this problem with ρ(L) = λ−1
2 is in fact NP-hard [53]. There have

been some prior attempts to tackle problem (6.17) for some specific choices of perfor-

mance measures, such as total effective resistance and the inverse of algebraic connectiv-

ity, based on convex relaxation methods [54, 55] and greedy methods [59]. In Sections

6.8 and 6.9, we propose approximation algorithms to compute sub-optimal solutions for

(6.17) with respect to the broad class of systemic performance measures. We propose

an exact solution for (6.17) when k = 1 and two tractable and efficient approximation

methods when k > 1 with computable performance bounds. Besides, in Section 6.9,

we demonstrate that a subclass of systemic performance measures has a supermodular-

ity property. This provides approximation guarantees for our proposed approximation

algorithm.

6.6 Notable Classes of Systemic Performance Measures

In the following, we will revisit several existing and widely-used examples of perfor-

mance measures in linear consensus networks and prove that they are indeed systemic

performance measures according to the definition.
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6.6.1 Sum of Convex Spectral Functions

This class of performance measures is generated by forming summation of a given func-

tion of non-zero Laplacian eigenvalues.

Theorem 6.6.1. For a given matrix L ∈ Ln, suppose that ϕ : R+ → R is a decreasing

convex function. Then, the following spectral function

ρ(L) =
n∑

i=2

ϕ(λi) (6.18)

is a systemic performance measure. Moreover, if ϕ is also a homogeneous function of

order −κ with κ > 1, then the following spectral function

ρ(L) =

(
n∑

i=2

ϕ(λi)

) 1
κ

(6.19)

is also a systemic performance measure.

Proof. First we show that measure (6.18) is monotone with respect to the positive definite

cone. If we assume that L2 � L1, then based on Theorem A.1 in [66, Sec. 20], it follows

that

λi(L2) ≤ λi(L1), for i = 1, 2, · · · , n. (6.20)

Thus, using (6.20) and the fact that ϕ(.) is decreasing, we get the monotonicity property

of measure (6.18). Also, it is not difficult to show that measure (6.18) satisfies Property 2.

To do so, let L1 and L2 be two Laplacian matrices in Ln. Recall that Λ(Li), i = 1, 2 is the

vector of eigenvalues of Li in ascending order. According to Theorem G.1 in [66, Sec.

9], we know that

Λ(αL1 + (1− α)L2) ✂ αΛ(L1) + (1− α)Λ(L2), (6.21)
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for every 0 ≤ α ≤ 1, and ✂ denotes the majorization preorder [66]. Besides, we note

that based on Proposition. C.1 in [66, Sec.3], measure (6.18) is a Schur-convex function.

Consequently, using this property and (6.21), we have

ρ(αL1 + (1− α)L2) =
n∑

i=2

ϕ (λi(αL1 + (1− α)L2))

≤
n∑

i=2

ϕ
(
αλi(L1) + (1− α)λi(L2)

)
. (6.22)

From (6.22) and the desired convexity property of ϕ(.), we get the convexity property as

follows

ρ(αL1 + (1− α)L2) ≤
n∑

i=2

ϕ (αλi(L1) + (1− α)λi(L2))

≤ α

n∑

i=2

ϕ (λi(L1)) + (1− α)

n∑

i=2

ϕ (λi(L2))

= αρ(L1) + (1− α)ρ(L2),

for every 0 ≤ α ≤ 1. Finally, systemic measure (6.18) is orthogonal invariant because it

is a spectral function. Hence, measure (6.18) satisfies all properties of Definition 6.4.1.

This completes the proof of first part.

Next, we show that measure (6.19) satisfies Properties 1, 2, and 3 given by Definition

6.4.1. Similar to the previous case, it is straightforward to verify that measure (6.19) has

Property 1. Now we show that measure (6.19) has Property 2, i.e., it is a convex function

over the set of Laplacian matrices. By hypothesis, ϕ(.) is a homogeneous function of

order −κ, therefore, we have

ϕ(λi) = λ−κ
i ϕ(1). (6.23)
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Using (6.23) and (6.19), we get

ρ(L) = K

(
n∑

i=2

λ−κ
i

) 1
κ

, (6.24)

where K = κ
√

ϕ(1). It is well-known function (6.24) is convex for λi > 0 where i =

2, . . . , n and κ > 1. Based on the proof of Part (i), measure ρκ(.) is a Schur-convex

function. Consequently, we get

ρ(αL1 + (1− α)L2) ≤

K

(
n∑

i=2

(
αλi(L1) + (1− α)λi(L2)

)−κ

) 1
κ

. (6.25)

Now using (6.26) and the convexity of (6.24) with respect to λi’s, we have

ρ(αL1 + (1− α)L2)

≤ K

(
n∑

i=2

(
αλi(L1) + (1− α)λi(L2)

)−κ

) 1
κ

≤ αρ(L1) + (1− α)ρ(L2).

This completes the proof.

There are several important examples of performance measures that belong to this

class.

152



Spectral Zeta Functions

For a given network (6.6)-(6.7), its corresponding spectral zeta function of order q ≥ 1 is

defined by

ζq(L) :=

( n∑

i=2

λ−q
i

)1/q

, (6.26)

where λ2, . . . , λn are eigenvalues of L [140]. According to Assumption 6.3.5, all the

Laplacian eigenvalues λ2, . . . , λn are strictly positive and, as a result, function (6.26) is

well-defined. The spectral zeta function of a graph captures all its spectral features. In

fact, it is straightforward to show that every two graphs in Ln with identical zeta functions

for all parameters q ≥ 1 are isospectral 2.

Since ϕ(λ) = λ−q for q ≥ 1 is a decreasing convex function, the spectral function

(6.26) is a systemic performance measure according to Theorem 6.6.1. The systemic

performance measure 1
2
ζ1(L) is equal to the H2-norm squared of a first-order consensus

network (6.6)-(6.7) and 1√
2
ζ
2
(L) equal to the H2-norm of a second-order consensus model

of a network of multiple agents (c.f. [5]).

Gamma Entropy

The notion of gamma entropy arises in various applications such as the design of mini-

mum entropy controllers and interior point polynomial-time methods in convex program-

ming with matrix norm constraints [142]. As it is shown in [143], the notion of gamma en-

tropy can be interpreted as a performance measure for linear time-invariant systems with

random feedback controllers by relating the gamma entropy to the mean-square value of

the closed-loop gain of the system.

2This is because for a given graph with n nodes, Laplacian eigenvalues λ2, . . . , λn can be uniquely

determined by using equation (6.26) and having the value of ζq(L) for n− 1 distinct values of q. We refer

to algebraic geometric tools for existing algorithms to solve this problem [141].
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Definition 6.6.2. The γ-entropy of network (6.6)-(6.7) is defined as

Iγ(L) :=







−γ2

2π

∫∞
−∞ log det

(
I − γ−2G(jω)G∗(jω)

)
dω for γ ≥ ‖G‖H∞

∞ otherwise

where G(jω) is the transfer function of network (6.6)-(6.7) from ξ to y.

Theorem 6.6.3. For a given linear consensus network (6.6)-(6.7), the value of the γ-

entropy can be explicitly computed in terms of network’s Laplacian eigenvalues as follows

Iγ(L) =







n∑

i=2

fγ(λi) γ ≥ λ−1
2

∞ otherwise

(6.27)

where fγ(λi) = −γ2
(

(λ2i − γ−2)
1
2 − λi

)

. Moreover, the γ-entropy Iγ(L) is a systemic

performance measure.

Proof. First we obtain the transfer function of network (6.6)-(6.7) from ξ to y. In order to

do that, let us rewrite the network in its disagreement form (6.37)-(6.38). Then, it follows

that

G(s) = Mn

(

sIn + L+
1

n
Jn

)−1

Mn

= MnU diag

[
1

s+ 1
,

1

s+ λ2
, · · · , 1

s + λn

]

UTMn

= U diag

[

0,
1

s+ λ2
, · · · , 1

s+ λn

]

UT, (6.28)
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where U is the corresponding orthonormal matrix of eigenvectors ofL. Now, we calculate

the γ-entropy by substituting the transfer function (6.28) in (6.27) as follows

Iγ(G) =
−γ2
2π

∫ ∞

−∞
log det

(
In − γ−2G(jω)G∗(jω)

)
dω

=
−γ2
2π

∫ ∞

−∞
log det

(
In − γ−2G(jω)G∗(jω)

)
dω.

Then, using the fact that UUT = In and (6.28), one can write:

log det
(
In − γ2G(jω)G∗(jω)

)
= log

n∏

i=2

(

1− γ−2

λ2i + ω2

)

. (6.29)

Moreover, we know that

∫ ∞

−∞
log

(

1− γ−2

λ2i + ω2

)

dω = −γ2
((
λ2i − γ−2

) 1
2 − λi

)

, (6.30)

for γ ≥ λ−1
i . Therefore, based on this result, (6.27) and (6.30), it follows that

n∑

i=2

∫ ∞

−∞
log det

(

1− γ−2

λ2i + ω2

)

dω =

n∑

i=2

γ2
(√

λ2i − γ−2 − λi

)

, (6.31)

for γ ≥ λ−1
2 . Note that fγ(.) is a convex decreasing function in [γ−1,∞), therefore,

according to Theorem 6.6.1 and (6.31), the γ-entropy Iγ(L) is a systemic performance

measure.

The following result presents the connection between the γ-entropy measure and the

H2-norm of the network.

Theorem 6.6.4. The following equality holds for the γ-entropy measure of network (6.6)-
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(6.7)

lim
γ→∞

Iγ(L) =
1

2

n∑

i=2

λ−1
i = ‖G‖2H2

= lim
t→∞

E
{
yT(t)y(t)

}
,

where G(.) is the transfer function of network (6.6)-(6.7).

Proof. We utilize the following limit equation

lim
γ→∞

γ2
(√

x2 − γ−2 − x
)

= x−1,

for all x > 0 to prove that limγ→∞ Iγ(L) =
1
2

∑n
i=2 λ

−1
i . Finally, we use [12, Theorem 1]

to show that 1
2

∑n
i=2 λ

−1
i = ‖G‖2H2

= limt→∞ E
{
yT(t)y(t)

}
.

Expected Transient Output Covariance

We consider a transient performance measure at time instant t > 0 that is defined by

τt(L) := E
{
yT(t)y(t)

}
, (6.32)

where it is assumed that each ξi(t) for all t ≥ 0 is a white Gaussian noise with zero mean

and unit variance and all ξi’s are independent of each other.

In the following, we show that this performance measure is a spectral function of

Laplacian eigenvalues.

Theorem 6.6.5. For a given linear consensus network (6.6)-(6.7), the transient measure

can be expressed as

τt(L) =
n∑

i=2

1− e−λit

2λi
. (6.33)

Moreover, τt(L) is a systemic performance measure for all t > 0.
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Proof. The covariance matrix of the output vector is governed by the following matrix

differential equation

Ẏ (t) = −LY (t)− Y (t)L+Mn, (6.34)

where Y (t) = cov(y(t), y(t)). Using the closed-form solution of (6.34), which is given

by

Y (t) =

∫ t

0

e−LτMne
−Lτdτ, (6.35)

we get

E
{
yT(t)y(t)

}
= Tr(Y (t)) = Tr

(∫ t

0

e−LτMne
−Lτdτ

)

=

n∑

i=2

∫ t

0

e−2λiτdτ =

n∑

i=2

1− e−λit

2λi
. (6.36)

Since f(x) = 1−e−xt

2x
is convex and decreasing with respect to x on R+, we can conclude

that τt(L) is a systemic performance measure according to Theorem 6.6.1.

We note that when t tends to infinity, the value of the transient performance measure

becomes equal to the H2-norm squared of the network, i.e., τ∞(L) = ‖G‖2H2
.

Hankel Norm

The Hankel norm of a network with (6.6)-(6.7) and transfer function G(jω) from ξ to y

is defined as the L2-gain from past inputs to the future outputs, i.e.

‖G‖2H := sup
ξ∈L2(−∞,0]

∫∞
0
yT(t)y(t)dt

∫ 0

−∞ ξT(t)ξ(t)dt
.
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The value of the Hankel norm of network (6.6)-(6.7) can be equivalently computed using

the Hankel norm of its disagreement form [20] that is given by

ẋd(t) = −Ld xd(t) +Mn ξ(t), (6.37)

y(t) = Mnxd(t), (6.38)

where the disagreement vector is defined by

xd(t) := Mn x(t) = x(t)− 1

n
Jn x(t). (6.39)

The disagreement network (6.37)-(6.38) is stable as every eigenvalue of the state matrix

−Ld = −(L + 1
n
Jn) has a strictly negative real part. One can verify that the transfer

functions from ξ(t) to y(t) in both realizations are identical. Therefore, the Hankel norm

of the system from ξ(t) to y(t) in both representations are well-defined and equal, and is

given by [144]

η(L) := ‖G‖H =
√

λmax(PQ), (6.40)

where the controllability Gramian P is the unique solution of

(

L+
1

n
Jn

)

P + P
(

L+
1

n
Jn

)

−Mn = 0

and the observability Gramian Q is the unique solution of

Q
(

L+
1

n
Jn

)

+
(

L+
1

n
Jn

)

Q−Mn = 0.

Theorem 6.6.6. The value of the Hankel norm of consensus network (6.6)-(6.7) is equal
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to

η(L) =
1

2
λ−1
2

and it is a systemic performance measure.

Proof. According to the definition (6.40), we get

η(L) =
√

λmax(PQ) =
√

λmax ((L†)2) = λ−1
2 .

Moreover, based on Theorem 6.6.1, we know that the spectral zeta function ζq(L) is a

systemic performance measure for all 1 ≤ q ≤ ∞. Therefore by setting q = ∞, we have

η(L) =
1

2
ζ∞(L) =

1

2
lim
q→∞

ζq(L) =
1

2
λ−1
2 .

As a result, η(L) is a systemic performance measure.

Uncertainty volume

The uncertainty volume of the steady-state output covariance matrix of consensus network

(6.6)-(6.7) is defined by

|Σ| := det
(

Y∞ +
1

n
Jn

)

, (6.41)

where

Y∞ = lim
t→∞

E
{
y(t)yT(t)

}
.

This quantity is widely used as an indicator of the network performance [19, 145]. Since

y(t) is the error vector that represents the distance from consensus, the quantity (6.41) is

the volume of the steady-state error ellipsoid.
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Theorem 6.6.7. For a given consensus network (6.6)-(6.7) with Laplacian matrix L, the

logarithm of the uncertainty volume, i.e.

υ(L) := log |Σ| = (1− n) log 2−
n∑

i=2

log λi (6.42)

is a systemic performance measure.

Proof. According to the dynamics of the network (6.6)-(6.7), the time evolution of the

mean and the covariance matrix of the state vector are governed by

˙̄y(t) = −
(

L+
1

n
Jn

)

y(t), (6.43)

and

Ẏ (t) = − LY (t)− Y (t)L+Mn, (6.44)

where ȳ(t) = E(y(t)) and Y (t) = cov(y(t), y(t)). From (6.43), it follows that

ȳ(∞) = lim
t→∞

ȳ(t) = 0. (6.45)

Consequently, using (6.44) and (6.45) we get

Y∞ = lim
t→∞

cov(y(t), y(t)) =
1

2
L†.

Finally, by substituting Y∞ in (6.41), we get

|Σ| = det
(

Y∞ +
1

n
Jn

)

= det
(1

2
L† +

1

n
Jn

)

= 2−n+1
n∏

i=2

λ−1
i .
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From this result and the definition of υ(L), one conclude that

υ(L) = log 2−n+1

n∏

i=2

λ−1
i = (n− 1) log 2−

n∑

i=2

log λi.

Because − log(.) is convex and decreasing in R++, the quantity

υ(L) − (n− 1) log 2 = −
n∑

i=2

log λi,

is a systemic performance measure according to Theorem 6.6.1. Note that (n−1) log 2 is a

constant number. Therefore, we conclude that υ is a systemic performance measure.

6.6.2 Hardy-Schatten Norms of Linear Systems

The p-Hardy-Schatten norm of network (6.6)-(6.7) for 1 < p ≤ ∞ is defined by

‖G‖Hp :=

{

1

2π

∫ ∞

−∞

n∑

k=1

σk(G(jω))
p dω

} 1
p

, (6.46)

whereG(jω) is the transfer matrix of the network from ξ to y and σk(jω) for k = 1, . . . , n

are singular values of G(jω). It is known that this class of system norms captures sev-

eral important performance and robustness features of linear time-invariant systems. For

example, a direct calculation shows [12] that the H2-norm of linear consensus network

(6.6)-(6.7) can be expressed as

‖G‖H2 =
(1

2

n∑

i=2

λ−1
i

) 1
2
. (6.47)

This norm has been also interpreted as a notion of coherence in linear consensus networks

[2]. The H∞-norm of network (6.6)-(6.7) is an input-output system norm [99] and its
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value can be expressed as

‖G‖H∞ = λ−1
2 , (6.48)

where λ2 is the second smallest eigenvalue of L, also known as the algebraic connectivity

of the underlying graph of the network. The H∞-norm (6.48) can be interpreted as the

worst attainable performance against all square-integrable disturbance inputs [99].

Theorem 6.6.8. The p-Hardy-Schatten norm of a given consensus network (6.6)-(6.7)

is a systemic performance measure for every exponent 2 ≤ p ≤ ∞. Furthermore, the

following identity holds

‖G‖Hp = α0

(
ζp−1(L)

)1− 1
p (6.49)

where α−1
0 = p

√

−β(p
2
,−1

2
) and β : R× R → R is the well-known Beta function.

Proof. We utilize the disagreement form of the network that is given by (6.37)-(6.38) and

the decomposition (6.28) to compute the Hq-norm of G(jω) as follows

‖G‖pHp
=

1

2π

∫ ∞

−∞

n∑

k=1

σk(G(jω))
p dω

=
1

2π

n∑

i=2

∫ ∞

−∞

(
1

ω2 + λ2i

) p
2

dω

=
−1

β(p
2
,−1

2
)

n∑

i=2

1

λp−1
i

=
−1

β(p
2
,−1

2
)
ζp−1(L)

p−1,

for all 2 ≤ p ≤ ∞. Now we show that measure (6.49) satisfies Properties 1, 2, and 3

in Definition 6.4.1. Similar to the proof of Theorem 6.6.1, it is straightforward to verify

that measure (6.49) has Property 1. Next we show that measure (6.49) has Property 2,

i.e., it is a convex function over the set of Laplacian matrices. We then show that for all

162



2 ≤ p ≤ ∞ the following function f : Rn−1
++ → R is concave

f(x) =

(
n−1∑

i=1

x−p+1
i

) 1
−p+1

,

where x = [x1, x2, · · · , xn−1]
T. To do so, we need to show ▽2f(x) � 0, where the

Hessian of f(x) is given by

∂2f(x)

∂x2i
= − p

xi

(
f(x)

xi

)p

+
p

f(x)

(
f(x)2

x2i

)p

and

∂2f

∂xi∂xj
=

p

f(x)

(
f(x)2

xixj

)p

.

The Hessian matrix can be expressed as

▽
2f(x) =

p

f(x)

(

− diag(z)
1+p
p + zzT

)

,

where

z = [(f(x)/x1)
p , · · · , (f(x)/xn)p]T .

To verify ▽2f(x) � 0, we must show that for all vectors v, vT▽2f(x)v ≤ 0. We know

that

vT▽2f(x)v =
p

f(x)



−
n−1∑

i=1

z
p−1
p

i

n−1∑

i=1

z
p+1
p

i v2i +

(
n−1∑

i=1

vizi

)2


 . (6.50)

Using the Cauchy-Schwarz inequality aTb ≤ ‖a‖2‖b‖2, where

ai =

(
f(x)

xi

) p−1
2

= z
p−1
2p

i ,

and bi = z
p+1
2p

i vi, it follows that vT▽2f(x)v ≤ 0 for all v ∈ R
n−1. Therefore, f(x) is
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concave. Let us define h(x) = x
−p+1

p , where x ∈ R. Since f(.) is positive and concave,

and h is decreasing convex, we conclude that h(f(.)) is convex [146]. Hence, we get that

‖G‖Hp is a convex function with respect to the eigenvalues of L. Since this measure is a

symmetric closed convex function defined on a convex subset of Rn−1, i.e., n−1 nonzero

eigenvalues, according to [139] we conclude that ‖G‖Hp is a convex of Laplacian matrix

L. Finally, measure ‖G‖Hp is orthogonal invariant because it is a spectral function as

shown in (6.49). Hence, this measure satisfies all properties of Definition 6.4.1. This

completes the proof.

6.7 Fundamental Limits on the Best Achievable Perfor-

mance Bounds

In the following, we present theoretical bounds for the best achievable values for the

performance measure in (6.17). Let us denote the optimal cost value of the optimization

problem (6.17) by r∗k(̟).

For a given systemic performance measure ρ : Ln → R, we recall that according to

Theorem 6.4.2 there exists a spectral function Φ such that

ρ(L) = Φ
(
λ2, . . . , λn

)
.

Theorem 6.7.1. Suppose that a consensus network (6.6)-(6.7) with an ordered set of

Laplacian eigenvalues λ2 ≤ . . . ≤ λn, a set of candidate links Ec endowed with a weight

function ̟ : Ec → R++, and design parameter 1 ≤ k ≤ n − 1 are given. Then, the
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following inequality

r∗k(̟) > Φ
(
λk+2, . . . , λn,∞, . . . ,∞

︸ ︷︷ ︸

k times

)
(6.51)

holds for all weight functions̟. For k ≥ n, all lower bounds are equal to Φ
(
∞, . . . ,∞

)
.

Proof. For a given weight function ̟ : Ec → R++, we show that inequality (6.51) holds

for every Ê ∈ Πk(Ec). Assume that L̂ is the Laplacian of the graph formed by k added

edges. We note that rank(L̂) = k′ ≤ k. Therefore dim(kerL̂) = n − k′ ≥ n − k.

Therefore, we can define the nonempty set Mj for 2 ≤ j ≤ n, as follows

Mj = span{u1, . . . , uj+k′} ∩ span{vj, . . . , vn} ∩ ker L̂,

where ui’s and vi’s are orthonormal eigenvectors of L and L + L̂, respectively. We now

choose a unit vector v ∈ Mj . It then follows that:

λj(L+ L̂) ≤ vT(L+ L̂)v = vTLv

≤ λj+k′(L) ≤ λj+k(L). (6.52)

Therefore, according to (6.52) and the monotonicity property of the systemic measure ρ,

we get

ρ(L+ L̂) > Φ
(
λk+2, · · · , λn,∞, · · · ,∞

︸ ︷︷ ︸

k times

)
, (6.53)

for all Ê ∈ Πk(Ec). Inequality (6.51) now follows from (6.53) and this completes the

proof.
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Theorem 6.7.2. Suppose that in optimization problem (6.17), the set of candidate links

form a complete graph, i.e., |Ec| = 1
2
n(n − 1). Then, there exists a weight function ̟0 :

Ec → R++ and a choice of k weighted links from Ec with weight function ̟ : Ec → R++

such that

r∗k(̟) ≤ Φ
(
λ2, . . . , λn−k,∞, . . . ,∞

︸ ︷︷ ︸

k times

)
(6.54)

holds for all weight functions ̟ that satisfies ̟(e) ≥ ̟0(e) for all e ∈ Ec. Moreover, if

the systemic performance measure has the following decomposable form

ρ (L) =

n∑

i=2

ϕ(λi), (6.55)

where ϕ : R → R+ is a decreasing convex function and limλ→∞ ϕ(λ) = 0, then the best

achievable performance measure is characterized by

r∗(̟) >

n∑

i=k+2

ϕ(λi). (6.56)

Proof. We will show that there exists Ê ∈ Πk(Ec) for which (6.54) is satisfied. Without

loss of generality, we may assume that k < n − 1. This is because otherwise, by adding

n−1 links, which forms a spanning tree, and increasing their weights the performance of

the resulting network tends to Φ(∞, · · · ,∞) (see Theorem 6.7.3). Let Ê ⊂ E be the set

of k links that do not form any cycle with ̟0(e) = ∞ for all e ∈ Ê . Then, we know that

Λ(L+ L̂) ≥ Λ(L) (6.57)

and the k largest eigenvalues of L+ L̂ are equal to ∞. Using (6.57) and the monotonicity
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property of the systemic performance measure, we get

ρ(L+ L̂) ≤ Φ
(
λ2, · · · , λn−k,∞, · · · ,∞

︸ ︷︷ ︸

k times

)
. (6.58)

From r∗(̟) ≤ ρ(L + L̂) and using (6.58), we obtain (6.54). Note that inequality (6.56)

is a direct consequence of (6.54) and limλ→∞ ϕ(λ) = 0.

Examples of systemic performance measures that satisfies conditions of Theorem

6.7.1 include ζqq (L) for q ≥ 1, Iγ(L), and τt(L).

Theorem 6.7.3. Let us consider a linear consensus network (6.6)-(6.7) that is endowed

with systemic performance measure ρ : Ln → R. Then, the network performance can be

arbitrarily improved3 by adding only n− 1 links that form a spanning tree.

Proof. Let us denote the Laplacian matrix of the spanning tree by LT . In the follow-

ing, we show that the performance of resulting network can be arbitrarily improved by

increasing the weights of the spanning trees. Based on the monotonicity property, we

have

ρ(L+ κLT ) ≤ ρ(κLT ), κ > 0, (6.59)

Also, we know that Λ(κLT ) = κΛ(LT ). Therefore, using the fact that the spanning tree

has only one zero eigenvalue, (6.13), we get

lim
κ→∞

ρ(κLT ) = Φ(∞, · · · ,∞).

Using this limit and (6.59) we get the desired result.

3This implies that the value of the systemic performance measure can be made close enough to

Φ(∞, · · · ,∞), the lower bound in inequality (6.51).
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The result of Theorem 6.7.1 can be effectively applied to select a suitable value for

the design parameter k in optimization problem (6.17). Let us denote the value of the

lower bound in (6.51) by ̺k. The performance of the original network is then ̺0 = ρ(L).

The percentage of performance enhancement can be computed by formula ̺0−̺k
̺0

× 100

for all values of parameter 1 ≤ k ≤ n− 1. For a given desired performance level, we can

look up these numbers and find the minimum number of required links to be added to the

network. This is explained in details in Example 6.10.3 and Figure 6.5 in Section 6.10. In

next sections, we propose approximation algorithms to compute near-optimal solutions

for the network synthesis problem (6.17).

6.8 A Linearization-Based Approximation Method

Our first approach is based on a linear approximation of the systemic performance mea-

sure when weights of the candidate links in Ec are small enough. In the next result, we

calculate Taylor expansion of a systemic performance measure using notions of direc-

tional derivative for spectral functions.

Theorem 6.8.1. Suppose that a linear consensus network (6.6)-(6.7) endowed with a

differentiable systemic performance measure ρ is given. Let us consider the cost function

in optimization problem (6.17). If L̂ is the Laplacian matrix of an appended subgraph

Ĝ = (V, Ê , ̟), then

ρ(L+ ǫL̂) = ρ(L) + ǫTr
(
▽ρ(L)L̂

)
+O(ǫ2)

where the derivative of ρ at L is given by

▽ρ(L) = W T (diag▽φ (Λ(L)))W (6.60)
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for any matrix W that is defined by (6.15).

Proof. The expression (6.60) can be calculated using the spectral form of a given systemic

performance measure described by (6.14) and according to [147, Corollary 5.2.7]. Using

the directional derivative of ρ along matrix L̂, the Taylor expansion of ρ(L+ ǫL̂) is given

by

ρ(L+ ǫL̂) = ρ(L) + ǫ▽L̂ρ(L) +O(ǫ2), (6.61)

where ▽L̂ρ(L) is the directional derivative of ρ at L along matrix L̂

▽L̂ρ(L) =
〈
▽ρ(L), L̂

〉
= Tr

(
▽ρ(L)L̂

)
, (6.62)

where 〈., .〉 denotes the inner product operator. Then, substituting (6.62) in (6.61) yields

the desired result.

According to the monotonicity property of systemic performance measures, the in-

equality

Tr
(
▽ρ(L)L̂

)
≤ 0

holds for every Laplacian matrix L̂. This implies that when weights of the candidate links

are small enough, one can approximate the optimization problem (6.17) by the following

optimization problem

minimize
Ê∈Πk(Ec)

Tr
(
▽ρ(L)L̂

)
, (6.63)

where L̂ is the Laplacian matrix of an appended candidate subgraph Ĝ = (V, Ê , ̟).

Therefore, the problem boils down to select the k-largest elements of the following set

{

̟(e)
(
▽ρ(L)ii + ▽ρ(L)jj − ▽ρ(L)ij − ▽ρ(L)ji

)∣
∣e = {i, j} ∈ Ec

}

,
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Table 6.2: Linearization-based algorithm

Algorithm: Adding k links using linearization

Input: L, Ec, ̟, and k

1: set L̂ = 0

2: for i = 1 to k
3: find e = {i, j} ∈ Ec that returns the maximum value for

4: ̟(e)
(
▽ρ(L)ii + ▽ρ(L)jj − ▽ρ(L)ij − ▽ρ(L)ji

)

5: set the solution e⋆

6: update

7: L̂ = L̂+̟(e⋆)Le⋆ , and

8: Ec = Ec \ {e⋆}
9: end for

where ̟(e) is weight of link e. Table 6.2 presents our linearization approach as an algo-

rithm. In some special cases, one can obtain an explicit closed-form formula for systemic

performance measure of the resulting augmented network.

Theorem 6.8.2. Suppose that linear consensus network (6.6)-(6.7) with Laplacian matrix

L is endowed with systemic performance measure (6.6.1) for q = 1. Let us consider

optimization problem (6.17), where L̂ is the Laplacian matrix of a candidate subgraph

Ĝ = (V, Ê , ̟). Then,

ζ1(L+ ǫL̂) = ζ1(L)− ǫ
∑

e∈Ê

̟(e)re(L
2) +O(ǫ2),

where re(L
2) is the effective resistance between the two ends of e in a graph with node

set V and Laplacian matrix L2.

Proof. We use the following identity

(A+ ǫX)−1 = A−1 − ǫA−1XA−1 +O(ǫ2), (6.64)

for given matrices A,X ∈ Rn×n. Based on [5, Theorem 4], the performance measure
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ζ1(.) can be calculated by

ζ1(L+ ǫL̂) = Tr((L+ ǫL̂)†). (6.65)

Moreover, according to the definition of the Moore-Penrose generalized matrix inverse,

we have
(

L+ ǫL̂
)†

=
(

L̄+ ǫL̂
)−1

− 1

n
Jn,

where L̄ = L+ 1
n
Jn. Using (6.64) and (6.65), it follows that

(

L+ ǫL̂
)†

= L̄−1 − 1

n
Jn − ǫL̄−1L̂L̄−1 +O(ǫ2). (6.66)

Then we show that

Tr(L̄−1L̂L̄−1) = Tr(L̂L̄−2) =
∑

e∈Ê

̟(e)re(L
2). (6.67)

Using (6.65), (6.66) and (6.67), we get the desired result.

According to Theorem 6.8.2, when weights of the candidate links are small, in order

to solve problem (6.17), it is enough to find k-largest element of the following set

{
̟(e)re(L

2)
∣
∣ e ∈ Ec

}
.

Since the weights of the candidate links are given, we only need to calculate the effective

resistance re(L
2) for all e ∈ Ec, .

As we discussed earlier, the design problem (6.17) is generally NP-hard. Our pro-

posed approximation algorithm in this section works in polynomial-time. In example

6.10.4, we discuss and compare optimality gap and time complexity of this method with
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Table 6.3: Simple greedy algorithm

Algorithm: Adding links Consecutively

Input: L, Ec, ̟, and k

1: set L̃ = L
2: for i = 1 to k

3: find link e ∈ Ec with maximum ρ(L̃)− ρ(L̃+̟(e)Le)
4: set the solution e⋆

5: update

6: L̃ = L̃+̟(e⋆)Le⋆ , and

7: Ec = Ec \ {e⋆}
8: end for

other methods. The computational complexity of the linearization-based algorithm in Ta-

ble 6.2 is O(n3) for a given differentiable systemic performance measure from Table 6.1.

This involves computation of ▽ρ for the original graph, which requires O(n3) operations.

The rest of the algorithm can be done in O(pk) for small k and O(p log p) operations for

large k.

6.9 Greedy Approximation Algorithms

In this section, we propose an optimal algorithm to solve the network growing problem

(6.17) when k = 1. It is shown that for some commonly used systemic performance

measures, one can obtain a closed-form solution for k = 1. We exploit our results and

propose a simple greedy approximation algorithm for (6.17) with k > 1 by adding candi-

date links one at a time. For some specific subclasses of systemic performance measures,

we prove that our proposed greedy approximation algorithm enjoys guaranteed perfor-

mance bounds with respect to the optimal solution of the combinatorial problem (6.17).

Finally, we discuss time complexity of our proposed algorithms.
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6.9.1 Simple Greedy by Sequentially Adding Links

The problem of adding only one link can be formulated as follows

minimize
e∈Ec

ρ(L+ Le), (6.68)

where Le is the Laplacian matrix of a candidate subgraph Ĝe = (V, {e}, ̟). Let us denote

the optimal cost of (6.68) by r∗1(̟). In order to formulate the optimal cost value of (6.68),

we need to define the notion of a companion operator for a given systemic performance

measure.

Theorem 6.9.1. For a given systemic performance measure ρ : Ln → R, there exists a

companion operator ψ : Ln → R such that

ρ(L) = ψ(L†), (6.69)

for all L ∈ Ln. Moreover, the companion operator of ρ is characterized by

ψ(X) = Φ(µ−1
n , . . . , µ−1

2 ), (6.70)

for allX ∈ Ln with eigenvalues µ2 ≤ . . . ≤ µn, where operator Φ : Rn−1 → R is defined

by (6.13).

Proof. According to Theorem 6.4.2, there exists a Schur-convex spectral function Φ :

Rn−1 → R such that

ρ(L) = Φ(λ2, . . . , λn).

In addition, we know that for the Moore-Penrose pseudo-inverse of matrix L ∈ Ln, we
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have the following

λi(L
†) = λ−1

n−i+1(L) = λ−1
n−i+1,

for i = 2, . . . n, and λ1(L) = λ1(L
†) = 0. Consequently, we can rewrite ρ(L) using its

companion operator as

ρ(L) = Φ
(
λ−1
n (L†), . . . , λ−1

2 (L†)
)
.

Therefore, by defining ψ : Ln → R as (6.70), we get identity (6.69).

Table 6.4 shows some important examples of systemic performance measure and their

corresponding companion operators.

Theorem 6.9.2. Suppose that a linear consensus network (6.6)-(6.7) endowed by a sys-

temic performance measure ρ : Ln → R is given. The optimal cost value of the optimiza-

tion problem (6.68) is given by

r∗1(̟) = min
e∈Ec

ψ

(

L† − 1

̟−1(e) + re(L)
Ue

)

, (6.71)

where ψ is the corresponding companion operator of ρ and Ue for a link e = {i, j} is a

rank-one matrix defined by

Ue = (L†
i − L†

j)(L
†
i − L†

j)
T, (6.72)

in which L†
i is the ith column of matrix L†.

Proof. We use the following matrix identity

(L+ Le)
† =

(
L̄+ Ee̟(e)ET

e

)−1 − 1

n
Jn,
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whereEe is the incidence matrix of graph Ĝe and L̄ = L+ 1
n
Jn. By utilizing the Woodbury

matrix identity, we get

(L+ Le)
† = L† − L̄−1Ee

(
w−1

1 (e) + ET
e L̄

−1Ee

)−1
ET

e L̄
−1. (6.73)

From the definition of the effective resistance between nodes i and j, it follows that

re(L) = ET
e L̄

−1Ee = l†ii + l†jj − l†ij − l†ji.

On the other hand, we have

L̄−1Ee =

(

L† − 1

n
Jn

)

Ee = L†Ee = L†
i − L†

j. (6.74)

Therefore, using (6.73) and (6.74), we have

(L+ Le)
† = L† − 1

̟−1(e) + re(L)
(L†

i − L†
j)(L

†
i − L†

j)
T

= L† − 1

̟−1(e) + re(L)
Ue. (6.75)

From (6.69) and (6.75), we can conclude the desired equation (6.71).

In some special cases, the optimal solution (6.71) can be computed very efficiently

using a simple separable update rule.

Theorem 6.9.3. Suppose that linear consensus network (6.6)-(6.7) with Laplacian matrix

L. Then, for every link e ∈ Ec we have

ζ1(L+ Le) = ζ1(L)− re(L2)
̟−1(e)+re(L)

,
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ζ22 (L+ Le) = ζ22 (L) +
[

re(L2)
̟−1(e)+re(L)

]2

− 2re(L3)
̟−1(e)+re(L)

,

υ(L+ Le) = υ(L) − log
(
1 + re(L)̟(e)

)
,

where re(L
m) is the effective resistance between the two ends of link e in a graph with

node set V and Laplacian matrix Lm for m ∈ {1, 2, 3}.

Proof. Based on Theorem 6.9.2, it is straightforward to get the desired result for ζ1(.) and

ζ2(.). For the last part, using the definition of υ(.) and (6.42), we get

υ(L+ Le) = log det

(
1

2
(L+ Le)

† +
1

n
Jn

)

= log det

(

2(L+ Le) +
1

n
Jn

)−1

. (6.76)

According to the matrix determinant lemma we have

det(A+ uvT) = (1 + vTA−1u) det(A). (6.77)

Now using (6.76) and (6.77), it follows that

det

(

2(L+ Le) +
1

n
Jn

)−1

=

det

((

2L+
1

n
Jn

)−1

− 1

2̟−1(e) + 2re(L)
U

)

=

(

1− re(L)

̟−1(e) + re(L)

)

det

(

2L+
1

n
Jn

)−1

,

then by taking log from both sides, we get the desired result.

In these special cases, the computational complexity of calculating the optimal solu-

tion for network design problem (6.68) is relatively low. For q = 1, the optimal cost value
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is equal to ζ1(L+ Le∗), where

e∗ = argmax
e∈Ec

re(L
2)

̟−1(e) + re(L)
, (6.78)

and for q = 2, the optimal cost value is equal to ζ2(L+ Le∗), where

e∗ = argmin
e∈Ec

([
re(L

2)

̟−1(e) + re(L)

]2

− 2re(L
3)

̟−1(e) + re(L)

)

Moreover, for (6.42), the optimal cost value is equal to υ(L+ Le∗), where

e∗ = argmin
e∈Ec

log
(
1 + re(L)̟(e)

)
.

The location of the optimal link is sensitive to its weight. For example when optimizing

with respect to ζ1, maximizers of re(L), re(L
2) and re(L

2)/re(L) can be three different

links. In Example 6.10.1 and Figure 6.1 of Section 6.10, we illustrate this point by means

of a simulation. Furthermore, one can obtain the following useful fundamental limits on

the best achievable cost values.

Theorem 6.9.4. Let us denote the value of performance improvement by adding an edge

e with an arbitrary positive weight to linear consensus network (6.6)-(6.7) by

∆ρ(L) = ρ(L)− ρ(L+ Le).

Then, the maximum achievable performance improvement is

∆ρ(L) ≤ ψ(L†)− ψ
(

L† − re(L)
−1Ue

)

, (6.79)

where Ue is given by (6.72) and the upper bound can be achieved as w tends to infinity.
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Systemic Performance

Measure

Symbol Spectral Representation The Corresponding Companion Operator

Spectral zeta function ζq(L)
(

n
∑

i=2

λ−q
i

)1/q (

n
∑

i=2

µq
i

)1/q
for q ≥ 1

Gamma entropy Iγ(L) γ2
n
∑

i=2

(

λi −
(

λ2
i − γ−2

) 1

2

)

γ2
n
∑

i=2

(

µ−1
i −

(

µ−2
i − γ−2

) 1

2

)

Expected transient output

covariance

τt(L)
1

2

n
∑

i=2

λ−1
i (1− e−λit)

1

2

n
∑

i=2

µi(1− e
− t

µi )

System Hankel norm η(L)
1

2
λ−1
2

1
2
µn

Uncertainty volume of the

output

υ(L) (1 − n) log 2−
n
∑

i=2

log λi (1 − n) log 2 +

n
∑

i=2

log µi

Hardy-Schatten system

norm or Hp-norm

θp(L)

{

1

2π

∫ ∞

−∞

n
∑

k=1

σk(G(jω))p dω

}1/p

= α0

(

Tr
(

L†
)p−1

) 1

p

α0

( n
∑

i=2

µp−1
i

)1/p

for 2 ≤ p ≤ ∞,

where α−1
0 = p

√

−β(p
2
,− 1

2
).

Table 6.4: Some important examples of spectral systemic performance measures and their corre-

sponding companion operators.

Moreover, we have the following explicit fundamental limits

∆ζ1(L) ≤ re(L
2)

re(L)
, (6.80)

∆ζ22 (L) ≤
[
re(L

2)

re(L)

]2

− 2
re(L

3)

re(L)
. (6.81)

Proof. We utilize monotonicity property of companion operator of a systemic perfor-

mance measure, i.e., If L†
1 � L†

2, then

ψ(L†
1) ≤ ψ(L†

2),

and the inequality

L† − re(L)
−1Ue � L† − 1

w−1 + re(L)
Ue

to show that

ψ
(

L† − re(L)
−1Ue

)

≤ ψ
(

L† − 1

w−1 + re(L)
Ue

)

.
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From this inequality, we can directly conclude (6.79). For systemic performance measure

ζ1(.), inequality (6.79) reduces to

∆ζ1(L) ≤ Tr(L†)−Tr
(

L† − re(L)
−1Ue

)

,

= Tr
(
re(L)

−1Ue

)
= re(L)

−1Tr (Ue) . (6.82)

Moreover, based on the definition of Ue, we have

Tr(Ue) = Tr(L†ET
e EeL

†) = EeL
†,2ET

e = re(L
2).

Using this and (6.82), it follows that

∆ζ1(L) ≤ re(L
2)

re(L)
.

Similarly for ζ22(.), using (6.79) and the definition of ζ2(.), results in

∆ζ22 (L) ≤ Tr
(
L†,2)−Tr

((

L† − re(L)
−1Ue

)2
)

,

=
1

r2e(L)
Tr
(
U2
e

)
− 2Tr

(
re(L)

−1UeL
†)

=

[
re(L

2)

re(L)

]2

− 2
Tr
(
UeL

†)

re(L)

=

[
re(L

2)

re(L)

]2

− 2
Tr
(
L†ET

e EeL
†,2)

re(L)

=

[
re(L

2)

re(L)

]2

− 2
re(L

3)

re(L)
. (6.83)

This completes proof.

The result of Theorem 6.9.4 asserts that, in general, performance improvement may

not be arbitrarily large by adding only one new link. In some cases, however, performance
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improvement can be arbitrarily good. For instance, for the uncertainty volume of the

output, we have

lim
̟(e)→+∞

∆υ(L) = +∞. (6.84)

The result of Theorem 6.9.2 can be utilized to devise a greedy approximation method

by decomposing (6.17) into k successive tractable problems in the form of (6.68). In

each iteration, Laplacian matrix of the network is updated and then optimization problem

(6.68) finds the next best candidate link as well as its location. Since the value of systemic

performance measure can be calculated explicitly in each step using Theorem 6.9.2, one

can explicitly calculate the value of systemic performance measure for the resulting aug-

mented network. This value can be used to determine the effectiveness of this method.

Table 6.3 summarizes all steps of our proposed greedy algorithm, where the output of the

algorithm is the Laplacian matrix of the resulting augmented network. In Section 6.10,

we present several supporting numerical examples.

Remark 6.9.5. The optimization problem (6.68) with performance measure ζ∞(L) =

λ−1
2 was previously considered in [55], where a heuristic algorithm was proposed to

compute an approximate solution. Later on, another approximate method for this problem

was presented in [54]. Also, there is a similar version of this problem that is reported

in [56], where the author studies convergence rate of circulant consensus networks by

adding some long-range links. Moreover, a non-combinatorial and relaxed version of

our problem of interest has some connections to the sparse consensus network design

problem [6, 57, 58], where they consider ℓ1-regularized H2 optimal control problems.

When the candidate set Ec is the set of all possible links except the network links, i.e.,

Ec = V ×V \ E , and the performance measure is the logarithm of the uncertainty volume,

our result reduces to the result reported in [23].

180



6.9.2 Supermodularity and Guaranteed Performance Bounds

A systemic performance measure is a continuous function of link weights on the space

of Laplacian matrices Ln. Moreover, we can represent a systemic performance measure

equivalently as a set function over the set of weighted links. Let us denote by G(V) the

set of all weighted graphs with a common node set V .

Definition 6.9.6. For a given systemic performance measure ρ : Ln → R, we associate a

set function ρ̃ : G(V) → R that is defined as

ρ̃(G) = ρ

(
∑

e∈E
w(e)Le

)

= ρ(L),

whereL is Laplacian matrix of G = (V, E , w) andLe is the Laplacian matrix of (V, {e}, 1),

which is an unweighted graph formed by a single link e.

Definition 6.9.7. The union of two weighted graphsG1 = (V, E1, w1) and G2 = (V, E2, w2)

is defined as follows

G1 ∨ G2 := (V, E1 ∪ E2, w)

in which

w(e) :=







max{w1(e), w2(e)} if e ∈ E1 ∪ E2

0 otherwise

. (6.85)

Definition 6.9.8. The intersection of two weighted graphs G1 = (V, E1, w1) and G2 =

(V, E2, w2) is defined as follows

G1 ∧ G2 := (V, E1 ∩ E2, w)
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Figure 6.1: The interconnection topology of all three graphs, except for their highlighted blue

links, are identical, which show the coupling graph of the linear consensus network in Example

6.10.1. The coupling graph shown in here is a generic connected graph with 50 nodes and 100
links, which are drawn by black lines. The optimal links are shown by blue line segments.

in which

w(e) :=







min{w1(e), w2(e)} if e ∈ E1 ∩ E2

0 otherwise

.

The following definition is adapted from [148] for our graph theoretic setting.

Definition 6.9.9. A set function ρ̃ : G(V) → R is supermodular with respect to the link

set if it satisfies

ρ̃(G1 ∧ G2) + ρ̃(G1 ∨ G2) ≥ ρ̃(G1) + ρ̃(G2) (6.86)

Theorem 6.9.10. Suppose that systemic performance measure ρ : Ln → R is differ-

entiable and ▽ρ : Ln → Rn×n is monotonically increasing with respect to the cone of

positive semidefinite matrices4. Then, the corresponding set function ρ̃ : G(V) → R, from

Definition 6.9.6, is supermodular.

4L1 � L2 =⇒ ▽ρ(L1) � ▽ρ(L2).
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Proof. We know that

d

dt
ρ(L+ tX) = Tr(▽ρ(L+ tX)X). (6.87)

where t ∈ R+ and L,X ∈ Ln. From (6.87), we get

d

dt

(
ρ(L1 + tX)− ρ(L2 + tX)

)
=

Tr
((
▽ρ(L1 + tX)− ▽ρ(L2 + tX)

)
X
)
, (6.88)

where L1, L2 ∈ Ln and L1 � L2. From the monotonicity property of ▽ρ and (6.88), we

get

d

dt

(
ρ(L1 + tX)− ρ(L2 + tX)

)
≤ 0. (6.89)

Then, by taking integral from both sides of (6.88), and then using (6.89) we have

∫ 1

0

d

dt
ρ(L1 + tX)dt−

∫ 1

0

d

dt
ρ(L2 + tX)dt ≤ 0,

which directly implies that

ρ(L1 +X)− ρ(L1) ≤ ρ(L2 +X)− ρ(L2). (6.90)

On the other hand, the corresponding Laplacian matrices of G1, G2, G1∧G2, and G1∨G2
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are given as follows







LG1 :=
∑

e∈E1 w1(e)Le,

LG2 :=
∑

e∈E2 w2(e)Le,

LG1∧G2 :=
∑

e∈E1∩E2 min{w1(e), w2(e)}Le,

LG1∨G2 :=
∑

e∈E1∪E2 max{w1(e), w2(e)}Le.

(6.91)

Based on these definitions, we have

LG1∧G2 � LG1 , LG2 � LG1∨G2 . (6.92)

By setting L1 = LG1∧G2 , L2 = LG1 , and X = LG2 − LG1∨G2 in inequality (6.90), we get

ρ(LG1∧G2 + LG2 − LG1∧G2)− ρ(LG1∧G2) = ρ(LG2)− ρ(LG1∧G2)

≤ ρ(LG1∨G2 + LG2 − LG1∧G2)− ρ(LG1∨G2). (6.93)

According to (6.91), we have

LG1∨G2 + LG1∨G2 = LG1 + LG2 . (6.94)

Therefore, based on equality (6.94) we can rewrite the right hand side of inequality (6.93),

as follows

ρ(LG1∨G2 + LG2 − LG1∧G2)− ρ(LG1∨G2) = ρ(LG1)− ρ(LG1∨G2). (6.95)

Finally, using Definition 6.9.6, (6.93) and (6.95), we can conclude (6.86).
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(a) (b)

Figure 6.2: The coupling graph of the network used in Example 6.10.2 is shown in (a) that

consists of 60 nodes and 176 links. The location of the optimal link, highlighted by the blue color,

is shown in (b).

It should be emphasized that convexity property of a systemic performance measure

ρ implies that ▽ρ, if it exists, is a monotone mapping5. However, this property is not

sufficient for supermodularity of its corresponding set function ρ̃.

Example 6.9.11. In our first example, we show that the uncertainty volume of the out-

put (6.42) satisfies conditions of Theorem 6.9.10. The gradient operator of this systemic

performance measure is

▽υ(L) = −
(

L+
1

n
Jn

)−1

.

It is straightforward to verify that ▽υ(L) is monotone with respect to the cone of positive

semidefinite matrices. Thus, υ(L) is supermodular.

Example 6.9.12. In our second example, we consider a new class of systemic perfor-

mance measures that are defined as

mq(L) = −
n∑

i=2

λqi , (6.96)

where 0 ≤ q ≤ 1 and m0(L) = rank(L) − 1. According to Theorem 6.6.1, this spectral

function is a systemic performance measure as function−λq for 0 ≤ q ≤ 1 is a decreasing

5
Tr ((▽ρ(L1)− ▽ρ(L2))(L1 − L2)) ≥ 0, where L1, L2 ∈ Ln.
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convex function on R+. Moreover, its gradient operator, which is given by

▽mq(L) = − qLq−1,

is monotonically increasing for all 0 ≤ q ≤ 1. Therefore, according to Theorem 6.9.10,

systemic performance measure (6.96) is supermodular over the set of all weighted graphs

with a common node set.

Remark 6.9.13. For a given performance measure ρ, there are several different ways to

define an extended set function for ρ. These set functions may have different properties.

For instance, the extended set function of ζ1 is supermodular over principle sub-matrices

[149], but it is not supermodular over the set of all weighted graphs with a common node

set (see Definition 6.9.6).

For those systemic performance measures that satisfy conditions of Theorem 6.9.10,

one can provide guaranteed performance bounds for our proposed greedy algorithm in

Subsection 6.9.1. The following result is based a well-known result from [148, Chapter

III, Section 3].

Theorem 6.9.14. Suppose that systemic performance measure ρ : Ln → R is differ-

entiable and ▽ρ : Ln → R
n×n is monotonically increasing with respect to the cone of

positive semidefinite matrices. Then, the greedy algorithm in Table 6.3, which starts with

Ê as the empty set and at every step selects an element e ∈ Ec that minimizes the marginal

cost ρ(L+LÊ+Le)−ρ(L+LÊ), provides a set Ê that achieves a (1−1/e)-approximation6

of the optimal solution of the combinatorial network synthesis problem (6.17).

6 This means that
ρ(L+L̃)−ρ(L)
ρ(L+L∗)−ρ(L) ≥ 1 − 1

e
, where L∗ is the optimum solution and L̃ is the solution of

the greedy algorithm, or equivalently:
ρ(L+L̃)−ρ(L+L∗)
ρ(L)−ρ(L+L∗) ≤ 1

e
.
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Figure 6.3: This plot is discussed in Example 6.10.2.

Since the class of supermodular systemic performance measures are monotone, the

combinatorial network synthesis problem (6.17) is polynomial-time solvable with prov-

able optimality bounds [148]. Supermodularity is not a ubiquitous property for all sys-

temic performance measures. Nevertheless, our simulation results in Section 6.10 assert

that the proposed greedy algorithm in Table 6.3 is quite powerful and provides tight and

near-optimal solutions for a broad range of systemic performance measures.

6.9.3 Computational Complexity Discussion

As we discussed earlier, the network synthesis problem (6.17) is in general NP-hard.

However, this problem is solvable when k = 1 and the best link can be found by running

an exhaustive search over all possible scenarios, i.e., by calculating the value of a perfor-

mance measure for all possible p augmented networks, where p is the number of candidate

links. The computational complexity of evaluating performance of a given linear consen-

sus network depends on the specific choose of a systemic performance measure. Let us

denote computational complexity of a given systemic performance measure ρ : Ln → R
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by O (Mρ(n)). In the simple greedy algorithm of Table 6.3, the difference term

ρ(L̃)− ρ
(
L̃+̟(e)Le

)
(6.97)

is calculated and updated for each candidate link at each step, for the total of k
(
p −

k−1
2

)
times. Thus, the total computational complexity of our simple greedy algorithm is

O
(
Mρ(n)(p− k−1

2
)k
)

operations. This computational complexity is at mostO (Mρ(n)n
2k),

where p =
(
n
2

)
, i.e., when the candidate set contains all possible links. The complexity

of the brute-force method is O
(
Mρ(n)

(
p
k

))
7. This can be at most O

(
Mρ(n)2

p/
√
p
)
.

Moreover, if k ≤ √
p, then the computational complexity will be O

(
Mρ(n)p

k/k!
)
.

In some occasions, we can take advantage of the rank-one updates in Theorems 6.9.2

and 6.9.3, where it is shown that a rank-one deviation in a matrix results in a rank-one

change in its inverse matrix as well. This helps reduce the computational complexity of

(6.97) to the order of O(n2) instead of O(n3) operations. As it is shown in [150], one

can apply the rank-one update on the matrix of effective resistances. As a result, we

can update the effective resistances of all links in order of O(n2). More specifically, the

matrix of effective resistances is given by

R(Lm) := 1n diag
(
L†,m)+ diag

(
L†,m)

1

T
n − 2L†,m (6.98)

for m ∈ {1, 2, 3}, where R(Lm)ij = r{i,j}(L
m). The update rule (6.98) can be obtained

by substituting the rank-one update of (L+Le)
† from (6.75) in (6.98) and them-th power

of the rank-one update can be calculated in O(n2) as it can be cast as only matrix-vector

products. Using these facts and the result of Theorem 6.9.3, the computational cost of

(6.97) for systemic performance measures ζ1, ζ2, and υ can be significantly reduced;

7 This corresponds to calculating the value of a performance measure for all
(
p
k

)
possible augmented

networks.
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Figure 6.4: This is the coupling graph of the network in Example 6.10.4 with 30 nodes, where the

graph has 50 original (black) links and the candidate set includes all 15 dashed red line segments.

more specifically, the computational complexity of our algorithm reduces to

O



 n3
︸︷︷︸

calculating L†,m’s at the beginning

+ n2
︸︷︷︸

rank-one update

× k
︸︷︷︸

number of steps



 .

For a generic systemic performance measure ρ : Ln → R, according to Theorem

6.4.2, calculating its value requires knowledge of all Laplacian eigenvalues of the cou-

pling graph. It is known that the eigenvalue problem for symmetric matrices requires

O(n2.376 logn) operations [151]. Suppose that calculating the value of spectral function

Φ : Rn−1 → R in Theorem 6.4.2 needs O (MΦ(n)) operations. Thus, the value of sys-

temic performance measure ρ(L) in equation (6.13), and similarly (6.97), can be calcu-

lated in O(n2.376 log n+MΦ(n)). Based on this analysis, we conclude that the complexity

of the greedy algorithm in Table 6.3 is at most

O
(
(
n2.376 log n+MΦ(n)

)
(

p− k − 1

2

)

k

)

.
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6.10 Numerical Simulations

In this section, we support our theoretical findings by means of some numerical examples.

Example 6.10.1. This example investigates sensitivity of location of an optimal link as

a function of its weight. Let us consider a linear consensus network (6.6)-(6.7), whose

coupling graph is shown in Figure 6.1, endowed by systemic performance measure (6.26)

with q = 1. The graph shown in Figure 6.1 is a generic unweighted connected graph

with n = 50 nodes and 100 links. We solve the network synthesis problem (6.68) for

the candidate set with |Ec| = 1
2
n(n − 1) that covers all possible locations in the graph.

It is assumed that all candidate links have an identical weight ̟0. We use our rank-

one update method in Theorem 6.9.3 to study the effect of ̟0 on location of the optimal

link. In Figure 6.1(c), we observe that by increasing ̟0, the optimal location changes.

When ̟0 = 1, our calculations reveal that the optimal link in Figure 6.1(a), shown by

a blue line segment, maximizes re(L
2) among all possible candidate links in set Ec. By

increasing the value of our design parameter to ̟0 = 1.2 in Figure 6.1(b), we observe

that the location of the optimal link moves. In our last scenario in Figure 6.1(c), by setting

̟0 = 1.6, the optimal link moves to a new location that maximizes quantity re(L
2)/re(L)

among all possible candidate links.

Example 6.10.2. The usefulness of our theoretical fundamental hard limits in Theorem

6.7.1 in conjunction with our results in Theorem 6.9.3 is illustrated in Figure 6.3. Suppose

that a linear consensus network (6.6)-(6.7) with a generic coupling graph with n = 60, as

shown in Figure 6.2(a), is given. Let us consider the network design problem (6.68) with

systemic performance measure (6.26) for q = 1. The set of candidate links is the set of all

possible links in the coupling graph, i.e., |Ec| = 1
2
n(n − 1), where it is assumed that all
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Figure 6.5: These plots are discussed in Example 6.10.3.

candidate links have an identical weight ̟0 = 20. Our goal is to compare optimality of

our low-complexity update rule against brute-force search over all |Ec| = 1770 possible

augmented graphs. The value of the systemic performance measure for each candidate

graph is marked by blue star in Figure 6.3. In this plot, the black circle highlights the

value of performance measure for the network resulting from the rank-one search (6.78).

The red dashed line in Figure 6.3 shows the best achievable value for ζ1 according to

Theorem 6.7.1. The value of this hard limit can be calculated merely using Laplacian

eigenvalues of the original graph shown in Figure 6.2(a). The location of the optimal link

is shown in Figure 6.2(b). One observes from Figure 6.3 that our theoretical fundamental

limit justifies near-optimality of our rank-one update strategy (6.78) for networks with

generic graph topologies.

Example 6.10.3. This example follows up on our discussion at the end of Section 6.7,
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where it is explained that the result of Theorem 6.7.1 can be utilized to choose reasonable

values for design parameter k in the network design problem (6.17). We explain the

procedure by considering a linear consensus network (6.6)-(6.7) with a given coupling

graph by Figure 6.2(a). The value of the lower bound (i.e., hard limit) in (6.51) is used to

form the following quantity

πk :=
̺0 − ̺k
̺0

× 100

that represents the percentage of performance enhancement for all values of parameter

1 ≤ k ≤ n − 1. Figure 6.5 illustrates the value of πk with respect to four systemic

performance measures: ζ1, ζ2, τt and Iγ . Depending on the desired level of performance,

one can compute a sensible value for design parameter k merely by looking up at the

corresponding plots. For instance, in order to achieve 50% performance improvement,

one should add at least 13, 10, 16, and 12 weighted links with respect to ζ1, ζ2, τt and

Iγ , respectively. We verified tightness of this estimate by running our greedy algorithm in

Table 6.3, where the candidate set is equal to the set of all possible links with identical

weight 10. Our simulation results reveal that by adding 13, 10, 16, and 12 links from

the candidate set, the network performance improves by 40.60%, 45.10%, 37.76%, and

40.61% with respect to ζ1, ζ2, τt, and Iγ , respectively. Our theoretical bounds predict that

network performance can be further improved by increasing weights of the candidate

links. In our example, if we increase the weight from 10 to 500, the network performance

boosts by more than 46% for all mentioned systemic performance measures.

Example 6.10.4. We compare optimality gaps of our proposed greedy (see Table 6.3)

and linearization-based (see Table 6.2) methods versus brute-force and simple-random-

sampling methods. The brute-force method runs an exhaustive search to find the global

optimal solution of problem (6.17); however, it cannot be used for medium to large size
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Figure 6.6: These plots compare optimality gaps of five different methods towards solving the

network synthesis problem (6.17) and the details are discussed in Example 6.10.4.
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networks. In order to make our comparison possible, we consider a linear consensus

network (6.6)-(6.7) with n = 30 nodes over the graph shown in Figure 6.4. Weights of

all links, both in the coupling graph and the candidate set, are equal to 1. Our control

objective is to solve the network synthesis problem (6.17), where the candidate set con-

sists of 15 links that are shown by red-dashed lines in Figure 6.4. The outcome of our

simulation results are explicated in Figure 6.6, where we run our algorithms and com-

pute the corresponding values for systemic performance measures for all k = 1, . . . , 15.

One observes that our greedy algorithm performs nearly as optimal as the brute-force

method. This is mainly due to convexity and monotonicity properties of the class of sys-

temic performance measures that enable the greedy algorithm to produce near-optimal

solutions with respect to this class of measures. As one expects, our greedy algorithm

outperforms our linearization-based method. It is noteworthy that the time complexity of

the linearization method is comparably less than the greedy algorithm. The usefulness

of the linearization-based method accentuates itself when weight of candidate links are

small and/or k is large.

6.11 Discussion and Conclusion

In the following, we provide explanations for some of the outstanding and remaining

problems related to this chapter.

Convex Relaxation: The constraints of the combinatorial problem (6.17) can be relaxed

by allowing the link weights to vary continuously. The relaxed problem will be a spec-

tral convex optimization problem [152]. In some special cases, such as when the cost

function is ζ1 or ζ2, the relaxed problem can be equivalently cast as a semidefinite pro-

gramming problem [18, 19]. However, for a generic systemic performance measure, we
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need to develop some low-complexity specialized optimization techniques to solve the

corresponding spectral optimization problem, which is beyond the scope of this chapter.

Higher-Order Approximations: In Subsection 6.8, we employed the first-order approx-

imation of a systemic performance measure. One can easily extend our algorithm by

considering second-order approximations of a systemic performance measure in order to

gain better optimality gaps.

Non-spectral Systemic Performance Measures: The class of spectral systemic perfor-

mance measures can be extended to include non-spectral measures as well. This can done

by relaxing and replacing the orthogonal invariance property by permutation invariance

property. The local deviation error is an example of a non-spectral systemic performance

measure [18, 43]. Our ongoing research involves a comprehensive treatment of this class

of measures.
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Chapter 7

Analysis and Optimal Design of

Distributed System Throttlers

7.1 Abstract

In this chapter, we investigate the performance analysis and synthesis of distributed sys-

tem throttlers (DST). A throttler is a mechanism that limits the flow rate of incoming

metrics, e.g., byte per second, network bandwidth usage, capacity, traffic, etc. This can be

used to protect a service’s backend/clients from getting overloaded, or to reduce the ef-

fects of uncertainties in demand for shared services. We study performance deterioration

of DSTs subject to demand uncertainty. We then consider network synthesis problems

that aim to improve the performance of noisy DSTs via communication link modifica-

tions as well as server update cycle modifications.
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7.2 Introduction

System throttling (also known as rate-limiting) aims to limit the total number of requests

from all clients to a shared service and provide a harmonized and fair quota allocation

among them (where the definition of fairness is application-specific). Examples of sys-

tems in need of throttling protection include cloud-based services and traffic management

services. A number of works on rate-limiting systems and congestion control have been

published in the recent literature [153–160].

System throttlers can be classified into centralized and distributed types. In a central-

ized system throttler (CST), there is a single decision maker that sets the per-client limits

according to aggregated metrics it receives from multiple servers, which in turn aggre-

gate them from metrics reported by the clients. CSTs are designed based on a globally

aggregated view of usage metrics. On the other hand, a distributed system throttler (DST)

does not have a centralized mechanism for setting per-client limits: it consists of multiple

servers, each of which makes autonomous decisions and updates its own limit based on

measurements it takes as well as local information.

While the centralized approach has benefits, including consistency and ease of im-

plementation and analysis, it also has drawbacks relative to a decentralized version: (i)

Less local adaptability: in a centralized version, each server needs to send information to

the decision-making server and wait for its command, which means a delayed response

time. (ii) Limited communication: there is no inter-server communication except to the

decision-making server. However, we want to facilitate information propagation to im-

prove the performance and make the network more flexible and fast when handling un-

certainty in demand.

There are some related works in the literature that study performance and robustness

issues in noisy linear distributed systems; for example, see [2,5,12,17,18,36,42,161,162]
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and the references therein. In [2], the authors investigate the deviation from the mean of

states of a continuous-time consensus network on tori with additive noise inputs. A rather

comprehensive performance analysis of noisy linear consensus networks with arbitrary

graph topologies has been recently reported in [12]. In [12], several fundamental trade-

offs between a H2-based performance measure and sparsity measures of a continuous-

time linear consensus network are studied. Moreover, [61] studies a H2-based perfor-

mance measure of continuous-time linear consensus system in the presence of a time-

delay and additive noise inputs. Most of these papers treat continuous-time systems only;

in discrete-time networks, however, the time-step size along with the topology of the

network plays an important role on the network performance.

We should mention that papers [159, 160] investigate the notion of Distributed Rate-

Limiting as a mechanism that controls the aggregate service used by a client of a cloud-

based service. The main idea is to improve a set of cloud servers with the ability to

exchange information with them towards the common purpose: control of the aggregate

usage that a cloud-based service uses. However, a comprehensive performance analysis

and synthesis are yet to be done for these networks with an arbitrary underlying graph.

In this chapter, our goal is to develop a unified framework for analysis and design

of discrete-time distributed rate-limiting systems with a local aggregated view of usage

metrics. We investigate performance deterioration (e.g., over-throttling, mismatch, con-

vergence rate) of DSTs with respect to external uncertainties and the update cycle of

servers. We develop a graph-theoretic framework to relate the underlying structure of the

system to its overall performance measure. We then compare the performance/robustness

of DSTs with different topologies. In this work, in addition to the overall performance

measure for a network, each node has its own performance measure, which is one of the

main differentiators between this work and some other related work [2, 12, 42, 61].
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The rest of this chapter is organized as follows. In Section 7.3, we present some basic

mathematical concepts and notations employed in this chapter. In Section 7.4, we define

and study a distributed system throttler (DST). In Section 7.5, we evaluate the overall

performance of a DST with a given nodal performance measure. In Section 7.6, we focus

on throttling algorithms which are used by servers. In Section 7.7, we study the impact

of the server update cycle on performance. In Section 7.8, two synthesis problems are

studied. In Section 7.9, some numerical results are demonstrated. In Section 7.10, we

conclude our work and suggest directions for future research.

7.3 Mathematical Notation

Throughout the chapter, the discrete time index is denoted by k. The sets of real (integer),

positive real (integer), and strictly positive real (integer) numbers are represented by R

(Z), R+ (Z+) and R++ (Z++), respectively. Capital letters, such as A or B, stand for real-

valued matrices. We use diag(x1, x2, . . . , xn) to denote n-by-n diagonal square matrix

with x1 to xn on its diagonal. For a square matrix X , Tr(X) refers to the summation

of on-diagonal elements of X . We represent the n-by-1 vector of ones by 1. The n-

by-n identity matrix is denoted by I . The Moore-Penrose pseudoinverse of matrix A

is denoted by A†, i.e., A† =
(
A+ 1

n
11

T
)−1 − 1

n
11

T . We assume that all graphs are

connected, undirected, simple graphs. We represent graph G by (V,E, w), where V is the

node set, E is the edge set, and w : E → R+ is the link weight function. We denote by L

the Laplacian matrix of the coupling graph G with the following eigenvalues

λ1 = 0 ≤ λ2 ≤ · · · ≤ λn. (7.1)

In this work, we assume that all graphs are connected, which means λ2 > 0.
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The effective resistance between nodes i and j is defined by:

rij := l†ii + l†jj − l†ji − l†ij (7.2)

where l†ji is the (i, j)th entry in L†. The white Gaussian noise with zero mean and variance

σ2 is represented by v ∼ N(0, σ2).

7.4 A Distributed System Throttler

A distributed system throttler (DST) is a graph G with n nodes. Each node in the graph is

a server with assigned clients that can send it requests. Links in the graph represent com-

munication channels between servers. The global goal of a DST is to keep the aggregate

number of accepted requests from all clients for a shared service at or below a prescribed

level. The DST does not have a centralized mechanism for setting per-client limits. In-

stead it consists of multiple servers, each of which makes its own decisions and updates

its own limit based on its own measurements and local information from its neighbors (on

graph G). Figure 7.1 depicts an example of a distributed throttler with six nodes (servers).

Let’s denote by ri(k) the total number of client requests received by server i at time k.

Each node has a total limit on the number of requests that it is allowed to service at time k

represented by xi(k). It is also associated with a performance measure pi(k) which repre-

sents how well that node is working at time k. Examples of typical performance measures

are: over-throttling at time k, the ratio of the total allowed usage to total requested usage,

or any function of ri(k), xi(k), and time. We will talk about functional properties of the

performance measure later on in this chapter (see Table I).

In this setup, we assume that each node updates its state xi(k) based on its neighbors’

states and performance measures (i.e., a local aggregated view of usage metrics). The
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Figure 7.1: An example of a distributed system throttler (DST) with 6 servers. Nodes

show servers and links present communication links between servers.

Table 7.1: Examples of nodal performance measures.

Case I Amount of throttled traffic pi(k) := ri(k)− xi(k)
Case II Throttled-to-requested traffic ratio pi(k) :=

(
ri(k)− xi(k)

)
/ri(k)

Case III Logarithm of requested-to-allowed traffic ratio pi(k) := log
(
ri(k)/xi(k)

)

Case IV Amount of allowed traffic pi(k) := xi(k)

update law is given by the following difference equation:

xi(k + 1) = xi(k) + γ
∑

i∼j

wij

(
pi(k)− pj(k)

)
, k ∈ Z+, (7.3)

where i ∼ j denotes that nodes i and j are connected by a link in the underlying graph,

wij = w({i, j}) is the weight of link {i, j} in graph G, and parameter γ is a positive

number which depends on the size of the time step (i.e., x(k) := x(k∆t) where ∆t = γ).

The dynamics of the entire network can be written in the following compact form

x(k + 1) = x(k) + γ L p(k), k ∈ Z+, (7.4)

where x(k) is an n-by-1 vector of node limits at time k, p(k) is an n-by-1 vector of
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nodal performance measures at time, and L is the Laplacian matrix of the coupling graph

G. Then, the accepted number of requests at server i at time k is given by ai(k) :=

min {xi(k), ri(k)}. The total number of requests, the total limit, and the total accepted

request for the entire network are defined by

rtotal(k) :=
n∑

i=1

ri(k), (7.5)

ltotal :=

n∑

i=1

xi(0), (7.6)

and

atotal(k) :=

n∑

i=1

min {xi(k), ri(k)} . (7.7)

respectively. The ideal curve for total accepted request is given by

aideal(k) := min {ltotal, rtotal(k)} . (7.8)

The following lemma shows that the total nodal limit is fixed over time.

Lemma 7.4.1. The total summation of nodal limits is fixed over time, which means

n∑

i=1

xi(k) =
n∑

i=1

xi(0), for all k ∈ Z++, (7.9)

and we denote this quantity by ltotal.

Proof. We multiply both sides of (7.4) by 1T on the left and get

n∑

i=1

xi(k + 1) =

n∑

i=1

xi(k) + γ 1T Lp(t). (7.10)

Assume that pi(k)’s are bounded. Since L is the Laplacian matrix of an undirected graph,
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its row and column sums are zero which, completes the proof.

Based on this result, the total sum of nodal limits is constant and it depends only on

initial values, i.e.,

ltotal :=
n∑

i=1

xi(0).

Remark 7.4.2. A similar result is reported in [160], which guarantees the capacity con-

straint for a generalize distributed rate-limiting system. The condition (7.10) holds for

any linear consensus network even for those over directed graphs. ⋄

In the next section, we study the overall performance of DST networks based on their

nodal performance measure and the behavior of incoming network traffic/request.

7.5 Properties of Typical Nodal Performance Measures

Each node i is associated with a performance measure pi(k), which shows the perfor-

mance of server i at time k. Some examples of performance measures are presented in

Table 7.1.

Let us define pi(k) to be the numbers of throttled request at node i at time k

pi(k) := ri(k)− xi(k). (7.11)

Then, (7.3) can be rewritten as

p(k + 1) = (I − γ L) p(k) +
(
r(k + 1)− r(k)

)
, k ∈ Z+. (7.12)

Based on the behavior of incoming network traffic/requests, two cases are considered.

203



Steady loads

Let us assume that the number of client requests incoming at node i is constant across

time:

ri(k + 1)− ri(k) = 0, k ∈ Z+. (7.13)

Equation (7.12) can then be simplified as below

p(k + 1) = (I − γ L) p(k), k ∈ Z+. (7.14)

Lemma 7.5.1. [114] For any i, j ∈ {1, 2, · · · , n}, we have

lim
k→∞

|pi(k)− pj(k)| = 0,

if and only if max{1− γλ2, γλn − 1} < 1.

Proof. It is straightforward.

Based on this result, as long as graph G is connected we can find a positive γ, which

guarantees reaching a consensus state (for a small enough positive number γ).

We can now cover the convergence rate based on properties of the underlying graph

and the design parameter γ.

Let us define the following performance measure which shows the convergence rate

of the DST

Φcr = max
i≥2

|1− γλi|, (7.15)

smaller Φcr meaning faster asymptotic convergence.

Remark 7.5.2 (Role of Topologies for Small γ). Networks with n servers can be ranked

based on their convergence rates; consequently, the path graph topology has the worst
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convergence rate and the complete graph has the best convergence rate (for small enough

γ). Also, it can be shown that among tree graphs, star graphs have the best one and path

graphs have the worst one. ⋄

Non-Steady Loads

Assumption (7.13) is strong and can be relaxed. Let us assume that

vi(k + 1) := ri(k + 1)− ri(k) (7.16)

where v(k) ∈ Rn is a zero mean random vector such as

E [v(k)] = 0,

E
[
v(k)vT (k)

]
= Cov(v),

E
[
v(k)vT (s)

]
= 0, k 6= s. (7.17)

Then, (7.12) can then be simplified as below

p(k + 1) = (−γL+ I) p(k) + v(k + 1), k ∈ Z+. (7.18)

We can now define the following overall performance measure for the network

Φss = lim
t→∞

E

[

1

2n

∑

i,j

(pi(k)− pj(k))
2

]

, (7.19)

The quantity (7.19) shows the steady-state dispersion of pi’s from their average [2,12,42].

The following theorem presents a closed-form formula for the overall performance of

DST (7.18), based on the Laplacian matrix of the underlying graph and the covariance
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matrix of the input vector v.

Theorem 7.5.3. For a given DST (7.18), the overal performance measure (7.19) can be

quantified as

Φss =
1

2γ
Trace

[(

L− γ

2
L2
)†

Cov(v)

]

, (7.20)

where Cov(v) is the covariance matrix of random vector v(k).

Proof. The overall performance measure is the same as the squared H2-norm of a discrete

linear time invariant system (7.18). Therefore, the measure can be quantified as follows:

Φss = Trace [P Cov(v)] , (7.21)

where P � 0 is the solution of the following discrete Lyapunov equation

(I − γL)P (I − γL)T − P + I = 0.

By doing some calculation it follows that

P = (2L− γL2)†. (7.22)

Using (7.21) and (7.22) we get the desired result.

Remark 7.5.4 (Independent vi’s). In the case where vi’s are independent then Cov(v) is

a diagonal matrix γ diag(σ2
1 , . . . , σ

2
n) where σi depends on the property of signal ri. We

get

Φss =
1

2

n∑

i=1

c†iiσ
2
i , (7.23)
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where (L− γ
2
L2)† = [c†ij ]. Based on (7.23), we can obtain a centrality measure for servers.

Indeed, c†ii shows the impact of server i on the overall performance. See [42] for more

details on centrality measures with respect to H2-norm of the system (the focus of [42] is

on the class of continuous-time linear consensus networks however). ⋄

Remark 7.5.5 (Independent and identically-distributed vi’s). Based on Theorem 7.5.3,

the overall performance measure of the network can be calculated based on spectral

eigenvalues of the coupling graph and the variance of changing demands (i.e., ri(k +

1)− ri(k) ∼ N(0, γ σ2)) as follows

Φss =







∑n
i=2

σ2

λi(2−γ λi)
, 0 < λi < 2/γ for i = 2, · · · , n

∞, otherwise

(7.24)

We note that 0 < λi < 2/γ for i = 2, · · · , n is the same as the condition that the system

without noise converges (cf., Lemma 7.4.1). ⋄

The quantity (7.24) has a close connection with the “total effective resistance” of an

electric network as follows

lim
γ→0

Φss =
σ2

2n

∑

i>j

rij, (7.25)

where rij is the effective resistance between node i and j, i.e.,

rij := l†ii + l†jj − l†ij − l†ji, L
† = [l†ij ].

For more details see [163].

Remark 7.5.6 (Another interpretation of the overall measure). Let us assume that ri(0)’s

are given with the normal distribution, and ri’s remain constant. Then the expected total
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Figure 7.2: A server with its clients.

mismatch loss can be obtained based on

E

[

1

n

∞∑

k=0

∑

i>j

(pi(k)− pj(k))
2∆t

]

=

1

2γ
Trace

[(

L− γ

2
L2
)†

Cov(v)

]

= Φss. (7.26)

⋄

Due to space limitations, other nodal performance measures defined in Table 7.1 are

briefly analyzed in the appendix.

7.6 Throttling Algorithms at Node Level

In this part, we focus on the structure of each node. Each node consists of a server

with its clients (see, for example, Figure 7.2). Each node can have its own algorithm to

handle its clients. To do so, each server collects all metrics (i.e., number of requests)

from its clients, then aggregates all metrics and then pushes new limits to its clients based
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Figure 7.3: Requested quota and throttled quota for each user based on an algorithm

which keeps the throttled ratios uniform over all tasks.

on the aggregated information (all in one update cycle). For example, viable throttling

algorithms can be considered to throttle same amount, ratio, or the logarithm of ratio

from all tasks until the total limit is reached (please see performance measures in Table

I).

Figure 7.3 depicts requested quota (i.e., number of requests) and throttled quota for

each client based on an algorithm which keeps the throttled ratios uniform over all tasks.

Each bar shows the number of requests per client. Blue bars show clients’ requests. The

red area shows the throttled request traffic. The clients are sorted by ascending order of

requests. Similarly, Figure 7.4 demonstrates a simple load balancing algorithm1 which

distributes incoming requests across all tasks as uniformly as possible. The blue dashed

line shows the allowed limit on each task.

We should note that the total number of request, ri(k), at this server (server i) is the

area of all bars and the total allowed request is the area of all blue bars, i.e., ai(k).

1Distributing incoming network traffic/request across all tasks as uniform as possible.
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Figure 7.4: Requested quota and throttled quota for each user based on a simple load

balancing algorithm.

7.7 Impact of the Server Update Cycle

In this section, we study the effect of the server update cycle on our analysis. As shown in

Section 7.5, the overall performance measure of a DST depends on its Laplacian eigen-

values and the server update cycle. To enhance the overall performance of the network,

one can obtain the optimal update cycle for all servers.

The following theorem presents the optimal update cycle for a DST in the case of

steady loads (i.e., when the number of client requests is constant across time).

Theorem 7.7.1. For a given DST (7.14) with a graph G, the optimal update cycle is given

by

γoptimal =
2

λ2 + λn
. (7.27)

Proof. We need to solve the following convex optimization

minimize
γ>0

max
i≥2

|1− γλi| (7.28)
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It is not difficult to see that 2(λ2 + λn)
−1 minimizes the cost function. We have

0 < λ2 ≤ · · · ≤ λn,

and, accordingly, we can rewrite the cost function as follows

max
i≥2

|1− γλi| = max {1− γλ2, γλn − 1} . (7.29)

To minimize (7.29), we need

1− γλ2 = γλn − 1, (7.30)

since if 1−γλ2 6= γλn−1, one can decrease the cost function by increasing or decreasing

γ . Therefore, the optimal γ is the solution of (7.30). This completes the proof.

In the case of non-steady loads, having a closed-form formula for the optimal update

time based on the Laplacian eigenvalues seems difficult. However, one can obtain the

solution by solving the following convex optimization problem:

minimize
γ>0

1

2γ
Trace

[(

L− γ

2
L2
)†
]

(7.31)

In this case, the optimal update time can be bounded from above and below by 1/λn and

1/λ2, respectively.

7.8 DST Synthesis Problems

In this section, we present our main results on the design of optimal distributed rate-

limiting system. We formulate our problems as convex optimization problems. Questions
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we are trying to answer in this section are

- What are the optimal link weights for the fastest DST network?

- What are the optimal link weights for the most robust DST network?

Depending on which nodal and overall performance measures are chosen, one can

come up with different optimal topologies.

7.8.1 The Fastest DST Process

Here we briefly describe the problem of finding the fastest DST on a given underlying

topology. The optimal weights can be found by solving the following optimization prob-

lem

minimize
w(e)

max
i≥2

|1− γλi| (7.32)

subject to w(e) ≥ 0, for all e ∈ E

This problem was studied before in [139]. Problem (7.32) can be cast as a semidefinite

programming (SDP) problem as follows

minimize
w(e),θ

θ (7.33)

subject to − θI � I − γ
∑

e∈E
w(e)Le −

1

n
11

T � θI

w(e) ≥ 0, e ∈ E

where Le is the unweighted Laplacian matrix of link e.
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7.8.2 The Most Robust DST Process

Here we briefly describe the problem of finding the most robust DST on a given underly-

ing topology. The optimal weights can be found by solving the following problem

minimize
w(e)

1

2γ
Trace

[(

L− γ

2
L2
)†
]

(7.34)

subject to w(e) ≥ 0, for all e ∈ E

L =
∑

e∈E
w(e)Le

max
i≥2

|1− γλi| ≤ 1

We note that Φss =
1
2γ
Trace

((
L− γ

2
L2
)†
)

is a convex function of the link weights. To

find the solution of (7.34) one can use a variety of standard methods for convex optimiza-

tion (e.g., interior-point methods and subgradient-based methods).

Theorem 7.8.1. Problem (7.34) can be formulated as a SDP problem as follows

minimize
w(e),Y

1

2γ
Trace [Y ]− 1

2γ2

subject to w(e) ≥ 0, for all e ∈ E

L =
∑

e∈E
w(e)Le

0 � I − 1

2

(
γL+ (1/n)11T

)
� I









L+ 1
γn
11

T L I

L 2
γ
I 0

I 0 Y









� 0 (7.35)

Proof. We need the following condition to hold in order to guarantee that the network is
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Figure 7.5: Two DST networks with 5 servers over a complete graph and a star graph.

marginally stable:

0 � I − 1

2

(
γL+ (1/n)11T

)
� I. (7.36)

Then, according to (7.36) and the Schur complement condition for positive semidefinite-

ness it follows that 




L+ 1
γn
11

T L

L 2
γ
I




 � 0. (7.37)

Again, using the Schur complement condition for positive semidefiniteness, (7.35) and

(7.37), we get the following equivalent condition

Y − 1

γn
11

T �
(

L− γ

2
L2
)†
, (7.38)

which completes the proof.

7.9 Illustrative Numerical Simulations

In this section, we support our theoretical developments with illustrative examples that

provide better insight into the role of the underlying graph topology in the DST network.
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Example 7.9.1. Consider two DST networks with five servers over complete graph K5

and star graph S5 as depicted in Figure 7.5. Let us assume that the update cycle is given

and fixed (without loss of generality γ = 1). Based on the results presented in Theorem

7.7.1, one can obtain the optimal weight links for both networks to get the fastest DST

(See Table II).

Table 7.2: Optimal link weights.

Complete Graph K5 Star Graph S5

Optimal Weight w(e) = 1/5 w(e) = 1/3

For each network the weights are uniform since their underlying graphs are edge-

transitive.

Example 7.9.2. Consider two DST networks with 10 servers over graphs depicted in

Figures 7.6 and 7.7. Let us assume that in both graphs all links have a weight of one.

Based on the results presented in Theorem 7.7.1, one can obtain the optimal update cycle

for both networks to get the fastest DST (see Table III).

Table 7.3: Optimal update cycles.

Graph #1 Graph #2
Optimal update cycle ∆t = 0.4226 ∆t = 0.2222

Moreover, let us consider 1, 000 clients that are randomly assigned to 10 servers such

that each server has 100 clients. Figure 7.8 shows the simulation results that are obtained

for each of these two DST networks given a randomly generated usage curve over 1, 000

cycles. As expected, the overall performance of the DST over graph #2 is better (i.e.,

over-throttling is less severe) than the performance of the DST over graph #1 (for small

time step γ = 0.02).
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Table 7.4: Overall network performance measures.

Graph #1 Graph #2
Φcr 0.9969 0.9727
Φss 334.7965 69.3075

Over-throttling % 6.2% 2.8%

In Figure 7.8, the blue curve shows the total number of requests versus time, i.e.,

rtotal(k) =

10∑

i=1

ri(k),

the black dashed line presents the total limit for the entire network, i.e.,

ltotal =

10∑

i=1

xi(0),

and the red and green curves show the total accepted requests for graph #1 and graph

#2 respectively, i.e.,

atotal(k) =

10∑

i=1

min {xi(k), ri(k)} .

We should note that, the ideal curve for total accepted request is given by (7.8). Therefore,

the percentage of over-throttling can be defined as follows

Over-throttling % :=

∑N
k=0 (aideal(k)− atotal(k))
∑N

k=0 aideal(k)
× 100,

where N is the number of cycles (in this example N = 1, 000).

7.10 Conclusion

In this chapter, we investigate performance deterioration (e.g., over-throttling) of dis-

tributed system throttlers with respect to external uncertainties and server time cycles.
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Figure 7.6: A DST network with 10 servers over a tree graph (graph #1).

We develop a graph-theoretic framework to relate the underlying structure of the system

to its overall performance measure. We then compare the performance/robustness of the

proposed distributed system throttlers with different underlying graphs. A promising re-

search direction is to investigate the overall performance measure of DST networks with

respect to the other nodal performance measures.

Appendix: Other Nodal Performance Measures

In this part, we present the dynamics of the DST for other nodal performance measure

defined in Table I (Case I is studied in Section 7.5).

217



Case II:

Assume that the performance measure at server i is given by

pi(k) =
ri(k)− xi(k)

ri(k)
, (7.39)

and ri(k) > 0. Then, we can rewrite (7.3) in the following form

x(k + 1) = γ L diag
[
r1(k)

−1, · · · , rn(k)−1
]
(r(k)− x(k))

+ x(k), k ∈ Z+. (7.40)

Let assume that ri(k) = r for all k ∈ Z+ and i ∈ {1, 2, · · · , n}. So, we have

xi(k) = − r (pi(k)− 1) . (7.41)

Then, it follows that

p(k + 1) =
(

I − γ

r
L
)

p(k). (7.42)

In this case, in addition to the coupling graph and the update cycle, the values of r plays

a role in the convergence rate of the network (same for other overall performance mea-

sures).

Case III:

Next, we assume that the performance measure at server i is given by

pi(k) = log ri(k)− log xi(k). (7.43)
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Figure 7.7: A DST network with 10 servers over a tree graph with some additional links,

red dotted links (graph #2).
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Figure 7.8: The simulation results for two DST networks with γ = 0.02 over graphs #1
and #2 with 10 nodes.
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Assume that ri(k) = r, for all k ∈ Z+ and i ∈ {1, 2, · · · , n}. Therefore, we get

xi(k) = r e−pi(k). (7.44)

Then, it follows that

exp (−p(k + 1)) = exp (−p(k)) + γ

r
Lp(k), k ∈ Z+, (7.45)

where exp p(k) :=
[
ep1(k), · · · , epn(k)

]T
. Let us define

p̄(k) := exp (−p(k)) , (7.46)

using (7.45) and (7.46), it follows that

p̄(k + 1) = p̄(k)− γ

r
L ln p̄(k), k ∈ Z+, (7.47)

where

ln p̄(k) :=
[
ln p̄1(k), · · · , ln p̄n(k)

]T
.

Case IV:

Finally, let us assume that

pi(k) = xi(k),

for i = 1, · · · , n. Then, dynamics (7.3) can be rewritten in the following form

p(k + 1) = (I + γL) p(k). (7.48)
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In this case, based on Lemma 7.5.1 the system is unstable, which means the state trajecto-

ries are unbounded. Therefore we consider additional constraints to make them bounded

as follows: the state of node i at time k + 1 is not updated (i.e., xi(k + 1) = xi(k)) and

its information at time k is not used for updating the states of neighboring nodes at time

k + 1 when

- xi(k) = ri(k) and xi(k + 1)− xi(k) > 0,

- xi(k) = 0 and xi(k + 1)− xi(k) < 0.

We should note that also in this case the following equality holds

n∑

i=1

xi(k) =
n∑

i=1

xi(0).

In a steady-state, each state xi reaches its boundaries (i.e., 0 and ri) or a value between

them.
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Chapter 8

Network Sparsification with

Guaranteed Systemic Performance

Measures

8.1 Abstract

A sparse consensus network is one whose number of coupling links is proportional to its

number of subsystems. Optimal design problems for sparse consensus networks are more

amenable to efficient optimization algorithms. More importantly, maintaining such net-

works are usually more cost effective due to their reduced communication requirements.

Therefore, approximating a given dense consensus network by a suitable sparse network

is an important analysis and synthesis problem. In this chapter, we develop a framework

to produce a sparse approximation of a given large-scale network with guaranteed per-

formance bounds using a nearly-linear time algorithm. First, the existence of a sparse

approximation of a given network is proven. Then, we present an efficient and fast algo-
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rithm for finding a near-optimal sparse approximation of a given network. Finally, several

examples are provided to support our theoretical developments.

8.2 Introduction

Performance improvement in interconnected networks of coupled dynamical systems as

well as reducing their design complexity by sparsifying their underlying coupling struc-

tures are two of the important design issues, which have been subject of active research

in past few years [4, 6, 18–23].

In [18], we introduce a class of operators, so called systemic performance measure,

for linear consensus networks that provides a unified framework to evaluate network-

wide performance of a network. Several existing and popular performance measures in

the literature, such as H2 and H∞ norms of a consensus network from its disturbance

input to its output, are examples of systemic performance measures. This class of opera-

tors captures the quintessence of a viable performance measure for consensus networks:

homogeneity, monotonicity, convexity, and orthogonal/permutation invariance. An im-

portant contribution of this reference paper is that it enables us to optimize performance

of a consensus network solely based on its intrinsic features. The authors formulate sev-

eral optimal design problems, such as weight adjustment as well as rewiring of coupling

links, with respect to this general class of systemic performance measures and propose

efficient algorithms to solve them.

In [5,12], we quantify several fundamental tradeoffs between a H2-based performance

measure and sparsity measures of a linear consensus network. The problem of sparse con-

sensus network design has been considered before in [6, 57, 58], where they formulate an

ℓ0-regularized H2 optimal control problem. There are also some less related papers to the

subject of this chapter that we are not able to discuss them here due to space limitations.
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The main shortcoming of all these works is that they are heavily relied on computational

tools with no analytical performance guarantees for the obtained solution. More impor-

tantly, the proposed methods in these papers suffer from computational complexity as the

network size grows.

In this chapter, we specifically address the following network design problem: given

a linear consensus network with an undirected connected underlying graph, the network

sparsification problem seeks to replace the coupling graph of the original network with

a reasonably sparser subgraph so that the behavior of the original and the sparsified net-

works is similar in an appropriately defined sense. Such situations arise frequently when

real-world large-scale dynamical networks need to be simulated, controlled or redesigned

using efficient computational tools that are specifically tailored for optimization problems

with sparse structures. We develop a general methodology that computes sparsifiers of a

given consensus network using a nearly-linear time Õ(m)1 algorithm with guaranteed

systemic performance bounds, where m is the number of links. Unlike other existing

work on this topic in the literature, our proposed framework: (i) works for a broad class

of systemic performance measures including H2-based performance measures, (ii) does

not involve any sort of relaxations such as ℓ0 to ℓ1, (iii) provides guarantees for the ex-

istence of a sparse solution, (iv) can partially sparsify predetermined portions of a given

network; and most importantly, (v) gives guaranteed systemic performance certificates.

While our approach is relied on several existing works in algebraic graph theory

[63, 64], our control theoretic contributions are threefold. First, we show that every given

linear consensus network has a sparsifier network such that the two networks yield com-

parable performances with respect to any systemic performance measure. Second, we

develop a framework to find a sparse approximation of large-scale consensus networks

1We use Õ(.) to hide poly log log terms from the asymptotic bounds. Thus, f(n) ∈ Õ (g(n)) means

that there exists k > 0 such that f(n) ∈ O
(

g(n) logk g(n)
)

.
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using a fast randomized algorithm. We note that while the coupling graph of the sparsi-

fied network is a subset of the coupling graph of the original network, the weights of links

(the strength of each coupling) in the sparsified network are adjusted accordingly to reach

predetermined levels of systemic performance. Third, we prove that our development can

also be applied for partial sparsification of large-scale networks, which means that we can

sparsify a prespecified subgraph of the original network to find an approximation of the

network with fewer links. This is practically plausible as our algorithm can be spatially

localized, if necessary, and it does not require to receive information of the entire coupling

graph of the network.

8.3 Notation and Preliminaries

The set of real, positive real, and strictly positive real numbers are represented by R, R+

and R++, respectively. A matrix is generally represented by an upper case letter, say

X = [xij ], where xij is the (i, j)th element of matrixX and XT indicates the transposition

of matrix X . We assume that 1n and In denote the n× 1 vector of all ones and the n× n

identity matrix, respectively. Jn denotes the n×nmatrix of all ones, andMn = In−1/nJn

defines the centering matrix. All graphs that we deal with in this chapter are assume to

be finite, simple, undirected, and connected. The graphs herein are generally represented

by G = (V, E , w), where V is the set of nodes, E ⊂ V × V is the set of links, and

w : V × V → R+ is the weight function. The value of the weight function is zero for

e ∈ V × V \ E and non-zero for e ∈ E . The degree of each node i ∈ V is defined by:

di :=
∑

e={i,j}∈E
w(e). (8.1)
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The adjacency matrix A = [aij ] of graph G is defined in such a way that aij = w(e) if

e = {i, j} ∈ E , and aij = 0 otherwise. The Laplacian matrix of graph G with n nodes is

defined by L := ∆ − A, where ∆ = diag[d1, . . . , dn]. Since graph G is both undirected

and connected, matrix L has n − 1 positive eigenvalues and one zero eigenvalue. We

denote the set of Laplacian matrices of all connected weighted graphs with n nodes by

Ln. The eigenvalues of a Laplacian matrix are indexed in ascending order 0 = λ1 ≤

λ2 ≤ · · · ≤ λn. The Moore-Penrose pseudo-inverse of L is denoted by L† = [l†ji] which

is a square, symmetric, doubly-centered and positive semi-definite matrix. For a given

Laplacian matrix L, the corresponding resistance matrix R = [rij] is defined using the

Moore-Penrose pseudo-inverse of L by setting

rij = l†ii + l†jj − 2l†ij .

The quantity rij is called the effective resistance between nodes i and j. Moreover, we

denote the effective resistance of link e = {i, j} by r(e) = rij = rji.

The spectral zeta function of order q ≥ 1 is defined by

ρzeta,q(L) :=

( n∑

i=2

λ−q
i

)1/q

, (8.2)

where λ2, . . . , λn are eigenvalues of Laplacian matrix L [140].

8.4 Problem Formulation

Network model: We consider a class of consensus networks, where each node corresponds

to a subsystem with scalar state variables xi and control inputs ui whose dynamics evolve
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in time according to

ẋi(t) = ui(t) + ξi(t) (8.3)

yi(t) = xi(t)− x̄(t) (8.4)

for all i = 1, . . . , n, where xi(0) = 0 is the initial condition and

x̄(t) =
1

n

(
x1(t) + . . .+ xn(t)

)

is the average of all states at time instant t. The impact of the uncertain environment on

each agent’s dynamics is modeled by the exogenous noise/disturbance input ξi(t). By

applying the following feedback control law to the agents of this network

ui(t) =

n∑

j=1

kij
(
xj(t)− xi(t)

)
. (8.5)

The closed-loop dynamics of network (8.3-8.5) can be written in the following compact

form

N (L) :







ẋ(t) = − Lx(t) + ξ(t), x(0) = x0

y(t) =
(
In − 1

n
1n1

T
n

)
x(t)

(8.6)

where x, ξ and y denote the state vector of the entire network, the exogenous disturbance

input and the output vector of the network, respectively. Matrix L = [lij] is a Laplacian

matrix which is defined by

lij :=







−kij if i 6= j

ki1 + . . .+ kin if i = j

(8.7)

227



The underlying coupling graph of the consensus network (8.6) is a graph G = (V, E , w)

with node set V = {1, . . . , n}, link set

E =
{

{i, j}
∣
∣ ∀ i, j ∈ V, kij 6= 0

}

, (8.8)

and weight function

w(e) = kij, (8.9)

for all e = {i, j} ∈ E , and w(e) = 0 if e /∈ E . The Laplacian matrix of graph G is equal

to L.

Assumption 8.4.1. All feedback gains (weights) satisfy the following properties for all

i, j ∈ V:

(a) non-negativity: kij ≥ 0,

(b) symmetry: kij = kji,

(c) simpleness: kii = 0.

Property (b) implies that feedback gains are symmetric and (c) means that there is no

self-feedback loop in the network.

Assumption 8.4.2. The coupling graph G of the consensus network (8.6) is connected

and time-invariant.

Based on Assumption 8.4.2, one can verify that the only mode of the state matrix

of the network which is not stable has the corresponding eigenvector 1n. This mode is

unobservable from the performance output as the output matrix of the network satisfies

(
In − 1

n
1n1

T
n

)
1n = 0.

The problem: The focus of this chapter is to develop a framework to find a sparse

approximation of a given consensus network. A sparse consensus network is one whose
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number of feedback gains (i.e. non-zero kij’s) is proportional to the number of its subsys-

tems, which means that in average its subsystems connected to a few subsystems and its

number is independent of the network size. Sparse consensus networks are often easier

to build, maintain or simulate than dense networks. But in many cases, we deal with

dense networks. Therefore, by approximating a dense network of interest by a suitable

sparse network, one can save time and cost. Our goal is to present a nearly-linear time

O(m logcm) algorithm (for some constant c) to compute a sparse approximation of a

given linear consensus network, such that the two networks yield comparable perfor-

mances with respect to any systemic performance measure.

8.5 Systemic Performance Measures

A systemic measure in this chapter refers to a real-valued operator over the set of all

consensus networks with dynamics (8.6), with the purpose of quantifying the performance

of a network. Since every network with dynamics (8.6) is uniquely determined by its

Laplacian matrix, it is reasonable to define a systemic performance measure as an operator

on set Ln.

Definition 8.5.1. An operator ρ : Ln → R+ is said to be a Schur-convex systemic mea-

sure, or for short SCSM, if it satisfies the following properties for all matrices in Ln:

1. Homogeneity: For some α > 0,

ρ(κL) = κ−αρ(L), ∀κ > 1.

2. Monotonicity: If L2 � L1, then

ρ(L1) ≤ ρ(L2).
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3. Convexity: For all 0 ≤ c ≤ 1,

ρ(cL1 + (1− c)L2) ≤ cρ(L1) + (1− c)ρ(L2).

4. Orthogonal invariance: For any orthogonal matrix U ,

ρ(L) = ρ(ULUT).

We adopt an axiomatic approach to introduce and categorize a general class of perfor-

mance measures that captures the quintessence of a meaningful measure of performance

in large-scale dynamical networks [164]. Property 1 implies that intensifying the coupling

weights by ratio κ > 1 results in κα times better performance. Property 2 guarantees that

strengthening couplings in a consensus network never worsens the network performance

with respect to a given SCSM. The monotonicity property induces a partial ordering on

all linear consensus networks with dynamics (8.6). This property imposes emergence

of fundamental tradeoffs between performance of a network and sparsity of its coupling

graph. In essence, adding new coupling links or strengthening the existing couplings

would result in a better network performance. Property 3 is defined for the pure purpose

of having favorable (convex) design optimization problems. Property 4 clearly indicates

that a SCSM depends only on the eigenvalues of the Laplacian matrix. Property 4 has two

important implications. First, it reveals that two linear consensus networks with isospec-

tral coupling graphs2 shall yield the same performance with respect to a given SCSM.

Second, it implies that a SCSM depends on the entire topology of the underlying graph

of network, which explains the terminology why this class of performance measures are

referred to as systemic measures. We now try to generalize this class of measures by

2Two graphs are called isospectral if and only if their Laplacian matrices have the same multisets of

eigenvalues.
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ρ(.) SCSM CSM

ρH∞ = λ2
−1

X X

ρH2 =
(
1
2

∑n
i=2 λi

−1
) 1

2 X X

ρzeta,p =
(
∑n

i=2 λ
−p
i

) 1
p

X X

ρlocal =
1
2

∑n
i=1 di

−1
X

Table 8.1: Examples of convex systemic measures and Schur-convex systemic measures.

relaxing Property 4.

Definition 8.5.2. An operator ρ : Ln → R+ is said to be a convex systemic measure, or

for short CSM, if it satisfies Properties 1, 2, 3 and

4∗. permutation invariance: For every permutation matrix P ,

ρ(L) = ρ(PLP T),

for all matrices in Ln.

Notice that since the condition of Property 4∗ is weaker than that of Property 4, any

SCSM is also a CSM. We now present some existing and widely-used systemic perfor-

mance measures for linear consensus networks (see Table 8.1).

Hp system norms: For linear consensus network with dynamics (8.6), we define Hp

norm of the system for 2 ≤ p ≤ ∞ by

‖G‖Hp :=

(

1

2π

∫ ∞

−∞

n∑

k=1

σk(G(jω))
p dω

) 1
p

, (8.10)

where G is the transfer matrix of the network with dynamics (8.6) from ξ(t) to y(t)

and σk(jω) for k = 1, . . . , n are singular values of G(jω). In order to guarantee that

performance measure (8.10) is well-defined, marginally stable and unstable modes of
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consensus network should be unobservable from the performance output y(t). Thus this

performance measure is well-defined as long as the coupling graph G is connected. This

class of system norms captures several important performance and robustness features of

large-scale dynamical networks. For instance, a direct calculation shows that the H2-norm

of a linear consensus network with dynamics (8.6) is given by

‖G‖H2 =
(1

2

n∑

i=2

λ−1
i

) 1
2

. (8.11)

This system norm quantifies to what degree the effect of exogenous stochastic disturbance

inputs propagate throughout the network [12]. The H∞-norm of a network is indeed an

input-output system norm and its value for a linear consensus network with dynamics

(8.6) is given by

‖G‖H∞ = λ−1
2 , (8.12)

where λ2 is the second smallest eigenvalue of L, also known as the algebraic connectivity

of the under graph of network [20]. The value of H∞-norm of a network with dynam-

ics (8.6) can be interpreted as the worst attainable performance for all square integrable

disturbance inputs.

Theorem 8.5.3. For a given network N (L), the following performance measure

ρHp(L) := ‖G‖Hp = α0

(
ζp−1(L)

)1− 1
p , (8.13)

where α−1
0 = p

√

−β(p
2
,−1

2
) and β : R × R → R is the well-known Beta function.

Moreover, this measure is a SCSM for all 2 ≤ p ≤ ∞.
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Proof. We utilize the disagreement form of the network that is given by

ẋd(t) = −Ld xd(t) +

(

In −
1

n
1n1

T
n

)

ξ(t), (8.14)

y(t) =

(

In −
1

n
1n1

T
n

)

xd(t), (8.15)

where the disagreement vector is defined by

xd(t) :=

(

In −
1

n
1n1

T
n

)

x(t) = x(t)− 1

n
Jn x(t). (8.16)

The disagreement network (8.14)-(8.15) is stable as every eigenvalue of the state ma-

trix −Ld = −(L + 1
n
Jn) has strictly negative real part. One can verify that the transfer

functions from ξ(t) to y(t) in both realizations are identical. We use the following de-

composition

G(s) = Mn

(

sIn + L+
1

n
Jn

)−1

Mn

= Mn

(

U diag
[

s+ 1, s+ λ2, · · · , s+ λn

]

UT
)−1

Mn

= MnU diag

[
1

s+ 1
,

1

s+ λ2
, · · · , 1

s+ λn

]

UTMn

= U diag

[

0,
1

s+ λ2
, · · · , 1

s+ λn

]

UT, (8.17)

to compute the Hq-norm of G(jω) as follows

‖G‖pHp
=

1

2π

∫ ∞

−∞

n∑

k=1

σk(G(jω))
p dω

=
1

2π

n∑

i=2

∫ ∞

−∞

(
1

ω2 + λ2i

) p
2

dω

=
−1

β(p
2
,−1

2
)

n∑

i=2

λ1−p
i =

−1

β(p
2
,−1

2
)
ζp−1(L)

p−1,
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for all 2 ≤ p ≤ ∞. Now we show that measure (8.13) satisfies Properties 1, 2, 3, and 4 in

Definition 8.5.1. It is straightforward to verify that measure (8.13) has Properties 1 and

2. Next we show that measure (8.13) has Property 2, i.e., it is a convex function over the

set of Laplacian matrices. We then show that for all 2 ≤ p ≤ ∞ the following function

f : Rn−1
++ → R is concave

f(x) =

(
n−1∑

i=1

x−p+1
i

) 1
1−p

,

where x = [x1, x2, · · · , xn−1]
T. To do so, we need to show ▽

2f(x) � 0, where the

Hessian of f(x) is given by

∂2f(x)

∂x2i
= − p

xi

(
f(x)

xi

)p

+
p

f(x)

(
f(x)2

x2i

)p

and

∂2f

∂xi∂xj
=

p

f(x)

(
f(x)2

xixj

)p

.

The Hessian matrix can be expressed as

▽
2f(x) =

p

f(x)

(

− diag(z)
1+p
p + zzT

)

,

where

z = [(f(x)/x1)
p , · · · , (f(x)/xn)p]T .

To verify ▽2f(x) � 0, we must show that for all vectors v, vT▽2f(x)v ≤ 0. We know

that

▽
2f(x)v =
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(a) (b)

Figure 8.1: Two isospectral graphs with six nodes [1].

p

f(x)



−
n−1∑

i=1

z
p−1
p

i

n−1∑

i=1

z
p+1
p

i v2i +

(
n−1∑

i=1

vizi

)2


 . (8.18)

Using the Cauchy-Schwarz inequality aTb ≤ ‖a‖2‖b‖2, where

ai =

(
f(x)

xi

) p−1
2

= z
p−1
2p

i ,

and bi = z
p+1
2p

i vi, it follows that vT▽2f(x)v ≤ 0 for all v ∈ Rn−1. Therefore, f(x) is

concave. Let us define h(x) = x
−p+1

p , where x ∈ R. Since f(.) is positive and concave,

and h is decreasing convex, we conclude that h(f(.)) is convex [146]. Hence, we get that

‖G‖Hp is a convex function with respect to the eigenvalues of L. Since this measure is a

symmetric closed convex function defined on a convex subset of Rn−1, i.e., n−1 nonzero

eigenvalues, according to [139] we conclude that ‖G‖Hp is a convex of Laplacian matrix

L. Finally, measure ‖G‖Hp is orthogonal invariant because it is a spectral function as

shown in (8.13). Hence, this measure satisfies all properties of Definition 8.5.1. This

completes the proof.

Local deviation error: The local deviation error of subsystem i is equal to the devia-

tion of the state of subsystem i from the weighted average of states of its neighbors, which
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can be formally defined as

εi(t) := xi(t)−
1

di

∑

e={i,j}∈E
w(e)xj(t). (8.19)

The expected cumulative local deviation is then given by

ρlocal(L) = lim
t→∞

E

[
n∑

i=1

εi(t)
2

]

, (8.20)

where input ξ of network (8.6) is a white noise process with identity covariance.

Theorem 8.5.4. The operator ρ : Ln → R+ defined by (8.20) is a CSM. Moreover, it can

also be expressed as:

ρlocal(L) =
1

2

n∑

i=1

di
−1, (8.21)

where di is the degree of node i ∈ V .

Proof. Let us define the total local deviation error at time t by

εtotal(t) :=
∑

i∈V
εi(t)

2. (8.22)

We reformulate (8.19) as

εi(t) = d−1
i



dixi(t)−
∑

e={i,j}∈E
w(e)xj(t)





= d−1
i

∑

e={i,j}∈E
w(e) (xi(t)− xj(t)) (8.23)

Therefore, we get

ε(t) = diag
[
d−1
1 , · · · , d−1

n

]
Lx(t).
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where ε(t) is a vector of εi(t)’s. Also, we can rewrite (8.22) as follows

εtotal(t) = εT(t)ε(t)

= xT(t)Qx(t), (8.24)

where Q is given by

Q = L diag
[
d−2
1 , · · · , d−2

n

]
L.

Therefore, based on [12, Thm. 5] the steady-state deviation of εtotal, as a performance

measure, is given by

ρlocal(L) = lim
t→∞

E [εtotal(t)] =
1

2
Tr
(

L†Q
)

,

=
1

2

∑

i∈V
di

−1. (8.25)

Now we show this measure is a convex systemic measure. We first show that (8.25) has

property 1, which means

ρlocal(κL) =
1

2

∑

i∈V
(κdi)

−1 = κ−1ρlocal(L).

Also, it is monotone, because if L1 � L2 then we have

eTi L1ei ≤ eTi L2ei,

where ei is the vector with a 1 in the i-th coordinate and 0’s elsewhere. Therefore, we

have L1(i, i) ≤ L2(i, i), which guarantees the monotonicity of ρlocal(.). Moreover, its

convexity follows from convexity of 1/xwhere x ∈ R+. Because, consider two Laplacian

matrices L1 and L2 with node degree d
(1)
i ’s and d

(2)
i , respectively. Then, for all 0 ≤ c ≤ 1
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we get

ρlocal(cL1 + (1− c)L2) =
∑

i∈V

1

c d
(1)
i + (1− c) d

(2)
i

≤
∑

i∈V

(

c

d
(1)
i

+
1− c

d
(2)
i

)

=
∑

i∈V

c

d
(1)
i

+
∑

i∈V

1− c

d
(2)
i

= cρlocal(L1) + (1− c)ρlocal(L2).

Finally, ρlocal(.) is permutation invariance, because the multiset of node degrees does not

change by relabeling of nodes. This completes the proof.

We remark that for first-order consensus network (8.6) defined over d-regular under-

lying graph, the corresponding microscopic measure (8.25) scales linearly with network

size; this result reduces to the result given in [2] for regular lattices.

Figure 8.1 shows an example of pair of graphs which are isospectral but not isometric3.

Note that these isospectral networks have many quantities in common such as all SCSMs,

however, their local deviation error values ρlocal(.) are different.

8.6 Network Sparsifications

Our main contributions in this chapter are presented in this section. We develop a spar-

sification framework for the class of linear consensus networks governed by (8.6) that

provides performance guarantees with respect to a general class of systemic measures.

Since SCSM is a subclass of CSM, we state our results for the most general case with

respect to CSM. First, we introduce a notion of approximation for the class of consensus

3Which means their adjacency matrices are not permutation-similar.
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networks.

Definition 8.6.1. For a fixed constant ǫ ∈ [0, 1], a consensus networkN (Ls) is ǫ-approximation

of N (L) if and only if

(1− ǫ)α ≤ ρ (L)

ρ (Ls)
≤ (1 + ǫ)α, (8.26)

for every homogenous convex systemic measure ρ : Ln → R+ of order α > 0.

Lemma 8.6.2. N (Ls) is an ǫ-approximation of N (L) if and only if the following inequal-

ities hold

(1− ǫ)L � Ls � (1 + ǫ)L. (8.27)

Proof. According to the monotonicity and homogeneity properties of convex system mea-

sures, it follows that if (8.27) satisfies then we have

(1 + ǫ)−αρ(L) ≤ ρ(Ls) ≤ (1− ǫ)−αρ(L). (8.28)

Therefore, according to (8.28) and Definition 8.6.1, N (Ls) is an ǫ-approximation of

N (L). Now let us consider the following measures

ρv(L) = vTL†v, (8.29)

for any given v ∈ Rn, this measure is a homogenous convex systemic measure of order

α = 1. Now, using measure ρv(.) and Definition 8.6.1, for any v ∈ Rn and v /∈ Span{1}

, we get

(1− ǫ) ≤ ρv(L)

ρv(Ls)
≤ (1 + ǫ),

which means

(1 + ǫ)−1 ≤ vTL†
sv

vTL†v
≤ (1− ǫ)−1, (8.30)
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since vTL†v > 0, (8.30) can be rewrite as follows

(1 + ǫ)−1vTL†v ≤ vTL†
2v ≤ (1− ǫ)−1vTL†v. (8.31)

We know that L and Ls are Laplacian matrices and (8.31) holds for all v /∈ Span{1}.

Therefore, we get

(1 + ǫ)−1L† ≤ L†
s ≤ (1− ǫ)−1L†,

using this, we finally get the desired result:

(1− ǫ)L ≤ Ls ≤ (1 + ǫ)L.

This result is fundamental as it enables us to take advantage of monotonicity property

of systemic measures in our approximations.

8.6.1 Existence of ǫ-Approximations

Among all ǫ-approximation of a given consensus network with a dense coupling graph,

we are interested in its sparsifiers, i.e., those networks with sparse coupling graphs.

Definition 8.6.3. N (Ls) is a (ǫ, d)-sparsifier of a given network N (L) with n nodes if

the following conditions hold:

1. N (Ls) is an ǫ-approximation of network N (L); and

2. the coupling graph of N (Ls) has at most dn/2 links (i.e. feedback gains).

The second condition implies that the average number of connected links to nodes in

the sparsifier is at most d. In the following theorem, we show existence of sparsifiers for
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every given consensus network.

Theorem 8.6.4. Suppose that a consensus network N (L) with coupling graph G =

(V, E , w) and d > 1 are given. Then, there exists a consensus network N (Ls) with

coupling graph Gs = (V, Es, ws) such that N (Ls) is a (2
√
d

d+1
, 2d)-sparsifier of N (L) and

Es ⊂ E .

Proof. According to [64, Th. 1.1], coupling graph G = (V, E , w) has a weighted subgraph

Ĝ = (V, Ê , ŵ) with |Ê | = ⌈d(n− 1)⌉ that satisfies

L � LH �
(

1 +
√
d

1−
√
d

)2

L (8.32)

whereLH is the Laplacian matrix of graph H. We define Gs = (V, Es, ws) by its Laplacian

matrix Ls where

Ls :=
d+ 1− 2

√
d

d+ 1
LH. (8.33)

Therefore, according to (8.32) and (8.33), it follows that

(

1− 2
√
d

d+ 1

)

L � Ls �
(

1 +
2
√
d

d+ 1

)

L. (8.34)

Using (8.34) and Lemma 8.6.2, it yields that N (Ls) is a (2
√
d

d+1
, 2d)-sparsifier of N (L) and

this completes the proof.

Our result is based on a graph-theoretic result by [64]. Specifically, Theorem 8.6.4

shows that every given linear consensus network with dynamics (8.6) has a sparse con-

sensus network such that the two networks yield comparable performances with respect

to any systemic performance measure ρ : Ln → R+.
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In our next result, we show that every consensus network has a sparse consensus

network such that: (i) it yields a better systemic performance than the original network,

and (ii) the total weight sum of the coupling graph of the sparsifier is controlled, i.e., it is

less than a constant multiplier of that of the original network. For a given coupling graph

with Laplacian matrix L and the set of links E , we denote the total weight sum of the

coupling graph by

wtotal(L) :=
∑

e∈E
w(e). (8.35)

Corollary 8.6.5. For a given consensus network N (L)with coupling graphG = (V, E , w)

and every d > 1, there exists a consensus network N (Ls) with coupling graph Gs =

(V, Es, ws) that has at most dn links and Es ⊂ E . Moreover, we have

wtotal(Ls) ≤
(√

d+ 1√
d− 1

)2

wtotal(L) (8.36)

and

ρ (Ls) ≤ ρ (L) ,

for every convex systemic measure ρ : Ln → R+.

Proof. According to Theorem 8.6.4, N (L) has a (2
√
d

d+1
, 2d)-sparsifier, N (Lŝ), with Eŝ ⊂

E , which means that we have

(

1− 2
√
d

d+ 1

)α

≤ ρ (L)

ρ (Lŝ)
≤
(

1 +
2
√
d

d+ 1

)α

, (8.37)

for every homogenous convex systemic measure ρ : Ln → R+ of order α > 0. We now

define Ls =
d+1−2

√
d

d+1
Lŝ, then it follows that

ρ(Lŝ) =

(
d+ 1

d+ 1− 2
√
d

)α

ρ(Ls) (8.38)
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Finally by substituting ρ(Lŝ) from (8.38) in the left hand side inequality of (8.37), we

have

ρ (Ls) ≤ ρ (L) ,

Note that ρ(L) = 1/wtotal(L) is a convex systemic measure with α = 1, therefore from

the left hand side inequality in (8.37), we get (8.36).

According to Definitions 8.5.1 and 8.5.2, we note that linear consensus networks

with smaller systemic performance measure are more desirable and they exhibit better

network-wide performance.

8.6.2 Computing Sparsifiers via Random Sampling

In this part, we employ a randomized algorithm to compute a (ǫ, d)-sparsifier of a given

network. A randomized algorithm employs a degree of randomness as part of its logic.

Randomization allows us to design provably accurate algorithms for problems that are

massive and computationally expensive or NP-hard. For this aim based on [63], we sam-

ple low-connectivity coupling links with high probability and high-connectivity coupling

links with low probability. For a given consensus network N (L) with n nodes, we sample

links of the coupling graph of this network M times in order to produce a (ǫ, 2M/n)-

sparsifier of it. Let us denote probability of selecting a link e ∈ E by π(e) that is pro-

portional to w(e)r(e), where w(e) and r(e) are the weight and the effective resistance of

link e, respectively. In each step of sampling, we add the selected link e to the sparsifier

network with weight w(e)/(Mπ(e)). All details of this algorithm is explained below:

Fortunately, the following theorem, which is a modified version of a theorem in [63],

provides us with a proof certificate that the above randomized algorithm is capable of
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Table 8.2: Network Sparsification Algorithm

Algorithm:

Input: G = (V, E , w)
1: set Gs to be the empty graph on V
2: for i = 1 to M
3: sample link e ∈ E with probability π(e)

add it to Gs with link weight w(e)/(Mπ(e))
4: end for

generating a sparse approximation of a given consensus network.

Theorem 8.6.6. For a given consensus network N (L), a fixed constant ǫ ∈ (1/
√
n, 1]

and an integer number M = O(n logn/ǫ2), Network Sparsification Algorithm produces

a (ǫ, 2M/n)-sparsifier of network N (L) with high probability4.

Proof. We give only a sketch of the proof here, for more details please see [63]. We

consider the following projection matrix

Π = W 1/2EL†ETW 1/2, (8.39)

where E is m-by-n incidence matrix, and W is a diagonal matrix with link weights on

its diagonal, (we know that L = ETWE). Matrix Π is m-by-m matrix with eigenvalues

zero and one and multiplicity of m− n+ 1 and n− 1, respectively [63, Lemma 3]. Now,

we show that the sampling of links in Network Sparsification Algorithm corresponds to

picking M = O(n logn) columns at random from matrix Π. Then by using [165, Thm.

3.1] we can get the desired result.

Network Sparsification Algorithm produces a sparsifier with with O(n log n/ǫ2) links

4An event holds with high probability if it holds with probability 1−O(n−a) for some a > 0 indepen-

dent of n.
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(i.e. feedback gains) in expectation and runs in approximately linear time Õ(m), wherem

is the number of links [166]. To do so, good approximations of all effective resistances are

needed, and Spielman and Srivastava prove that O(logn) calls to a solver for symmetric

diagonally dominant (SDD) linear systems can provide sufficiently good approximations

to all effective resistances. Moreover, in [64] the authors show that a spectral sparsifier

with O(n/ǫ2) links can be computed in O(n3m/ǫ2) time with a slower deterministic

algorithm to select links. The best known classical algorithm for calculating effective

resistances relies on solving a Laplacian linear system and takes Õ(m) time [64, 167].

8.6.3 Partial/Localized Network Sparsification

Our methodology can be extended further to explore several interesting network design

problems, such as partial or localized sparsification of a given large-scale consensus net-

work. In this subsection, we only look at one of such design problems. Let us consider a

slightly modified version of (8.6) by involving a predesigned state feedback controller

N (L0 + L1) :







ẋ(t) = −L0x(t) + u(t) + ξ(t)

u(t) = −L1x(t)

y(t) =
(
In − 1

n
1n1

T
n

)
x(t)

(8.40)

with initial condition x(0) = x0, where L0 is the Laplacian matrix of the open-loop net-

work and the Laplacian matrix L1 is the predesigned state feedback gain. It is assumed

that the control input u is designed in an optimal fashion. Thus, the corresponding cou-

pling subgraph toL1, which is denoted by G1, is possibly dense. Now, our design objective

is to find a state feedback sparsifier for the closed-loop network N (L0+L1) that partially

(or locally) sparsifies G1. Let us represent such a sparsifier by Ĝ1 with Laplacian matrix
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L̂1.

Theorem 8.6.7. Suppose that a linear consensus network in the form of (8.40), a homoge-

nous convex systemic measure ρ : Ln → R+ of order α, and a number d > 1 are given.

For ǫ = 2
√
d

d+1
, there exists a subgraph sparsifier Ĝ1 = (V, Ê , ŵ) for G1 = (V, E , w) with at

most dn links that satisfies Ê ⊂ E and

(1− ǫ)α ≤ ρ(L0 + L1)

ρ(L0 + L̂1)
≤ (1 + ǫ)α. (8.41)

Furthermore, it follows that

wtotal(L̂1) ≤ (1 + ǫ)wtotal(L1).

Proof. According to [64, Th. 1.1], coupling graph G1 = (V, E , w) has a weighted sub-

graph H = (V, Ê , ŵ) with |Ê | = ⌈d(n− 1)⌉ that satisfies

L1 � LH � d+ 1 + 2
√
d

d+ 1− 2
√
d
L1 (8.42)

where LH is the Laplacian matrix of graph H. We define Ĝ1 = (V, Ê , ŵ) by its Laplacian

matrix L̂1, where

L̂1 :=

√
d− 1√
d+ 1

LH. (8.43)

Therefore, according to (8.42) and (8.43), it follows that

√
d− 1√
d+ 1

L1 � L̂1 �
√
d+ 1√
d− 1

L1. (8.44)

246



Moreover, we know that

√
d− 1√
d+ 1

L0 � L0 �
√
d+ 1√
d− 1

L0. (8.45)

From (8.44) and (8.45), we have

√
d− 1√
d+ 1

(L0 + L1) � (L0 + L̂1) �
√
d+ 1√
d− 1

(L0 + L1). (8.46)

Then, using (8.46) and Lemma 8.6.2, it yields that N (L0 + L̂1) is a (2
√
d

d+1
, 2d)-sparsifier

of N (L0 + L1), and this completes the proof.

This result is particularly useful is large-scale consensus networks where our objective

is to sparsify only a small portion of network without drastically affecting the global

performance measures.

8.6.4 A Parallel Network Sparsification Algorithm

As we shown in Subsection 8.6.3, our proposed sparsification method can also be applied

for partial sparsification of large-scale networks. Therefore, based on this fact, we can

introduce a distributed/parallel version of this algorithm. Hence, this distributed method

can be used at a time on many different processing devices. Each processing device only

uses the information of an assigned subgraph.

Definition 8.6.8. We define a backbone/base subgragh of the network as a subgraph

which is formed by links that we want to keep in the sparsifier network without changing

their weights and we denote its Laplacian matrix by L0 and the subgraph by G0.

We can assume that the original coupling graph is the union on the base graph and p
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link-disjoint subgraphs, i.e.

L = L0 +

p
∑

i=1

Li. (8.47)

Assumption 8.6.9. The subgraphs are link-disjoint and dense subgraphs.

without loss of generality, we can assume that the node set of all subgraphs is V , same

as the node set of the original graph. Therefore, their corresponding Laplacian matrices

are n-by-n matrices.

Theorem 8.6.10. Suppose that a linear consensus network in the form of (8.40), a ho-

mogenous convex systemic measure ρ : Ln → R+ of order α, and a number d > 1 are

given. Assume that the coupling graph G is the union of the base graph G0 and p link-

disjoint dense subraphs Gi where i = 1, 2, · · · , p. Then, for ǫ = 2
√
d

d+1
, there exists a set

of subgraph sparsifier {Ĝi}pi=1 for {Gi}pi=1 where each sparsifier subgraphs has average

degrees of at most d that satisfies

(1− ǫ)α ≤ ρ(L0 +
∑p

i=1 Li)

ρ(L0 +
∑p

i=1 L̂i)
≤ (1 + ǫ)α. (8.48)

Furthermore, it follows that

wtotal(L̂i) ≤ (1 + ǫ)wtotal(Li),

for i = 1, 2, · · · , p.

Proof. According to [64, Th. 1.1], for i = 1, · · · , p, coupling graph Gi = (V, Ei, wi) has

a weighted subgraph Hi = (V, Êi, ŵi) with |Êi| = ⌈d(n− 1)⌉ that satisfies

Li � LHi
� d+ 1 + 2

√
d

d+ 1− 2
√
d
Li (8.49)
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where LHi
is the Laplacian matrix of graph Hi. We define Ĝi = (V, Êi, ŵi) by its Lapla-

cian matrix L̂i, where

L̂i :=

√
d− 1√
d+ 1

LHi
. (8.50)

Therefore, according to (8.49) and (8.50), it follows that

√
d− 1√
d+ 1

Li � L̂i �
√
d+ 1√
d− 1

Li. (8.51)

Moreover, we know that

√
d− 1√
d+ 1

L0 � L0 �
√
d+ 1√
d− 1

L0. (8.52)

From (8.51) and (8.52), we have

√
d− 1√
d+ 1

(L0 +

p
∑

i=1

Li) � L0 +

p
∑

i=1

L̂i �
√
d+ 1√
d− 1

(L0 +

p
∑

i=1

Li). (8.53)

Then, using (8.53) and Lemma 8.6.2, it yields that N (L0 +
∑p

i=1 L̂i) is a (2
√
d

d+1
, 2d)-

sparsifier of N (L0 +
∑p

i=1Li), and this completes the proof.

Assume that the coupling graph G is the union of the base graph G0 and p link-disjoint

dense subgraphs Gi where i = 1, · · · , p. Now for each subgraph we employ Network

Sparsification Algorithm to find its sparsifier. Since these computations can be carried

out simultaneously based on Theorem 8.6.10, we can get a sparsifier for the entire net-

work much faster by parallelizing the algorithm across multiple processors in parallel

computing environments.
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8.7 H2-Norm Bounds for ǫ-Approximation

In this section, we show that our proposed framework generates sparsifiers that approxi-

mately preserve frequency characteristics of the original (dense) consensus network. Our

sparsification method shares some common roots with the classical model reduction tech-

niques, where the objective is to find a reduced order models that yield small H2-norm

error (c.f., [168]). In network sparsification, it is also desirable to reduce the total number

of links in a network in order to obtain a less complex network with a small H2-norm

error. In our following results, we explicitly obtain H2-norm error bounds for network

sparisifiers. First, we state a general result that yields a tight upper bound on the H2-norm

error of two consensus networks in terms of their Laplacian matrices.

Lemma 8.7.1. Suppose that N (L) and N (L̂) are two given consensus networks governed

by dynamics (8.6). Then,

‖G− Ĝ‖2H2

‖G‖2H2

≤
Tr
(

L̂† + L† − 4(L+ L̂)†
)

Tr (L†)
, (8.54)

where G(s) and Ĝ(s) are transfer functions from input ξ to output y of N (L) and N (L̂),

respectively.

Proof. In the first step, we define dynamical network N ∗ based on two given networks L

and LH







ẋ(t) = −







L+ 1
n
Jn 0

0 Ls +
1
n
Jn






x(t) +







Mn

Mn






ξ(t)

y(t) =

[

Mn −Mn

]

x(t)

(8.55)
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where x ∈ R
2n, ξ ∈ R

n, y ∈ R
n and G∗ denotes its transfer function from ξ to y.

‖G∗‖H2 = ‖G −Gs‖H2 . (8.56)

Calculating the H2 norm of the network reduces to solving an Algebraic Lyapunov Equa-

tion (ALE) [99]. Using the state matrices of (8.55) and the ALE we get

AX + XA =






Mn −Mn

−Mn Mn




 (8.57)

where

A = −






L + 1
n
Jn 0n×n

0n×n Ls +
1
n
Jn






and

X =






X1 X2

XT
2 X3




 .

We now decompose equation (8.57) to three Sylvester equations: The first equation is

(

L +
1

n
Jn

)

X1 + X1

(

L +
1

n
Jn

)

= Mn,

and its solution is

X1 =
1

2
L†. (8.58)

The second equation is

(

Ls +
1

n
Jn

)

X3 + X3

(

Ls +
1

n
Jn

)

= Mn,
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and its unique solution is given by

X3 =
1

2
L†
s. (8.59)

Finally, the third one is

(

L +
1

n
Jn

)

X2 + X2

(

Ls +
1

n
Jn

)

= −Mn, (8.60)

has an unique solution

X2 = −
∫ ∞

0

e−(L+ 1
n
Jn)tMne

−(Ls+
1
n
Jn)tdt,

the integrand can be reformulated as

e−(L+ 1
n
Jn)tMne

−(Ls+
1
n
Jn)t = e−(L+ 1

n
Jn)te−(Ls+

1
n
Jn)t

+
1

n
e−(L+ 1

n
Jn)tJne

−(Ls+
1
n
Jn)t

= e−(L+ 1
n
Jn)te−(Ls+

1
n
Jn)t +

e−2t

n
Jn. (8.61)

Based on the Golden-Thompson inequality for Hermitian matrices, we have

Tr
(

e−(L+ 1
n
Jn)tMne

−(Ls+
1
n
Jn)t
)

= Tr

(

e−(L+ 1
n
Jn)te−(Ls+

1
n
Jn)t +

e−2t

n
Jn

)

≥ Tr

(

e−(L+Ls+
2
n
Jn)t +

e−2t

n
Jn

)

(8.62)
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Therefore, the trace of X2 can be bounded by

Tr(X2) = −Tr

(∫ ∞

0

e−(L+ 1
n
Jn)tMne

−(Ls+
1
n
Jn)tdt

)

= −
∫ ∞

0

Tr
(

e−(L+ 1
n
Jn)tMne

−(Ls+
1
n
Jn)t
)

dt

≤ −
∫ ∞

0

Tr
(

Mne
−(Ls+L+ 2

n
Jn)t
)

dt

= −Tr
(
(L + Ls)

†) . (8.63)

Calculating the H2 norm of the network reduces to

‖G∗‖2H2
= Tr






[

Mn Mn

]






X1 X2

X2 X3











Mn

Mn











= Tr











X1 X2

X2 X3











Mn Mn

Mn Mn









 (8.64)

From (8.58), (8.59) and (8.64), it follows that

‖G∗‖2H2
=

1

2
Tr(L† + L†

s) − Tr((X2 +XT
2 )Mn)

≤ 1

2
Tr(L† + L†

s) − 2Tr
(
(L + Ls)

†) ,

where in the last inequality we use (8.63). Finally, from this and (8.56), we have

‖G−Gs‖2H2
≤ 1

2
Tr
(

L̂† + L† − 4(L+ L̂)†
)

,

which completes the proof.
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We note that the right hand side of inequality (8.54) is always non-negative, i.e.

0 ≤ Tr
(

L̂† + L† − 4(L+ L̂)†
)

,

because, Tr(L†) is convex on Ln, and we have

Tr

(
1

2
L+

1

2
L̂

)†
≤ 1

2
Tr
(
L†)+

1

2
Tr
(

L̂†
)

.

The inequality (8.27) implies proximity of ǫ-approximations on the cone of positive

semidefinite matrices. In the following result, it is proven that the frequency specifications

of two ǫ-approximations are indeed very similar in H2 sense.

Theorem 8.7.2. If N (Ls) is an ǫ-approximation sparsifier of N (L) for some 0 ≤ ǫ < 1,

then

‖G−Gs‖H2

‖G‖H2

≤
√

ǫ(4 − ǫ)

(1− ǫ)(2 + ǫ)
,

where G(s) and Gs(s) represent the transfer functions from input ξ to output y of N (L)

and N (Ls), respectively.

Proof. Based on the definition of ǫ-approximation, we get

Tr(L†
s) ≤ 1

1− ǫ
Tr(L†), (8.65)

because Tr(L†) is a homogenous convex systemic measure of order α = 1. Moreover,

according to Lemma 8.6.2, we have

(2 + ǫ)−1(L)† ≤ (L+ Ls)
†. (8.66)
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By taking trace from both sides of (8.66), we get

Tr
(
(L+ Ls)

†) ≥ 1

2 + ǫ
Tr
(
L†) . (8.67)

Using Lemma 8.7.1, we get

‖G−Gs‖2H2

‖G‖2H2

≤
Tr
(

L̂† + L† − 4(L+ L̂)†
)

Tr(L†)

=
Tr
(
Ls

†)+Tr
(
L†)− 4Tr

(
(L+ Ls)

†)

Tr(L†)

≤ ǫ(4− ǫ)

(1− ǫ)(2 + ǫ)
, (8.68)

the last inequality is obtained by using inequalities (8.65) and (8.67). This completes the

proof.

Remark 8.7.3. This result is important as it asserts that for tight ǫ-approximations, i.e.,

for small enough value of ǫ, the frequency characteristics of the sparsifier are very similar

to that of the original network in H2 sense. Figure 8.2 demonstrates the proposed lower

bound based on Lemma 8.7.1 on the H2-norm error of a consensus networks and its

ǫ-approximation network.

8.8 Illustrative Examples

In this section, we present several numerical examples to illustrate our theoretical devel-

opments.

Example 8.8.1. We first consider a consensus network with 40 agents defined over an

unweighted graph with two dense components which are connected by a link (“cut edge”).
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Figure 8.2: This plot presents the lower bound given by Lemma 8.7.1 on the H2-norm error of a

consensus networks and its ǫ-approximation network.

Each of the components are obtained by adding 100 randomly selected links to an empty

graph with 20 nodes (see Figure 8.3. (a)). The probability of selecting a link of original

coupling graph is depicted in Figure 8.4. As you can see in Figure 8.4, the probability of

selecting the “cut edge” is much higher from the probability of other links. The Figure 8.3.

(b) illustrates one example of a sparsifier of this network based on Network Sparsification

Algorithm. This network has 61 links and all CSM’s and SCSM’s are close to their values

of original network N .The sparsity pattern of the obtained sparsifier network based on

Network Sparsification Algorithm is shown in Figure 8.5. Table 8.3 clearly illustrates

that the proposed method guarantees that systemic performances of both networks remain

close to each other.

Example 8.8.2. Let us consider a consensus network with 100 agents and exponentially

decaying coupling given by
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(a)

(b)

Figure 8.3: (a) An unweighted graph with 40 nodes, 201 links and ρH2(L) = 2.7837 and

wtotal(L) = 201. (b) A sparse approximation weighted graph with 40 nodes, 61 links and

ρH2(Ls) = 3.0805 and wtotal(Ls) = 199.88.

w({i, j}) =







c exp(−γ|i− j|) if i 6= j

0 if i = j
(8.69)

where c and γ are positive numbers and i, j ∈ V . This class of networks arises in var-

ious applications, where there is a notion of spatial distance between the subsystems,

c.f., [169]. According to Theorem 8.6.4, this network has a (0.5, 27.85)-sparsifier. Fig-
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Figure 8.4: The probability of selecting a link based on Network Sparsification Algorithm for a

given network in Figure 8.3. (a). The probability of selecting the “cut edge” is much higher from

the probability of other links

Systemic measure: ρ |ρ(Ls)−ρ(L)|
ρ(L)

× 100

ρH∞ = λ2
−1 16.42 %

ρH2 =
(
1
2

∑n
i=2 λi

−1
) 1

2 10.66 %

ρzeta,2 =
(
∑n

i=2 λi
−2
) 1

2

13.24 %

ρlocal =
1
2

∑

i∈V di
−1 30.14 %

Table 8.3: Degradation ratio of systemic performance measures of the network and its sparse

approximation with 70 % fewer links.

ure 8.6. a shows the Adjacency matrix of the coupling graph of consensus network with

coupling weight function (8.69); and Figure 8.6. b illustrates one example of (0.5, 22.28)-

sparsifiers which is obtained based on Network Sparsification Algorithm. This sparse

network has fewer coupling links (1114 links) compare to its original network with 4, 950

links. However, all CSM’s are within a factor of (1± 0.5)α of their values of the original

network (see Definition 8.6.1).

Figure 8.7 depicts the probability distribution of sampling links (see Network Spar-

sification Algorithm). For instance, the probability of selecting link e = {i, j} in the

network sparsification algorithm is the (i, j)th element of the matrix presented in Figure
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Figure 8.5: Sparsity patterns (Adjacency matrices) of the graphs depicted in Figure 8.3.

8.7. Therefore, based on this figure, low-connectivity coupling links are sampled with

high probability and high-connectivity coupling links are sampled with low probability.

Table 8.4 clearly shows that systemic performances of both networks remain close to

each other. Moreover, their total weight sums of coupling graphs are very close to each

other, i.e., wtotal(Ls)/wtotal(L) = 1.0028.

Systemic measure: ρ |ρ(Ls)−ρ(L)|
ρ(L)

× 100

ρH∞ = λ−1
2 12.01%

ρH2 =
(
1
2

∑n
i=2 λi

−1
) 1

2 3.38 %

ρzeta,2 =
(
∑n

i=2 λ
−2
i

) 1
2

10.73 %

ρlocal =
1
2

∑

i∈V d
−1
i 3.16 %

Table 8.4: Degradation errors of some systemic performance measures of the given network

N (L) in Example 8.8.2 and its sparsifier N (Ls) with 77.49 % fewer links.

Example 8.8.3. In this example, we consider a consensus network with 100 agents defined

over a proximity graph of points that are distributed randomly in a 30×30 square. Every

agent is connected to all of its spatial neighbors within a closed ball of radius r = 10.

Figure 8.8. a shows the coupling graph of this consensus network with 100 nodes and
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Figure 8.6: (a) This plot demonstrates the sparsity pattern of the given consensus network in

Example 8.8.2 with parameters c = 1 and γ = 0.05. This network has 100 agents and 4, 950 links.

(b) This plot presents the sparsity pattern of its sparsifier with 1114 links. For these networks we

have wtotal(Ls)/wtotal(L) = 1.0028 and ‖G−Gs‖H2/‖G‖H2 = 0.18.

1291 links; and Figure 8.8. b illustrates one example of (0.5, 16.62)-sparsifiers of this

network which is obtained based on Network Sparsification Algorithm. This network has

fewer coupling links (831 links) compare to its original network. Moreover, based on

Definitions 8.6.1 and 8.6.3 all CSM’s are within a factor of (1 ± 0.5)α of their values

of the original network (see Definition 8.6.1). Table 8.5 clearly illustrates that systemic

performances of both networks remain close to each other. Moreover, their total weight

sums of coupling graphs are very close to each other, i.e., wtotal(Ls)/wtotal(L) = 1.0018.

Note that the systemic measures presented in Table 8.5 are CSM’s with homogeneity of

order α = 1.

Example 8.8.4. Let us consider an abstract model of the formation control problem for a
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Figure 8.7: This plot presents the probability distribution of sampling links for the given consen-

sus network in Example 8.8.2. The probability of selecting link e = {i, j} is the (i, j)th element

of this matrix.

group of autonomous vehicles, which is given by













ẋ(t)

v̇(t)






=







0 I

−L −βL













x(t)

v(t)






+







0

I






ξ(t)

y(t) =
(
In − 1

n
1n1

T
n

)
v(t)

(8.70)

where β > 0 is a design parameter. Each vehicle has a position and a velocity variable

and the state variable of the entire network is denoted by [ x(t) v(t) ]T and is measured

relative to a pre-specified desired trajectory xd(t) and velocity vd(t). Without loss of gen-

erality, we assume that the position and velocity of each vehicle are scalar variables. The

reason is that one can decouple higher d-dimensional models into d decoupled (8.70)

models. The overall objective is for the network to reach a desired formation pattern,

where each autonomous vehicle travels at the constant desired velocity vd while preserv-
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(a) (b)

Figure 8.8: (a) An unweighted coupling (proximity) graph of a consensus network N (L) with

100 agents is presnted. Every agent is connected to all of its spatial neighbors within a closed

ball of radius r = 10. This graph has 1291 links and wtotal(L) = 1291. (b) This graph shows

a (0.5, 16.62)-sparsifier with 100 agents, which is obtained based on Network Sparsification

Algorithm. The coupling graph of this sparsifier is a weighted graph with 831 links (35.63%
fewer than the original graph) and wtotal(Ls) = 1293.4. The H2 error of these two networks is

‖G−Gs‖H2/‖G‖H2 = 0.17.

ing a pre-specified distance between itself and each of its neighbors. In this model, the

state feedback controller uses both position and velocity measurements and L is in fact

the corresponding feedback gain, which represents the coupling topology in the controller

array, and constant β is a design parameter [2,35]. We consider the steady state variance

of the performance output of this network as the performance measure. This quantity is

indeed equivalent to the square of the H2-norm of the system from the exogenous distur-

bance input to the performance output [2, 11, 35, 36, 38, 170]. We quantify the square of

the H2-norm of (8.70) in [5] based on the Laplacian eigenvalues of the coupling graph

as follows

lim
t→∞

E
[
yT(t)y(t)

]
=

1

2β

n∑

i=2

λ−2
i =

1

2β
ρ2zeta,2(L). (8.71)

This is a SCSM, therefore we can use our proposed method to find a sparsifier that ap-

proximates (8.71).

262



Systemic measure: ρ |ρ(Ls)−ρ(L)|
ρ(L)

× 100

ρH∞ = λ2
−1 10.62%

ρH2 =
(
1
2

∑n
i=2 λi

−1
) 1

2 3.37%

ρzeta,2 =
(
∑n

i=2 λ
−2
i

) 1
2

10.15%

ρlocal =
1
2

∑

i∈V d
−1
i 3.18%

Table 8.5: Degradation errors of some systemic performance measures of the given network

N (L) in Example 8.8.3 and its sparsifier N (Ls) with 35.63% fewer links.

Let us consider the coupling graph of network (8.70) is given by Figure 8.8. a. Then,

as we mentioned in Example 8.8.3, Figure 8.8. b illustrates one example of (0.5, 16.62)-

sparsifiers of this network which is obtained based on Network Sparsification Algorithm.

As shown in Example 8.8.3, this network has fewer coupling links (831 links) compare to

its original network. Table 8.6 shows that systemic performances of both networks remain

close to each other. Moreover, their total weight sums of coupling graphs are very close to

each other, i.e., wtotal(Ls)/wtotal(L) = 1.0018. Note that the systemic measure presented

in the following table is a SCSM with homogeneity of order α = 2.

Systemic measure: ρ |ρ(Ls)−ρ(L)|
ρ(L)

× 100
1
2β

∑n
i=2 λ

−2
i 8.15%

Table 8.6: Degradation errors of the systemic performance measures (8.71) of the given network

(8.70) in Example 8.8.4 and its sparsifier with 35.63% fewer links.

8.9 Discussion and Conclusion

In this work, we focus on one notion of graph sparsification, and we show how this notion

(spectral sparsification) can be used in performance and complexity analysis of intercon-

nected networks of coupled dynamical systems. However, several notions of graph spar-

sifications have been considered in theoretical computer science. While the other notions
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are interesting from a combinatorial standpoint, their connections to performance analy-

sis of dynamical networks are not clear yet. For a given graph, there are several sparse

subgraphs as follows: Distance sparsifiers that approximate all pairwise distances up to a

multiplicative and/or additive error (see [171] and subsequent research on spanners), Cut

sparsifiers that approximate every cut to an arbitrarily small multiplicative error [172],

Spectral sparsifiers or sparsifier that approximate every eigenvalue to an arbitrarily small

multiplicative error [166], and many more. It is shown that sparsifiers can be constructed

by sampling links according to their strength, effective resistance [63], edge connectiv-

ity [167], or by sampling random spanning trees [173]. Benczúr and Karger propose a

randomized algorithm to construct a cut sparsifier in O(m log2 n) time for unweighted

graphs and O(m log3 n) time for weighted graphs [167, 172]. The notion of spectral

sparsifier is stronger then cut sparsifier, which means spectral sparsifiers are also cut spar-

sifiers.

In this chapter, we introduce the notion of a sparsifier of a large-scale consensus net-

work. The sparsifier of a consensus network is also a consensus network with identical

subsystems, but with a sparse subgraph of the original network, such that these two net-

works are similar in some meaningful ways. First, we show that each consensus network

has a sparsifier network. Second, a framework to produce a high-quality sparse approx-

imation of a given consensus network with a nearly-linear time algorithm is developed.

Unlike previous works on this topic, our methodology: (i) works for a broad class of

systemic performance measures including H2-based performance measures, (ii) does not

involve any sort of relaxations such as ℓ0 to ℓ1; (iii) provides guarantees for the existence

of a sparse solution, (iv) can partially sparsify predetermined portions of a given network;

and most importantly, (v) gives guaranteed systemic performance certificates. Finally,

several supporting examples are provided to illustrate our theoretical findings. Future re-
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search includes extensions our results to the case of nonlinear consensus networks and

consensus algorithms with high-order agent dynamics.
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Chapter 9

Conclusions and Future Directions

In what follows, the contributions made in each part of this dissertation are first summa-

rized, and possible future directions are then outlined.

In the first part, we develop some basic principles to investigate performance deteri-

oration of dynamical networks subject to external disturbances. We first discover some

of the inherent fundamental tradeoffs between notions of sparsity and performance in lin-

ear consensus networks. Also, for this class of linear consensus networks, we introduce

new insights into the network centrality based not only on the network graph but also on a

more structured model of network uncertainties. Our results assert that agents or links can

be ranked according to this centrality index and their rank can drastically change from the

lowest to the highest, or vice versa, depending on the noise structure. This fact hints at

the emergence of fundamental tradeoffs on network centrality in the presence of multiple

concurrent network uncertainties with different structures. Then, for the class of generic

linear networks, we show that the H2-norm, as a performance measure, can be tightly

bounded from below and above by some spectral functions of state and output matrices of

the system. We have shown that the spectral lower bound in Theorem 4.5.1 is tighter than

all existing lower bounds reported in Table 4.1. Finally, we study nonlinear autocatalytic
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networks and exploit their structural properties to characterize their existing hard limits

and essential tradeoffs.

In the second part of this dissertation, we consider problems of network synthesis

for performance enhancement. Performance improvement in interconnected networks

of coupled dynamical systems as well as reducing their design complexity by sparsifying

their underlying coupling structures are two of the critical design issues. First, we propose

an axiomatic approach for the design and performance analysis of noisy linear consensus

networks by introducing a notion of systemic performance measure. We build upon this

new notion and investigate a general form of combinatorial problem of growing a linear

consensus network via minimizing a given systemic performance measure. Two efficient

polynomial-time approximation algorithms are devised to tackle this network synthesis

problem. Furthermore, several theoretical fundamental limits on the best achievable per-

formance for the combinatorial problem is derived that assist us to evaluate optimality

gaps of our proposed algorithms. Then, in Chapter 7, we investigate the optimal design of

distributed system throttlers. A throttler is a mechanism that limits the flow rate of incom-

ing metrics, e.g., byte per second, network bandwidth usage, capacity, traffic, etc. This

can be used to protect a service’s backend/clients from getting overloaded, or to reduce

the effects of uncertainties in demand for shared services. We develop a graph-theoretic

framework to relate the underlying structure of the system to its overall performance

measure. We then compare the performance/robustness of the proposed distributed sys-

tem throttlers with different underlying graphs. Finally, in the last chapter, we develop a

framework to produce a sparse approximation of a given large-scale network with guar-

anteed performance bounds using a nearly-linear time algorithm. Our methodology is

drastically different from the classical methods in this area: (i) works for a broad class of

systemic performance measures including H2-based performance measures, (ii) does not

267



involve any sort of relaxations such as ℓ0 to ℓ1; (iii) provides guarantees for the existence

of a sparse solution, (iv) can partially sparsify predetermined portions of a given network;

and most importantly, (v) gives guaranteed systemic performance certificates. Finally,

several supporting examples are provided to illustrate our theoretical findings. Future re-

search includes extensions our results to the case of nonlinear consensus networks and

consensus algorithms with high-order agent dynamics.

9.1 Future Directions

We conclude this thesis with a few future works and open problems.

• In this thesis, we focus on first-order consensus networks. However, it is straight-

forward to generalize the results for higher-order consensus networks, which have

applications in synchronous power networks and formation control (see [5, 174]).

• Another interesting generalization of this work will be to investigate performance

and robustness of noisy linear consensus networks with time-delay. For a linear

consensus network with uniform time-delay, the closed form formula for the H2-

norm is derived in [61]. Thus, an interesting research direction is to generalize the

results of Chapters 2, 3, 6, and 8 for this class of networks.

• The work presented in this dissertation was focused on dynamical networks over

time-invariant coupling graphs. However, this study could be extended to include

a more general coupling graph, e.g., time-varying graph, switching graph, periodi-

cally time-varying graph, etc.

• In Chapter 7, we focus on DST networks with the amount of throttled traffic as

its nodal performance. A promising research direction is to investigate the overall
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performance measure of DST networks with respect to the other nodal performance

measures presented in Table 7.1.

• In Chapter 8, we consider the Problem of Network Sparsifications. It is interesting

to study the effect of a different link sampling function on the quality of the resulting

graph of Network Sparsification Algorithm in Table 8.2. Moreover, it is interesting

to discuss advantages and disadvantages of sampling by effective resistances. In

the first step, one can use the link centrality measures in Table 3.2 to obtain the

corresponding link sampling function.
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