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Abstract

Transport phenomena in biological flow and soft matter is very important in un-

derstanding human disease and health. The interaction between cells and blood

plasma is important because it not only shows complex mechanical behavior but

also advance our knowledge in medical research. This dissertation presents mod-

eling work in drug carrier delivery in blood suspensions and early detection of cir-

culating tumor cells. Methodologically, the Lattice Boltzmann method (chapter

2) was employed as Navier-Stokes fluid solver due to its competence in modeling

single phase and multiphase flow, handling complex geometries, and the capacity

in parallel computing. A significant part of the work was devoted to the theory,

algorithm, boundary conditions, and code implementations. The cells were imple-

mented using a coarse grained molecular dynamics model (chapter 3) because of its

capacity in modeling solid nonlinear large deformations. Besides the suspending

fluid and cells, nanoparticles (drug carriers) were also introduced into the system

(chapter 4). The coupling fluid and solid was based on the Immersed Boundary

Method (chapter 5) which removes the burden of expensive mesh updating in

traditional Arbitrary Lagrangian Eulerian approach.

The developed code was validated for lid driven cavity flow, cell stretching test,

and sphere dropping test in a quiescent fluid. Numerical models were created to

study nanoparticle transport in blood cell suspensions(chapter 6). Nanoparticle

(NP) dispersion rate is found to be strongly influenced by Red blood cell (RBC)

motion, and to have an approximately linear relationship with shear rate in the

1



RBC tumbling (η < 40s−1) and RBC tank treading (η > 200s−1) regions of the

flow regime. Between these two regions, there is a transition region where cell

gradually transit from a tumbling motion initially into a tank treading motion

eventually. From NP dispersion rate under different shear rate, a general formula

to estimate NP dispersion rate was developed as D = kη + D0 where D0 is the

thermal diffusion coefficient, k is a constant that depends on the hematocrit and

cell capillary number. The formula was extended to predict NP dispersion with cell

suspensions in channel flows. The formula relates the normalized NP dispersion

rate with hematocrit levels, shear rate, thermal diffusion rate and cell size. The

predictions given by the proposed empirical formulae agree well with data reported

in the literature. Thus, these simple predictive analytical formulae provide an

efficient approach for assessing NP dispersion under various flow conditions and

hematocrit levels, thereby facilitating practical modeling of NP transport and

distribution in large scale vascular systems. That is the novelty of this work

compared to other studies in literature. The general formula was also much needed

in NP transport and distribution prediction in a large scale vascular network.

Another contribution of the work is the systematic parametric study of the cell

translocation through a micropore under different pressure difference and micro-

pore size(chapter 7). The goal of the study is to optimize the microfluidic design

so that it can efficiently separate cancer cells from other blood cells. Different cell

deformability characterized by membrane compressibility modulus were selected

to represent cancer cells and white blood cells. We found that the cell transloca-

tion time increases with the cell membrane compressibility modulus, but not very

sensitive to the membrane compressibility. However, the cell translocation time

grows exponentially as the pressure or micropore diameter decreases. Thus, the

pressure difference and the size of the micropore become the key parameters in

microfluidic design. Traditionally the Laplace-Young equation was widely used to

analyze the cell shape and the pressure difference and tension balance. We found

2



that the tension of the cell membrane during the cell squeezing process is not uni-

form, with high stress at the leading membrane or at the membrane contacting

the wall. This is contradictory to the uniform tension distribution assumption in

the Laplace-Young equation. However, when the bending is relatively small, and

a local averaged tension is used, the Laplace-Young equation can still provide a

rough prediction for the minimum required pressure.

3



Chapter 1

Introduction

1.1 Introduction to computational fluid dynam-

ics

Fluid flow has been the interest of human since ancient civilization began in pre-

history times. For example, human beings knew how to use fluid mechanics to

design boats, arrows, and worship vortices[1, 2]. Their knowledge of fluid motion

is more pragmatic if not scientific. Only until the invention of calculus did people

begin to study fluid mechanics using partial differential equations (PDE). The

most widely used fluid model is the incompressible flow of Newtonian fluids, which

are also called incompressible Navier-Stokes (NS) equations. They can be written

as

∇ · u = 0 (1.1)

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ f (1.2)

where u is the velocity vector, ν is the kinetic viscosity, p is the pressure, t is

the time, f is the body force term. Eqn(1.1) represents the conservation of mass.

Eqn(1.2) is essentially Newton’s second law of motion. Typically there are four

unknowns in NS equations, three components of u and p. They are coupled,

4



nonlinear and are second order partial differential equations. Thus, in general

there is no analytical solutions for naiver stokes equations given sufficient initial

and boundary conditions.

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses

numerical methods and algorithms to solve and analyze problems that involve

fluid flows. Generally all the numerical methods to simulate fluid flow can be

divided into two categories: continuum mechanics based methods and particle

based methods. The strategy of continuum mechanics based methods is to use

a grid or mesh domain to replace the continuous domain described in the NS

equation. In this way the partial differential equations will be replaced by a set

of algebraic equations so that computers can be used to find the solution. The

simplest and easiest approach is to use finite difference method to approximate

the derivatives shown in NS equations. Typically it will be applied to structural

grids. A very good practical introduction to develop finite difference code can

be found in Ref[3]. However, the most widely used method is based on finite

volume approach where the integral form of conservation equations are used. NS

equations can be casted into the forms of conversation of mass and momentum.

The solution domain is divided into a finite number of cells that are similar to

the concept of control volume (CV) in fluid mechanics. At the centroid of each

cell the variables such as ux,uy,uz and p will be computed. Interpretation will be

used to get the integral form of the conservation equations along the CV surface.

The particle based method is another category of simulating fluid of which the

idea is originated from molecular dynamics. In atomic scale, molecular dynamics

would be the choice but the length and time are usually limited to small scales. In

mesoscale, there are a lot candidates, such as Smooth Particle Hydrodynamics[4],

Multiparticle Collision Dynamics(also called Stochastic Rotation Dynamics)[5],

Dissipative Particle Dynamics[6], Lattice Boltzmann Method[7, 8]. In this dis-

sertation, I want to highlight the Lattice Boltzmann Method (LBM). LBM is

5



different from traditional PDE based NS solver. e.g., it does not solve (ux,uy,uz)

and p explicitly, as conventional methods do. Instead, it simulates the dynamics

of particle distribution function, which is a quantity derived from kinetic theory of

gases that represents the probability density of finding gas molecules in the phase

space. All the macroscopic variables such as u and p will be derived from the

probability density function. LBM also has many advantages over conventional

methods. First, it is ideal for parallel computing. Its streaming step in the algo-

rithm only involves the nearest neighbor data, and collision step is purely local.

Second, many sets of density distribution functions and their interaction models

can be included to model convective heat transfer and multiphase flows. These

problems are the challenging ones in the field of computational mechanics. Third,

the pressure term is directly obtained from the equation of state that eliminates

the burden of solving Poisson equations in PDE based methods. Details of the

LBM can be found in Chapter 2.

1.2 Modeling in blood flow and drug delivery

Blood is one of the most important components to transport nutrients, hormones,

metabolic wastes, O2 and CO2 throughout the body to maintain a live body.

Normally 7-8% of human body weight is from blood. Blood is not a Newtonian

fluid where it contains cells and plasma. Cells include erythrocytes (red blood

cells, 45% by volume), leukocytes(white blood cells), platelets. Plasma is made of

water(92% by volume), sugar, fat, protein, and salt solution. Blood flow has been

the interest of scientist and researchers for many years. First, understanding the

blood flow is important for biomedical research. For example, blood rheology has

been reported to be altered in various physiopathological processes, such as sickle

cell hemoglobin disease[9], coronary heart disease[10], blood coagulation[11], etc.

Second, from the mechanical point of view, the unique mechanical features of red
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blood cells (highly deformable, biconcave discoid shape, cytoplasmic viscosity)

will result in very complex phenomena in flow. It is well known that RBCs will

undergo tumbling motion or tank treading motion in shear flow, depending on the

external shear stress and cell membrane and cytoplasm properties[12, 13]. The

biconcave geometry enables cell shape change without increasing the surface area.

Thus, studying blood flow can advance our knowledge in both medical science as

well as computational mechanics.

Recently, the application of nanotechnology into medicine brought a new re-

search area named nanomedicine. Various nanoparticles (NP) based platforms

have been used as drug carriers to achieve targeted drug delivery. One of the

reasons is that carriers in the nanoscale offer advantages of enhanced delivery ef-

ficiency, targeting, controlled release, and ability to bypass the biological barriers.

NPs can be engineered into different sizes, shapes and surface chemistry to meet

these requirements. As a key characteristic of NPs, size has been studied exten-

sively and reported in literature. For example, it is known that spherical particles

bigger than 200 nm are efficiently filtered by liver, spleen and bone marrow, while

particles smaller than 10 nm can be quickly cleared by kidney or through extrava-

sation, thus making 10-200 nm the ideal size range for the circulating spherical

carriers. Similar to size, shape is also a fundamental property of NPs that is criti-

cal for their intended biological functions. Most NPs have a spherical shape. With

the advanced nanofabrication techniques, different shapes and forms of NP have

emerged in recent years with unique geometrical, physical and chemical prop-

erties. For example, nanorods with suitable aspect ratio have been fabricated

as a novel contrast agent for both molecular imaging and photothermal cancer

therapy[14]; asymmetrically functionalized Au-NPs have been assembled to build

nanochains[15]; superparamagnetic iron oxide based nanoworms are studied for

tumor targeting[16], and nanonecklaces are assembled using gold NPs by covalent

bonding[17]. It has been reported that cylindrically shaped filamentous micelles
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can effectively evade non-specific uptake by the Reticulo-Endothelial system, al-

lowing persistent circulation for up to one week after intravenous injection[18].

Although NPs offer many advantages over conventional drug carriers, their

transport, binding and distribution are not fully understood. First, NPs are too

small to be visualized in vivo with dimensions between ten to a few hundred

nanometers; it is challenging to track NP trajectories in vivo. Second, biological

environment in vivo for NP is very complex, which involves blood flow, circulation,

elimination and extravasation. NPs cannot always reach targeted sites because

they may be filtered by liver, eliminated by spleen, bonded to healthy cells. Gen-

erally, after administration, the NPs will undergo margination from the core of

the blood stream, then the ligands coated on the NP surface will interact with

receptors expressed over endothelial cell surfaces, which will lead to firm adhesion,

and finally the NPs will be internalized by the cells. A schematic illustration of

the process is shown in Fig.1.1.

To achieve better delivery efficacy, the diseased region type, size, location, and

the patient’s physical parameters (e.g. vascular diameter, blood flow rate, surface

area, blood components) need to be considered. The NP targeted delivery in vas-

cular system involves interplay of transport, hydrodynamic force, and multivalent

interactions with targeted biosurfaces. It is very challenging to explore these phe-

nomena experimentally in vivo, due to the small size of NPs, the dynamic delivery

process, and the complex vascular environment. Thus a mathematical tool that

can predict and evaluate the NP binding and distribution is necessary. Capillaries

are the main places where NPs binding happen. The size of capillaries is of the

same order of red blood cell diameter. To model drug delivery in capillaries the

particulate nature of the blood, RBCs, need to be considered.

In large scale vascular network, it is almost impossible to model all the blood

components explicitly even with the latest computational technologies. It crosses

several order of magnitude in scales, e.g., the size of the vascular network in human

8



Figure 1.1: A schematic illustration of nanoparticle (NP) delivery process in blood
stream. First, the NPs will migrate toward the wall (Margination), then the
ligands of the NPs will interact with the receptors over the endothelial cell surfaces
and form bonding (Firm adhesion), and finally the NP will be internalized by the
cells (Cell internalization). The particles and cells are not drawn in scale.
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lung is in order of centimeters, while the size of RBCs is in micrometers[19, p.333].

It also involves an enormous amount of cells, e.g., a billion of red blood cells[20]

in 1 mL blood sample. Thus, the NP delivery prediction in large scale vascular

network are typically modeled using a convection-diffusion-reaction based partial

differential equation (PDE) models[21–23]. This is a reasonable assumption since

NPs is relatively small compared to large vessel diameters in vascular network.

One of the key parameters in the convection-diffusion-reaction models is the diffu-

sion rate. Research have shown that RBCs influence particle dispersion rate[24–

26]. However, there is no general quantitative law to predict the dispersion rate

considering the influence of blood cells and flow rate. We studied the effect of

different shear rates and hematocrit levels on NP dispersion rate systematically,

and proposed a formula to predict the NP dispersion rate so that it can be di-

rectly used in convection-diffusion-reaction equations based models. The detailed

studying methods and results will be introduced in Chapter 6.

1.3 Circulating tumor cell detection

In USA, cancer has surpassed heart disease as leading cause of death for people

younger than age 85[27]. Metastasis is the spread of a cancer cells from the pri-

mary tumor to the other parts of the body to form a secondary tumor. Metastasis

accounts for about 90% of the death of cancer patients[28]. It is a complex process

with multiple steps. In the beginning, tumor cells detach from a primary and vas-

cularized tumor. As cells transform into cancerous state, they become very soft

because the organized cytoskeleton network is changed into an irregular one, thus,

they can easily penetrate the surrounding tissue, enter nearby blood vessels, travel

through small capillaries, and circulate in the vascular system(intravasation). So

they are also named circulating tumor cells(CTC). Some of these cells eventu-

ally adhere to blood vessel walls and are able to extravasate and migrate into
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(a)

(b) (c)
(d)

Figure 1.2: An illustration of metastasis process. (a) A tumor cell is detaching
from the primary tumor site and penetrate into blood stream. (b) the tumor
cell is in the circulation system. (c) the circulating tumor cell adhesion. (d) the
extravasation and the growth of the secondary tumor.

the local tissue(extravasation), where they can form a secondary tumor. During

the intravasation and extravasation process, the cancer cells must undergo large

deformations. Thus, generally it is agreed that cancer cells are more deformable

than normal healthy cells. A schematic illustration of the tumor cell detaching

from the primary site and intravasation process are shown in Fig.1.2.

In many cases, the person’s chance of full recovery is much higher if the cancer

is diagnosed and treated earlier. Thus, it is very important to detect CTCs in

the early stage. However, detecting CTCs is very challenging, because CTC is a

rare event with about a few CTCs in millions of white blood cells and a billion

of red blood cells[20] in 1 mL blood sample. Many different physical mechanism

have been used to enrich CTCs, including size[29, 30], magnetic field[31, 32], elec-

tric field[33], optical force[34], acoustic fields[35]. Meanwhile, the specific binding

between receptors expressed on cancer cell membrane and ligands coated on mi-

crofluidic chips have been explored to detect CTCs[36]. Among this methods,

they either require sophisticated cell preparation, careful microfluidics design, or

external fields to enumerate CTCs. Alternatively, a low cost microfluidic chip

based on cell deformability has been used to isolate CTCs[37, 38].

Cell deformability is an important biomarker to differentiate diseased cells from

healthy cells[39]. Deformability is indicative of cell physical properties associated

with cell functional changes in underlying cell membrane, cytoskeletal network,

or nuclear changes[40–42]. For example, healthy red blood cells(RBC) are highly
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deformable that can be squeezed through a channel size as small as 4 um under

flow[43]. However, the diseased RBCs, i.e., malaria parasite infected ones, are up

to 10-folder times stiffer than healthy ones[44, 45]. Another example are cancer

cells. The highly deformability enables cancer cells escape the primary tumor

and traverse extracellular matrix and invade circulation system[41, 42]. Not only

the cell deformability will change the cell metastasis process, the reduced friction

on the cell surface may also contribute to the migration process[46]. In both ex-

amples, the cell stiffness changes are related to the pathophysiological state of

individual cells. Thus, the cell deformability can be used as a biomarker to detect

diseased cells. Microfluidics with proper size of micropores or gaps have been

used to differentiate cancer cells from other cells based on the cell deformability.

However, it not clear what micropore size or proper pressure should be used to

differentiate the cells efficiently. In the dissertation, we studied the cell transloca-

tion process through a narrow pore numerically. The effect of cell deformability,

the pressure difference, and the pore size on cell translocation time were studied

using the developed combined lattice Boltzmann method and coarse grained cell

membrane model. It is also demonstrated the capabilities of the developed model

to optimize the microfluidics design so that the cancer cells can be separated from

other blood cells efficiently.
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Chapter 2

Lattice Boltzmann method

Lattice Boltzmann Method (LBM) was originated from Lattice Gas Automata[47,

48] in the 90s last century. Then, it was recognized that it can be used as an al-

ternative to compute fluid dynamics. Many papers[7, 49, 50], reviews[51, 52] and

monographs[8, 53] have been published on its CFD capabilities. An efficient al-

gorithm for stokes flow and treatment for complex solid boundaries in a porous

media were presented in paper[54, 55]. Another advantage of LBM is its capabili-

ties in modeling multiphase flow[56] and convective heat transfer[57]. The simple

algorithm involving local streaming and collision steps makes it relatively easy to

take advantage of parallel computing. Thus, we choose it as our fluid solver in

the dissertation.

2.1 Statistical Mechanics

Simulating fluid behavior can be done in different scales. In engineering applica-

tions, typically fluids are assumed to be a continuum where Naiver-Stokes equa-

tions are usually employed to predict the fluid behavior. Meanwhile, it is well

known that fluids consist of a tremendous amount (∼ 1023) of individual atoms

in atomic scale. There is no surprise that molecular dynamics (MD) can also
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be used to simulate fluid behavior from a bottom up approach. However, it is

too expensive if the MD approach is used to model a large system in micro-size

and running in time of a few seconds even with the current computing resources.

LBM is the method bridge the gap between MD and conventional CFD. LBM

is a simplified Boltzmann equation which describes the statistical behavior of a

thermodynamic system not in thermodynamic equilibrium. The description of

motion of a thermodynamic system in molecule level typically is given in phase

space. Consider a system with N number of molecules, the Newton’s equations

can be written as:

dxi
dt

=
pi
m

dpi
dt

= F i

(2.1)

where i = 1, ..., N , xi is the spacial coordinate of the ith molecule, pi := mξi

is the linear momentum,m is the mass of a molecule, ξi is the velocity vector,

and F i is the external force(e.g., intermolecular interaction potential or electric

force) acting on the molecule. In three dimensional space, there are total of 6N

functions of time (xi(t),pi(t)). Eqn (2.1) provide every detailed information about

each molecule in the system over phase space. However, practically it is impossible

to track all the molecules since N is such an enormous number. However, such a

big number can enable us to treat the thermodynamic system as a continuum in

phase space. A density function can be introduced to describe their distributions.

We can also normalize it so that it is a probability density distribution in phase

space. The normalized probability density distribution function will be denoted

as fN(x1,p1, · · ·,xN ,pN , t). Thus, fN(x1,p1, · · ·,xN ,pN , t)dx1dp1 · · · dxNdpN

is the probability to find a particle within the interval [x1,x1 + dx1] × [p1,p1 +

dp1] × · · · × [xN ,xN + dxN ] × [pN ,pN + dpN ]. The evolution of fN follows the
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Liouville theorem:

dfN
dt

=
∂fN
∂t

+
3N∑
j=1

(
∂fN
∂xj

∂HN

∂pj
− ∂fN
∂pj

∂HN

∂xj

)
= 0 (2.2)

where HN is the Hamiltonian of the system. Integrating fN over part of the phase

space, we define the R particle reduced distribution functions as

FR(x1,p1, · · ·,xR,pR, t) =

∫
fN(x1,p1, · · ·,xN ,pN , t)dxR+1dpR+1 · · · dxNdpN

(2.3)

It is clear that F1(x1,p1, t)dx1dp1 is the probability of finding molecule 1 in the

incremental volume element dx1dp1 about the phase point (x1,p1) at time t. The

coupled equations for temporal evolution of FR(1 ≤ R ≤ N) from integrating Eqn.

(2.2) over part of the phase space is called BBGKY hierarchy of equations[58, p18].

Boltzmann obtained the closed equation for F1 from the BBGKY equations by

a few assumptions of binary collisions and uncorrelated velocities before collision

and free of external forces. Rewriting F1(x1,p1, t) as f(x, ξ, t), the Boltzmann

equation becomes

(∂t + ξ · ∇x + g · ∇ξ)f(x, ξ, t) = Ω(f, f) (2.4)

where g(x, t) is the acceleration term, Ω(f, f) is the differential collision cross sec-

tion for the binary collision transforming from the incoming velocities to outgoing

velocities. The conservation of mass, momentum, and energy would require

∫
Ω(f, f)φk(ξ)dξ = 0 (2.5)
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where φk(ξ) is a function of ξ, k = 0, 1, 2, 3, 4, as shown

φk(ξ) =


1, k = 0 mass

ek · ξ, k = 1, 2, 3 momentum

ξ2, k = 4 energy

(2.6)

where ek is the basis vector of a Catesian coordinate system. The dynamics of

Boltzmann equation (2.4) brings the velocity distribution function closer to the

Maxwell-Boltzmann equilibrium distribution function

f (0)(x, ξ, t) =
ρ(x, t)

2πθ(x, t)D/2
exp

(
−(ξ − u)2

2θ(x, t)

)
(2.7)

where ρ(x, t) and u(x, t) are the density and velocity of the fluid at spatial position

x and time t; θ = kBT/m with kB the Boltzmann constant, m the mass of a single

molecule particle, T is the temperature in the Kelvin units, D is the demensions.

Details of the derivation of the Boltzmann equation can be found in Ref[58].

2.2 From Boltzmann equation to Navier-Stokes

equations

In this section, the derivation from Boltzmann equation to Navier-Stokes equtions

will be presented. There are two most widely used approaches to derive them. The

first one is multiscale Chapman-Enskog expansion analysis[51, 59, 60]. The basic

idea is to separate time into two different scales such as diffusion and convection,

and then use perturbation method to analyze the zero, first, second order of

moments of probability distribution function f . Details can be found in the above

references. However, this approach is very tedious and requires some knowledge in

multiscale analysis. The second approach is through integration of the Boltzmann
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equation over velocity space with respect to the zero, first, and second order

moments of f . This approach is straight forward compared to the multiscale

analysis approach. Thus, it is used here. The following derivation is largely

inspired from Ref [61].

For simplicity, the Boltzmann-BGK equation will be used. The Boltzmann-

BGK equation is defined as

(∂t + ξ · ∇x + g · ∇ξ)f(x, ξ, t) = Ω(f, f) (2.8)

The sound speed is defined as cs =
√
kBT/(mD) Noted that macroscopic prop-

erties can be expressed in terms of the integration of the moments of the density

distribution function over phase space. Specifically, we have

mass density: ρ(x, t) =

∫
f(x, ξ, t)dξ (2.9)

momentum density: ρu(x, t) =

∫
ξf(x, ξ, t)dξ (2.10)

kinetic density: ρε(x, t) =
D

2
ρθ =

1

2

∫
c2f(x, ξ, t)dξ (2.11)

where c = ξ − u is the velocity deviation from the mean velocity. Next, we are

going to multiply Eqn (2.8) with 1, ξ and integrate it over velocity space ξ in

order to get Navier-Stokes equation. For the ease of discussion, let us define an

integration operator I[·] as

I[h](x, t) =

∫
h(ξ)f(x, ξ, t)dξ (2.12)

where h(ξ) is an integrable function dependent only on the velocity ξ, In partic-

ualr, we are interested on 1, ξ, ξ2, corresponding to mass, momentum, and energy.

Multiplying h(ξ) with the Boltzmann equation (2.8) and integrating over velocity
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space, we obtain

∫
(∂tf + ξ · ∇xf + g · ∇ξf)hdξ =

∫
Ω(f, f)hdξ (2.13)

the right hand of Eqn (2.13) vanishes due to the conservation law of the collision

operator(see Eqn 2.5). For each term on the left hand side, we have,

∫
(∂tf)h(ξ)dξ = ∂t(I[h(ξ)]) (2.14)

∫
(ξ · ∇xf)h(ξ)dξ = ∇x ·

(∫
fh(ξ)ξdξ

)
−
∫
f ∇x · (ξh(ξ))︸ ︷︷ ︸

=0

dξ

= ∇x · (I[h(ξ)ξ])

(2.15)

∫
(g(x, t) · ∇ξf)h(ξ)dξ =

∫
(g(x, t)h(ξ) · ∇ξf)dξ (using divergence theorem)

=

∫
(g(x, t)h(ξ) fn)dη︸ ︷︷ ︸

=0

−
∫
∇ξ · (g(x, t)h(ξ))fdξ

= −
∫
g(x, t) · ∇ξh(ξ)fdξ

= −I[g(x, t) · ∇ξh(ξ)]

(2.16)

Note that the vanishing term in Eqn (2.15) is because the term ξh(ξ) does not

depend on x, the vanishing term in Eqn (2.16) is because the probability distri-

bution function f(x, ξ, t) at the boundary of velocity space is approaching zero.

Substituting the above three equations into the Eqn(2.13) to obtain

∂t(I[h(ξ)]) +∇x · (I[h(ξ)ξ])− I[g(x, t) · ∇ξh(ξ)] = 0 (2.17)
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Evaluate Eqn (2.12) when h(ξ) = {1, ξ, ξ2/2}, we get



I[1] = ρ, I[ξ] = ρu, I[c] = I[ξ]− I[u] = 0

I[ξ2] = I[(c+ u)2] = I[c2] + 2I[c] · u+ ρu2 = 2ρε+ ρu2

I[ξξ] = I[(c+ u)(c+ u)] = I[cc] + ρuu = P + ρuu

I[ξ2ξ] = I[(c+ u)2(c+ u] = I[c2c] + 2I[cc] · u+ I[ξ2]u

= 2q + 2P · u+ (2ρε+ ρu2)u

(2.18)

where the pressure tensor is defined as P := I[cc], energy or heat flux is defined

as q =
1

2
I[c2c]. Notice that cc is a tensor product.

Taking Eqn (2.9) and (2.10) into account, and substitute identities (2.18) into

Eqn (2.17) we get the celebrated Navier-Stokes equations

∂tρ+∇ · (ρu) = 0 (2.19)

∂t(ρu) +∇ · (ρuu) +∇ · P = ρg (2.20)

where P := I[cc]. With the continuity equation (2.19), momentum equation

(2.20) can be simplified as

ρ∂t(u) + ρ(u · ∇)u+∇ · P = ρg (2.21)

Let us define stress tensors

Q := cc− c2
sI (2.22)

Π := I[Q] =

∫
(cc− c2

sI)f(x, ξ, t)dξ (2.23)

and reformulate Eqn (2.21)

ρ∂t(u) + ρ(u · ∇)u+∇ ·Π +∇ · (pI) = ρg (2.24)
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where p is the hydrostatic pressure defined as

p = c2
sρ (2.25)

2.3 Lattice BGK Model

As illustrated in section (2.2), the simplest collision operator is the lattice BGK

model[7] characterized by a single relaxation time τ

Ω = −1

τ
(f − f (0)) (2.26)

where τ is the relaxation time and f (0) is the equilibrium density distribution

function defined at Eqn (2.7). Once the collision operator is selected, the next

step is to discretize the velocity space into a few representative velocities. A

particular discretized velocity space including weights, direction, magnitude, etc.

will be named as a lattice structure. A particular lattice structure will be denoted

as DdQq lattice. For example, D2Q9 represents a 2D lattice structure with 9

discretized velocity vectors. Depending on the velocity discretization, there are

several different lattice structures, such as D2Q6, D2Q7, D2Q9, D3Q13, D3Q15,

D3Q19, D3Q27, etc. The criteria to determine the efficient lattice structure is to

achieve the highest order of accuracy with minimum number of discrete velocities.

Meanwhile, the efficient lattice structure should also consider the convenience of

streaming step between different lattices. Gauss quadrature is usually employed to

achieve the better order of accuracy in integration, which will introduce different

weights for each discretized velocity. The detailed derivation process can be found

in Ref[61, 62]. The most widely used lattice structures are D2Q9 for 2D and

D3Q19 for 3D, which will be discussed next.

D2Q9 and D3Q19 are shown in Fig 2.1. Note that part of the velocities of

D3Q19 has been shifted from the origin for the purpose of easy visualization. The
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(a) D2Q9 lattice
(b) D3Q19 lattice

Figure 2.1: Illustrations of D2Q9 and D3Q19 lattices

c2
s = 1/3
w0 = 4/9 ws = 1/9 wl = 1/36
ξ0 = (0, 0)
ξ1 = (1, 0) ξ2 = (0, 1) ξ3 = (−1, 0) ξ4 = (0,−1)
ξ5 = (1, 1) ξ6 = (−1, 1) ξ7 = (−1,−1) ξ8 = (1,−1)

Table 2.1: D2Q9 lattice structure parameters

order of the velocity vectors depends programmer’s preference. For example, the

order of velocity vectors in the D3Q19 lattice(see Fig 2.1b) is shown to be better

in double swap algorithm for the streaming step[63]. The lattice speed is assumed

to be unity for the easy of discussion. The corresponding speed of sound (cs),

weight (wi), velocity vectors (ci) for D2Q9 and D3Q19 are shown in Table 2.1

and Table 2.2, respectively. The subscript s and l represent short velocity vectors

(e.g., (−1, 0) in 2D, (0, 1, 0) in 3D) and long velocity vectors (e.g., (1, 1) in 2D,

(−1, 0, 1) in 3D).

The next step is the discretization of BGK Eqn (2.8) over the space and time.

Let δx and δt represent the physical distance between two adjacent lattice nodes

and the time step. The discretized BGK scheme with force term is described by

fα(xi + ξαδt, t+ δt)− fα(xi, t)︸ ︷︷ ︸
streaming

= −δt
τ

[fα(xi, t)− f (0)
α (xi, t)]︸ ︷︷ ︸

collision

+Fα (2.27)

where α is the index of discretized velocities, ξα is the velocity vector, i is the
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c2
s = 1/3
w0 = 1/3 ws = 1/18 wl = 1/36
ξ0 = (0, 0, 0)
ξ1 = (−1, 0, 0) ξ2 = (0,−1, 0) ξ3 = (0, 0,−1)
ξ4 = (−1,−1, 0) ξ5 = (−1, 1, 0) ξ6 = (−1, 0,−1)
ξ7 = (−1, 0, 1) ξ8 = (0,−1,−1) ξ9 = (0,−1, 1)
ξ10 = (1, 0, 0) ξ11 = (0, 1, 0) ξ12 = (0, 0, 1)
ξ13 = (1, 1, 0) ξ14 = (1,−1, 0) ξ15 = (1, 0, 1)
ξ16 = (1, 0,−1) ξ17 = (0, 1, 1) ξ18 = (0, 1,−1)

Table 2.2: D3Q19 lattice structure parameters

index of spacial lattice site, Fα is the force term. f
(0)
α (xi, t) is the population

distribution at equilibrium. Note that it is not convenient to express Lattice

Boltzmann Equation (LBE) in physical units. We introduce lattice units so that

δx = 1 and δt = 1. The conversion between physical units and lattice units will

be discussed in next section. The equilibrium distribution f
(0)
α is related to the

local macroscale fluid velocity u and the speed of sound cs as

f (0)
α (xi, t) = wαρ

(
1 +

ξα · u
c2
s

+
(ξα · u)2

2c4
s

− u
2

2c2
s

)
(2.28)

The fluid viscosity υ is related to the single relaxation τ

υ = c2
s(τ −

1

2
) =

τ − 1/2

3
(2.29)

The force term Fα is introduced to model external force field, such as gravity or

force exerted by structure deformation. It can be expressed in terms of external

body force density ρg and fluid macroscale velocity u

Fα =

(
1− 1

τ

)
wα

(
ξα − u
c2
s

+
ξα · u
c4
s

ξα

)
· ρg (2.30)
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The discretized version of density and velocity would become

ρ(x, t) =
∑
α

fα(x, t) (2.31)

ρu(x, t) =
∑
α

ξαfα(x, t) (2.32)

When the Reynolds number Re is very small, such as the flow in microfluidics, the

equilibrium distribution 2.28 can be simplified by dropping the nonlinear term

f (0)
α (xi, t) = wαρ

(
1 +

ξα · u
c2
s

)
(2.33)

This method to simulate stokes flow was first proposed by Ladd [54] and has been

used by others as well[64]. Without the nonlinear terms, the computing speed can

be improved by 25% in our simulations. The general flow chart of the algorithm

for LBM is shown Fig. 2.2

Figure 2.2: An example of the flow chart for Lattice Boltzmann algorithm.
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2.4 Regularized BGK model

The BGK scheme is very simple to code. However, it suffers from instability

at high Reynolds numbers. A regularize-equilibrium distribution functions was

proposed by Latt and Chopard[65, 66] to reduce the instability. From Eqn2.12 we

can get the momentum flux tensor Φ by substituting h(ξ) = ξξ,

Φ =

∫
fξξdξ (2.34)

Rewrite Eqn2.34 in discretized component notation,

Φij =
∑
α

fαξαiξαj (2.35)

From multiscale Chapman-Enskog expansion[7, 59], the distribution function f

can be expanded as f =
∑

k f
k. The zero order term is the equilibrium distribu-

tion, f eq = f (0), and the nonequilibrium terms can be defined as

fneqα = fα − f 0
α, and Φneq = Φ− Φeq (2.36)

In BGK model, the nonequilibrium distribution is approximated by the first order

term of the distribution function

fneqα ≈ f (1)
α = − δt

ωc2
s

wαQαij∂iρuj (2.37)

where Qαij is defined in Eqn(2.22).

Φneq
ij ≈

∑
α

f (1)
α ξαiξαj = −δtc

2
s

ω
(∂iρuj + ∂jρui) (2.38)

where ω = 1/τ . Because the use of the first order term to approximate the

nonequilibrium term, the numerical results deviate from its correct hydrodynamic
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behavior that leads to inaccuracy and instabilities[65, 66]. To reduce the discrep-

ancy between fneq and f (1), Ref[65] suggest to reinforce fneq = f (1) and calculate

the regularized f (1) as

f (1)
α =

wα
2c4
s

QαijΦ
neq
ij (2.39)

The standard BGK collision operator can be used to find the distribution function

after collision

f ∗α = f eqα + (1− ω)f (1)
α (2.40)

where f ∗α denotes the distribution after collision.

The algorithm of the regularized BGK method is summarized as follows:

1. find the nonequilibrium part of the distribution function fneq from Eqn.

2.36;

2. find the nonequilibrium part of the stress term Φneq
ij from Eqn. 2.38 by

replacing f (1) with fneq;

3. evaluate the regularized f (1) using Eqn. 2.39. The Qαij can be found using

Eqn. 2.22;

4. evaluate the distribution function after collision using Eqn. 2.40.

During our test, the regularized method can provide more stable solutions for

vortex shedding flows up to Re = 1000 with the characteristic length defined as

the obstacle diameter. The computational time for regularized method is about

15% slower than BGK method. The details of the comparison between BGK and

Regularized BGK can be found in section 2.8.2.

2.5 Multiple-relaxation-time models

The severe instability problem can be even reduced through Multiple-relaxation-

time (MRT) models[67, 68]. The principle of MRT models is to deal with moments
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instead of distribution functions itself. From kinetic theory it is well known that

the hydrodynamics of fluid flow is directly related to mass and momenta moments,

as shown in Eqn.2.9 and 2.10. Thus, the moment representation provides an

intuitive way to interpret the LBM models. Given a set of discrete velocities

ξα, α = {0, 1, ..., N} and corresponding distribution functions fα, we can construct

the same number of moments mα through

mα = 〈φα|f〉 = 〈f |φα〉, 〈f | = (f0, f1, ..., fN) (2.41)

where the Dirac notaions of bra 〈·| and ket |·〉 vectors are used to denote the

row and column vectors, respectively. {|φα〉|α = 0, 1, ..., N} is an orthogonal

dual basis set constructed by the Gram-Schmidt orthogonalization. The moment

space |m〉 = (m0,m1, ...,mN)T are related to the distribution function as |m〉 =

M |f〉, by carefully selected matrix collision S, the evolution of lattice Boltzmann

Equation 2.27 without force term can be rewritten

fα(xi + ξαδt, t+ δt)− fα(xi, t) = −M−1S[|m(xi, t)〉 −m(0)(xi, t)〉] (2.42)

where S is diagonal defined as S = diag(s0, s1, ..., sN), and m(0) is the moments at

the equilibrium. For D3Q19 model, the components of 19 orthogonal basis vectors

are given by 
|φ0〉α = |ξα|0,

|φ1〉α = 19|ξα|2 − 30,

|φ2〉α = (21|ξα|4 − 53|ξα|2 + 24)/2,

(2.43)
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where |ξα|0 = 1, |ξα| = (ξ2
αx + ξ2

αy + ξ2
αz)

1/2.


|φ3〉α = ξαx,

|φ5〉α = ξαy,

|φ7〉α = ξαz,

(2.44)


|φ4〉α = (5|ξα|2 − 9)ξαx,

|φ6〉α = (5|ξα|2 − 9)ξαy,

|φ8〉α = (5|ξα|2 − 9)ξαz,

(2.45)


|φ9〉α = 3ξ2

αx − |ξα|2,

|φ11〉α = ξ2
αy − ξ2

αz,

(2.46)


|φ13〉α = ξαxξαy,

|φ14〉α = ξαyξαz,

|φ15〉α = ξαxξαz,

(2.47)


|φ10〉α = (3|ξα|2 − 5)(3ξ2

αx − |ξα|2),

|φ12〉α = (3|ξα|2 − 5)(ξ2
αy − ξ2

αz),

(2.48)


|φ16〉α = (ξ2

αy − ξ2
αz)ξαx,

|φ17〉α = (ξ2
αz − ξ2

αx)ξαy,

|φ18〉α = (ξ2
αx − ξ2

αy)ξαz,

(2.49)

The corresponding 19 moments {mα|α = 0, 1, ..., 18} are listed as

|m〉 = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T

(2.50)
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The transforming matrix M can be assembled by evaluating |φ〉α. The collision

matrix S in 2.42 is given by

S = (0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16)T (2.51)

The recommended values for the S as well as the equilibrium values for non-

conserved moments are given Ref[67, 68].

2.6 Units choice analysis and conversion

As pointed out in Section 2.3, lattice units are commonly used in literature for

convenience. Knowing how to convert the physical units into lattice Boltzmann

units is important in modeling and result interpretation, and vise versa. However,

the conversion process is quite confusing for the new beginners. That is why we

put a short discussion on units conversion here. The following analysis is mainly

inspired by Ref [69]. Generally, two criteria should be followed in the parameter

choice in any modeling process. Firstly, the numerical model should represent the

physical system we are trying to study. Take the incompressible Navier-Stokes

equations as an example, that requires us to make sure the Reynolds number (Re)

is the same for both physical system and lattice Boltzmann model. Secondly, the

parameters should be fine tuned in order to reach the designated accuracy. Lattice

Boltzmann method is generally considered as a second order accurate scheme in

both space and time for the simulation of weakly compressible, athermal flows

at small Mach numbers. Ref [69] recommends δt ∼ δx2. However, in multiblock

grid refinement of LB method, external velocity in lattice units would be kept the

same across different grid blocks, which would require δt ∼ δx.

In practice, typically τ, δx, and ρ are three parameters provided by the user

for athermal flows, among which the first two are free parameters to tune. υ can

28



be calculated from Eqn (2.29) with τ given. The time step

δt = υδx2/υp (2.52)

where υp is the kinetic viscosity of physical fluids. So far all three physical values

for δx, δt, and ρ have been identified. During the units conversion, we should

follow a general principle that any quantity in lattice units should be equal to the

quantity in physical units divided by a scaling factor. The scaling factor can be

determined by checking the dimensions of the quantity. To clarify these proce-

dures, we will consider an example of red blood cell (RBC) transport modeling in

a microfluidic channel with detailed calculation steps. The fluid in the microflu-

idic channel is assumed to be water with a density of ρ = 1000kg/m3 and kinetic

viscosity of υp = 10−6m2/s. In order to have enough resolution for RBC motion,

let δx = 0.1µm. The relaxation parameter τ is usually taken as τ = 1 considering

LBM stability and efficiency. Using Eqn (2.29) we get υ = 0.167 and then time

step δt = 1.67 × 10−9s. Typically the Young’s modulus E of RBC membrane is

about E = 5 × 10−6N/m. Knowing the dimension of E is [kg/(s2)], we can get

the corresponding scaling factor Escale = ρdx3/dt2 = 0.3586N/m. In the end, we

get the Young’s modulus in lattice units Elb = E/Escale = 1.39×10−5. Noted that

Elb is dimensionless. That is the example of converting Young’s modulus for the

application of cell modeling. Note that the value δt is in nanoscale, which requires

us to run many iterations ( in order of ∼ 109) in order to model RBC behavior in

seconds. That is indeed the case. Fortunately, we can tune two free parameters

to increase δt, either increasing δx or decreasing τ . However, generally the recom-

mended range of τ is between 0.8 and 1, depending on Reynolds numbers[70]. τ

close to 0.5 or greater than 1 will result in inaccuracies in the simulation. One of

the tricks to accelerate the low Re simulation is to scale the Re number by a factor

of n. The reasoning behind it is that the time scale in highly viscous flow does not
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depend on the Reynolds number as long as it is relatively small[71]. e.g., physics

of the flow at the Re = 0.001 is very similar to the flow with a large Re = 0.1.

In this case the Re has been scaled up by 100 times. The simulation results at

Re = 0.1 at time t = 0.1s should be interpreted as the results from Re = 0.001 at

time t = 10s, which is 100 times bigger based on the relation shown in Eqn. 2.52.

Following the discussion presented in [70], we can find the relationship between

dimensionless number Re,Ma and lattice resolution N and speed of sound cs

Ma

Re
=

1

cs

τ − 1
2

N
(2.53)

Ideally all the dimensionless parameters in the LB simulation should exactly

match the physical system we want to model. However, this is very difficult

to achieve(e.g., at the cost of long simulation time or even impossible with many

dimensionless numbers). It is also not the goal of mesoscopic simulation ap-

proach[71, 72]. In practice, we can sacrifice the Mach number (Ma) to gain large

time steps (recall δt ∝ Ma2) as long as the compressibility does not significantly

affect the simulation results. More details on simulation parameter selection can

be found on Ref[70, 71].

2.7 Boundary Conditions

For general partial differential equations (PDE), boundary and initial conditions

are required in order to determine the unique solution. In Navier-Stokes equations,

velocity and pressure boundary conditions are usually specified at the boundaries

at the initial time t = 0. However, it is not that straight forward to deal with

the boundary conditions in LB simulations, as the macroscopic variables have to

be translated into the density distribution functions. Translating the macroscopic

variables into density distribution is not one to one mapping, e.g., one set of fluid

velocity and density could refer to many different density distributions, as long as
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the density distribution satisfies Eqn (2.31) and (2.32). For the boundary nodes,

the population distribution can be classified into two categories, the incoming and

outgoing groups. The incoming distributions refer to those distribution along the

velocity vector ξα such that

ξα · n < 0 (2.54)

where n is the outward surface norm of the boundary. Similarly, the velocity

vector of outgoing distributions satisfy ξα · n > 0. During streaming step, the

outgoing distributions come from the adjacent internal fluid nodes, while the

incoming distribution should have come from the nodes inside the wall (or outside

of the fluid domain) which does not exist. So the incoming distribution on the

boundary nodes is unknown. To solve this, many constrictions have been proposed

to find the closed solution to the density (or population) distribution function

(see section 2.7.2 for details). In what follows, we will discuss the most widely

used boundary conditions, such as nonslip boundary conditions, velocity boundary

conditions, and pressure boundaries.

2.7.1 Non-slip boundary conditions

Nonslip boundary conditions refer to the boundaries where the fluid velocity is

zero. It is widely used to model stationary solid walls. A bounce back algorithm

is commonly used to model this type of boundaries. The name bounce back

came from an intuitive idea that a hard wall reflects particles back to where they

originally came from. There are two types of bounce back algorithms, namely full

way bounce back and half way bounce back. The full way bounce back is easy to

implement; just reverse all the populations on the lattice site during the collision

process. The algorithm is illustrated in Fig. 2.3
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Figure 2.3: The full way bounce back algorithm. Ω is the fluid domain, ∂Ω is the
boundary.

Since all the population at the boundary sites have been reversed, it can be

verified that there is no tangent or normal flux to the boundary surface. The full

way bounce back algorithm is local and very easy to program. However, it is only

first order accurate because of the one-sided character of the streaming operator.

The half way bounce back is credited with second order accuracy but with some

complications. The half way bounce back is to inverse all the populations during

streaming step. The unknown populations at the boundaries directly come from

the adjacent nodes, as illustrated in Fig. 2.4

Figure 2.4: The half way bounce back algorithm

2.7.2 Velocity and pressure boundaries

Another common boundary condition is to specify the velocity directly on the

boundary, which is usually called Dirichlet boundary condition in mathematics.

Bounce back idea was also used to specify moving walls in LBM. In this section,
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we will introduce two commonly used boundary conditions. The first one was

proposed by Ladd [54]. The incoming density at the wall can be calculated by

fi(x, t+ 1) = f ∗−i(x, t)− 2wiρ(x, t)
uw · ξi
c2
s

(2.55)

where fi(x, t + 1) is the unknown density distribution at the moving wall in the

direction of ξi, f
∗
−i(x, t) is the post collision density distribution in the opposite

direction of ξi. Here −i denotes the opposition direction of i. uw is the velocity

of the moving wall. The Ladd velocity boundary conditions is also shown in Fig.

2.5. The unknown density distribution fi and post collision density distribution

f−i are shown in dashed frames.

Figure 2.5: Illustration of moving wall boundary conditions based on modified
bounce back rule

The second one was proposed by Q. Zou and X. He[73]. To determine the

incoming velocities on the boundary, their velocity boundary conditions are based

on the idea of bounce back of the non-equilibrium part of the distribution function.

Let us consider a lattice node on the bottom boundary surface, as shown in Fig.

2.6. Based on Eqn (2.54), we can see f2, f5, andf6 are the unknown incoming

distributions. From Eqn (2.31) and (2.32), we have

f2 + f5 + f6 = ρ− (f0 + f1 + f3 + f4 + f7 + f8) (2.56)
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H

Figure 2.6: A lattice node on the bottom boundary surface. The shaded area is
the boundary wall.

f5 − f6 = ρux − (f1 − f3 + f8 − f7) (2.57)

f2 + f5 + f6 = ρuy + (f4 + f7 + f8) (2.58)

Combination of Eqn (2.56) and Eqn (2.58) gives

ρ =
1

1− uy
f0 + f1 + f3 + 2(f4 + f7 + f8) (2.59)

However, there is not enough informationt to find f2, f5, andf6. In Ref[73], the

bounce back rule for the non-equilibrium part of the particle distribution normal

to the boundary surface is applied. In this case, f2 − f (0)
2 = f4 − f (0)

4 is assumed.

With this assumption we can find f2, f5, f6 through

f2 = f4 +
2

3
ρuy

f5 = f7 −
1

2
(f1 − f3) +

1

2
ρux +

1

6
ρuy

f6 = f8 +
1

2
(f1 − f3)− 1

2
ρux +

1

6
ρuy

(2.60)

Similarly, the unknown distributions can be found following the procedure de-

scribed above. For reference, the final result for left, right, top, and bottom

boundaries are listed below.
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left
ρ = 1

1−ux (f0 + f2 + f4 + 2(f3 + f6 + f7))

f1 = f3 + 2
3
ρux

f5 = f7 − 1
2
(f2 − f4) + 1

2
ρuy + 1

6
ρux

f8 = f6 + 1
2
(f2 − f4)− 1

2
ρuy + 1

6
ρux

right
ρ = 1

1+ux
(f0 + f2 + f4 + 2(f1 + f5 + f8))

f3 = f1 − 2
3
ρux

f7 = f5 + 1
2
(f2 − f4)− 1

2
ρuy − 1

6
ρux

f6 = f8 − 1
2
(f2 − f4) + 1

2
ρuy − 1

6
ρux

top
ρ = 1

1+uy
(f0 + f1 + f3 + 2(f2 + f5 + f6))

f4 = f2 − 2
3
ρuy

f7 = f5 + 1
2
(f1 − f3)− 1

2
ρux − 1

6
ρuy

f8 = f6 − 1
2
(f1 − f3) + 1

2
ρux − 1

6
ρuy

bottom
ρ = 1

1−uy (f0 + f1 + f3 + 2(f4 + f7 + f8))

f2 = f4 + 2
3
ρuy

f5 = f7 − 1
2
(f1 − f3) + 1

2
ρux + 1

6
ρuy

f6 = f8 + 1
2
(f1 − f3)− 1

2
ρux + 1

6
ρuy

Table 2.3: Unknown distribution reference table for left, right, top, and bottom
boundaries

The same concept can be applied to D3Q19 as well. The detailed derivation

and calculation formula for the incoming population distribution can be found in

Ref [74]. The 3D code developed in our group also followed this reference.

Pressure boundary conditions are also widely used in LBM. Here the pressure

boundary conditions are referred to pressure difference, because pressure itself

does not drive the fluid flow. In LBM, applying pressure boundary condition is

essentially to specify the density at the boundaries. Generally the fluid density in

LBM is initialized as unity over the whole fluid domain. In 3D LBM, due to the

continuity equation 2.19, we can only specify three of the four unknowns (u, v, w, p)

on the boundary. In code implementation process, we generally convert pressure

difference into LB units first, and then using equation of state 2.25 to convert

pressure difference into density difference next, and add the density difference

to the boundary that has higher pressure. The formula to convert pressure into

35



density is shown in Eqn.2.61

ρ = 1 +
1

c2
s

p

δρ

δt2

δx2
(2.61)

where p is the pressure difference in physical scale in units of Pa, δρ is the density

scaling factor, δt and δx are the time and length scaling factor, respectively. c2
s is

the square of speed of sound.

2.8 Fluid flow benchmark

2.8.1 2D channel flow

We implemented the LBM algorithm and the 2D code was released over github

(https://github.com/TJFord/iblb2d) as an open source code. To test the fluid

solver, we created a 2D channel flow case with 20 × 20 lattices over the length

and width. A parabolic fluid velocity with Vmax = 0.02 was applied at the in-

let. A periodic boundary condition was used for the outlet. The top and bottom

boundaries were assumed to be nonslip using bounce back algorithm. The relax-

ation parameter τ = 1. We ran the simulation to time step 1200, where the fluid

velocity already reached the steady state. The fluid velocity across the channel at

the middle point of the length were selected and compared with the theoretical

parabolic profile. The comparison between the simulation and the theoretical val-

ues are shown in Fig. 2.7 As shown from the figure, the numerical simulation data

agree well with the theoretical predictions. The relative error of the maximum

velocity is 0.4%. Thus, it states that the code can correctly solve the fluid flow.

2.8.2 2D flow past cylinder

To demonstrate the bounce back boundary conditions, a 2D vortex shedding flow

was created. The 2D channel has length of 400 and width 100. The diameter of
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Figure 2.7: Comparison between theoretical values and the simulation data of the
fluid velocity across the channel at the middle of the channel length

the cylinder is 20. The cylinder center was positioned at point (81, 53), as shown

in the Fig.2.8.

Figure 2.8: The geometry and the fluid flow settings for the vortex shedding
simulation. All the parameters are given in lattice Boltzmann units.

The boundary of the cylinder and channel side wall were modeled using bounce

back algorithm. Zou/He velocity boundary conditions were applied at the inlet

with a parabolic velocity profile. The maximum velocity is 0.1 in lattice Boltz-

mann units. The Re with cylinder diameter as the characteristic length is 100.

The relaxation time τ = 0.566. Both the BGK and regularized BGK collision

scheme were used. The fluid velocity was initialized with a parabolic flow profile
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along the whole channel. The fluid flow distribution for BGK and regularized

BGK simulation is shown in Fig.2.9a and 2.9b, respectively. It looks like almost

(a) BGK collision scheme

(b) Regularized BGK collision scheme

Figure 2.9: The fluid velocity field and the alternatively shed vortex after the
cylinder in the flow past cylinder simulation. (a) BGK collision scheme; (b)
Regularized BGK collision scheme

identical for the flow flied from Fig.2.9. The velocity components in x, y direction

along the line x = 150 were selected for comparison for both BGK and regularized

BGK scheme. The velocity comparison plot are shown in Fig. 2.10. The velocity

distribution from both methods agree well.

2.8.3 3D lid driven cavity flow

A 3D lid driven cavity flow was also created to bench mark the 3D fluid solver.

The fluid domain is a cubic box. Each side of the cubic is 1m. A fluid velocity

of 1 × 10−4m/s was applied to the lid. The other 5 boundary faces were set to

be nonslip using the boundary conditions presented in Ref. [74]. The fluid was

assumed to be water with kinetic viscosity of 1× 10−3m2/s. Thus, the Re is 100.

The cubic box was discretized with 33×33×33lattices. The relaxation parameter

was set as τ = 0.7. The snap shot of the velocity profile at the middle plane of
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(a) velocity component ux along the channel at x = 150

(b) velocity component uy along the channel at x = 150

Figure 2.10: The fluid velocity field along the line x = 150 in the flow past cylinder
simulation. (a) velocity component ux in x direction; (b) velocity component uy
in y direction.

the lid with velocity arrows were shown in 2.11. Notice that the legend shows the

velocity in lattice Boltzmann units, which is different from the physical value of
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1× 10−4m/s. The velocity component along the lid driven direction from the lid

Figure 2.11: The snapshot of the flow profile at the middle plane of a lid driven
cavity flow. A velocity color map is shown in the figure as well. The velocity is
in lattice Boltzmann units.

to the bottom was also compared with the data presented in Jiang&Lin[75]. The

velocity component and the cavity height were normalized to 1. As shown from

the figure, we can see that our code can correctly reproduce the velocity field in

the lid driven cavity flow.

2.9 Further discussion

So far we only scratch a little bit of Lattice Boltzmann method. One of the

problems is that the time step used in microscale simulation is very small, as

shown in the units conversion example in Section 2.6. The time step used is in

nanoseconds. That would require a large number of time steps to achieve a few

seconds in physical time. Except the method of scaling Reynolds number(see

Section 2.6), another solution to speed up the code is using hierarchical grid

refinement[76]. The whole fluid domain is covered with a coarse grid while a finer
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Figure 2.12: Velocity component comparison between our simulation and the data
presented in Jiang& Lin[75]

grid is superposed on the coarse grid during the critical region. The calculation

proceeds with large time steps over the coarse grid, while on the finer grid several

time steps are performed in order to catch the same time step size in the coarse

grid. Interested readers on multi-grid or multi-lattice techniques will refer to

Ref[76–78].

Another nice feature of LBM is the multiphase/multicomponent flow simu-

lation capabilities. Through introducing multiple distribution functions, we can

model as many components as we can. One of the most popular multiphase flow

model was Shan-Chen model proposed in Ref.[79], where a nonlocal interactions

among the particles are introduced to model the interaction between different com-

ponents. The Shan-Chen model was used to model rising bubbles in Ref.[80]. A

review on multiphase flow modeling using LBM can be found in Ref[81]. Similarly,

the heat convection can also be included by introducing one more set of distribu-

tion functions for temperature/energy[82]. Another method to model heat trans-

fer is through introducing a lattice with more discrete velocities[83, 84]. A short
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summary on Lattice Boltzmann thermal models were presented in [85, p.160].

LBM is also known for its easiness to take advantage of parallel computing,

because the collision step is local to the lattice sites, while the streaming only

involves the nearest neighbor lattices. Most boundary conditions are also local.

The Stress evaluation is also local. Conventional two lattice algorithm consumes

a lot of memory. To address this problem, an efficient swap algorithm was pro-

posed[86]. Performance of different data layout and algorithms were summarized

in Ref[87, 88]. Techniques to develop LBM code using GPU device can be found

in Ref[89–91].
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Chapter 3

Numerical models for red blood

cells

Red blood cells (RBCs), also called erythrocytes, occupy about 40% ∼ 45% of the

blood volume in human circulation system. They pick up oxygen(O2) from the

lung and deliver them to the body tissues through capillaries. RBCs have a bi-

concave shape with a diameter of 6-8µm and a thickness of 2 µm. They also don’t

have nucleus. The biconcave shaped and anucleate structure enable RBCs to be

squeezed through capillaries as small as 2 µm in diameter while keep RBCs volume

and surface area relatively unchanged. Thus, there is no surprise that RBCs trans-

port in blood flow has been the focus of both biomedical and mechanical research

for many decades. If we look at the molecular level of the RBC membrane, it

consists of a phospholipid bilayer, cholesterol molecules, transmembrane proteins

and an underlying spectrin network[92]. The underlying spectrin network mainly

determines the cell’s membrane shape and mechanical behavior. To capture the

realistic mechanical and rheological characteristics of RBCs, mechanical models

should have the capabilities to address membrane elastic and viscous properties,

bending resistance, and the viscosities of the external fluids and cytoplasm. In

modeling, a cell membrane is usually discretized into a 2D mesh consisting of
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many individual triangular surfaces that are connected by nodes X i. Different

energy density function or potentials will be defined for the cell membrane elastic

energy, bending energy, and area and volume constraints. In mathematics, the

total energy of a cell membrane is

V (X i) = Vstretch + Vbending + Varea + Vvolume (3.1)

The nodal force derived from the potential energy is given by

F i = −∂V (xi)

∂xi
(3.2)

A 2D illustration of the cell membrane with stretching and bending energy is

shown in Fig.3.1. Area and volume potential are not drawn in the figure.

Figure 3.1: Illustration of a 2D red blood cell membrane with stretching and
bending energies.

In this chapter, we will mainly focus on the modeling techniques of RBCs,

particularly on different energy potentials related to membrane elastics, bending,

and area and volume constraints.

3.1 Cell membrane model

3.1.1 Strain Energy Density Functions

RBC membrane was first studied using a continuum mechanics approach. The

membrane is modeled as a 2D elastic sheet due to the small thickness of the
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membrane compared to the total surface area. A strain energy density function

(εS) is typically used to model the membrane behavior under both small stress

loading and large deformations. The total strain energy of the cell membrane is

ES =
∫
εSdA. The most popular model for RBC membrane was proposed by

Skalak in 1973[93] and then used by Ref.[94, 95]. In that model, the strain energy

density function is defined as

εS =
Ks

12
(I2

1 + 2I1 − 2I2) +
Kα

12
I2

2 (3.3)

where Ks and Kα are the membrane shear elastic shear modulus and area dilation

modulus. I1 and I2 are strain invariants defined as

I1 = λ2
1 + λ2

2 − 2 (3.4)

I2 = λ2
1λ

2
2 − 1 (3.5)

where λ1 and λ2 are the eigenvalues of the deformation gradient D which is

the derivative of each component of the deformed x vector with respect to each

component of the reference X vector. For x = x(X), then

Dij = xij =
∂xi
∂Xj

=

 ∂x1

∂X1

∂x1

∂X2
∂x2

∂X1

∂x2

∂X2

 (3.6)

Introducing the displacement vector u, we have x = X + u. Rewriting D in

terms of displacement vector u,

Dij =

1 0

0 1

+

 ∂u1

∂X1

∂u1

∂X2
∂u2

∂X1

∂u2

∂X2

 (3.7)
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It can be shown that I1 = Trace(DTD) − 2 and I2 = det(DTD) − 1. With I1

and I2, the strain energy density εS for each distretized surface can be found. The

total strain energy for the membrane is ES =
∑

iA
(0)
i εSi , where i sums over all

the triangulated surfaces of the membrane. The strain force applied to node i at

position xi can be computed

F S
i = −∂Es(xi)

∂xi
(3.8)

The derivation is tedious but straight forward. The explicit expression of nodal

force for each node can be found in Ref[64].

3.1.2 Coarse grained molecular dynamics approach

Another approach is to investigate the membrane elasticity from molecular level,

as first proposed by[92], and then widely used by [96, 97]. The idea is originated

from Molecular dynamics that models the individual interaction between atoms.

Theoretically it is possible to model the blood flow from molecular dynamics ap-

proach. However, the computational cost of molecular dynamics is very expensive

for continuum scale simulations. Thus, a mesoscale simulation method is needed.

Coarse grained molecular dynamics (CGMD) is one of the approaches. Many

atoms are conceptualized as one molecular cluster (or virtual particle), then, an

effective interaction potential between each particle will be defined to model the

mechanical response of the system. Each particle will move follow Newton’s law

where the force field is derived from the potential energy between particles. Dur-

ing the coarse graining process, the details of individual atomic dynamics are lost,

but the longer range temporal and spatial phenomena are preserved. For a coarse

grained cell membrane model, a number of potentials have been used, from the

simple linear harmonic potential to complex worm-like-chain (WLC) potential and

the finitely extensible nonlinear elastic (FENE) potential. One of the advantages
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of CGMD for cell membrane modeling is the simplicity in mathematical descrip-

tion and programming. The CGMD model has been shown to provide consistent

predictions with energy density functions used in the continuum model[92, 98].

The harmonic potential for a single triangle surface is given by

Vstretch =
1

2
ks

∑
j=1,...,Ns

(
lj − lj0
lj0

)2

(3.9)

where ks is the stretching constant, lj is the length of the jth spring, and lj0 is the

equilibrium spring length. The total stretching energy should be summed over all

the triangulated surfaces. This model has been used to model malaria-infected

RBCs[99], mesoscopic blood flows[100]. However, this simple linear model cannot

capture the nonlinear behavior of the cell membrane. An exponential relationship

for mechanical stiffness ks related to bond stretch ratio (λ) were developed to

capture the nonlinear behavior[101]. The exponential form of the spring constant

can be expressed as ks = ks0exp[2(λ−1)], where λ is the bond stretch ratio defined

as λ = l/l0.

Another approach is to use nonlinear potentials to model the membrane stretch-

ing energy. Two most popular nonlinear potentials are WLC potential and FENE

potential. Explicitly, they are defined as

UWLC =
kBT lm

4p

3x2 − 2x3

1− x
UFENE = −ks

2
l2mlog[1− x2] (3.10)

where x = l/lm ∈ (0, 1), lm is the maximum spring extension, p is the persistence

length, kB is the Boltzmann constant, T is the temperature, ks is the FENE spring

constant. These two models are very similar in terms of force strain relations. The

force normalized with respect to
kBT

p
and kslm for WLC and FENE springs are

shown in Fig.3.2.
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Figure 3.2: The normalized force for both WLC and FENE spring models under
different stretching ratio x

Note that the force goes to infinity as the bond length approaches maximum

length lm for both the nonlinear springs. It is noted that these springs only provide

attractive forces, thus they tend to reduce the cell membrane area. A repulsive

force field should be combined with these nonlinear potentials. Ref[102] suggested

two repulsive potentials. One is based on the surface area with a functional form of

Cq
Aqk

, where Ak is the k th triangle area, q is the power, Cq is a constant determined

by the equilibrium spring length. Another one is directly based on spring length

with a functional form of
kp
ln

. This spring length based potential will be introduced

in Eqn. 3.11.

During our test, we found that the conbination of nonlinar term with area

based repulsive potential is not easy to reach a steady configuration for RBCs.

Instead, we used a power repulsive potential suggested in [96].

UPOW (l) =
kp

(n− 1)ln−1
n > 0, n 6= 1 (3.11)

where l is the bond length, kp is the repulsive stiffness. The value of kp can be

calculated by equating the attractive fore from Eqn(3.10) to the repulsive force

derived from Eqn(3.11) at the equilibrium bond length. Again, we normalized the
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repulsive force derived from Eqn. 3.11 with
kp
lnm

and plot out the force stretching

ratio x relation in Fig. 3.3

Figure 3.3: The normalized force for power law potential under different power n

One thing we should point out is that the stretching energy defined based on

Eqn3.10 depends on the total number of cell membrane nodes. e.g., the maximum

bond length in a coase membrane mesh, denoted by lcm would be different from the

maximum bond length in a fine mesh, denoted by lfm. So are the persistent length

pc and pf in a coarse and fine mesh. Following Ref [102, p.50], we summarize

the scaling relations between the mechanical and geometrical parameters for the

nonlinear springs. The equilibrium and maximum bond length are given by

lc0 = lf0

√
N f − 2

N c − 2
, lcm = lfm

√
N f − 2

N c − 2
(3.12)

where N is the number of membrane mesh nodes. Superscript f and c represent a

fine and coarse mesh. To keep the shear and area compression moduli unchanged

in different mesh resolutions with the same ratio x0 of the equilibrium bond length

(l0) over the maximum bond length (lm), the persistent length and spring constant
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should follow

pc = pf
lf0
lc0

(WLC), kcs = kfs (FENE), kcp = kfp

(
lc0

lf0

)n+1

(POW ) (3.13)

3.1.3 Bending energy and other constraints

Bending energy is defined

Vbending =
∑

j=1...Ns

kb(1− cos(θj − θ0)) (3.14)

where kb is the bending constant, θj is the instantaneous angle formed by the two

outward surface norm of two adjacent triangular meshes that share the same edge

j. θ0 is the corresponding equilibrium or spontaneous angle.

During deformation, RBC’s membrane and volume are relatively conserved.

Area and volume conservation energy are introduced

Varea =
kg(A− A0)2

2A0

+
∑

j=1...Nt

kl(Aj − Aj0)2

2Aj0
(3.15)

Vvolume =
kv(V − V0)2

2V0

(3.16)

where kg, kl are the global and local area conservation potential constants; A,A0

are the instantaneous and spontaneous total surface area of the cell membrane;

Aj, Aj0 are the instantaneous and spontaneous surface area for the jth triangle

surface. kv is the volume conservation constant, V, V0 are the instantaneous and

the equilibrium cell volume.

In this work, all the parameters are derived from a fine mesh data suggested

in Ref [102, p.50], as shown in Table 3.1.

Notice that since the mesh we used in this work is not uniform. We used

individual bond dependent POW stiffness constant kp. In a coarse mesh with 642
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N l0(nm) x0 p(nm) kb(kBT ) kg(µN/m) kl(µN/m) kv(kpa)
27344 75.5 2.05 18.7 50 200 200 10

Table 3.1: A standard fine cell membrane mesh parameters. All other coarse
grained membrane models are derived from this one.

nodes, the
kBT lm
p

= 4.0×10−5N/m. The initial biconcave shape of the RBC was

used as an equilibrium shape, as used in many other researches[94]

3.2 Numerical implementation of cell membrane

model

With all those potential defined in Eqn(3.1), it is straight forward to derive the

nodal force based on Eqn(3.2). However, it is nontrivial to implement the force

calculation. This section is to give a brief summary of the nodal force calculation

process. A membrane mesh is needed in both continuum approach and a coarse

grained approach. The mesh is used to define the nodal position and membrane

triangulation. The connectivity of each face, bond list and dihedral bond list can

be done in preprocessing, which will not be discussed here. All the nodes in our

discussions are listed in a counterclockwise order. A mesh for RBC membrane

can be done in several ways. The simplest one is to subdivide an icosahedron

several times into a target spherical mesh, and then map the spherical nodes into

a biconcave shape following the formula suggested by [103].

z(ρ) = ±
√

1− ρ

r

[
a0 + a1

(ρ
r

)2

+ a2

(ρ
r

)4
]

(3.17)

where a0 = 0.81µm, a1 = 7.83µm, a2 = −4.39µm and r = 3.91µm. ρ = x+y2

where x, y are the components in the spherical nodes (x, y, z). The new obtained

mesh nodes for RBC membrane will be (x, y, z(ρ)). There are some other meth-

ods, such as energy relaxation on a constrained membrane, or using commercial
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Figure 3.4: An example of Red blood cell membrane mesh

software. Interested readers can refer to [96, p. 49] and [64, p. 53]. An example

of the RBC mesh with 642 nodes and 1280 faces are shown in Fig.3.4.

The harmonic spring force is omitted here due to simplicity. The derived force

for WLC, FENE springs and repulsive force from a power potential are given as

fWLC(l) = −kBT
p

(
1

4(1− x)2
+ x− 0.25

)
l̂ij

fFENE(l) = − ksl

1− x2
l̂ij

frepulsive(l) =
kp
ln
l̂ij

(3.18)

where l̂ij is the unit vector for bond connecting node i, j. The bending force is

much more complicated than the spring force. For the ease of discussion, Fig.3.5

shows two adjacent surfaces shared an edge where the bending energy is defined.

The plane angle is defined as θ between surface A1 and A2. Two surfaces sharing

an edge have 4 nodes with position vector pi, i = 1, 2, 3, 4, as shown in the figure.

The edge vector ~aij is defined as ~aij = pi − pj. The surface norm ~ξ of A1 is

~ξ = ~a21 × ~a32, and surface norm ~ς of A2 is ~ς = ~a34 × ~a24, and the corresponding

surface area A1 = |~ξ|/2, A2 = |~ς|/2. The bending force is

fxi = −∂kb(1− cos(θ − θ0))

∂xi
= −kbsin(θ − θ0)

∂θ

∂xi
(3.19)
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Figure 3.5: Illustration of the geometry of adjacent surfaces where bending energy
is defined. The normal is pointing outside which is formed by cross product of
two edge vectors.

where
∂θ

∂xi
can be evaluated as

∂θ

∂xi
=
∂
[
arccos

(
~ξ

|~ξ|
· ~ς|~ς|
)]

∂xi
= − 1√

1− cos2θ

∂
[(

~ξ

|~ξ|
· ~ς|~ς|
)]

∂xi
(3.20)

reorganizing them in nodal component format,

(fx1, fy1, fz1) = b11(~ξ × ~a32) + b12(~ς × ~a32)

(fx2, fy2, fz2) = b11(~ξ × ~a13) + b12(~ξ × ~a34 + ~ς × ~a13) + b22(~ς × ~a34)

(fx3, fy3, fz3) = b11(~ξ × ~a21) + b12(~ξ × ~a42 + ~ς × ~a21) + b22(~ς × ~a42)

(fx4, fy4, fz4) = b12(~ξ × ~a23) + b22(~ς × ~a23)

(3.21)

where b11 = −βbcosθ
|~ξ|2

, b12 = − βb

|~ξ||~ς|
, b22 = −βbcosθ

|~ς|2

with βb = −kb(sinθcosθ0 − cosθsinθ0)√
1− cos2θ

.

Before we derive the nodal force for area conservation, it is helpful to evaluate

∂Aj
∂xi

. Notice that the surface area Aj = |~ξ|/2 = 1
2

√
ξ2
x + ξ2

y + ξ2
z where the surface
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norm ~ξ = ~a21 × ~a31. Then, we have

∂Aj
∂xi

=
1

2
√
ξ2
x + ξ2

y + ξ2
z

(
ξx
∂ξx
∂xi

+ ξy
∂ξy
∂xi

+ ξz
∂ξz
∂xi

)
(3.22)

Considering Eqn(3.22), we have the nodal force for area conservation

fxi = −∂[kg(A− A0)2/(2A0)]

∂xi

= −kg(A− A0)

A0

∂A

∂xi

= βg
∑

j=1,...Nt

∂Aj
∂xi

= βg
∑

j=1,...Nt

1

4Aj

(
ξx
∂ξx
∂xi

+ ξy
∂ξy
∂xi

+ ξz
∂ξz
∂xi

)
(3.23)

where βg = −kg(A − A0)/A0. It is convenient to express the force contribution

form each surface 3.23 in the form of

(fx1, fy1, fz1) = αg(~ξ × ~a32)

(fx2, fy2, fz2) = αg(~ξ × ~a13)

(fx3, fy3, fz3) = αg(~ξ × ~a21)

(3.24)

where αg = βg/(4Aj), j = 1, ...Nt. The total global area conservation force should

sum over all the triangular surfaces. Similarly, the local area conservation can

also be calculated using the above approach. The local area conservation force

has exactly the same functional form as Eqn (3.24) but with a different coefficient

αl = −kl(Aj − Aj0)/(4AjAj0).
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The global volume conservation force is

fxi = −∂[kv(V − V0)2/(2V0)]

∂xi

= −kv(V − V0)

V0

∂V

∂xi

= βv
∑

j=1,...Nt

∂Vj
∂xi

(3.25)

where Vj = 1
6
~ξj · ~tc, and ~tc is the position vector at the center of mass of the j

triangle defined as ~tc = (~pj1 +~pj2 +~pj3)/3. The volume conservation contributions

to the nodal force for a single triangle are

(fx1, fy1, fz1) = βv(~tc × ~a32 + ~ξ/3)

(fx2, fy2, fz2) = βv(~tc × ~a13 + ~ξ/3)

(fx3, fy3, fz3) = βv(~tc × ~a21 + ~ξ/3)

(3.26)

3.3 Cell model benchmark test

Any cell model should be able to capture the cell mechanical properties. One

of the standard validation approaches for cell model is the stretching test. Ex-

perimentally, optical tweezers were used to apply force to a two patches of cell

membrane at the opposite ends. Then, the cell was pulled away under the control

of the optical tweezer. The force and extension curve and other elastic proper-

ties were measured during the stretching test[104]. The experimental data for

force extension curve has been used by many researchers to benchmark their cell

models[92, 96, 105].

The cell membrane used here consists of 642 nodes with a diameter of 7.82 µm

using the Eqn.(3.17) . A pair of force was applied to 5% of the total nodes on each

side of the cell membrane. So in total there was 10% of the nodes subjecting to

external forces. The applied force was shared uniformly among all the nodes, as

shown in Fig.3.6. The cell membrane positions was updated through the immersed
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boundary method(IBM), with details shown in Chapter 5. The fluid here served

as a damping for the whole system. Without the fluid, we found that cell shape

is not easy to evolve to a steady shape due to the elastic nature of the membrane

model.

Figure 3.6: A pair of 200 pN force applied to 66 nodes on the cell membrane, with
33 nodes on each side. The cell membrane is meshed with 642 nodes in total.

The fluid domain is a cubic box with dimensions of 20µm × 20µm × 20µm.

Each side was discretized with 50 lattices. Open boundary conditions
∂u

∂n
= 0

were applied to all the six surfaces of the fluid box. The relaxation parameter for

LBM solver is τ = 1 and the time step used here is 2.67× 10−8s. When the force

were applied to the cell membrane, it was spread out into the local fluid. As shown

in Fig.3.7a, after stretching, the fluid near the cell membrane where the force pair

is applied has relatively large velocity compared to distant fluid, as indicated by

the color. The local fluid motion would be used to update the cell membrane

positions. As the cell deforms, the cell membrane would generate resistant force

to balance the external applied force. When the net force approaches toward zero,

the local fluid would be quiescent. The cell membrane would reach a steady shape

as well. During the stretching process, the applied force would induce local fluid

vortex. The steady cell shape under applied force pair of 200 pN would achieved

in the end, as shown in Fig. 3.7b.

We applied several pairs of forces (25pN, 50pN, 100pN, 150pN, 200pN) during
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(a) Cell stretching model setup

(b) Steady shape of cell membrane under applied force of 200 pN

Figure 3.7: The cell stretching test model setup and the steady shape of the cell
under applied force pair of 200 pN

the stretching test. The longest diameter and transverse diameter were measured

when the cell reached a steady state. The force extension curve as well as the

experimental data obtained from [92] is shown in Fig. 3.8. The curve on the top

is the longest diameter along the stretching direction, the curve at the bottom is

the cell transverse diameter in the direction perpendicular to stretching. As shown

from the figure, the elongation diameter agrees very well with the experiments.

The transverse diameter is slightly larger than the experimental data.
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Figure 3.8: The force extension curve during cell stretching test. The data with
error bar is obtained from Ref.[92]. It shows that our modeling results agree well
with experimental tests.
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Chapter 4

Numerical models for

nanoparticles

Nanoparticles (NPs) have been extensively studied in recent years as the next

generation of drug carriers and imaging probes[106–110]. Liposomes and polymer-

drug cojugates based NPs provide the foundations for targeted drug delivery using

nanomedicine technology. Several of them, for example, liposome-encapsulated

doxorubicin, liposomal amphotericin B, liposomal morphine have been approved

by US Food and Drug Administration (FDA)[111]. Properties of NP such as size,

shape and surface chemistry play an important role in NP binding and clearance.

Generally, particles bigger than 200 nm are efficiently filtered by liver, spleen and

bone marrow, while particles smaller than 10 nm can be quickly cleared by the

kidney or though extravasation[111–113]. To achieve targeted delivery, NPs are

usually coated with ligands that bind specifically to a particular type of receptor

on the cell surface [114]. NP targeted delivery in a vascular system involves

the interplay of transport, hydrodynamic force, and multivalent interactions with

targeted biosurfaces. First, NPs are marginated from the blood stream to the

vicinity of the vascular wall. The dispersion of particles in a fluid flowing through

a tube can be described by the Taylor-Aris theory [115, 116]. Then, the interaction
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of NPs with the vessel wall occurs when their minimum distance is below 20

nm[117, 118]. The ligands on the NP surface bind with receptors on the vessel

wall, leading to large adhesive forces. After initial binding, the NP may get

firmly adhered or may be washed away, depending on the strength of binding,

flow conditions, etc.

4.1 Nanoparticle transport in flow

When transported in fluid flow, NPs are subjected to long range hydrodynamics

and Brownian dynamics, similar to polymers and colloids in a solution. Brownian

dynamics is a mesocopic method to model polymers through replacing the explicit

solvent molecules interactions with stochastic forces. The reasoning behind this

technique is that there is a large time scale separation between solvent molecule

motion and the slow motion of the immersed polymers. Thus, Brownian dynamics

is able to simulate polymer motion using much larger time step compared with

molecular dynamics. However, simple Brownian dynamics does not contain long

range hydrodynamic effects. It is possible to include hydrodynamics in Brownian

dynamics through adding an interaction tensor as part of the diffusion tensor[119].

There are also many methods proposed to simulate nanoparticle, polymers, col-

loids transport in a solution. For example, Dissipative particle dynamics (DPD) is

a coarse grained molecular dynamics that uses soft potentials and can reproduce

correct Navier-stokes hydrodynamics[6, 120]. The soft potential enables a larger

time step compared with molecular dynamics. To make further simplifications,

the stochastic rotation dynamics (SRD) method directly updates particle velocity

and positions through a streaming and collision process[5, 72]. It eliminates the

force calculation procedure but the collision step is designed in such a way that it

conserves mass, momentum and energy.

The interaction between NPs and the fluid can be found in the previous litera-
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ture of DPD and SRD. Ref [72, 121] gave excellent discussion on how to separate

different time and length scales in colloidal systems. Here we only focus on the

nanoparticle modeling. The basic idea of NP modeling can be directly borrowed

from molecular dynamics. A set of bonds, angle, and dihedral potential will be

used to define the structrual response between different atoms(or coarse grained

beads) NPs were modeled as rigid bodies with motion governed by hydrodynamic

forces and Brownian dynamics [122, 123]. Langevin dynamics was used to simu-

late the motion of particles.

m
du

dt
= −ζu+ F c + F r (4.1)

where ζ is the friction coefficient defined as ζ = 6πµr, F c is the conservative force,

and F r is the random force that satisfies the fluctuation dissipation theorem.

< F r(t) > = 0

< F r(t)F r(t
′) > = 2kBTζδ(t− t′)I

(4.2)

where kBT is the thermal energy, δ(t − t′) is the Dirac delta function, I is the

unit-second order tensor. The conservative force F c could be pair wise interaction

force between two particles, angle based potential force between three particles,

dihedral bending force between four particles, and area or volume conservation

force. Here we only focus on individual NPs that can be treated as a single point.

Note that this approach is readily extended to model polymer chain, membrane

network or any other particle based model.

The solution of the above equation 4.1 gives

u(t) =
F c + F r

ζ
+ Cexp(−ζt

m
) (4.3)

where C is a constant. When the time step dt (4.2×10−8 s in the present study) is
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much larger than the relaxation time τR =
m

ζ
(2.2× 10−9 s), the particle position

can be updated with the terminal velocity as u(t) =
F c + F r

ζ
+ uf , where the

uf is the contribution from the fluid. This approach is suitable for the immersed

boundary method coupling scheme used in this work. If we are interested in small

time scale effect, e.g., dt < τR = 2.2 × 10−9s, then molecular dynamics based

approach would be a better choice.

4.2 Nanoparticle adhesion modeling

The interaction of NPs with the vessel wall occurs when their minimum distance

is below 20 nm [117, 118]. New Ligand-receptor (LR) bonds will be formed be-

tween NP surface and cell membrane. The bonds will generate force to resist flow

induced drag on NPs. Whether the NPs are binded or not depends on the inter-

play between different forces. An illustration of ligand receptor interaction when

NPs are contact the substrate is shown in Fig.4.1. An excellent review on Lig-

and receptor interactions can be found in Ref. [124]. Mathematical models[125,

126] and computer simulations[127–129] have been widely used to study the drug

delivery mechanism. Previous models that have been proposed to study NP ad-

hesion kinetics are mainly based on either the equilibrium approach [130, 131]

or kinetics approach[132]. Evans et al. [131] have developed a model to study

binding dynamics of NPs by considering equilibrium force required to separate

adhesive bonds while Haun et al. [132] considered the association and dissocia-

tion constants of particles as a function of receptor and ligand density. Ferrari

and Decuzzi [133] created a NP adhesion model to demonstrate that NP binding

probability decreases with size and shear rate. Complex vascular environments

such as erythrocyte and vessel geometries on NP delivery have been shown an

important impact on NP distribution[24–26, 134].
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Figure 4.1: An illustration of ligand-receptor binding kinetics between ligand-
coated Nanoparticle surface and receptor coated vascular wall surface

On the Ligand receptor scale, an adhesion kinetic equation is used to calculate

the bond density Nb [117, 130]

∂Nb

∂t
= kf (Nl −Nb)(Nr −Nb)− krNb (4.4)

where Nl and Nr are the ligand and receptor densities; kf and kr are the forward

(association) and reverse (dissociation) reaction rates, respectively. This inter-

action model represents a conservation equation of the different species (ligands,

receptors, and bonds). The kf and kr are functions of bond length

kf = k0
fexp

(
−σf (l − l0)2

2kBT

)
, kr = k0

rexp

(
−σr(l − l0)2

2kBT

)
(4.5)

where σf and σr is the elastic constant for LR bond under association and disso-

ciation; k0
f and k0

r are the the forward and reverse reaction rates at the zero load

of ligand-receptor pair. l and l0 are the bond length and equilibrium bond length.

kB is the Boltzmann constant, T is the temperature. The Eqn.4.4 is a differential

equation that used to describe the evolution of bond density. On the other hand, a

probability based method of bond formation and dissociation was introduced[102,

135]. The probability of bond formation and dissociation are related to forward
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and reverse reaction rate as,

Pf =


1− e−kf∆t, for l < df

0, for l ≥ df

, Pr =


1− e−kr∆t, for l < dr

0, for l ≥ dr

(4.6)

where df and dr are the cut off distances for bond formation and dissociation,

∆t is the time step used in the simulation. During the simulation, all existing

bonds are checked first for a potential dissociation according to probability Pr. A

bond is ruptured if ξ < Pr and left unchanged otherwise, where ξ is a random

variable uniformly distributed on [0, 1]. The ligand is available for new bonding

after breaking. Then, all free ligands are examined for possible bond formations.

For each free ligand we loop over the receptors within distance df , and bond

formation is attempted for each found receptor according to the probability Pf ,

e.g., A ligand receptor bond is formed if ξ < Pf and remained free otherwise,

which is similar to the approach as checking rupture in the first step. On the NP

scale, NPs binding is characterized by a concentration c over the binding surface.

The material balance on the reactive surface for NP bonding is given by

∂cs
∂t

= kacw − kdcs (4.7)

where cs is the bonded NPs concentration on the surface, cw is the free NP concen-

tration near the reacting wall, ka and kd are the attachment and detachment rate,

respectively. It is important to note that the kinetic rates (attachment rate ka and

detachment rate kd) describing the NP binding in terms of concentration are dif-

ferent from the ligand-receptor reaction rates (forward binding rate kf and reverse

binding rate kr) that characterize the ligand-receptor interaction at nanoscale. At

the ligand-receptor level, Bell gave an analytical formula of kf and kr for a diffusion

limited ligand-receptor binding process[130, 136]. Both deterministic models and

probability based approaches have been proposed to study ligand-receptor bond
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formation [117, 137]. To link the ligand receptor bond formation with particle

adhesion, Liu et al. [138] proposed a mesoscale modeling method to estimate the

binding affinity between a nanocarieer and endothelial cells starting with absolute

binding free energies. A continuum-kinetics approach was also used to study cell

adhesion and movement where communication between microscale and nanoscale

is facilitated numerically through bond force and interface deformation [139]. Fo-

gelson et al. [140] proposed a multiscale model to link ligand-receptor binding

with platelet aggregation through a combined elastic inter-platelet link function

and immersed boundary method where platelet convection-diffusion equations,

and bond formation equations are solved interactively.

4.3 Implementation and benchmark

4.3.1 Cell linked list algorithm

Pairwise potentials are widely used in modeling the interaction between NPs. e.g.,

the Lennard-Jones (LJ) potential could be used to model the interaction between

a pair of atoms, the volume exclusion effect between NPs, and between NPs and

the cell membrane. The simplest way to calculate the pairwise interaction force

is a so called double-loop algorithm. First, we loop over all the atoms. Then,

for each atom, we have to check the distance between the current atom and the

rest of the atoms. If the distance is within the cut off distance of the potential,

the force term will be calculated. Let us denote the number of atoms as N ,

the algorithm’s complexity is O(N2). As the number of atoms gets bigger, the

algorithm is not efficient. This section will explain the cell linked-list algorithm

of which the computational time scales as O(N)[141, 142]. Other fast algorithms

of short range molecular dynamics algorithms can be found in Ref. [142]. In the

cell linked-list algorithm, the whole simulation box is binned into 3D cells of side

length of cut off distance (rc) of the potential. Thus, the distance calculation
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Figure 4.2: A illustration of the cell linked-list algorithm in 2D. The domain is
divided into 4 cells. There is a Head pointer for each cell that stores the first
atom in the cell. Another pointer Next is used to store the next atom within the
same cell as the current atom with atom ID as the address of pointer Next. The
linked list for cell 3 is shown in the figure as well.

only has to be performed over the near by 27 cells, the cell that the current atom

resides and the surrounding 26 cells. The atoms within a cell is organized using

linked list. First, we have a Head pointer that points to the first atom within the

cell. Then, we have another Next pointer with size of the total number of the

atoms. The Next pointer points to the next atom within the same cell. The Next

pointer for the last atoms within a cell points to empty. A piece of the code to

build the linked list and perform the force calculations is shown in the Appendix

A.

4.3.2 Diffusion benchmark case

Due to the countless collision from surrounding fluid molecules, NPs will undergo

Brownian motion and move randomly in the quiescent fluid solution. The random

motion of NPs can be described as a diffusion process. The theoretical diffusion

coefficient for small particles can be given by [143]

D =
kBT

6πµr
(4.8)

where kB is the Boltzmann constant, T is the temperature, µ is the fluid viscosity,

r is the radius of the NPs, assuming the NPs have a spherical shape. Mean-
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while, the simulated diffusion coefficient can be calculated from the mean square

displacement < ξ(t, τ) >, given by

< ξ(t) >=
1

N

N∑
i=1

∆ri(t)
2 (4.9)

where N is the number of particles, ∆ri(t) is the distance of the i th particle

compared with its initial position, t is the time. The diffusion coefficient can be

calculated using

D =
1

2Dim

d

dt
< ξ(t) > (4.10)

where Dim is the dimension. It could be {1, 2, 3}, depending how ∆ri(t) is cal-

culated. It should be close to the thermal diffusion coefficient calculated by Ein-

stein’s formula Eqn. 4.8. In our model settings, the fluid domain was 25µm by

50µm. The fluid was taken as water with a density of 1000kg/m3 and a viscosity

of 1×10−3pa.s. The lattice size δx was 5×10−7m, time step δt and the relaxation

parameter τ were 4.2 × 10−8s and 1.0, respectively. 378 nanoparticles of size of

100 nm were randomly positioned in the fluid domain. The temperature was set

at 300K. The time history of the mean square displacement in one dimension

is plotted in Fig.4.3. The diffusion coefficient given by the half of the slop is

4.317 × 10−12m2/s, which is very close to the value given by Einstein’s formula

4.39× 10−12m2/s.
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Figure 4.3: Mean square displacement (MSD) time history plot in the simulation
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Chapter 5

Fluid structure interactions

As a challenging multiphysics problem, fluid structure interaction (FSI) has been

the focus of computational mechanics for many years. FSI problems are generally

driven by the interaction of two distinctly different components: fluid and solid.

FSI problems is very important in many scientific and engineering applications,

such as aircraft design, bridge design, wind turbine, blood flow in heart[144].

However, FSI problems are very challenging due to the nature of nonlinearity and

multiphysics. Generally an analytical solution to the coupled system is impossible,

while experimental study is limited by the scale of the system. Thus, numerical

method has been developed to solve the fluid and structure dynamics simultane-

ous. The interface boundary conditions are crucial to the coupled FSI problems.

Currently there are two general approaches to model FSI problems. The first one

is Arbitrary Lagrangian Eulerian method[144, 145]. In this approach, the mesh

used for the fluid is neither fixed in space as the Eulerian description of the fluid

flow does, nor moved with the fluid as the Lagrangian description does. Instead,

the mesh of the fluid can move in any other prescribed way. On the interface

between fluid and solid, the velocity and stress should be continuous over the

interface. The mesh of fluid conforms to the mesh of solid. Thus, it is straightfor-

ward to impose boundary conditions on the fluid solid interface. It is accurate and
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efficient in computation. However, as solids are subjected to large translation and

rotations, re-meshing is usually used to avoid mesh distortion or entanglement.

However, the mesh regeneration is cumbersome during the computation. As op-

posed the accurately captured fluid solid boundaries in ALE method, Immersed

boundary method (IBM) was introduced by Peskin[146, 147] using non boundary

fitting method. Specifically, two independent meshes are used for the fluid and

solid. The existence of solids is represented by the solid boundary force spread out

into the fluid. The IBM approach eliminates the re-meshing procedure in ALE,

thus it is very efficient in FSI modeling.

This chapter will mainly discuss the technical details of IBM and its dis-

cretization in lattice Boltzmann units. Other coupling techniques such as stress

integration approach and friction coupling approach will be introduced. A few

benchmark cases have been created to validate the coupling scheme.

5.1 The immersed boundary method

The Immersed Boundary method was selected to model the interaction between

the fluid and the immersed solids due to the algorithm’s efficiency. The IBM was

first proposed by Peskin to study blood flow in the heart[146, 148]. The fluid is

solved on a spatially fixed Eulerian grid, while the immersed solids are modeled

using a moving Lagrangian mesh, which is not constrained to the geometric layout

of the Eulerian fluid grid. Data is exchanged between the two domains through

nodal interpolation. The coupling scheme enforces velocity continuity at the fluid-

structure boundary, and transfers forces from the structure back into the fluid

through an effective force density. This two-way coupling automatically handles

immersed body contact and prevents solid penetration through the development

of restoring forces in the fluid. The approach has been used for a variety of

fluid-structure interaction problems, including the simulation of jelly fish[149],
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blood flow[24, 94, 150, 151], platelet migration[152]. Comprehensive reviews of

the IBM and its applications can be found in [104, 147]. The immersed structure

can be viewed as a parametric surface X(p, q, r, t), where p, q, r are curvilinear

coordinates for the structure in Lagrangian description, t is the time. The fluid

domain are described by Eulerian coordinates x. The the force f(x, t) exerted

by the structure on the fluid is interpolated as a source term in the momentum

equation using

f(x, t) =

∫
F (p, q, r, t)δ(x−X(p, q, r, t))dpdqdr (5.1)

where F (p, q, r, t) is the force density for the structure. Typically it is derived

from energy density functions. δ(x) is the three dimensional delta functions

δ(x1)δ(x2)δ(x3) where x1, x2, x3 are the Cartesian components of position vector

x.

Similarly, the structure moving velocity is updated based on the local fluid

velocity through interpolation using

u(X(p, q, r, t), t) =

∫
u(x, t)δ(x−X(p, q, r, t))dx (5.2)

where u(X(p, q, r, t), t) is the structural moving velocity, u(x, t) is the fluid ve-

locity over the fluid domain x at time t. δ(x) is the same function as used in Eqn

5.1. Eqn 5.2 essentially is the velocity continuity conditions on the fluid structure

interface.

The concept of IBM coupling scheme is also illustrated in Fig. 5.1. The

square dots represent fluid nodes, while circle dots represent solid structure. The

solid velocity is interpreted from local fluid velocity. The contribution of each

neighbor fluid nodes and how many nodes should be selected is determined by

δ(x). For example, Fig.5.1a shows that the velocity of the structural central node

is interpreted from nearby four nodes within the dashed square frame. Similarly,
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(a) solid velocity is interpreted from lo-
cal fluid velocity

(b) Structural force is spread into local
fluid as force density

Figure 5.1: The two way coupling between the fluid and the structure in the
Immersed boundary method. (a) The structural velocity u(X, t) is interpolated
from neighbor fluid nodes within the dashed square box. The contribution from
fluid node is weighted by the δ(x) function. (b) The structural force will be spread
out into local fluid nodes as a force density. The distribution of the force among
fluid nodes are determined by the δ(x) function as well.

the structural force would be spread to the four neighbor fluid nodes, as shown in

Fig.5.1b.

5.2 Spatial and temporal discretization

Once the coupling scheme has been established, the spatial and temporal dis-

cretization of the IBM equations, Eqn. (5.1 and 5.2), is needed in the numerical

implementation of IBM. Following Peskin’s work[147], we will discuss the spatial

discretization first, the choice of δ(x) will be presented next, and the temporal

integration scheme will be given last. The spatial discretization of Eulerian grid,

denoted gx is a set of points with equal spacing in Cartesian coordinates, e.g.,

x = (xj, yj, zj)∆x, where ∆x is the spacing, (xj, yj, zj) are the position compo-

nents in each direction. This spatial discretization is also consistent with Lattice

Boltzmann fluid solver. Similarly, the spatial discretization of the Lagrangian grid,

denoted Gs, is the set of (p, q, r) of the form (pkδp, qkδq, rkδr), where (pk, qk, rk)
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are integers. Ref. [147] also suggested that the δs <
∆x

2
, s ∈ {p, q, r} should

be required to avoid fluid leaking. Ref. [64, p.57] shows that the mesh ratio be-

tween solid and fluid for small deformations, e.g.,
δs

∆x
, can be safely chosen within

range (0.5, 1.5) without significantly influencing the physical results. However, the

membrane resolution must be sufficiently high to handle regions with large local

curvature. For example, during our test, leaking is observed when the
δs

∆x
= 3.03

for the cell squeezing through a narrow channel. Here the δs is calculated as

the average length of the cell bond during our cell simulation model. The force

spreading equation 5.1 becomes

f(x, t) =
∑

(p,q,r)∈Gs

F (p, q, r, t)δ∆(x−X(p, q, r, t))∆p∆q∆r (5.3)

Notice that F (p, q, r, t) is the force density among solid structures. Let us define

F = F (p, q, r, t)∆p∆q∆r. F can be viewed as the integration of force density F

over the an element volume dv = ∆p∆q∆r, which is the force term applied to

each node. The Lagrangian nodes of solid can be indexed as i without losing any

generality. Eqn.5.3 can be reduced as

f(x, t) =
∑
i∈Gs

Fiδ∆(x−X i) (5.4)

The velocity interpolation formula can be discretized as

u(X i, t) =
∑
x∈gx

u(x, t)δ∆(x−X i)∆x
3 (5.5)

In lattice Boltzmann method, spatial step and time step in LB units are usually

assumed to be unity. e.g., ∆x = 1,∆t = 1. Thus, Eqn. 5.5 can be reduced as

u(X i, t) =
∑
x∈gx

u(x, t)δ∆(x−X i) (5.6)
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Ref. [147] showed that the discretized δ∆(x) function has to meet some restrictions

and properties to make sure that mass, force, and torque are the same no matte

they are evaluated from Eulerian or Lagrangian variables. One of the assumptions

made here is that δ∆(x) can be given by the triple product of a scalar functions

φ(x).

δ∆(x) = φ(x)φ(y)φ(z) (5.7)

where (x, y, z) are the three components of position vector x. Here we don’t go

details on analyze the φ(x) function. Instead, we just want to point out the most

widely used four point interpolation function.

φ(x) =


0, |x| ≥ 2

1

8

(
5− 2|x| −

√
−7 + 12|x| − 4x2

)
, 1 ≤ |x| ≤ 2

1

8

(
3− 2|x|+

√
1 + 4|x| − 4x2

)
, 0 ≤ |x| ≤ 1

(5.8)

Ref. [147] pointed out that φ(x) can also be extremely well approximated by a

simple formula

φ(x) =


0, otherwise

1

4

(
1 + cos

(πx
2

))
, |x| ≤ 2

(5.9)

However, we suggest using Eqn.5.8 because it is much faster in evaluating poly-

nomial function than cos(x) function. Since the fluid and solid are solved alter-

natively, this IBM coupling is a partitioned approach. To obtain a second order

accurate scheme in temporal discretization, Peskin came up with a time inte-

gration scheme based on midpoint rule[147]. For the easiness of discussion, the

solution at time step n will be denoted as a superscript over the variable. Assume

currently we have the structural position Xn
i at time step n, we need to calculate
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the intermediate position at time step n+ 1
2

using

X
n+ 1

2
i = Xn

i +
∆t

2

∑
x∈gx

unδ∆(x−X i)∆x
3 (5.10)

With the newly obtained solid position at n + 1
2

time step, the structural force

can be evaluated as

Fn+ 1
2

i = F
n+ 1

2
i ∆p∆q∆r = StructureSolver(X

n+ 1
2

i ) (5.11)

where StructureSolver is the procedure to calculate all the structure force applied

to each structural nodes. Next, the structure force Fn+ 1
2

i will be spread out into

fluid through

fn+ 1
2 (x) =

∑
X∈Gs

Fn+ 1
2

i δ∆(x−X i) (5.12)

With the force density, the fluid solver will update the fluid velocity un+1 through

un+1 = FluidSolver(fn+ 1
2 ) (5.13)

The FluidSolver could be any fluid solver. The Lattice Boltzmann fluid solver is

used in this dissertation. Finally, the solid position at time n+ 1 is updated as

Xn+1
i = Xn

i + ∆t
∑
x∈gx

un+1δ∆(x−X i)∆x
3 (5.14)

In this work, Eqn 5.10 and 5.14 are used with the Lattice Boltzmann lattice space

∆x = 1 and time step ∆t = 1.

5.3 Benchmark case

Sphere settling in a viscous fluid is widely used as a benchmark for fluid structure

interaction (FSI) simulation[153]. The process involves placing a solid sphere in a
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static fluid and allowing it to accelerate downward under gravity loading until it

reaches a steady velocity, where the resultant drag force balances the gravity load.

In our FSI benchmark, the sphere is modeled as a rigid 2D ring structure. The

motion of the ring is interpolated from the local fluid velocity. A rigid boundary,

however, is very difficult to achieve in the immersed boundary method. Therefore,

the modeling approach developed by Fogelson[154] and Feng[155] was adopted.

The model produces an effectively rigid particle surface using stiff elastic fibers.

This is accomplished by using virtual images of the surface nodes undergoing rigid

motion. A restorative force is applied to the nodes that deviate from the position

of the virtual image. Additional details for the approach can be found in the

referenced studies.

The fluid channel for the benchmark simulation was 4 cm in length and 1

cm in width. The sphere had a diameter of 0.1 cm, and was placed in the fluid

at approximately 0.8 cm away from the top, along the channel center line. The

density of the sphere was 1001 kg/m3. The restorative stiffness used for the

effective rigid boundary was 1× 10−4 N/m. The fluid was taken as water with a

density of 1000 kg/m3 and a viscosity of 1 × 10−3 pa.s. The lattice size dx was

1×10−4 m, and the time step dt is 1.667×10−3 s and lattice Boltzmann relaxation

parameter τ is 1.0, respectively. The whole set up of the system is shown in Fig.

5.2a and snap shots of the simulation are shown Fig. 5.2. Following reference[156],

the theoretical terminal velocity of a cylinder (2D) is

Vs =

√
πgD(ρs − ρf )

2Cdνρf
(5.15)

where the drag coefficient

CD =
8π

Relog(7.4/Re)
(5.16)

where D is the diameter, ν is viscosity, Re is the Reynolds number, ρ is the density,
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(a) (b) (c) (d)

Figure 5.2: Snapshots of a dropping cylinder in a quiescent fluid in 2D. The
cylinder is driven by a constant gravity. (a) t=0 s, (b) t=6.67 s, (c) t=26.67 s,
(d) t=53.33 s. The yellow ring represents a 2D cylinder.
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Figure 5.3: Particle settling velocity in simulation compared with theoretical ter-
minal velocity

and s and f stand for solid and fluid, respectively. In order to convert from a node

connected ring to a disk, an associated nodal tributary area had to be defined so

that the distributed gravitational force could be treated as an equivalent nodal

force system. For this study, the associated tributary area was approximated as

dA =

(
πD

ns

)
, where ns is the total number of nodes. The predicted terminal

velocity from the simulation was 4.6× 10−4 m/s, which compares very well with

the theoretical stokes formula prediction of 4.42× 10−4 m/s based on Eqn (5.15),

as shown in Fig. 5.3. The difference between the theoretical and simulation based

terminal velocity prediction is within 3.8%, which indicates that the FSI code

correctly reproduces the kinematics of the sphere in a viscous fluid.

It is well known that red blood cells and droplets will undergo tumbling or

tank treading motion under shear, depending on the shear rate and membrane

stiffness. Capillary number is typically used to characterize the cell motion. It is

defined as Ca = νηr/ks, where ν is the reference viscosity, η is the shear rate, r is

the cell radius, and ks is the stretching resistance. We performed a 2D simulation
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of shear flow with cells. The cell parameters for the simulations are shown in

the Table 6.1. The fluid domain was 20µm by 20µm. The fluid was taken as

water with a density of 1000kg/m3 and a viscosity of 1 × 10−3pa.s. The lattice

size dx was 5× 10−7m, and the time step δt and the relaxation parameter τ were

4.2 × 10−8s and 1.0, respectively. The typical cell diameter was 8µm modeled

with 52 nodes.

5.4 Other coupling schemes

5.4.1 Stress integration approach

The fluid structure interaction involving flow separation is beyond the scope of

this work. Interested readers may refer to [157–159] for flow separation model-

ings. Here we only discuss the nonslip boundary conditions between fluid and

structure. The nonslip boundary basically is to impose velocity continuity and

traction continuity on the interface

uf = us on Γ

σfijnj = σsijnj on Γ

(5.17)

where uf and us are the fluid and solid velocity, Γ is the interface between the

solid and the fluid. σij is the stress tensor with superscript f, s representing the

fluid and solid, respectively. nj is the surface norm. In IBM, the solid velocity

is interporlated from the fluid, as shown 5.2, while the solid the force is spread

into fluid, as indicated by 5.1. The reverse approach can also be used[160, 161].

i.e., first, we apply the fluid stress to the structure, and then solve the structural

response, and finally impose the structural velocity as a boundary condition to

the fluid. This method is called stress integration approach[161–163]. The total
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force acting on the structure is

Ti =

∫
σijnjdA (5.18)

where dA is the differential area over the interface. The stress tensor σij is given

by

σij = −pδij + ρν (ui,j + uj,i) (5.19)

The pressure term p can be evaluated using Eqn. 2.25. Following Ref. [70], the

deviatoric shear stress in LBM τij := ρν (ui,j + uj,i) can be evaluated as

τij = −
(

1− ω

2

)∑
α

(
ξαiξαj −

δij
D
ξα · ξα

)
fneqα (5.20)

where ω =
1

τ
, τ is the relaxation parameter for LBM. α is the index of all the

discretized velocity vector, fneqα is the non-equilibrium part of the density distri-

bution defined as fneqα = fα − f 0
α with f 0

α calculated from Eqn.2.28. ξα is the

discretized velocity vector as shown in Table 2.1 and 2.2 for 2D and 3D lattices.

With the stress calculated from LBM using Eqn. 5.19 and 5.20, the traction ap-

plied to the structure can be evaluated by multiplying the surface norm and the

stress using the second equation in 5.17. For example, the traction induced by

the shear flow on a 2D cell membrane is shown in Fig.5.4a, while the traction

evaluated using stress tensor τ =

0 1

1 0

 which is the stress tensor for linear

shear flow ux = y, uy = 0. Compare Fig. 5.4a and 5.4b we can see that Eqn. 5.20

can correctly evaluate the flow induced stress.

With the traction and pressure applied to the structure, the structural analysis

is performed to determine the dynamic response. The structural velocity will be

treated as a boundary condition for the LBM. There is no standard way to convert

boundary velocity to density distribution in LBM. Momentum exchange method
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(a) (b)

Figure 5.4: The cell traction induced by the shear flow. (a) the stress is evaluated
using Eqn. 5.20. (b) the stress is assumed as [0 1;1 0]

proposed Ladd[54, 55] and a modified bounce back scheme in [160, 161, 164] could

be used. We used the approach presented in [160] for the benchmark case of flow

induced beam bending as shown in the next section.

5.4.2 Flow induced bending of a beam

In order to validate the code for large-displacement FSI using stress integration

approach, a numerical model was developed for the microchannel flow-induced

bending simulation, with geometries and physical properties shown in Fig.5.5.

Steady state lateral displacement of the beam tip was compared with predictions

from an equivalent arbitrary Lagranian-Eularian (ALE) FEM simulation devel-

oped in the commercial software COMSOL[165]. It is noted that this simulation

is included in the COMSOL documentation as a benchmark case, including rec-

ommendations regarding spatial and temporal discretization, and model settings.

In the LB-XFEM simulation, the 100µm × 300µm fluid domain was discretized

into a regular lattice with a spatial resolution of 1µm. For computational effi-

ciency, the single relaxation parameter BGK algorithm was utilized with τ = 1.

The corresponding time step δt = 0.16µs. The structure is solved through FEM

with 2D linear isoparametric quadrilateral elements. The structural mesh has 250
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Figure 5.5: Microchannel flow-induced bending simulation for validation of large-
displacement FSI response

Figure 5.6: Microchannel flow-induced bending simulation: steady state velocity
field and beam deformation

elements. The structural model included Rayleigh viscous damping with 5% of

critical damping in the first two modes of response in order to speed up the rate

of convergence on the steady state displacement. The snapshot of the bending

of the beam in the steady state is shown in Fig.5.6, which is exactly similar to

the deformation from COMSOL. The tip displacement from both simulations are

shown in Fig.5.7. The initial fluctuation is due to the dynamic nature of LBM.

The fluctuation is damped out after 2 ms. The steady displacement agree well

with the one calculated from the commercial software COMSOL.

5.4.3 Friction based coupling methods

For soft matter system, the flow is usually isothermal, incompressible and with

low Re number. Thus, it is natural to use stokes friction force to coupling the
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Figure 5.7: Microchannel flow-induced bending simulation: beam tip displacement
predictions using ALE FEM and LBM-XFEM

immersed solids and fluids[166–169]. In Ref.[167], the polymer monomers are

treated as point with friction force

F = −ζ(us − uf ) (5.21)

where ζ is the friction coefficient, which may be different from Einstein relation

for diffusion. us, uf are solid point velocity and local fluid velocity. The local fluid

velocity uf could be interpolated from nearby fluid nodes. The friction force F

will be applied to the solid, together with other conservative forces, random forces,

etc. to determine the motion of the particles. Meanwhile, the same magnitude of

the force but with reversed direction −F would be applied to the local fluid nodes.

For example, the force density −F/δx3 will be spread to local 8 fluid nodes, as

shown in Ref. [166, 167].

Noted that the nonslip boundary at the solid-fluid interface is not exactly sat-

isfied using the friction based coupling. As pointed out in [167], the microscopic

details of the coupling should not play a role as long as the hydrodynamics evolves

in fluid on the time scale faster than the diffusion scale of the solid. It correctly

reproduced the hydrodynamics in the far field. Thus, the friction coupling ap-
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proach sacrifices the resolution of the fluid field near the solid boundary but with

the advantage of reducing the number of grid size in LB solver[169].
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Chapter 6

Nanoparticle delivery in blood

flow

Accurately predicting drug delivery is a critical task in drug development research

and clinic trials[170, 171]. It requires careful consideration of physiological con-

ditions such as hematocrit leve[24, 25], vessel geometry and flow conditions[172–

174], drug carrier size and shape[18, 25], dissolution rate[175], and external stim-

uli[176, 177]. For small particles in red blood cell (RBC) suspensions, such as

nanoparticles (NP) and platelets, recent studies have demonstrated that local

flow field disturbances caused by RBC translation and deformation can enhance

particle dispersion[25, 152, 178–180]. The migration of particles in RBC suspen-

sions under shear has been shown to behave like a random walk process[181, 182],

with a dispersion rate much larger than thermal diffusion. Therefore, accurate

predictions of NP dispersion in RBC suspensions must consider fluid-structure

interaction between the immersed solid bodies (particles and cells) and the sur-

rounding fluid. Previously developed models for predicting NP dispersion in RBC

suspensions have relied primarily on empirical data fitting. Aarts et. al. ex-

perimentally studied shear induced platelet diffusivity (D) which was fitted with

shear rate (η ) as a power law D = kηn , where k is a constant and n is a func-
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tion of hematocrit[183]. However, the model parameters are obtained empirically

rather than predicted from the underlying physics. Decuzzi et. al. extended

the Taylor-Aris theory to calculate an effective NP diffusion rate that considers

wall permeability and blood rheology, idealizing the RBCs as Casson fluid with

a blunted velocity profile at the vessel core[184, 185]. However, the analysis was

relatively complex and the influence of RBCs was oversimplified. In order to ad-

dress the deficiencies in previously developed models for predicting NP dispersion,

this paper presents a numerical study on NP dispersion in RBC suspensions that

considers the effects of local flow field disturbances due to RBC motion. This

study provides insight into the underlying physics driving NP dispersion in these

systems, and develops simple, yet effective, formulae for predicting dispersion rate

as a function of characteristic physiological parameters. These simple predictive

formulae will provide an efficient approach for assessing NP dispersion under dif-

ferent flow conditions and hematocrit level, thereby facilitating practical modeling

of NP transport and distribution in large scale vascular systems[21].

Research has shown that particles in the core region of the vessel migrate

toward the cell free layer regions, where the migration process can be modeled as

diffusion [181, 182]. This migration is influenced by physical conditions, such as

hematocrit level (Ht), cell membrane stiffness (ks), particle size (r), shear rate (η),

fluid viscosity (υ), and cell size (dc). In this study, two parameters (hematocrit

level and shear rate) are considered, while the other parameters are kept constant.

NP dispersion is first studied under pure shear flow conditions at different shear

rates for a given hematocrit level. Then, the study is extended to investigate NP

dispersion in channel flow at different hematocrit levels.

In the study, RBCs were assumed to be healthy with typical physic parameters

and with a size of 8 µm. NPs were assumed to be spherical with a typical size of

100 nm. For simplicity, surface charges were neglected so that NPs did not adhere

to other NPs or to the RBCs. It is noted that the NP concentration was kept
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Parameters Specified Value Recommended Range Reference
Strecthing coefficient ks0 5µN/m 5 ∼ 12µN/m [92, 96]
Bending coefficient kb 8× 10−19J 2× 10−19 ∼ 1× 10−17J [92, 96]

Table 6.1: Cell membrane model parameters

relatively low in order to more readily ascertain the effect of RBC motion on NP

dispersion. Dynamic viscosity of the fluid was fixed at 1 × 10−3Pa · s. Through

dimensional analysis, an empirical function between diffusion coefficient, shear

rate, cell size, and hematocrit was defined as:
D

d2
cη

= f(Ht), where D is the

dispersion rate. This formula was validated through simulations presented in

later sections. The test case consisted of a rectangular fluid domain with a 50 µm

length, a 25 µm width, and a lattice grid size of 0.5 µm, as shown in 6.1.

In the shear flow case, the top and bottom surfaces were defined as velocity

boundaries, while the left and right edges of the domain were modeled as periodic

boundaries. In the channel flow case, a parabolic velocity profile was applied at

the left inlet boundary and the right outlet boundary was modeled as an open

condition. Non-slip boundaries were defined along the upper and lower surfaces. A

time step of 4.2×10−8s and a relaxation time τ of 1.0 were used for all simulations.

RBC membranes were modeled as bi-concave curves with the dimensions

shown in Fig.3.1. A single RBC was composed of 52 nodes. The cell parame-

ters were selected based on recommended values reported in the literature[92, 96],

as listed in Table 6.1. The artificial area constraint ka = 1 was selected so that

the area change was within 1%. Periodic boundary conditions (PBC) were ap-

plied to the left and right boundaries of the fluid domain for both RBCs and NPs.

The area ratio between RBCs and the fluid domain was defined as the hematocrit

level. The simulation results were collected after the system reached equilibrium,

i.e., when RBCs reached steady tumbling or tank treading motion, or when they

were relatively uniformly distributed along the channel.
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6.1 NP dispersion under pure shear flow

NP dispersion rate was studied over a range of shear rates for a single layer of

3 cells. This set up was designed to eliminate the cell-cell interaction between

different layers so that we can focus on the shear rate effect on NP dispersions.

Shear rates ranging from 0 to 500 s−1 were selected in order to cover both the

RBC tumbling and RBC tank treading regions of the flow regime. For all shear

rates investigated in the study, the dimensionless number was held at 25. So the

simulation time is longer for lower shear rate case. Three RBCs and 792 NPs

were considered for each simulation. Snapshots of the interaction between NPs

and RBCs at shear rates of 40 s−1 and 200 s−1 , representative of RBC tumbling

and RBC tank treading regions of the flow regime, respectively, are shown in Fig.

6.1.

The mean square displacement over the y direction at different shear rates was

calculated to obtain the NP dispersion rates, as shown in Fig. 6.2. It shows that

the dispersion rate is strongly influenced by cell motion. In the RBC tumbling (

η < 40s−1) and RBC tank treading ( η > 200s−1) regions of the flow regime, NP

dispersion rate is approximately linear with shear rate. Between 40s−1 and 200s−1,

there is a region where RBC motion transits from tumbling to tank treading

motion. In this transition region, there is a drop in NP dispersion with increased

shear rate. For the range of shear rates investigated in the study, the dispersion

rate initially increases in the tumbling region, then decreases in the transition

region, and increases again with the shear rate in the tank treading region. A

linear regression model was used to fit both the tumbling(first 3 data points at

low shear rate) and tank treading data(last 3 data points at high shear rate)

D =


7.8× 10−14η + 4.7× 10−12 tumbling

8.5× 10−15η + 4.0× 10−12 tank treading

(6.1)
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(a) Shear rate of 40 s−1

(b) Shear rate of 200 s−1

Figure 6.1: Interaction between NP and RBC at different shear rates. The bold
red lines outline the RBC membranes, while the green markers denote NPs. Flow
streamlines are shown in the background. The channel size is 25 µm by 50 µm.
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Figure 6.2: NP dispersion rate as a function of shear rate. Error bars indicate the
standard variance for three simulations. RBCs undergo tumbling motion at low
shear rate(η < 40s−1) and tank treading motion at high shear rate(η > 200s−1).
In between, there is a transition region. Linear regression lines for the tumbling
and tank treading regions are shown as well.

where η is the shear rate. The formulae indicate that the effect of shear rate

on NP dispersion in the tumbling region is roughly an order of magnitude larger

than that in the tank treading region. This can be attributed to larger RBC

motions in the tumbling region, where RBCs undergo full body rotations that

trigger larger local flow disturbances that promote the dispersion of adjacent NP

away from the cell. It is also worth noting that the constant terms in the formulae

are close to the NP thermal diffusion coefficient. The theoretical diffusion rate

for 100 nm particles at a temperature of 300K is about 4.4 × 10−12m2/s. This

observation agrees with the physical requirement that dispersion rate should be

close to thermal diffusion in the absence of shear flow. Therefore, for a given

hematocrit level, and with η < 40s−1 and η > 200s−1, the dispersion rate D can

be written as

D = kη +D0 (6.2)
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where D0 is the thermal diffusion coefficient and k is a constant that depends

on the hematocrit level. It is noted that this formula is readily adaptable to

different particle sizes because the constant term D0 already contains the particle

size effect. The contribution of RBC motion is represented in the constant k. It

is noted that the influence of particle concentration on dispersion rate has been

neglected.

6.2 Nanoparticle dispersion under channel flow

The previous study of NP dispersion under shear flow provide a general function

form between shear rate and dispersion rate. We hypothesis that the function

form also applies to the case in channel flow. If the vessel pliancy is neglected,

capillaries can be modeled as a rigid cylinder. In 2D case a channel flow profile

is assumed. Fig.6.3a and 6.3b present snapshots of NP dispersion in a channel

flow simulation with a hematocrit of 23.5% and a shear rate of 200s−1 at 0.26s

and 0.46s, respectively. The channel width is 25µm. For these simulations, the

specified shear rate was measured as the shear rate at the wall, unless noted oth-

erwise. Due to the increased cell volume, compared with the pure shear flow

simulations, the number of NP was reduced to 378. The NPs were initially posi-

tioned in the core region of the channel. Since the shear rate is linearly changing

across the channel, RBCs did not exhibit distinctive motions such as tumbling or

tank treading as shown in the previous pure shear flow. The higher hematocrit

and cell-cell interaction also confined the cell motion in the flow. The majority of

the cells behaved like a tank treading motion, while some cells in the core region

was bended or folded in the channel due to the symmetry of the velocity near the

center line of the channel. The RBC motion under other hematocrit levels and

shear rates were similar to Fig.6.3. However, they were not shown here.

As illustrated in Fig.6.3a and 6.3b, the NPs tend to migrate toward the wall.
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(a) t = 0.26s

(b) t = 0.46s

Figure 6.3: Snapshots from a channel flow simulation for a cell-particle mixture
with a hematocrit of 23.5% and a shear rate of 200s−1 at 0.26 s (a) and 0.46 s
(b). Fluid streamlines are shown in the background, while the yellow markers
represent 100 nm nanoparticles. For illustration purposes, cells and particles are
not shown to scale.
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In order to characterize the NP distribution across the channel, the channel width

was divided into bins of 1 µm. The number of NPs within each bin was counted

and divided by the total number of NPs to obtain the NP fraction within each

bin. NP fraction across the channel height is plotted in Fig.6.4a at time points of

0, 0.26s, and 0.52s, for a characteristic shear rate of 200s−1 . Fig.6.4b presents

NP fraction across the channel height at t = 0.52s under shear rates of 100s−1,

200s−1, 300s−1, and 500s−1. The NP fractional values shown in the figure are the

average of three sample runs using different random seeds for the NP Brownian

motion model. Fig.6.4b clearly demonstrates that particle migration speed toward

the channel walls increases with shear rate. In order to characterize NP migration

speed, the dispersion rate was calculated from the NP mean square displacement.

The dispersion rates for different hematocrit, and at various shear rates, are shown

in Fig.6.5a. From the pure shear simulation results shown in Eqn6.2, a modified

dimensionless dispersion rate was developed

Dr =
D −D0

d2
cη

= f(Ht) (6.3)

The dimensionless dispersion rate Dr is plotted in Fig.6.5b, where the error bars

show standard variance for three sample runs.

Fig.6.5 shows that the lateral dispersion of NP (i.e. migration of NP toward

the vessel walls) is much larger than what is predicted by thermal diffusion alone.

This migration is influenced by both the hematocrit level and the shear rate.

While the relationship between dispersion rate and shear rate is approximately

linear (Fig.6.5a), the relationship between dispersion and hematocrit is not fully

linear (Fig.6.5b). Nevertheless, a best fit line with reasonable approximation can

be written as

Dr =
D −D0

d2
cη

= 4.643× 10−3Ht + 5.834× 10−4 (6.4)
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(a) Nanoparticle distribution across the channel height at t = 0, 0.26s, 0.52s at shear
rate of 200s−1

(b) Nanoparticle distribution across the channel height at t=0.52s for shear rates of
100s−1, 200s−1, 300s−1, and 500s−1

Figure 6.4: The NP fraction across the channel height for a hematocrit level of
23.5%. (a) NP fraction at t=0, 0.26s and 0.52s for a shear rate of 200 s-1, and (b)
NP fraction at t=0.52s for shear rates of 100 s-1, 200 s-1, 300 s-1, and 500 s-1.
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(a) Nanoparticle dispersion rate at different hematocrit (Ht) and shear rates

(b) Relationship between dimensionless dispersion rate (Dr) and hematocrit (Ht)

Figure 6.5: Dispersion rate of NPs in blood flow. (a) NP dispersion rate at
different hematocrit and shear rates. (b) Relationship between dimensionless dis-
persion rate (Dr) and hematocrit. Error bars show the standard variance from
three samples.
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Hematocrit Shear[s−1] Dispersion rate[cm2/s] Prediction[cm2/s] Reference
[0.2, 0.4] 400 [0.5, 0.68]× 10−6 [0.39, 0.63]× 10−6 [186]
[0.2, 0.4] 1100 [1.5, 2.1]× 10−6 [1.1, 1.7]× 10−6 [186]
[0.1, 0.15] 44.8 [8.2, 11.9]× 10−9 [31.3, 37.9]× 10−9 [179]
[0.2] 44.8 [17.2]× 10−9 [44.6]× 10−9 [179]
[0.1, 0.2] 804 [0.9, 1.4]× 10−7 [5.4, 7.8]× 10−7 [180]

Table 6.2: Comparison of particle dispersion rate predictions from Eqn.6.4 with
dispersion rates reported in the literature.

Figure 6.6: Comparison of particle dispersion rate predicted from Eqn.6.4 with
the data reported in the literature(Saadatmand1[179], Zhao2[180], Crowl3[186]).
The dash line is the prediction from Eqn.6.4

In order to test the accuracy of Eqn.6.4, particle dispersion rate predictions

from Eqn.6.4 were compared with dispersion rates published in literature for

platelets[180, 186] and 1µm particles[179]. It is noted that the comparison of

Eqn.6.4 with platelets and microparticles was considered due to the lack of NP

dispersion rate in the literature. The predictions and measured dispersion rates

are summarized in Table 6.2. The dimensionless dispersion rate is also plotted

in Fig.6.6 As shown in both the table and the figure, the dispersion rate predic-

tions using Eqn.6.4 are in good agreement with measured rates reported in the
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literature. Discrepancies between the predicted and measured dispersion rates

may be due to the linear correlation assumption for hematocrit, and/or the effect

of particle concentration, which was very low for this study and was assumed to

have a negligible effect on NP dispersion. Nevertheless, the order of magnitude

of dispersion rate as well as its trend with hematocrit are correctly predicted by

Eqn.6.4.
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Chapter 7

Cell seperation based on

deformability

7.1 Numerical methods for cancer cells

The cancer cell model is very similar to RBC model presented in Chapter 3. In

this section, we discuss how to model cancer cells and their difference from RBCs.

Cancer cells have a lot in common compared to white blood cells. The cell bend-

ing stiffness for white blood cells is 500kBT , about 2× 10−18J in temperature of

300K[187]. The stretching modulus for white blood cells is 18.9µN/m. The de-

formability of cancer cells varies a lot. CTCs usually present a dormant state[188]

where CTC is relatively stiffer. When they become malignant ones, the stiffness

decreases significantly[46]. Many literature reported that the Young’s modulus

for cancer cells. Some data has been summarized in Table 7.1. Those data are

Cell line Young’s modulus(kPa) Young’s modulus(2D, µN/m) Reference
BC3726 1.4(±0.7) 14(±7) [189]
T24 1.0(±0.5) 10(±5) [189]
Hu456 0.4(±0.3) 4(±3) [189]
HeyA8 0.71(±0.53) 7.1(±5.3) [37]
MLCs N/A 413(±15.2) [190]

Table 7.1: Young’s modulus for different cancer cell types
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measured using atomic force microscopy(AFM). Interested readers can find how

to use AFM and its application to cancer cell research in Ref.[191]. The Young’s

modulus for other cell types has been summarized in Ref. [192]. The Young’s

modulus can be used to determine the cell parameters in cell membrane nonlinear

potentials. Combine Eqn. 3.10 and 3.11, we can get the in-plane potential. We

only use the WLC potential as an example here.

Uin−plane = UWLC + UPOW =
∑

j∈1...Ns

[
kBT lm

4p

3x2
j − 2x3

j

1− xj
+
kp
lj

]
(7.1)

where the n = 2 is used for Eqn.3.11.The derivation process is exactly the same

for FENE potential. Young’s modulus can be derived through the Cauchy stress

and strain relationship. The method to calculating the stress from particle based

method is through the virial theorem[193]. The shear modulus and Young’s mod-

ulus for cell network model are summarized in Ref.[98, 102]. For example, for the

combination of WLC and POW potential, the shear modulus µ is

µ =

√
3kBT

4plmx0

(
x0

2(1− x0)3
− 1

4(1− x0)2
+

1

4

)
+

3
√

3kp
4l30

(7.2)

The shear modulus µ for the combination of FENE and POW potential is

µ =

√
3

4

(
2ksx

2
0

(1− x2
0)2

+
3kp
l30

)
(7.3)

The Poisson ratio ν of an isotropic triangular mesh is 1/3[98], thus, the Young’s

modulus E is

E =
8

3
µ (7.4)

The membrane thickness is about 100 Angstrom[93]. The thickness of the mem-

brane should multiply Young’s modulus to convert it into a 2D membrane elastic

modulus. The corresponding Young’s modulus for 2D membrane is shown in the
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third column in Table 7.1. It shows that the Young’s modulus for cancer cells is

very similar to Red blood cells, e.g., E ∈ (15− 36µN/m) [102, p.53].

However, cancel cell modeling is different from red blood cells. Red blood

cell has a biconcave shape which enables it undergo large deformation without

increase its surface area. However, cancer cells typically have a spherical shape

which has the minimum surface volume ratio. When cancer cells are squeezed

through a narrow channel or through capillary, the spherical shape is transited into

a sausage shape(i.e., a cylinder with hemispherical caps at both ends). The cell

volume is conserved but the surface is increased. However, the cell membrane is

typically inextensible. How does the cancer cell do that? The reason is the because

the numerical microvilli on the cell surface. It has been found that the number

of microvilli has been reduced during the cell squeezing process. An average of

area increase about 52% was observed during the cancer cell sphere to sausage

transition[194]. It is interesting that most of the cancer cells were dead after

deformed from spheres with an average diameter of 16.5 µm to cylinders having a

mean length of 53 µm in 7 µm capillaries[194]. That leads to the interesting future

study in membrane rupture in both RBCs and cancers. A short introduction to

cell damage was presented in Section 8.2.1. The surface compressibility is used to

characterize the deformability of the cells. The surface compression modulus K,

defined as

K = − ∂P

∂log(A)

∣∣∣∣
A=A0

(7.5)

where P is the in-plane pressure given by P = −1
2
(τxx + τyy), A is the surface

area. Fedosov analyzed different spring connected network models and gave the

relationship between K and other potential constants[102, p.43]. For example, for

both WLC and POW potential and FENE and POW potential,

K = 2µ0 + kg + kl (7.6)
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where µ0 is the shear modulus, and kg,kl are area conservation constants used in

Eqn.3.15. Generally, kg + kl � µ0 is required for nearly incompressible spring

network. In our model, different compression modulus were used to study the cell

squeezing process, e.g., healthy cells with less deformability and cancer cells with

more deformability.

Another difference between cancer cell model and RBC model is that there is

a nucleus within the cell. The size of a cell’s nucleus is usually proportional to

the size of the cell itself[195, 196], with nucleus volume occupying 7% of the cell

volume[197]. The nucleus is about 5 to 10 times stiffer than the cytoskeleton[198].

Thus, nucleus is a barrier for 3D migration[199]. However, for highly deformable

cells, such as cancer cells, their nuclei are more flexible so that they can migrate

through narrow regions. We did not explicitly model the nucleus. Instead, we

treated the nucleus exactly the same as cytoplasm. This assumption was also

used by other references[200].

7.2 Lubrication force

One of the challenges in modeling cell squeezing is to correctly capture the thin

fluid behavior when the cell membrane moves close to the wall. When the gap

between the cell membrane and the wall is very small, e.g., the gap is smaller

than a lattice space, the LBM fluid solver can not resolve the thin fluid flow

motion. One approach is to use a finer mesh for the whole fluid domain or refine

the mesh near the boundary layers[201–203]. This approach would increase the

LBM simulation time as the lattice space is reduced. It also requires some efforts

to handle the density distribution passage over the interface if a multgrid is used

in LBM. Another approach is to introduce an lubrication force to repel the cell

membrane so that there are enough fluid within the gap. The physics behind the

lubrication force model is that the fluid within the gap has to be displaced if the
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cell membrane moves close to the wall. As the gap gets smaller, there is less space

for fluid displacement, thus, requiring a larger force to drive the fluid away. This

results a repelling force on the cell membrane. The faster the cell moves close to

the wall, the bigger the repelling force generated by the fluid. The lubrication

repelling force was introduced to the lattice Boltzmann method in Ref[204, 205].

Following their work, the lubrication force derived from the lubrication theory

between two identical spheres is

F lub
ij = −3πµr

s
x̂ijx̂ij · (ui − uj) (7.7)

where r is the spherical radius, µ is the fluid dynamic viscosity, s is dimensionless

gap s = R/r− 2 where d is the R is the central distance between two spheres. xij

is the position vector difference between sphere i and j, defined as xij = xi − xj,

x̂ij is the unit vector. u is the spherical velocity. Eqn7.7 can also be extended to

the case where a sphere approach a stationary wall by setting uj = 0.

7.3 Model setup

In our model, the geometry of the microfluidic channel is 43µm× 30µm× 30µm,

with a narrow pore of diameter of 10µm. The side view and left view of the

channel is shown in Fig.7.1. The pore size is comparable to other narrow channel

size used in microfluidics. e.g., a square cross section of 10µm × 10µm was used

in Ref.[38], or a cross section of 6µm × 15µm in Ref.[46]. The critical channel

diameter to filter CTC from RBCs in microfluidic channel is reported between

5 and 12 µm[200]. Bounce back boundary conditions were applied at the walls.

The inlet was applied a pressure of 15 Pa, while the outlet pressure was set at 0.

The initial set up of the system is shown in Fig.7.2. The lattice size for the fluid

is 0.5µm. The cell has 2562 nodes and 5120 triangle surfaces with mean bond

length of 0.56 µm. The relaxation parameter τ = 0.9.
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Figure 7.1: The geometry of the channel with narrow pore for cell squeezing test

Figure 7.2: The initial setup of the cancer cell squeezing through a narrow pore.
The cell with a diameter of 15 µm was positioned at 10 µm away from the inlet.
The pore size is 10 µm in diameter and 3 µm in length located at x= 20 µm. A
15 Pa pressure was applied at the left inlet. The right outlet pressure was set to
0. The background color shows the velocity distribution.
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The physical properties of the membrane are listed in Table.7.2. Here the

FENE and POW potential were used.

ID ks(µN/m) kb(J) kg/kl(µN/m) K (µN/m) kv
K5 5 2× 10−19 0 20 1× 104

K4 5 2× 10−19 2 24 1× 104

K3 5 2× 10−19 20 60 1× 104

K2 5 2× 10−19 200 420 1× 104

K1 5 2× 10−19 2000 4020 1× 104

Table 7.2: Cell membrane properties for all the simulations performed in cells
squeezing test

7.4 Numerical results

Cells with five different deformability properties(see Table 7.2) were studied in this

work. Except the case K1, the cell translocation patterns were very similar. Here

only the K3 cell was selected for analysis. The time sequence of the simulation

were shown in Fig.7.3. As shown in the figure, the cell membrane would form

a protrusion at the heading membrane due to the convergent flow, as indicated

by the streamlines. Once the leading membrane passed through the micropore,

it would expand at the other side of the pore. The tension distribution of the

cell membrane is not uniform, with higher stress at the heading membrane and

the membrane within the micropore. The tail of the membrane were shrunk

first before it entered the pore, and then quickly stretched out and bend in the

reverse direction once it reached at the other side of the pore. After the tailing

membrane left the micropore, the cell would keep expanding toward the wall until

it reached a steady state, as shown in Fig.7.3d. The streamlines bended toward

the wall sharply after the tailing membrane left the micropore. The changes of

the streamlines can be seen from the comparison between Fig.7.3a and 7.3d.

104



(a) t = 0.33ms

(b) t = 1.67ms

(c) t = 2.67ms

(d) t = 4.33ms

Figure 7.3: Snapshots of cell squeezing through the micropore at different times.
Velocity magnitude (background, in LB dimensionless units), streamlines (yellow),
membrane tension are shown in the figure.
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7.4.1 Deformability effect on cell translocation

The snapshots of the simulation of cell with different area compressibility modulus

squeezing through a narrow pore is shown in Fig.7.4. The gap formed between the

cell membrane and the pore wall depends on the cell deformability, with larger gap

for smaller membrane compressibility modulus. It is interesting to see that the cell

with K = 4020µN/m could not pass through the pore, as indicated by the yellow

line in Fig.7.4c and 7.4d. The deformability also influence the curvature of the

membrane for the steady parachute shape, with larger curvature for flexible mem-

branes. Notice that the case K4 and K5 did not show too much difference during

the translocation process. This indicates that the nonlinear in plane stretching

potential contribution is dominant compared with area conservation potential.

During the cell translocation process, the flow volume rate passed the cross

section of the micropore can be used to characterize the translocation time. The

volume rate is also related to the ionic current that can be directly measured

through electronic nodes[206]. The conductivity of the micropore depends on

the physical blockage by cells, thus it is proportional to the volume rate of the

solution. The volume rate through the micropore (x = 43) was measured in all

the simulations performed, as shown in Fig.7.5. As shown from the figure, the

volume flow rate decreases more than 80% as the cell passes the pore, resulting

a sharp dip in the volume rate time history curve. The flow rate returns to the

original level after the cell leaves the pore. The time of the blockage depends on

the cell deformability, with shorter translocation time for softer cancer cells. This

is consistent with the experimental data reported in Ref[206]. It is interesting to

see that there is a second dip in the flow rate for less deformable cells. That is due

to the tension increase in tail membrane of the cell. For example, for the cell case

K3, the tension of the tail membrane at the peak volume rate (the data point at

t = 2.99ms) is shown in Fig.7.6a, while the tension of the membrane at the dip

in the flow rate(the point at t = 3.67ms) is shown in Fig.7.6b

106



(a) t = 0.33ms (b) t = 1.67ms

(c) t = 2.67ms (d) t = 4.33ms

Figure 7.4: Snapshots of cell squeezing through a narrow pore at different time.
Cell profiles in the plane sliced through the cell center are shown in the figures.
Cells with different deformability (area compressibility modulus K, in units of
µN/m) are shown in different colors. Yellow: K1 = 4020, Blue: K2 = 420, Red:
K3 = 420, Green: K4 = 60, Black: K5 = 20. The background color shows the
velocity distribution for the K2 case. The fluid distribution for cells with different
deformability shows similar pattern. They are not shown here.
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Figure 7.5: The volume rate passing through the micropore for cells with different
deformabilities.

To characterize the easiness of cells squeezing through the micropore, the

translocation time of the cells were recorded. The translocation time is obtained

from the volume rate time history at the middle section of the micropore(see

Fig.7.5). The translocation time for different cell deformability is shown in Fig.7.7

The time for K1 = 4020µN/m is not shown in the figure, because the cell is

blocked at the entrance of the pore, the translocation time is infinity. It can

be seen from the figure that the translocation time is not sensitive to the cell

deformability at the pore size of 10µm for cell size of 15µm.

7.4.2 Pressure and pore size effect on cell translocation

Different pressure difference for cell with deformability 20µN/m (the case K5)

squeezing through a 10µm micropore was studied. The pressure difference ap-

plied at the inlet is 5pa, 10pa, 15pa, and 25pa. The volume rate at the middle

section of the micropore is shown in Fig.7.8 It can be seen that the volume rate

at different pressure almost all decreased by 80%. The pressure change does not
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(a) t = 2.99ms

(b) t = 3.67ms

Figure 7.6: Tension changes in the tail membrane after the cell exits the micropore.
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Figure 7.7: The translocation time for cells passing through a micropore with
different deformabilities.

influence the percentage of decreased volume rate. However, it does delay the

translocation process. The translocation time of the cells under different pres-

sure is show in Fig.7.9 As shown from the figure, the translocation time decreases

with the increasing pressure. The translocation time decreases exponentially with

pressure increase.

Similarly, the influence of micropore size on cell tanslocation time was also

studied. The cell has an area compressibility modulus of 20µN/m. The applied

pressure difference is 15pa. Three difference micropore diameters are 8µm, 10µm,

and 12µm in the study. The time history of the volume rate at the middle of the

micropore is shown in Fig.7.10. The dip depth of volume rate curve increases as

the diameter of the micropore decreases. The pattern of the volume rate for cell

passing through the micropore is similar to the cases with different pressure dif-

ferences. The translocation time for different micropore size is shown in Fig.7.11.
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(a)

(b)

Figure 7.8: The volume rate at the middle section of the micropore under different
pressure difference for cells with deformability of 20µN/m squeezing through a
micropore with diameter of 10µm. (a) volume rate; (b) normalized volume rate.
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Figure 7.9: The translocation time under different pressure for cells with deforma-
bility of 20µN/m squeezing through a micropore with diameter of 10µm.

7.4.3 Rational design of microfluidics for cell separation

The ultimate goal of the study is to provide rational design principles of mi-

crofluidics so that they could be used to efficiently to separate cancer cell from

other cells in the blood sample. Two very important parameters in cell separa-

tion design are the pressure difference ∆P and the diameter of micropore d. The

following section is trying to propose a simple model to design microfluidics. For

example, what is the minimal pressure difference ∆P required to squeeze the cells

given the cell physical parameters and micropore size d ? What is the minimal

pore size under given pressure difference? When the micropore is blocked by the

cell, the leading and tailing membrane could be treated as spherical caps, while

the middle part of the membrane could be treated as a cylinder, as shown in

Fig.7.12. The cell bending stiffness is much smaller than the stretching stiffness,

thus the membrane equilibrium conditions could be reasonably assumed to follow

Laplace-Young equation. Using a modified Laplace-Young equation[190, 207], we
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(a)

(b)

Figure 7.10: The volume rate at the middle section of the micropore for different
pore size for cells with deformability of 20µN/m squeezing through a micropore
under pressure difference of 15pa. (a) volume rate; (b) normalized volume rate.
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Figure 7.11: The translocation time through different micropore size for cells with
deformability of 20µN/m under the pressure of 15pa.

Figure 7.12: The micropore is blocked by the cells. The head and tail membrane
form two curved surfaces(curves shown in the figure) that can be approximated
as spherical caps with different radius r and R. The middle part of the membrane
could be approximated as a cylinder with length l and radius r.
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have

∆P = 2γ(
1

r
− 1

R
) (7.8)

where r and R are the smaller hemisphere radius and bigger hemisphere radius,

respectively. γ is the mean tension over the membrane. Noted here that the

stress distribution over our cell model is not exactly uniform. For simplicity, the

tension is assumed to be uniformly distributed over the whole membrane. From

the conservation of volume, we have

π(R +
√
R2 − r2)

6
(3r2 + (R +

√
R2 − r2)2) + πr2l +

2

3
πr3 = V0 (7.9)

The surface area can be calculated as

2πR(R +
√
R2 − r2) + 2πrl + 2πr2 = A (7.10)

The ideal case is considered here that the smaller spherical cap is exactly a half

sphere with radius r = d/2 where d is the micropore diameter. From Eqn. 7.9

and 7.10, with the assumption r = d/2, we can find the solution for R and l. For

example, in the K1 case shown in Fig.7.4, we find that R = 7µm, l = 2.3µm,

the minimal required pressure difference ∆P = 25pa, which is about 67% higher

than the pressure difference specified at the inlet ∆P0 = 15pa. The difference

could be several reasons. First, the cell membrane model used here does resist

bending, which is not considered in the Laplace-Young equation (7.8). Second,

the assumption of a uniform tension distribution over the surface is not exactly

correct. The tension distribution of the cell membrane is shown in Fig.7.13. It

clearly shows a high stress region in the middle part of the membrane within

the micropore. The heading and tailing membrane have relatively small tension.

Thus, the uniform tension distribution assumption is not correct. To consider the

nonuniform distribution of the tension, the local tension were used to predict the
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Figure 7.13: Nonuniform tension distribution over the cell membrane. Concen-
trated high tension was observed on the membrane within the pore. The tension
in µN/m are shown in the color bar.

pressure difference. The local regions used to calculate the tension were defined

as two hemispheres at the heading and tailing membrane. This approach is also

consistent with the conditions that Eqn.7.8 derived from.

With local surface averaged tension γ = 128.2µN/m, the predicted pressure

∆P = 14.4pa, which is reasonably close to the applied pressure 15pa. Thus,

through the FSI code, we could calculate the minimal pressure required to squeeze

through the micropore. Similarly, the micropore size could also be optimized

under given pressure difference and cell physical properties.
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Chapter 8

Conclusion and future work

8.1 Conclusion

This dissertation was conducted in the background of modeling of biological flow

and soft matter where the interaction between cells and local fluid is very im-

portant and has to be resolved. Lattice Boltzmann method was selected as the

fluid solver due to its capabilities in multiphase modeling, parallel computing, and

easy implementation of the algorithm and complex geometries. The dissertation

summarized the techniques of Lattice Boltzmann method as a fluid solver, includ-

ing the theoretical background, discretization, nondimensionalization, collision

schemes and boundary conditions. A network based cell model (coarse grained

molecular dynamics) was selected due to its capabilities in handling large defor-

mation and nonlinearity of solids. The cell model is also promising in modeling

cell damage which would be one of the future studies. The network model was

largely followed Fedosov’s dissertation[102], including nonlinear potentials, bend-

ing energy, and surface area and volume conservation constraints. The numerical

procedure to calculate cell nodal force was given in details. To couple the fluid

flow with the cell motion, the Immersed Boundary Method (IBM) was selected

as the coupling scheme. IBM removes the burden of mesh updating in tradi-
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tional Arbitrary Lagrangian Eulerian (ALE) approach through a force density

that represents the effect of immersed solid boundaries. Thus it is very efficient in

modeling fluid structure interaction (FSI) problems in soft matter. Nanoparticle

(NP) model was also introduced into the coupling system to study the NP delivery

in microcirculation. The NP model is directly derived from molecular dynamics

(MD) approach. A significant time was devoted to develop the code in 2D and

3D.

The developed code was benchmarked for fluid solver through a lid driven

cavity flow, the cell behavior was benchmarked with stretching tests. The FSI

was benchmarked through a dropping sphere in a quiescent channel. All the

benchmark work confirmed that the fluid flow and cell mechanics can correctly

capture the hydrodynamics and biological cell behavior. As applications to the

developed code, we first studied the NP dispersion rate under the influence of

cells and shear rates; then, we also studied the cancer cell translocation process

through a micropore. Particularly, it demonstrated that how this code can be

used to optimize the key parameters such as pressure difference and micropore

size in microfludics that can efficiently separate cells based on the stiffness.

The contributions of the dissertation work are summarized below.

8.1.1 Nanoparticle dispersion rate

This first part of the dissertation presents a numerical study on NP dispersion in

blood flow considering the influence of RBC motion and deformation. NP disper-

sion rate is found to be strongly influenced by RBC motion, and to have an ap-

proximately linear relationship with shear rate in the RBC tumbling (η < 40s−1)

and RBC tank treading (η > 200s−1) regions of the flow regime. Between these

two regions, the relationship between NP dispersion rate and shear rate is not

as well defined. More importantly, a general formula to estimate NP dispersion

rate for a given shear rate was then developed as D = kη + D0 where D0 is the
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thermal diffusion coefficient, k is a constant that depends on the hematocrit and

capillary number. NP dispersion with cell suspensions in channel flow was also

studied. These simulations were used to characterize NP migration to the vessel

walls as a function of shear rate at different hematocrit levels. The predictions

given by the proposed empirical formulae agree well with data reported in the lit-

erature. These simple predictive analytical formulae provide an efficient approach

for assessing NP dispersion under various flow conditions and hematocrit levels,

thereby facilitating practical modeling of NP transport and distribution in large

scale vascular systems. Compared to this study, the previous modeling results in

literature[25, 26] did not provide an analytical formula to predict the dispersion

rate under shear and channel flow. In the future, the model presented in this pa-

per will be extended to study 3D cell-particle interaction and transport behavior,

and a NP binding model will be developed to explore NP binding and distribution

in capillary vessels. The proposed formula for the dispersion rate will also be used

to evaluate NP transport and distribution in a large scale vascular network.

8.1.2 Microfluidic design

Deformability could be used as a biomarker to detect circulating cancer cells. The

more deformable the cells, the easier they translocate through a micropore. Ap-

plied pressure difference and the micropore size are the two key parameters in

microfluidics design for cell separation. This work presents 3D modeling results of

cells with different deformability squeezing through a micropore. The numerical

results indicate that the translocation time of cells is not sensitive to the cell de-

formability. For example, the translocation time only varies by a few times while

the cell surface compressibility modulus changes by orders of magnitude. How-

ever, the translocation time strongly depends on the applied pressure difference

and the diameter of the micropore. The translocation time increases exponen-

tially as the pressure or the diameter of the micropore decreases. During the cell
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squeezing process, the membrane tension is not uniform over the cell surface, with

high tension at the leading part of the membrane. When the cell is in contact

with the wall, such as the case when cell is too stiff to be blocked from passing

the pore, a concentrated high stress was observed for the contacted membrane.

The dissertation also provide a method to predict the minimal applied pressure

required to squeeze the cell through a certain size of a micropore. A modified

Laplace-Young equation with local membrane tension combined with volume con-

servation and surface area constraint could be used to predict the critical pressure

that the cell is exactly stuck at the micropore. During the calculation process,

the membrane tension and surface area are provided from the simulation results.

The bending contribution is not considered in the Laplace-Young equation. This

assumption works for highly deformable cancer cells, however, it may not work

for relatively rigid cells.

8.2 Future work

The future work includes two part. The first part is to explore the new physics

in cell damage through introducing a bond breaking mechanism in the coarse

grained cell membrane model. The second part is to implement parallel computing

features into the code.

8.2.1 Red blood cell damage

Cell transport in flow is important for various medical devices such as syringe

pump [208], artificial heart[209], heart valve[210], and bio-printer[211]. Cell dam-

age usually happens when they are in direct contact with the surfaces of these

devices or when they experience extremely high shear stress in complex geome-

tries such as a converging channel, rotating blade, biodispenser, or an injection

nozzle[212, 213]. In patients, hemolysis resulting from blood-device interactions
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has been linked to renal failure, anemia, arrhythmias, and death[214, 215]. For

instance, Red blood cells (RBCs) damage induced by ventricular assist devices

(VADs) over a long period of time is still an unsolved issue[216]. Besides medical

devices, cell damage is also a big concern in biofabrication and microfluidic lab-

on-chip devices [217–219], where individual or groups of cells are manipulated in

a small channel such as syringe-based cell deposition for tissue constructs [220]

and inkjet-based cell printing[217, 221]. In these examples, cells are subjected

to combined effects of shear, tension and compression. Prolonged contact and

collision between blood cells and device surfaces and regions of high shear stress

contribute to cell damage[222, 223]. The consequence of RBC damage can be

sudden, and potentially fatal. The damage induced nitric oxide depletion results

in pulmonary hypertension, abdominal pain, and some other physiological dys-

functions[224]. Thus, it is very important to evaluate the blood damage for safety

evaluation of blood-wetted medical devices. The network based cell model is very

useful in modeling cell damage. For example, it is natural to introduce a bond

breaking mechanism to model the membrane rupture under high stress.

8.2.2 Parallel computing features for the code

One of the promising features of LBM is its capabilities of taking advantage of

parallel computing. The local streaming and collision nature enables us to run

the fluid solver based on geometric decomposition. There are some available

open source codes such as graphic processing units (GPU) based Sailfish[225],

and message passing interface (MPI) based Palabos[226]. Some trials have been

carried out in graphic processing units (GPU) for the LBM part with a speed up

of 30 times in Matlab. However, it still needs a significant work on implementing

a GPU version of the FSI code. Multiphase fluid models can also be included in

the code as well. Relative references can be found in Section 2.9.
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[94] Timm Krüger, Fathollah Varnik, and Dierk Raabe. “Efficient and accurate

simulations of deformable particles immersed in a fluid using a combined

immersed boundary lattice Boltzmann finite element method”. In: Com-

puters & Mathematics with Applications 61.12 (2011), pp. 3485–3505.

[95] Y Sui et al. “Dynamic motion of red blood cells in simple shear flow”. In:

Physics of Fluids (1994-present) 20.11 (2008), p. 112106.

[96] Dmitry A Fedosov, Bruce Caswell, and George Em Karniadakis. “A multi-

scale red blood cell model with accurate mechanics, rheology, and dynam-

ics”. In: Biophysical journal 98.10 (2010), pp. 2215–2225.

[97] Ken-ichi Tsubota, Shigeo Wada, and Takami Yamaguchi. “Particle method

for computer simulation of red blood cell motion in blood flow”. In: Com-

puter methods and programs in biomedicine 83.2 (2006), pp. 139–146.

[98] T Omori et al. “Comparison between spring network models and continuum

constitutive laws: Application to the large deformation of a capsule in shear

flow”. In: Physical Review E 83.4 (2011), p. 041918.

[99] Tenghu Wu and James J Feng. “Simulation of malaria-infected red blood

cells in microfluidic channels: Passage and blockage”. In: Biomicrofluidics

7.4 (2013), p. 044115.

[100] Masanori Nakamura, Sadao Bessho, and Shigeo Wada. “Spring-network-

based model of a red blood cell for simulating mesoscopic blood flow”. In:

International journal for numerical methods in biomedical engineering 29.1

(2013), pp. 114–128.

[101] Masanori Nakamura, Sadao Bessho, and Shigeo Wada. “Analysis of Red

Blood Cell Deformation under Fast Shear Flow for Better Estimation of

Hemolysis”. In: International journal for numerical methods in biomedical

engineering 30.1 (2014), pp. 42–54.

132



[102] Dmitry A Fedosov. Multiscale modeling of blood flow and soft matter.

Brown University, 2010.

[103] Evan Evans and Yuan-Cheng Fung. “Improved measurements of the ery-

throcyte geometry”. In: Microvascular research 4.4 (1972), pp. 335–347.

[104] Rajat Mittal and Gianluca Iaccarino. “Immersed boundary methods”. In:

Annu. Rev. Fluid Mech. 37 (2005), pp. 239–261.

[105] Timm Krueger, David Holmes, and Peter V Coveney. “Deformability-based

red blood cell separation in deterministic lateral displacement devices—A

simulation study”. In: Biomicrofluidics 8.5 (2014), p. 054114.

[106] Cédric Chauvierre et al. “Novel polysaccharide-decorated poly (isobutyl

cyanoacrylate) nanoparticles”. In: Pharmaceutical research 20.11 (2003),

pp. 1786–1793.

[107] Omid C Farokhzad and Robert Langer. “Nanomedicine: developing smarter

therapeutic and diagnostic modalities”. In: Advanced drug delivery reviews

58.14 (2006), pp. 1456–1459.

[108] Edith Mathiowitz et al. “Biologically erodable microspheres as potential

oral drug delivery systems”. In: Nature 386.6623 (1997), pp. 410–414.

[109] Norased Nasongkla et al. “Multifunctional polymeric micelles as cancer-

targeted, MRI-ultrasensitive drug delivery systems”. In: Nano letters 6.11

(2006), pp. 2427–2430.

[110] Celeste Roney et al. “Targeted nanoparticles for drug delivery through

the blood–brain barrier for Alzheimer’s disease”. In: Journal of Controlled

Release 108.2 (2005), pp. 193–214.

[111] Robby A Petros and Joseph M DeSimone. “Strategies in the design of

nanoparticles for therapeutic applications”. In: Nature Reviews Drug Dis-

covery 9.8 (2010), pp. 615–627.

133



[112] Frank Alexis et al. “Factors affecting the clearance and biodistribution of

polymeric nanoparticles”. In: Molecular pharmaceutics 5.4 (2008), pp. 505–

515.

[113] Jin Wang et al. “More effective nanomedicines through particle design”.

In: Small 7.14 (2011), pp. 1919–1931.

[114] Bianca CH Lutters et al. “Blocking endothelial adhesion molecules: a po-

tential therapeutic strategy to combat atherogenesis”. In: Current opinion

in lipidology 15.5 (2004), pp. 545–552.

[115] Rutherford Aris. “On the dispersion of a solute in a fluid flowing through

a tube”. In: Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences. Vol. 235. 1200. The Royal Society. 1956,

pp. 67–77.

[116] Geoffrey Taylor. “Dispersion of soluble matter in solvent flowing slowly

through a tube”. In: Proceedings of the Royal Society of London A: Math-

ematical, Physical and Engineering Sciences. Vol. 219. 1137. The Royal

Society. 1953, pp. 186–203.

[117] M Dembo et al. “The reaction-limited kinetics of membrane-to-surface ad-

hesion and detachment”. In: Proceedings of the Royal Society of London.

Series B. Biological Sciences 234.1274 (1988), pp. 55–83.

[118] Cheng Dong et al. “Mechanics of leukocyte deformation and adhesion to en-

dothelium in shear flow”. In: Annals of biomedical engineering 27.3 (1999),

pp. 298–312.
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Appendix A

Cell Linked-List algorithm

1 void Chain : : i n i tLJ ( ) {

i f ( l x==0 | | l y==0)

3 std : : cout<<” p a r t i c l e doesn ’ t know f l u i d geometry s i z e ”<<std : : endl

;

cx = f l o o r ( l x /rCut ) ;

5 cy = f l o o r ( l y /rCut ) ;

s td : : cout<<”cx , cy ”<<cx<<” ”<<cy<<std : : endl ;

7 l s c l=new i n t [ nn ] ;

head=new i n t [ cx∗cy ] ;

9 i f ( pCe l l ) {

l s c l c=new i n t [ pCel l−>nn ] ;

11 head c=new i n t [ cx∗cy ] ;

}

13 rrCut=rCut∗ rCut ;

s i g 2=sigma∗ sigma ;

15 s i g 6=s i g 2 ∗ s i g 2 ∗ s i g 2 ;

}

17

void Chain : : bu i l dL inkL i s t ( ) {

19 i n t c e l l S i z e=cx∗cy ;

i n t idx , idy , idc ;

21 double dx , dy ;
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dx = double ( l x ) / double ( cx ) ;

23 dy = double ( l y ) / double ( cy ) ;

f o r ( i n t i =0; i<c e l l S i z e ; i++){

25 head [ i ]=EMPTY;

i f ( pCe l l ) head c [ i ]=EMPTY;

27 }

// p a r t i c l e s

29 f o r ( i n t i =0; i<nn ; i++){

idx = f l o o r ( x [ 2∗ i ] / dx ) ;

31 idy = f l o o r ( x [ 2∗ i +1]/dy ) ;

idc = idy ∗cx + idx ;

33 l s c l [ i ]=head [ idc ] ;

head [ idc ]= i ;

35 }

// c e l l s t r u c t u r e nodes

37 i f ( pCe l l ) {

f o r ( i n t i =0; i<pCell−>nn ; i++){

39 idx = f l o o r ( pCel l−>x [2∗ i ] / dx ) ;

idy = f l o o r ( pCel l−>x [2∗ i +1]/dy ) ;

41 i d c = idy ∗cx + idx ;

l s c l c [ i ]= head c [ idc ] ;

43 head c [ idc ]= i ;

i f ( idc >cx∗cy ) std : : cout<<” c e l l i dc ”<<idc<<” ”<<cx∗cy<<std : :

endl ;

45 }

}

47 }

49 void Chain : : pa i rWi s e In t e ra c t i on ( ) {

i n t idc , idc nb ;

51 i n t i , j , j c ;

// scan a l l the c e l l s through x , and y d i r e c t i o n

53 f o r ( i n t idcy =0; idcy<cy ; idcy++){

f o r ( i n t idcx =0; idcx<cx ; idcx++){
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55 i d c = idcy ∗cx + idcx ;

i f ( head [ idc ]==EMPTY) cont inue ;

57 // scan neighbor c e l l s

f o r ( i n t nby=idcy −1;nby<=idcy +1;nby++){

59 f o r ( i n t nbx=idcx −1;nbx<=idcx +1;nbx++){

//when c e l l i s on the edge , −1 could l ead to out o f

boundary

61 i f ( per iod icX && per iod icY ) {

idc nb = ( ( nby+cy )%cy ) ∗cx+((nbx+cx )%cx ) ;

63 } e l s e i f ( per iod icX ) {

i f ( nby== −1 | | nby == cy )

65 cont inue ;

e l s e

67 idc nb = nby∗cx + ( ( nbx+cx )%cx ) ;

} e l s e i f ( per iod icY ) {

69 i f ( nbx == −1 | | nbx == cx )

cont inue ;

71 e l s e

idc nb = ( ( nby+cy )%cy ) ∗cx + nbx ;

73 } e l s e {

i f ( nby== −1 | | nby == cy )

75 cont inue ;

i f ( nbx == −1 | | nbx == cx )

77 cont inue ;

idc nb = nby∗cx + nbx ;

79 }

i f ( head [ idc nb ] !=EMPTY) {

81 i=head [ idc ] ;

whi l e ( i !=EMPTY) {

83 j=head [ idc nb ] ;

whi l e ( j !=EMPTY) {

85 i f ( i<j ) LJForce ( i , j ) ;

j=l s c l [ j ] ;

87 }//end o f loop j
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i=l s c l [ i ] ;

89 }

}

91 i f ( pCe l l ) {

i f ( head c [ idc nb ] !=EMPTY) {

93 i=head [ idc ] ;

whi l e ( i !=EMPTY) {

95 j c=head c [ idc nb ] ;

whi l e ( j c !=EMPTY) {

97 p a r t i c l e C e l l L J F o r c e ( i , j c ) ;

j c=l s c l c [ j c ] ;

99 }//end o f loop j

i=l s c l [ i ] ;

101 }

}

103 }

}// eo f nbx

105 }// eo f nby

}// eo f idcx

107 }// eo f idcy

}
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