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Abstract

The aerodynamic, aeroelastic, and acoustic implications of a prescribed porosity distri-

bution on a thin airfoil or panel in a steady, two-dimensional, incompressible flow are

formulated and solved in four distinct model problems. In pursuit of the steady aerody-

namic loads on a porous airfoil, a Darcy porosity condition on the airfoil surface furnishes

a Fredholm integral equation for the pressure distribution. This singular integral equation

is solved exactly and generally as a Riemann-Hilbert problem provided that the porosity

distribution is Hölder-continuous. The comparison between the new steady aerodynamic

theory and experimental measurements of integrated lift forces on porous SD7003 airfoils

in the literature shows good agreement for sufficiently small values of a dimensionless

porosity parameter identified in the theoretical analysis.

The non-circulatory fluid forces are then derived on an oscillating porous panel or airfoil

in a uniform incompressible flow. The fundamental integral equation for these unsteady

loads resulting from a Darcy-type boundary condition with Hölder-continuous spatial dis-

tribution of porosity is formulated and solved in closed form as a Liouville-Neumann se-

ries. To demonstrate these analytical results, the non-circulatory pressure distributions for

vibrating panels on simple or clamped supports with either uniform or variable chordwise

porosity distributions are presented and compared.

These presented non-circulatory fluid forces are applied to aeroelastic stability predictions
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for vibrating porous panels or liners fixed at both ends. Porous panels fixed at both ends

lose aeroelastic stability by divergence, which is in agreement with the classical result for

non-porous panels. However, the effect of porosity act to suppress divergence onset until

higher flow speeds.

Finally, the acoustic far-field pressure is determined for a finite-chord panel with uniform

porosity. The free space Green’s function for the two-dimensional Helmholtz equation

propagates the unsteady non-circulatory forces on the panel into the acoustic field. Results

from this analysis identify the effects of varying the magnitude of a Darcy-type porosity

condition on the acoustic emission of a vibrating panel in comparison to its non-porous

counterpart. It is shown that the sound pressure produced by a uniformly-porous airfoil

depends on the reduced frequency, Mach number, and the dimensionless porosity param-

eter. At low Mach numbers, increasing the magnitude of a Darcy-type porosity parameter

leads to a reduction in the acoustic emission from a vibrating panel at high frequencies,

while the introduction of porosity does not reduce the produced sound pressure at lower

frequencies. Furthermore, it is demonstrated that, even at high frequencies, porosity does

not always reduce the sound pressure; as the Mach number increases, larger values of the

porosity parameter are required to reduce the sound generated from vibrating panels in all

directions.
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Chapter 1

Introduction

Inspired by silent flight of owls, a number of theoretical and experimental studies have

been developed to predict the impact of the edge condition on the trailing-edge turbulence

scattering mechanism [1–10]. These authors show that trailing-edge porosity and elastic-

ity can be tuned to effectively eliminate the predominant scattering mechanism of trailing

edge noise. However, the aerodynamic performance of a porous airfoil is expected to be

worse than for a non-porous airfoil, where increasing the extent of the porous material

decreases the lift and increases the drag [2, 9, 10]. Hence, there is a potential trade-off

between the acoustical benefits of porosity and its negative impact on aerodynamic per-

formance.

The central goal of this dissertation is to establish a theoretical basis to examine the

effects of porosity on the aerodynamics, aeroelastic stability, and acoustic emission of air-

foils and panels. To this end, each chapter herein addresses a defined modeling problem

that builds upon the results of the previous chapters. Chapter 2 investigates the aerody-

namic impact of a spatial variation in porosity distribution along the chordwise direction

of stationary airfoils, where closed-form solutions are found by requiring only that the

porosity distribution is Hölder continuous; Hölder continuity includes as a subset both

3



differentiable and piecewise-continuous classes of porosity distributions common to most

airfoil designs of practical interest. Chapter 3 extends this work to include unsteady defor-

mations of the panel section and presents an analytical expression for the non-circulatory

pressure distribution on an arbitrarily-deforming panel with a prescribed chordwise poros-

ity gradient. Chapters 4 and 5 apply the non-circulatory fluid forces defined in chapter 3

on a vibrating porous panel to study the aeroelastic stability for one-dimensional porous

panels or liners that are fixed at both ends, and to predict the acoustic emission from

vibrating porous panels in a single-sided flow, respectively.
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Chapter 2

Steady aerodynamics of airfoils with

porosity gradients

This chapter determines the aerodynamic loads on an airfoil with a prescribed porosity

distribution in a steady incompressible flow. A Darcy porosity condition on the airfoil

surface furnishes a Fredholm integral equation for the pressure distribution, which is

solved exactly and generally as a Riemann-Hilbert problem provided that the porosity

distribution is Hölder-continuous. The Hölder condition includes any differentiable and

piecewise-continuous porosity distributions that may be of practical interest. This for-

mal restriction on the analysis is examined by a class of differentiable porosity distribu-

tions that approach a piecewise, discontinuous function in a certain parametric limit. The

Hölder-continuous solution is verified in this limit against analytical results for partially-

porous airfoils in the literature. Finally, a comparison made between the new theoretical

predictions and experimental measurements of SD7003 airfoils presented in the literature.

Results from this analysis may be integrated into a theoretical framework to optimize tur-

bulence noise suppression with minimal impact to aerodynamic performance.
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2.1 Introduction

The study of aerodynamic loads on permeable airfoils can be motivated by the need for

passive design structures to reduce the aerodynamic self-noise of fluid-loaded bodies. The

trailing edge is an unavoidable source of this self-noise for aerodynamic structures and

is the subject of a large body of research developed to model, measure, and mitigate the

noise due to the edge interaction with turbulent eddies [3–8]. Turbulence noise can be

reduced by changing the acoustical impedance near the edge [4]. A number of theoretical

studies have sought to predict the impact of the edge boundary condition on the trailing-

edge scattering mechanism. The seminal work of Ffowcs Williams and Hall [5] showed

that the far-field acoustic intensity of a turbulent source in the presence of an impermeable

rigid half plane is M−3 louder than a turbulent eddy in free space with no solid bound-

aries, where M is the eddy Mach number. Crighton and Leppington [11] confirmed this

result using a different approach based on the Wiener-Hopf method and showed that a

sufficiently limp edge scatters a weaker field of intensity M−2 louder than a free-space

turbulent eddy; this Mach-number dependence is identical to the turbulence noise scal-

ing of an edgeless perforated screen in the ‘acoustically transparent’ low-porosity limit

identified by Ffowcs Williams [12]. Howe [6] also employed the Wiener-Hopf method

to predict the scattered field from an elastic edge, including its critical dependence on

the coincidence frequency. Using the poroelastic plate model of Howe [7], Jaworski and

Peake [8] examined the scattering of turbulent noise sources from a poroelastic half-plane.

Motivated by the unique wing attributes of silent owl species, these authors showed that

trailing-edge porosity and elasticity can be tuned to effectively eliminate the predomi-

nant scattering mechanism of trailing edge noise. Recent analytical work by Ayton [13]

extended these results to examine the effects of finite chord for partially-porous airfoils.

Also, Cavalieri et al. [14] developed a boundary element framework to investigate the

6



elasticity and porosity of finite-chord airfoils on the scattered acoustic field, noting the

complementary noise reduction in high and low frequency ranges due to elasticity and

porosity effects, respectively. The aforementioned works consider only stationary bodies

and represent porosity with the Rayleigh conductivity of a thin perforated surface, which

neglects any viscous effects within the pores. Weidenfeld and Manela [15] predicted that

porous noise reductions can indeed persist when a viscous Darcy porosity condition is

applied to a pitching airfoil. However, to be useful in the design of any practical appli-

cation, these aeroacoustic works need a complementary assessment of porosity on the

aerodynamics.

The generalized airfoil aerodynamic theory of Woods [16] considered the aerodynam-

ics of porous foils in inviscid, steady, and subsonic flow, where the pressure jump across

the wall of a hollowed airfoil was linearly related to the local normal flow velocity. How-

ever, in contrast to the present study and passive porous airfoil experiments considered

herein, Woods assumed a prescribed pressure distribution along the interior surface of

the airfoil, whereas here the upper and lower surfaces of the airfoil communicate through

the Darcy boundary condition. The Darcy boundary condition holds for small Reynolds

numbers based upon the pore permeability and seepage velocity [15] and is tacitly as-

sumed to be valid in the analysis herein. From intuition and according to measurements

by Geyer et al. [9, 10], the aerodynamic performance of a porous airfoil is expected to

be worse than for a non-porous airfoil, where an increase in the extent of the porous

material decreases the lift and increases the drag. Numerical computations by Bae and

Moon [17] corroborate these trends, demonstrate the ability of porous trailing edges to

suppress tonal peaks in the acoustic signature, and suggest that the optimization of the

porosity distribution could enable greater noise reductions, e.g. [18]. Hence, there is a

potential trade-off between the acoustical benefits of porosity and its negative impact on

7



aerodynamic performance. Recent experimental work by Geyer and Sarradj [10] investi-

gated the aerodynamic noise from airfoils with a finite-length porous trailing edge in an

effort to incorporate the acoustic advantages of porosity. Geyer and Sarradj [10] showed

that, depending on the porous material, airfoils with porosity at the trailing-edge sec-

tion only can still lead to a noticeable noise reduction, while maintaining a certain level

of aerodynamic performance over a fully-porous airfoil. The impact of a finite region

of uniform porosity along the aft portion of airfoil has been examined theoretically by

Iosilevskii [1, 2], resulting in closed-form expressions for pressure distribution, lift and

pitching-moment coefficients, and seepage drag of the airfoil. However, it is unknown

what impact a variation in porosity distribution would have on the airfoil performance,

which may be optimized for noise suppression in conjunction with an external aeroacous-

tic analysis.

This chapter defines the impact of a functional porosity gradient on the steady aero-

dynamics of an airfoil. The fundamental singular integral equation is derived and solved

exactly for the broad class of Hölder-continuous porosity distributions. The resulting

general expression for the pressure distribution may be evaluated numerically and is eval-

uated in chapter 2.4 in closed form for the special case of uniform porosity. Furthermore,

analytical and numerical evaluations of this general result in the limit of a discontinuous

porosity jump are demonstrated to match the analytical work of Iosilevskii [1]. Lastly, the

pressure distribution for a porous SD7003 airfoil is integrated to furnish a lift prediction,

which is compared and contrasted against the experimental data of Geyer et al. [9]. The

results presented in this chapter have been published in [19].
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2.2 Mathematical model

Consider a thin airfoil under the assumption of small disturbances in a two-dimensional,

steady incompressible flow. The solution to the flow field may be written as the linear

combination of two velocity potential functions [20],

φ = φt + φl, (2.1)

where φt denotes the flow field correction due to airfoil thickness, and φl is the lifting flow

field due to airfoil camber and angle of attack. The symmetry of the thickness problem

requires the same pressure distribution above and below the airfoil, and thus no pressure

jump exists across the airfoil. This fact holds regardless of whether or not the airfoil is

porous. Therefore, porosity does not affect the solution of the thickness problem pre-

sented in the classical literature [20,21]. However, the thickness of a generalized porous

airfoil can be absorbed into the porosity distribution function and is represented in the

lifting problem [22]. The lifting problem is now formulated and solved.

Suppose a mean background flow velocity oriented in the x-direction such that U =

Uî, and the local flow rate, ws, directed along the unit normal to the airfoil surface, n̂ =

(−∂za
∂x
, 1), is given by

ws = (∇φ+ U) · n̂

=
(∂φ
∂x

+ U,
∂φ

∂z

)
·
(
− dz

dx
, 1
)

= −∂φ
∂x

dz

dx
− U dz

dx
+
∂φ

∂z
. (2.2)

Classical linear aerodynamic theory requires the ratios of the flow perturbation veloci-

ties relative to U and the local slope of the airfoil to be small [23], say, O(λ), such that

9



O(λ2) terms are neglected. (Note that this ordering scheme permits the present analysis

to hold for weakly-compressible flows provided that the Mach number is also O(λ). The

interested reader may wish to consult Van Dyke [24] and references therein for consider-

ation of Mach number expansions, which are not pursued in detail here.) After neglecting

higher-order terms, (2.2) becomes

w(x, z) = ws + U
dz

dx
, (2.3)

where w(x, z) = ∂φ/∂z. The perturbed flow velocity in the field is also related to the

bound vorticity distribution on the airfoil, γ(x), by [23]

w(x, z) = − 1

2π

∫ 1

−1

(x− ξ)γ(ξ)

(x− ξ)2 + z2
dξ, (2.4)

where x and z have been non-dimensionalized by the airfoil semi-chord. For an airfoil

with a nondimensional Darcy-type porosity distribution R(x), the local flow rate is lin-

early proportional to the porosity and vorticity distribution [25]:

ws = ρUCR(x)γ(x). (2.5)

The combination of equations (2.3-2.5) evaluated at the airfoil surface (z = 0) furnishes

a Fredholm integral equation for the vorticity distribution,

2ρUCR(x)γ(x)− 1

π
−
∫ 1

−1

γ(t)

t− x
dt = −2U

dz

dx
, (2.6)

where constants ρ, U , and C define the air density, mean flow velocity, and the porosity

coefficient, respectively. The function z(x) defines the camber line of the wing, e.g., for

a flat airfoil at angle of attack α, dz/dx = −α.

10



The dimensionless pressure jump is linearly related to the vorticity distribution by [23]

p(x) =
pu(x)− pl(x)

1
2
ρU2

= − 2
γ(x)

U
, (2.7)

where pu and pl denote the dimensional pressure distributions above and below the wing.

According to the Darcy boundary condition, the local flow velocity directed along the

unit normal to the airfoil surface is

ws = − ζ

µnd
(pu − pl), (2.8)

where ζ , µ, n, and d denote the permeability of the solid porous medium, the dynamic

viscosity of the fluid, the open area fraction of the porous material, and the thickness of

the airfoil, respectively. For real airfoils in ordinary scenarios, the values of ζ , µ, and n

are constant, but the thickness d = d(x) varies along the chord.

Also, equations (2.5) and (2.7) together yield:

ws = −CR(x)(pu − pl). (2.9)

Therefore, we can define the multiplication of the porosity coefficient, C, and porosity

distribution, R(x), based on the physical properties of the airfoil and surrounding fluid as

follows:

CR(x) =
ζ

µnd
. (2.10)

By substitution of (2.7) into (2.6), the following integral equation is obtained:

ρUCR(x)p(x)− 1

2π
−
∫ 1

−1

p(t)

t− x
dt = 2

dz

dx
. (2.11)
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Equation (2.11) has been non-dimensionalized usingU and 1
2
ρU2 as the velocity and pres-

sure scales. This integral equation is identical to that examined by Iosilevskii, equation

(9) in [2] with a change of variable ε = ρUC and R(x) = H(x − a), where H(x) is the

Heaviside function and a is the chordwise location where the non-porous and uniformly-

porous segments meet. The class of singular integral equations with Cauchy kernels in

the form of (2.11) can be formulated and solved as a Riemann-Hilbert problem [26, 27].

2.3 Solution of the airfoil pressure distribution

The integral equation (2.11) is now solved as a Riemann-Hilbert problem. Comparing

(2.11) with the canonical singular integral equation (47.1) in [26],

A(x)p(x) +
B(x)

πi

∫
L

p(t)

t− x
dt = f(x), (2.12)

we have

A(x) = δR(x) =
ψ(x)

2
, B(x) = − i

2
, f(x) = 2

dz

dx
, (2.13)

where the dimensionless parameter δ = ρUC embodies the interaction between fluid and

airfoil porosity, while ψ(x) = 2δR(x) contains the airfoil geometry effects as well. Note

that L is a smooth contour that contains points t and x, and A(x), B(x) are functions

given on L. To make progress, the following assumptions must be satisfied [26]:

1. The line L consists of a finite number of (smooth) non-intersecting contours, which

is here a single open contour from −1 to 1 on the real axis.

2. The functions A(x) and B(x) must be Hölder-continuous. A function h is Hölder-

12



continuous when there are non-negative real constants α and β such that the relation

|h(x)− h(y)| ≤ α|x− y|β (2.14)

holds everywhere on L.

3. The sum and difference functions S(x) = A(x) +B(x) and D(x) = A(x)−B(x)

do not vanish anywhere on L.

The index κ of the Fredholm integral equation (2.11) is identically zero, κ ≡ 0 [26, 28].

The general solution for the pressure distribution on an airfoil with a Hölder-continuous

porosity distribution R(x) is now pursued. Following the procedure of [26], define the set

of auxiliary functions

G(x) =
A(x)−B(x)

A(x) +B(x)
=
ψ(x) + i

ψ(x)− i
, (2.15)

Γ(x) =
1

2πi
−
∫ 1

−1

logG(t)

t− x
dt = −

∫ 1

−1

k(ψ(t))

t− x
dt, (2.16)

to obtain the fundamental function Z(x),

Z(x) =
√
A2(x)−B2(x) x−κ/2eΓ(x) (2.17)

=

√
1 + ψ2(x)

2
exp

(
−
∫ 1

−1

k(ψ(t))

t− x
dt
)
, (2.18)

where k(ψ(x)) = 1
π

cot−1 ψ(x) for real ψ(x).

Substitution of equations (4.22-4.24) into the general solution given by (47.13) in [26]

yields

p(x) = A∗(x)f(x)− B∗(x)Z(x)

πi
−
∫ 1

−1

f(t)dt

Z(t)(t− x)
+B∗(x)Z(x)Pκ−1(x), (2.19)
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where Pκ−1(x) is an arbitrary polynomial of degree not greater than κ− 1 (Pκ−1(x) ≡ 0

for κ = 0), and

A∗(x) =
A(x)

A2(x)−B2(x)
=

2ψ(x)

1 + ψ2(x)
, (2.20)

B∗(x) =
B(x)

A2(x)−B2(x)
=

−2i

1 + ψ2(x)
. (2.21)

Finally, the substitution of equations (4.26, 4.27) into (4.25) gives the following pressure

distribution for an airfoil with the prescribed porosity distribution R(x):

p(x) =
4ψ(x)

1 + ψ2(x)

dz

dx
(2.22)

− 4

π
√

1 + ψ2(x)
exp

(
−
∫ 1

−1

k(ψ(t))

t− x
dt
)

× −
∫ 1

−1

dz/dt√
1 + ψ2(t) exp

(
−
∫ 1

−1
k(ψ(ξ))
ξ−t dξ

)
(x− t)

dt.

Recall that ψ(x) = 2ρUCR(x) and k(ψ(x)) = 1
π

cot−1 ψ(x) for real ψ(x). Equation

(2.22) supplies the pressure jump across a thin airfoil with any Darcy-type porosity dis-

tribution, provided that this distribution is Hölder-continuous. We note that the Hölder

condition includes any differentiable and piecewise-continuous porosity distributions that

may be of practical interest.

In general, (2.22) must be evaluated numerically, but analytical progress can be made

for a uniformly-porous airfoil. In the next section, the general solution (2.22) furnishes

closed-form expressions for the pressure distribution over a uniformly-porous airfoil. The

theoretical result (2.22) is also shown to hold in the discontinuous limit of a partially-

porous airfoil, where the Hölder continuity condition formally breaks down.
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(a) (b)

Figure 2.1: Normalized pressure distribution of a uniformly-porous flat airfoil for different
porosity parameters δ: (a) pressure jump normalized by angle of attack, −p(x)/α; (b) pressure
jump normalized by the high porosity limit, −p(x)/(2α/δ).

2.4 Special cases

In this section, the general solution (2.22) is demonstrated for airfoils with uniform poros-

ity, and for partially-porous airfoils composed of a non-porous leading-edge section at-

tached to a trailing-edge section of uniform porosity.

2.4.1 Uniformly-porous airfoils

For the uniformly-porous airfoil, R(x) = 1 and ψ = 2δ is a constant. Therefore, (4.23)

becomes

Γ(x) = k(2δ)−
∫ 1

−1

dt

t− x
= ln

(1− x
1 + x

)k(2δ)

, (2.23)

and the pressure distribution obtained by (2.22) can be written in the following form:

p(x) =
8δ

1 + 4δ2

dz

dx
− 4

π(1 + 4δ2)

(1− x
1 + x

)k(2δ)

−
∫ 1

−1

dz/dt

x− t

(1 + t

1− t

)k(2δ)

dt. (2.24)
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This result holds generally for any camber line z(x). However, if we restrict ourselves to

a flat airfoil at angle of attack α, such that dz/dx = −α, then the pressure distribution is

p(x) =
−4α√
1 + 4δ2

(1− x
1 + x

)k(2δ)

. (2.25)

The obtained pressure distribution (2.25) for the uniformly-porous airfoil is the same as

the result of Iosilevskii [1] for an airfoil with constant porosity that was determined using

an independent asymptotic approach. According to (2.25), increasing the porosity param-

eter decreases the pressure distribution over the uniform-porosity airfoil, as illustrated in

figure 2.1(a). For δ � 1, the pressure distribution becomes increasingly flat with the

value

p(x) ∼ −2α

δ
, (2.26)

and all of the substantial variations in pressure jump are shifted closer to the leading and

trailing edges. This trend can be seen in the pressure distributions normalized by the

high porosity limit (2.26) shown in figure 2.1(b). Note that the singular behavior of the

normalized pressure jump near the leading edge (x→ −1) in this case is

p(x) ∼ −2k(2δ)+2α√
1 + 4δ2

(1 + x)−k(2δ), (2.27)

while the regular behavior near the trailing edge (x→ 1) is approximated by

p(x) ∼ −2−k(2δ)+2α√
1 + 4δ2

(1− x)k(2δ). (2.28)

The limiting case of a non-porous airfoil, where the porosity coefficient C = 0 and
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(a) (b)

Figure 2.2: Porosity and pressure distributions of a thin airfoil with a prescribed differentiable
porosity distribution given by (2.30) with a = −0.5: (a) porosity distributions for r = 10 and
r →∞;
(b) pressure distributions for r = 10 and the singular limit as r → ∞ for the flat airfoil. The
dashed line indicates Iosilevskii’s result, equation (13) in [1].

k(0) = 1/2, recovers the well-known pressure distribution for a non-porous airfoil [23]:

p(x) = −4α

√
1− x
1 + x

. (2.29)

Note that all integrated loads such as lift, pitching moment, and seepage drag can be

determined for the uniformly-porous airfoil from the pressure distribution provided by

(2.24).

2.4.2 Partially-porous airfoils

The general result (2.22) for a generic Hölder-continuous porosity distribution is now

demonstrated to also hold in the discontinuous limit of a partially-porous thin airfoil.

The aerodynamic impact of a finite, uniform porosity distribution along the aft portion of

an airfoil has been examined theoretically by Iosilevskii [1, 2], resulting in closed-form

expressions for pressure distribution, lift and pitching-moment coefficients, and seepage

drag of the airfoil, which can be reproduced numerically in the discontinuous limit of
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a continuous porosity distribution. Attention is again given below only to the pressure

distribution, from which all of the aerodynamic coefficients can be derived.

Suppose a thin airfoil with the following prescribed differentiable porosity distribution

(cf. [15, 29]):
ψ(x)

2ρU
= CR(x) =

1

2
C
(

1 + tanh[r(x− a)]
)
. (2.30)

The porosity distribution given in (2.30) is differentiable and therefore automatically

Hölder-continuous, and the general solution (2.22) for the pressure distribution is valid.

We note that tanh[r(x − a)] → ±1 as r → ∞ for x ≷ a, enabling the pressure distribu-

tion (2.22) to be written in the following form in the case of a thin airfoil with parabolic

camber line, in which dz/dx = −α− βx , as r →∞:

p(x) =
−4(α + βx)ψ(x)

1 + ψ2(x)
(2.31)

+
4

π
√

1 + ψ2(x)

∣∣∣a− x
1 + x

∣∣∣ 12 ∣∣∣1− x
a− x

∣∣∣ cot−1 C
π

× −
∫ 1

−1

α + βt√
1 + ψ2(t)(x− t)

∣∣∣1 + t

a− t

∣∣∣ 12 ∣∣∣a− t
1− t

∣∣∣ cot−1 C
π

dt,

where

ψ(x)

2ρU
→


0 for x < a,

C for x > a.
(2.32)

From (2.32), note that as r → ∞ the airfoil with given porosity distribution (2.30)

represents a partially-porous thin airfoil, composed of an impermeable forward segment

connected to an aft permeable section with a constant porosity distribution. Figure 2.2

illustrates the porosity distribution (2.30) for the illustrated case of a = −0.5 with r =

10,∞ and the resulting pressure distribution for a flat airfoil (β = 0). In the limit r →∞,
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the present model is validated by the independent asymptotic analysis of Iosilevskii [1]

for partially-porous airfoils.

Note that the porosity distribution (2.30) is an example of a Hölder-continuous func-

tion that behaves as a discontinuous piecewise function in the limit r → ∞ to represent

a partially-porous airfoil. Other types of functions, e.g. piecewise continuous functions

among others, may be used to attain the same result.

2.5 Comparison with experimental data for porous SD7003

airfoils

This section compares and contrasts the obtained theoretical result for lift coefficient using

the pressure distribution (2.22) against experimental measurements by Geyer et al. [9] of

airfoils constructed of uniform porous material at various flow speeds U . The chord-based

Reynolds number varies between approximately 4×105 and 8×105, and the Mach number

lies in the range of 0.07− 0.14. Their experimental study cut slabs of porous textiles into

a modified semi-symmetrical SD7003 airfoil shape. This process was repeated to create

a set of airfoils, each of which was constructed using a single textile. Each textile has an

intrinsic air flow resistivity, r, which can be measured from a static pressure drop test of

a uniform slab of material using [9]

r =
∆p

wsd
, (2.33)

where ∆p and d denote the pressure drop and the thickness of the porous sample, respec-

tively. According to the theoretical model and equation (2.33), the porosity coefficient,

C, and porosity distribution, R(x), can be written in terms of the flow resistivity of the
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textile and the thickness distribution of the SD7003 airfoil section:

C =
1

r
, R(x) =

1

d(x)
. (2.34)

The slope of the camber line, dz/dx, and thickness distribution, d(x), of the SD7003

airfoil are represented in the theoretical model by curve fits to airfoil coordinate data

in [30]. These curves are based upon standard formulae describing NACA airfoils and

are presented in Appendix A.

In the experimental study, airfoils are placed in an open jet wind tunnel such that its

spanwise extent is greater than the nozzle diameter, which is circular and of Witoszynski

type. In an attempt to make a comparison with the present theoretical model, the measured

lift force, FL, on the wing is converted into a lift coefficient,

cL =
FL

1
2
ρU2lS

, (2.35)

where l and S denote the chord length and estimated wetted wing span, respectively.

Figure 2.3: Comparison of the predicted and measured lift coefficients of a porous SD7003
airfoil at zero angle of attack for various porosity constants δ.
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Figure 2.3 compares the predicted and measured lift coefficients of a porous SD7003

airfoil at zero angle of attack with various physical porosity properties. The lift coefficient

measured experimentally for the non-porous airfoil (δ = 0), cL ' 0.07 , is less than the

expected value based on the theory, cL = 0.0974. One would not expect these numbers to

match exactly, as Geyer et al. [9] themselves indicated that angle-of-attack corrections to

their raw lift data were abandoned due to their experimental configuration. However, both

theory and experiment show qualitatively that the lift coefficient decreases with increas-

ing porosity parameter δ as expected. For small δ, the experimental measurements agree

well with the theoretical model, and changes to the lift coefficient become less sensitive

to the porosity parameter as it increases. For porosity parameter values above the approx-

imate value δ ≈ 0.01 the theoretical predictions and the experimental data diverge: the

experiments yield a positive lift for all δ considered, yet the model predicts negative lift at

large δ. This latter trend suggests that there may be a predominant physical flow feature

of porous airfoils with high porosity values that is not considered by the present model.

High porosity values may invalidate the small pore-based Reynolds number restriction

required by the Darcy boundary condition and the merit the investigation of more general

porosity laws, such as the Ergun model [17,31]. The sensitivity of the aerodynamic loads

to the choice of porosity boundary condition at large δ is beyond the scope of the present

work and is the subject of ongoing research.

In the theoretical model, we observe the change to negative lift coefficient and reverse

pressure distribution after some porosity parametric value δ0, which depends on the mean

camber line of the airfoil. As it is shown in figure 2.4, the singular pressure distribution

at the leading edge starts from positive infinity, dips to negative values away from the

leading edge, and then changes sign at a point ahead of the trailing edge. The location

of the sign change moves toward the trailing edge as the porosity parameter δ increases.
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Note that the lift coefficient remains negative for large porosity constants. Therefore, for

any cambered airfoil there is a porosity constant δ0 beyond which the airfoil produces a

negative lift coefficient for δ > δ0. The change of sign in the pressure distribution occurs

due to the airfoil camber, as discussed in Appendix B for the uniformly porous special

case. Porous symmetric airfoils at positive angle of attack maintain a positive pressure

distribution and integrated lift for all porosity parameters.

Figure 2.4: Pressure distribution of a porous SD7003 airfoil at zero angle of attack for various
porosity constants δ, based on the theoretical model.

2.6 Chapter summary

This chapter presents the exact solution for the pressure distribution over an airfoil in

a steady incompressible flow with a prescribed Hölder-continuous porosity distribution.

Aerodynamic loads coefficients, lift, moment coefficients, and seepage drag can be ob-

tained in closed form for the special case of a uniformly-porous airfoil. Previous ana-

lytical results for partially-porous airfoils are recovered by the new general solution for

certain limiting cases of piecewise-continuous and differentiable porosity distributions,
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which further verifies the present results. A comparison of the lift prediction for a porous

SD7003 airfoil against available experimental data indicates good agreement for suffi-

ciently small values of the nondimensional porosity parameter that depends on the flow

and porosity of the airfoil material. For large values of the porosity parameter the model

predicts negative lift, a phenomenon due to the camber of porous airfoils and not the an-

gle of attack. Experimental data at large porosity parameter values are positive for all

available data and suggest a missing physical feature in the present model at these high

porosity cases that is the subject of future investigation. Further extensions of the current

work could also include unsteady airfoil motions, which would rely on the general so-

lution of (2.6), where the theoretical frameworks of Theodorsen [32] and Jaworski [33]

could be appropriate.
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Chapter 3

Non-circulatory fluid forces on panels

and airfoils with porosity gradients

The non-circulatory fluid forces on an oscillating porous panel or airfoil in a uniform in-

compressible flow are derived from linearized potential theory. The fundamental integral

equation resulting from a Darcy-type boundary condition with Hölder-continuous spatial

distribution of porosity is formulated and solved. To demonstrate these analytical results,

the non-circulatory pressure distributions for vibrating panels on simple or clamped sup-

ports with either uniform or variable chordwise porosity distributions are presented and

compared. Results from this analysis enable the future aeroelastic stability calculation for

flexible, perforated panels and aim to form the basis of a complete unsteady aerodynamic

and vortex-sound theories for porous airfoils based upon the unique attributes of natural

fliers and swimmers.
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3.1 Introduction

The classical theory of Theodorsen [32] and its later extensions [33] developed closed-

form expressions for the unsteady aerodynamic forces on a piecewise-continuous rigid

and impermeable airfoil undergoing small-amplitude harmonic motions in a uniform in-

compressible flow. These analyses separated the total fluid forces or moments into circu-

latory and non-circulatory parts, which correspond respectively to the contribution of the

unsteady shedding of vorticity into the wake and the non-lifting hydrodynamic sloshing of

fluid about the airfoil [23]. Following the same approach, Gaunaa [34] developed a gen-

eral theoretical framework to predict the aerodynamic loads on unsteady thin deformable

airfoils. These unsteady fluid forces also contribute fundamentally to the airfoil gust re-

sponse problem [23, 35] and the aerodynamic noise generation due to vortex-structure

interactions [36].

The aerodynamic theory of non-circulatory forces on moving bodies in a steady flow

has previously been studied for impermeable flexible panels with various leading- and

trailing-edge boundary conditions in both supersonic and subsonic flows [37–43]. Ac-

cordingly, the mode of instability depends on the boundary conditions as well as the

Mach number. This chapter contributes to this literature by furnishing the aerodynamic

loads on an oscillating porous panel to enable aeroelastic stability predictions, which will

be discussed later in chapter 4.

The present chapter extends the steady analysis of chapter 2 to determine the unsteady

non-circulatory forces on an arbitrarily deforming panel with a Hölder-continuous poros-

ity distribution [44]. An analytical expression for the non-circulatory pressure distribution

is presented and evaluated for the special cases of uniform and variable-porosity panels

undergoing harmonic deformations. These results constitute the first major step towards

a complete linearized, unsteady aerodynamic theory for lifting porous bodies, which may
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Figure 3.1: Schematic of a thin, porous panel in one-sided flow of speed U , undergoing unsteady
deformations za(x, t) and with seepage velocity ws(x, t).

have potential application to the performance estimation of biologically-inspired swim-

mers and fliers and to the future assessment of aeroelastic stability and flow noise produc-

tion of porous airfoils.

3.2 Mathematical model

Consider a thin panel or airfoil undergoing prescribed unsteady motions in a two-dimensional

steady, incompressible flow. For non-circulatory forces, it is sufficient to consider the baf-

fled panel with single-sided flow illustrated in figure 3.1, as neither a vortex sheet nor the

Kutta condition are imposed here. Supposing a chord length l, mean flow speed U , and

fluid density ρ, all terms are nondimensionalized using l, l/U , and 1
2
ρU2 as the length,

time, and pressure scales, respectively.

3.2.1 Porous boundary condition

In the problem illustrated in figure 3.1, the background flow velocity and the panel de-

flection can be written as Uflow = Uî and Upanel = Dza/Dt k̂, respectively, where D/Dt

denotes the total derivative, and the function za(x, t) defines the mean surface of the airfoil

or deforming panel. To obtain the two-dimensional boundary condition along a porous
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airfoil, consider the local seepage flow rate directed along the unit normal to the airfoil

surface, ws,

ws = (∇φ+ Uflow −Upanel) · n̂, (3.1)

where φ is the perturbation velocity potential. The linearized normal unit vector is n̂ =

(−∂za
∂x
, 1), and the perturbation flow velocity on the airfoil surface is

w(x, t) = ws +
∂za
∂x

+
∂za
∂t

, (3.2)

where w(x, t) = ∂φ/∂z|z=0. For an airfoil with a Darcy-type porosity distribution, the

local flow rate is linearly proportional to the porosity and dimensionless pressure distri-

bution: [19, 25]

ws = f0(p(x, t)) = −1

2
ρUCR(x)p(x, t), (3.3)

where C is the porosity coefficient,R(x) is a dimensionless function defining the porosity

distribution, and p(x, t) is the dimensionless pressure jump (upper minus lower) across

the panel. Comparison of the relationship between the local pressure jump and seepage

velocityws against the standard Darcy boundary condition [45] allows the productCR(x)

to be defined in terms of physical parameters the same as in (2.10). Recall that the symbol

µ denotes the fluid viscosity, and κ, n, and d represent the permeability, open area fraction,

and thickness of the porous material, respectively, all which may vary with chordwise

location x.
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3.2.2 Derivation of the singular integral equation

The non-circulatory flow about the panel can be represented by a distribution of sources

and sinks just above and below the line z = 0, which furnishes the following non-

dimensional disturbance potential [23]:

φ(x, z, t) =
1

2π

∫ 1

0

w(ξ, t) ln[(x− ξ)2 + z2]dξ, (3.4)

where w(x, t) is given by (5.10). The linearized Bernoulli equation relates the dimen-

sionless pressure jump to the dimensionless disturbance potential evaluated at z = 0+

by [23]

p(x, t) = −2

(
∂φ

∂x
+
∂φ

∂t

)
. (3.5)

The combination of (5.10-3.5) produces a singular integral equation of the second kind:

p(x, t) =
1

2π

(
−
∫ 1

0

ψ(ξ)p(ξ, t)

x− ξ
dξ +

∂

∂t

∫ 1

0

ψ(ξ)p(ξ, t) ln |x− ξ|dξ
)

+O(x, t), (3.6)

where

ψ(x) = 2ρUCR(x), (3.7)

O(x, t) = − 2

π

(
−
∫ 1

0

g(ξ, t)

x− ξ
dξ +

∂

∂t

∫ 1

0

g(ξ, t) ln |x− ξ|dξ
)
, (3.8)

g(x, t) =
∂za
∂x

+
∂za
∂t

. (3.9)

These equations recover the result derived by Kornecki et al. [39] in the special case of

impermeable panels (C = 0). However, for porous panels, (3.6) depends on both x and
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t and cannot be solved directly in its present form. Application of a Fourier transform in

time yields the ordinary singular integral equation

p̂(x) +
ψ(x)

2π
−
∫ 1

0

p̂(ξ)

ξ − x
dξ +

1

πi
−
∫ 1

0

k(x, ξ)p̂(ξ)dξ = Ô(x), (3.10)

where

Ô(x) = − 2

π
−
∫ 1

0

dẑa
dξ

(
iω ln |x− ξ|+ 1

x− ξ

)
dξ

−2iω

π
−
∫ 1

0

ẑa

(
iω ln |x− ξ|+ 1

x− ξ

)
dξ, (3.11)

k(x, ξ) =
ω

2
ψ(ξ) ln |x− ξ|+ i

2

ψ(ξ)− ψ(x)

ξ − x
, (3.12)

and the hats denote transformed functions. A comparison of (3.10) with the canonical sin-

gular integral equation (57.1) in Muskhelishvili [26] identifies a set of auxiliary functions

that enable an analytical solution:

G(x) =
2− iψ(x)

2 + iψ(x)
, (3.13)

Γ(x) =
1

2πi
−
∫ 1

0

logG(t)

t− x
dt,

=
−1

π
−
∫ 1

0

tan−1[ψ(ξ)/2]

ξ − x
dξ, (3.14)

Z(x) =

√
1 +

ψ2(x)

4
eΓ(x). (3.15)

Finally, (3.10) can be recast into the form:

p̂(x) +
1

πi
−
∫ 1

0

N(x, ξ)p̂(ξ)dξ =
4

4 + ψ2(x)
Ô(x)− ψ(x)

π
√

4 + ψ2(x)
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× exp

(
− 1

π
−
∫ 1

0

tan−1(ψ(t)/2)

t− x
dt

)
−
∫ 1

0

Ô(t)

Z(t)(t− x)
dt, (3.16)

where

N(x, ξ) =
4

4 + ψ2(x)
k(x, ξ)− ψ(x)

π
√

4 + ψ2(x)

× exp

(
− 1

π
−
∫ 1

0

tan−1(ψ(t)/2)

t− x
dt

)
−
∫ 1

−1

k(t, ξ)

Z(t)(t− x)
dt. (3.17)

Equation (3.16) is a Fredholm integral equation of the second kind, which may be solved

using a Liouville-Neumann series [46]. To complete the analysis, the inverse Fourier

transform of the solution to (3.16) determines the non-circulatory pressure distribution

for an arbitrary panel deformation history.

The next section pursues the solution of porous panels undergoing harmonic motions

with a single frequency, from which a Fourier series in time may be used to construct the

unsteady pressure distribution on panels with an arbitrary deformation history.

3.3 Solution for porous panels undergoing harmonic mo-

tions

The non-circulatory fluid forces are now studied for porous panels or airfoils with har-

monic motions, such that za(x, t) = X(x)eiω0t and p(x, t) = P (x)eiω0t, where P (x) is a

complex-valued function and ω0 is a dimensionless frequency. The integral equation (3.6)

can now be reduced and rearranged into the canonical form

P (x) +
1

πi
−
∫ 1

0

N(x, ξ)P (ξ)dξ = f(x), (3.18)
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where

N(x, ξ) =
k(x, ξ)

1 + δ2R2(x)
− δR(x)

π
√

1 + δ2R2(x)
eΓ(x)

×−
∫ 1

0

k(y, ξ)√
1 + δ2R2(y)eΓ(y)(y − x)

dy, (3.19)

f(x) =
O(x)

1 + δ2R2(x)
− δR(x)

π
√

1 + δ2R2(x)
eΓ(x)

×−
∫ 1

0

O(y)√
1 + δ2R2(y)eΓ(y)(y − x)

dy, (3.20)

and (4.6, 3.12) reduce to

O(x) =
2

π
−
∫ 1

0

X ′(ξ) + iω0X(ξ)

ξ − x
dξ

−2iω0

π

∫ 1

0

[X ′(ξ) + iω0X(ξ)] ln |x− ξ|dξ, (3.21)

k(x, ξ) = ω0δR(ξ) ln |x− ξ|+ iδ
R(ξ)−R(x)

ξ − x
. (3.22)

Here δ = ρUC is a constant, and Γ(x) is again defined by (3.14).

The solution to (4.14) can be written as a Liouville-Neumann series [46],

P (x) = lim
n→∞

n∑
k=0

λkuk(x), (3.23)

where λ = −1/πi and

u0(x) = f(x), (3.24)

u1(x) = −
∫ 1

0

N(x, ξ1)f(ξ1)dξ1,

...
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un(x) = −
∫ 1

0

· · · −
∫ 1

0

N(x, ξ1)N(ξ1, ξ2) · · ·N(ξn−1, ξn)f(ξn)dξn · · · dξ1.

Expressions (4.17) and (3.24) together constitute the general solution for the non-circulatory

pressure distribution over a porous panel or airfoil with porosity distribution R(x) under-

going harmonic oscillations in a single-sided flow.

(a) (b)

(c) (d)

Figure 3.2: Pressure distribution for simply-supported non-porous and uniformly-porous panels
with X(x) = sin(πx) and ω0 = 1 at different instants in time: (a) t = 0, (b) t = π/2, (c) t = π,
and (d) t = 3π/2.

For uniformly-porous panels and airfoils, R(x) = 1 and ψ = 2δ is a constant. There-

fore, the associated non-circulatory fluid forces for this uniformly-porous bodies with
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harmonic movements can be determined from (4.17) with

N(x, ξ) =
ω0δ

1 + δ2
ln |x− ξ| − ω0δ

2

π(1 + δ2)

(
x

1− x

) 1
π

tan−1 δ

×−
∫ 1

0

ln |y − ξ|
y − x

(
1− y
y

) 1
π

tan−1 δ

dy (3.25)

and

f(x) =
O(x)

1 + δ2
− δ

π(1 + δ2)

(
x

1− x

) 1
π

tan−1 δ

−
∫ 1

0

O(ξ)

ξ − x

(
1− ξ
ξ

) 1
π

tan−1 δ

dξ. (3.26)

Note that the Liouville-Neumann series is not strictly ordered based on the smallness

of the porosity parameter δ, and the first term of the series, u0(x) = f(x), incorporates

the effects of porosity. It is further noted that the Liouville-Neumann series converges

rapidly for small porosity values of aerospace interest, as will be discussed in the next

section.

3.4 Discussion

The solution for a panel vibrating at a single frequency (4.17) is now evaluated numer-

ically to examine the effects of panel shape and chordwise variation in porosity on the

non-circulatory pressure distribution. The examples presented here use sinusoidal or

quartic panel shapes to approximate the deformations of a panel on simple or clamped

supports, respectively, and the results for a square-root porosity gradient are compared

against the case of uniform porosity. The numerical results presented involve only the

leading-order term P (x) ≈ u0(x) = f(x) in the solution, as the remaining terms are

typically orders of magnitude smaller in practice. The magnitude of the second term in

the Liouville-Neumann series relative to the first term is O(10−1) when δ = 1, which de-

33



creases to O(10−3) when δ = 0.1. Note that expected values of the porosity parameter in

low-speed applications are δ = O(10−2), as measured experimentally by Geyer et al. [9]

and analyzed by Hajian and Jaworski [19]. The pressure distributions for δ values of this

magnitude do not show appreciable differences when compared to the non-porous case.

Therefore, larger values of δ are considered here to illustrate the effects of increasing

porosity on the pressure distribution more clearly.

Figures 3.2 and 3.3 show the real part of the pressure solution p(x, t) = P (x)eiω0t for

non-porous and uniformly-porous panels at ω0 = 1 and compare the effects of a sinusoidal

panel displacement X(x) = sin πx representative of simple end supports against one that

is clamped at both ends, as described by X(x) = 16(x4 − 2x3 + x2). In both cases, the

aerodynamic pressure distributions on non-porous panels (δ = 0) are symmetric about

the mid-chord at t = 0. Figures 3.2 and 3.3 both indicate that the introduction of porosity

breaks the left-right symmetry of the pressure distribution at t = 0, reduces the pressure

peak, and shifts the peak location towards the trailing edge for increasing values of the

porosity parameter δ. These observations are reinforced when the panel deformation is

viewed in continuous time in figure 3.4. It is generally observed that the non-circulatory

pressure distribution on uniformly-porous panels retains the singular or regular behavior

of their non-porous counterpart at the leading edge. A singular behavior always occurs

for uniformly-porous panels at the trailing edge; this singularity at x = 1 arises from

the second term of f(x) in (5.12) for δ > 0. The non-circulatory pressure distribution

over the clamped panel in figure 3.3 is regular at the leading edge for all instants of time

shown. However, figure 3.2 indicates a leading-edge singularity for the simple-supported

panel at times t = 0 and t = π.

Figure 3.5 compares the numerical results for the pressure distribution over a non-

porous panel, uniformly-porous panel (δ = 0.5), as well as a panel with porosity distribu-
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(a) (b)

(c) (d)

Figure 3.3: Pressure distribution for the non-porous and uniformly-porous panels clamped at
both ends with displacement of X(x) = 16(x4 − 2x3 + x2), and ω0 = 1 at different instants in
time: (a) t = 0, (b) t = π/2, (c) t = π, and (d) t = 3π/2.

tion R(x) = 1−
√
x with δ = 0.5; these cases are all produced for ω0 = 1 with sinusoidal

panel deformations X(x) = sin πx at different instants in time. Similar to the uniform

porosity results above, the introduction of a porosity gradient along the chord also breaks

the left-right symmetry of the pressure distribution at t = 0, reduces the pressure peak,

and shifts the peak location towards the trailing edge. However, the reduction in the pres-

sure peak and magnitude of the shift of the peak location in the variable porosity panel

is less than for the uniformly-porous panel. At the leading edge, the singular behavior of

the non-porous panel at t = 0 and t = π is retained in the variable porosity case, as is the

regular behavior at t = π/2 and t = 3π/2. However, in contrast to the uniformly-porous
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(a) (b)

Figure 3.4: Periodic non-circulatory pressure distribution p(x, t) over one period with sinusoidal
panel waveform X(x) = sin(πx) and ω0 = 1: (a) non-porous panel, (b) uniformly-porous panel
with δ = 0.5.

case, a panel with the given porosity gradient behaves like a non-porous panel at the trail-

ing edge and does not generate a singularity there. This regular behavior is obtained here

by choosing a porosity function that vanishes at the trailing edge, i.e. R(1) = 0.

3.5 Chapter summary

From linearized aerodynamic theory, a Fredholm integral equation is derived and solved

analytically as a Liouville-Neumann series for the non-circulatory pressure distribution

on an oscillating porous panel or airfoil in a uniform incompressible flow. The funda-

mental integral equation results from the application of a Darcy-type porosity boundary

condition that has a Hölder-continuous spatial distribution along the chord. The pressure

distribution is determined explicitly for the case of a single frequency, which can be used

to determine the pressure distribution resulting from arbitrary panel deformations with a

Fourier series in time.

36



(a) (b)

(c) (d)

Figure 3.5: Comparison of non-circulatory pressure distributions for non-porous, uniformly-
porous, and variable porosity panels with R(x) = 1−

√
x and δ = 0.5, with a simply support of

X(x) = sin(πx) and ω0 = 1 at different instants in time: (a) t = 0, (b) t = π/2, (c) t = π, and
(d) t = 3π/2.

To demonstrate these analytical results, the non-circulatory pressure distributions for

vibrating panels on simple or clamped supports with either uniform or variable chord-

wise porosity distributions are presented and compared. Porosity breaks the well-known

left-right symmetry of the non-porous pressure distribution, reduces the pressure peak,

and shifts the peak location towards the trailing edge for increasing values of the porosity

parameter δ. The magnitude and aftward shift of the peak is affected by the prescribed

chordwise porosity gradient. The non-circulatory pressure distribution over the clamped

panel is regular at the leading edge for all time instants considered, but a simply-supported

37



panel with sinusoidal displacement generates a pressure singularity at the leading edge.

At the leading edge, porous panels retain the singular or regular behavior of their non-

porous counterpart. A singular behavior is always observed at the trailing edge for porous

panels, with the exception of cases where the porosity vanishes at the trailing edge. The

choice of a porosity function that vanishes at the trailing edge recovers the regular be-

havior of the pressure field observed for non-porous panels. Results from this analysis

are anticipated to enable future aeroelastic stability calculations for flexible, perforated

panels and to form a more complete theoretical basis to study the unsteady aerodynamics

and noise generation of porous structures based upon the unique attributes of natural fliers

and swimmers.
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Chapter 4

Aeroelastic instability of porous panels

with fixed ends

The non-circulatory fluid forces on an oscillating porous panel are applied to aeroelas-

tic stability predictions for porous panels or liners, fixed at both ends. It is shown that

a porous panel with fixed ends loses its stability by divergence, which is in agreement

with the classical result for non-porous panels. However, the divergence speed of porous

panel is greater than its value for non-porous panels, and the divergence speed increases

monotonically with increasing porosity parameter.

4.1 Introduction

Vibrating panels are common sound sources in many engineering devices, such as passively-

tuned vibration absorbers (TVA) [47,48], and continue to be the subject of active research

[49, 50]. The introduction of a mean flow adjacent to a flexible panel introduces the pos-

sibility of self-excited vibrations resulting from aeroelastic flutter. For one-dimensional

panels fixed at each edge, the flutter boundary may be calculated using a set of appropriate
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structured equations coupled to non-circulatory aerodynamic theory. The non-circulatory

forces in a steady flow have been previously studied for vibrating, flexible panels with

different boundary conditions at the leading and trailing edges for both supersonic and

subsonic flows [37–43, 51, 52]. Accordingly, the type of aeroelastic instability depends

on the boundary conditions and on the Mach number. In subsonic flow, panels fixed

at both ends lose stability primarily by divergence, which has been studied both theo-

retically [37–39, 51, 52] and experimentally [38, 52]. For example, Dugundji et al. [52]

showed that divergence occurs for a simply-supported panel at a lower flow speed than

for flutter. However, Weaver and Unny [51] demonstrated that the critical flow speeds

for divergence and flutter might be close together numerically, where one could imagine

in a physical experiment that the primary divergence instability is accidentally bypassed

and flutter oscillations of the secondary instability are observed instead. Flutter can be the

true primary instability type in the case of other boundary conditions, such as cantilevered

ends [39, 42], which has been confirmed experimentally [39]. Similar results have been

also obtained for an elastic strip pinned at one end and free at the other [42].

The present chapter contributes to the panel flutter literature by incorporating the ef-

fects of panel porosity into aeroelastic stability predictions. In this chapter, the unsteady

aerodynamic loads on oscillating panels developed in chapter 3 are coupled to a struc-

tural equation of motion to furnish aeroelastic stability predictions for porous panels or

liners fixed at both ends. The introduction of porosity to the flexible panel is shown to

not change the primary mode of instability: divergence. However, the critical velocity at

which an aeroelastic instability occurs is demonstrated to be larger for the porous panels

than their non-porous counterparts.
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4.2 Mathematical model

This section presents the structural and aerodynamic equations used to study the aeroe-

lastic instability of a thin panel in a two-dimensional steady, incompressible flow, as il-

lustrated in figure 3.1. First, the linear equation of panel deformation is presented and

nondimensionalized. The non-circulatory aerodynamic forces are then coupled to the

panel elastic motion to investigate the aeroelastic stability of porous panels.

4.2.1 Governing equation of panel motion

According to the Euler-Lagrange equation [53], the applied load on a dynamic one-

dimensional panel with linear deformations z̄a(x, t) is related to the deflection by

q = D
∂4z̄a
∂x̄4

+ ρsh
∂2z̄a
∂t̄2

, (4.1)

where D, ρs, and h denote the flexural rigidity, mass density, and panel thickness, respec-

tively. Therefore, a one-dimensional, fluid-loaded panel satisfies

D
∂4z̄a
∂x̄4

+ ρsh
∂2z̄a
∂t̄2

+ (pu − pl) = 0. (4.2)

The terms pu and pl represent the local pressures above and below the panel, respectively.

All parameters in (4.2) are dimensional. By introducing the non-dimensional variables

x = x̄/l, za = z̄a/l, and t = t̄/
√
ρshl4/D, (4.2) can be written in the following form:

∂4za
∂x4

+
∂2za
∂t2

+
λ2

2
p(x, t) = 0, (4.3)

where λ2 = ρU2l3/D, and p(x, t) denotes the dimensionless pressure jump (upper minus

lower) across the panel.
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4.2.2 Non-circulatory pressure distribution

Consider a thin panel or airfoil undergoing prescribed unsteady motions in a two-dimensional

steady, incompressible flow, as shown in figure 3.1. For harmonic motions of imperme-

able airfoils, the classical work of Theodorsen [23, 32] separates the fluid forces into

circulatory and non-circulatory parts, which are related to the unsteady shedding of vor-

ticity into the wake and the hydrodynamic sloshing of fluid about the airfoil, respectively.

Theodorsen’s approach was adopted in chapter 3 to the unsteady motions of porous pan-

els and determine the non-circulatory contribution for a panel with a prescribed porosity

distribution. In the problem illustrated in figure 3.1, the background flow velocity and

the panel deflection can be written as Uflow = Uî and Upanel = Dza/Dt k̂, respectively,

where D/Dt denotes the total derivative. We recall the following singular integral equa-

tion, which had been derived in chapter 3 for the non-circulatory pressure distribution

over a panel with porosity distribution R(x):

p(x, t) =
1

2π

(
−
∫ 1

0

ψ(ξ)p(ξ, t)

x− ξ
dξ +

√
µm

λ

∂

∂t

∫ 1

0

ψ(ξ)p(ξ, t) ln |x− ξ|dξ
)

(4.4)

+O(x, t),

where

ψ(x) = 2ρUCR(x), (4.5)

O(x, t) = − 2

π

(
−
∫ 1

0

g(ξ, t)

x− ξ
dξ +

√
µm

λ

∂

∂t

∫ 1

0

g(ξ, t) ln |x− ξ|dξ
)
, (4.6)

g(x, t) =
∂za
∂x

+

√
µm

λ

∂za
∂t

. (4.7)

In these equations, µm = ρl/ρsh, and C is the porosity coefficient. Comparison of the

relationship between the local pressure jump and seepage velocity ws against the standard
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Darcy boundary condition [45] allows the product CR(x) to be defined in terms of physi-

cal parameters the same as in (2.10). Recall that the symbol µ denotes the fluid viscosity,

and κ, n, and d represent the permeability, open area fraction, and thickness of the porous

material, respectively, all which may vary with chordwise location x.

4.2.3 Formation of generalized aeroelastic divergence problem

According to prior theoretical investigations [37, 38], non-porous panels with both ends

fixed lose stability initially via divergence. The critical flow velocity at which divergence

occurs can be found by analyzing the panel static stability under steady aerodynamic

forces [39]. However, further analysis is needed to show that divergence is the primary

form of instability for porous panels, which will be discussed in more detail in the next

section. To study the divergence for porous panels, the time dependence may be dropped

from (4.4), which leads to the following integral equation for the critical pressure distri-

bution:

pcr(x) =
1

2π
−
∫ 1

0

ψ(ξ)pcr(ξ)

x− ξ
dξ − 2

π
−
∫ 1

0

∂za/∂ξ

x− ξ
dξ. (4.8)

This expression can be recast into the following canonical form that admits a general

solution:

pcr(x) +
ψ(x)

2π
−
∫ 1

0

pcr(ξ)

ξ − x
dξ +

1

πi
−
∫ 1

0

k(x, ξ)pcr(ξ)dξ =
2

π
y(x), (4.9)

where

k(x, ξ) =
i

2

ψ(ξ)− ψ(x)

ξ − x
, (4.10)
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and

y(x) = −
∫ 1

0

∂za/∂ξ

ξ − x
dξ = z′a(1) ln(1− x)− z′a(0) ln(x) (4.11)

−−
∫ 1

0

∂2za
∂ξ2

ln |ξ − x|dξ.

A comparison of (4.9) with the canonical singular integral equation (57.1) in Muskhel-

ishvili [26] identifies a set of auxiliary functions that enable an analytical solution:

A∗(x) =
4

ψ2 + 4
, (4.12)

B∗(x) =
2ψi

ψ2 + 4
,

G(x) =
−2/ψ + i

−2/ψ − i
,

Γ(x) =
1

2πi
−
∫ 1

0

log(G(x))

ξ − x
dξ,

and the fundamental function Z is given by

Z(x) =

√
1 +

ψ2

42
eΓ(x). (4.13)

Finally, the singular integral equation (4.9) can be written in the following form of a

Fredholm integral equation of second kind:

pcr(x) +
1

πi
−
∫ 1

−1

N(x, ξ)pcr(ξ)dξ = f(x), (4.14)

where

N(x, ξ) =
−i

2(1 + ψ(x)2/4)

ψ(ξ)− ψ(x)

ξ − x
(4.15)

− iψ(x)

4π
√

1 + ψ(x)2/4
eΓ(x)−

∫ 1

0

ψ(ξ)− ψ(t)

(ξ − t)
√

1 + ψ(t)2/4
e−Γ(t) dt

t− x
,
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and

f(x) =
8/π

ψ(x)2 + 4
y(x)− 4ψ(x)

π2
√
ψ(x)2 + 4

eΓ(x)−
∫ 1

0

y(t)√
ψ(t)2 + 4(t− x)

e−Γ(t)dt. (4.16)

The solution of Fredholm integral equation of the second kind (4.14) can be written

as a Liouville-Neumann series:

pcr(x) = lim
n→∞

pn(x) = lim
n→∞

n∑
i=0

ξiui(x), (4.17)

where ξ = −1/πi, and

u0(x) = f(x), (4.18)

u1(x) = −
∫ 1

−1

N(x, t1)f(t1)dt1,

...

un(x) = −
∫ 1

−1

−
∫ 1

−1

−
∫ 1

−1

N(x, t1)N(t1, t2) · · ·N(tn−1, tn)f(tn)dtn · · · dt1.

As discussed in chapter 3, the Liouville-Neumann series converges rapidly for small

porosity values of aerospace interest. Therefore, the solution of (4.17) is approximated

by the first term of the series, u0, and

pcr(x) ≈ 8/π

ψ(x)2 + 4
y(x) (4.19)

− 4ψ(x)

π2
√
ψ(x)2 + 4

eΓ(x)−
∫ 1

0

y(ξ)

(ξ − x)
√
ψ(ξ)2 + 4

e−Γ(ξ)dξ.

To obtain the critical flow velocity, (4.19) is substituted into the equation of panel mo-

tion (4.3). Considering only the static stability under steady aerodynamic forces, reduces
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the panel motion equation to

d4za
dx4

+
λ2

π

( y(x)

1 + ψ(x)2/4
+

ψ(x)

2π
√

1 + ψ(x)2/4
eΓ(x)

×−
∫ 1

0

y(ξ)

(ξ − x)
√

1 + ψ(ξ)2/4
e−Γ(ξ)dξ

)
= 0. (4.20)

The special case of (4.20) for non-porous panels (ψ = 0) recovers the result derived

previously by Kornecki et al, (cf. (14) in [39]).

4.3 Aeroelastic instability of uniformly-porous panels

This section studies the aeroelastic instability of uniformly-porous panels, for which

R(x) = 1 and ψ = 2δ is a constant.

4.3.1 Divergence instability

For uniformly-porous panels, (4.8) can be recast in the following form:

pcr(x) +
δ

π
−
∫ 1

0

pcr(ξ)

ξ − x
dξ =

2

π
−
∫ 1

0

∂za/∂ξ

ξ − x
dξ, (4.21)

where δ = ρUC. Following the procedure described in [26], a set of auxiliary functions

may be defined as follows:

G(x) =
A(x)−B(x)

A(x) +B(x)
=

1− δi
1 + δi

, (4.22)

Γ(x) =
1

2πi
−
∫ 1

−1

logG(t)

t− x
dt = −k(δ) ln

(1− x
x

)
, (4.23)
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where k(δ) = (tan−1 δ)/π for real δ, and the fundamental function Z(x) is given by

Z(x) =
√
A2(x)−B2(x) x−κ/2eΓ(x)

=

√
1 + δ2

2

( x

1− x

)k(δ)

. (4.24)

Substitution of equations (4.22)-(4.24) into the general solution given by (47.13) in [26]

yields

p(x) = A∗(x)f(x)− B∗(x)Z(x)

πi
−
∫ 1

−1

f(t)dt

Z(t)(t− x)
+B∗(x)Z(x)Pκ−1(x), (4.25)

where Pκ−1(x) is an arbitrary polynomial of degree not greater than κ− 1 (Pκ−1(x) ≡ 0

for κ = 0), and

A∗(x) =
A(x)

A2(x)−B2(x)
=

1

1 + δ2
, (4.26)

B∗(x) =
B(x)

A2(x)−B2(x)
=

iδ

1 + δ2
. (4.27)

Finally, the substitution of (4.26) and (4.27) into (4.25) yields the following pcr(x) for

uniformly-porous panels:

pcr(x) =
f(x)

1 + δ2
− δ

π(1 + δ)2

( x

1− x

)k(δ)

−
∫ 1

0

f(ξ)

ξ − x

(1− ξ
ξ

)k(δ)

dξ, (4.28)

where

f(x) =
2

π
−
∫ 1

0

∂za/∂ξ

ξ − x
dξ (4.29)

=
2

π

(
z′a(1) ln(1− x)− z′a(0) ln(x)−−

∫ 1

0

∂2za
∂ξ2

ln |ξ − x|dξ
)
.
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Figure 4.1: Critical dynamic pressure for different values of porosity constants δ for panels:
(a) simply-supported ends; (b) clamped ends.

Note that when considering constant ψ = 2δ, the single-term series solution approxi-

mation (4.19) matches the exact solution for uniformly-porous panels (4.28), since the

higher-order terms in the Liouville-Neumann series reflect the effect of variation in the

porosity function ψ(x).

To determine the critical flow velocity at which divergence occurs for uniformly-

porous panels, (4.28) is now substituted into the equation of panel motion (4.3). Consid-

ering only the static stability under steady aerodynamic forces, reduces the panel motion

equation to

d4za
dx4

+
λ2

2

( f(x)

1 + δ2
− δ

π(1 + δ)2

( x

1− x

)k(δ)

−
∫ 1

0

f(ξ)

ξ − x

(1− ξ
ξ

)k(δ)

dξ
)

= 0. (4.30)

Once again, the special case of (4.30) for the non-porous panels, δ = 0, recovers the

expression derived by Kornecki et al. [39]. Now, a uniformly-porous panel is consid-

ered with harmonic motions, such that za(x, t) = X(x)eiωt and p(x, t) = P (x)eiωt. By

substitution of (4.29) into (4.30), the critical dynamic pressure, λ2, at which divergence

occurs, is obtained for simply-supported and clamped ends, and it is shown in figure 4.1

for different values of porosity constants δ. Increasing the porosity parameter increases
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the critical dynamic pressure, which means that divergence instability occurs at higher

flow velocities, and the role of porosity is to suppress the onset of instability.

4.3.2 Dynamic instability

In this section, the critical flow speed and frequency at which instability occurs are ex-

amined for porous panels with fixed ends. The singular integral equation (4.4) had been

solved in chapter 3 for the non-circulatory pressure distribution over a panel with porosity

distribution R(x). Accordingly, the non-circulatory fluid forces for a uniformly-porous

panel with harmonic motions, such that za(x, t) = X(x)eiωt and p(x, t) = P (x)eiωt, is

given by

P (x) =
O(x)

1 + δ2
− δ

π(1 + δ2)

(
x

1− x

) 1
π

tan−1 δ

−
∫ 1

0

O(ξ)

ξ − x

(
1− ξ
ξ

) 1
π

tan−1 δ

dξ, (4.31)

where

O(x) =
2

λ2

(
− λ2Ĩ0(X, x)− iωλ√µmĨ1(X, x) + µmω

2Ĩ2(X, x)
)
, (4.32)

and

Ĩ0(X, x) =
1

π
−
∫ 1

0

X ′(ξ)

x− ξ
dξ, (4.33)

Ĩ1(X, x) =
1

π
−
∫ 1

0

X(ξ)

x− ξ
+X ′(ξ) ln |x− ξ|dξ, (4.34)

Ĩ2(X, x) =
1

π
−
∫ 1

0

X(ξ) ln |x− ξ|dξ. (4.35)
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These integrals arise in the analysis of non-porous panels, cf. Kornecki et al. [39]. Here

P (x) is a complex-valued function, and ω is a dimensionless frequency. Now (4.3) for

panels with harmonic motions is given by:

d4X(x)

dx4
− ω2X(x) +

λ2

2
P (x) = 0, (4.36)

which can be recast as the following:

d4X(x)

dx4
−ω2X(x)−λ2I0(X, x, δ)−iωλ√µmI1(X, x, δ)+µmω

2I2(X, x, δ) = 0, (4.37)

with

Ii(X, x, δ) =
Ĩi(X, x)

1 + δ2
− δ

π(1 + δ2)

(
x

1− x

) 1
π

tan−1 δ

(4.38)

×−
∫ 1

0

Ĩi(X, ξ)

ξ − x

(
1− ξ
ξ

) 1
π

tan−1 δ

dξ, i = 0, 1, 2.

Equation (4.37) has a form exactly like (32) in [39], except for the fact that here the

integrals I0, I1, and I2 include extra terms involving the porosity effects. Equations (4.33)-

(4.35) are recovered when δ = 0. The solution of (4.37) may be expressed by the series

X(x) =
∑
n

CnXn(x), (4.39)

where Cn are constants, and Xn(x) are the beam functions [54],

Xn(x) = cosh(βnx)− cos(βnx)− αn
[

sinh(βnx)− sin(βnx)
]
, (4.40)
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that satisfies the boundary conditions and the equation of free lateral vibration of a beam

in a vacuum,
d4Xn(x)

dx4
− β4

nXn(x) = 0. (4.41)

Substitution of (4.39) into the (4.37) and application of Galerkin’s method yield an infinite

set of homogeneous algebraic equations for the constantsCn. These equations have a non-

trivial solution, provided that the determinant of their coefficient matrix vanishes [39]:

Det
[
− ω2(δij − µmDij) + iωλ

√
µmBij + β4

i δij − λ2Aij

]
= 0, (4.42)

for i, j = 1, 2, 3, · · · . Here δij denotes the Kronecker delta, and A, B, and D are square

matrices whose elements are defined by

Aij =

∫ 1

0

Xi(x)I0(Xj, x)dx, (4.43)

Bij =

∫ 1

0

Xi(x)I1(Xj, x)dx, (4.44)

Dij =

∫ 1

0

Xi(x)I2(Xj, x)dx. (4.45)

Note that Aij terms are proportional to the steady aerodynamic forces, Bij to the Coriolis

forces, and Dij to the virtual mass of the air surrounding the oscillating panel [39].

The characteristic equation for ω (4.42) is now evaluated numerically for given dimen-

sionless flow velocity λ and corresponding frequency ω for vibrating panels with clamped

ends. To solve (4.42), the value of mass ratio µm is fixed, two terms in (4.39) are retained,

and the following constants satisfying (4.40)-(4.41) and the boundary conditions, are con-

sidered for the clamped-clamped panel [54]:

β1 = 4.7300408, β2 = 7.8532046,

α1 = 0.9825022158, α2 = 1.000777311.
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Figure 4.2: Frequency and growth rate versus the dimensionless flow velocity λ for different
values of the porosity parameter δ: (a) frequency, ωR ; (b) growth rate, −ωI .

Note that the point of interest is the lowest value of λ for which the motion becomes un-

stable. Physically, λ must be real and positive, but the frequency ω is a complex number,

ω = ωR + iωI , where ωR and−ωI indicate the frequency and growth rate, respectively. If

the decay rate, ωI > 0, the motion of the plate is dynamically stable, while it is unstable

for ωI < 0. The aeroelastic stability boundary is defined by the critical flow velocity λcr,

at which one or more roots of (4.42) become neutrally stable, i.e. ωI = 0. In the solution

of (4.42), different values of porosity constants δ will be considered to examine the effects

of porosity on the critical flow velocity.

Equation (4.42) has been solved for µm = 0.25. Figure 4.2 shows the frequency

and growth rate of the root which becomes unstable first, versus λ for non-porous panels

with clamped ends, compared against the cases of uniformly-porous panels with values of

porosity constants δ = 0.2 and δ = 0.5. This result shows that the first root loses stability

by divergence for non-porous as well as porous panels. However, the critical value of

λ is larger for porous panels. As it is shown in figure 4.2(b), the non-porous panel is

neutrally stable before instability occurs. However, porous panels maintain aeroelastic

stability at higher flow speeds before divergence occurs. This observation indicates that

porosity acts to damp perturbed or vibrating panels. Note that the mass ratio µm does not
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affect the value of critical dynamic pressure, since the primary instability is divergence.

The independence of the divergence criterion with respect to the mass ratio is obviated by

(4.30), since µm does not appear in the static aeroelastic equations.

The identification of divergence as the general primary aeroelastic instability mode is

now examined rigorously for porous panels. Introducing the parameter s = iω, (4.42)

can be written in the form:

a4s
4 + λ

√
µma3s

3 + a2s
2 + λ

√
µma1s+ a0 = 0, (4.46)

where

a4 = 1− µm
(
D11 +D22

)
+ µ2

m

(
D11D22 −D12D21

)
,

a3 = −B11 −B22 + µm

(
B22D11 −B21D12 −B12D21 +B11D22

)
,

a2 = β4
1 + β4

2 − A11λ
2 − A22λ

2 −D22β
4
1µm −D11β

4
2µm

−λ2µm

(
B12B21 −B11B22 − A22D11 + A21D12 + A12D21 − A11D22

)
,

a1 = −B22β
4
1 −B11β

4
2 + λ2

(
A22B11 − A21B12 − A12B21 + A11B22

)
,

a0 = β4
1β

4
2 − A22β

4
1λ

2 − A11β
4
2λ

2 − A12A21λ
4 + A11A22λ

4. (4.47)

The values of ai coefficients for the cases considered here are presented in tables C.1-

C.3, Appendix C. “The roots s of the characteristic equation (4.46) are examined as λ

increases from zero. Real positive roots represent divergence instabilities, while complex

roots with positive real parts represent flutter instabilities” [52]. To study the stability of

polynomial (4.46), the Routh-Hurwitz stability criterion [55] is considered, which pro-

vides a necessary and sufficient condition for the stability of a polynomial without solv-

ing for the roots directly. Accordingly, satisfying the following conditions, the number of
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roots of a quartic polynomial in the closed right half-plane is zero:


ai > 0, for i = 0, 1, 2, 3

a2a3 − a1a4 > 0,

a1a2a3 − a4a
2
1 + a0a

2
3 > 0,

(4.48)

without loss of generality, we assume a4 > 0.

Applying the above method to the porous panels presented in tables C.2-C.3, we ob-

serve that all conditions in (4.48) are satisfied at λ = 0, by increasing λ the first changing

sign occurs for condition a0 > 0. For the value of critical λ, the imaginary part of the un-

stable root is zero (one can easily see s = 0 is the root), which indicates that the divergent

instability occurs before the flutter instability.

It should be noted that one can always find a numerical approximation of roots, which

may be computationally expensive, depending on the size of your problem. However,

according to this method, aeroelastic instability can be simply established based on the

sign of six terms.

4.4 Chapter summary

The non-circulatory fluid forces on an oscillating porous panel are applied to aeroelastic

stability predictions for porous panels or liners, fixed at both ends. The effect of porosity

has been investigated, and it is shown that a porous panel with fixed ends loses its stability

by divergence, which is in agreement with the classical result for non-porous panels.

Therefore, porosity does not change the type of primary aeroelastic instability.

However, divergence instability occurs in higher flow speeds for porous panels com-

pare to the non-porous ones, this critical flow speed increases as the porosity parameter δ
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increases. These observations indicate that porosity damps and stabilizes elastic panels in

an external flow.
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Chapter 5

Acoustic emission from porous panels

The acoustic far-field pressure is determined for finite-chord panels with uniform porosity

in a single-sided uniform flow. The free space Green’s function for the two-dimensional

Helmholtz equation propagates into the acoustic field the unsteady non-circulatory forces

on the panel, which are known in closed form from established analysis. Results from this

chapter identify the sensitivity of the noise level and directivity from vibrating panels to

changes in Mach number, reduced frequency, and the magnitude of a Darcy-type porosity

parameter.

5.1 Introduction

The acoustic pressure field for vibrating panels may be computed from the Rayleigh in-

tegral [49], which is a two-dimensional convolution of the vibrational velocity and the

Green’s function. These vibrating panels are typically not porous, but porosity effects

have been implemented in aerodynamic noise scenarios as a passive means to suppress

low-frequency noise generation [8,56]. A large body of research has recently emerged to

predict the impact of the edge condition on the trailing edge turbulence scattering mecha-
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nism [7–10,56–61]. Howe [58] examined the scattering of turbulent noise sources from a

semi-infinite rigid plane with porosity at the trailing edge section. Porosity and elasticity

are combined to study the transmission of incident sound through an infinite poroelastic

plate [7], and this model has been employed by Jaworski and Peake [8] to investigate the

scattering of turbulent noise sources from a poroelastic half-plane. Accordingly, trailing-

edge porosity and elasticity can be tuned in a scaling sense to eliminate the predominant

scattering mechanism of trailing edge noise.

The present chapter investigates theoretically whether or not porosity can also be an

effective means of structural noise suppression for one-dimensional panels. Data mea-

sured by Fahy [50] for vibrating panels indicates that for high-porosity panels the sound

radiation efficiency is reduced by a factor of at least five. In that study, the accompa-

nying theoretical results for non-perforated panels are not applicable to perforated ones,

and the present analysis seeks to fill this knowledge gap. The analysis proceeds by using

the Green’s function method to propagate known surface pressures into the acoustic field.

Accordingly, the values of pressure in the far field can be obtained based on the value of

the pressure on the plate at a given frequency [62]. Using the Green’s function method,

Atassi et al. [36] have obtained an exact expression for the far-field acoustic pressure from

the interaction of impinging unsteady vortical disturbances on a thin airfoil in subsonic

flow, where it was shown that the acoustic pressure pattern strongly depends on the value

of the reduced frequency and the mean flow Mach number.

In this chapter, the free space Green’s function for the two-dimensional Helmholtz

equation is combined with the non-circulatory pressure distribution determined in chap-

ter 3 to predict the acoustic far-field pressure of a vibrating porous panel. Results from

this study seek to identify the effects of varying the magnitude of a Darcy-type poros-

ity condition, the reduced frequency, and the mean flow Mach number on the acoustic
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emission of vibrating panels.

5.2 Mathematical model

Consider a thin panel undergoing prescribed unsteady motions in a two-dimensional

steady, incompressible flow. For non-circulatory forces, it is sufficient to consider the

baffled panel with single-sided flow illustrated in figure 3.1, as neither a vortex sheet nor

the Kutta condition are imposed here. Based upon the work of Patrik et al. [62], the

far-field pressure can be determined by knowing the non-circulatory pressure distribution

on the boundary and the free space Green’s function for the two-dimensional Helmholtz

equation. The means of determining the free space Green’s function critical to the acous-

tic problem are outlined in the following sections.

5.2.1 Acoustics of a porous panel

This section aims to calculate the acoustics emission from a porous deforming panel in

subsonic flow. The radiated sound is the far-field solution to the unsteady aerodynamic

problem, which is evaluated by Kirchhoff method [36], using the Green’s function ap-

proach. In the upper half plane above the panel, the governing equation for the acoustic

pressure is shown to be the 2D convective wave equation [62]:[
M2
∞

(
∂

∂t
+

∂

∂x1

)2

−∇2
]
p(x, t) = 0, (5.1)

where c is the speed of sound and M∞ defines the Mach number. For the observation and

source points x = (x1, x2) and y = (y1, y2), a transformation to the Prandtl-Glauert plane

(x̃1 = x1, x̃2 = β∞x2) and transform P = p(x, t)e−i(ωt+M∞Kx1) following Reissner [63]
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and Graham [64] results in

−
(

1−M2
∞

)
∇̃2P + 2iM∞

(
ωM∞ +KM2

∞ −K
) ∂P
∂x1

+M2
∞

(
K2 − 2M∞Kω − ω2 −M2

∞K
2
)
P = 0, (5.2)

where ω is a dimensionless frequency ω = ω0l/U , for dimensional ω0. By choosing

K =
ωM∞

β∞
2 , (5.3)

where β2
∞ = 1 − M2

∞, the coefficient of ∂P/∂x1 vanishes, and the convective wave

equation is reduced to a Helmholtz equation for P :

(
∇̃2 +K2

)
P = 0, (5.4)

Green’s theorem is now employed to evaluate the values of P in the acoustic far field,

based on the value of the pressure on the plate at a given frequency [62]:

P (x̃) =
1

2π

∫
s

[
P (ỹ)

∂G(ỹ|x̃)

∂n
−G(ỹ|x̃)

∂P (ỹ)

∂n

]
ds. (5.5)

Here x̃ and ỹ are the observation and source points, respectively, in the Prandtl-Glauert

plane. The Kirchhoff surface s encloses all the acoustic singularities and the solid bound-

aries. In this case, the Kirchhoff surface is simply a curve in two-dimensional problems

and is chosen to be a circle in the Prandtl-Glauert plane. In (5.5), G denotes the free space

Green’s function, which is defined as satisfying the two-dimensional Helmholtz equation:

(
∇̃2

ỹ +K2
)
G(ỹ|x̃) = −2πδ(ỹ − x̃), (5.6)
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where δ defines the Dirac delta function. The solution to (5.6) is given by:

G(ỹ|x̃) = −iπ
2
H

(2)
0

(
K|ỹ − x̃|

)
, (5.7)

where H(2)
0 is the Hankel function of the second kind. Note that the choice of Hankel

function is time dependent, and it is chosen such that all acoustic waves are outgoing.

To find the acoustic far-field pressure from (5.5), ∂G/∂n and ∂P/∂n are evaluated on

the panel surface. Using the free space Green’s function (5.7), it can be established that:

∂G(ỹ|x̃)

∂ỹ2

∣∣∣
ỹ2=0

= −iπKβ∞x2

2

H
(2)
1

(
K|ỹ − x̃|

)
|ỹ − x̃|

. (5.8)

Also, ∂P/∂n can be evaluated using the linearized Euler equation for incompressible

flows:

∂P (ỹ)

∂ỹ2

∣∣∣
ỹ2=0

=
∂p(ỹ, t)

∂ỹ2

∣∣∣
ỹ2=0

e−i(ωt+M∞Ky1)

=
−2

β∞

(
∂2φ

∂y2∂t
+

∂2φ

∂y2∂y1

)
e−i(ωt+M∞Ky1)

=
−2

β∞

(∂w(y1, t)

∂t
+
∂w(y1, t)

∂y1

)
e−i(ωt+M∞Ky1), (5.9)

where w(y1, t) = ∂φ/∂y2|y2=0 is the perturbation flow velocity on the panel surface and

given by [19]

w(y1, t) = ws +
∂za
∂y1

+
∂za
∂t

. (5.10)

Here ws defines the seepage velocity. For an airfoil with a Darcy-type porosity distribu-

tion, the local flow rate is linearly proportional to the porosity and dimensionless pressure
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distribution [19, 25]:

ws = −1

2
ρUCR(y1)p(y1, t). (5.11)

In the next section, the acoustic far-field pressure is studied numerically for uniformly-

porous panels with simply-supported ends.

5.3 Uniformly-porous panels with simply-supported ends

This section provides numerical solution for the acoustic emission from the special case of

uniformly-porous panels, R(x) = 1, with simply-supported ends. For uniformly-porous

panels with harmonic motions, such that za(x, t) = X(x)eiωt and p(x, t) = P̄ (x)eiωt,

where P̄ (x) is a complex-valued function, the non-circulatory fluid forces had been ex-

pressed in chapter 3 and is given by

P̄ (x) =
O(x)

1 + δ2
− δ

π(1 + δ2)

(
x

1− x

) 1
π

tan−1 δ

−
∫ 1

0

O(ξ)

ξ − x

(
1− ξ
ξ

) 1
π

tan−1 δ

dξ, (5.12)

where

O(x) =
2

π
−
∫ 1

0

X ′(ξ) + iωX(ξ)

ξ − x
dξ (5.13)

−2iω

π

∫ 1

0

[X ′(ξ) + iωX(ξ)] ln |x− ξ|dξ.

Considering the simply-supported boundary condition X(x) = ε sin(πx), ε = 0.01,

(5.9) can be recast in the following form:

∂P (ỹ2)

∂ỹ2

∣∣∣
ỹ2=0

=
1

β∞

[
2ε(π2 + ω2) sin(πy1)− 4iεπω cos(πy1) (5.14)

+δ

(
∂P̄ (y1)

∂y1

+ iωP̄ (y1)

)]
e−iM∞Ky1 ,
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Figure 5.1: Acoustic emission at M = 0.1 for different values of frequency: (a)-(b) from a
non-porous vibrating panel, (c)-(d) from a porous vibrating panel with δ = 0.5.

where P̄ defines the pressure distribution on the panel and given by (5.12). Implemen-

tation of the pressure distribution on the plate and solving the aforementioned integrals

given by (5.8) and (5.14) lead to the pressure evaluation at any point in the field of inter-

est (5.5). Note that the theory presented in chapter 3 is derived for incompressible flows,

therefore in the present work acoustic pressures are evaluated for background mean flows

with M . 0.3 for consistency.

Figure 5.1 shows the amplitude of acoustic pressure produced by a non-porous and a

porous panel forM = 0.1 and δ = 0.5 at different values of reduced frequency. The panel

considered in this problem is exposed to a single-sided flow and therefore propagates

the acoustic pressure into the field similar to a monopole sound source. Figure 5.1(a)

indicates that the far-field pressure produced by a non-porous panel is symmetric for a
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Figure 5.2: Comparison between acoustic emission from porous and non-porous panels at M =
0.1 for: (a) ω = 0.1; (b) ω = 5.

fixed Mach number. Moreover, at low frequencies, the amplitude of the produced sound

decreases by increasing ω, however, for frequencies larger than a critical value ω∗, the

sound produced by structural vibration increases for larger values of frequencies. Similar

behavior is observed in figure 5.1(b) for vibrating porous panels with δ = 0.5; however,

porosity breaks the symmetry for large ω and increases the value of ω∗.

A comparison has been made between the acoustic emission from porous and non-

porous panels in figure 5.2. As illustrated in figure 5.2(b), for a fixed Mach number

M = 0.1, the acoustic pressure emission from non-porous panel decreases by introducing

porosity at frequency ω = 5. However, figure 5.2(a) indicates that porous panels produce

larger sound pressure at lower reduced frequency ω = 0.1.

Figures 5.3-5.5 investigate the effect of Mach number in the far-field acoustic emission

for non-porous and porous panels. At a constant reduced frequency ω = 5, by increasing

the Mach number, larger values of porosity parameter δ are needed to reduce the sound

generated from vibrating panels in all directions. The result of this study indicates that

even at high frequencies, introduction of porosity does not always reduces the sound

pressure.
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5.4 Chapter summary

This chapter determines the acoustic far-field pressure for finite-chord porous panels .

The free space Green’s function for the two-dimensional Helmholtz equation propagates

into the acoustic field of the unsteady non-circulatory forces on the panel, which are

known in closed form from established analysis. The amplitude of the sound produced

by panels with different porosity is compared for different values of porosity parameters

δ and frequencies. Results from this study indicate that, at low Mach numbers, increasing

the magnitude of a Darcy-type porosity parameter leads to a reduction in the acoustic

emission from a vibrating panel at high frequencies, while the introduction of porosity

does not reduce the sound pressure for lower frequencies and larger Mach numbers.
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Figure 5.3: Comparison between the acoustic emission from non-porous and porous panels with
δ = 0.2 and δ = 0.5 at ω = 5 and M = 0.1.
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Figure 5.4: Comparison between the acoustic emission from non-porous and porous panels with
δ = 0.2 and δ = 0.5 at ω = 5 and M = 0.2.
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Figure 5.5: Comparison between the acoustic emission from non-porous and porous panels with
δ = 0.2 and δ = 0.5 at ω = 5 and M = 0.3.
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Chapter 6

Conclusions and Future Directions

This dissertation determines the aerodynamics, structural acoustics, and aeroelastic stabil-

ity of porous airfoils and panels. An exact solution is determined for the pressure distribu-

tion over an airfoil in a steady incompressible flow with a prescribed Hölder-continuous

porosity distribution. Aerodynamic loads coefficients, lift, moment coefficients, and seep-

age drag can be obtained in closed form for the special case of a uniformly-porous airfoil.

Previous analytical results for partially-porous airfoils are recovered by the new general

solution for certain limiting cases of piecewise-continuous and differentiable porosity dis-

tributions, which further verify the present results. A comparison of the lift prediction for

a porous SD7003 airfoil against available experimental data indicates good agreement for

sufficiently small values of the nondimensional porosity parameter that depends on the

flow and porosity of the airfoil material. For large values of the porosity parameter, the

model predicts negative lift, a phenomenon due to the camber of porous airfoils and not

the angle of attack.

From linearized aerodynamic theory, a Fredholm integral equation is derived and

solved analytically as a Liouville-Neumann series for the non-circulatory pressure distri-

bution on an oscillating porous panel or airfoil in a uniform incompressible flow. The fun-
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damental integral equation results from the application of a Darcy-type porosity boundary

condition that has a Hölder-continuous spatial distribution along the chord. The pressure

distribution is determined explicitly for the case of a single frequency, which can be used

to determine the pressure distribution resulting from arbitrary panel deformations with a

Fourier series in time. The non-circulatory pressure distributions for vibrating panels on

simple or clamped supports with either uniform or variable chordwise porosity distribu-

tions are presented and compared. Porosity breaks the well-known left-right symmetry

of the non-porous pressure distribution, reduces the pressure peak, and shifts the peak

location towards the trailing edge for increasing values of the porosity parameter δ. The

magnitude and aftward shift of the peak is affected by the prescribed chordwise porosity

gradient. The non-circulatory pressure distribution over the clamped panel is regular at

the leading edge for all time instants considered, but a simply-supported panel with sinu-

soidal displacement generates a pressure singularity at the leading edge. At the leading

edge, porous panels retain the singular or regular behavior of their non-porous counter-

part. A singular behavior is always observed at the trailing edge for porous panels, with

the exception of cases where the porosity vanishes at the trailing edge. The choice of a

porosity function that vanishes at the trailing edge recovers the regular behavior of the

pressure field observed for non-porous panels.

The non-circulatory fluid forces on an oscillating porous panel are applied to aeroe-

lastic stability predictions for porous panels or liners, fixed at both ends. It is shown that

a porous panel with both ends fixed loses its stability by divergence, which is in agree-

ment with the classical result for non-porous panels. Therefore, porosity does not change

the type of primary instability. However, divergence instability occurs in higher flow ve-

locities for porous panels compare to non-porous ones. These observations indicate that

porosity stabilizes elastic panels in an external flow.
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The unsteady non-circulatory forces on the panel are coupled with the free space

Green’s function for the two-dimensional Helmholtz equation to determine the acous-

tic far-field pressure for finite-chord porous panels vibrating in a single-sided flow. It

is shown that the sound pressure produced by a uniformly-porous airfoil relative to its

non-porous counterpart depends on the reduced frequency, Mach number, and the di-

mensionless porosity parameter. At low Mach numbers, increasing the magnitude of a

Darcy-type porosity parameter leads to a reduction in the acoustic emission from a vi-

brating panel at high frequencies, while the introduction of porosity does not reduce the

produced sound pressure at lower frequencies. Furthermore, it is demonstrated that, even

at high frequencies, porosity does not always reduce the sound pressure; by increasing

the Mach number, larger values of porosity parameter are needed to reduce the sound

generated from vibrating panels in all directions.

This dissertation is concluded with a few future works and open problems. The work

presented in this dissertation was focused on the stationary and non-circulatory aerody-

namic loads on porous panels. A promising future research direction is to investigate the

circulatory effects to form a complete unsteady aerodynamic theory of porous airfoils.

Moreover, this study could be extended to include an optimization analysis based on the

trade-off between the acoustical advantage and aerodynamic penalty of porous bodies.
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Appendix A

SD7003 camber line and thickness

distributions

The slope of the mean surface of the wing, dz/dx, and thickness distribution, d(x), are

based on the SD7003 airfoil coordinates given in [30] and are approximated by the fol-

lowing expressions:

dz

dx
= 0.0456479 + 0.00359184(1 + x)−1/2 − 0.179623(1 + x) (A.1)

+0.287101(1 + x)2 − 0.270092(1 + x)3 + 0.134608(1 + x)4

−0.0270882(1 + x)5,

d(x) = −0.00256 + 0.21524(1 + x)1/2 − 0.09707(1 + x)

−0.057069(1 + x)2 − 0.059067(1 + x)3 + 0.131062(1 + x)4

−0.0790595(1 + x)5 + 0.0160312(1 + x)6. (A.2)
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Appendix B

Verification of generalized steady

aerodynamic solution

The general solution (2.22) for Hölder-continuous porosity distributions is here shown to

recover the theoretical results presented by Iosilevskii [1] for parabolic, uniform-porosity

airfoils. A closed form expression is obtained for the pressure distribution over a uniformly-

porous airfoil with parabolic camber line, for which the camber-to-chord ratio is β/4, and

dz

dx
= −α− βx. (B.1)

Substitution of (B.1) into (2.24) leads to the closed form expression for the pressure

distribution over a uniformly-porous airfoil with a parabolic camber line. Following the

evaluation of the Cauchy principal value integral,

−
∫ 1

−1

(−α− βx)

x− t

(1 + t

1− t

)k(2δ)

dt = π
√

1 + 4δ2(α + βx+ 2k(2δ)β)

−πψ(α + βx)
(1 + x

1− x

)k(2δ)

,
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Figure B.1: Normalized pressure distribution,−p(x)/β, of a uniformly-porous cambered airfoil
at zero angle of attack (α = 0) for different porosity constants δ.

the pressure distribution is:

p(x) =
−4√

1 + 4δ2

(
α + β(x+ 2k(2δ))

)(1− x
1 + x

)k(2δ)

. (B.2)

This pressure distribution for the uniformly-porous airfoil is the same as the result of

Iosilevskii, equation (40) in [1], for an airfoil with piecewise-constant porosity using an

independent asymptotic analysis approach. According to (B.2), increasing the porosity

parameter decreases the pressure distribution over the uniform-porosity airfoil, as illus-

trated in figure B.1. For δ � 1, the pressure distribution becomes linearly proportional to

x with slope −2β/δ,

p(x) ∼ −2(α + βx)

δ
, (B.3)

when sufficiently far from the leading and trailing edges. For uniformly-porous airfoil

with a parabolic camber line, the lift, pitching moment, and seepage drag can be predicted

from the pressure distribution provided by (B.2). The sectional lift coefficient is directly

calculated by

cL = −1

2

∫ 1

−1

p(x)dx = 4k(2δ)πα + 4k(2δ)2πβ. (B.4)
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Note that the obtained lift coefficient for a uniformly porous airfoil with a parabolic cam-

ber line in (B.4) recovers equation (42) in [1] as a→ −1. The agreement of aerodynamic

loads in this limit suggests that the universal constant for the suction force acting on an

impermeable leading edge (see Appendix E of [1]) is unaffected by the imposition of

porosity at the leading edge.
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Appendix C

Coefficients for dynamic instability

prediction of porous panels

The values of ai coefficients given by (4.47) are presented in the following for different

values of porosity parameter δ.

ai δ = 0
a0 1.90391× 106 − 13890.5λ2 + 17.7704λ4

a1 0
a2 4304.1− 9.11693λ2 + 1719.62µ− 1.10206µλ2

a3 0
a4 1 + 0.624449µ+ 0.0845411µ2

Table C.1: ai coefficients for non-porous panels.

ai δ = 0.2
a0 1.90391× 106 − 13397.2λ2 + 16.9317λ4

a1 1192.01− 0.747522λ2

a2 4304.1− 8.77767λ2 + 1679.51µ− 1.00571λ2µ
a3 0.636395 + 0.0955292µ
a4 1 + 0.607689µ+ 0.0811426µ2

Table C.2: ai coefficients for porous panels with δ = 0.2.
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ai δ = 0.5
a0 1.90391× 106 − 11302.1λ2 + 13.5212λ4

a1 2534.13− 1.35312λ2

a2 4304.1− 7.34557λ2 + 1504.25µ− 0.635413λ2µ
a3 1.34087 + 0.18462µ
a4 1 + 0.535261µ+ 0.0669656µ2

Table C.3: ai coefficients for porous panels with δ = 0.5.
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