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Abstract

This dissertation is about control, identification, and analysis of systems with sparse

interconnection topologies. We address two main research objectives relating to spar-

sity in control systems and networks. The first problem is optimal sparse controller

synthesis, and the second one is the identification of sparse network. The first part of

this dissertation starts with the chapter focusing on developing theoretical frameworks

for the synthesis of optimal sparse output feedback controllers under pre-specified

structural constraints. This is achieved by establishing a balance between the stabil-

ity of the controller and the systems quadratic performance. Our approach is mainly

based on converting the problem into rank constrained optimizations.

We then propose a new approach in the syntheses of sparse controllers by em-

ploying the concept of Hp approximations. Considering the trade-off between the

controller sparsity and the performance deterioration due to the sparsification pro-

cess, we propose solving methodologies in order to obtain robust sparse controllers

when the system is subject to parametric uncertainties.

Next, we pivot our attention to a less-studied notion of sparsity, namely row spar-

sity, in our optimal controller design. Combining the concepts from the majorization

theory and our proposed rank constrained formulation, we propose an exact refor-

mulation of the optimal state feedback controllers with strict row sparsity constraint,

1



which can be sub-optimally solved by our proposed iterative optimization techniques.

The second part of this dissertation focuses on developing a theoretical framework

and algorithms to derive linear ordinary differential equation models of gene regula-

tory networks using literature curated data and micro-array data. We propose several

algorithms to derive stable sparse network matrices. A thorough comparison of our

algorithms with the existing methods are also presented by applying them to both

synthetic and experimental data-sets.
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Chapter 1

Introduction

The growth of large-scale dynamical systems such as power grids, transportation sys-

tems, and wireless data networks, and the impotence of traditional control/identification

schemes have caused the problem of sparse/structured controller design/system iden-

tification to receive increasing attention over the past few years. In modeling and

control of such dynamical system, it is crucial to consider the network underlying

topology, as it dictates the pattern of information flow among the sub-systems.

In conventional control, it is usually assumed that all measurements are accessible

to a centralized controller, while in large scale interconnected systems this assump-

tion is not practical, since the subsystem level information is not globally accessible

throughout the network in medium to large-scale systems. Furthermore, in large net-

work of dynamical systems, it is desirable that subsystems only communicate with a

few neighboring components due to the high cost, security concerns, or infeasibility

of communication links. Needless to say that incorporation of the inherent structure

of the system in the identification processes is paramount in order to obtain a precise

model of the system. Therefore, the need to exploit particular structures, obtained

3



based on the layout of the system network, seems undeniable.

One common desired structure in the control of network of dynamical systems is

the sparsity of the network, which could correspond to a simpler controller topology,

fewer sensors/actuators, and minimization of long distance communications. How-

ever, fewer measurement/communication links leads to performance deterioration and

sometimes even instability of the overall system. Therefore, there exists a trade off

between the stability and performance of the system and minimizing the number of

non-zero entries of the feedback gain matrices. As for the problem of large-scale net-

work identification, the assumption of sparsity is reasonable, as nodes rarely directly

interact with the majority of other nodes.

In general, the problems of controller design and system identification subject to

additional constraints, such as sparsity, are challenging problems. The complexity of

the problems originates from two main sources. One is the non-convexity of the stabil-

ity conditions, and the other is the combinatorial behaviour of the sparsity measuring

function. In recent years, numerous attempts have been made to provide distributed

controller synthesis approaches for different classes of systems [1, 2, 3, 4, 5]. Bamieh

et al, in [6, 7], investigated the distributed control of spatially invariant systems, then

the work in [8] has proved that the solution of Riccati and Lyapunov equations for

systems consisting of Spatially Decaying (SD) operators has SD property, which lends

credibility to the search for controllers that have access only to local measurements.

The design of optimal state feedback gain in the presence of an a priori specified

structure, usually in the form of sparsity patterns, is considered in [4]. In their recent

papers, Lavaei et al. [9, 10, 11] cast the problem of optimal decentralized control for

discrete time systems as a rank constrained optimization problem, developed results

4



on the possible rank of the resulting feasible set, and introduced several rank-reducing

heuristics as well. Wang et al. studied the problem of localized LQR/LQG control and

presented a synthesis algorithm for large-scale localizable systems [12, 13]. Frequency

domain approaches to design optimal decentralized controllers are also presented in

[14, 15, 16].

Regarding the issues caused by the sparsity requirements, it suffices to say that

the problem of minimizing the number of nonzero elements of a vector/matrix sub-

ject to a set of convex constraints, which arises in many fields such as Compressive

Sensing [17, 18, 19], in inherently NP-hard. To alleviate the issues caused by the

combinatorial nature of cardinality functions, several convex/non-convex functions

have been proposed as surrogates for the cardinality functions in optimization prob-

lems. For example, in cases where the optimization constraint is affine, `1-norm ,

as a convex relaxation of `0-norm, has proved to work reliably under certain condi-

tions, namely Restricted Isometry Property (RIP) [20, 21, 22]. Thus, `1-norm and its

weighted versions have been extensively used in signal processing and control appli-

cations [23, 24, 25, 26, 2, 27, 23, 28, 29, 30]. Non-convex relaxations of the cardinality

function, such as `q-quasi-norm (0 < q < 1), have also received considerable attention

recently [31, 32]. In [33, 34, 35], it is shown that, for a large class of SD systems,

the quadratically-optimal feedback controllers inherit spatial decay property from the

dynamics of the underlying system. Moreover, the authors have proposed a method,

based on new notions of q-Banach algebras, by which sparsity and spatial localization

features of the same class can be studied when q is chosen sufficiently small.

In this dissertation, we study the problems of optimal sparse/row-sparse controller

synthesis, and the sparse network identification with application to Gene Regulatory

5



Networks. Our approach is mainly based on converting the problems into rank con-

strained optimizations, which can be solved efficiently though our proposed solving

algorithms.

1.1 Contributions

The contributions of this dissertation can be summarized as the following.

Optimal Sparse Output Feedback Controller Design. We consider the

problem of optimal sparse output feedback controller synthesis for continuous lin-

ear time invariant systems when the feedback gain is static and subject to specified

structural constraints. Introducing an additional term penalizing the number of non-

zero entries of the feedback gain into the optimization cost function, we show that

this inherently non-convex problem can be equivalently cast as a rank constrained

optimization, hence, it is an NP-hard problem. We then obtain upper/lower bounds

for the optimal cost of the sparse output feedback control problem by proposing a

convex optimization problem that conservatively solves our main problem. More-

over, we show that our problem reformulation allows us to incorporate additional

implementation constraints, such as norm bounds on the control inputs or system

output, by assimilating them into the rank constraint. We further exploit our rank

constrained approach to define a structured output feedback control feasibility prob-

lem with global convergence property, and subsequently propose to utilize a version

of the Alternating Direction Method of Multipliers (ADMM) as an efficient method

to sub-optimally solve the equivalent rank constrained problem. As a special case,

we study the problem of designing the sparsest stabilizing output feedback controller,

and show that it is, in fact, a structured matrix recovery problem where the matrix

6



of interest is simultaneously sparse and low rank. Furthermore, we show that this

matrix recovery problem can be equivalently cast in the form of a canonical and well-

studied rank minimization problem. We finally illustrate performance of our proposed

methodology using numerical examples.

Output Feedback Controller Sparsification. The problem of optimal sparse

output feedback control design for continuous linear time invariant systems is consid-

ered. This work adopts the concept of Hp-approximation to develop an optimization

algorithm capable of synthesizing a structured sparse static controller gain for which

the overall closed loop system exhibits empirical frequency characteristics resembling

that of the system controlled with a pre-designed centralized controller. We, more-

over, modify our optimization problem so that the control signal generated by the

sparse controller falls into the vicinity of the centralized control input, in the sense of

L2
2 norm. Furthermore, we show that our optimization problem can be equivalently

reformulated into a rank constrained problem for which we propose to use a tailored

version of Alternating Direction Method of Multipliers (ADMM) as a computationally

efficient algorithm to sub-optimally solve it. Finally, we illuminate the effectiveness

of our proposed method by testing it on randomly generated sample network models.

Controller Sparsification Under Parametric Uncertainties. We consider

the problem of output feedback controller sparsification for systems with parametric

uncertainties. We develop an optimization scheme that minimizes the performance

deterioration from that of a well-performing pre-designed centralized controller, while

enhancing sparsity pattern of the feedback gain. In order to improve temporal prox-

imity of the pre-designed control system and its sparsified counterpart, we also incor-

porate an additional constraint into the problem formulation such that the output

7



of the controlled system is enforced to stay in the vicinity of the output of the pre-

designed system. It is shown that the resulting nonconvex optimization problem can

be equivalently reformulated into a rank constrained problem. We then study the

effect of the magnitude of the parametric uncertainties on the controller sparsifica-

tion process by means of running a series of simulations. Overall, with the growth of

the uncertainties magnitude, a decreasing trend in the sparsification performance is

observed.

Optimal State Feedback Controllers with Strict Row Sparsity Con-

straints. The problem of optimal row sparse state feedback controller design for

LTI systems, where the controller is assumed to be static with pre-specified struc-

tural constraint, is considered. Incongruous to the existing literature on the sparsity

promoting control synthesis, we do not employ convex relaxation of the sparsity rep-

resenting terms, such as `0-norm of the controller gain, in our proposed framework.

Borrowing the results from the theory of majorization, we develop an exact rank con-

strained reformulation of the s-sparse vector recovery from a convex set, and, then,

utilized it to cast our row sparse control problem into a an optimization problem where

all constraints are convex, except a single rank constraint. Furthermore, we propose

a necessary and sufficient condition for the feasibility of a stabilizing row s-sparse

controller, and exploited it to propose a bi-linear minimization problem, subject to

convex constraints, which solve the derived equivalent rank constrained problem to

deliver an optimal row sparse state feedback controller. The benefits of approach are

demonstrated though several numerical simulations.

Gene Regulatory Network Modeling Building on the linear matrix inequality

formulation developed recently by Zavlanos et al (2011), we present a theoretical

8



framework and algorithms to derive a class of ordinary differential equation models

of gene regulatory networks using literature curated data and micro-array data. The

solution proposed by Zavlanos et al (2011) requires that the micro-array data be

obtained as the outcome of a series of controlled experiments in which the network is

perturbed by over-expressing one gene at a time. We note that this constraint may be

relaxed for some applications and, in addition, demonstrate how the conservatism in

these algorithms may be reduced by using the Perron-Frobenius diagonal dominance

conditions as the stability constraints. Due to the LMI formulation, it follows that

the bounded real lemma may easily be used to make use of additional information.

We present case studies that illustrate how these algorithms can be used on data sets

to derive ODE models of the underlying regulatory networks.

1.1.1 Dissertation Overview

This dissertation consists of three main parts. Part I is devoted sparsity promoting

control, and the approach is mainly based on converting the problem into equivalent

rank constrained optimization problems, then, finding their sub-optimal solutions.

At the end of each chapter, we summarize the main contributions and discuss future

research directions.

In Chapter 2, we consider the problem of sparsity promoting control with quadratic

performance measure. We provide an equivalent rank constrained optimization op-

timization. We describe how the input/output constraints can be Incorporated into

the design without affecting the structure of the equivalent optimization program.

Then, we demonstrate that the modified alternating direction method of multipliers

is well-suited to solve the rank constrained problem.
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In chapter 3, we take a look at the sparsity promoting control problem from a

different point of view. While the previous chapter construct the sparse controller by

minimizing a cost function, here our approach is to find a sparse approximation of a

pre-designed well-performing controller by minimizing a weighted sum of the perfor-

mance deviation and the density of the controller gain. By utilizing the concepts from

mixed H2/H∞ problem, we find the rank constrained reformulation of the problem

which can be solved using the ADMM algorithm. Chapter 4 extends the results of

chapter two by considering the systems with parametric uncertainties. Here we show

that, on average, a decreasing trend in sparsification performance can be observed as

with enlarge the uncertainties magnitude.

In Chapter 5, we consider the row sparsity of the controller instead of the matrix

sparsity. We show that, using the results from majorization theory, it is possible to

rewrite the problem of finding s-sparse stabilizing controller as a rank con trained

optimization. Then, we propose a necessary and sufficient condition for the feasibil-

ity of a stabilizing row s-sparse controller. We, also, demonstrate that the optimal

row sparse state feedback controller can be derived by iteratively solving a bi-linear

optimization subject to convex constraints.

Part II of this thesis addresses the problem of sparse network modeling with

application to Gene Regulatory Networks (GRNs). In Chapter 6, we first formulate

the GRN identification problem as an optimization program with bi-linear matrix

inequality constraints. In addition to proposing several algorithms to sub-optimally

solve the problem, we also describe the rank constrained reformulation of the problem

which can be solved using the algorithms developed in part I. We conclude this part

by applying our algorithms on experimental data sets.
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Part III is dedicated to summarizing the work presented in this dissertation and

present future research directions.
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Part I

Sparsity Promoting Optimal

Feedback Controller Synthesis
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Chapter 2

Optimal Sparse Output Feedback

Controller Design:

A Rank Constrained Optimization

Approach

2.1 Introduction

The problem of optimal linear quadratic controller design has been extensively studied

for several decades. In conventional control, it is usually assumed that all measure-

ments are accessible to a centralized controller, while in large scale interconnected

systems this assumption is not practical, since it is often desirable that subsystems

only communicate with a few neighboring components due to the high cost, security

concerns, or infeasibility of communication links. Therefore, the need to exploit a
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particular controller structure, obtained based on the layout of the system network,

seems undeniable. Furthermore, the traditional controller synthesis methods, which

are closely related to solving the Algebraic Riccati Equation, no longer work when

additional constraints are imposed on the structure of the controller.

In general, the problem of designing constant gain feedback controllers subject

to additional constraints is NP-hard [36]. In recent years, numerous attempts have

been made to provide distributed controller synthesis approaches for different classes

of systems [1, 2, 3, 4, 5]. Bamieh et al, in [6, 7], investigated the distributed control

of spatially invariant systems, then the work in [8] has proved that the solution of

Riccati and Lyapunov equations for systems consisting of Spatially Decaying (SD)

operators has SD property, which lends credibility to the search for controllers that

have access only to local measurements. The design of optimal state feedback gain in

the presence of an a priori specified structure, usually in the form of sparsity patterns,

is considered in [4]. In their recent papers, Lavaei et al. [9, 10, 11] cast the problem

of optimal decentralized control for discrete time systems as a rank constrained op-

timization problem, developed results on the possible rank of the resulting feasible

set, and introduced several rank-reducing heuristics as well. Wang et al. studied the

problem of localized LQR/LQG control and presented a synthesis algorithm for large-

scale localizable systems [12, 13]. Frequency domain approaches to design optimal

decentralized controllers are also presented in [14, 15, 16].

In the design of linear feedback controllers for interconnected systems, a common

desired structure is the sparsity of the controller matrices, which could correspond

to a simpler controller topology, fewer sensors/actuators, and minimization of long

distance communications. However, fewer measurement/communication links leads
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to performance deterioration and sometimes even instability of the overall system.

Therefore, there exists a trade off between the stability and performance of the system

and minimizing the number of non-zero entries of the feedback gain matrices. On

the other hand, the problem of minimizing the number of nonzero elements of a

vector/matrix subject to a set of constraints, which arises in many fields such as

Compressive Sensing [17, 18, 19], in inherently NP-hard.

To alleviate the issues caused by the combinatorial nature of cardinality func-

tions, several convex/non-convex functions have been proposed as surrogates for the

cardinality functions in optimization problems. For example, in cases where the opti-

mization constraint is affine, `1-norm , as a convex relaxation of `0-norm, has proved

to work reliably under certain conditions, namely Restricted Isometry Property (RIP)

[20, 21, 22]. Thus, `1-norm and its weighted versions have been extensively used in

signal processing and control applications [23, 24, 25]. Non-convex relaxations of the

cardinality function, such as `q-quasi-norm (0 < q < 1), have also received consid-

erable attention recently [31, 32]. In [33, 34, 35], it is shown that, for a large class

of SD systems, the quadratically-optimal feedback controllers inherit spatial decay

property from the dynamics of the underlying system. Moreover, the authors have

proposed a method, based on new notions of q-Banach algebras, by which sparsity

and spatial localization features of the same class can be studied when q is chosen

sufficiently small.

In this chapter, we consider the problem of optimal sparse feedback controller syn-

thesis for linear time invariant system, in which convex constraints are imposed on

the structure of the controller feedback gain. The main contribution of our chapter is

to propose a novel approach which allows us to equivalently represent the intrinsically
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nonlinear constraints, such as closed loop stability condition and enforcement of con-

troller structure, with a single rank constraint in an otherwise convex optimization

program. Having all non-linearities encapsulated in only one rank constraint allows us

to employ one of several existing algorithms to efficiently solve the resulting problem.

Our results are distinct from those reported in [23], as we present an alternative

formulation which not only solves the regular sparse controller design problem, but

also enables us to solve the output feedback control problem. Furthermore, integrating

various types of nonlinear system constraints, such as constraints on the controller

matrix and its norms, into the existing rank constraint can be effortlessly implemented

in our approach. It should also be noted that the rank constraint emerging in our

approach originates from the positive definiteness of the Lyapunov matrix and the

properties of fixed rank matrices, thus the ratio of matrix dimension and its rank

does not grow with the size of system. In contrast, the rank one constraint appears

in [11] results from utilizing the auxiliary variable introduced by self multiplying the

vector formed by augmenting the states, inputs, and outputs, hence there exist a

linear growth of the ratio of the dimension of the matrix to its rank as the number

of variable increases, which is a computational drawback in controller synthesis for

large scale systems.

We start by augmenting the `0-norm of the feedback gain matrix to the quadratic

cost function of our optimization problem. This additional term penalizes the extra

communication links in the feedback pathway. We then reformulate it into an equiv-

alent optimization problem where the non-convex constraints are lumped into a rank

constraint. Based on the notions of holdable ellipsoid, we propose a reformulation of

the problem to incorporate norm bounds on the control inputs and outputs of the

16



system, which usually appear in controller implementations. Employing a convex

relaxation of the added cardinality term, based on the weighted `1-norm, we argue

that Alternating Direction Method of Multipliers (ADMM) is well-suited to solve our

problem, since our search is to obtain a solution with an a priori known rank. ADMM

iteratively solves the rank-unconstrained problem and projects the solution into the

space of the matrices with the desired rank until the convergence criteria are met.

We further investigate the special case of designing the sparsest stabilizing controller,

and show that this problem can be rewritten as a rank minimization problem. Rank

minimization problems have received considerable attention in recent years [37, 38].

In [39], it is shown that if a certain Restricted Isometry Property holds for the linear

transformation defining the constraints, the minimum rank solution can be recovered

by solving the minimization of the nuclear norm over the feasible space. Therefore,

the nuclear norm may be used as a proxy for the rank minimization in our problem.

The remainder of this chapter is organized as follows. In Section 2.2, the general

optimal sparse output feedback control problem setup is defined. Section 2.3, we

reformulate the optimal sparse output feedback control problem as a rank constrained

problem, and develop several results based on the proposed reformulation. In Section

2.4, we study the convex relaxation of this problem, and discuss the application

of ADMM in solving the problem. The special case where the sparsity penalizing

factor dominates the quadratic terms in the cost function is described in Section 2.5.

Numerical examples illustrating the proposed methods are provided in 2.6. Finally,

Section 2.7 concludes the chapter.

Notations: Throughout the chapter, the following notations are adopted. The

space of n by m matrices with real entries is indicated by Rn×m. The n by n identity
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matrix is denoted In. Operators Tr(.) and rank(.) denote the trace and rank of the

matrix operands. The transpose and vectorization operators are denoted by (.)T and

vec(.), respectively. The Hadamard product is represented by ◦. A matrix is said

to be Hurwitz if all its eigenvalues lie in the open left half of the complex plane.

‖.‖0 represents the cardinality of a vector/matrix, while ‖.‖1 and ‖.‖F denote `1 and

Frobenius norm operators.Also, the norm ‖.‖Lq∞(Rn) is defined by

‖x‖Lq∞(Rn) , sup
t≥0
‖x(t)‖q

A real symmetric matrix is said to be positive definite (semi-definite) if all its eigen-

values are positive (non-negative). Sn++ (Sn+) denotes the space of positive definite

(positive semi-definite) real symmetric matrices, and the notation X � Y (X � Y )

means X − Y ∈ Sn+ (X − Y ∈ Sn++).

2.2 Problem Formulation

2.2.1 Structurally Constrained Sparse Output Feedback Con-

trollers

Let a linear time invariant system be given by its state space realization

 ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output of the system, u(t) ∈ Rm

is the control input, and matrices A, B and C have appropriate dimensions. We
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consider designing a constant gain output feedback stabilizing controller

u(t) = Ky(t), K ∈ K (2.2)

with the minimum number of non-zero entries that minimizes a quadratic objective

function. We further assume that the set of all acceptable a priori specified structures

for feedback gains, denoted by K, is a convex set. The reason behind this call is

that such an assumption not only reduces the complexity of the problem, but also

convex constraints on controller constraints have broad real-world applications. For

example, there exist numerous applications in which establishing a link between two

particular nodes is impractical either due to physical constraints or extremely high

costs; such limitations can be incorporated into the design process by imposing the

convex constraints that the corresponding entry of the controller gain should be zero.

Also, other regularly occurring limitations such as upper bounds on the entries of the

controller matrix can be also be implemented by convex constraints on matrix K.

The search for such a controller can be formulated as an optimization problem,

in which the sparsity of the feedback gain is incorporated by adding the `0-norm of

the gain matrix to the objective function. The `0-norm denotes the cardinality of

the feedback gain, hence, it penalizes the number of non-zero entries of the matrix.

Therefore, we have the following optimization problem

min
K,x,u

J =

∫ ∞
0

[x(t)TQx(t) + u(t)TRu(t)]dt+ λ‖K‖0 (P1)

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0

u(t) = KCx(t), K ∈ K,
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where Q ∈ Rn
+ and R ∈ Rm

++ are performance weight matrices, x0 is the initial state,

and λ ∈ R+ is the regularization parameter. In this paper, we first address the general

problem of sparse output feedback control; then, we study the problem of finding the

sparsest stabilizing controller, which can be considered as a special case of our main

problem when the matrices R and Q are set to zero.

2.2.2 Equivalent Formulations

It is possible to rewrite our main optimization problem as follows

J =

∫ ∞
0

Tr[x(t)T(Q+KTRK)x(t)]dt+ λ‖K‖0

= Tr[(Q+KTRK)

∫ ∞
0

(x(t)x(t)T)dt] + λ‖K‖0

= Tr[(Q+KTRK)

∫ ∞
0

(e(A+BK)tx0)xT
0 e

(A+BK)Tt)dt] + λ‖K‖0

Assuming the asymptotic stability of the closed loop system under the state feedback

K is guaranteed, there exist a symmetric matrix X11 satisfying the following equation

[40, p. 11]

(A+BK)X11 +X11(A+BK)T = −x0x
T
0 (2.3)

Plugging the left hand side of equation (2.3) into our cost function, the integrand can

be easily integrated as follows

J = Tr

[
−(Q+KTRK)

∫ ∞
0

(e(A+BK)t
[
(A+BK)X11 +X11(A+BK)T

]
e(A+BK)Tt)dt

]
+ λ‖K‖0
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= Tr

[
(Q+KTRK)

∫ ∞
0

−d
dt

(e(A+BK)tX11e
(A+BK)Tt)dt

]
+ λ‖K‖0

= Tr
[
−(Q+KTRK)e(A+BK)tX11e

(A+BK)Tt
]∞

0
+ λ‖K‖0

= Tr
[
(Q+KTRK)X11

]
+ λ‖K‖0

The last equality holds, since the controller is assumed to stabilize the system, i.e.

e(A+BK)t vanishes as t tends to infinity. Hence, the following minimization is equiva-

lent to our main optimization problem.

min
X11,K

Tr[QX11] + Tr[RKCX11C
TKT] + λ‖K‖0 (2.4)

s.t. (A+BKC)X11 +X11(A+BKC)T + x0x
T
0 = 0,

(A+BKC) Hurwitz,

K ∈ K.

The feedback gain matrix K derived from solving the above optimization problem

depends on the value of the initial state x0. To avoid re-solving the minimization

problem for every value of x0, we design a state feedback controller which minimizes

the expected value of the cost function assuming that the entries of x0 are independent

Gaussian random variables with zero mean and covariance matrix equal to the positive

definite matrix N , i.e. x0 ∈ N (0, N). Using Lyapunov stability theorem, it can

be easily checked that the global asymptotic stability of the closed loop system is

guaranteed if and only if the matrix X11 is positive definite, thus we can rewrite the
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optimization problem as follows

min
X11,X12
X22,K

Tr[QX11] + Tr[RX22] + λ‖K‖0 (2.5a)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0, (2.5b)

X11 � 0, (2.5c)

K ∈ K, (2.5d)

X22 = (KC)X11(KC)T, XT
12 = KCX11, (2.5e)

where X11 ∈ Rn×n, X12 ∈ Rn×m, and X22 ∈ Rm×m. In optimization problem (2.5), the

constraints (2.5b-2.5d) are convex, nevertheless, the constraints (2.5e) are nonlinear.

2.3 Equivalent Rank Constrained Formulation

In traditional LQR problems, the nonlinear constraints can be replaced by a linear

matrix inequality to form an equivalent convex problem. However, the addition of the

sparsity penalizing term to the cost function, the existence of structural constraints

on the feedback gain matrix, and incorporation of input/output bounds differentiate

our problem from the conventional LQR problem, making the conventional approach

inapplicable. Here, we propose a controller synthesis approach based on the idea that

the non-convex constraints can be replaced by a rank constraint. Before proceeding,

lets state the following lemma.

Lemma 2.3.1. Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n, with U � 0.
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Then, rank(M) = n if and only if W = Y UY T and V T = Y U , where

M =


U V

V T W

In Y T


Proof. Since rank(U) = n, its inverse exists and the matrix M can be decomposed

as

M =


In 0 V T

In

U−1 Im+n

 M̄
 In U−1V

0 Im

 ,

where

M̄ =


U 0

0

 W

Y T

−
 V T

In

U−1V

 .

Since the matrices pre/post-multiplied by the matrix M̄ are full rank, the matrix M

is rank n if and only if the rank of the matrix M̄ is n, which is equivalent to

 W

Y T

−
 V T

In

U−1V = 02n+m.

This completes the proof of the lemma.

The following corollary is now immediate.
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Corollary 2.3.2. Assuming X11 � 0, the constraint

rank


X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

 = n

is equivalent to


rank


X11 X12

XT
12 X22

In (KC)T

 = n,

Z = X−1
11

For legibility purposes, we first develop the equivalent formulation for the case

with no constraint imposed on the control inputs/outputs; then, we incorporate the

bounds on the input/output of the closed loop system.

2.3.1 Rank Constrained Formulation

Assuming that no upper bound is defined for the input/output of the controlled

system, the next proposition states that the nonlinear Semidefinite Program (2.5)

can be cast as an optimization problem, where all constraints are convex except one,

which is a rank constraint.
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Proposition 2.3.3. The optimization program (2.5a-2.5e) is equivalent to the fol-

lowing rank constrained problem

min
X11,X12
X22,K

Tr[QX11] + Tr[RX22] + λ‖K‖0 (P2)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0,

K ∈ K,

rank(X) = n,

where

X =


X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

 .

Proof. Applying Lemma 2.3.1 to the constraints X22 = (KC)X11(KC)T and XT
12 =

(KC)X11, they can be equivalently replaced by the rank constraint

rank


X11 X12

XT
12 X22

In (KC)T

 = n,

since X11 is constrained to be positive definite. Introducing the auxiliary matrix

variable Z, we can employ Corollary 2.3.2 to rewrite the above rank constraint as a

rank constraint on a symmetric matrix, i.e. rank(X) = n.

25



It should be noted that augmenting the matrix [ In KC Z ]T to the original rank

constrained matrix only adds some redundant constraints along with an extra vari-

able. Although we increase the number of variables by introducing the new n-by-n

variable Z, having a symmetric rank constrained matrix has proved to be helpful, as

we aim to use a positive semidefinite relaxation of the rank constraint later in this

chapter, thus, it is crucial to associate the rank constraint to a symmetric matrix.

The following corollary is an immediate result of Lemma 2.3.1.

Corollary 2.3.4. The optimal value of Z in problem (P2) is the inverse of the

optimal X11, i. e. Z∗ = X∗11
−1.

Next, we exploit the stated rank constrained formulation (P2) to investigate the

bounds on the optimal cost of the optimization problem (P2). Assuming feasibility,

the lower bound for the optimal cost can be evidently achieved by relaxing the rank

constraint rank(X) = n by the positive semidefinite constraint X � 0, since the

PSD constraint defines a super-set for the set determined by the rank constraint. As

a result, the feasible set of the rank constrained optimization P2 is a subset of the

feasible set of the relaxed problem, hence, the optimal cost of the relaxed optimization

provides us with a lower bound for original problem. A more detailed discussion is

provided in Section 2.4.2.

As for the upper bound, the results of the theorem 2.3.5 can be utilized to ob-

tain a conservative solution to the problem (P2) when either there is no pre-defined

structure on the controller gain or the set of the acceptable controller structures, i.e.

K is assumed to be invariant with respect to positive scaling. This assumption covers

the highly applicatory structural constraint, where the feasibility/infeasibility of feed-

back paths are a priori specified generally through a directed graph representation.
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In such cases the feedback link can be established only if its corresponding edge of

the graph, i.e. the pair (V , E) of vertices and edges respectively, is existent, as shown

in equation (2.6).

K = {K |Kij = 0 if (vi, vj) /∈ E} (2.6)

Theorem 2.3.5. Assuming the set K is invariant under positive scaling, the opti-

mization problem (2.7) sub-optimally solves (P2).

min
X

Tr[RX22] + Tr[QX11] + λ‖K̃‖0 (2.7)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0, K̃ ∈ K, α > 0,

X � 0,

where

X =


X11 X12 αIn

XT
12 X22 (K̃C)

αIn (K̃C)T 2αIn −X11

 .

Also, in the case of feedback controller synthesis, i.e. C = In, the problem (P2) can

be sub-optimally solved by the following optimization problem

min
X

Tr[RX22] + Tr[QX11] + λ‖K̃‖0 (2.8)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,
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X11 � 0, K̃ ∈ K,

Γ = diag(α1, · · · , αn) � 0,

X � 0,

where

X =


X11 X12 Γ

XT
12 X22 K̃

Γ K̃T 2Γ−X11

 .

Furthermore, the suboptimal stabilizing controller gain can be achieved from the opti-

mal values of K̃ and Γ utilizing K∗ = K̃∗Γ∗−1.

Proof. Here, we present the proof for the state feedback problem, as the proof for

the output feedback controller synthesis case is pretty similar; hence, omitted. To

prove the second part of the theorem, we assume the problem (2.8) is feasible and

its optimum is X∗. For the positive definite matrix X∗11 and the positive scaler Γ∗,

we have the matrix identity Γ∗−
1
2X∗11Γ∗−

1
2 + Γ∗

1
2X∗11

−1Γ∗
1
2 � 2I. As a result, we can

write

Γ∗X∗11
−1Γ∗ � 2Γ∗ −X∗11
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Therefore, the constraint X∗ � 0 implies X̄∗ � 0, where

X̄∗ =


X∗11 X∗12 Γ∗

X∗12
T X∗22 K̃∗

Γ∗ K̃∗T Γ∗X∗11
−1Γ∗

 .

Due to the positive definiteness of X∗11, the matrix inequality X̄∗ � 0 is equivalent to

the positive definiteness of its Schur complement, that is

 X∗22 K̃∗

K̃∗T Γ∗X∗11
−1Γ∗

−
 X∗12

T

Γ∗

X∗11
−1

[
X∗12 Γ∗

]
� 0

 X∗22 −X∗12
TX∗11

−1X∗12 K̃∗ −X∗12
TX∗11

−1Γ∗

K̃∗T − Γ∗X∗11
−1X∗12 0

 � 0

which holds if and only if K̃∗ = X∗12
TX∗11

−1Γ∗, andX22 = XT
12X

−1
11 X12+M , whereM �

0. Therefore, the matrix K∗, defined by K∗ = K̃∗Γ∗−1, satisfies K∗ = X∗12
TX∗11

−1;

thus, A + BK∗ satisfies the stability condition with the positive definite Lyapunov

matrix X∗11.

Furthermore, The `0-norm is invariant under positive scaling, hence ‖KΓ‖0 =

‖K‖0. Also, Since the set K is assumed to be invariant under positive scaling, the

constraint K ∈ K is identical to the matrix KΓ belonging to the set of admissible

controller structures. Therefore, the problem (2.8) provides a suboptimal solution to

(P2).
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2.3.2 Rank Constrained Formulation in Presence of Input/

Output Constraints

Next, we present how an upper bound on the norm of the control input/output can be

incorporated into our rank constrained formulation. It is known that for the positive

scaler γ satisfying xT
0X

−1
11 x0 ≤ γ−1, where x0 is the initial state of the system and

X11 is the solution to the Lyapunov stability condition, the set

M = {x ∈ Rn | xTX−1
11 x ≤ γ−1} (2.9)

is an invariant set for the closed loop system. Employing the concept of invariant sets

for linear systems, we can develop the rank constrained formulation of control system

with bounded input norms. The details for two choices of norms utilize to bound the

control input in given in the sequel.

• System Norm: The next theorem describes how the upper bound on the sys-

tem norm of the control input can be incorporated into the controller synthesis

problem using our proposed rank constrained formulation.

Theorem 2.3.6. The optimization problem (P2) can be modified to conserva-

tively incorporate an upper bound on the system norm of the control input, i.e.

‖u‖L2
∞(Rm) ≤ umax, as follows.

min
X

Tr[RX22] + Tr[QX11] + λ‖K‖0 (P3)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0,
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K ∈ K, W (KC)T

(KC) u2
maxIm

 � 0,

xT0Wx0 ≤ 1,

rank(X) = n,

where x0 denotes the initial state and

X =



X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

γIn Y W


.

Proof. Based on the lines in [41, p. 103], we have

‖u‖L2
∞(Rm) = sup

t≥0
‖u(t)‖2 = sup

t≥0
‖KCx(t)‖2

≤ sup
x∈M

‖KCx‖2

= sup
x∈M

‖KCX1/2
11 X

−1/2
11 x‖2

=

√
λmax(X

1/2
11 (KC)T(KC)X

1/2
11 )γ−1

Thus, the input constraint ‖u‖L2
∞(Rm) ≤ umax holds for all t ≥ 0 if

 γX−1
11 (KC)T

(KC) u2
maxIm

 � 0,
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xT
0 γX

−1
11 x0 ≤ 1.

The existence of the term γX−1
11 in the above matrix inequality makes it nonlin-

ear, however, Utilizing Lemma 2.3.1, it can be verified that the rank constraint

rank(X) = n, applied on the modified matrix X, is equivalent to introducing

the variables W = γX−1
11 . The rest of the proof is straightforward.

• Infinity Norm: If the constraint on the system output is in the form of

‖y(t)‖L∞∞(Rm) ≤ ymax, it can be represented using the following matrix inequali-

ties [41, p. 104].

 V C

(C)T γX−1
11

 � 0,

Vii ≤ u2
max

xT
0 γX

−1
11 x0 ≤ 1.

Therefore, this problem can also be posed as a rank constrained problem through

the next theorem.

Theorem 2.3.7. The optimization problem (P2) can be modified to conserva-

tively incorporate an upper bound on the infinity norm of the control input, i.e.

‖y‖L∞∞(Rm) ≤ ymax, as follows.

min
X

Tr[RX22] + Tr[QX11] + λ‖K‖0 (P3’)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0,
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K ∈ K, V C

(C)T W

 � 0,

Vii ≤ y2
max,

xT0Wx0 ≤ 1,

rank(X) = n,

where x0 denotes the initial state and

X =



X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

γIn Y W


.

Remark 2.3.8. Other norms such as element-wise bound on the control input or the

norm bounds on the system outputs can also be assimilated into the rank constraint

using similar techniques. The details are omitted with the purpose of improving the

readability of the paper.

All of the optimization problems posed so far are NP-hard due to the existence of

the `0-norm in the cost function and the rank constraint. Therefore, no polynomial

time algorithm capable of solving them in the general form, exists. In the next two

sections, we propose a method to sub-optimally solve the problem, then, discuss a

special case of the problem where only the sparsity of the controller is of importance.
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2.4 Convex Relaxation of the Optimal Control Prob-

lem

In this section, we study the general problem of designing a optimal sparse output

feedback controller. Although the results presented in the sequel are applicable to

the controller design problem with the input/output norm bounds, to enhance the

legibility of the chapter, we choose to state them in the absence of the constraints on

the control inputs and system outputs. Hence, we consider the problem (P2), which

is a combinatorial problem, due to the existence of the `0-norm, in fact a quasi-norm,

in the cost and the rank constraint.

To reduce the complexity of the problem, we first adopt the weighted `1 relax-

ation of the `0 based on the notion that weighted `1 minimization problem is a reliable

heuristic for cardinality minimization [17, 42, 22]. Substituting the cardinality pe-

nalizing term with the weighted `1-norm of the controller gain matrix, we obtain the

following relaxed optimization problem

min
X

Tr[QX11] + Tr[RX22] + λ‖W ◦K‖1 (C1)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0,

K ∈ K,

rank(X) = n.
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where the weight matrix W is a positive matrix with appropriate dimensions and

X =


X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

 . (2.10)

Combinatorial nature of rank constrained optimization problems make the search for

the optimal point computationally intractable. Therefore, a systematic solution to

general rank constrained optimization problem has remained open [43, 44]. Nonethe-

less, attempts have been made to solve specific rank constrained problems, and algo-

rithms proposed to locally solve such problems [45, 46]. Here, we propose to use a

particular form of Alternating Direction Method of Multipliers (ADMM) to solve our

rank constrained problem.

2.4.1 Feasibility of the Output Feedback Control Problem

Before proceeding with describing the ADMM algorithm to solve the relaxed prob-

lem, we discuss how our proposed rank constrained reformulation can be utilized in

investigating the feasibility of the output feedback control problem under constraints

such as controller pre-defined structure and input/output constraint. The next the-

orem introduces a feasibility test for the existence of a stabilizing output feedback

controller with predefined structure.

Theorem 2.4.1. The linear time invariant system (2.1) can be stabilized using the

output feedback controller described in (2.2), with the optimal cost less than or equal

to J∗, if and only if the optimal cost of the following optimization problem is equal to
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zero.

min
X,Y

Tr(Y TX) (2.11)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

Tr[QX11] + Tr[RX22] + λ‖W ◦K‖1 ≤ J∗,

X11 � 0,

K ∈ K,

X � 0,

0 � Y � I2n+m,

Tr(Y ) = n+m,

where

X =


X11 X12 In

XT
12 X22 (KC)

In (KC)T Z

 .

Proof. Applying the results from [47, p.266], if the matrix X is positive semidefinite,

i.e. X ∈ S2n+m
+ , we have

2n+m∑
i=n+1

λi(X) = min
Y ∈R2n+m

Tr(Y TX)

s.t. 0 � Y � I2n+m,

Tr(Y ) = (2n+m)− n,

36



where λ1(X) ≥ · · · ≥ λ2n+m(X) are the eigenvalues of X. Due to the positive

semidefiniteness of X, the optimal cost of (2.11) is lower bounded by zero. Now,

using our rank constraint formulation, it can be verified that such an output feedback

controller, satisfying the predefined structure, stabilizes the LTI system (2.1) if and

only if the feasible set of (2.11) contains at least a matrix X with rank n for which

the sum of n+m smaller eigenvalues is equal to zero, i.e.
∑2n+m

i=n+1 λi(X) = 0.

The optimization problem (2.11) is non-convex due to the existence of the the

bi-linear term in its cost function. However, it can be solved utilizing an optimiza-

tion algorithm, which iteratively solves the problem for X and Y till it reaches the

convergence [45, 48].

2.4.2 ADMM for Solving the Relaxed Problem

ADMM was originally developed in 1970s [49, 50], and has been used for optimiza-

tion purposes since. Boyd et al., in [51], argued that this method can be efficiently

applied to large-scale optimization problems. For non-convex problems, the conver-

gence of ADMM is not guaranteed, also, it may not reach the global optimum when

it converges, thus, the convergence point should be considered as a local optimum.

For the optimization problem (C1), one way to perform convex relaxation is

replacing the rank constraint on matrix X with a positive semi-definite constraint,

i.e. X � 0. Since X11 is positive definite, using lemma 2.3.1, it can be seen that the

rank constraint in (C1) is equivalent to

 X22 (KC)

(KC)T Z

−
 XT

12

In

X−1
11

[
X12 In

]
= 0, (2.12)
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which implies that the Schur complement of the matrix X should be equal to zero,

while X � 0 is the same as positive semi-definiteness of its Schur complement. There-

fore, the set defined by the PSD constraint is a super-set for the one defined by the

rank constraint. Now, if we define the convex set

C = {X |AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0, K ∈ K, X � 0}

where the structure of X is given in (2.10), and S denotes the set of (2n+m)×(2n+m)

symmetric matrices with rank equal to n, the minimization (C1) can be represented

as

min
X

f(X) (2.13)

s.t X ∈ C ∩ S

where

f(X) = Tr[RX22] + Tr[QX11] + λ‖W ◦K‖1

and the weight matrix W is a positive real matrix with appropriate dimensions.

Considering the above formulation, the ADMM algorithm can be carried out by

repeatedly performing the steps stated in the sequel till certain convergence criteria

is satisfied [51, p. 74].

X(k+1) = arg min
X∈C

f(X) + (ρ/2)‖X − V (k) + Y (k)‖2
F (2.14a)
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V (k+1) = ΠS(X(k+1) + Y (k)) (2.14b)

Y (k+1) = Y (k) +X(k+1) − V (k+1) (2.14c)

w
(k+1)
ij =

1

|k(k)
ij |+ δ

(2.14d)

where wij and kij denote the (i, j) entries of the matrices W and K, respectively. The

convexity of the cost function and the constraints makes (2.14a) a convex problem,

hence, it can be solved by various computationally efficient methods. The operator

ΠS(.), in (2.14b), denotes projection onto the set S. Although the projection on a

non-convex set is generally not an easy task, it can be carried out exactly in the case

of projecting on the set of matrices with pre-defined rank. In our case, the set S is the

set of matrices with rank n, thus, ΠS(.) can be determined by carrying out Singular

Value Decomposition (SVD) and keeping the top dyads, i.e.

ΠS(X) ,
n∑
i=1

σiuiv
T
i (2.15)

where σi, i = 1, · · · , n are the n largest singular values of matrix x, and the vectors

ui ∈ R(2n+m) and vi ∈ R(2n+m) are their corresponding left and right singular vectors.

The step (2.14c) in the algorithm is a simple matrix manipulation to update the

auxiliary variable u, which is exploited in the next iteration.

The last step of the heuristic (2.14) is to update the weight on the entries of the

controller matrix approximately inversely proportional to the value of the correspond-

ing matrix entry recovered from the previous iteration. Hence, the next iteration

optimization will be forced to concentrate on the entries with smaller magnitudes,
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which results in promoting the controller sparsity. It should also be noted the rel-

atively small constant δ is added to the denominator of the update law (2.14d) to

avoid instability of the algorithm, especially when a recovered controller entry turns

out to be zero in the previous iteration [22].

Initializing with the stabilizing LQR controller along with its corresponding Lya-

punov matrix, a sub-optimal minimizer to the problem (C1) can be obtained by

iterating the steps (2.14a-2.14c) until the convergence is achieved. The algorithm’s

stopping criteria is either reaching the maximum number of iterations or ε < ε∗,

where ε update is performed using the following equation.

ε(k+1) ,max(‖X(k+1) − V (k+1)‖F , ‖V (k+1) − V (k)‖F ) (2.16)

The small enough entries of the generated controller gain can then be truncated to

yield a sparse controller matrix, namely K̄, while considering the extent of its adverse

effect on the stability and performance of the closed loop system. The step-by-step

procedure is described in Algorithm 1. As said before, the truncation step in the

algorithm should be performed with the necessary precautions, since not only does it

deteriorate the obtained optimal performance but it also may destabilize the closed

loop system. The following proposition provides the sufficient condition under which

the truncation process does not have cause instability in the closed loop system.

Proposition 2.4.2. The truncated controller, denoted by K̄, stabilizes the system if

the truncation threshold ξ is bounded by

ξ <
σmin(N)∑

ij ‖BEijCX11 +X11(BEijC)T‖2

(2.17)

40



Algorithm 1: Solution to C1

Inputs: A, B, C, Q, R, λ, K, ρ, δ and ε∗

1: Initialization:
Find X(0) by solving (2.14a) for λ = 0, ρ = 0 (LQR),
Set V (0) = X(0), Y (0) = 0× I(2n+m), and n = 0,

2: While ε(n) ≤ ε∗ do
3: Update X(n+1) by solving (2.14a),
4: Update V (n+1) using Eq. (2.14b),
5: Update Y (n+1) using Eq. (2.14c),
6: Update W (n+1) using Eq. (2.14d),
7: Update ε(n+1) using Eq. (2.16),
8: n← n+ 1,
9: end while

10: Truncate K,
Output: K̄

where σmin(N) denotes the smallest singular value of the matrix N , which is the

positive definite matrix satisfying

(A+BKC)X11 +X11(A+BKC)T +N = 0,

and Eij ∈ Rm×p is the matrix whose only nonzero entry, equal to 1, is its (i, j)-entry.

Proof. Defining the matrix of the truncated entries of the controller as Kξ = K − K̄,

we will have

0 =(A+B(K̄ +Kξ)C)X11

+X11(A+B(K̄ +Kξ)C)T +N,

=(A+BK̄C)X11 +X11(A+BK̄C)T

+BKξCX11 +X11(BKξC)T +N.
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Hence, the truncated controller stabilized the system if

BKξCX11 +X11(BKξC)T +N � 0,

which is equivalent to the following inequality, for any nonzero vector x with appro-

priate dimension,

xT(BKξCX11 +X11(BKξC)T +N)x > 0.

The previous inequality holds if we have

|xT(BKξCX11 +X11(BKξC)T)x| < σmin(N)xTx.

Noting that Kξ =
∑

(i,j)∈D kijEij, where D = {(i, j)| |kij| < ξ}, we rewrite the above

inequality as

|xT(
∑

(i,j)∈D

kij[BEijCX11 +X11(BEijC)T])x| < σmin(N)xTx.

which is true if

∑
(i,j)∈D

|kij|‖BEijCX11 +X11(BEijC)T‖2 < σmin(N).

Since |kij| < ξ for all (i, j) ∈ D, we can conservatively replace the above inequality

with

ξ
∑
∀(i,j)

‖BEijCX11 +X11(BEijC)T‖2 < σmin(N),
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which completes our proof.

Remark 2.4.3. For the problem of optimal sparse state feedback control design, i.e

C = In, if there exists no a priori defined controller structure or the constraint on the

controller matrix is in the form of sparsity pattern, one way to perform the truncation

is to solve the minimization problem, assuming that all of the variables have already

converged to their optimal values except the controller matrix. Thus, we will have

min
K

λ‖K‖+ (ρ/2)‖K − (K(V ∗) −K(Y ∗))‖2
F (2.18)

s.t. K ∈ K.

where K(V ∗) and K(Y ∗) are the sub-blocks of the optimal values of V ∗ and Y ∗, respec-

tively, which correspond to the controller gain matrix, and ‖.‖ can be chosen as either

`1 or `0-norm. Moreover, in such problems, the problem (2.18) has a unique solution

that can be obtained analytically as follows [23, 51]. For example, if the norm used

in (2.18) is `0-norm, the optimal values of the elements, not constrained to zero, can

be obtained through the following element-wise truncation operator

K∗ij =

 K
(V ∗)
ij −K(Y ∗)

ij , |K(V ∗)
ij −K(Y ∗)

ij | >
√

2λ/ρ

0, otherwise.
(2.19)

2.5 Sparsest Stabilizing Output Feedback Controller

Design

Next, we study the special case in which obtaining a stabilizing constant gain feedback

controller with the sparsest feasible structure, i.e. considering the constraints, is
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desirable. To this end, we eliminate the terms which penalize the system performance

from the cost, i.e. both R and Q are zero. One of the applications that can be

addressed using this problem setup is the problem of stabilizing controller synthesis

for networks/systems where establishing communication links between nodes are so

costly that the control effort and error cost are almost negligible. Having R = 0, it

can be seen the variable X22 is irrelevant in this case, so its corresponding constraints

can be removed from the optimization program. Therefore, we will have

min
X11,X12,K,N

‖K‖0 (P4)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

X11 � 0, N � 0

K ∈ K,

rank

 X11 X12

In (KC)T

 = n,

The following lemma helps us convert rank constrained cardinality minimization prob-

lem (P4) into an affine rank minimization problem.

Lemma 2.5.1. Consider the following rank constrained cardinality minimization

problem

min
Y
‖W1YW2‖0 (2.20)

s.t. L1(Y ) = µ,

L2(Y ) � 0,

rank(Y ) = rank(Y11) = n,
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where Y is partitioned as Y =
[
Y11 Y12
Y21 Y22

]
∈ Rp×q, W1 ∈ Ra×p and W2 ∈ Rq×b are

weight matrices, L1 and L2 are two arbitrary maps, and Y11 ∈ Rn×n is a full rank

square matrix (n < min{p, q}). If the optimization problem (2.20) is feasible, it can

be equivalently formulated as

min
Y
‖W1YW2‖0 + νrank(Y ) (2.21)

s.t. L1(Y ) = µ,

L2(Y ) � 0,

rank(Y11) = n,

for any ν > ab.

Proof. Let Y ∗ be the optimum of (2.20), then rank(Y ∗11) = n and it satisfies both

equality and inequality constraints. Therefore, it belongs to the feasible set of (2.21).

Furthermore, for every point Y in the feasible set of (2.21) with the rank greater than

n, we have

J − J∗ = ‖W1YW2‖0 + νrank(Y )

− (‖W1Y
∗W2‖0 + νrank(Y ∗))

= (‖W1YW2‖0 − ‖W1Y
∗W2‖0)

+ ν(rank(Y )− rank(Y ∗))

≥ −‖W1Y
∗W2‖0 + ν(rank(Y )− rank(Y ∗))

Since W1Y
∗W2 ∈ Ra×b, it is safe to bound the cardinality as ‖W1Y

∗W2‖0 ≤ ab. Using
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rank(Y )− rank(Y ∗) ≥ 1, we can write

J − J∗ > −ab+ ν

Hence, the cost for all Y , with rank greater than n, is higher than the cost of Y ∗, if

ν > ab. This means the optimum of (2.21) should be of rank n. Knowing that Y ∗

has the minimum cardinality among the matrices with rank equal to n, we conclude

that Y ∗ is also the optimum for (2.21).

Conversely, let Ȳ be the optimal point for (2.21). As it is shown in the first part of

the proof, the cost generated by matrices, with the rank higher than n is greater than

that of rank n matrices, for ν > ab. Thus, the rank of Ȳ must be n, unless no point

with the rank equal to n exists in the feasible set of (2.21). However, this implies

that (2.20) is infeasible, which contradicts the lemma’s assumption. Therefore, Ȳ is

the minimizer of the cardinality term of the cost function among all rank n matrices

in the feasible set of (2.21), i.e. Ȳ is the minimizer of (2.20).

Remark 2.5.2. In the optimization problem (2.20), if the cost which is to be mini-

mized is the rank of the matrix W1YW2, instead of its cardinality, lemma 2.5.1 can

still be applied to the problem for any ν > min{a, b}.

Applying lemma 2.5.1 to (P4), we can equivalently write it as

min
X11,X12,K,N

‖K‖0 + νrank

 X11 X12

In (KC)T

 (2.22)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

diag(X11, N) � 0,
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K ∈ K,

with ν > mn. Note that the matrix X11 is full rank due to its positive definiteness,

therefore, all of the requirements of lemma 2.5.1 are satisfied.

Remark 2.5.3. The solution to equation (2.22) falls into the category of the problem

of recovery of simultaneously structured models where the matrix of interest is both

sparse and low-rank [52, 53]. Oymak et al., in their recent paper, have shown that

minimizing a combination of the known norm penalties corresponding to each struc-

ture (for example, `1-norm for sparsity and nuclear norm for matrix rank) will not

yield better results than an optimization exploiting only one of the structures. They

have concluded that an entirely new convex relaxation is required in order to fully

utilize both structures [52].

Without loss of generality, the following theorem is stated assuming m < n.

Theorem 2.5.4. The optimization problem (P4), if feasible, is equivalent to

min
X11,X12,
C,K,N,ε

rank(diag[vec(K),Ψ1, · · · ,Ψν ,Φ1, · · · ,Φρ]) (2.23)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

K ∈ K,

ε > 0,
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where

Ψi =

 X11 X12

In (KC)T
0(2n×(n−m))

 i = 1, · · · , ν

Φi =

 I2n D

DT diag(X11, N)− εI2n

 i = 1, · · · , ρ

and the parameters ν and ρ are integers satisfying

ρ > mn+ ν.max{2n, (n+m)}

ν > mn

Proof. For a function that maps matrices into q × q symmetric matrices, positive

semi-definiteness can be equivalently expressed as a rank constraint, i.e. f(X) � 0 is

equivalent to

rank

 Iq U

UT f(X)

 ≤ q (2.24)

for some U ∈ Rq [39]. Since diag(X11, N) � 0 is equivalent to diag(X11, N) � εI2n

for some ε > 0, it can be written as the following rank constraint

rank

 I2n D

DT diag(X11, N)− εI2n

 = 2n

Noting that the cost function in (2.22) is bounded by mn+ ν.max{2n, (n+m)}, we

can use an argument similar to the one used in the proof of lemma 2.5.1 to to show
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that (P4), if feasible, can be equivalently cast in the following form

min
X11,X12,C,K,N

‖K‖0 + νrank

 X11 X12

In (KC)T


+ ρrank

 I2n D

DT M − εI2n

 (2.25)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0,

K ∈ K,

ε > 0,

where

ν > mn

ρ > mn+ ν.max{2n, (n+m)}.

Next, we are going to show that the cost function of (2.25) is equal to the cost function

of (2.23) for ρ and ν chosen to be integers satisfying the conditions. It can be easily

verified that ‖K‖0 = rank(diag(vec(K))), also, the ranks of the square matrices

Ψi’s are equal to the rank of
[
X11 X12

In (KC)T

]
.

If the parameters ρ and ν are integers, we can construct a block diagonal matrix

in the following form

diag[vec(K),Ψ1, · · · ,Ψν ,Φ1, · · · ,Φρ]

Thus, the rank of such matrix is equal to the sum of the rank of its constructing block
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matrices. Therefore, it is equal to the cost function of the optimization problem (2.23),

which completes our proof.

Assuming the structural constraints on the controller gain to be in the form of

equality constraints, the above formulation is in the form of Affine Rank Minimiza-

tion Problem (ARMP), which consists of minimizing the rank of a matrix subject to

affine/convex constraints with the general form

min
X

rank(X)

s.t. A(X) = b

for a fixed infinitesimal ε > 0. ARMP has been investigated thoroughly in the past

decade and several heuristics have been proposed to solve it. For example, Recht et

al. in [39] showed that nuclear norm relaxation of rank can recover the minimum

rank solution if certain property, namely Restricted Isometry Property (RIP), holds

for the linear mapping. A family of Iterative Re-weighted Least Squares algorithms

which minimize Schatten-p norm, i.e. ‖X‖Sp = Tr(XTX + γI)p/2, of the matrix as

a surrogate for its rank is also introduced in [54]. Singular Value Projection (SVP)

algorithm is also guaranteed to recover the low rank solution for affine constraints

which satisfy RIP [55].

Remark 2.5.5. The discrete-time counterpart of the optimization problem (P4) can

be formulated as

min
X11,X12,
K,N

‖K‖0 (P5)

s.t. ATX11A+ ATX12 +XT
12A+X22 −X11 +N = 0,
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(a) (b)

(c)

Figure 2.1: Sparsity pattern of (a) the network system (b) the optimal sparse feedback
controller {λ = 10, ρ = 100}. (c) representation of the underlying graph of the sparse
controller.

X11 � 0, N � 0,

Y T = BKC,

K ∈ K,

rank


X11 X12

XT
12 X22

In Y T

 = n.
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Figure 2.2: (a) Percentage of optimal quadratic cost degradation relative to the LQR
optimal cost and (b) Density level of the controller gain for different values of λ, and
for the two controller design approaches: SPOFC (∗) and our proposed method (◦)

Hence, the results, developed in this section, are applicable to the problem of identify-

ing the sparsest stabilizing controller for discrete-time linear time invariant systems.

2.6 Simulation Results

In this section, we use several examples to demonstrate how our proposed rank con-

strained optimization approach can be exploited to solve the optimal sparse output

feedback controller design problem considering the input/output constraints.

2.6.1 Unstable Lattice Network System

Here, we illustrate an example in which we design an optimal sparse state feedback

controller for an unstable networked system with 25 states defined on a 5 × 5 lat-

tice. The entries of its corresponding system matrix are randomly generated scalars

drawn from the standard uniform distribution on the open interval (−1, 1), and it
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is assumed the state performance matrix Q to be an identity matrix, while the con-

trol performance weight R = 10I. Here, we used the traditional LQR controller as

the benchmark to measure the performance of our proposed algorithm. Performing

standard LQR design method, our results show that the optimal cost, for the case of

LQR control design, is J∗ = 211.173.

Next, we applied Algorithm 1 to design an optimal sparse controller with the

parameters values λ = 10 and ρ = 100, while keeping the performance weights

unchanged. It can be observed that the optimal controller cost function increases

to J∗ = 230.6989, which is about 9.2% higher, comparing to that of the LQR design.

On the other hand, the number of non-zero entries of the controller gain drops to 97,

i.e. ‖K‖0 = 97. This means a major decrease in the number of non-zero entries

of the controller gain. Figures 2.1a and 2.1b show the sparsity structure of the

system network and the obtained sparse controller. The figures basically visualize the

controller matrix by using solid blue circles to represent the non-zero entries of the

matrix and leaving the zero entries as blanks. In Figure 2.1c the graph representation

of the generated sparse controller is depicted.

Additionally, we present a brief case study that compares our approach with the

Sparsity Promoting Optimal Feedback Control (SPOFC) method, proposed in [27,

23]. The SPOFC method essentially solves a different control problem, since it solves

the H2 problem, modified by adding a sparsity promoting penalty function to its cost

function and obtain a sub-optimal sparse state feedback controller, while our proposed

approach is built upon adjusting the LQR problem to achieve a sparse output feedback

controller. Moreover, the approach in SPOFC algorithm fails to directly incorporate

the norms bounds on the inputs/outputs and the controller predefined structure.
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Nonetheless, for comparison purposes and demonstrating the comparable performance

of our method, we have obtained the MATLAB source code for SPOFC from the

website www.ece.umn.edu/mihailo/sofware/lqrsp, and applied both our method and

SPOFC to design sparse state feedback controllers for the randomly generated system.

Fig. 2.2 depicts the results of the simulations performed using both controller design

methods. As predicted, the quadratic cost of the closed loop system increases, as the

the parameter λ becomes larger. Moreover, increasing the value of this parameters

on the system promotes the sparsity level of feedback gain matrix. Figure 2.2 depicts

the effect of the parameter λ on the performance of the closed loop system and the

number of non-zero entries of the controller gain. In Fig. 2.2a the Y -axis represents

percentage of the performance loss, which is defined as (J∗−J∗LQR)/J∗LQR. The density

level percentage of the controller gain is also shown in Fig. 2.2b when the parameter

λ varies from 10−3 to 10.

The simulation results, demonstrated in figure 2.2, show that the SPOFC ap-

proach compromises the performance for a sparser controller in comparison to the

our method. Our proposed method assures less performance loss by obtaining denser

feedback controller. The disagreement between the optimal solutions of the two al-

gorithms is mainly due to convergence to different local optima. It should also be

noted the optimization parameter ρ plays an important, but different, role in adjust-

ing the convergence properties in both of the methods. Hence, setting the parameter

ρ to the same value in both optimizations may not be the most accurate choice for

the comparison purposes. Moreover, the choice of the system also affects the design

performance of both methods. Overall, our extensive simulation results suggest the

comparable performance of both approaches. Considering the fact that our problem
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Figure 2.3: The characteristics of the sparse controller designed for a randomly gen-
erated spatially decaying system with parameters values {CA = 10, CB = 2, αA = 1,
αB = 0.4, βA = 3, and βB = 0.9}. (a) Performance loss vs. ρ and λ, (b) Density level
vs. ρ and λ (c) Density level vs. controller performance degradation

formulation and solving procedure, which is completely different from the preceding

method, generates roughly the same sparse controller, it can be concluded that the

derived sparse controller is likely to be the best we can obtain.

2.6.2 Sub-exponentially Spatially Decaying System

To study the effects of parameters λ and ρ on the performance of our proposed

method, we have run extensive simulations on a randomly generated sub-exponentially

spatially decaying system [34]. In such systems, it is assumed the entries of the sys-

tem matrices decay as they get further from the diagonal, thus we define the matrices
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A = [aij] and B = [bij] as

 aij = CAa e
−αA|i−j|βA

bij = CBb e
−αB |i−j|βB

where a and b are uniformly distributed random variables on the open interval (−1, 1).

By employing Algorithm 1 till the rank constraint is satisfied, we have depicted the

performance degradation and density level of the generated controllers in figure 2.3

for different values of ρ and λ. Although the proposed algorithm has converged for all

choices of parameters in this simulation, It seems that the choice of the optimization

parameter ρ is needed to be at least one order of magnitude larger than the parameter

λ in order to guarantee the convergence to a proper sub-optimal minimum. In addi-

tion, since the main objective in designing a sparse controller is to obtain a controller

with minimum number of nonzero entries and lowest performance decline, we have

also presented the plot of the lowest performance loss obtained for particular values

of density level in figure 2.3c. As expected, it can be observed the performance loss

grows as the sprasity level of the controller increases.

2.6.3 Optimal Sparse Controller with Upper Bound Imposed

on the Control Input Norm

In this example, we illustrate the effect of bounding the norm of the control input on

the sparsity of the controller matrix. Considering a randomly generated 16× 16 sub-

exponential spatially decaying system, with the same parameter values used in section

2.6.2, we first designed a sparse controller with no constraint on the control input.

Our results show that the controllers number of nonzero entries and its performance
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(a) (b)

Figure 2.4: Sparsity pattern of (a) optimal sparse feedback control with no bound
on the control input (b) the optimal sparse feedback controller with upper bound
imposed on the system norm of the control input. Design Parameters for both figures
are Q = I, R = 10I, λ = 10 and ρ = 100.

loss, with respect to the cost of the LQR controller which is 639.1912, are 55 and

9.3% respectively. It is also observed that for the generated controller, we have

‖u‖L2
∞(Rm) = 228.66.

We then redesigned the controller, using the re-weighted `1 minimization method,

by containing its control input norm in the interval [0, 200], and obtained controller

has the following characteristics: ‖K‖0 = 105 and J = 737.16. Although we bounded

the control input norm to an approximately 10% lower value, the obtained controller

demonstrates 50% less sparse pattern and 6% higher performance loss. The simu-

lations results, depicted in figure 2.4, not only verifies the capability of our method

to incorporate bounds on the control input, as well as the system output, but also

reveals the adverse impact of sparsifying the controller matrix on the control input

norm.
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2.7 Conclusions

In this chapter, We have proposed a new framework for optimal sparse output feed-

back control design, which is capable of incorporating structural constraints on the

feedback gain matrix as well as norm bounds on the inputs/outputs of the system.

We have shown that problem can be converted to a rank constrained optimization

problem with no other non-convex constraints. Using the proposed formulation, we

have presented an optimization problem which yields an upper bound for the optimal

value of the optimal sparse state feedback control problem. Exploiting the relaxation

the `0-norm with the `1-norm, We have also expressed that local optimum of the

relaxed optimization problem, in its general form, can be obtained by performing

ADMM algorithm, which is, in essence, iteratively solving the relaxed problem and

projecting its solution to the space of matrices with rank n. For the special case,

where the objective is merely sparsity pattern recognition of the controller gain, we

have demonstrated that the problem can be reduced to an Affine Rank Minimization.

The simulation results are also provided to illustrate the utility and performance of

our proposed approach. As compared to the results of [23], our results show that while

our proposed method has the advantage of performing the output feedback control

design restricted by various forms of nonlinear constraints, the performance of our

approach is on a par with theirs when applied to the regular sparse state feedback

controller design problem.
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Chapter 3

Output Feedback Controller

Sparsification via

H2-Approximation

3.1 Introduction

The growth of large-scale dynamical systems such as power networks and transporta-

tion systems, and the impotence of traditional centralized controllers in controlling

these systems have caused the problem of sparse/structured controller design to re-

ceive increasing attention over the past few years. In such control paradigms the

effort is focused on synthesizing robust controllers performing as well or even bet-

ter than the centralized ones, while limiting the communications to the neighboring

subsystems or imposing particular structure on the underlying network.

Although numerous works have been done in the area of distributed controller

design [3, 6, 1, 2, 4] a systematic approach capable of efficiently solving the general
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problem is yet to be developed. For some classes of systems such as spatially invariant

systems and spatially decaying systems useful results on the structure of the solution

space have been derived [7, 8, 34, 35]. Furthermore, several other design frameworks,

each with their specific shortfalls, have also been proposed to design sparse/structured

controllers for the continuous/discrete time linear time invariant systems both in time

and frequency domain [28, 14, 12, 13, 9, 23, 9] The common controller design approach

in the area of synthesis of distributed controllers is to minimize a cost function, de-

fined based on the specific needs of the application and the desired performance,

while stabilizing the overall system. Unlike these methods, our proposed framework

in this chapter is based on the assumption that there already exists a well performing

controller, like a centralized controller synthesized using conventional robust control

methods [56]. We focus our attempts to find a sparse/structured controller which is

capable of manifesting near-optimal performance characteristics to that of the avail-

able pre-designed controller.

We adopt concepts from mixed H2/H∞ control [57, 58] to not only achieve min-

imum gap in the frequency characteristics of the closed loop transfer functions, but

also consider the difference between the characteristics of the control signals generated

by both controllers in our design framework. We show that our presented method can

be reformulated into a rank constrained optimization where all non-convexities are

collected into the rank constraints. Choosing the `0-measure as the measure of the

controller sparsity, we have shown useful results which help transforming the prob-

lem into a conventional rank minimization problem under convex constraints. We

further employ and modify the ADMM algorithm as a tool for our specific purpose

of searching for the sub-optimal solution of our problem.
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This chapter is structured as follows. In Section 3.2, we formally state the problem

we wish to solve. In Section 3.3, we elaborate how our problem can be equivalently

reformulated into an optimization problem constrained to several linear matrix in-

equalities and a rank constraint. Section 3.4 provides some insights into our choice

of sparsity measure and the algorithm we opt for in solving out rank constrained

optimization problem. The numerical results validating our theoretical results are

presented in Section 3.5. Finally, Section 3.6 concludes our chapter.

Notations: Throughout the chapter, the following notations are adopted. The

space of n by m matrices with real entries is indicated by Rn×m. The n by n identity

matrix is denoted In. Operators Tr(.) and rank(.) denote the trace and rank of the

matrix operands. The transpose and vectorization operators are denoted by (.)T and

vec(.), respectively. The Hadamard product is represented by ◦. A matrix is said

to be Hurwitz if all its eigenvalues lie in the open left half of the complex plane.

‖.‖0 represents the cardinality of a vector/matrix, while ‖.‖1 and ‖.‖F denote `1 and

Frobenius norm operators. Also, the norm ‖.‖Lq2(Rn) is defined by

‖x‖2
Lq2(Rn) ,

∫ ∞
0

‖x(t)‖q2 dt

A real symmetric matrix is said to be positive definite (semi-definite) if all its eigen-

values are positive (non-negative). Sn++ (Sn+) denotes the space of positive definite

(positive semi-definite) real symmetric matrices, and the notation X � Y (X � Y )

means X − Y ∈ Sn++ (X − Y ∈ Sn+).
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3.2 Problem Formulation

Let a linear time invariant (LTI) continuous-time system be given by its state space

realization  ẋ(t) = Ax(t) +B1u(t) +B2d(t)

y(t) = Cx(t)
, (3.1)

where A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 and C ∈ Rp×n. It is assumed that the

pair (A,B1) is controllable. Our goal is to design a constant gain output feedback

controller

u(t) = Ky(t), K ∈ K (3.2)

which achieves minimum performance difference comparing to a reference well-performing

pre-designed state controller, namely K̂, while minimizing the number of non-zero en-

tries of the controller matrix. We, also, desire that controller to be contained in a

set of admissible feedback gains with previously specified structure, denoted by K.

In the current chapter, we only consider the case where the set K is convex, since

it reduces the complexity of the problem, and, more importantly, it covers a wide

range of practical constraints on the controller that should be considered in the syn-

thesis of the controller. For example, in some applications, it is practically infeasible

to establish a feedback link between particular nodes; such limitations translate to

the convex constraints that the corresponding entry of the controller gain should be

zero. Other practical limitations such as upper bounds on the entries of the controller

matrix, imposed by technological shortcomings, can be also be addressed by convex
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constraint on matrix K.

In addition, we prefer the energy level of the input/output signals, generated by

the synthesized sparse controller, to be in the vicinity of that of the input/output,

produced by the original controller when an input signal d(t) with bounded energy

is fed to the closed loop plant. Representing the closed loop systems controlled by

the controllers K and K̂ by the state space realizations S and Ŝ, respectively, we can

formulate the search for controller K as the following optimization problem

min
K

‖S − Ŝ‖2 + λ‖K‖s (3.3a)

s.t. K ∈ K, (3.3b)

A+B1KC Hurwitz, (3.3c)

‖yS − yŜ‖L2
2(Rp) ≤ εy‖d‖L2

2(Rm2 ), (3.3d)

where ‖.‖ is the norm defined in accordance with the objectives of the problem,

‖K‖s represents a norm measuring the sparsity level of the matrix K, and λ is the

regularization parameter. Moreover, the constant εy is chosen to be a positive real

number.

The common choices for the norm used in the cost function of the optimization

problem (3.3) are H2/H∞ norms. However, H∞ minimization problem suffers from

non-uniqueness of the solution. Hence, in this chapter, we restrict our attention to

the case where the similarity in frequency characteristics of the networks are mea-

sured by H2 norm of the difference between the systems empirical transfer functions.

Before proceeding, it is helpful to note that the first term in the cost function of

the optimization problem (3.3) can be simplified into the H2 norm of an augmented
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system, namely S̄, constructed by the following state space realization matrices

Ā =

 A+B1KC 0

0 A+B1K̂C

 ∈ R2n×2n,

B̄ =

[
BT

2 BT
2

]T

∈ R2n×m2 , (3.4)

C̄ =

[
C −C

]
∈ Rp×2n.

Furthermore, the constraints (3.3b-3.3d) can be equivalently cast by imposing bounds

on the H∞ norm of the closed loop transfer functions from d(t) to y(t) and u(t).

Therefore, we can re-formulate our problem into the H2 norm minimization of the

augmented system subject to the performance constraints as follows

min
K

∥∥C̄(sI − Ā)−1B̄
∥∥2

H2
+ λ‖K‖s (3.5)

s.t. K ∈ K,

A+B1KC Hurwitz,

‖C̄(sI − Ā)−1B̄‖H∞ < εy,

In problem (3.5), the first term in the objective function is formulated such that

it captures the gap between the frequency response of the systems in the sense of

H2 norm. Hence, it makes it possible to identify another stable network with sparser

communication structure and approximately the same frequency characteristics. In

contrast to the design of sparse LQR controllers, introduced in [23, 28], administering

such approaches in the design of the controllers with sparse structures has the advan-

tages of enabling us to exploit the deliverable merits in various controller synthesis
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strategies.

Next, we are going to describe how to formulate our problem as an optimiza-

tion program with linear/bilinear matrix inequality/equality constraints. Then, we

elaborate how to combine all nonlinear constraints into a rank constrained problem.

3.3 Fixed Rank Optimization Reformulation

In this section, we state some lemmas which can help us cast the constraints of the

optimization problem as rank constrained linear matrices inequalities.

Lemma 3.3.1. Assuming P is a Linear Time Invariant System with realization ma-

trices (A,B,C), where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and the pair (A,B) is

controllable; then, ‖P‖2
H2
≤ γ if and only if there exists a positive definite matrix

X � 0 such that

Tr(CXCT) < γ,

Y + Y T +BBT � 0,

Rank

 X Y

In AT

 = n.

The previous lemma helps cast the H2-optimal sparsification problem as a rank

constrained optimization problem where all nonlinear constraints are lumped into a

single rank constraint. Several solving algorithms have been proposed to efficiently

solve rank constrained optimization problems [59, 60, 43, 61]. Hence, we aim to

make such algorithms applicable in solving our problem by collecting various forms

of non-convex/combinatorial constraints into a single rank constraint.
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Similar to the rank constrained reformulation of the H2 problem, the H∞ con-

straints of the problem (3.5) can also be proved to be equivalent to a certain set of

rank constrained LMI’s. Next lemma helps us in our attempt to accommodate the

H∞ constraints in the framework of rank constrained optimizations.

Lemma 3.3.2. Given P is a Linear Time Invariant System with realization matrices

(A,B,C), where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, the matrix A is Hurwitz and

‖P‖H∞ < γ if and only if there exists a positive definite matrix X � 0 such that

 Y + Y T + CTC XB

BTX −γ2In

 ≺ 0,

Rank

 X Y

In A

 = n.

Consequently, we can reformulate the problem (3.5) into a rank constrained prob-

lem, as described in the sequel.

Theorem 3.3.3. The mixed H2/H∞ problem (3.5) is equivalent to the following rank

constrained optimization program

min
K,β,Φ

β + λ‖K‖s (3.6)

s.t. K ∈ K,

Xi � 0, i = 1, 2,
Y1 + Y T

1 X1C̄
T B̄

C̄X1 −Ip 0

B̄T 0 −ε2
yIm2

 ≺ 0,
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Y2 + Y T
2 + B̄B̄T � 0,

Tr(C̄X2C̄
T) < β,

rank(Φ) = 2n.

where

Φ =


I ĀT

X1 Y1

X2 Y2


Proof. Applying the results from corollary (3.3.2) and (3.3.1) to the H2/H∞ norms

existent in the optimization problem (3.5) yields the desired results.

3.3.1 Bounding H∞ Norm of the Control Signal

In the process of designing controllers for practical purposes such as industrial au-

tomation or guided vehicles, several implementation considerations are usually taken

into account. For example, it is common to impose some constraints on the control

signal generated by the controller unit. In this section, we study if it is possible

to incorporate some types of constraints into our optimization problem so that the

signal generated by the synthesized sparse controller is forced to stay in the vicinity

of the output of the pre-designed controller. Hence, we avoid the violation of the

implementation constraints, considered in the initial control design, as we sparsify

the controller matrix. A sensible choice, that we plan to pursue here, is to bound the

L2
2 norm of the difference between the control signals generated by the pre-desinged
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and the sparse controllers for a bounded energy input signal, i.e.

‖uS − uŜ‖L2
2(Rm1 ) < ε2

u, (3.7)

for input signals satisfying ‖d‖L2
2(Rm2 ) ≤ 1. A discussion similar to what we had for

bounding the output difference can be applied to verify that the above constraint is

equivalent to the following norm constraint

‖C̄u(sI − Ā0 − B̄KKC̄K)−1B̄‖H∞ < ε2
u (3.8)

where

Ā0 =

 A 0

0 A+B1K̂C

 ∈ R2n×2n,

B̄K =

 B1

0

 ∈ R2n×m1 ,

C̄K =

[
C 0

]
∈ Rp×2n,

C̄u =

[
KC −K̂C

]
∈ Rm1×2n.

The following theorem establishes an equivalent formulation of our optimal sparsi-

fication problem where all non-convex constraints are combined into a fixed rank

constraint.

Theorem 3.3.4. The mixed H2/H∞ problem (3.5) with the additional constraint
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(3.8) is equivalent to the following rank constrained optimization program

min
K,β,Φ

β + λ‖K‖s (3.9a)

s.t. K ∈ K, (3.9b)

Xi � 0, i = 1, 2, 3, (3.9c)
M1 X1C̄

T B̄

C̄X1 −ε2
yIp 0

B̄T 0 −Im2

 ≺ 0, (3.9d)


M2 N B̄

NT −ε2
uIp 0

B̄T 0 −Im2

 ≺ 0, (3.9e)

M3 + B̄B̄T � 0, (3.9f)

Tr(C̄X3C̄
T) ≤ β, (3.9g)

rank(Φ) = 2n. (3.9h)

where

Mi = XiĀ
T
0 + YiB̄

T
K + Ā0Xi + B̄KY

T
i , i = 1, 2, 3,

N = Y2 −X2(2)(K̂C)T,

Φ =



I (KC̄K)T

X1 Y1

X2 Y2

X3 Y3


,
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and the positive definite matrix X2 is partitioned into two 2n× n blocks as

X2 =

[
X2(1) X2(2)

]
.

3.3.2 Controller Sparsification with Bounded H2 Gap

In problem (3.5), the aim is to find a sparse approximation of the a pre-designed

controller for which the closed loop system demonstrates characteristics comparable

to those achieved by the original controller. As it can be seen, it is possible to

regularize the norm of the gap between the systems S and Ŝ by adjusting the value

of the parameter λ. For example, as the parameter λ gets smaller, the optimization

program yields less sparse controllers and, as a result, closed loop systems with more

similar frequency characteristics. Due to some practical purposes, it is sometimes

required that a gap larger than a certain value, measured in the sense of H2 norm,

is not tolerated. This is equivalent to adding the inequality β ≤ βmax into the set of

constraints in the optimizations (3.6) or (3.9).

Although bounding the value of β is a limiting constraint and may lead to the

synthesis of a non-sparse controller, it can be advantageous in simplifying our problem

formulation as described in the next theorem. The theorem essentially states that,

in the presence of such a constraint, the rank constraint (3.9h) can be moved to the

objective function; hence, our problem can be equivalently cast as an optimization

program on a convex feasible set.

Theorem 3.3.5. Assuming the optimization problem (3.9), with the upper bound on

β and the `0 norm as the measure of sparsity, is feasible, it can be equivalently cast
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as

min
K,β,Φ

β + λ‖K‖0 + νrank(Φ) (3.10)

s.t. (3.9b)− (3.9g),

β ≤ βmax,

for any ν > βmax + λm1p, where

Φ =



I (KC̄K)T

X1 Y1

X2 Y2

X3 Y3


Remark 3.3.6. In some practical applications, minimizing the value of β is not of

interest and we only intend to keep the H2 norm of the gap in the desired range. In

such cases, β is eliminated from the objective function of the optimization problem,

thus, only the terms representing the sparsity level of the controller and the rank of

the matrix Φ remain to be minimized. Since `0 norm of the matrix K is identical

to the rank of the diagonal matrix diag(K), the problem can be considered as a rank

minimization problem subject to convex constraints. More detailed discussion can be

found in [28].

71



3.4 The Choice of the Sparsity Measure and a Sub-

optimal Design Protocol

There are quite a number of sparsity measures of readily used in diverse areas of

science. Among the functions used to measure the sparsity of matrices, `1 norm and

its weighted versions, as convex relaxations of the `0 norm, [17, 22] and the references

within, are definitely the most common ones and have been employed in various

applications [23, 25]. Non-convex surrogates for the cardinality function, such as `q

qusi-norm for 0 < q < 1, have also received growing attention in the literature recently

[34, 35, 33] However, since employing weighted `1 norm in optimization programs does

not cause numerical issues, which typically emerge in `q and `0 norm minimization

problems due to their non-convex and combinatorial natures, respectively, we choose

to utilize weighted `1, as the measure of the sparsity of the controller gain matrix in

the current chapter.

The choice of weighted `1 norm significantly reduces the complexity of our prob-

lem, since the norm is a convex function and, as a result, the only non-convexity

arises in problem (3.9) becomes the rank constraint (3.9h). However, the presence of

the rank constraint still makes our optimization problem computationally demanding.

Although an efficient methodical algorithm to solve rank constrained problem has yet

to be developed [43], there exists a number of optimization protocols which are capa-

ble of solving particular types of rank constrained problems by achieving sub-optimal

solutions. In our previous paper [28], we proposed to put the Alternating Direction

Method of Multipliers (ADMM), originally developed in 1970, to use to solve a rank

constrained problem. The method has been proved to be useful in determining the
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optimal solution of large-scale optimization problem [51]; however, its convergence

has not been proved for non-convex problems.

Before presenting the ADMM algorithm, it is important to note that the rank con-

straint in the optimization problem (3.9), can be equivalently replaced by rank(Ψ) =

2n, where Ψ is a symmetric square matrix constructed as

Ψ =



X1 ∗ ∗ ∗ ∗

Y T
1 − ∗ ∗ ∗

X2 Y2 − ∗ ∗

X3 Y3 − − ∗

I (KC̄K)T − − −


(3.11)

where the entries with no particular importance are shown by ”-”. As discussed in

[28], the rank constraint on the matrix Ψ can be relaxed by replacing it with a positive

semi-definite constraint, i.e. Ψ � 0, due to the assumption X1 ∈ S2n
++. Denoting the

feasible set of the convex optimization, obtained by relaxing the the rank constraint

(3.9h), by C, and the set of (8n+m1)× (8n+m1) matrices with rank equal to 2n by

S, the minimization problem (3.9) becomes

min
x

f(x)

s.t. x ∈ C ∩ S

where f(x) = β + λ‖W ◦ K‖1 and the weight matrix W = [wij] ∈ Rm1×p is posi-

tive. Therefore, the program (3.9) can be carried out by repetitively performing the

following steps (3.12-3.15) until either the stopping criteria is met or the maximum
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(a) (b)

Figure 3.1: (a) Sparsity pattern of the optimal sparse controller (b) Graph representa-
tion of the optimal sparse controller. The Solid (dashed) lines represent Bi-directional
(one-directional) links. (λ = 2.5, ρ = 50, εy = 1.5)

number of iterations is reached.

xk+1 = arg min
x∈C

f(x) + (ρ/2)‖x− zk + uk‖2
F (3.12)

zk+1 = ΠS(xk+1 + uk) (3.13)

uk+1 = uk + xk+1 − zk+1 (3.14)

w
(k+1)
ij =

1

|K(k)
ij |+ δ

(3.15)

where ΠS is projection onto S. Taking into account that the cost function and

constraints of the optimization (3.12) are convex, this step can be performed numer-

ically efficient is convex. Also, the projection on the non-convex set S, denoted by

ΠS(.), can be determined by the computationally effective method of carrying out

Singular Value Decomposition and keeping the top 2n dyads.

It should be noted that the constant δ > 0, chosen to be a relatively small constant,

is introduced into the denominator of the update law (3.15) to guarantee the stability

of the algorithm, especially when K
(n)
ij turns out to be zero in the previous iteration

[22]. The step (3.14) is designed to update the variable u, which is to be utilized in

the next iteration. Moreover, the termination criterion is defined by ε < ε∗, where ε∗

74



is the desired precision, with the update law

max(‖xk+1 − zk+1‖F , ‖zk+1 − zk‖F ) < ε. (3.16)

3.5 Simulation Results

Next, we apply our proposed method to a sub-exponentially decaying (SD) system to

near-optimal design a sparse feedback controller in the vicinity of the corresponding

LQR controller. We considered a 5 × 5 grid model governed by randomly generated

SD system defined by the system matrices A = [aij] and B = [bij] as

 aij = X e−αAd
βA
ij

bij = X e−αBd
βB
ij

where αA = 1, αB = 0.7, βA = 0.4, βB = 0.7, and X is chosen to be a uniformly

distributed random variable on the interval (−20, 20). Also, the matrix C is assumed

to be the identity matrix and dij denotes the distance between nodes i and j.

The SD model is mainly of interest since it captures the decay in the coupling

weight caused by increase of the distance between nodes, which is a common phe-

nomenon in networks such as power grids. Having synthesized the LQR controller

for the weight values Q = 10I and R = I, we set the parameter values λ = 2.5 and

ρ = 50 and employed our algorithm, for εy = 1.5 and no bound on εu, to obtain an

stabilizing sparse controller. It is observed that the H2 norm difference caused by the

sparsification process is 0.89, which is around 34% of the H2 norm corresponding to

the LQR controller. Furthermore, after truncating the controller entries smaller than
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Figure 3.2: Frequency characteristics of the closed loop systems controlled by the
LQR (blue) and the sparse controller (red) (a) Maximum and Minimum singular
values (b) Schatten 2-norm.

10−10, we noticed that the number of non-zero entries of the sparse controller had

dropped to ‖K‖0 = 383, while the same value for the LQR controller is 625; hence,

there is approximately 39% decrease in the controller cardinality number.

We have depicted the sparsity pattern of the sparse controller designed by our

proposed algorithm in Figure 3.1a. Fig. 3.1a is basically a visual representation of

the controller gain matrix where the nonzero terms are shown by solid blue circles and

the zero entries are left blank. Also, Fig. 3.1b is used to illustrate the underlying graph

of the obtained controller, in which the blue lines show bi-directional communication

between the nods and the dashed red lines represent one way links. It should also be

noted that the obtained gap between the H∞ norm of the sparse controller and the

linear quadratic regulator is 1.35, which satisfies the optimization constraint.

To further illustrate the similar frequency behaviour of the systems, we have

reproduced two additional plots shown in Fig. 3.2. Representing the closed loop

systems controlled by the sparse and the LQR controllers as S and Ŝ, respectively,

the largest and smallest singular values of both S and Ŝ are depicted in Fig. 3.2a.
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It can be seen that the smallest singular values of both system match for almost

the whole frequency range and large singular values obtain the same values for higher

frequencies. Also, the plot of Schatten 2-norm of the systems S and Ŝ, shown in Figure

3.2b, visually establishes the proximity of the H2 norm of both systems. Interestingly,

it seems that the sparsification of the controller does not have any effect on the higher

frequency content of the the closed loop system.

Next, we ran a series of simulations for different values of λ, ranging from 5×10−2

to 10, on a 4 × 4 lattice with the same parameters values, and depicted the results

in Fig. 3.3. As predicted, the outcome of our optimization method converges to the

LQR controller as λ goes to zero if the optimization heuristic is initialized at a proper

point in the feasible domain. Fig. 3.3a represents the ratio of the H2 norm of the

systems difference to the H2 norm of the system controlled by the LQR controller,

i.e.

R =
‖S − Ŝ‖H2

‖Ŝ‖H2

for different values of λ. As expected, the value of R increases with the growth of the

parameter λ. On the other hand, this increase in the value of parameter λ promotes

the sparsity level of feedback gain as shown in Fig. 3.3b.

3.6 Conclusions

We have proposed a new approach for the design of optimal sparse controllers. Our

method, basically, attempts to alter an available pre-designed controller towards a

sparse controller, while heeding the performance deterioration caused by the process
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Figure 3.3: (a) Percentage of the H2 norm deviation, caused by the sparsification
process, relative to the H2 norm of system controlled by the LQR controller (b)
Density level of the controller gain obtained for various values of λ.

sparsification. By equivalently reformulating the problem into a fixed rank optimiza-

tion, we could achieve a controller synthesis method, by which a sparse structured

controller capable of exhibiting similar frequency and time characteristics of the pre-

designed controller, in the sense of H2 and H∞ norms. Our method can also be mod-

ified to incorporate constraints on the control signal. Furthermore, we proposed the

Alternating Direction Method of Multipliers (ADMM), modified to include weighted

`1 norm minimization, as computationally tractable algorithm to sub-optimally solve

our problem. The simulation results are also provided to illustrate the effectiveness

of our proposed framework.
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Chapter 4

Controller Sparsification Under

Parametric Uncertainties via Hp

Approximations

4.1 Introduction

In control theory, there has always been a desire to achieve the best possible perfor-

mance, while taking into account the feasibility and cost of the communication be-

tween the subsystems. The reason behind such yearning is mostly rooted in the fact

that unlike small-scale dynamical systems, where centralized control methodologies

can be efficiently applied due to the availability of information from all subsystems,

the subsystem level information is not globally accessible throughout the network in

medium to large-scale systems. With the emergence and growth of ultra large-scale

interconnected systems, e.g. power grids, transportation systems, and wireless data

networks, exploiting the particulars from the underlying structure of the system in
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the control synthesis has become inescapable. Hence, the concept of distributed and

decentralized controllers has received increasing attention in recent years [3, 6, 2, 4, 9].

It has been known that optimal controller design under controller structural con-

straints is a hard problem, and the structured controller synthesis is still an open

problem. Nonetheless, numerous works have been done to either propose controller

synthesis frameworks or reveal inherent structural properties of controllers for special

classes of systems [14, 12, 13, 7, 8, 34]

Another concern in the design of control systems for large-scale systems is the

number of communication links among the subsystems, which poses major issues

especially when establishing links between nodes are highly costly. The synthesis of

controller gains with minimum number of non-zero entries can mitigate the communi-

cation overflow issues emergent in large interconnected systems, since sparsifying the

controller gain leads to fewer information pathways as well as fewer controller sensors

and actuators. In the sparsity promoting control problem, the ultimate objective is to

minimize the number of feedback links without losing the control performance. This

is achieved by incorporating additional functions into the optimization cost function

to penalize the number of communication links. The problem has been addressed by

a number of researchers , who opted for various techniques to tackle the inherently

non-convex problem [26, 2, 27, 23, 28, 29, 30] . For example, in [27, 23] the Alternat-

ing Direction Method of Multipliers is utilized to handle the non-convex terms in the

problem formulation. In [28], the authors proposed a novel framework in which all

non-convexities are lumped into a rank constraint, which enables it to address output

feedback problems with norm constraints on the input/output signals.

In this chapter the proposed sparse controller synthesis framework is founded on
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the ground we have a pre-designed well performing controller available; then, we pivot

our effort to finding a sparse/structured controller with performance characteristics

resembling that of the pre-designed controller. We first formally define the problem

of controller sparsfication, where the ultimate goal is to obtain a sparse feedback

controller approximating the attributes and qualities of the original well-preforming

controller. By providing some insights on our choice of the proximity measures used

in assessing the controller approximation performance, we utilize the results from H2

and H∞ control [62, 63, 64] to reformulate our problem into a rank constrained opti-

mization where all non-convexities are collected into the rank constraints. Choosing

the weighted `1-norm as the measure for the controller sparsity, we employ a modified

ADMM algorithm to reach the sub-optimal solution of the rank constrained optimiza-

tion problem. We, then, use the proposed procedure to study the trade-off between

the controller sparsification rate and the system uncertainty level.

This chapter is structured as follows. In Section 4.2, we formally state the prob-

lem we aim to solve. In Sections 4.3 and 4.4, we elaborate how our problem can be

equivalently reformulated into an optimization problem constrained to several linear

matrix inequalities and a single rank constraint. Section 4.5 provides justifications

on the choice weighted `1 norm as the sparsity measure; then, describe the ADMM

algorithm used in solving our rank constrained optimization problem. The simulation

results studying the effect of system uncertainties on the feedback sparsification pro-

cess are presented in Section 4.6. Finally, we end with concluding remarks in Section

4.7.

Notations: Throughout this chapter, matrices are customarily named with cap-

ital letters, and the entries are named using the corresponding lower-case letters, but
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with subscripts. The vectors, on the other hand, are symbolized by lower-case letters,

with components denoted by the same letter, but subscripted. Also, the following

notations are adopted. The set of real numbers is denoted by R. The space of n

by m matrices with real entries is indicated by Rn×m. The set of real matrices with

non-negative (positive) entries is represented by Rn×m
+ (Rn×m

++ ). The n by n identity

matrix is denoted In.

The number of nonzero elements of a matrix is denoted by ‖.‖0, while ‖.‖1 and

‖.‖F denote `1 and Frobenius norm. Also, the norm ‖.‖Lq2(Rn) is defined by

‖x‖2
Lq2(Rn) ,

∫ ∞
0

‖x(t)‖q2 dt

Tr(.) and rank(.) denote the trace and rank of the operands, which are matrices.

The vectorization operator is denoted by vec(.). The entry wise product of two

matrices, i.e. Hadamard product, is represented by ◦. A matrix is said to be Hurwitz

if all its eigenvalues lie in the open left half of the complex plane.

A real symmetric matrix is said to be positive definite (semi-definite) if all its

eigenvalues are positive (non-negative). Sn++ (Sn+) denotes the space of positive definite

(positive semi-definite) real symmetric matrices, and the notation X � Y (X � Y )

means X − Y ∈ Sn+ (X − Y ∈ Sn++).

Remark 4.1.1. For simplicity of our notations, we will use a new notation in state-

ments of theorems, where we use symbol ”*” to represent the upper triangular sub-

blocks of symmetric matrices. Moreover, in the occasions when the optimal solutions

of the optimization problems in these theorems do not depend on some of the sub-

blocks of matrices, we use symbol ”-” to represent such sub-blocks with no apparent

utilization in the problem.
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4.2 Problem Formulation

4.2.1 LTI Systems with Parametric Uncertainties

Consider an uncertain linear time-invariant (LTI) continuous-time system defined by

the state space realization

ẋ(t) = [A+ ∆A]x(t) + [B1 + ∆B1 ]u(t) +B2d(t)

y(t) = Cx(t), (4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm1 is the control input, and d(t) ∈ Rm2

represents the exogenous disturbance input. We assume that the matrices A ∈ Rn×n,

B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , and C ∈ Rm3×n are constant real matrices describing

the dynamics of the nominal system, whereas ∆A and ∆B1 represent the parameter

uncertainties of the matrices A and B1, respectively. In this chapter, we consider a

special uncertainty structure expressed by

[
∆A ∆B1

]
= D∆

[
EA EB1

]
(4.2)

where D, EA and EB1 are pre-known constant real matrices with appropriate dimen-

sions, which characterize the structure of the uncertainties, while ∆ is an unknown i

by j real matrix which is constrained by

∆T∆ � ρ2Ij. (4.3)
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This class of uncertain linear systems are initially reported by Petersen in papers

[65, 66] and later thoroughly addressed in the paper by Khargonekar et al. [67].

Assumption 1. We Assume that the pair (A,B1) is controllable and (A,C) is de-

tectable.

4.2.2 Controller Sparsification via Hp Approximations

Suppose that a pre-designed well-performing controller, namely K̂, is readily available

and the nominal system controlled by such a controller, represented by Ŝ, has all the

desired characteristics. The objective is to synthesize a constant gain output feedback

controller of the form

u(t) = Ky(t), K ∈ K (4.4)

with minimum number of non-zero entries, while minimizing the performance deteri-

oration from that of the closed-loop system Ŝ. In (4.4), K denotes a set of admissible

feedback gains which holds desirable properties such as pre-defined communication

layout.

Assumption 2. It is assumed that the set K is convex.

This assumption not only reduces the complexity of the problem, but also it

covers a wide range of real-world constraints on controllers. There exist numerous

applications associated with such convexly constrained controller synthesis. For ex-

ample, in power grids or multi-UAV systems, it is sometimes practically infeasible

to establish a communication link between particular nodes due to the nodes dis-

tant locations or security/privacy issues in networks. There are also cases where the

84



attenuation/amplification in certain feedback paths are upper bounded, due to tech-

nological shortcomings. Such restrictions are addressed by forcing the corresponding

controller entries to be contained in a convex set.

Representing the closed loop systems controlled by the controller K by the state

space realizations S, we can formulate the search for controller K as the following

optimization problem

min
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.5a)

s.t. K ∈ K, (4.5b)

S Stable, (4.5c)

‖yS − yŜ‖L2
2(Rm3 ) < εy‖d‖L2

2(Rm2 ), (4.5d)

‖S − Ŝ‖2 < εS , (4.5e)

where ‖.‖ is the norm defined in accordance with the objectives of the problem. In

this chapter, we consider the frequency response of the system S − Ŝ as the measure

of the proximity between the systems controlled by the sparse and the pre-designed

controllers; hence, we opt for the H2 norm to replace the norm in (4.5e). The term

‖K‖0, which is a quasi-norm measuring the sparsity level of the matrix K, is added

to the cost function to penalize the density of the controller gain, and λ1 and λ2 are

the regularization parameters.

In the optimization problem (4.5), the constraint (4.5e) is to ensure that the

closed-loop nominal system Ŝ is well approximated by the system controlled by the

sparse controller K. To enhance our approximation, we also incorporate another

criterion into our design scheme, which is represented by the constraint (4.5d). This
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criterion enforces the output signal energy level of S to be in the vicinity of that

of the system Ŝ when a disturbance input bounded energy is fed to the closed loop

plants.

As said before, the aim of this chapter is to utilize the previously defined sparse

controller approximation in order to thoroughly study the effect of system uncer-

tainties on the sparsification of stabilizing controllers. However, finding the optimal

solution of the problem (4.5) is not an easy task. The next sections are dedicated

to discuss the equivalent problem reformulation exploited in numerically solving our

optimization problem.

4.3 Equivalent Reformulation

The first two terms in the cost function of the optimization problem (4.5) can be

simplified into the H2/H∞ norms of an augmented system, namely S̄, constructed by

the following state space realization matrices

Ā =

 Ā11 0

0 A+B1K̂C

 ,
B̄ =

[
BT

2 BT
2

]T

, (4.6)

C̄ =

[
C −C

]
.

where Ā11 = [A+∆A]+[B1 +∆B1 ]KC. As it can be seen, the system S̄ represents the

difference between the nominal system controlled by the pre-designed controller and

the uncertain system, stabilized by closing its feedback loop using a sparse controller.
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Hence, we can re-formulate our problem into the H2/H∞ norm minimization of the

augmented system as follows

min
K,εy ,εS

max
∆A,∆B1

εS + λ1εy + λ2‖K‖0 (4.7)

s.t. K ∈ K,

Ā11 Hurwitz,

‖C̄(sI − Ā)−1B̄‖H∞ < εy,∥∥C̄(sI − Ā)−1B̄
∥∥2

H2
< εS .

In problem (4.7), the attempt is to minimize the worst case gap between the frequency

response of the systems in the sense of a weighted sum of the H2 and H∞ norms.

Therefore, unlike the design schemes introduced in [23, 28], the approach proposed in

this chapter allows us to exploit the advantages offered by other controller synthesis

schemes in the sparse controller synthesis.

In the next section, we show that the optimization problem (4.7) includes bi-

linear matrix inequality constraints mainly due to the existence of the Lyapunov

stability conditions. Here, we intend to employ the idea of lumping all nonlinear

constraints into a rank constrained problem, proposed in [28], to rewrite problem as

a rank constrained optimization. Based on the obtained reformulation, it is possible

to either develop heuristics to sub-optimally solve the problem or provide necessary

and sufficient conditions for the feasibility of the points with particular desired costs.
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4.4 Fixed Rank Optimization Reformulation

The approach adopted in this chapter is based on solving the problem of sparse con-

troller approximation via rank constrained optimization. Hence, we start by stating

the main lemma which helps us cast the constraints of the optimization problem as

rank constrained linear matrix inequalities.

Lemma 4.4.1 ([28]). Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n, with

U � 0. Then, rank(M) = n if and only if W = YUYT and VT = YU , where

M =


U V

VT W

In YT

 .

The above lemma can be utilized to collect almost all non-convex terms of the

optimization problems in one and only one constraint in the form of a rank constraint.

Since there are a number of algorithms proposed to efficiently solve rank constrained

optimization problems [60, 59, 43, 61], we, in this chapter, target to make such algo-

rithms applicable in solving our inherently nonlinear controller sparsification problem

by collecting various forms of non-convex/combinatorial constraints into a single rank

constraint.

As the first step, we show how the H2 norm of an uncertain system can be for-

mulated by rank constrained linear matrix inequalities.

Lemma 4.4.2. Given a strictly proper uncertain linear system P with state space

realization (A + ∆A,B, C), where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, ∆A = D∆E and

∆T∆ � ρ2Ij, then P is stable and ‖P‖2
H2

< γ if and only if there exists a positive
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definite matrix X � 0 and a positive scalar ε such that

Tr(CXCT) < γ, Y1 + YT
1 + BBT + ερDDT √

ρY2

√
ρYT

2 −εIj

 ≺ 0,

rank



X ∗ ∗ ∗

YT
1 − ∗ ∗

YT
2 − − ∗

In AT ET −


= n.

Proof. The system P is stable with H2 norm less than γ if and only if there exists a

positive definite matrix X such that [68, p. 210]

Tr(CXCT) < γ,

(A+ ∆A)X + X (A+ ∆A) + BBT ≺ 0.

Substituting ∆A = D∆E into the second equation, we have

AX + XAT + BBT +D∆EX + X (D∆E)T ≺ 0.

Since the term AX + XAT + BBT is symmetrical and ∆T∆ � ρ2Ij, the above linear

matrix inequality holds if and only if there exist a positive scalar ε > 0 such that [63]

AX + XAT + BBT + ερDDT + ε−1ρXETEX ≺ 0.
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This is equivalent to having

 AX + XAT + BBT + ερDDT √
ρ(EX )T

√
ρ(EX ) −εIj

 ≺ 0.

Applying Lemma 4.4.1, the last LMI can be equivalently rewritten as shown below.

 Y1 + YT
1 + BBT + ερDDT √

ρY2

√
ρYT

2 −εIj

 ≺ 0,

rank

 X Y1 Y2

In AT ET

 = n.

Augmenting proper rows and columns to the rank constrained matrix to make it

symmetric completes our proof.

Similar to Lemma 4.4.2, which paves the way in casting the H2 norm term in our

optimal controller sparsification problem, as a rank constrained optimization problem,

the H∞ norm term of the problem (4.7) can also be equivalently represented with a

set of rank constrained linear matrix inequalities. In the next lemma, we prove such

equivalence, which later helps in accommodating the whole problem of controller

sparsification into the framework of rank constrained optimization.

Lemma 4.4.3. Suppose a strictly proper uncertain LTI plant P, represented in the

state space triplet (A+∆A,B, C), where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, ∆A = D∆E

and ∆T∆ � ρ2Ij, then the system is stable with H∞ norm less than γ if and only if
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there exists a positive definite matrix X � 0 and a positive scalar ε > 0 satisfying



Y1 + YT
1 + ερDDT ∗ ∗ ∗

BT −γ2 ∗ ∗

(CX ) 0 −Ir ∗
√
ρYT

2 0 0 −εIj


≺ 0.

rank



X ∗ ∗ ∗

YT
1 − ∗ ∗

YT
2 − − ∗

In AT ET −


= n.

Proof. Employing Lemma 7.4 in [68, p. 221], the plant P is stable with ‖P‖∞ < γ if

and only if there exists a positive definite matrix Z such that

Z(A+ ∆A) + (A+ ∆A)TZ + CTC + γ−2ZBBTZ ≺ 0.

Pre and Post multiplying the above LMI by the inverse of Z, namely X , we have

(A+ ∆A)X + X (A+ ∆A)T + XCTCX + γ−2BBT ≺ 0,

AX + XAT + γ−2BBT + XCTCX + ∆AX + X∆T
A ≺ 0.

Plugging ∆A = D∆E into the previous inequality, we get

AX + XAT+γ−2BBT + XCTCX

+ (D∆E)X + X (D∆E)T ≺ 0,

91



AX + XAT+γ−2BBT + XCTCX

+ ρD(∆/ρ)EX + ρXET(∆T/ρ)DT ≺ 0.

Having (∆T/ρ)(∆/ρ) ≤ Ij, the above inequality is valid for all acceptable values of

∆ if and only if there exists a positive ε > 0 for which the following holds.

AX + XAT+γ−2BBT + XCTCX

+ ερDDT + ε−1ρXETEX ≺ 0.

It can be observed that the last LMI is the Schur complement of the negative definite

constraint, shown below.



AX + XAT + ερDDT ∗ ∗ ∗

BT −γ2 ∗ ∗

(CX ) 0 −Ir ∗
√
ρEX 0 0 −εIj


≺ 0.

The rest of the proof is straightforward; hence, omitted.

Consequently, we can reformulate the problem (4.7) into a rank constrained prob-

lem, as described in the sequel.

Theorem 4.4.4. The optimization problem (4.7) is equivalent to the following rank

constrained optimization program

min
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.8)

s.t. K ∈ K,
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Xp � 0, p = 1, 2,

εp > 0, p = 1, 2,

Tr(C̄X1C̄
T) < εS , P1 + B̄B̄T ∗

√
ρY T

2 −ε1Ij

 ≺ 0,



P2 ∗ ∗ ∗

B̄T −ε2
yIm2 ∗ ∗

(C̄X2) 0 −Im3 ∗
√
ρY T

4 0 0 −ε2Ij


≺ 0,

rank(M1) = 2n,

where

Pp = Y2p−1 + Y T
2p−1 + εpρD̄D̄

T, p = 1, 2,

M1 =



X1 ∗ ∗ ∗ ∗

Y T
1 − ∗ ∗ ∗

Y T
2 − − ∗ ∗

X2 Y3 Y4 − ∗

I2n AT
cl ET

cl − −


,

Acl =

 A+B1KC 0

0 A+B1K̂C

 ∈ R2n×2n,

D̄ =

 D

0

 ∈ R2n×j,
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Ecl =

[
EA + EB1KC 0

]
∈ Rj×2n.

Proof. It can be observed that the closed-loop system can be represented using the

state representation (Acl + ∆̄A, B̄, C̄, 0), where B̄ and C̄ are defined in (4.6) and

∆̄A = D̄∆Ecl. Therefore, applying the results from lemmas 4.4.2 and 4.4.3 yields the

desired result.

Now, the next corollary is immediate.

Corollary 4.4.5. The optimization problem (4.7) can be equivalently cast as the

following rank constrained optimization program

min
K,εy ,εS

εS + λ1εy + λ2‖K‖0 (4.9)

s.t. K ∈ K,

Xp � 0, p = 1, 2,

εp > 0, p = 1, 2,

Tr(C̄X1C̄
T) < εS , Q1 + B̄B̄T + ε1ρD̄D̄

T ∗
√
ρR1 −ε1Ij

 ≺ 0,



Q2 + ε2ρD̄D̄
T ∗ ∗ ∗

B̄T −ε2
yIm2 ∗ ∗

(C̄X2) 0 −Im3 ∗
√
ρR2 0 0 −ε2Ij


≺ 0,

rank(M2) = 2n,
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where

Qp = XpA
T
o + AoXp + YpB

T
K +BT

KY
T
p , p = 1, 2

Rp = EoXp + EB1Y
T
p , p = 1, 2

M2 =



X1 ∗ ∗ ∗

Y T
1 − ∗ ∗

X2 Y2 − ∗

I2n (KCK)T − −


,

Ao =

 A 0

0 A+B1K̂C

 ∈ R2n×2n,

D̄ =

 D

0

 ∈ R2n×j,

Eo =

[
EA 0

]
∈ Rj×2n,

CK =

[
C 0

]
∈ Rm3×2n,

BK =

 B1

0

 ∈ R2n×m1 .

4.5 Convex Relaxations and Numerical Algorithms

For the simulation purposes, we plan to solve the problem formulated in (4.9). The

terms in our optimization problem are all convex except the density penalizing term

in the cost function and the rank constraint. This section is dedicated to shed light on

our approach in dealing with the non-convex and combinatorial terms. It breaks into

two parts: (i) Choice of Sparsity Measure (ii) An ADMM Computational Algorithm.
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4.5.1 Choice of Sparsity Measure

Since the `0 quasi-norm is an integer function, utilizing it in our formulation introduces

the complications of combinatorial optimization. In order to reduce the complexity

sparse vector/matrix recovery problems, quite a number of sparsity measures have

been proposed and commonly used in various areas of science. The `1 norm and its

weighted versions, as convex surrogates of the `0 quasi-norm, are among the most

common functions used to measure the sparsity, and have been utilized in diverse

applications [23, 25]. Recently, non-convex substitutes for the cardinality function,

such as `q quasi-norm for 0 < q < 1, have also received increasing consideration in

the literature [34, 35]. However, since utilization of weighted `1 norm in optimization

programs does not cause numerical issues, occurring in the cases of `q and `0 quasi-

norms, we choose to employ weighted `1 norm to penalize the density of the controller

gain in this chapter.

The choice of weighted `1 norm notably reduces the complexity of our problem;

consequently, the only apparent non-convexity in the problem (4.9) becomes the rank

constraint. However, the presence of the rank constraint still makes solving our

optimization problem computationally challenging. Although no efficient algorithm

to solve the general rank constrained problem has been developed yet [43], there exist

a number of optimization protocols which enable the solving of particular types of

rank constrained problems by obtaining sub-optimal solutions [46, 45].

4.5.2 An ADMM Computational Algorithm

In paper [28], it is proposed to make use of Alternating Direction Method of Multi-

pliers (ADMM) in order to solve the rank constrained problems, and the effectiveness
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of such a method has been demonstrated through simulations. As discussed in the

paper, the rank constraint on the matrix M2 can be relaxed by replacing it with a

positive semi-definite constraint, i.e. M2 � 0, due to the assumption X1 ∈ S2n
++. De-

noting the feasible set of the convex optimization, obtained by relaxing the the arisen

rank constraint, by N , and the set of (6n+m1)× (6n+m1) matrices with rank equal

to 2n by M, the minimization problem (4.9) becomes

min
Θ

f(Θ)

s.t. Θ ∈ N ∩M,

where Θ represents the collection of corresponding optimization variables,

f(Θ) = εS + λ1εy + λ2‖W ◦K‖1,

and the weight matrix W = [wpq] ∈ Rm1×m3 is positive. Hence, the program (4.9) can

be implemented by repetitively executing the following steps (4.10-4.13) until either

the stopping criteria is satisfied or the maximum number of iterations is reached.

Θ(k+1) = arg min
Θ∈N

f(Θ) +
λ

2
‖Θ− Γ(k) + Λ(k)‖2

F . (4.10)

Γ(k+1) = ΠM(Θ(k+1) + Λ(k)). (4.11)

Λ(k+1) = Λ(k) + Θ(k+1) − Γ(k+1). (4.12)

w(k+1)
pq =

1

|k(k)
pq |+ δ

, ∀p, q. (4.13)

Taking into account that the cost function and constraints of the optimization (4.10)

are convex, this step can be performed numerically efficient. Also, the projection on
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(a) (b)

(c) (d)

Figure 4.1: Sparsity patterns and graph representations of the synthesized sparse
controllers: The left and right sub-figures correspond to the cases of ρ = 0 and ρ = 5,
respectively.

the non-convex setM, denoted by ΠM(.), can be determined by the computationally

efficient method of executing Singular Value Decomposition and keeping the top 2n

dyads.

It is worth to note that the constant δ > 0 which is chosen as a relatively small

constant, is augmented to the denominator of the update law (4.13) to guarantee the

stability of the algorithm, especially, when k
(k)
pq turns out to be zero in the previous

iteration [22]. The step (4.12) is designed to update the variable Λ, which is to be

utilized in the next iteration. Moreover, the stopping criteria is defined by ε(k+1) < ε∗,
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Algorithm 1: Solution to problem (4.8)

Inputs: A, B, C, Q, R, λ2, K, λ, δ and ε∗

1: Initialization:
Find Θ(0) by solving (4.10) for λ2 = 0, λ = 0 (LQR),
Set Γ(0) = Θ(0), Λ(0) = 0, ε(0) > ε∗, and k = 0,

2: While ε(k) ≤ ε∗ do
3: Update Θ(k+1) by solving (4.10),
4: Update Γ(k+1) using Eq. (4.11),
5: Update Λ(k+1) using Eq. (4.12),
6: Update W (k+1) using Eq. (4.13),
7: Update ε(k+1) using Eq. (4.14),
8: k ← k + 1,
9: end while

10: Truncate K,
Output: K

where ε∗ is the desired precision, with the update law

ε(k+1) = max(
‖Θ(k+1) − Γ(k+1)‖F
‖Γ(k+1)‖F

,
‖Γ(k+1) − Γ(k)‖F
‖Γ(k+1)‖F

). (4.14)

The step-by-step procedure is described in Algorithm 1.

4.6 Simulation Results

In this section, we aim to study the impact of the choice of the parameters λ1 and λ2

on the controller sparsification process. To this end, we consider sub-exponentially

decaying systems by defining the system matrices A = [apq] and B = [bpq] as follows


apq = XA exp(−αAdβApq )

bpq = XB exp(−αBdβBpq )
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where XA and XB are randomly generated matrices with entries from the uniform

distributions [−amax, amax] and [−bmax, bmax], respectively. Also, the parameters dpq’s

denote the distance between nodes p and q, i.e.

dpq =
√

(xp − xq)2 + (yp − yq)2.

The SD model is mainly of interest. Because, it captures the decay in the coupling

weight caused by increase of the distance between nodes, which is a common fact in

networks such as power grids.

First, we consider a 5×5 grid model governed by randomly generated SD system,

where αA = 1, αB = 4, βA = 0.4, βB = 0.7, amax = 10, and bmax = 2. Utilizing our

ADMM algorithm, we design two near optimal sparse state feedback controllers in

the vicinity of the corresponding LQR controller, one for the case of system with no

uncertainties, i.e. ρ = 0, and one for the uncertain system with ρ = 5 (around 59%

for a norm of the system’s A matrix). It should be noted that the reference LQR

controller was synthesized for the weights Q = 10I and R = I, and the controller

designs were conducted by setting the parameters values λ1 = 0.25, λ2 = 10, and

λ = 50.

It is observed that for the case of system with no uncertainties the H2 norm

difference caused by the sparsification process is 0.74, which is about 45% of the H2

norm corresponding to the LQR controller. In addition, truncating the controller

entries smaller than 10−7 reduces the number of non-zero entries of the controller

to ‖K‖0 = 407, while the corresponding value for the LQR one is equal to 625;

hence, there is approximately 34.88% decrease in the controller cardinality number.

As for the case of the uncertain system with ρ = 5, the controller density is around
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Figure 4.2: Frequency characteristics of the closed loop systems controlled by the
LQR (blue) and the sparse controller (red). The upper left and right sub-figures depict
maximum and minimum singular values for the cases of ρ = 0 and ρ = 5, respectively.
Lower sub-figures exhibit the Schatten 2-norm of the system ( (c) nominal case (d)
uncertain case)

72.16%, which shows a reduction of 7.04% in the controller sparsity. Also, the H2

norm deterioration is raised to approximately 92.32%. These results confirms our

prediction that the growth of uncertainties magnitudes in the system has negative

effects on the sparsification process.

To further illustrate our results, we exhibit the sparsity pattern of the synthesized

sparse controllers in figures 4.1a and 4.1b. The figures are essentially the visualizations

of the controller matrices where the brightness of each square is inversely proportional

to the absolute value of its corresponding entry. In addition, we plot the underlying
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graph of the obtained controllers, in which the blue lines show bi-directional commu-

nication links between the nodes and the dashed red lines illustrate one way links.

Furthermore, additional plots are presented in Fig. 4.2 to show the similarity of

the frequency behaviour of the sparse systems to that of the LQR control system. The

upper left sub-figure, i.e. Fig. 4.2a, depicts the largest and smallest singular values

of S and Ŝ for the case of ρ = 0. It can be seen that the smallest singular values of

the systems matches for almost the whole frequency range and large singular values

achieve the same values for higher frequencies. Similar plots for the case of uncertain

system with ρ = 5 are shown in Fig. 4.2a. The plots show that the deviation of

the maximum eigenvalue, cause by increasing the magnitude of the uncertainties, is

much larger in comparison with the deviation of the minimum eigenvalue. Also, the

plots of Schatten 2-norm of the systems S and Ŝ, are presented in lower sub-figures

of 4.2 for both nominal and uncertain cases. Interestingly, in neither of the cases,

the sparsification process does not seem to affect the higher frequency content of the

closed loop systems.

Moreover, we run a series of simulations to study the effect of the magnitude of the

parameters λ2 and ρ on our sparsisification method. First, we consider a randomly

generated 4× 4 lattice with no uncertainty. Then, we apply our controller synthesis

algorithm for different values of λ2, ranging from 5× 10−2 to 10, while keeping εy less

than the unit. The results are shown in Fig. 4.3. As predicted, the outcome of our

controller synthesis method converges to the LQR controller as λ2 goes to zero if the

initialization of optimization heuristic is done appropriately at a point in the feasible

region. Fig. 4.3a demonstrates the ratio of the H2 norm of the systems difference to
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Figure 4.3: (a) Percentage of the H2 norm deviation, caused by the sparsification
process, relative to the H2 norm of system controlled by the LQR controller (b)
Density level of the controller gain obtained for different values of λ2.

the H2 norm of the system controlled by the LQR controller, i.e.

R =
‖S − Ŝ‖H2

‖Ŝ‖H2

for different values of λ2. It is not surprising that the value of R increases with

the growth of the parameter λ2. On the other hand, this increase in the value of

parameter λ2 boosts the sparsity level of feedback gain matrix as depicted in Fig.

4.3b.

Next, we fix the parameter λ2 and sweep the uncertainty magnitude ρ from zero

to 10% of the norm of the system matrix A. The simulation parameters are chosen

as EA = I, EB1 = 0, λ1 = 0.25, λ2 = 10, and λ = 100. Similar to the previous

simulation setups, we consider a 4 × 4 grid with dynamics defined by a randomly

generated SD system with parameters exactly the same as the one used before, i.e.

αA = 1, αB = 4, βA = 0.4, βB = 0.7, amax = 10, and bmax = 2. The results,

shown in Fig. 4.4, corroborate our initial conjecture that larger upper bounds on the
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Figure 4.4: (a) Ratio of the H2 norm deviation to the H2 norm of Ŝ (b) Density level
of the controller gain (λ1 = 0.25, λ2 = 10, and ρ ∈ [0, 0.1]× ‖A‖2.)

norm of the additive uncertainty leads to denser stabilizing feedback controllers. This

is mainly due to the fact that for a fixed nominal system, the controllers designed

for larger uncertainties belong to the set of controllers which stabilize the systems

with smaller uncertainty level. Therefore, for large enough λ2’s, the optimal sparse

controller designed for the smaller uncertainty are sparser than the ones synthesized

for uncertainties with larger magnitudes.

4.7 Conclusions

We have proposed a new approach for the design of optimal sparse controllers. This

method is developed based on altering an available pre-designed controller towards a

sparse controller, while heeding the performance deterioration caused by the process

sparsification as well as the parameter uncertainties in the system. We start with for-

mulating an optimization problem which seeks a sparse structured controller capable

of exhibiting similar frequency and time characteristics of the pre-designed controller,

in the sense of H2 and H∞ norms. By equivalently reformulating the problem into
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a fixed rank optimization, we propose to utilize the Alternating Direction Method of

Multipliers (ADMM), modified to include weighted `1 norm minimization, as a com-

putationally tractable algorithm to sub-optimally solve our problem. The simulation

results are also provided to demonstrate the effect of various parameters values in

performance of our proposed method. On average, the results reveal that while the

increase of the weight on the density penalizing term in the cost function enhances

the sparsity promoting properties of our method, the growth of the uncertainty level

has adverse effects on the sparsity level of the synthesized controller.
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Chapter 5

Optimal State Feedback

Controllers with Strict Row

Sparsity Constraints

5.1 Introduction

In recent years, there has been an increasing interest in sparse and decentralized

controller synthesis motivated by the advent of large scale systems and challenges in

implementation of centralized controllers for such systems. In control systems, con-

sisting of large number of sub-systems, the underlying structure of the controller is

usually restricted due to implementation-related concerns and issues such as actua-

tors/sensors limitations or communication costs. Since the optimal controller struc-

ture is not always available, one approach is to sparsify the controller gain in order

to obtain the best viable control system by minimizing the number of communication

links between the subsystems, while improving the overall closed loop performance.
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However, the sparsification of the controller matrix does not always deliver the desired

structure/performance, as a matrix can be sparse while having a row or column with

no zero entry which translates into having a node connected to all other nodes. There-

fore, it is also of importance to consider the row/columns sparsity of the controller

gain.

In general, the problem of designing state feedback controllers with entries con-

strained to lie in a pre-specified set is NP-hard.[36]. Recently, a number of endeavors

has been made to identify the structural properties of the stabilizing controllers in

particular systems. Bamieh et al., in [6], tackled the control problem for the class of

spatially invariant systems with quadratic performance criteria and showed that the

problem of optimal controller for spatially invariant systems, with funnel causality

properties, can be cast as convex problem [7]. In [8], Motee et al. attempted to derive

optimal sparse controller by using spatial truncation techniques; they also introduced

novel sparsity measures for a broad class of spatially distributed systems and catego-

rizes the largest class of spatially distributed systems for which their corresponding

quadratically optimal controllers inherent spatial decay property. Localized LQR op-

timal control problem is formulated in [12, 13] where the authors drive its analytic

solution for a distributed system with non-scalar subsystems. Furthermore, [4] studies

design of the optimal state feedback gains subject to structural constraints on the dis-

tributed controller. As to the problem of sparse controller syntheis, a framework for

sparsity promoting and design sparse and block sparse feedback gains that minimize

the quadratic cost of distributed systems were developed in [23], in which Alternating

Direction Method of Multipliers (ADMM) is exploited to provide a solving algorithm
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to the inherently non-convex problem. Arastoo et al. [28, 64] offered an alternate for-

mulation for the problem of sparse output feedback control for a LTI system where all

non-linear constraints where encapsulated in one constraint on the rank. Regarding

optimal decentralized control for discrete time systems with norm constraints on the

input and output, the paper [9] and [11] have proposed a novel approach to address

the problem, where authors cast the problem as rank one optimization problem and

put forward heuristics to solve it.

In this chapter, we mainly consider the problem of optimal row sparse state feed-

back controller synthesis, where the rows of the desired controller are all s-sparse.

We start by adopting the results from the majorization theorem presented in [69] to

convert the problem of s-sparse vector recovery into an optimization problem, which

is convex except for a constraint on the rank of a matrix variable. We, then, exploit

our results to propose a novel, and more importantly exact, reformulation of the op-

timal row s-sparse controller synthesis problem. Besides, we develop an extension

to our reformulation method in order to cover the problem of optimal row sparse

controller design. Subsequently, we put forward a bi-linear optimization problems,

which provides a necessary and sufficient condition for the existence of a row s-sparse

stabilizing controller for a given system. We, then, provide an algorithm capable of

solving the row sparsity problems, and, further, state some results on the optimality

of the solutions yielded by our proposed algorithm.

Our results differ from that of [23, 2, 70], for we present a disparate approach to

solve the optimal sparse state feedback control problem in the sense that we do not

employ convex surrogates for the `0 norm of the controller matrix, which are typically

utilized to simplify the inherently combinatorial problem. In addition, the notion of
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row sparsity in [2, 70] where the sparsity of state feedback is intended; however, this

chapter investigates the problem of improving the sparsity of the rows of feedback

gain matrix.

The rest of this chapter is organized as follows. In section 5.3, we define the row s-

sparse feedback synthesis optimization problem. Section 5.5 is devoted to studying the

problem of recovering a s-sparse vector from a set determined by convex constraints.

In section 5.6, we reformulate our row sparse control problem as a rank constrained

problem. In section 5.7, we develop an algorithm to solve our rank constrained

optimization problem. Our numerical results are presented in section 5.8. Section 5.9

summarizes our results.

5.2 Preliminaries and Notations

Throughout this chapter, matrices are customarily named with capital letters, and

the entries are named using the corresponding lower-case letters, but with subscripts.

The vectors, on the other hand, are symbolized by lower-case letters, with compo-

nents denoted by the same letter, but subscripted. Also, the following notations are

adopted. The set of real numbers is denoted by R. The space of n by m matrices

with real entries is indicated by Rn×m. The set of real matrices with non-negative

(positive) entries is represented by Rn×m
+ (Rn×m

++ ). The n by n identity matrix is

denoted In.

Definition 5.2.1. An n× 1 vector x is s-sparse, if at most s < n elements of X are

non-zero.
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The s-sparse vector ξs is defined by

ξs , [

n−s︷ ︸︸ ︷
0, · · · , 0,

s︷ ︸︸ ︷
1, · · · , 1]T

The number of nonzero elements of matrix X is shown by ‖X‖0. The `1 norm of a

vector x ∈ Rn is defined by

‖X‖1 :=
n∑
i=1

|xi|.

Definition 5.2.2. The row sparsity measure of the m by n matrix X is defined by

‖X‖r−0 = max
1≤i≤m

n∑
j=1

|Xij|0

The trace and rank of matrix X is represented by Tr(X) and rank(X).

A matrix is said to be Hurwitz if all its eigenvalues lie in the open left half of the

complex plane. A real symmetric matrix is said to be positive definite (semi-definite) if

all its eigenvalues are positive (non-negative). Sn++ (Sn+) denotes the space of positive

definite (positive semi-definite) real symmetric matrices, and the notation X � Y

(X � Y ) means X −Y ∈ Sn+ (X −Y ∈ Sn++). For simplicity of our notations, we will

use a new notation in statements of Theorems, 4, 6, 7, and 8. In these occasions, we

use symbol ”*” to represent the upper triangular sub-blocks of symmetric matrices

Mi for i = 1, ..., 4. Moreover, the optimal solutions of the optimization problems in

these theorems do not depend on some of the sub-blocks of matrices Mi for i = 1, ..., 4.

In such occasions, we use symbol ”-” to represent such sub-blocks with no apparent

utilization in the problem.

Definition 5.2.3. For any column vector x = [x1, x2, · · · , xn]T ∈ Rn, we denote the
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increasing rearrangement of the vector x by x↑, that is, if

x[1] ≤ x[2] ≤ · · · ≤ x[n]

denote the components of x in increasing order, then

x↑ = [x[1], x[2], · · · , x[n]]
T.

5.3 Problem Formulation

We consider the following class of linear time-invariant systems

ẋ(t) = Ax(t) +Bu(t), (5.1)

where x(t) ∈ Rn×1 is the state vector, u(t) ∈ Rm×1 is the control input, and matrices

A and B have appropriate dimensions. It is assumed that initial condition of the

system x(0) = x0 is a random variable with standard normal distribution. We aim to

design an optimal stabilizing constant gain state feedback controller

u(t) = Kx(t), K ∈ K, (5.2)

where K ∈ Rm×n with rows satisfying the s-sparse condition, i.e. ‖K‖r−0 ≤ s. We fur-

ther assume the set of all acceptable feedback gains with predefined structure, denoted

by K, is convex. The convexity assumption on K not only reduces the complexity of

the problem, but it is also capable of addressing a wide span of real-world constraints
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on controllers. There exist numerous applications associated with such convexly con-

strained controller synthesis. For example, in power grids or multi-UAV systems, it is

sometimes practically infeasible to establish a communication link between particular

nodes due to the nodes distant locations or technological/security/privacy issues in

networks. There are also cases where the attenuation/amplification in certain feed-

back paths are upper bounded, due to technological shortcomings. Such restrictions is

addressed by forcing the corresponding controller entries to be contained in a convex

set. The s-sparsity of the controller gain rows is of importance in cases where there

is a hard limit on the number of channels providing feedback to the states. One ex-

ample is a platoon of cars where each car can at most communicate with s neighbors

due to wireless communication limitations [71]. To obtain the desired controller, we

formulate the following optimization problem

min
x,K

J = E{
∫ ∞

0

[x(t)TQx(t) + u(t)TRu(t)]dt} (P1)

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

u(t) = Kx(t), K ∈ K,

‖K‖r−0 ≤ s,

where Q ∈ Sn+ and R ∈ Sm++ are performance weight matrices, and x0 is the initial

state.
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5.4 Equivalent Formulation

Assuming that the components of the initial state x0 are independent Gaussian

random variables with zero mean and positive definite covariance matrix N , i.e.

x0 ∈ N (0, N), the well-known techniques in control systems theory can be exploited

to reveal that the optimal controller, which minimizes the expected value of the cost

function, can be obtained by solving the following optimization problem [72, 28].

min
X11,X12,
X22,K

Tr[QX11] + Tr[RX22] (5.4a)

s.t. AX11 +X11A
T +BXT

12 +X12B
T +N = 0, (5.4b)

X11 � 0, (5.4c)

K ∈ K, (5.4d)

X22 = KX11K
T, (5.4e)

XT
12 = KX11, (5.4f)

‖K‖r−0 ≤ s, (5.4g)

where X11 ∈ Sn++, X12 ∈ Rn×m, and X22 ∈ Sm+ . As it can be observed, unlike the

constraints (5.4b)-(5.4d), which are convex, the constraints (5.4e)-(5.4g) are either

nonlinear or combinatorial; thus, the problem is non-convex. Applying the results
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from Lemma III.1 in [28], we can equivalently replace the nonlinear constraints (5.4e)-

(5.4f) with the rank constraint

rank


X11 X12

XT
12 X22

In KT

 = n.

However, having two disparate non-convex constraints in an optimization problem can

cause serious convergence issue; therefore, it is preferable to boil down our controller

design problem into an optimization program constrained to only one non-convex

constraint. In the following sections, we develop a novel equivalent rank constraint

representation of the row sparsity condition, which enables us to incorporate the

combinatorial constraint (5.4g) into the rank constraint. Hence, we can rewrite our

problem into an optimization problem, where the constraints are all convex except a

single rank constraint.

5.5 s-Sparse Vector Recovery

Before proceeding to the rank constrained representation of the optimal row sparse

control problem, we study the problem of recovering a s-sparse vector from a convex

set, stated in (5.5), whose results are directly applicable to our controller design

problem. Let us consider the following feasibility problem

find x (5.5)

s.t. ‖x‖0 ≤ s,
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Ax = b,

Ex < f.

where A ∈ Rm×n, E ∈ Rp×n, and the vectors x, b, f have appropriate dimensions.

We prove that this inherently NP-hard problem can be equivalently characterized as

a rank constrained program.

Definition 5.5.1. We say the vector x weakly super-majorize y, written as x
W

� y, if

and only if

k∑
1

x[i] ≥
k∑
1

y[i] for k = 1, · · · , n.

To establish a link between weak super-majorization and s-sparsity of a vector,

we state the following lemma which provides a necessary and sufficient condition for

the s-sparisty of a non-negative vector.

Lemma 5.5.2. For any non-negative vector x, ‖x‖0 ≤ s if and only if there exist

α > 0 such that the vector ξs satisfies ξs
W

� αx

Proof. (⇐) For the non-negative vector x, ξs
W

� αy results

0 ≤
q∑
i=1

αx[i] ≤ 0, q = 1, · · · , n− s

Hence, x[i] = 0, 1, · · · , n− s, i.e. ‖x‖0 ≤ s.

(⇒) The vectors x and αx have the same number of non-zero components. Thus,

it suffices to set the parameter α to a value less than or equal to ‖x‖−1
∞ in order to

satisfy ξs
W

� αx.
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Definition 5.5.3. A real valued function φ : R→ R+ is positive definite if φ(0) = 0

and for any nonzero x ∈ R, φ(x) > 0.

Definition 5.5.4. A square matrix P = [pij] is said to be doubly α-super-stochastic

if there exist a doubly stochastic matrix D and a non-negative matrix Q such that

P = αD +Q.

Lemma 5.5.2 is only valid for non-negative vectors. However, its applicability

domain can be expanded to include all real valued vectors using the following theorem.

Theorem 5.5.5. A real valued vector x satisfies ‖x‖0 ≤ s if and only if there exist

α > 0 such that

ξs
W

� α [φ1(x1), φ2(x2), · · · , φn(xn)]T (5.6)

where φi’s are positive definite functions. Furthermore, the weak super-majorization

(5.6) can be equivalently cast as

ξs = P [φ1(x1), φ1(x2), · · · , φn(xn)]T , (5.7)

where P is a doubly α-super-stochastic matrix.

Proof. The weak majorization relation (5.6) is equivalent to the s-sparsity of the vec-

tor α [φ1(x1), φ2(x2), · · · , φn(xn)]T. Since the function φi’s are assumed to be positive

definite, at least n− s components of vector x are zeros, which implies ‖x‖0 ≤ s.

The second part of the lemma follows from the theorem stating that for non-

negative vectors x and y, the x
W

� y is equivalent to x = P̄ y where P̄ = D̄ + Q̄
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for some doubly stochastic matrix D̄ and a non-negative matrix Q̄ [69]. Hence, the

relation (5.6) is identical to

ξs = P [φ1(x1), φ1(x2), · · · , φn(xn)]T ,

with P = α(D + Q̃), where D is a doubly stochastic matrix and Q̃ ∈ Rn
+. Since α

is positive, introducing Q = αQ̃ ∈ Rn
+ reveals that P is a doubly α-super-stochastic

matrix. This concludes our proof.

Remark 5.5.6. The choices of φ’s should not be necessarily the same, and can be

arbitrarily chosen. Among the positive definite functions, a preferable choice can

be φi(x) = x2, i = 1, · · · , n, since it is positive definite and both continuous and

differentiable.

Remark 5.5.7. The class of doubly α-super-stochastic matrices is convex, since such

matrices can be characterized by the following linear equalities.

P = D +Q, D,Q ∈ Rn×n
+ ,∑

i
dij = α, i = 1, · · · , n,∑
j
dij = α, j = 1, · · · , n,

Using lemma 5.5.5, we are now able to assert the following theorem, which helps

transform problem (5.5) into a nonlinear optimization problem. The next lemma

can be utilized to reformulate the non-linear constraints into a single rank constraint

through the following lemma.

Lemma 5.5.8 ([28]). Let U ∈ Rn×n, V ∈ Rn×m, W ∈ Rm×m, and Y ∈ Rm×n,
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where U is a full rank matrix. Then, rank(M) = n if and only if W = Y UY T and

V T = Y U , where

M =


U V

V T W

In Y T

 .

Proof. Since rank(U) = n, its inverse exists and the matrix M can be decomposed

as

M =


In 0 V T

In

U−1 Im+n

 M̄
 In U−1V

0 Im

 ,

where

M̄ =


U 0

0

 W

Y T

−
 V T

In

U−1V

 .

Since the matrices pre/post-multiplied by the matrix M̄ are full rank, the matrix M

is rank n if and only if the rank of the matrix M̄ is n, which is equivalent to

 W

Y T

−
 V T

In

U−1V = 02n+m.

This completes the proof of the lemma.
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Applying the above lemma, we can state the following theorem.

Theorem 5.5.9. The program (5.5) is equivalent to the following rank constraint

problem.

find x (5.8)

s.t. ξs = vec(
∑

j
sij)

P = D +Q, D,Q ∈ Rn×n
+ ,∑

i
dij = α, i = 1, · · · , n,∑
j
dij = α, j = 1, · · · , n,

Ax = b, Ex < f, α > 0,

rank(M1) = n,

where

M1 =



In ∗ ∗ ∗

diag(x) R ∗ ∗

P − − ∗

R − ST −


is symmetric.

Proof. Applying lemma 5.5.8 to the rank constraint rank(M) = n, we obtain R =

diag(x)diag(x) and S = PR. Thus, we have

ξs = vec(
∑

j
sij) = P

[
x2

1, x
2
2, · · · , x2

n

]T
.
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which is equivalent to ‖x‖0 ≤ s according to the equation (5.7) of Lemma 5.5.5. This

concludes our proof.

The next result is essentially a corollary of Lemma 5.5.5, and is stated without

proof

Corollary 5.5.10. The real valued vector x satisfies ‖x‖0 ≤ s if and only if there

exist α > 0, β > 0, non-negative zi’s, i = 1, · · · , n, and a doubly α-super-stochastic

matrix P such that  ξs = P [z1, z2, · · · , zn]T

βx2
i ≤ zi, i = 1, · · · , n

,

The previously presented corollary helps us reduce the dimension of the rank con-

strained matrix by providing an equivalent quadratically constrained reformulation

of (5.8), in which all constraints are convex except the rank constraint on the matrix

of the size 2n by n+ 1.

Theorem 5.5.11. The program (5.8) is equivalent to the following rank constraint

problem.

find x (5.9)

s.t. P = D +Q, D,Q ∈ Rn×n
+ ,∑

i
dij = α, i = 1, · · · , n,∑
j
dij = α, j = 1, · · · , n,

Ax = b, Ex < f, α > 0,

βx2
i ≤ zi, i = 1, · · · , n,
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rank(M2) = n,

where β is a positive real number, z ∈ Rn×1, and

M2 =


In ∗ ∗

zT − ∗

P ξs −



Proof. Lemma 5.5.8 asserts that the rank constraint rank(M) = n is equivalent to

ξs = Pz. From corollary 5.5.10, it can be deduced that ξs = P [z1, z2, · · · , zn]T,

along with βx2
i ≤ zi, i = 1, · · · , n, is equivalent to ‖x‖0 ≤ s, since P is a doubly

α-super-stochastic matrix. Hence, the programs (5.9) and (5.5) are identical.

In summary, we have shown that the problem of s-sparse vector recovery from

a convex set, characterized by linear constraints, can be alternatively formulated

by a rank constrained feasibility problem. Rank constrained optimizations are still

NP-hard, however, several solving algorithms have been proposed to efficiently solve

such problems [46, 43, 61, 59, 60]. Therefore, by lumping various forms of non-

convex/combinatorial constraints into a single rank constraint, one of such algorithms

come in handy in providing a solution to such inherently non-convex problems. In the

next section, we describe how the results obtained so far can be applied to solve the

problem of designing an optimal s-sparse feedback controller for linear time invariant

systems.
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5.6 Optimal Row s-Sparse Controller Design

In this section, we apply the results, obtained for the recovery of s-sparse vectors, to

reformulate our row sparse optimal control problem as a rank constrained optimiza-

tion. Unlike the existing methods for development of sparse/row-sparse controllers,

where convex surrogates for the sparsity penalizing terms are often employed, our

proposed reformulation, stated in the next theorem, is exact.

Theorem 5.6.1. The optimization problem (P1) can be equivalently cast as follows

min
M,α

Tr[QX11] + Tr[RX22] (5.10a)

s.t. AX11 +XT
11A

T +BXT
12 +X12B

T +N = 0, (5.10b)

X11 � 0, (5.10c)

K ∈ K, (5.10d)

βk2
ij ≤ zji, ∀i, j, (5.10e)

T i(ci) = ξs, i = 1, · · · ,m, (5.10f)

P i doubly α-super-stochastic, i = 1, · · · ,m, (5.10g)

rank(M3) = n, (5.10h)
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where

M3 =



X11 ∗ ∗ ∗ ∗ · · · ∗

XT
12 X22 ∗ ∗ ∗ · · · ∗

In KT − ∗ ∗ · · · ∗

− − ZT − ∗ · · · ∗

P 1 − − T 1 − · · · ∗
...

...
...

...
...

. . .
...

Pm − − Tm − · · · −



(5.11)

is a symmetric matrix, T i(ci) denotes the i-th column of the matrix T i, and β ∈ R++.

Proof. From lemma 5.5.8, it is straightforward to verify that the rank constraint in

the optimization program (5.13) is identical to having T i = P iZ for i = 1, · · · ,m.

Hence, the equality constraints T i(ci) = ξs are the same as

ξs = P i [z1i, z2i, · · · , zni]T ,

with P i’s are doubly α-super-stochastic; Considering the quadratic constraints of

problem (5.13), we can write

 ξs = P i [z1i, z2i, · · · , zni]T

βk2
ij ≤ zji, j = 1, · · · , n

,

which, in view of corollary (5.5.10), is equivalent to the constraint ‖K(ri)‖0 ≤ s. The

rest of the proof is straightforward.
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5.6.1 Extension to Row Sparse Controller Synthesis Problem

Next, we generalize problem (P1) by adding a term representing the maximum row

cardinality of the controller matrix. The proposed modification makes the problem

distinct from the one introduced previously in the sense that the former problem

formulation is devised to accept the controllers maximum row sparsity measure as a

design parameter, while the later minimizes it by penalizing the non-zero elements in

each row of the controller gain. Hence, we have the following optimization problem

min
x,s,K

J =

∫ ∞
0

[x(t)TQx(t) + u(t)TRu(t)]dt+ λs (P2)

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

u(t) = Kx(t), K ∈ K,

‖K‖r−0 ≤ s,

where Q and R have appropriate dimensions, and λ > 0 is the regularization param-

eter. Having the parameter s as an optimization variable brings more complexity

to the problem since it only admits positive integer values less than or equal to the

number of columns of the controller matrix. Furthermore, exploiting the results de-

rived in the previous section is not straightforward, since not only ξs is not a constant

vector, but also its entries belong to the set {0, 1}, which makes the corresponding

equality constraint combinatorial. Nonetheless, as stated by the next theorem, this

problem can be cast as a rank constrained problem likewise.

Theorem 5.6.2. The optimization problem (P2) is equivalent to the following rank
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constrained program

min
G,s,α

Tr[QX11] + Tr[RX22] + λs (5.13)

s.t. AX11 +XT
11A

T +BXT
12 +X12B

T +N = 0,

X11 � 0,

K ∈ K,
n∑
i=1

dii = n,

n∑
i=1

ei = s,

βk2
ij ≤ zji, ∀i, j,

ei = (cii + 1)/2, |cii| ≤ 1 i = 1, · · · , n,

T i(ci) = e, i = 1, · · · ,m,

P i doubly α-super-stochastic, i = 1, · · · ,m,

rank(M4) = n,
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where

M4 =



X11 ∗ ∗ ∗ ∗ ∗ ∗ · · · ∗

XT
12 X22 ∗ ∗ ∗ ∗ ∗ · · · ∗

In KT − ∗ ∗ ∗ ∗ · · · ∗

− − ZT − ∗ ∗ ∗ · · · ∗

− − C − − ∗ ∗ · · · ∗

C − − − − D ∗ · · · ∗

P 1 − − T 1 − − − · · · ∗
...

...
...

...
...

...
...

. . .
...

Pm − − Tm − − − · · · −


is a symmetric matrix, the matrices C and D are diagonal, β > 0, and T i(ci) denotes

the i-th column of the matrix T i.

Proof. The proof follows from the fact that ξs can be represented by the following

equations.

n∑
i=1

q2
i = n,

|qi| ≤ 1, i = 1, · · · , n,

ξsi =
qi + 1

2
,

n∑
i=1

ξsi = s.

There, implementing the above equations into the constraints and the rank constraint

yields the desired result.

126



5.7 Algorithm for Optimal s-Sparse Controller Syn-

thesis

In this section, we present our algorithm to solve the rank constraint optimization

problem. Our approach is based on relaxing the rank constraint by a positive semi-

definite constraint, and, then, introducing an additional term penalizing the rank of

the matrix into the optimization cost function. The obtained optimization problem

is all convex except for the additional bi-linear term added to compensate the rank

constraint relaxation, hence, several optimization methods that can be found in the

literature can be utilized to solve it. The next theorem states an optimization problem

which provides a tool to check the feasibility of a stabilizing s-sparse state feedback

controller for a given system.

Theorem 5.7.1. The row s-sparse state feedback controller (5.2) stabilizes the linear

time invariant system (5.1), with the optimal cost less than or equal to J∗ if and only

if the optimal value of the objective of the following bi-linear optimization is equal to

zero.

min
M,Y,α

Tr(Y TM) (5.14)

s.t. (5.10b)− (5.10g),

Tr[QX11] + Tr[RX22] ≤ J∗,

0 � Y � Imn+2(n+m),

Tr(Y ) = mn+ 2m+ n,

M � 0,
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where M is given by (5.11).

Proof. Since the matrix M is positive semi-definite, we have

mn+2m+n∑
i=1

λ[i](M) = min
Y ∈Rmn+2(m+n)

Tr(Y TM)

s.t. 0 � Y � Imn+2(m+n),

Tr(Y ) = mn+ 2m+ n,

where λ(.) denotes the vector of eigenvalues of a given matrix [47, p.266]. We have

proved that the row s-sparse stabilizing controller exists if and only if there is a matrix

M with rank n in the feasible set of our optimization problem. This is equivalent

to having a matrix M satisfying
∑mn+2m+n

i=1 λ[i](M) = 0. Therefore, the existence of

such a controller is identical to having at least one point in the feasible set of our

optimization with the corresponding cost equal zero. Such a point is also the optimal

cost of (5.14), since the positive semi-definiteness of the matrices M and Y guarantees

the non-negativity of the the cost function. This completes our proof.

Although the bi-linear term in the cost function of (5.14) makes it a non-convex

problem, it optimum can be achieved by solving the problem for Y and {M,α}, until

convergence criteria is met [45, 48]. Next, we employ the above result to propose

a routine for solving the problems (5.10) and (5.13). Here, we describe the method

with a focus on (5.10) problem; however, it can be effortlessly modified to become

applicable to the rank constrained problem (5.13) as well.
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Theorem 5.7.2. Consider the optimization problem

min
M,Y,α

Tr[QX11] + Tr[RX22] + νTr(Y TM) (5.15)

s.t. (5.10b)− (5.10g),

0 � Y � Imn+2(n+m),

Tr(Y ) = mn+ 2m+ n,

M � 0,

where M is given by (5.11), and also let M∗(ν) and Y ∗(ν) denote the optimal solution

to (5.15) for different values of ν. Assuming the the problem (5.10) is feasible; then,

one of the following hold.

• There exist a positive real number ν∗ such that for all ν ≥ ν∗ the optimization

problem (5.15) solves the rank constrained program (5.10).

• There exists a constant, namely η, such that the optimal values of Tr(Y TM) is

bounded by ην−1, i.e.

Tr(Y ∗T(ν)M∗(ν)) < ην−1

Proof. If there is a ν∗ > 0 for which the solution of (5.15) gives the optimum of (5.10),

then, M∗(ν∗) is a rank n matrix, hence, Tr(Y ∗T(ν∗)M∗(ν∗)) = 0. Now assume that

for ν > ν∗ the rank of M∗(ν) is not n; thus, we have

Tr[QX∗11(ν∗)] + Tr[RX∗22(ν∗)]

≤Tr[QX∗11(ν)] + Tr[RX∗22(ν)] + ν∗Tr(Y ∗T(ν)M∗(ν)).
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Since Tr(Y ∗T(ν)M∗(ν)) > 0, we can write

Tr[QX∗11(ν∗)] + Tr[RX∗22(ν∗)]

<Tr[QX∗11(ν)] + Tr[RX∗22(ν)] + νTr(Y ∗T(ν)M∗(ν)),

which is a contradicts the fact thatX∗11(ν), X∗22(ν), Y ∗(ν), andM∗(ν) are the optimum

of (5.15) for the particular value of ν.

Next, we consider the case where no such ν∗ exists. Then, the following holds for

all values of ν.

Tr[QX∗11] + Tr[RX∗22]

≥Tr[QX∗11(ν)] + Tr[RX∗22(ν)] + νTr(Y ∗T(ν)M∗(ν)),

whereX∗11 andX∗22 are the optimal point of problem (5.10). Knowing that Tr[QX∗11(ν)]+

Tr[RX∗22(ν)] ≥ 0, the following is true.

Tr(Y ∗T(ν)M∗(ν)) ≤ (Tr[QX∗11] + Tr[RX∗22])ν−1

Therefore, there exist a constant η for which ην−1 bounds the Tr(Y ∗T(ν)M∗(ν)) from

above. Hence, the proof is complete.

The previous theorem basically express that it is possible to decrease the optimal

value of the additional term in (5.15) arbitrarily by enlarging the parameter ν. As

this value represent the sum of the smallest mn + 2n + n eigenvalues of the matrix

M , diminishing this term forces the rank of M to obtain the desired rank, i. e. n.
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In the bi-linear program (5.15), the optimization variable pair {M,α} is con-

strained to the convex set C, defined by the constraints (5.10b)-(5.10g) along with

M � 0, and the convex set constructed by the linear matrix inequalities 0 � Y �

Imn+2(n+m) and the linear equality Tr(Y ) = mn + 2m + n, namely C̄, declares the

set of feasible Y ’s. Exploiting the new notations, the optimization (5.15) can be

represented as

min
M,α,Y

f(M,α, Y ) (5.16)

s.t. {M,α} ∈ C, Y ∈ C̄,

where

f({M,α}, Y ) = Tr[QX11] + Tr[RX22] + νTr(Y TM),

and the structure of M is given by (5.11). Considering the above formulation, the

problem (5.15) can be solved using the algorithms for constrained bi-convex optimiza-

tion [73, 48]. The approach we are utilizing here is adopted from [48] which is based

on alternating minimization between the optimization variables {M,α} and Y until

the convergence criteria is satisfied, as shown in the sequel.

{M,α}(k+1) = argmin
{M,α}∈C

f(M,α, Y (k)) (5.17)

Y (k+1) = argmin
Y ∈C̄

f({M,α}(k+1), Y ) (5.18)

Remark 5.7.3. It should be noted that the problem (5.15) can be relaxed into a convex

problem by setting Y to an identity matrix. As a result, the term Tr(Y TM) reduces
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to the nuclear norm of M , i.e. ‖M‖∗, which a well known convex surrogate for the

rank operator [39]. This special form of our proposed approach can be interpreted as

penalizing the nuclear norm of the matrix in order to force its to the smallest feasible

value.

5.8 Simulation Results

In this section, we demonstrate the validity of our results by applying our proposed al-

gorithm on two randomly generated sub-exponentially decaying (SD) systems defined

on grids by the system matrices A = [aij] as

aij = X e−αd
β
ij

where dij denotes the distance between nodes i and j, and X is chosen to be a

uniformly distributed random variable on the interval (−1, 1). Also, the matrix B is

taken to be a randomly generated square matrix. This class of system is of interest

to us, since it is capable of capturing the decaying effect in the coupling weights

caused by increase of the distance between nodes, which is a common phenomenon

in networks such as power grids.

5.8.1 Case A

In this case, we consider a 4× 4 grid model generated by setting the SD parameters

α = 1, β = 0.5. We also choose the quadratic performance weights as Q = 10I and

R = I, and the regularization parameters ν are set to 104 and 10, respectively. The

objective in this case study is to enforce 4-sparsity on the rows 2, 8, and 12. The figure
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Figure 5.1: (a) Sparsity pattern of the controller (b) Graph representation of the
synthesized controller.

5.1a visually represent the synthesized controller matrix truncated by the threshold

10−3. The graph representation of the controller, showing the spatial of the nodes

in the grid, is also depicted in 5.1b. In this figure, the blue lines show bi-directional

communication between the nods and the dashed red lines represent one way links.

According to our data, the controller quadratic performance has deteriorated 71%

and the number of nonzero entries of the controller is 219, which is around 85% of the

total controller entries. It should be noted that the above examples not only reveal

the effectiveness of our approach in the design of s-sparse controller, it also shows

that our approach enables the user to enforce the s-sparsity constraint on arbitrarily

chosen rows.

133



1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 5.2: (a) Sparsity pattern of the controller with sparsity constraints on the rows
1, 4, 7, and 9 (b) Graph representation of the controller.

5.8.2 Case B

The purpose of this section is to demonstrate the versatility of our design method by

presenting that it is capable of synthesizing row sparse, column sparse, column/row

sparse, and iso-structured row/column sparse controllers. We consider a randomly

generated 3× 3 grid model with SD properties. The system parameters, performance

weights, and the regularization parameters used here are all the same as the ones

used in 5.8.1.

We start by utilizing our method to synthesize a controller, with 4-sparsity con-

straints on the rows 1, 4, 7, and 9, for the randomly generated system. The visual

representation of the sparsity pattern of the controller is depicted in Figure 5.2a.

Also, Fig. 5.2b describes the underlying graph of the obtained controller. It should

also be noted that the gap between the quadratic performance the sparse controller

and the linear quadratic regulator is about 82.14%.
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Figure 5.3: (a) Sparsity pattern of the controller with sparsity constraints on the
columns 1, 4, 7, and 9 (b) Graph representation of the controller.

Next, we show how our method can be employed to synthesize row s-sparse con-

troller. By simply modifying the constraint 5.10e with the constraint

βk2
ij ≤ zij, ∀i, j,

the optimization problem yields column s-sparse controllers. Applying this modifica-

tion, we synthesize a controller, with 4-sparsity constraints on the columns 1, 4, 7, and

9, for the same randomly generated system. The visual representation of the spar-

sity pattern of the controller is shown in Figure 5.3a. Also, Fig. 5.3b illustrates the

underlying graph of the obtained controller. In this case, the quadratic performance

deterioration, comparing to that of the LQR controller, is about 60.13%.

There are also applications in which we desire to seclude certain nodes from all

other nodes as much as possible. This is viable by enforcing the sparsity constraint

on both rows and column associated with the nodes. Interestingly, this cases is also
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Figure 5.4: (a) Sparsity pattern of the controller with sparsity constraints on the
rows/columns 4 and 7 (b) Graph representation of the controller.

implementable in our appraoch by selectively choosing the constraints 5.10e or its

modified versions. In Figure 5.4, we present the controller synthesized by imposing

such limitations on the rows 4 and 7 as well as the columns 4 and 7. The performance

deterioration in this cases is about 67.75%

Furthermore, there are cases where the sparsity structure of the columns and

rows associated with particular nodes are aimed to be similar. This means that

the nodes receive information form the exact same nodes they send information to;

hence, the minimum number of transmission lines can be minimized substantially.

Such ”iso-structure sparsity” patterns can be implemented in our approach by simply

associating the particular rows/columns to a certain column of the matrix Z. The

results presented in Figure 5.5 shows the synthesized controller with the iso-structure

s-sparsity constraint the rows/columns 4 and 7. It can be see that the symmetry

between the structure of the rows and columns is plain. Also, the performance dete-

rioration associate with case is around 71%, which is slightly larger that the previous
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Figure 5.5: (a) Sparsity pattern of the controller with iso-structure row/column spar-
sity constraints on the rows/columns 4 and 7 (b) Graph representation of the con-
troller.

case.

In our simulations, performed using the optimization software CVX in MATLAB

[74], we have noticed that the optimization problem may become unbounded or pro-

duce unacceptable results. Our inspections revealed that the issue is not always due

to the shortcoming of the optimization algorithm, as it sometimes caused by the in-

sufficient precision of the convex optimization algorithms used by CVX. For example,

the parameter α should not be allowed to dwindle significantly, since the matrix D

may become negligible, for the software precision, when being added to Q. Hence, the

resulted P does not satisfy the doubly α-super-stochasticity condition. On the other

hand, significantly large Q reproduces the same issue, so suitable modification should

be implemented into the optimization algorithm. It is expected that other numerical

issues may associated with the algorithm, which is beyond the scope of this chapter.
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5.9 Conclusions

A method is developed for the synthesis of controller with strict row sparsity con-

straints. We have shown that the recovery of a s-sparse vector can be formulated using

a rank constraint formulation. Then, extend our results to propose an equivalent re-

formulation where all non-convex and combinatorial constraints are lumped into a

single fixed rank constraint. Unlike, the common methods which uses relaxation for

the `0-norm of the vectors/matrices, we have not employ any form of relaxation; thus,

our reformulation is exact. We further show how our formulation can be extended to

accommodate the row sparse control design paradigm. In addition, we propose that

the equivalent rank constrained optimization problem can be solved using a bi-linear

optimization with convex constraints. We have also provided numerical examples in

order to exhibit the effectiveness of our proposed methodology.
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Part II

Identification of Sparse Stable

Networks
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Chapter 6

Gene Regulatory Network

Modeling Using Literature Curated

and High Throughput Data

The phenotypic expression of a genome, including the response to external stimuli,

is a complex process involving multiple levels of regulation. This regulation includes

controls over the transcription of messenger RNA (mRNA) and translation of mRNA

into protein via gene regulatory networks (GRNs). Advances in microarray and assay

technologies are facilitating increasingly large amounts of laboratory data for analysis

of these networks. If the network is operating sufficiently close to a steady-state,

Gardner et al [75] have shown that multiple linear regressions can be applied to

this data to derive a linear ordinary differential equation (ODE) model of the form

ẋ = Ax+u, where x is the vector of gene expression values and u is the exciting input

(see [75] and [76]). Now, in addition to this data, information on the interactions

between genes, proteins, and metabolites is available through published literature.
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Observing that this information can be included as a constraint in the optimization

problem solved in [75], Zavlanos et al [77] have performed convex relaxations on the

modified optimization problem and have given a linear matrix inequality (LMI) based

solution to derive linear ODE models of gene regulatory networks. In particular, [77]

re-formulates the approach of [75] using LMI’s and includes sufficient conditions for

asymptotic stability, given by the Lyapunov stability theorem (see [78], [79], and [80]),

as the additional constraints to ensure that the linear ODE model is stable. In [77]

, the problem formulation and its solution is presented in a highly lucid manner and

its choice of LMI formulation is likely to lead to a number of LMI-based solutions for

such network modeling problems.

The chapter is organized as follows. After stating our modeling assumptions,

we present the network modeling algorithms of [77] and our extensions of those algo-

rithms. We then show that our algorithms perform at least as well as those algorithms

when presented with a synthetic dataset that is generated using the procedure given

in [77]. We then show how these results can be used to derive a protein regulatory

network of malaria infected patients.

6.1 Linear ODE Models of Gene Regulatory Net-

works

The problem of how the gene expression data should be used to obtain linear ODE

models of the underlying gene regulatory networks has been well researched (see

for example [75], [76], [81], [82], [83], [84], and references therein). We shall focus

on deterministic models. The ODE model is of the form ẋ = Ax + Bu, where A
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Symbol Meaning
(R+) R Set of all (nonnegative) real numbers
Rn n-dimensional (n×m) real-valued vector (matrix)
Rn×m n×m real-valued matrix
C Set of all complex numbers
Z Set of all integers
(·)T Transpose of a vector or a matrix (·)
Herm(·) 1

2
((·) + (·)T) . . . (Hermitian of (·))

A � 0 (A ≺ 0) A is positive semidefinite (negative definite).

‖z‖1 =
∑
i

|zi| if z is a vector (=
∑
i,j

|zi,j| if z is a matrix)

card(A) Number of nonzero elements of A . . . (cardinality)
λi(A) i-th eigenvalue of the matrix A
diag(ai) Diagonal matrix with ai as its diagonal elements
ẋ = dx/dt (derivative of x with respect to time)

and B are real-valued matrices of suitable sizes, x is the vector of gene expression

values, and u is the vector (or matrix) of exciting inputs. Laboratory data on the gene

expression values for varying inputs furnishes the datasets X and U , where the matrix

X comprises the vectors of gene expression values and the matrix U comprises the

vectors of corresponding excitations. Now, the objective is to solve for A and B such

that some performance metric is optimized. Assuming the availability of time-series

data for the gene expression values, such models are derived in [83] and [84] whereas

this requirement is relaxed in [75], [76], and [77]. All of these approaches rest on the

assumption that the network is operating sufficiently close to a stable equilibrium

point. Under this assumption, solving the ODE ẋ = Ax+Bu for A and B effectively

reduces to solving the equation 0 = Ax+Bu for A and B. In addition, it is assumed

in [75], and therefore in [77], that the inputs u can be controlled to selectively over-

express precisely one gene at a time. This reduces the matrix B to an identity matrix

and, as a result, only the matrix A needs to be solved for. However, in practice,
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such controlled excitation is rarely performed, at least as of today. Instead, most

pharmaceutical companies and cosmetic firms have large repositories of snapshots of

the gene expression values for the control cases, i.e., for normal subjects, and for the

treatment cases, i.e., for the cases in which the subject is either abnormal or exposed

to an excitation or a treatment (such as a radiation or a drug dose). Here, it rarely

holds that the excitation input u selectively over-expresses (or suppresses) precisely

one gene at a time. We shall show that the approach of [77] is applicable even when

its overly restrictive constraint B = I is relaxed.

6.2 Method

6.2.1 Assumptions

Our main assumptions are as follows.

• The network can be modeled as ẋ = f(x, u) for some function f .

• The network has a stable equilibrium point, xeq, in the neighborhood of which

ẋ = f(x, u) can be approximated as ˙̃x = Ax̃+Bu, where x̃
.
= x− xeq, for some

matrices A and B.

• The operating point of the network is sufficiently close to the stable equilibrium.

• The matrix A is invariant across all treatments and all subjects.

• The matrix A is sparse (see [85, 86]).

• The input u is to be computed as follows. The exogenous excitation is a tran-

scription perturbation in which individual genes are over-expressed using an
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episomal expression plasmid. After the perturbation, these cells are allowed to

grow under constant physiological conditions to a steady-state and the differ-

ence in the mRNA concentrations of these cells and that of normal cells, i.e.,

those having reporter genes as opposed to the over-expressed genes is to be

noted down (see [87]). In general, a perturbation will affect p ≤ n genes in the

n-gene network.

• Specific genes encode the transcription factors (TFs) — proteins that can bind

DNA (either independently or as part of a complex), usually in the upstream

regions of target genes (promoter regions), and so regulate their transcription.

Since the targets of a TF can include genes encoding for other TFs, as well

as those encoding for proteins of other function, interactions between tran-

scriptional and translational levels of the system take place. In addition, post-

translational and epigenetic effects also influence the network. We assume these

can be accounted for indirectly in the gene regulatory network.

6.2.2 Background Results

Let us now note the main results of [77]. To begin with, let us denote the i-th element

of a vector v as vi and the (i, j)-th element of a matrix A as either ai,j or aij. Let

m be the number of available transcription perturbations. Let n denote the number

of genes. Let U
.
= [u1 u2 . . . um] ∈ Rp×m and X̃

.
= [x̃1 x̃2 . . . x̃m] ∈ Rn×m be the

matrices containing transcriptional perturbation values and their associated mRNA

expression values, respectively, for the m experiments. Then, if the network modeled

as ẋ = Ax + Bu is at the stable equilibrium, then it holds that AX̃ + BU = 0. In

general, the measured deviation in x can be different from the deviation predicted by

144



the linear ODE model. Therefore, let X
.
= X̃+∆X, where X comprises the measured

values and ∆X is the mismatch due to nonlinearities, measurement noise, etc. Then,

AX + BU = AX̃ + BU + η, where η
.
= A∆X. The network modeling problem can

now be stated as follows: Given X and U , determine a sparse stable matrix A that

minimizes η subject to the constraint that it satisfies the constraints laid down by a

priori information.

The a priori information is often in the form of sign pattern S that captures the

interaction between the nodes i and j. The convention is that sij is (i) ’+’ if the node

j activates the node i, (ii) ’-’ if the node j inhibits the node i, (iii) zero if the nodes i

and j do not interact, and (iv) ’?’ if no a priori information is available on how the

node j affects the node i. Then,

A ∈ S ⇔



aij ≥ 0 if sij = +;

aij ≤ 0 if sij = −;

aij = 0 if sij = 0;

aij ∈ R if sij =?.

(6.1)

The stability constraint is satisfied if every eigenvalue of A has a negative-valued

real component. Since minimizing card(·) might have an adverse effect on η and vice

versa, a convex combination of card(·) and η is minimized in [77] — specifically, the

Problem 1 is first re-cast as the following optimization problem P1:

minimize t card(A) + (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0, A ∈ S,
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Algorithm Z: Solution to P1 (see [77, Algorithm 1])
Input: t, δ, S, X, and U
1: Initialization: Set wij = 1 for all i, j = 1, · · · , n
2: for iteration = 1 to J do
3: Solve P1 for A and ε,
4: Update the weights wij using Eq. (2),
5: Update the weights vij using (6.3),
6: end for
Output: A

where t ∈ [0, 1] is a user defined parameter. Now, card(·) is a non-convex func-

tion. Hence, it is relaxed in [77] to a convex function, namely, a weighted `1-norm∑n
i,j=1wij|aij|, where the weights wij are defined as

wij =
δ

δ+ | aij |
, i, j = 1, · · · , n, (6.2)

where δ > 0. If δ is chosen sufficiently small then the value of wij|aij| ≈ 1 if aij 6= 0

and is zero otherwise. The following algorithm, viz., [77, Algorithm 1], solves this

optimization problem.

To ensure that the system is stable, the eigenvalues of A must be constrained to

have negative valued real part so that P1 is modified into the following optimization

problem P2:

minimize t
∑
i,j

wij|aij| + (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0

real(λi(A)) < 0 ∀i, A ∈ S,

.

where t ∈ [0, 1] is a user defined parameter. In [77], a solution to P2 is obtained by
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using the Gershgorin’s circle theorem as follows (see Algorithm 2 of [77]).

Theorem 6.2.1. [Gershgorin’s Circle Theorem (see [88])]

Let A ∈ Rn×n. For all i ∈ {1, · · · , n}, define the deleted absolute row sums of A as

Ri(A)
.
=
∑

j 6=i |aij|. Then, all eigenvalues of A lie within the union G(A) of n discs

that is defined as

G(A)
.
=

n⋃
i=1

{z ∈ C| |z − aii| ≤ Ri(A)}.

Furthermore, if a union of k of these n discs forms a connected region that is disjoint

from every other disc then that region contains precisely k eigenvalues of A. �

From Theorem 6.2.1, it follows that the matrix A is stable if aii ≤ −
∑

i 6=j |aij| ∀i,

which holds if A is diagonally dominant with non-positive diagonal entries. To relax

this restrictive requirement, a similarity transformation V can be applied to A since

the eigenvalues of V −1AV are the same as those of A. An easy choice for V is

V = diag(vi) with vi > 0. Then, using 6.2.1, it follows that the matrix V −1AV is

stable if aii ≤ − 1
vi

∑
j 6=i vj|aij| ∀i. Therefore, it follows (see [77]) that the solution

A of P2 is guaranteed to be stable if it is obtained by solving the following modified

optimization problem P3:

minimize t
∑
i,j

wij|aij| + (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0

aii ≤ − 1
vi

∑
i 6=j vj|aij| ∀i, vi > 0 ∀i, A ∈ S,

.

where t ∈ [0, 1] is a user defined parameter. The matrices V and W can be chosen as

follows (see [77]). Initialize V = I where I is the identity matrix of suitable size and
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set wij = 1 ∀i, j. Then, repeatedly solve P3, updating wij using Eq. (2) and vii using

vii
.
=

 1 + |aii|−Ri(A)−β
δ+(|aii|−Ri(A)−β)

if | aii | −Ri(A) > β;

δ
δ−(|aii|−Ri(A)−β)

if | aii | −Ri(A) ≤ β,
(6.3)

where β
.
=

n∑
i=1

(|ai,i| −Ri(A))/n.

Remark 6.2.2. In [77], it is claimed that this procedure, described in [77, Algorithm

2], usually requires no more than J = 20 iterations but may yield periodic solutions

for certain ill-condition problems. �

Remark 6.2.3. [77, Algorithm 2] is somewhat ad-hoc since the parameter δ is left

undefined in it. �

Remark 6.2.4. In [77], another solution to P2 is obtained by using the Lyapunov

stability theorem to ensure the stability (see [77, Algorithm 3]). �

6.2.3 Main Results

The values of vii in the above algorithm can be updated at the end of each iteration

using a number of known results. For example, it is shown in [89] that the optimal

diagonal postcompensator V to render the matrix V A row dominant can be obtained

by computing the left Perron eigenvectors of the Rn×n nonnegative matrix T having

|aij| as its elements, provided it is a primitive matrix. Also, it is known that the

Perron eigenvalue and its corresponding eigenvector can be easily computed using

the following iterative method: select an arbitrary unit vector x0, then iterate it as
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Algorithm 1: (Solution to P3)
Input: t, δ, ∆, S, X, and U
1: Initialization: V = I and wij = 1 for all i, j = 1, · · · , n
2: for iteration = 1 to J do
3: Solve P3 for A and ε,
4: while ‖x̄k+1 − x̄k‖ > ∆ do
5: Update x̄k and x̄k+1 using Eq. (6),
6: end while
7: Update the weights vii using Eq. (7),
8: Update the weights wij using Eq. (2),
9: end for
Output: A

follows:

x̄k+1 = T x̄k/‖T x̄k‖ (6.4)

until ‖x̄k+1 − x̄k‖ < ∆, where ∆ > 0 is arbitrarily small. Now, x̄k+1 is a reasonable

approximation of the right perron eigenvector of T , and its corresponding eigenvalue

r can be obtained by solving T x̄k+1 ' rx̄k+1 (see [89]). If the column-dominance of

A is to be optimized then the same procedure should be applied to AT and then the

result should be transposed. Therefore, Perron eigenvector of T seems to be a good

choice for the construction of the scaling matrix V , where

V
.
= diag(x̄k+1). (6.5)

Hence, Algorithm 1, an improvement over [77, Algorithm 2], can be stated as

follows.

Another approach to modify Algorithm Z so that its output A is a stable matrix

is as follows (see [77]). If the output A is unstable, perturb it by a small enough
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perturbation D such that the perturbed matrix Ã
.
= A+D is stable and, furthermore,

an element of S. By Lyapunov stability theorem, Ã is stable if there exists a P =

PT � 0 such that Herm(ÃTP ) ≺ 0, i.e., if

Herm(ATP + L) ≺ 0, (6.6)

where L
.
= PD. Now, (6.6) is an LMI that can be efficiently solved by solving the

following semidefinite program P4:

minimize ‖LX‖2

subject to Herm(ATP + L) ≺ 0, P � 0,
.

the solution of which gives the perturbation as D = P−1L (see [90]). However, while

this perturbation ensures the stability of Ã
.
= A + D, it does not ensure Ã ∈ S. In

[77], this difficulty is resolved by using the Lyapunov matrix P , obtained as a solution

of P4, in solving the following optimization problem P5:

minimize t
n∑

i,j=1

wij | aij | +(1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0,

Herm(ATP ) ≺ 0, A ∈ S.

.

A solution to this problem is given by [77, Algorithm 3].

If the network is sufficiently damped then ‖Gu‖2/‖u‖2 can be approximated by

‖yss‖2/‖u‖2 where G is the transfer function of the linearized system, and yss is the

steady-state response of the system, which is the same as state vector if C = In.

Therefore, if sufficient amount of the steady-state data is available then ‖G(s)‖∞ can
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be approximated as:

sup
i
‖yiss‖2/‖ui‖2 ' ‖G(s)‖∞ ' γ, (6.7)

where the maximization is performed over the experiment trials. Now, the well-known

bounded real lemma (BRL) can be used to derive a more powerful network modeling

algorithm.

Theorem 6.2.5. [Bounded Real Lemma [91]]

Let the system G(s) be given in the state-space form as

ẋ = Ax+Bu,

y = Cx+Du.

Then, A is stable and ‖G(s)‖∞ < γ if and only if the system of LMI’s:


AP + PAT B PCT

BT −γI DT

CP D −γI

 ≺ 0, P � 0

has a symmetrix matrix P as its solution. �

Therefore, we can identify out network model by solving the following optimization
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Algorithm 2: (Solution to P6)
Input: t, δ, S, X and U
1: Apply Algorithm Z to obtain A
2: Approximate γ using (6.7)
3: while A is unstable or ‖G(s)‖ > γ then
4: Solve P4 for a Lyapunov matrix P ,
5: Initialize wij = 1 for all i, j = 1, · · · , n,
6: for iteration = 1 to J do
7: Solve P6 for A and ε,
8: Update the weights wij using Eq. (2),
9: end for
10: end while
Output: A

problem P6:

minimize t
n∑

i,j=1

wij | aij | +(1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0,
AP + PAT B P

BT −γI 0

P 0 −γI

 ≺ 0

P � 0, A ∈ S.

.

A solution to this problem is obtained by using Algorithm 2. In all algorithms

considered thus far, the matrix B is assumed to be known. However, as observed

earlier, such is rarely the case in practice. If A and B both need to be estimated then

more a priori information on A is required since, otherwise, A = 0 and B = 0 is a

trivial solution to 0 = Ax+Bu. Such a meaningless solution can be readily ruled out

by stipulating aii < σi ∀i for some σi as a constraint in the optimization problem.

This constraint is valid in reality since every gene and protein down-regulates its own

152



production through self-degradation. Using Gershgorin’s circle theorem to guarantee

the stability, the estimation of A and B can be obtained from the solution of the

following optimization problem P7:

minimize t

n∑
i,j=1

wij | aij | +(1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0,

Herm(ATP ) ≺ 0, aii < −σi ∀i, A ∈ S.

.

where Σ
.
= diag(σi) ∈ Rn×n is a diagonal matrix that has the self-degeneration rates as

its diagonal elements. The estimation of B introduces a scaling difficulty: if (A∗, B∗)

is a solution of our optimization problem, then (αA∗, αB∗) is also a valid solution for

every scalar α that satisfies |α| < 1. In fact, scaling by such an α facilitates smaller

modeling errors. This difficulty can be resolved by scaling A and B by a suitable

positive number, say κ(A,B), so that the absolute value of the largest element of A

becomes equal to 1. Depending on its sign, one can then set the elements having

absolute value less than an arbitrary small value such as, say, ν = 10−4: we refer to

these matrices as Ã and B̃ (see Algorithm 3). The elements of Ã and B̃ are defined

as

ãij =

 aij if |aij| ≥ ν;

0 if |aij| < ν;
(6.8)

b̃ij =

 bij if |bij| ≥ ν;

0 if |bij| < ν.

In P4, we solve an optimization problem to find a small perturbation that makes
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Algorithm 3: (Solution to P7)
Input: t, ν, Σ, S, X, and U
1: Apply Algorithm Z to obtain A and B
2: while A is unstable then
3: Solve P4 for a Lyapunov matrix P ,
4: Initialize wij = 1 for all i, j = 1, · · · , n,
5: for iteration = 1 to J do
6: Solve P7 for A, B and ε,
7: Update the weights wij using Eq. (2),
8: end for
9: end if
10: Scale A and B by κ(A,B)

11: Define Ã and B̃ as per Eq. (10),

Output: A, B, Ã, and B̃

matrix A stable, while minimizing an upper bound of the 2-norm of the difference

between AX+BU and ÃX+B̃U (see [77]). If the eigenvectors of A can be estimated

well enough then A can be stabilized by perturbing its eigenvalues while keeping its

eigenvectors fixed. Hence, a revised optimization problem P8 is as follows:

minimize h‖D−1(λA + λ)DX +BU‖1 + (1− h)
n∑
i=1

λ2
i

subject to λA + λ > 0, λ ∈ ΛA,

.

where ΛA is the set of matrices having the canonical structure of the Jordan normal

form of A. Now, P can be obtained by solving

(A+D−1λD)TP + P (A+D−1λD) ≺ 0. (6.9)

Then, A and B can be computed by solving P7 iteratively.

Now, suppose our experimental data can be partitioned into q separate sets of

data, Xi’s, and each set contains the response of our network to the same input
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Algorithm 4: (Solution to P9)
Input: t, h, δ, ν, Σ, S, X, and U
1: Apply Algorithm Z to obtain A and B
2: if A is unstable then
3: Decompose A to its Jordan normal from,
4: Solve P8 for a λ,
5: Find P using (6.9),
6: Initialize wij = 1 for all i, j = 1, · · · , n,
7: for iteration = 1 to J do
8: Solve P7 for A, B and ε,
9: Update the weights wij using Eq. (2),
10: end for
11: end if
12: Scale A and B by κ(A,B)

13: Define Ã and B̃ as per Eq. (10),

Output: A, B, Ã, and B̃

value. Therefore, we have

‖AXi +BUi‖ ' 0 i = 1, · · · , q, Xi ∈ Rn×mi , Ui ∈ Rp×mi , (6.10)

where mi > 0 is the number of data columns in each set,
∑q

i=1 mi = m, and all

columns of Ui’s are the same. Now, if we construct matrix Xi0 ∈ Rn×mi with columns

equal to one arbitrarily column chosen from Xi, it holds that

‖A(Xi −Xi0)‖ = ‖(AXi +BUi)− (AXi0 +BUi)‖

< ‖(AXi +BUi)‖+ ‖(AXi0 +BUi)‖ ' 0 ∀i.

Therefore, we can claim that X ′ = ∪qi=1(Xi −Xi0) approximately spans the sub-

space corresponding to the eigenvectors corresponding to the small eigenvalues of

A. As a result, Algorithm Z estimates the eigenvectors of matrix A regardless of

its stability. Assuming that the eigenvectors can be estimated well enough, A can
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be stabilized by perturbing its eigenvalues while keeping its eigenvectors fixed. This

gives rise to a revised optimization problem P9 presented below:

minimize h‖D−1(λA + λ)DX +BU‖1 + (1− h)
n∑
i=1

λ2
i

subject to λA + λ > 0, λ ∈ ΛA,

. (6.11)

where ΛA is the set of matrices having the canonical structure of the Jordan normal

form of A. Now, we can derive the positive definite Lyapanov matrix P by solving

equation (6.9) and then compute A and B by solving P7 iteratively. This solution is

implemented in Algorithm 4.

6.2.4 GRN Modeling As a Rank Constrained Problem

Using lemma 2.3.1, the minimization problem, corresponding to the GRN identifica-

tion, can be equivalently cast as a rank constrained semi-definite program

min
A

t‖A‖0 + (1− t)ε (6.12)

s.t. ‖AX +BU‖1 ≤ ε, ε > 0,

Y + Y T ≺ 0,

P > 0, A ∈ S,

rank(

 P Y

I AT

) = n.

Therefore, the ADMM method is applicable in this case too. The user-defined design

parameter t in (6.12) weighs the trad-off between the sparsity of the network matrix
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and the model fit error ε, however, in scenarios where the error ε is upper bounded by

a pre-defined value, denoted by εu, the gene regulatory problem can be reformulated

with cardinality of matrix A as the cost function, as shown below

min
A
‖A‖0 (6.13)

s.t. ‖AX +BU‖1 ≤ εu,

Y + Y T ≺ 0,

P > 0, A ∈ S,

rank(

 P Y

I AT

) = n.

Taking a closer look at the structure of minimization program 6.13 unveils its sim-

ilarity to sparsity promoting feedback controller design problems; hence, it can be

reformulated as a rank minimization problem and solved accordingly.

6.3 Results and Discussion

6.3.1 Comparison of Our Algorithms With the Algorithms

Derived in [77]

We now present a brief case-study that compares the performance of our algorithms

with that of the algorithms presented in [77] for the same synthetic dataset. For this

comparison, a wide range of the parameter t is chosen. To provide results consistent

with the ones given in [77], the receiver operating characteristic (ROC) curves are used

as the performance measures. Following [77], we define sensitivity and specificity as
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follows:

Sensitivity =
The Number of Correctly Identified Non-Zero Elements

The Number of Non-Zero Elements
,

Specificity =
The Number of Correctly Identified Zero Elements

The Number of Zero Elements
.

Clearly, an identification with 100% sensitivity and specificity is the best possible

result. We used the method described in Section 5 of [77] to generate the 20 × 20

random sparse matrix A, and its associated dataset X as X = −A−1BU + νN where

BU ∈ Rn×m and N ∈ Rn×m are zero mean and unit variance normally distributed

random matrices. Then, we identified the system from both full datasets and partial

datasets for several values of t. For the case of full dataset, the number of samples

are equal to the dimension of the system matrix, i.e., m = n, the noise coefficient

is ν = 10%, and a priori knowledge is available for 30% of the matrix entries. For

the case of partial dataset, no a priori knowledge is available, the noise coefficient is

ν = 50%, and the number of samples is roughly one third of the dimension of matrix

A. The results are shown in Fig. 1 and Fig. 2. The simulation results show that our

algorithms perform at least as well as the ones derived in [77]: the improvement is

not surprising since besides reducing the conservatism in the stability constraint used

in [77], we have not altered the structure of the algorithms [77] by a great extent.

6.3.2 Illustrative Example: GRN for Malaria Patients

Malaria is a mosquito-borne infectious disease caused in humans and other animals

by eukaryotic protists of the genus Plasmodium. Five species of Plasmodium can
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Figure 6.1: ROC plots of different algorithms for a network of size n = 20 and
connectivity c = 20% using full data (m = n, σ = 30% and ν = 10%)

infect humans with this disease. Among these, the infection from Plasmodium fal-

ciparum can be fatal. The infection caused by others, including Plasmodium vivax,

is rarely fatal. We now reconstruct the gene-protein regulatory network using two

sets of expression data on 30 proteins collected from patients suffering from malaria.

GeneSpring version 11.5.1 was used to perform the pathway analysis. GeneSpring has

its own pathway database wherein the relations in the database were mainly derived

from published literature abstracts using a proprietary Natural Language Processing

(NLP) algorithm. Additional interactions from experimental data available in public

repositories like IntAct were also included in the pathway database of GeneSpring.
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Figure 6.2: ROC plots of different algorithms for a network of size n = 20 and
connectivity c = 20% using partial data (m = dn

3
e, σ = 0% and ν = 50%)

The list of Entrez IDs corresponding to the proteins was used to find the key interac-

tions involved in Malaria. The data collected from patients infected by Plasmodium

falciparum is tagged FM whereas the data was collected from patients infected by

Plasmodium vivax is tagged VM. In addition, we collected the expression data for

healthy control samples as well. This data is tagged HC. In all, there are 8 sets of

data for HC and a combined 8 sets of data for FM and VM.

X1 =

HC11 VM1

HC12 VM2

 , X2 =

HC21 FM1

HC22 FM2

 ,
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Figure 6.3: The gene-protein regulatory network in malaria affected patients. The
network has 30 nodes. GeneSpring version 11.5.1 was used to perform the pathway
analysis in data collected from hospital patients. Then, our algorithms to obtain
linear ODE models of the form ẋ = Ax + Bu were run on the data. This diagram
illustrates the network interconnection, determined by the matrix A, and is created
using Cytoscape. Green edges represent activation whereas red edges represent inhi-
bition.

where HC11 ∈ R18×8, VM1 ∈ R18×8, HC12 ∈ R12×8, VM2 ∈ R12×8, HC21 ∈ R18×8,

FM1 ∈ R18×8, HC22 ∈ R12×8, and FM2 ∈ R12×8. As can be seen, we partitioned the

data rows into two parts (one with 18 rows and one with 12 rows). The reason is that

among the proteins with available differential expression, only 18 are common in the

two data sets, therefore, there are 12 proteins in each data set that expressed in only

one type of Malaria. Since our objective was to derive a unified network model, we

needed a method to somehow integrate these sets of data together. Hence, we used

the average expression values of healthy control samples in one data set to replace
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the expression value data that are not exhibited in another data set. The reason

behind what we did is that if a particular protein, for example P00751, is specific

for Falciparum Malaria, it indicates there is no change in expression level in vivax

malaria for that specific protein, hence, we can take the same value that is exhibited

by healthy controls. Thus, our matrix X ∈ R42×32 is:

X =


HC11 HC21 FM1 VM1

HC12 HC12 HC12 VM2

HC22 HC22 FM2 HC22

 ,

where M represents a matrix with entries equal to the average of elements in the same

row of matrix M . Taking each type of Malaria as an independent input to the system,

i.e. UFM = [1 0]T and UVM = [0 1]T, the input matrix U ∈ R2×30 corresponding to

our dataset X is U = [M1 M2 M3], where M1 ∈ R2×16 is an all-zero matrix, and

M2,M3 ∈ R2×8 are given as

M2 =

1 1 . . . 1

0 0 . . . 0

 , M3 =

0 0 . . . 0

1 1 . . . 1

 .
Now, we can model the system as Ẋ = AX+BU . Using the first 29 columns of X,

we trained our network model using Algorithm Z and [77, Algorithm 2]. Verification

of our results using the remaining columns of our data showed that [77, Algorithm 2]

is not working in this case, and generates a very large error which may be caused by

the very conservative stability condition laid down by Gershgorin’s Circle Theorem.

However, Algorithm [77, Algorithm 3] works properly with a fairly low error of ‖AX+

BU‖1 ' 0.01. We used Cytoscape (see [92]) to visualize the matrix as a network of
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interactions. Interactions between all proteins in the matrix were specified in the

Simple Interaction File (sif) format and were given to Cytoscape as the input. The

SIF file lists each interaction using a source node, a relationship type (or edge type),

and the target node. For example, for proteins P1 and P2, the structure P1 1 P2

represents the relationship P1 activates P2 and the structure P1 -1 P2 represents the

relationship P1 inhibits P2. The edges in the resulting network are colored by their

interaction - a green edge represents activation and a red edge represents inhibitory

interaction between the proteins. A representative network diagram is shown in Fig. 3.

6.4 Conclusion

We have presented a theoretical framework, and associated algorithms, to obtain

a class of nonlinear ordinary differential equation (ODE) models of gene regulatory

networks assuming the availability of literature curated data and microarray data.

We build on a linear matrix inequality (LMI) based formulation developed recently by

Zavlanos et al [77] to obtain linear ODE models of such networks. However, whereas

the solution proposed in [77] requires that the microarray data be obtained as the

outcome of a series of controlled experiments in which the network is perturbed by

over-expressing one gene at a time, this requirement is not necessary to implement our

approach. We have shown how the algorithms derived in [77] can be easily extended

to derive the required stable linear ODE model. In addition, we have built on these

algorithms by using new stability constraints that ensure the diagonal dominance of

a given matrix: our case study on a synthetic dataset shows that our algorithms

perform at least as well as those given in [77]. We have then presented a case-study

of how these algorithms can be applied to derive a protein regulatory network model
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of malaria-infected patients. Our approach to network reconstruction differs from

that of [93] in that [93] needs a large number of data samples that are in either a

cue-response form or in a time-series form. Our approach to network reconstruction

differs from that of [94] in that [94] mandates that the data samples should be the

outcomes of independent perturbations to the so-called modules of the network. We

have implemented our algorithms in MATLAB to successfully reconstruct a sparse

35-node network in which the maximum number of nodes adjacent to a node is 9.
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Chapter 7

Summary and Directions for

Future Work

7.1 Summary

With the recent growth of large scale systems and the failure of traditional con-

trol and identification methods in addressing their related issues, the problems of

sparse/structured controller synthesis and system identification have received increas-

ing attention in recent years. The main theme of this dissertation involves proposing

methods to incorporate desired structures in controller design and system modeling

problems. We proposed several approaches capable of addressing a wide range of

issues emergent in the so called area, and proved that rank constrained optimization

problem can be used as a unifying platform in solving many of the problems in this

field.

We started with proposing a new framework for optimal sparse output feedback
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control design, which is capable of incorporating structural constraints on the feed-

back gain matrix as well as norm bounds on the inputs/outputs of the system. Then,

we showed that problem can be converted to a rank constrained optimization problem

with no other non-convex constraints. Using the proposed formulation, we presented

an optimization problem which yields an upper bound for the optimal value of the op-

timal sparse state feedback control problem. Exploiting the relaxation of the `0-norm

with the weighted `1-norm, we have also expressed that local optimum of the relaxed

optimization problem, in its general form, can be obtained by performing ADMM

algorithm. In chapter 2, a novel approach for the design of optimal sparse controllers

is proposed. The new method is based on constructing a sparse controller by altering

an available pre-designed controller towards a sparse controller, while heeding the

performance deterioration caused by the process sparsification. We, again, showed

that this problem can be equivalently reformulated into a fixed rank optimization

problem. In the next chapter, we extend the results from chapter 2 so that they can

be applied to the linear time invariant systems with parametric uncertainties. We

started with formulating an optimization problem which seeks a sparse structured

controller capable of exhibiting similar frequency and time characteristics of the pre-

designed controller, in the sense of H2 and H∞ norms. By equivalently reformulating

the problem into a fixed rank optimization, we again proposed to utilize the Alter-

nating Direction Method of Multipliers (ADMM), modified to include weighted `1

norm minimization, as a computationally tractable algorithm to sub-optimally solve

our problem.

In chapter 4, we adopted a totally different approach in sparse controller syn-

thesis, as we utilized row sparsity as the measure for the sparsity of the controller
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gain. Without using any relaxation for the sparsity measuring function, a method

is developed for the synthesis of controller with strict row sparsity constraints. We

have shown that the recovery of a s-sparse vector can be formulated using a rank

constraint formulation. Then, extended this results to propose an equivalent refor-

mulation where all non-convex and combinatorial constraints are lumped into a single

fixed rank constraint. Unlike, the common methods which use relaxation for the `0-

norm of the vectors/matrices, we have not employ any form of relaxation; thus, our

reformulation is exact. We further showed how our formulation can be extended to

accommodate the row sparse control design paradigm. In addition, we proposed that

the equivalent rank constrained optimization problem can be solved using a bi-linear

optimization with convex constraints.

Part II of this dissertation, is dedicated to presenting a theoretical framework, and

associated algorithms, to obtain a class of nonlinear ordinary differential equation

(ODE) models of gene regulatory networks assuming the availability of literature

curated data and microarray data. In addition to proposing several algorithms to

obtain linear ODE models of such networks, we showed that this problem can also be

cast as a rank constrained optimization problem. Therefore, a majority of the results

derived in Part I of this dissertation are applicable to this problem as well.

7.2 Future Works

The area of sparse/structure control is still in its infancy; hence, there are still a large

number of problems ready to be explored. We believe that the framework proposed in

this dissertation can pave the way in solving many of the unsolved issues in this area.

However, further exploration is still needed to make the method of rank constrained
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optimization, proposed here, perfect and applicable to large scale systems.

One area of study is to develop new optimization methods that can solve the

rank constrained optimization problem in a timely manner. Although our proposed

methods can theoretically address a wide range of controller sparsification problems,

there are still challenges to overcome. One may be interested in studying the con-

vergence properties of our proposed ADMM method, as it still lacks a convergence

proof. As for the iterative solution of the bi-linear optimization, the convergence

is theoretically guaranteed; however, we sometimes witness numerical anomalies in

our simulations. In our opinion, such numerical issues originate from the bugs in

optimization softwares, such as CVX, used for the simulation purposes. Therefore, a

proper continuation of this work can be developing a dedicated optimization software

such that not only the numerical issues are resolved, but also larger size problems can

be solved in a timely manner.

As said before, the main focus of this dissertation is developing methods to sparsify

the controller gains. Based on the results provided here, a nice research direction is

to explore sparsity of the control signal vector. The important of such a study lies

in the fact that sparsifying the control signal may lead to lower energy consumption

in the control systems. Another interesting research direction in this area would

be studying the sparsity of the control signal in time domain, i. e. reducing the

frequency of control command transmission. This is of great importance, especially in

battery operated wireless control systems, as in such systems it is desired to maintain

the performance of the system with the minimum packet transmission rate due the

limited power of the batteries.

Despite being mentioned at the end, extending our results to the more general case

169



of dynamic feedback design problems, where controllers consist of dynamic subsystems

connected through sparse communication networks, would be a great avenue for future

researches.

170



Bibliography

[1] S. Schuler, P. Li, J. Lam, and F. Allgöwer, “Design of structured dynamic output-
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