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Abstract

The need for new sources of energy is expected to become a critical problem

within the next few decades. Nuclear fusion has sufficient energy density to poten-

tially supply the world population with its increasing energy demands. The tokamak

is a magnetic confinement device used to achieve controlled fusion reactions. Experi-

mental fusion technology has now reached a level where tokamaks are able to produce

about as much energy as is expended in heating the fusion fuel. The next step towards

the realization of a nuclear fusion tokamak power plant is ITER, which will be capa-

ble of exploring advanced tokamak (AT) modes, characterized by a high fusion gain

and plasma stability. The extreme requirements of the advanced modes motivates

researchers to improve the modeling of the plasma response as well as the design of

feedback controllers. This dissertation focuses on several magnetic and kinetic control

problems, including the plasma current, position and shape control, and data-driven

and first-principles-driven modeling and control of plasma current density profile and

the normalized plasma pressure ratio βN .

The plasma is confined within the vacuum vessel by an external electromagnetic

field, produced primarily by toroidal and poloidal field coils. The outermost closed

plasma surface or plasma boundary is referred to as the shape of the plasma. A

central characteristic of AT plasma regimes is an extreme elongated shape. The equi-

librium among the electromagnetic forces acting on an elongated plasma is unstable.

Moreover, the tokamak performance is improved if the plasma is located in close

proximity to the torus wall, which guarantees an efficient use of available volume. As

a consequence, feedback control of the plasma position and shape is necessary. In

this dissertation, an H∞-based, multi-input-multi-output (MIMO) controller for the
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National Spherical Torus Experiment (NSTX) is developed, which is used to control

the plasma position, shape, and X-point position.

Setting up a suitable toroidal current profile is related to both the stability and

performance of the plasma. The requirements of ITER motivate the research on

plasma current profile control. Currently, physics-based control-oriented modeling

techniques of the current profile evolution can be separated into two major classes:

data-driven and first-principles-driven. In this dissertation, a two-timescale linear

dynamic data-driven model of the rotational transform ι profile and βN is identi-

fied based on experimental data from the DIII-D tokamak. A mixed-sensitivity H∞

controller is developed and tested during DIII-D high-confinement (H-mode) experi-

ments by using the heating and current drive (H&CD) systems to regulate the plasma

ι profile and βN around particular target values close to the reference state used

for system identification. The preliminary experimental results show good progress

towards routine current profile control in DIII-D. As an alternative, a nonlinear dy-

namic first-principles-driven model is obtained by converting the physics-based model

that describes the current profile evolution in H-mode DIII-D discharges into a form

suitable for control design. The obtained control-oriented model is validated by com-

paring the model prediction to experimental data. An H∞ control design problem is

formulated to synthesize a stabilizing feedback controller, with the goal of developing

a closed-loop controller to drive the current profile in DIII-D to a desirable target

evolution. Simulations show that the controller is capable of regulating the system

around the target ι profile in the presence of disturbances. When compared to a

previously designed data-driven model-based controller, the proposed first-principles-

driven model-based controller shows potential for improving the control performance.
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Chapter 1

Introduction

1.1 What is a Tokamak?

The energy demand by humanity is continuously rising because of fast industrial

development. Currently, about 80% of the energy comes from fossil fuels like oil,

gas, and coal. However, fossil fuels are a limited resource. At the present rate of

annual increase of energy use, experts predict that in about 30 years oil extraction

will become uneconomical, whereas there should be about 200 years left for coal, and

natural gas should last about 50 more years [1]. Besides being limited resources, fossil

fuels cause serious problems in the environment, e.g., burning these fuels is the largest

source of emission of carbon dioxide, which contributes to global warming. Therefore

the need for new sources of energy to take the place of fossil fuels is becoming a critical

problem for the future. Many alternative energy sources such as wind, hydro, solar,

and biofuel seem to be attractive, but there is skepticism concerning the possibility of

them replacing the fossil fuels around the world because of the limited energy density

provided by these sources. For these reasons, a significant amount of research is being

done to develop nuclear fusion.
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Figure 1.1: The D−T Fusion Reaction.

Nuclear fusion is a promising source of energy to support the increasing world

demand. In fusion, two light nuclei (such as hydrogen isotopes deuterium D and

tritium T ) combine into one new nucleus (such as helium He) and release enormous

energy in the process, which is shown in Figure 1.1. The most promising fusion

reaction is

2
1D +3

1 T −→4
2 He+1

0 n+ 17.6MeV, (1.1)

where n indicates a neutron. D occurs naturally in seawater, which makes it very

abundant when compared to other energy resources. T does not occur naturally, but

it can be produced in a conventional nuclear fission reactor, or in the present context,

bred in a fusion reactor from lithium Li:

7
3Li+1

0 n −→4
2 He+3

1 T +1
0 n+ 2.5MeV, 6

3Li+1
0 n −→4

2 He+3
1 T + 4.8MeV. (1.2)

Li is found in large quantities in the Earths crust. There is no air pollution or

greenhouse gas produced because the major nuclear fusion production is helium.
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Unconfined!

Confined!

Figure 1.2: The Principle of Magnetic Confinement.

Minimal or no high level nuclear waste will be produced in fusion reactions.

To make fusion happen, it is necessary to bring two nuclei close enough to over-

come the mutual repulsion due to their positive charges. The gas must be heated

to temperatures around 100 million degrees. At that temperature, the electrons and

nuclei separate, and the gas becomes a plasma, the fourth state of matter. The dif-

ficulty in producing fusion energy is the development of a device that can heat the

fuel to a sufficiently high temperature and then confine it for a long time. There are

three ways to confine the plasma: gravitational confinement, inertial confinement,

and magnetic confinement. Magnetic confinement devices are the most promising

devices for the development of a nuclear power plant, and therefore are the subject

of intensive research.

In the plasma, since the electrons are stripped from the nuclei of the atoms,

the individual charged particle can be confined by the magnetic fields. The ionized

particles are tied to the magnetic field lines by the Lorentz force, limiting their motion

to a helical path along the field lines, progressing linearly while gyrating in a circular

orbit around the field lines. A magnetic field is thus capable of restricting the particle

motion perpendicular to the field but does not prevent motion along the field lines,

which is shown in Figure 1.2. To limit the confinement to a bounded volume, the

common solution is to close the magnetic field lines in on themselves, forming a torus.
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Figure 1.3: Tokamak. (Source: EFDA-JET)

There are several types of toroidal confinement systems, the most important being

tokamaks (shown in Figure 1.3), stellarators and reversed field pinch (RFP) devices.

All existing tokamaks are pulsed machines, and the plasma is maintained within

the tokamak for only a few seconds to several minutes. All tokamaks produce plasma

pulses through approximately the same sequence of events. In each pulse the plasma

is created, its current is ramped up to a constant flat-top value, and eventually the

current is ramped down and the plasma is terminated. In most tokamak discharges,

the plasma current is initiated and sustained by the ohmic heating (OH) coils, while

the toroidal field (TF) coils and poloidal field (PF) coils provide the primary mag-

netic field to confine the plasma within a fixed volume (shown in Figure 1.3). Neutral

beams (uncharged atoms of deuterium) are injected into the plasma at high velocity,
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Figure 1.4: Typical Tokamak Heating Methods: Ohmic Heating, Radio-Frequency
(RF) Heating and Neutral Beam Injection (NBI) Heating.

and these particles collide with particles in the plasma, thereby converting their mo-

mentum into current and further heating. Electromagnetic waves can be injected in

the plasma with the same objectives (shown in Figure 1.4).

Experimental fusion technology has now reached a level where tokamaks are able

to produce about as much energy as is expended in heating the plasma. The next

step towards the realization of a commercial fusion reactor is the construction and

operation of the ITER tokamak (see [1] and references therein), shown in Figure 1.5.

The ITER tokamak goals are to demonstrate the physical understanding and some

key technologies to maintain a burning plasma mode, a high ratio of fusion power

to auxiliary power [2, 3]. The planned ITER reactor will be capable of exploring

advanced tokamak (AT) modes of operation [4], characterized by high plasma pres-
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Figure 1.5: Schematic of the ITER tokamak

sure, long confinement times, and low levels of inductively driven plasma current,

which allow for near steady-state operation. These advanced modes require active

feedback control to maintain and develop high performance plasmas, and confinement

to maintain sufficiently long plasma discharges.
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1.2 Feedback Control in Tokamaks

The tokamak is a high order, distributed parameter, non-linear system with a large

number of instabilities (such as resistive wall mode (RWM) [5, 6], neoclassical tearing

mode (NTM) [7, 8], edge localized mode (ELM) [9], and sawtooch instabilities [10]),

so there are many extremely challenging mathematical modeling and control prob-

lems, which must be solved before a fusion power plant becomes a viable entity. The

tokamak control problem can be separated into two major classes: magnetic control

and kinetic control. Magnetic control in tokamaks refers to controlling the magnetic

fields, which maintain or change the plasma position, shape and current. This task is

performed by a set of PF coils distributed around the vessel that contains the plasma.

Highly shaped plasmas are required to operate at high plasma pressure and fusion

efficiency. In addition, the achievement of certain types of plasma shapes can reduce

the effect of instabilities induced by the high plasma pressure. Therefore, it is critical

to meet shape requirements in a practical, highly-efficient tokamak. Kinetic control

refers to controlling particle feed rates and heating to modify the plasma density,

temperature, pressure, and current density. Due to the distributed parameter nature

of tokamaks, it is important to control not only spatially averaged value of these

parameters but also their spatial profiles. Stability properties, energy confinement,

and the fraction of the self generated “bootstrap current” can be improved through

control of the current profile and the normalized ratio between the internal kinetic

pressure of the plasma and the external pressure of the magnetic field. In the fol-

lowing, we will present and discuss two of the most important control problems that

need to be solved in tokamaks.

9



Figure 1.6: Definition of the Poloidal Flux in a Tokamak.

1.2.1 Plasma Shape and Position Control

The magnetic lines that guide the particles around the torus axis in the tokamak are

helices, i.e., a combination of toroidal and poloidal magnetic fields. It is possible to

use the poloidal component of the magnetic lines to define nested toroidal surfaces

corresponding to constant values of the poloidal magnetic flux. As it is illustrated

in Figure 1.6, the poloidal flux ψ at a point P is the total flux through the surface

S bounded by the toroidal ring passing through P , i.e., ψ = 1
2π

∫
BpoldS, where Bpol

is the poloidal magnetic field. As shown in Figure 1.7, the closed constant poloidal

magnetic flux lines form a set of nested surfaces around the torus axis in the tokamak.

The plasma boundary is the outermost closed flux surface entirely contained inside

the vacuum vessel. It is the shape of this boundary that is generally referred to as

plasma shape. The limiting magnetic surface, which approaches a single magnetic

line, is called the magnetic axis. The parameter ρ is the mean effective minor radius

of the flux surface, and the parameter ρb is the mean effective minor radius of the last

closed magnetic flux surface. The total plasma current is the current flowing through
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Figure 1.7: Poloidal Flux Surfaces in a Tokamak.

the poloidal plane in the plasma region. The horizontal and vertical coordinates of

the plasma current centroid are defined as the plasma radial and vertical position

respectively.

The plasma shape requirements in a practical, highly efficient tokamak are very

stringent. The extreme shapes that must be achieved, intrinsic instability in the

plasma vertical position (the more shaped the plasma, the more unstable), large

number of control inputs (coil voltages) and control outputs (geometrical parame-

ters and plasma current), and demanding regulation requirements make this problem

very challenging. In order to improve plasma parameters, specifically to increase en-

ergy confinement time, a vertically elongated cross-section is used in many tokamaks.

An active feedback control system is required to stabilize the plasma and confine the

plasma in a fixed volume. Model-based control methods have been used in the past to

design both vertical position [11, 12] and shape controllers [13, 14, 15, 16] during the
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plasma-current flat-top phase of the discharge. A PII controller containing a parallel

connection of proportional, integral, and double integral gains has been proposed for

the ITER tokamak during the plasma current ramp-up phase [17]. The recent imple-

mentation of the real-time equilibrium reconstruction code rtEFIT [18] in the National

Spherical Torus Experiment (NSTX) allows the plasma to be shaped by controlling

the magnetic flux at the plasma boundary. A non-model-based, empirically-tuned,

single-input-single-output (SISO), PID-based shape controller that exploits this ca-

pability has been recently proposed [19]. In this dissertation, this work is extended by

proposing a model-based, multi-input-multi-output (MIMO) controller to be applied

during both the ramp-up phase and the current flat-top phase in NSTX [20, 21].

1.2.2 Plasma Current Density Profile Control

The requirements of ITER for designing a “steady-state” fusion power plant motivate

research in the high confinement mode (H-mode). One possible approach involves set-

ting up a suitable toroidal current density profile in the machine that contributes to

maintaining the bootstrap current, and many studies have shown the key influence

of the plasma current profile on the development of a steady-state H-mode plasma.

Therefore, real-time control of the current profile is of paramount importance. Most

of the prior work has focused, however, on non-model-based control of scalar param-

eters characterizing the current profile such as the internal inductance li, the safety

factor at the magnetic axis q0, or the minimum value of the safety factor qmin. While

the control of scalar parameters such as qmin is critical to mitigate plasma instabilities

and improve confinement, the shaping of the entire q profile is necessary to maximize

the fraction of bootstrap current and maintain stability in advanced scenarios. There-

fore, techniques to actively control the evolution of the full q profile in closed loop

during the discharge are of paramount importance to the success of ITER. The high
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dimensionality of this problem, along with the strong coupling between the magnetic

and kinetic profiles, motivate the use of model-based control synthesis that can ac-

commodate this complexity by embedding physics-based dynamic models within the

design.

Mathematical modeling of plasma transport phenomena with sufficient complex-

ity to capture the dominant dynamics is therefore critical for plasma profile control

design. There are two major modeling methods: data-driven modeling techniques and

first-principles-driven modeling techniques. Transport theories (classical, neoclassi-

cal and anomalous), even under restrictive assumptions, produce strongly nonlinear

models based on partial differential equations (PDEs). The complexity of these first-

principles models needs to be reduced to facilitate design of compact and reliable

control strategies. During this control-oriented model reduction process [22, 23, 24],

there is always a trade-off between the simplicity of the model and both its physics

accuracy and its range of validity. First-principles-driven modeling provides the free-

dom of arbitrarily handling this trade-off and deciding on the level of simplicity, ac-

curacy and validity of the model. This features allows, for instance, for the derivation

of models capturing the nonlinear response of the current profile to control actu-

ation. Data-driven modeling techniques such as system identification [25] emerge

as an alternative to first-principles-driven modeling and have the potential to obtain

low-complexity dynamic models. This modeling approach lacks however the ability of

arbitrarily deciding on the level of simplicity, accuracy and validity of the model since

it directly produces linear models based on ordinary differential equations (ODEs).

As the identified models are linear, they are only valid around the reference plasma

state adopted during the system identification experiment. Therefore, the effective-

ness of the controllers synthesized based on these models may be limited when the

plasma state moves away from the reference state. Moreover, as these models are
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device-specific, dedicated system identification experiments are needed in each de-

vice, and potentially for each control scenario, to develop model-based controllers.

In spite of these limitations, data-driven control-oriented models can be useful for

the design of local regulators around the reference state. In this dissertation, the

data-driven modeling and first-principles-driven modeling approaches are discussed

respectively, and these approaches are proposed for model-based feedback control de-

sign. Some of these controllers have been successfully experimentally tested in the

DIII-D tokamak [26, 27, 28, 29].

Recent experiments in different tokamaks (JET [30, 31], Tore Supra [32, 33], JT-

60U [34, 35], DIII-D [36]) have demonstrated significant progress in achieving current

profile control by using data-driven modeling approach. In the JET tokamak, a

two-timescale linear system has been used to describe the magnetic and kinetic pro-

files around certain quasi-steady-state trajectories, and the controller is composed

of two composite feedback loops operating on the magnetic and kinetic time scales

respectively [30, 31]. In discharges at the JT-60U tokamak, the momentum transport

equation of the toroidal rotation profile has been estimated from transient data ob-

tained by modulating the momentum source [32, 37]. Input/output(I/O) diagnostic

data has been used by the author to model the current profile dynamics in the DIII-D

tokamak [37]. The developed linear model of the plasma rotational transform ι profile

was in turn used to design a full-profile feedback controller [26, 27, 28, 29, 38, 39], that

was implemented and tested experimentally in DIII-D. These preliminary control ex-

periments carried out at DIII-D suggest that regulation of the current profile around

a reference state during the flat-top phase of the discharge, may be possible using

a data-driven linear modeling and control approach if enough actuation is available.

However, being able to control the current profile during the ramp-up and ramp-down

phases, being able to regulate the current profile for different scenarios (around differ-
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ent reference states), or being able to drive the current profile from one target profile

to another will most likely require adaptive or nonlinear control approaches based on

richer dynamic models obtained by a first-principles-driven modeling approach.

First-principles control-oriented models for low-confinement (L-mode) scenarios

have been recently used to determine optimal open-loop (feedforward) actuator tra-

jectories that achieve and sustain a desired q profile [40, 41, 42], and to design com-

plementing closed-loop (feedback) control laws that add robustness against distur-

bances and model uncertainties. Several approaches have been recently proposed

for first-principles current profile feedback control [43, 44, 45, 46, 47] and some of

them have been experimentally tested in DIII-D [48, 49, 50, 51, 52]. In the disser-

tation, the author extended these previous work by developing first-principles-driven

feedback controllers for current profile in high-confinement (H-mode) scenarios for on-

axis and off-axis current drive scenarios respectively [53, 54]. When compared to a

previously designed data-driven model-based controller, the proposed first-principles-

driven model-based controller shows potential for improving the control performance,

especially in the inner part of the current density profile.

1.3 Dissertation Outline

This dissertation is organized as follows.

Chapter 2

By leveraging the availability of real time EFIT, model-based, multi-input-multi-

output (MIMO) magnetic controllers are proposed to provide current regulation, po-

sition stabilization, and shape control of the plasma during the current ramp-up phase

and the current flat-top phase in the National Spherical Torus Experiment (NSTX).

15



The proposed controller is composed of three loops: the first loop is devoted to plasma

current regulation, the second loop is dedicated to plasma radial and vertical position

stabilization, and the third loop is used to control the plasma shape and X-point

location. This control approach transforms the shape control problem into an output

tracking problem. The goal is the minimization of a quadratic cost function that

describes the tracking error in steady state. Computer simulations illustrate the per-

formance of the robust, multi-model-based, shape controller, showing potential for

improving the performance of present non-model-based controllers.

Chapter 3

System identification techniques have the potential of producing low-complexity, lin-

ear models that can capture the system dynamics around an equilibrium point. This

chapter focuses on the modeling of the rotational transform ι profile and the normal-

ized plasma pressure ratio βN evolution in response to the heating and current drive

(H&CD) systems and the total plasma current for on-axis and off-axis current drive

scenarios respectively. Dedicated system-identification experiments without feedback

control were carried out to generate data for the development of the identified models.

The data-driven dynamic models, which are both device-specific and scenario-specific,

represent the response of the ι profile and βN to the electric field due to induction

as well as to the H&CD systems during the current flat-top phase of an H-mode

discharge in DIII-D. Note that Mr. William Wehner is mainly responsible for identi-

fying the linear dynamic plasma models used by our research group [38, 39, 55]. The

on-axis and off-axis identified models are employed for model-based current profile

control design in Chapter 4 and Chapter 5, respectively.
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Chapter 4

The control-oriented, two-timescale, linear, dynamic, response model of the rotational

transform ι profile and the normalized beta βN for the DIII-D tokamak introduced in

Chapter 3 is employed in this chapter for model-based control design. The control goal

is to use both induction and the H&CD systems to locally regulate the plasma ι pro-

file and βN around particular target values close to the reference state used for system

identification. A singular value decomposition (SVD) of the plasma model at steady

state is carried out to decouple the system and identify the most relevant control

channels. A mixed-sensitivity robust control design problem is formulated based on

the dynamic model to synthesize a stabilizing feedback controller without input con-

straints that minimizes the reference tracking error and rejects external disturbances

with minimal control energy. The feedback controller is then augmented with an anti-

windup compensator, which keeps the given controller well-behaved in the presence

of magnitude constraints in the actuators and leaves the nominal closed-loop system

unmodified when no saturation is present. The proposed controller represents one of

the first feedback profile controllers integrating magnetic and kinetic variables ever

implemented and experimentally tested in DIII-D. The preliminary experimental re-

sults presented in this work, although limited in number and constrained by actuator

problems and design limitations, show good progress towards routine current profile

control in DIII-D and leave valuable lessons for further advancements in the field.

Chapter 5

During the tokamak discharge, especially the ramp-up phase, the plasma state equi-

librium continually evolves. As a consequence, the plasma response model should

evolve as well. A linear plasma response model of the rotational transform ι profile

and βN is first identified around a desired equilibrium. Then, an uncertainty is in-
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troduced to the identified model to partially account for the dynamic character of

the plasma state equilibrium evolution. A robust controller is designed to stabilize

this family of plasma models, which are reformulated into a nominal model plus a

bounded uncertainty. The DK-iteration method, combining H∞ synthesis and µ anal-

ysis, is applied to synthesize a closed-loop controller that minimizes the tracking error

and input effort. The feedback controller is then augmented with an anti- windup

compensator, which keeps the given profile controller well-behaved in the presence of

magnitude constraints in the actuators and leaves the nominal closed-loop unmodified

when no saturation is present. PTRANSP simulations and experimental results in

DIII-D illustrate the performance of the model-based controller.

Chapter 6

In this chapter, a general control-oriented physics-based modeling approach is uti-

lized, with emphasis on high performance operating scenarios, to convert the first-

principles physics model that describes the current profile evolution in the DIII-D

tokamak into a form suitable for control design, with the goal of developing closed-

loop controllers to drive the current profile in the machine to a desirable target evo-

lution. The PTRANSP advanced tokamak simulation code is then employed to tailor

the first-principles-driven model to the DIII-D tokamak geometries for on-axis and

off-axis current drive scenarios, respectively. The first-principles-driven models’ pre-

diction capabilities are demonstrated by comparing the prediction to experimental

data from DIII-D. The tailored model is employed to design feedback control algo-

rithms to control the current profile evolution in H-mode scenarios DIII-D, which is

part of the next chapter. Closed-loop simulated results of the designed controller and

the comparison with experimental results will be used to assess the true requirements

for model accuracy.
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Chapter 7

The first-principles-driven, control-oriented, nonlinear, partial-differential-equation

model of the poloidal flux profile evolution introduced in Chapter 6 is utilized to

design a feedback control algorithm to regulate the rotational transform profile in

the DIII-D tokamak. The control goal is to regulate the rotational transform pro-

file, which is related to the poloidal flux profile, around a particular target profile.

The first-principles-driven plasma response model is validated first by comparing the

model prediction to experimental data. After the model is validated, a singular value

decomposition of the nominal plasma model at steady state is carried out to decouple

the system and identify the most relevant control channels. A mixed sensitivity H∞

control design problem is formulated to synthesize a stabilizing feedback controller

to minimize the reference tracking error with minimal control energy. Simulations

with the first-principles-driven model show that the H∞ controller is capable of reg-

ulating the system around the target ι profile in the presence of disturbances. When

compared to a previously designed data-driven model-based controller, the proposed

first-principles-driven model-based controller shows potential for improving the con-

trol performance.

Chapter 8

In this chapter, the work included in this dissertation is summarized and future

research work is discussed.
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Chapter 2

Multivariable Model-based Shape

Control System for the National

Spherical Torus Experiment

(NSTX)

2.1 Introduction

The recent implementation of the real-time equilibrium reconstruction code rtE-

FIT [18] in the National Spherical Torus Experiment (NSTX) allows the plasma

to be shaped by controlling the magnetic flux at the plasma boundary. The strong

coupling between the different geometrical parameters describing the shape of the

plasma calls for a model-based, multivariable approach to obtain improvements in

closed-loop performance.

The dynamics of the NSTX system, composed of the plasma, shaping coils, and

passive structure, are described using circuit equations derived from Faraday’s Law
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and radial and vertical force balance relations for a particular magnetohydrodynamic

(MHD) equilibrium [56]. In addition, the rigid radial and vertical displacements of

the equilibrium current distribution are assumed, and a series of resistive plasma

equations are specified. The result is a circuit equation describing the linearized

response, around a particular plasma equilibrium, of the conductor-plasma system to

voltages applied to the active conductors. However, the MHD equilibrium continually

evolves during the ramp-up phase of the discharge. Different scenario points are

chosen to describe the plasma equilibrium evolution, which represent the described

reference trajectory of the system, during the plasma current ramp-up phase in NSTX.

These models are reformulated into a nominal model with uncertainty.

Model-based MIMO magnetic controllers are proposed to account for disturbances

and uncertainties in the plasma model in both the current ramp-up phase and the

current flat-top phase. The control goal is to drive the system to the reference plasma

current, vertical and radial position, and shape. The proposed controllers are com-

posed of three loops: the first loop is devoted to plasma current regulation, the second

loop is dedicated to radial and vertical position stabilization, and the third loop is

used to control the plasma shape and X-point location. The design of independent

current and position control loops transforms the shape control problem into an out-

put tracking problem, and singular value decomposition (SVD) is used to decouple

and identify the most relevant control channels [16]. The H∞ technique is used to

minimize the tracking errors and optimize input efforts in the current flat-top phase,

and the DK-iteration, combining H∞ synthesis and µ analysis, is applied to synthe-

size a closed-loop controller in the current ramp-up phase. The proposed controllers

are successfully tested in computer simulations.

This chapter is organized as follows. In Section 2.2, the NSTX tokamak is briefly

described and the linearized plasma model is presented. In Section 2.3 and 2.4, the
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design of the plasma control algorithms is described and computer simulation results

are presented. Section 2.5 states the conclusions.

2.2 Description of NSTX

2.2.1 NSTX Tokamak and Isoflux Control

The NSTX at the Princeton Plasma Physics Laboratory (PPPL) produces a plasma

that is shaped like a sphere with a hole through its center, different from the other

shaped plasmas of conventional tokamaks. NSTX has several advantages including

plasma stability through improved confinement, but NSTX presents a unique control

challenge relative to other tokamaks in that there are no shaping control coils on

the inboard radius of the plasma. Therefore, it is not possible to independently

control the inner gap and each point on the outer boundary. The problem is further

complicated by the small number of poloidal field coils on the outboard major radius

of the plasma.

Isoflux control exploits the capability of the real-time EFIT plasma shape recon-

struction algorithm to calculate the magnetic flux at specified locations within the

tokamak vacuum vessel. Figure 2.1 shows a typical isoflux control configuration in

NSTX. The controlled parameters are the values of flux at the pre-specified control

points along with the X-point r and z positions. By requiring that the flux at each

control point be equal to the same value, the controller forces the same flux contour

to pass through all of these control points. By choosing this value equal to the flux at

the X-point, this flux contour must be the last closed flux surface, or separatrix. The

desired separatrix location is specified by selecting one of a large number of control

points along each of several control segments. An X-point control grid is used to assist

in calculating the X-point location by providing detailed flux and field information
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at a number of closely spaced points in the vicinity of the X-point.

At present, NSTX combines a relatively simple non-model-based PID position and

current control (PCC) algorithm during the ramp-up phase of the discharge with a

non-model-based PID rtEFIT/isoflux control algorithm [19]. The transition between

algorithms has been implemented using fuzzy logic. During the rtEFIT/isoflux phase,

the errors between the reference and control-point fluxes are used as the inputs to the

PID controllers. In practice, the various coils are assigned to the control points on a

one-to-one basis. The X-point is assumed to be inside a control region (Figure 2.1),

and its location is found iteratively at each time step. The r and z locations of the

X-point are controlled by requiring the poloidal field (PF) coils to adequately control

the magnetic field of the X-point. If the X-point is located outside this region, the

code extrapolates using gradients.

2.2.2 Plant Model

The system, which is composed of the plasma, shaping coils, and passive structure, is

described using circuit equations derived from Faraday’s Law and radial and vertical

force balance relations for a particular plasma equilibrium. The result is a series of

circuit equations describing the linearized response of the conductor-plasma system

to voltages applied to the active conductors. The mapping from currents to outputs

is expressed explicitly in terms of current deviations from the equilibrium values. The

linearized model equations for the PF coil current, vessel current, and plasma current

can be expressed as:

M∗
ccİc +RcIc +M∗

cv İv +M∗
cpİp = Vc

M∗
vv İv +RvIv +M∗

vcİc +M∗
vpİp = 0 (2.1)

L∗pİp +RpIp +M∗
pcİc +M∗

pv İv = Vno
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Figure 2.1: NSTX Isoflux Control Configuration

where Ic, Iv, and Ip represent the currents in the PF coils, vessel, and plasma re-

spectively, Rc, Rv, and Rp represent the PF coils, vessel, and plasma resistances

respectively, M∗
ab (with L∗p = M∗

pp) represents the plasma-modified mutual inductance

matrix where a, b ∈ {c, v, p}, Vc represents the vector of voltages applied to the PF

coils, and Vno represents the effective voltage applied to drive plasma current by

noninductive sources (no noninductive current source is considered in this work, i.e.,

Vno = 0).

For control design and simulation purposes, the linearized plasma response model
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(2.1) is written in state space form [57]

ẋ = Ax+Bu, δy = Cδx (2.2)

where x = [ITc I
T
v I

T
p ]T and u = [V T

c 0 V T
no]

T . We define δy = y− yeq and δx = x−xeq
where yeq and xeq are the values of the equilibrium outputs and states from which

the model is derived. The state vector x ∈ <n (n = 45) represents the currents in

the ohmic (OH) coil, PF coils, vessel and plasma. The input vector u ∈ <m (m = 9)

represents the PF coil voltages shown in Figure 2.1 (PF4U/L are not currently used

for magnetic control). The output vector y ∈ <p (p = 8) represents the fluxes ψ1, ψ2,

ψ3 at the control points, the magnetic field Br and Bz at the desired X point location,

the plasma radial and vertical positions Rp and Zp, and the plasma current Ip.

2.3 Control System Design for the Current Flat-

top Phase

2.3.1 Control System Structure

The proposed control architecture, shown in Figure 2.2, is composed of three loops.

The first loop is devoted to plasma current regulation (proportional, integral and

derivative (PID) controller), the second loop is dedicated to plasma radial and vertical

position stabilization (PID controller), and the third loop is used to control the plasma

shape and X-point location (multi-input-multi-output (MIMO) H∞ controller).
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Figure 2.2: NSTX Control System Architecture

2.3.2 Plasma Current Controller

The ohmic (OH) coil is dedicated to plasma current regulation. The proposed plasma

current controller is written as

VOH = G
Ip
P ∆Ip +G

Ip
I

∫ t

0

∆Ipdt+G
Ip
D

d∆Ip
dt

, (2.3)

where ∆Ip = Ip−IrefP and IrefP denotes the reference plasma current. The parameters

G
Ip
P , G

Ip
I , and G

Ip
D are the plasma current PID error gains.

2.3.3 Plasma Position Controller

Since the plasma is elongated in NSTX, a servo system is required to stabilize the

plasma position. Poloidal field coils PF2U/L, PF3U/L, and PF5 are used for plasma

radial position control while poloidal field coils PF2U/L and PF3U/L are used for

plasma vertical position control. The selection of these sets of actuators is the result
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of a sensitivity study carried out for the steady-state transfer function.

The proposed radial position controller is written as

∆V
U/L
PF2R

=∆V
U/L
PF3R

= ∆VPF5R = VRp (2.4)

VRp =G
Rp
P ∆RP +G

Rp
I

∫ t

0

∆RPdt+G
Rp
D

d∆RP

dt
(2.5)

where ∆Rp = Rp − Rref
P with Rref

P denoting the reference plasma radial position.

The parameters G
Rp
P , G

Rp
I , and G

Rp
D are the plasma current proportional, integral and

derivative (PID) error gains.

The proposed vertical position controller is written as

∆V j
PF2Z

=∆V j
PF3Z

= VZp(j) (2.6)

VZp(j)=(−1)j
(
G
Zp
P ∆ZP +G

Zp
I

∫ t

0

∆ZP +G
Zp
D

d∆ZP
dt

)
(2.7)

where the superscript j = 0, 1 refers to upper and lower PF coils respectively. The

parameters G
Zp
P , G

Zp
I , and G

Zp
D are the PID error gains.

2.3.4 Plasma Shape and X point Location Controller

The separate design of the plasma current and position controllers transforms the

shape control problem into an output tracking problem. The tracking error is defined

as e(t) = r(t) − y(t), where the system output y(t) is defined as the magnetic flux

at three control points and the magnetic field components at the desired X-point

location, i.e., y = [ψ1 ψ2 ψ3 Br Bz]
T and r(t) is the desired reference trajectory. The

system input is defined as u = [VPF1U VPF2U VPF3U VPF5 VPF3L VPF2L VPF1L VPF1B]T .

The control goal is to guarantee closed-loop stability while minimizing a quadratic

cost function that weights the tracking error.

27



A MIMO H∞ controller is introduced in this section. The plasma shape and X-

point location control algorithm is summarized by the following steps: (1) calculate

ψ1, ψ2 and ψ3 at the control points, and Br and Bz at the desired X-point location;

(2) estimate the actual X-point location and compute the flux at this point which is

defined as ψref ; (3) make the flux at the control points track the flux ψref and make

Br and Bz at the desired X-point location go to zero.

The relation between the inputs and the outputs is the linear model (2.2) which

is expressed in terms of its transfer function P (s), i.e.,

Y (s)

U(s)
= P (s) = C(sI − A)−1B (2.8)

where s denotes the Laplace variable and Y (s) and U(s) denote the Laplace trans-

form of output and input vectors respectively. Assuming a constant reference r̄ and

closed-loop stabilization, the system can be maintained at steady state around the

equilibrium. Under these assumptions, the input-output relation in steady state is

expressed as

ȳ = P̄ ū = −CA−1Bū (2.9)

where ȳ is the steady state output, ū is the steady state input, and P̄ is the steady

state transfer function (i.e. s→ 0). Therefore, the closed-loop system is specified by

ȳ = P̄ ū ū =
¯̂
Kē =

¯̂
K (r̄ − ȳ) , (2.10)

where K̂(s) represents the transfer function of the controller and
¯̂
K = K̂(0).

We consider the problem of minimizing a steady-state cost function given by

J̄ = lim
t→∞

eT (t)Qe(t) = ēTQē (2.11)
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where Q ∈ <p×p is a symmetric positive definite weighting matrix and p is the number

of outputs. In order to weight the control effort, another positive definite weighting

matrix R ∈ <m×m is also introduced where m is the number of inputs. We then define

the “weighted” steady-state transfer function as

P̃ = Q1/2P̄R−1/2, (2.12)

and write its singular value decomposition (SVD) as

P̃ = USV T , (2.13)

where S = diag(σ1, σ2, · · · , σm) ∈ <m×m, U ∈ <p×m (UTU = I), and V ∈ <m×m

(V TV = V V T = I). The steady-state input-output relation is now expressed as

ȳ = Q−1/2P̃R1/2ū = Q−1/2USV TR1/2ū. (2.14)

By invoking the properties of the SVD, we note that the columns of the matrix

Q−1/2US define a basis for the subspace of obtainable steady-state output values.

Therefore, we can always write

ȳ = Q−1/2USȳ∗ ⇐⇒ ȳ∗ = S−1UTQ1/2ȳ (2.15)

where ȳ∗ ∈ <m. This implies that we will only be able to track the component of the

reference vector r̄ that lies in this subspace. We now write the reference vector as the

sum of trackable components r̄t and non-trackable components r̄nt, i.e., r̄ = r̄t + r̄nt,

where

r̄t = Q−1/2USr̄∗ ⇐⇒ r̄∗ = S−1UTQ1/2r̄ (2.16)
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with r̄∗ ∈ <m and S−1UTQ1/2r̄nt = 0. By defining

ū∗ = V TR1/2ū, (2.17)

the relationship between ȳ∗ and ū∗ is obtained by using (2.14) as

ȳ∗ = S−1UTQ1/2ȳ = S−1UTQ1/2Q−1/2USV TR1/2ū = ū∗ (2.18)

and a one-to-one relationship between the inputs and outputs is obtained, and the

new system is a square decoupled system. The steady state error is now written as

ē = r̄ − ȳ = Q−1/2US(r̄∗ − ȳ∗). (2.19)

Substituting this expression into (2.11), the performance index is expressed as

J̄ = (r̄∗ − ȳ∗)TS2(r̄∗ − ȳ∗) =
m∑

i=1

σ2
i (r̄
∗
i − ȳ∗i )2. (2.20)

The goal of the shape controller is to minimize the performance index J̄ . However,

it is usually the case where σ1 > · · ·σk � σk+1 > · · · > σm > 0. Note that the

singular value σi, for i = 1, . . . ,m, is the weight parameter for the ith component

of the tracking error. Therefore, it is possible that with the intent of minimizing J̄

in (2.20) we will spend a lot of control effort to minimize the ith component of the

tracking error, for i > k, which has a very small contribution to the overall value of

the cost function. To avoid spending a lot of control effort for a marginal improvement

of the cost function value, we partition the singular value set into significant singular
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Figure 2.3: H∞ Control Formulation

values Ss and negligible singular values Sn. We then write

U =

[
Us Un

]
, V =

[
Vs Vn

]
, S =



Ss 0

0 Sn


 (2.21)

to obtain a reduced form of the cost function defined in (2.20)

J̄s =
k∑

i=1

σ2
i (r̄
∗
i − ȳ∗i )2 = (r̄∗s − ȳ∗s)TS2

s (r̄
∗
s − ȳ∗s) (2.22)

where

r̄∗s = S−1
s UT

s Q
1/2r̄, ȳ∗s = S−1

s UT
s Q

1/2ȳ, ū∗s = V T
s R

1/2ū. (2.23)

2.3.5 Design of H∞ MIMO Controller

The mixed sensitivity H∞ method is used to design the shape and X-point loca-

tion controller. The design is based on the reduced-order plasma model described

above. The structure of the proposed controller is shown in the Figure 2.3 where two

frequency-dependent weighting functions Wp and Wu are introduced. The signals of

the general control configuration are defined as the control input ũ = u∗s, the tracking

error ẽ = r∗s − y∗s , the exogenous reference r̃ = r̄ and the external performance signal
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z̃.

Using the Laplace Transform we can obtain a frequency-domain representation

of the overall system. The plant G(s) is the transfer function from the exogenous

reference r̃ to the performance output z̃ =

[
z̃1 z̃2

]T
and expressed as



z̃

ẽ


 =




z̃1

z̃2

ẽ




= G(s)



r̃

ũ


 =



G11(s) G12(s)

G21(s) G22(s)






r̃

ũ




ũ = K(s)ẽ. (2.24)

The closed-loop transfer function from r̃ to z̃ is given by the lower linear fractional

transformation (LFT), i.e.,

Tzr = Fl(G,K) = G11 +G12K(I −G22K)−1G21 (2.25)

where

G11 =



WpS

−1
s UT

s Q
1/2

0




G12 =



−WpS

−1
s UT

s Q
1/2PR−1/2Vs

Wu




G21 = S−1
s UT

s Q
1/2

G22 = −S−1
s UT

s Q
1/2PR−1/2Vs.

We define the transfer function Ms as

Ms = (I + S−1
s UT

s Q
1/2PR−1/2VsK)−1S−1

s UT
s Q

1/2, (2.26)
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and write the closed-loop transfer function as

Tzr = Fl(G,K) =




WpMs

WuKMs


 . (2.27)

We seek a controller K(s) that stabilizes the system and minimizes the H∞ norm

of the transfer function Tzr(G,K) between r̃ and z̃, i.e.,

min
K(s)
‖Tzr(G,K)‖∞= min

K(s)
(sup
ω
σ̄[Tzr(G,K)(jω)]) = min

K(s)

∥∥∥∥∥∥∥

WpMs

WuKMs

∥∥∥∥∥∥∥
∞

,

where σ̄ represents the maximum singular value. This statement defines a mixed

sensitivity H∞ control problem, where the goal is to minimize both the error tracking

(WpMs) and the control effort (WuKMs) at the same time. The weighting functions

Wp and Wu are parameterized as

Wp(s) =
s
M1

+ wb1

s+ wb1A1

Kp, Wu(s) =
s+ wb2A2
s
M2

+ wb2
Ku,

where the coefficients Mi, Ai, wbi, for i = 1, 2, as well as Kp and Ku, are design

parameters in the H∞ control synthesis.

Finally, the overall plasma shape and X-point location controller can be written

as

K̂(s) =
U(s)

Y (s)
= R−1/2VsK(s)S−1

s UT
s Q

1/2. (2.28)

2.3.6 Simulation Results

The H∞ MIMO controller design is based on a linear plasma response model for shot

]124616. The reference values for the radial position, vertical position, plasma current
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Table 2.1: Current and Position Control Gains (Current Flat-top Phase)
Controller Gp Gi Gd

Current Control 1 0.02 0.1
Radial Control 800 100 1
Vertical Control 200 0 10

Table 2.2: H∞ Control Parameters
Weight Function Mi wbi Ai Ki

Wp 100 0.01 7500 106

Wu 500 1 75 10−6

and X-point location are those of the equilibrium around which the linearized model

is obtained. The reference value for the flux at the control points is equal to that of

the X-point, which is computed every 10 ms.

The PID parameters for the plasma current, vertical position and radial position

loops are shown in the Table 2.1. The weight matrices Q and R are chosen to minimize

the tracking error and optimize the control effort. Poloidal field coils PF3U/L and PF5

play the most significant role in shaping the plasma. Therefore, the matrices are set as

Q = diag

[
1 1 1 1 1

]
and R = diag

[
10 1.5 5 1 2.5 2.5 10 10

]
. The

parameters for the H∞ control synthesis are shown in Table 2.2. Only two significant

singular values are retained during the control design procedure.

The plasma positions are controlled by the two independent PID control loops (2.4)–

(2.5) and (2.6)–(2.7). The time responses for the plasma radial and vertical positions

are shown in Figure 2.4 (a). The vertical position is stabilized by the controller and a

steady-state values is quickly achieved. The plasma current is controlled by the PID

control loop (2.3). Figure 2.4 (b) shows the time evolution for the plasma current

and compare it with its reference. The tracking error is less than 0.5%. Figure 2.4 (c)

shows both the flux at the X-point and the flux at the three control points (ψ1, ψ2,
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Figure 2.4: Closed-loop evolution: (a) Plasma radial and vertical position; (b) Plasma
current; (c) Magnetic flux at the control points.
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Figure 2.5: Plasma Boundary at 250 ms, 500 ms, 750 ms and 1 s
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and ψ3). The flux of at the control points track the flux at the X-point with a small

constant tracking error. After about 400 ms, the system achieves steady-state track-

ing errors of less than 0.02 Wb. Simulations results confirm that coils PF3U/L and

PF5 significantly influence the flux at the control points significantly. The value of

the tracking error can be reduced by modifying relation between the weight matrices

Q and R at the expense of a higher control effort.

The plasma boundary is defined as the outermost closed magnetic surface entirely

contained in the vacuum vessel. The boundary flux value, which identifies the plasma

boundary surface, is determined by the flux at X point. The goal of the controller is

to keep the plasma boundary surface located inside the vacuum vessel and to achieve

pre-specified shapes. A series of four plasma boundary shapes at different times

during the simulated discharge is shown in the Figure 2.5. The blue circles represent

the control points and the blue asterisk represents the actual location of the X point.

The voltages of the PF coils are regulated according to the H∞ control law (2.28) in

order to keep the plasma boundary at the control points and to regulate the X-point

location around the desired value.

Based on the simulation results above, the control scheme proves to be successful

in stabilizing the plasma position while regulating the plasma current and keeping

the plasma shape and X-point location as specified.

2.4 Control System Design for the Current Ramp-

up Phase

During the plasma current ramp-up phase, the MHD equilibrium continually changes,

and as a result, the plasma response model (2.2) changes. In this work, 26 scenario

points from the experimental shot #124616 from 91 ms to 391 ms are chosen to
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describe the plasma equilibrium evolution. The equilibrium plasma current, radial

and vertical position, and shape of these 26 models represent the described reference

trajectories of the system. Therefore, the control goal is to drive the system to these

specified reference trajectories with as little control effort as possible.

2.4.1 Plasma Current Controller

The OH coil is dedicated to plasma current regulation, and the proposed plasma

current controller in the current ramp-up phase is the same with (2.3).

2.4.2 Plasma Position Controller

Because the plasma response model (2.2) changes during the ramp-up phase, an

adaptive PID controller is proposed to improve the tracking performance of the closed-

loop system when compared with a static PID controller. In order to achieve this

goal, an adjusted parameter kc is introduced to the PID controller. The goal is to

minimize the closed-loop cost function J(kc) = e(kc)
2/2. The error e is defined as

e(kc, t) = r(t)− y(kc, t), where r(t) is the reference and y(kc, t) is the output defined

as the actual radial and vertical position of plasma. In order to make J small, it is

reasonable to change kc in the direction of the negative gradient of J , which is defined

as

k̇c =
dkc
dt

= −λ ∂J
∂kc

= −λ∂J
∂e

∂e

∂kc
= λe

∂y

∂kc
(2.29)

where λ is the step length, and ∂y/∂kc is the sensitivity derivative. The output is

expressed as y = Pu, where P is the transfer function of the plasma model (2.2), and

the input u is defined as u = kcKPIDe where KPID is a PID controller. The goal

is to make y(kc, t) = r(t) by choosing the optimal value of the adjusted parameter

kc, which is denoted k∗c . The optimal reference is assumed to be r = Pk∗cKPIDe =
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(k∗c/kc)PkcKPIDe = (k∗c/kc)y [58]. The adjusted parameter kc is therefore expressed

as

k̇c = λe
∂y

∂kc
= λe

∂ (rkc)
k∗c

∂kc
=

λ

k∗c
er = νer (2.30)

where ν is the adaptive gain.

The proposed radial position controller is written as

∆V
U/L
PF2R

= ∆V
U/L
PF3R

= ∆VPF5R = VRp , (2.31)

VRp = kcr(G
Rp
P ∆RP +G

Rp
I

∫ t

0

∆RPdt+G
Rp
D

d∆RP

dt
), (2.32)

where ∆Rp = Rp − Rref
P , Rref

P denotes the reference plasma radial position, k̇cr =

νr∆RpR
ref
P denotes the radial adjusted parameter, and νr denotes the radial adaptive

gain. The parameters G
Rp
P , G

Rp
I , and G

Rp
D are the plasma radial position PID error

gains.

The proposed vertical position controller is written as

∆V j
PF2Z

= ∆V j
PF3Z

= VZp(j), (2.33)

VZp(j) = (−1)jkcz(G
Zp
P ∆ZP +G

Zp
I

∫ t

0

∆ZP +G
Zp
D

d∆ZP
dt

), (2.34)

where ∆Zp = Zp − Zref
P , Zref

P denotes the reference plasma vertical position, k̇cz =

νz∆ZpZ
ref
P denotes the vertical adjusted parameter, νz denotes the vertical adaptive

gain, and the superscript j ∈ 0, 1 refers to upper and lower PF coils respectively. The

parameters G
Zp
P , G

Zp
I , and G

Zp
D are the plasma vertical position PID error gains.

The voltage offsets ∆V j
PF iR

and ∆V j
PF iZ

are added to the voltage shape control

requests.
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Figure 2.6: Frequency Study of Plasma Models

2.4.3 Plasma Shape and X-point Location Controller

A frequency study of the family of the decoupled plasma models discussed in sec-

tion 2.3.4, which preserve the dynamic character of the MHD equilibrium evolution

during the current ramp-up phase, shows that the models do not have a large mag-

nitude difference, as shown in Figure 2.6. This suggests it is possible to develop a

tracking control system with one robust controller. Based on this frequency study,

the linear model at 115 ms, which is denoted as Ptop, has the highest magnitude over

the frequency range considered, and the model at 391 ms, which is denoted as Pbot,

has the lowest magnitude. The model at 211 ms is chosen as the nominal model,

which is denoted as P0. The family of plasma models can be considered as one time

varying state-space system, which is written as an uncertain state-space model and

formulated into a robust control framework.
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By defining the matrix

M =



A B

C D


 , (2.35)

the transfer function of a linear system with state-space matrices A, B, C, and D can

be written as a linear fractional transformation (LFT) as

P (s) = Fu

(
M,

1

s
I

)
= C(sI − A)−1B +D. (2.36)

By defining the matrices

M0 =



A0 B0

C0 D0


 , ∆i =




∆Ai ∆Bi

∆Ci ∆Di


 , (2.37)

where

∆Ai = Ai − A0, ∆Bi = Bi −B0,

∆Ci = Ci − C0, ∆Di = Di −D0, (2.38)

and i ∈ 1, 2 refers to the top and bottom uncertainty respectively, the state-space

system matrices are now written as uncertain matrices as

A = A0 +
2∑

i=1

δi∆Ai, B = B0 +
2∑

i=1

δi∆Bi,

C = C0 +
2∑

i=1

δi∆Ci, D = D0 +
2∑

i=1

δi∆Di, (2.39)

where δ1 ∈ [0, 1] and δ2 ∈ [0, 1]. By conducting a frequency analysis of the uncertain

model of the system (2.39), the uncertain model is proven to capture the behavior of

the family of reduced order decoupled plasma models as shown in Figure 2.6.
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The uncertainty can be formulated into a LFT by achieving the smallest possible

number of repeated blocks by employing the method outlined in [59]. Thus, the

matrix ∆Mi is formed as

∆Mi =




∆Ai ∆Bi

∆Ci ∆Di


 . (2.40)

By using singular value decomposition and grouping terms, the matrix ∆Mi is ex-

pressed as

∆Mi = UiΣiV
T
i = (Ui

√
Σ)(
√

ΣV T
i ) =



Li

Wi






Ri

Zi




T

. (2.41)

By employing (2.41), the uncertainty is written as

δi∆Mi =



Li

Wi



[
δiIqi

]


Ri

Zi




T

, (2.42)

where qi is the rank of the matrix ∆Mi. The matrix M , defined in (2.35), is finally

expressed as

M = M0 +
2∑

i=1

δi∆Mi = H11 +H12∆H21, (2.43)

where

H11 =



A0 B0

C0 D0


 , H12 =



L1 L2

W1 W2


 ,

H21 =



RT

1 ZT
1

RT
2 ZT

2


 , ∆ =



δ1Iq1 0

0 δ2Iq2


 . (2.44)

The representation of the matrix M , defined in (2.43), is equal to the lower LFT

M = Fl(H,∆) = H11 +H12∆H21, (2.45)
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Figure 2.7: Shape Control System Design Structure

where

H =



H11 H12

H21 0


 . (2.46)

Using (2.36) and (2.45), the transfer function P (s) between the output y and the

input u is next expressed as

P (s) = Fu

(
Fl(H,∆),

1

s
I

)
= Fl

(
Fu

(
H,

1

s
I

)
,∆

)

= Fl(P
′,∆) = Fu(P

′′,∆), (2.47)

where P ′ =



P ′′22 P ′′21

P ′′12 P ′′11


 and P ′′ =



P ′′11 P ′′12

P ′′21 P ′′22


. Using the partition of the generalized

plant P ′′, the input/output equations are

y∆ = P ′′11u∆ + P ′′12u, y = P ′′21u∆ + P ′′22u.

The control goal is to design a k×k feedback controller K, where k is the number

of significant singular values defined in (2.21), that can stabilize the system and keep

the tracking error e∗s = r∗s−y∗s small. The corresponding block diagram of the system
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is shown in Figure 2.7, where the weight functions Wp(s) and Wu(s) are parameterized

as

Wp(s) = Kp

( s
M1

+ wb1

s+ wb1A1

)2

, Wu(s) = Ku

(
s+ wb2A2
s
M2

+ wb2

)2

,

and the coefficients Mi, Ai, wbi, for i ∈ 1, 2, as well as Kp and Ku, are design

parameters.

The feedback system is now expressed in the conventional ∆−P ∗−K robust con-

trol framework shown in Figure 2.8, where ∆ is the uncertainty, P ∗ is the generalized

plant, K is the feedback controller, Z1 = Wuu
∗
s, and Z2 = Wpe

∗
s. The input/output

equations of the generalized plant P ∗ are expressed as




y∆

Z1

Z2

e∗s




= P ∗(s)




u∆

r∗s

u∗s




=




P ∗11 P ∗12 P ∗13

P ∗21 P ∗22 P ∗23

P ∗31 P ∗32 P ∗33

P ∗41 P ∗42 P ∗43







u∆

r∗s

u∗s



, (2.48)

where

P ∗11 = P ′′11, P ∗12 = 0, P ∗13 = P ′′12,

P ∗21 = 0, P ∗22 = 0, P ∗23 = Wu,

P ∗31 = −WpP
′′
21S
−1
s UT

s Q
1/2, P ∗32 = WpS

−1
s UT

s Q
1/2, P ∗33 = −WpR

−1/2VsP
′′
22S
−1
s UT

s Q
1/2,

P ∗41 = −P ′′21S
−1
s UT

s Q
1/2, P ∗42 = S−1

s UT
s Q

1/2, P ∗43 = −R−1/2VsP
′′
22S
−1
s UT

s Q
1/2.

The closed-loop transfer function from the external input r∗s to the external out-

puts

[
ZT

1 ZT
2

]T
is defined as

Tzr = Fu(N,∆), (2.49)

where N = Fl(P
∗, K). We seek a controller K(s) that robustly stabilizes the system

44



Figure 2.8: Model in ∆− P ∗ −K Robust Control Framework

and minimizes the H∞ norm of the transfer function Tzr(N,∆), i.e.,

min
K(s)
‖Tzr(N,∆)‖∞= min

K(s)
(sup
ω
σ̄[Tzr(N,∆)(jω)]), (2.50)

where σ̄ represents the maximum singular value. The control method employed in

this work to achieve the control goal (2.50) is the µ synthesis design technique.

There is no direct method to synthesize a µ-optimal controller, however the DK-

iteration method, which combines H∞ synthesis and µ analysis, can be used to obtain

an iterative solution. This method starts with an upper bound on µ in terms of

the scaled singular value µ(N) ≤ min(σ̄(DND−1). Then, we seek a controller that

minimizes the peak value over frequency of this upper bound

min
K

(min
∥∥DN(K)D−1

∥∥
∞).
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The controller is designed by alternating between the two minimization problems until

reasonable performance is achieved. The DK-iteration steps are summarized as fol-

lows: (1) K step: Synthesize an H∞ controller for the scaled problem,

minK ‖DN(K)D−1‖∞ with fixed D(s). (2) D step: Find D(jω) to minimize

σ̄(DND−1(jω)) at each frequency with fixed N . (3) Fit the magnitude of each

element of D(jω) to a stable and minimum-phase transfer function D(s) and go

to step 1. The iteration continues until ‖DN(K)D−1‖∞ < 1 or the H∞ norm no

longer decreases. The robust feedback controller K found by iteratively solving these

minimization problems is written as

ẋc = Acxc +Bce
∗
s,

u∗s = Ccxc +Dce
∗
s, (2.51)

where Ac, Bc, Cc, and Dc are the controller system matrices, and xc is the internal

controller state.

To validate the designed controller, the robust stability of the closed-loop system

is determined. The system is written in the N −∆ structure, and the robust stability

is determined by evaluating the structured singular value

µ(N11(jω)) =
1

min{km| det(I − kmN11∆) = 0} (2.52)

whereN11 is the transfer function from the input u∆ to the output y∆. The closed-loop

system is robustly stable for all allowable perturbations if and only if µ(N11(jω)) <

1,∀ω. Figure 2.9 shows a plot of the structed singular value µ versus frequency, and

as can be seen µ < 1 for all frequencies. Therefore, the closed-loop system is robustly

stable. In other words, the controller stabilizes the whole family of models.
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Figure 2.9: Structured Singular Value µ versus Frequency

Finally, the overall plasma shape and X-point location controller is written as

K̂(s) =
U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q

1/2 (2.53)

where E(s) denotes the Laplace transform of e(t). The contribution to the coil volt-

ages by the shape and X-point location controller is written as

VShape = [∆V
U/L
PF1As

∆VPF1Bs ∆V
U/L
PF2s

∆V
U/L
PF3s

∆VPF5s ]
T

= L−1{K̂(s)E(s)} (2.54)

where L−1 denotes the inverse Laplace transform.
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Table 2.3: Current and Position Control Gains (Current Ramp-up Phase)
Controller Gp Gi Gd νi

Current Control 1 0.02 0.1
Radial Control 800 100 1 5
Vertical Control 200 0 10 -10

2.4.4 Simulation Results

The robust MIMO controller is designed based on linear plasma response models,

which represent the MHD equilibrium evolution during the current ramp-up phase

of shot #124616. The simulation model is updated every 12 ms, and the reference

values for the radial position, vertical position, plasma current and X-point location

are those of the equilibrium around which the linearized model is obtained. The

reference value for the flux at the control points is equal to the flux at the X-point,

which is computed every 4 ms.

The plasma current is controlled by the PID control loop (2.3), and the plasma

position is controlled by the two independent adaptive PID control loops (2.31)–

(2.32) and (2.33)–(2.34). In order to simplify the calculation, the adaptive gains νr

and νz are assumed to be constant in the simulation. The parameters for the plasma

current, vertical position and radial position loops are shown in Table 2.3. The

weight matrices Q and R are chosen to minimize the tracking error and optimize the

control effort. Poloidal field coils PF3U/L and PF5 play the most significant role in

shaping the plasma; therefore, the matrices are set as Q = diag

[
2 2 2 1 1

]
and

R = diag

[
10 1.5 2.5 1 2.5 1.5 10 10

]
. The parameters for the µ synthesis

are shown in Table 2.4.

The time responses for the plasma radial and vertical positions are shown in Fig-

ure 2.10 (a). The radial and vertical positions are stabilized by the controller and the

reference values are quickly achieved. Figure 2.10 (b) (top) shows the time evolution
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Table 2.4: µ Synthesis Control Parameters
Weight Function Mi wbi Ai Ki

Wp 100 0.01 7500 103

Wu 500 1 75 10−3

of the plasma current, and the tracking error is less than 0.5%. The components

of magnetic field at the desired X-point are shown in the Figure 2.10 (b) (bottom),

and the errors are less than 0.02 T. Figure 2.10 (c) (top) shows both the flux at the

X-point and the flux at the three control points (ψ1, ψ2, and ψ3), and the flux at

the control points tracks the flux at the X-point. Figure 2.10 (c) (bottom) shows the

tracking errors, which are less than 0.05 Wb. The value of the tracking error can

be reduced by modifying the relation between the weight matrices Q and R at the

expense of a higher control effort. Note that the flux reference ψref is updated every

4 ms, and the control point locations are updated every 12 ms; therefore the results

are not smooth curves, as shown in Figure 2.10 (c).

The plasma boundary is defined as the outermost closed magnetic surface entirely

contained in the vacuum vessel. The boundary flux value, which identifies the plasma

boundary surface, is determined by the flux at the X-point. The goal of the controller

is to keep the plasma boundary surface located inside the vacuum vessel and to achieve

a pre-specified shape. A series of four plasma boundary shapes at different times

during the simulated ramp-up phase of the discharge are shown in the Figure 2.11.

The blue circles represent the control points, the blue asterisk represents the actual

location of the X-point, and the red asterisk represents the reference location of the

X-point. The voltages of the PF coils are regulated according to the robust control

law (2.53) in order to keep the plasma boundary at the control points and to regulate

the X-point location around its desired value.

Based on the simulation, the control scheme proves to be successful in stabilizing
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Figure 2.10: Closed-loop evolution: (a) Plasma radial & vertical position; (b) Plasma
current and magnetic field; (c) Magnetic flux & flux error at the control points.
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Figure 2.11: Plasma Boundary at 80 ms, 160 ms, 240 ms and 320 ms
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the plasma position while regulating the plasma current and keeping the plasma

shape and X-point location as specified. Because the controller forces the outputs

to follow the desired reference trajectories, the MHD equilibrium evolves as specified

during the ramp-up phase. In the simulation, the family of plasma models represents

this equilibrium evolution, which validates our simulation condition of updating the

plasma model every 12 ms.

2.5 Conclusion

Model-based MIMO controllers are designed for NSTX. The design is based on lin-

earized plasma response models in both the current flat-top phase and the current

ramp-up phase. The availability of independent current and position controllers trans-

forms the shape control problem into an output tracking problem. Singular value

decomposition (SVD) of the steady state transfer function is used to decouple the

system and identify the most relevant control channels, and the shape controller is

designed using this decoupled system.

The proposed model-based controllers, which are tested in simulations respec-

tively, show potential for expanding present experimental control capabilities. A more

exhaustive and realistic simulation study is part of our future work before experimen-

tal validation. Ideally this study should include free-boundary simulations, real-time

boundary reconstruction, synthetic noise in the measurements and disturbances.
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Chapter 3

Data-driven Modeling of Plasma

Magnetic and Kinetic Responses

for Advanced Tokamak Scenarios

in DIII-D

3.1 Introduction

The shape of the toroidal current density profile as a function of the tokamaks minor

radius is critical for the development and sustainment of self-generated non-inductive

current, which in turn serves as an enabler for steady-state operation. The current

density profile is intimately related to the rotational transform ι profile, which is

defined as the inverse of the safety factor q profile, which in turn is defined as the

ratio of the number of times a magnetic field line goes toroidally around the tokamak

to the number of times it goes around poloidally. The parameter βN , defined as the

normalized ratio between the internal kinetic pressure of the plasma and the external
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pressure of the magnetic field, is a key measure of performance used to gauge progress

toward developing a power-producing fusion reactor. Therefore, real-time control of

the ι profile and βN is of paramount importance.

Mathematical modeling of plasma transport phenomena with sufficient complexity

to capture the dominant dynamics is critical for plasma current profile control design.

Data-driven modeling techniques such as system identification [25], have the potential

to obtain low-complexity, linear, dynamic models useful for the design of local regu-

lators around an equilibrium. In the past few years, system identification techniques

have been successfully used to model plasma transport dynamics for active control

design in various tokamaks (JET [30, 31], Tore Supra [32, 33], JT-60U [34, 35], DIII-

D [36, 37]). A number of discharges in AT scenarios were run with identical ramp-up

phase during the experimental campaign of 2009 in DIII-D [37]. The collected In-

put/Output(I/O) diagnostic data has been used to model the magnetic and kinetic

parameters. In the Lehigh University Plasma Control Group, Mr. William Wehner

has been responsible for identifying the linear dynamic plasma models [38, 39, 55],

and the author has been responsible for using the identified models to develop the

real-time feedback controllers for DIII-D [26, 27, 28, 29]. This chapter aims at briefly

describing the input-output response models for the plasma rotation transform ι pro-

file dynamics and normalized beta βN during H-mode scenarios in DIII-D for on-axis

and off-axis current drive scenarios respectively, which will be used in the following

chapters.

This chapter is organized as follows. In Section 3.2, the system identification pro-

cedure carried out in the DIII-D tokamak is briefly described, and the dynamic linear

models relating the rotational transform ι profile and βN to the plasma current (Ip),

neutral beam injection (NBI), and electron cyclotron (EC) heating and current drive

(H&CD) are developed for on-axis and off-axis current drive scenarios, respectively.
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Figure 3.1: Cubic splines, bi, used for the expansion of the ι profile.

Section 3.3 states the conclusions.

3.2 System Identification on DIII-D

3.2.1 Identified Model for On-axis Current Drive Scenarios

In order to use multivariable control theory for the synthesis of a controller capable

of regulating the plasma ι-profile and βN evolutions in advanced tokamak scenarios,

system identification techniques are used to develop from measured data a control-

oriented dynamic model for the linear response of these variables to the actuators. A

Galerkin scheme [26, 30, 31, 37, 55] is used to convert the infinite-dimensional (PDE)

transport equation for the ι-profile to a finite-dimensional (ODE) model in space.

The Galerkin scheme assumes that by increasing the number of basis functions the

identified ODE model will converge towards the PDE that best fits the data. The ι
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profile in normalized radial coordinates is then approximated by the sum of a discrete

number of spatial functions,

ι(ρ̂, t) ≈
N∑

i=1

Gi(t)bi(ρ̂), (3.1)

where the expansion coefficients Gi(t), i = 1, . . . , N , are called Galerkin coefficients,

and the spatial functions bi(ρ̂), i = 1, . . . , N , are called Galerkin basis functions.

In this work, system identification for the plasma rotational transform profile ι(ρ̂, t)

is carried out based on five cubic-splines Galerkin basis function centered around

normalized radii ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 as shown in Figure 3.1. The parameter ρ̂ is

the normalized effective minor radius, which can be denoted as ρ̂ = ρ
ρb

, where ρ is the

mean geometric minor radius of the flux surface, i.e., πBφ,0ρ
2 = Φ. The parameter Φ

is the toroidal magnetic flux, and Bφ,0 is the magnetic field at the geometric major

radius. The parameter ρb is the mean geometric minor radius of the last closed

magnetic flux surface.

To collect the data for system identification a number of discharges were run with

identical ramp-up phases and different flat-top phases characterized by varied ac-

tuator modulations schemes that excited the system around a predefined reference

state. The reference plasma state was that of a 1.8 T, βN -controlled AT scenario,

with a center plasma density neo ≈ 5 × 1019m−3 and plasma current Ip = 0.9 MA.

The scenario was developed to achieve non-inductive current fractions near unity,

bootstrap current fractions larger than 65%, and a normalized confinement factor

H98(y,2) ≈ 1.5 [37]. Actuator modulations were applied from t = 2.5 s, and the Ip and

βN controls were disabled to ensure no feedback response during data collection. The

EC and NBI systems provided the non-inductive heating and current drive sources

for these experiments. The EC system in DIII-D is composed by six gyrotrons with
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Figure 3.2: Plan view of four beamlines of NBI in DIII-D.

individual nominal power of around 1 MW at a central frequency of 110 GHz. The

NBI system in DIII-D consists of four beam-lines, with each beam-line having two

ion sources in parallel as shown in Figure 3.2. Each ion source produces an 80 keV

deuterium beam and can inject a maximum of 2.5 MW of power into the plasma.

Three of the beam-lines (30◦, 150◦, 330◦) inject power in the same direction as the

usual plasma current (counter-clockwise in the diagram in Figure 3.2). The 210◦ sys-

tem is used for counter-injection, since its beam is injected in the opposite direction.

Each beamline is aligned at an angle 19.5◦ from the radial through the injection port.
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Available beam-lines and gyrotrons were grouped to form, together with Ip, five in-

dependent H&CD actuators: (i) plasma current Ip, (ii) co-current NBI power PCO

(150L and 330L), (iii) counter-current NBI power PCT (210R), (iv) balanced NBI

power PBL (150R and 210L), and (v) total EC power from all gyrotrons PEC . All

actuators were modulated individually in open loop while the other actuators were

held at their respective reference values. Several shots (#140076, 140077, 140093,

140106, and 140107) were used to identify the model. Shot 140107 performs mod-

ulation of Ip, shots 140076, 140077, and 140106 perform modulation of the neutral

beam groups, and shot 140093 performs modulation of the total EC power. Typical ι

profile, q profile, Ip and βN at the beginning of the system identification experiment

is given by shot #140090 in Figure 4.7 and Table 4.3. More details on the system

identification experiments can be obtained from [37].

The relation between inputs and outputs for any shot can be assumed in the form

of

y(t) = yFF + ∆y(t) = PFF (uFF ) + P∆u(t), (3.2)

where PFF represents the relationship between the reference (feedforward) input

uFF and the reference (feedforward) output yFF . The variable ∆y(t) denotes the

deviation output defined as ∆y(t) = [∆ι(t), ∆βN(t)] = y(t) − yFF , with y(t) =

[ι(0.2, t) ι(0.4, t) ι(0.5, t) ι(0.6, t) ι(0.8, t), βN(t)]T . The variable ∆u(t) denotes the

deviation input defined as ∆u = u − uFF with u = [Ip, PCO, PCT , PBL, PEC ]. By

subtracting the feedforward value from our data set, we only consider the linear dy-

namics ∆y(t) = P∆u(t). The linear model P is identified from experimental data

using the prediction error method (PEM) according to a least squares fit criterion [25].

By using a finite-dimensional approximation of the ι profile as proposed in (3.1) and

neglecting the nonlinear dynamics, the structure of the to-be-identified model P is
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derived from the transport equations and written as

∆ι̇(t) = A11∆ι(t) + A12∆βN(t) +B1∆u(t) (3.3)

ε∆β̇N(t) = A21∆ι(t) + A22∆βN(t) +B2∆u(t), (3.4)

where the parameter ε << 1, representing the typical ratio between the energy con-

finement time and the characteristic resistive diffusion time, is used to indicate the

existence of two timescales in the system. The magnetic variable is characterized by

a slow dynamics with timescale given by t and the kinetic variable is characterized

by a fast dynamics with timescale given by τ = t/ε. The study of dynamic systems

with two clear timescales has a long history in nonlinear control analysis, which is

summarized by the theory of singular perturbations [60]. The modeling of the current

profile dynamics as a two-timescale system indeed simplifies the associated control

design. Therefore, the natural timescale separation observed in the system has been

exploited in the past at the moment of developing a control-oriented model following

both first-principles-driven [22] and data-driven [31] approaches. Following a similar

approach in this work allows us to rewrite the model (3.3)-(3.4) as the combination

of a slow model

∆ι̇(t) = As∆ι(t) +Bs∆us(t) ∆βNs = Cs∆ι+Ds∆us, (3.5)

and a fast model

∆β̇Nf (t) = Af∆βNf (t) +Bf∆uf (t), (3.6)

where ∆βNs and ∆βNf are the slow and fast components of ∆βN , and ∆us and

∆uf are the slow and fast components of ∆u. It is straightforward to show that

the matrices to be identified in (3.5)-(3.6) are linked to the original model matrices
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in (3.3)-(3.4) through the relations:

As=A11 − A12A
−1
22 A21, Cs =−A−1

22 A21, Af =ε−1A22,

Bs=B1 − A12A
−1
22 B2, Ds=−A−1

22 B2, Bf =ε−1B2.

Because ε << 1 (denoting the natural timescale separation in the system), we

usually have A21/ε, A22/ε >> A11, A12 and B2/ε >> B1. Therefore, identifying the

system matrices in (3.5)-(3.6) instead of the system matrices in (3.3)-(3.4) avoids the

risk of having seriously ill-conditioned system matrices and making the synthesis of

a reliable control strategy even more challenging. Rewriting the model (3.3)-(3.4) as

(3.5)-(3.6) requires the assumption that the ι profile dynamics has a limited band-

width, which implies that its response to the control input ∆u is identical to its

response to the low-frequency-content control input ∆us since the high-frequency-

content control input ∆uf is filtered by the system itself. While this assumption

is not restrictive at all and it is just a consequence of the slow dynamics exhibited

by the magnetic variable, stating the two-timescale model structure as in equations

(3.5)-(3.6) leaves the designer with another design choice to make, which is the value

of the cutoff frequency separating the slow (low-frequency) content and the fast (high-

frequency) content of the control input. Selecting a cutoff frequency too low in the

effort of maximizing the separation between slow and fast dynamics may be indeed

restrictive and may pose a risk to closed-loop performance due to the neglected dy-

namics. The cutoff frequency selection may become particularly challenging when

the plasma current is used as a control input since in this case the outer part of

the ι profile close to the plasma boundary (e.g., ι(0.8, t) in this work) may respond

relatively fast to changes in the plasma current.

The slow model (3.5) and fast model (3.6) are finally combined with a first order

low-pass filter to obtain the overall plant P . The first order low-pass filter is written
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as

Ẋfilter = −2πXfilter + 2π∆u




∆us

∆uf


 =




I

−I


Xfilter +




0

I


∆u, (3.7)

where Xfilter is the state, and I is the identity matrix. Substituting (3.7) into (3.5)

and (3.6), the ι and βN combined model can be obtained as




∆ι̇

∆β̇Nf

Ẋfilter




=




As 0 Bs

0 Af −Bf

0 0 −2π







∆ι

∆βNf

Xfilter




+




0

Bf

2π




∆u = A




∆ι

∆βNf

Xfilter




+B∆u




∆ι

∆βN


 =



I 0 0

Cs I Ds







∆ι

∆βNf

Xfilter




= C




∆ι

∆βNf

Xfilter



. (3.8)

Embedding the low-pass filter in the model is a direct consequence of the assumption

of a limited bandwidth for the ι profile response. As mentioned above, selecting a

cutoff frequency for the low-pass filter which is too low may pose a risk to closed-loop

performance. Nevertheless, it is important to emphasize that the source of this risk

is the identification of the model based on input-output signals limited in bandwidth

by the low-pass filter, and not the explicit inclusion of the low-pass filter in (3.8)

by itself. In other words, the low-pass filter could be removed from (3.8) and the

risk to closed-loop performance would persist due to the limited bandwidth of the

slow-dynamics model. In this work, the lowest frequency at which the inputs used in

the system identification experiment could be filtered while retaining a good fit of the

unfiltered ι data by the slow model is found to be around 1 Hz. Therefore, the filter

cutoff frequency has been chosen as 1 Hz to separate the slow and fast components
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Figure 3.3: Shot 140094: (a) Experimental actuator modulation; (b) Comparison
between experimentally measured (blue solid line) and model-predicted (red dashed-
dotted line) ι profile and βN .

of the input data and βN . It is important to note that this cutoff frequency is indeed

related to the frequency content of the excitation (input) signals during the system

identification experiment. If higher-frequency excitation signals had been used, a

higher value for the cutoff frequency would have been most likely necessary.

A model validation procedure has been carried out by comparing the model pre-

diction with experimental data from shots not used in the system identification proce-

dure. This comparison includes both ι at ρ̂ = 0.2, 0.4, 0.6, 0.8 and βN . Figure 3.3 and

Figure 3.4 illustrate the cases of shots #140094 and #140109 as examples. While

Figure 3.3 (a) and Figure 3.4 (a) display the experimental inputs, Figure 3.3 (b)

and Figure 3.4 (b) compare predictions with experimental data. Fit functions f i

are introduced to quantify the relationship between the measured data yim and the

62



2.5 3 3.5 4 4.5 5 5.5
0.9

1

1.1

I p [M
A

]

2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

P
C

O
 [M

W
]

2.5 3 3.5 4 4.5 5 5.5
−0.1

−0.05

0

0.05

0.1

P
C

T [M
W

]

2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

P
B

L [M
W

]

2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

P
E

C
 [M

W
]

time (sec)

2.5 3 3.5 4 4.5 5 5.5
−0.2

0

0.2

ι(0
.2)

 

 

Experiment
Model; fit:71.98 %

2.5 3 3.5 4 4.5 5 5.5
−0.1

0

0.1

ι(0
.4)

 

 

Experiment
Model; fit:29.78 %

2.5 3 3.5 4 4.5 5 5.5
−0.1

0

0.1

ι(0
.5)

 

 

Experiment
Model; fit:50.12 %

2.5 3 3.5 4 4.5 5 5.5
−0.1

0

0.1

ι(0
.6)

 

 

Experiment
Model; fit:53.00 %

2.5 3 3.5 4 4.5 5 5.5
−0.05

0

0.05

ι(0
.8)

 

 

Experiment
Model; fit:65.75 %

2.5 3 3.5 4 4.5 5 5.5
−1

0

1

time (sec)

β N

 

 

Experiment
Model; fit:49.17 %

(a) (b)

Figure 3.4: Shot 140109: (a) Experimental actuator modulation; (b) Comparison
between experimentally measured (blue solid line) and model-predicted (red dashed-
dotted line) ι profile and βN .

model-predicted data yi, where the superindex denotes the i-th channel of the system

output, i.e.,

f i = 1−




N∑
k=1

[yim(tk)− yi(tk)]2

N∑
k=1

[yim(tk)− < yim >]2




1/2

, (3.9)

where f i = 1 is a perfect fit and f i = 0 corresponds to a reconstructed data set

identically equal to the mean of the measured data, < yim >. Because the noise

is included in the measured data from the experiment, the values of the fit func-

tions are not sought to be 1 since that would mean that the identified model fits

the noise perfectly, which is undesired. A “good” value, based on the definition of

the fit functions, will therefore depend on the noise level present in the system and
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the confidence bands assumed by the designer. Figure 3.3 (b) and Figure 3.4 (b)

display the typical fit between measured and model-predicted data observed in the

model validation procedure, which involved a larger number of shots and consistently

showed the type of qualitatively agreement expected from a control-oriented model.

Note that although the fit functions are far from 1, the control-oriented model seems

to capture the trend of the system in response to the control actuation, which is the

objective of the system identification procedure (not the perfect fit between predicted

and experimental data). It is often not possible, however, to assess the true require-

ments for model accuracy until experimental tests of the model-based controller are

performed. Therefore, an iterative process may be necessary.

3.2.2 Identified Model for Off-axis Current Drive Scenarios

High qmin scenario development at high βN has been limited due to the overdrive of

the central current by the on-axis NBI, which will be discussed in Section 4.3. Off-

axis NBI can provide a broad current deposition at mid-radius without over-driving

the current near the axis [61]. To achieve higher βN and higher qmin, the beam-

line optical axes of 150L and 150R were inclined up to 16.5◦ (shown in Figure 3.5),

while the other beam-line optical axes were unchanged. The available beam-lines and

gyrotrons were grouped to form, together with Ip, five independent H&CD actuators:

(i) plasma current Ip, (ii) on-axis co-current NBI power PCO (330L), (iii) off-axis

co-current NBI power POA (150L and 150R), (iv) counter-current NBI power PCT

(210R), and (v) total EC power from all gyrotrons PEC .

Several shots (#140076, 140077, 140093, 140106, and 140107)) [55] were used

to identify the plasma response to the on-axis actuators. To collect the data for

identifying the response of the off-axis beams (150L and 150R), a new shot #150082

with off-axis beams was run, while the other actuators were modulated around the
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Figure 3.5: Off-axis NBI in DIII-D.

identical reference values as the previous shots. System identification for the plasma

rotational transform profile ι(ρ̂) was carried out with 5 Galerkin coefficients computed

at normalized radial coordinates ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8, starting at t = 2.5s.

The relation between inputs and outputs for any discharge is assumed in the same

form as (3.2). The variable ∆u(t) in the off-axis current drive scenarios denotes the de-

viation input defined as ∆u = u−uFF with u = [Ip, PCO, POA, PCT , PEC ], while the

variable ∆y(t) denotes the deviation output defined as ∆y(t) = [∆ι(t), ∆βN(t)] =

y(t)−yFF , with y(t) = [ι(0.2, t) ι(0.4, t) ι(0.5, t) ι(0.6, t) ι(0.8, t), βN(t)]T . By sub-

tracting the feedforward value from our data set, we only consider the linear dynamics

∆y(t) = P∆u(t). The linear model P is identified from experimental data using the

prediction error method (PEM) according to a least squares fit criterion [25], which

has been discussed in Section 3.2.1. The identified feedback model P can be expressed
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in the state space form

ẋ = AOAx(t) +BOA∆u(t), ∆y(t) = COAx(t) (3.10)

where the state x(t) is defined as x(t) = ∆ι(t) = ι(t)− ιFF .

3.3 Conclusion

Simplified linear models for the evolution of the plasma rotational transform ι profile

as well as βN in the DIII-D tokamak have been obtained based on the PEM system

identification method. Reasonable model prediction of the magnetic profile evolution

in response to modulations in the on-axis and off-axis neutral beam injector power,

the total gyrotron power, and the plasma current are achieved. The identified models

are employed to design feedback control algorithms to control the current profile

evolution in on-axis and off-axis current drive scenarios, which will be discussed in

the Chapter 4 and Chapter 5, respectively.
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Chapter 4

H∞ Control of the Plasma

Rotational Transform Profile and

Normalized Beta Dynamics for

Advanced Tokamak Scenarios in

DIII-D

4.1 Introduction

The planned ITER reactor [62] will be capable of exploring advanced tokamak (AT)

modes of operation, characterized by high plasma pressure, long confinement times,

and low levels of inductively driven plasma current, which allow for near steady-state

operation. These advanced modes require active feedback control to maintain and

develop high performance plasmas, good confinement, and long plasma discharges.

In particular, the control of the plasma current profile, which is intimately related to

67



the safety factor profile q, or its inverse, the rotational transform ι profile, is critical

for the development and sustainment of the self-generated, non-inductive, bootstrap

current, which in turn serves as an enabler for steady-state operation. Previous work

in the DIII-D tokamak towards closed-loop current profile control only includes non-

model-based single-loop approaches [36] that led to oscillatory response.

A two-timescale dynamic model of the rotational transform ι profile and the nor-

malized beta βN has been identified from DIII-D data in Chapter 3. A model-based,

multi-input-multi-output (MIMO) controller is synthesized based on the identified

model for the simultaneous regulation of the ι profile and βN during the current flat-

top phase in H-mode discharges. A singular value decomposition (SVD) is used to

decouple the combined system and identify the most relevant control channels. The

mixed-sensitivity robust control method [63, 64] is applied to synthesize a closed-loop

controller that minimizes the reference tracking error and rejects external distur-

bances with minimal control energy. The feedback controller is then augmented with

an anti-windup compensator [65, 66, 67], which keeps the given ι profile and βN con-

troller well-behaved in the presence of actuator constraints and leaves the nominal

closed-loop system unmodified when no saturation in the actuators is present. The

proposed controller has been tested both in simulations and in a limited number of

experiments on the DIII-D tokamak. These experiments mark the first time ever

data-driven, model-based, current-profile controllers were implemented and tested in

DIII-D. The experimental results, which are thoroughly analyzed in this work, are

partially successful due to actuator constraints and design limitations. Nevertheless,

these preliminary results represent an incremental step towards routine current profile

control in DIII-D and provide valuable lessons regarding model identification, control

design and controllability that will be exploited to achieve this goal.

This chapter is organized as follows. In Section 4.2, the design of the plasma
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Figure 4.1: DIII-D ι-profile+βN control system architecture.

control algorithm and the anti-windup compensator is introduced. Simulated and

experimental results in DIII-D illustrating the performance of the controllers are

presented in Section 4.3. Conclusions and future research directions are stated in

Section 4.4.

4.2 Control System Design

4.2.1 Control System Structure

A multi-input-multi-output (MIMO) robust feedback controller based on the identi-

fied linear model (3.8) is proposed for the regulation of the evolution of the ι profile

and βN on DIII-D. In order to cope with the limitations on achievable values and

rates for the actuators (plasma current, beam powers, gyrotron powers) we follow an
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a posteriori design approach where the MIMO robust feedback controller is modified

by an anti-windup compensator. The control design procedure is summarized by

the following steps: (1) decouple the system and identify the most relevant control

channels, (2) design an H∞ controller K̂ ignoring control input saturation, (3) add

an anti-windup compensator AW to minimize the adverse effect of any control input

saturation on the closed loop performance. The overall control system including the

MIMO H∞ controller and the anti-windup compensator is shown in Figure 4.1. By

subtracting the reference (feedforward) output values yFF from the measured output

values y, the deviation output ∆y = y−yFF is generated and used as the input to the

feedback controller. The objective of the feedback controller is to make the deviation

output ∆y = y − yFF follow the target output ∆ytar = ytar − yFF under the influ-

ence of input (∆ud) and output (∆yd) disturbances, i.e., to drive the tracking error

e(t) = ∆ytar(t) − ∆y(t) close to zero. The target output ytar represents the desired

values for βN and the ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8. The output of the feedback

controller ∆u is added to the reference (feedforward) input values uFF to generate the

overall input values u requested to the actuators. The differences between requested

(u) and achieved (û) input values drive the anti-windup compensator that eventually

modifies the measured output values y through the signal s when any of the actuators

saturate.
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4.2.2 Decoupling and Identification of Most Relevant Con-

trol Channels

The relation between the inputs and the outputs of the linear model (3.8) can be

expressed in terms of its transfer function P (s), i.e.,

∆Y (s)

∆U(s)
= P (s) = C(sI − A)−1B, (4.1)

where s denotes the Laplace variable and ∆Y (s) and ∆U(s) denote the Laplace

transforms of the output ∆y and the input ∆u respectively. Assuming a constant

target ∆ȳtar and closed-loop stabilization, the system will reach steady state as t→

∞. It is possible to define

∆ȳ = lim
t→∞

∆y(t), ∆ū = lim
t→∞

∆u(t), ē = lim
t→∞

e(t) = ∆ȳtar −∆ȳ, (4.2)

where e = ∆ytar − ∆y denotes the tracking error. Under these assumptions, the

closed-loop system is specified by

∆ȳ = P̄∆ū = −CA−1B∆ū, (4.3)

∆ū =
¯̂
Kē =

¯̂
K (∆ȳtar −∆ȳ) , (4.4)

where P̄ = P (0) is the steady state transfer function, K̂(s) is the transfer function of

the to-be-designed controller and
¯̂
K = K̂(0). The steady state gains of the identified

model for the ι profile are shown in Figure 4.2, where the steady-state response ∆ῑ

to unitary changes in the various inputs is plotted. The plasma current is the most

capable actuator in adjusting the magnetic profile in absolute terms. The co-injection

and counter-injection beams are also very powerful, affecting the profile in different
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Figure 4.2: Steady-state gains for the ι-profile response. The steady-state output ∆ȳ
(solid blue) is compared with the significant steady-state output ∆ȳs (dashed red)
for k = 2. The powers are expressed in MW and the current in units of 0.1 MA. The
weight matrices are chosen in this case as R = diag([0.01, 0.25, 1000, 0.5, 0.25])
and Q = diag([1, 1, 1, 1, 1, 1]).

directions in agreement with prior experiments. The EC power leads to an increase

in the ∆ι profile, and the balanced-injection beams nearly do not have influences in

the magnetic flux profile.

Singular value decomposition (SVD) is employed to decouple the system and de-

termine the most significant input-output channels for tracking based on the steady

state transfer function P̄ . Symmetric positive definite matrices Q ∈ <p×p, where

p = 6 is the number of outputs, and R ∈ <m×m, where m = 5 is the number of

inputs, are introduced to weigh the tracking error and control effort, respectively.

The singular value decomposition of the “weighted” steady-state transfer function is

given by

P̃ = Q1/2P̄R−1/2 = USV T , (4.5)
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where S = diag(σ1, σ2, · · · , σm) ∈ <m×m since m < p, U ∈ <p×m, V ∈ <m×m. The

matrices U and V are unitary, i.e., UTU = I, V TV = V V T = I. The steady-state

input-output relation can now be expressed as

∆ȳ = Q−1/2P̃R1/2∆ū = Q−1/2USV TR1/2∆ū. (4.6)

By invoking the properties of the SVD, the columns of the matrix Q−1/2US define

a basis for the subspace of obtainable steady-state output values. Therefore, it is

always possible to write

∆ȳ = Q−1/2US∆ȳ∗ ⇐⇒ ∆ȳ∗ = S−1UTQ1/2∆ȳ, (4.7)

where ∆ȳ∗ ∈ <m denotes the basis coefficients of the component of the output signal

that is indeed achievable. This implies that only the component of the reference

vector ∆ȳtar that lies in this subspace will be trackable. The reference vector is now

written as the sum of a trackable component ∆ȳtart and a non-trackable component

∆ȳtarnt , i.e., ∆ȳtar = ∆ȳtart + ∆ȳtarnt , where

∆ȳtart = Q−1/2US∆ȳ∗tar ⇐⇒ ∆ȳ∗tar = S−1UTQ1/2∆ȳtar, (4.8)

with ∆ȳ∗tar ∈ <m representing the basis coefficients of the component of the target

signal that is indeed trackable and S−1UTQ1/2∆ȳtarnt = 0. By defining

∆ū∗ = V TR1/2∆ū, (4.9)

where ∆ū∗ ∈ <m, the relationship between ∆ȳ∗ and ∆ū∗ is obtained by using (4.6),
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Figure 4.3: (a) Output singular vectors Q−1/2U , (b) Input singular vectors V TR1/2

from the SVD analysis (σ1 = 106.2544, σ2 = 0.2697, σ3 = 0.0624, σ4 = 0.0077, and
σ5 = 0.0009).

(4.7), (4.9) as

∆ȳ∗ = S−1UTQ1/2∆ȳ = S−1UTQ1/2Q−1/2USV TR1/2∆ū = ∆ū∗. (4.10)

This defines a one-to-one relationship between the inputs and outputs, i.e., ∆ȳ∗ =

∆ū∗, which leads to a square and decoupled system.

The bases obtained through the singular value decomposition of the steady-state

response predicted by the model are shown in Figure 4.3. The singular output vectors

given by the columns of Q−1/2U , which define the subspace of obtainable steady

state output values and therefore the trackable component of the reference vector,

are shown in Figure 4.3 (a). The corresponding input singular vectors given by the

rows of V TR1/2, which define the associated steady-state input values, are shown in

Figure 4.3 (b). As evidenced by the magnitude of the first singular value relative to

the others, the first output singular vector is the dominant shape of an achievable

steady state profile according to the model. In order to generate this profile shape,

the feedback controller must actuate in the direction associated with the first input
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singular vector. As the value of the singular value decreases, a larger amount of

control effort is needed along the direction of the associated input singular vector to

produce a significant contribution to the steady state profile in the direction of the

associated output singular vector.

To quantify the tracking performance in steady state, a performance index can be

defined as

J̄ = lim
t→∞

eT (t)Qe(t) = ēTQē, (4.11)

where the steady-state tracking error ē can now be rewritten as

ē = ∆ȳtar −∆ȳ = Q−1/2US(∆ȳ∗tar −∆ȳ∗). (4.12)

By substituting this expression into (4.11), the performance index is expressed as

J̄ = (∆ȳ∗tar −∆ȳ∗)TS2(∆ȳ∗tar −∆ȳ∗) =
m∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2. (4.13)

The goal of the controller to be introduced in the next subsection is to minimize the

tracking error by driving ∆y∗i towards ∆y∗tari , for i = 1, . . . ,m, both during dynamic

transients and in steady state. It is easy to note that the singular value σi, for

i = 1, . . . ,m, is the weight parameter for the ith component of the tracking error in

steady state. Since it is usually the case where σ1 > · · ·σk � σk+1 > · · · > σm > 0,

the input-output channels associated with the largest singular values are the most

significant when minimizing J̄ in (4.13). Therefore, it is possible that with the intent

of minimizing J̄ a lot of control effort will be spent to minimize the ith component

of the tracking error, for i > k, which has a very small contribution to the overall

value of the cost function. To avoid spending a lot of control effort for a marginal

improvement of the cost function value, the singular value set is partitioned into
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significant singular values Ss and negligible singular values Sn, i.e.,

U =

[
Us Un

]
, V =

[
Vs Vn

]
, S=



Ss 0

0 Sn


 ≈



Ss 0

0 0


 ,

∆ū∗=




∆ū∗s

∆ū∗n


 ,∆ȳ∗=




∆ȳ∗s

∆ȳ∗n


 . (4.14)

The performance index defined in (4.13) can then be approximated as

J̄ ≈ J̄s =
k∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2 = (∆ȳ∗tars −∆ȳ∗s)
TS2

s (∆ȳ
∗
tars −∆ȳ∗s) (4.15)

where

∆ȳ = Q−1/2US∆ȳ∗ ≈ Q−1/2UsSs∆ȳ
∗
s ⇐⇒ ∆ȳ∗s = S−1

s UT
s Q

1/2∆ȳ, (4.16)

∆ȳtar = Q−1/2US∆ȳ∗tar ≈ Q−1/2UsSs∆ȳ
∗
tars ⇐⇒ ∆ȳ∗tars = S−1

s UT
s Q

1/2∆ȳtar, (4.17)

∆ū = R−1/2V∆ū∗ = R−1/2Vs∆ū
∗
s +R−1/2Vn∆ū∗n ⇐⇒ ∆ū∗s = V T

s R
1/2∆ū, (4.18)

ē∗s = ∆ȳ∗tars −∆ȳ∗s . (4.19)

4.2.3 Design of H∞ MIMO Controller

The SVD output and input bases reduce to Q−1/2UsSs and R−1/2Vs, respectively. By

defining

∆y∗s = S−1
s UT

s Q
1/2∆y, (4.20)

∆u∗s = V T
s R

1/2∆u, (4.21)
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Figure 4.4: H∞ control formulation. Note that Wp and Wu are used only in the design
of the controller K to specify the performance criteria (they do not become part of
the controller).

and using (4.1), we can write

∆Y ∗s (s)

∆U∗s (s)
= PDC = S−1

s UT
s Q

1/2PR−1/2Vs, (4.22)

where ∆Y ∗s (s) and ∆U∗s (s) represent the Laplace transforms of the output ∆y∗s and

the input ∆u∗s, respectively. The transfer function PDC reduces in steady state (i.e.,

s = 0) to a fully decoupled system in which there is a one-to-one relationship between

the inputs ∆u∗s and the outputs ∆y∗s . The plasma controller is synthesized based on

this one-to-one relationship. The structure of the proposed controller is shown in

Figure 4.4, where two frequency-dependent functions, Wp and Wu, are introduced

to weight the tracking error and the control effort. The signals defined within the

proposed controller structure are the control input ∆u∗s, the system output ∆y∗s , the

tracking error e∗s = ∆y∗tars − ∆y∗s , the target ∆y∗tars = S−1
s UT

s Q
1/2∆ytar, the input

disturbance ∆u∗ds = V T
s R

1/2∆ud, the output disturbance ∆y∗ds = S−1
s UT

s Q
1/2∆yd,

and the weighted performance signal [ZT
1 , Z

T
2 ]T = [(Wpe

∗
s)
T , (Wu∆u

∗
s)
T ]T .

The feedback system in Figure 4.4 can be expressed in the conventional P ∗ −K
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Figure 4.5: Model in P ∗ −K control framework.

robust control design framework shown in Figure 4.5. The generalized open-loop

plant P ∗ is partitioned first as

P ∗ =



P̃11 P̃12

P̃21 P̃22


 , (4.23)

where





Z1

Z2




e∗s




= P ∗







∆y∗tars

∆u∗ds

∆y∗ds




∆u∗s




=



P̃11 P̃12

P̃21 P̃22










∆y∗tars

∆u∗ds

∆y∗ds




∆u∗s



, (4.24)

Then, the closed-loop transfer function Tzw from the input signal w = [∆y∗Ttars , ∆u∗Tds ,

∆y∗Tds ]T to the output signal z = [ZT
1 , Z

T
2 ]T can be computed by the lower linear

fractional transformation (LFT), i.e.,

Tzw = Fl(P
∗, K) = P̃11 + P̃12K(I − P̃22K)−1P̃21, (4.25)
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where

P̃11 =



Wp −WpPDC −Wp

0 0 0




P̃12 =



−WpPDC

Wu




P̃21 = [I − PDC − I]

P̃22 = −PDC .

We define the transfer function Ms as

Ms = (I + PDCK)−1, (4.26)

and write the closed-loop transfer function as

Tzw = Fl(P
∗, K) =



WpMs −WpMsPDC −WpMs

WuKMs −WuKMsPDC −WuKMs


 . (4.27)

The transfer function WpMs (−WpMs) represents the response of the weighted track-

ing error to the target (output disturbance), while the transfer function −WpMsPDC

denotes the response of the weighted tracking error to the input disturbance. The

transfer function WuKMs (−WuKMs) represents the response of the weighted control

effort to the target (output disturbance), while the transfer function −WuKMsPDC

denotes the response of the weighted control effort to the input disturbance.

A controller K(s) = ∆U∗s (s)/E∗s (s), where E∗s (s) denotes the Laplace transform

of e∗s, is sought to stabilize the closed-loop system and minimize the H∞ norm of the
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transfer function Tzw, denoted as ‖Tzw‖∞, i.e.,

min
K(s)
‖Tzw‖∞. (4.28)

The H∞ norm of the transfer function Tzw is defined as the supremum over the

frequency ω of the maximum singular value σ̄ of the transfer function, i.e.,

‖Tzw(s)‖∞ , sup
ω
σ̄[Tzw(jω)]. (4.29)

The H∞ norm represents the maximum energy amplification between input and out-

put. Therefore, by minimizing ‖Tzw(s)‖∞ while stabilizing the closed-loop system,

the effect of the input signal (reference, input disturbance, output disturbance) on the

energy of the output signal (frequency-weighted tracking error, frequency-weighted

control effort) is also minimized. This is of critical importance because the objec-

tive is to keep the frequency-weighted tracking error Z1 = Wpe
∗
s and control effort

Z2 = Wu∆u
∗
s small regardless of the characteristics of the reference ∆y∗tars , input

disturbance ∆u∗ds and output disturbance ∆y∗ds . Statement (4.28) defines what is

called a mixed sensitivity H∞ control problem since the goal is twofold: reduction of

the tracking error (minimization of Z1) while using as little feedback control effort as

possible (minimization of Z2). The H∞ control synthesis technique is part of what is

referred to as robust control theory [64] because by setting an upper bound for the

H∞ norm of the closed-loop transfer function, the controller is able to guarantee sta-

bility and a level of performance regardless of changes in the plant dynamics within

a predefined set.
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Figure 4.6: Inverse of performance weightWp and maximum singular values of transfer
function Ms (a) and MsPDC (b). Inverse of performance weight Wu and maximum
singular values of transfer function KMs (c) and KMsPDC (d).

Table 4.1: The H∞ Control Parameters
Weight Function Mi wbi Ai Ki

Wp 1 0.1 0.5 1
Wu 100 10 0.01 1

The weighting functions Wp and Wu, which can be parameterized as [63]

Wp(s) =

( s
M1

+ wb1

s+ wb1A1

)2

Kp, Wu(s) =

(
s+ wb2A2
s
M2

+ wb2

)2

Ku,
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are used to shape in the frequency domain the responses of the tracking error and

control effort. The coefficients M1 and M2 are related to the high frequency behaviors,

the parameters A1 and A2 are related to the low frequency behaviors, and wb1 and

wb2 are related to the bandwidths of the transfer functions. The design parameters in

the H∞ control synthesis as well as Kp and Ku are shown in Table 4.1. The parame-

ters are chosen to shape the frequency responses 1/|Wp(jω)| and 1/|Wu(jω)|, which in

turn serve as the desired upper bounds for the maximum singular values of the closed-

loop transfer functions for the tracking error and control effort. Typically, references

and disturbances are low frequency signals; therefore, for good reference tracking, the

magnitude of Ms should approach zero at low frequency. In order to prevent amplifi-

cation of high frequency noise, the peak magnitude of Ms needs to be suppressed and

its magnitude should approach one at high frequency. Accordingly, for tight control

the magnitude of KMs should be larger than one at low frequency, and should be

attenuated below one at high frequency to avoid noise amplification by the feedback

controller. Finally, the frequency range over which the feedback controller can actu-

ate the system is specified by placing upper and lower limits on the bandwidth of the

closed-loop system. Figure 4.6 compares the frequency responses of the upper bounds

1/Wp and 1/Wu with the maximum singular values of the closed-loop transfer func-

tions Ms, MsPDC , KMs and KMsPDC , achieved with the synthesized feedback con-

troller K (see transfer function (4.27)) for R = diag([0.01, 0.25, 1000, 0.5, 0.25])

and Q = diag([0.05, 0.1, 1, 1, 1, 1]). As can be seen from Figure 4.6 (a)-(d), the

frequency responses of the magnitudes of the maximum singular values of the closed-

loop transfer functions are very close to their respective upper bounds, achieving in

this way the pursued tracking goal. From Figure 4.6 (b), it is possible to note however

that the controller cannot reject input disturbances in all frequencies. This is indeed

expectable since it is not feasible to shape independently all the possible transfer
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functions in a closed loop system due to intrinsic sensitivity constraints [63, 64] and

lack of degrees of freedom (note that that the transfer function between the target

signal (or output disturbance) and the weighted tracking error in Figure 4.6 (a) and

the transfer function between the input disturbance and the weighted tracking error

in Figure 4.6 (b) share the same free parameter, which is the controller K through the

sensitivity function Ms, and are sought to be bounded by the same weight function

1/Wp). Importantly, the controller guarantees good tracking and effective rejection

of input disturbances, which are constant in this work, at low frequencies, and no

amplification of the output disturbance, which is usually noise, at high frequencies.

By solving the minimization problem (4.28), we can synthesize a controller K that

guarantees tracking while using as little control effort as possible. This is achieved

both during the transients and in steady state, minimizing in turn (4.13). In practice,

the control input and measured output of the original system P are ∆u and ∆y,

respectively. The measured output is in turn used to compute the tracking error

e = ∆ytar − ∆y. As shown in Figure 4.4, the overall ι-profile and βN controller for

system P can be computed as

K̂(s) =
∆U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q

1/2, (4.30)

where ∆U(s) and E(s) denotes the Laplace transforms of ∆u and e, respectively,

and where the definition of K(s) and the relationships e∗s = S−1
s UT

s Q
1/2e, ∆u =

R−1/2Vs∆u
∗
s have been used. For implementation in the DIII-D PCS, the controller

(4.30) is expressed in state space form, i.e.,

ẋc = Acxc +Bc(∆ytar −∆y)

∆u = Ccxc +Dc(∆ytar −∆y), (4.31)
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where xc and (Ac, Bc, Cc, Dc) denote the controller state vector and system matrices.

4.2.4 Control Objectives, Expectations and Limitations

The significant component of the tracking error e∗s introduced in the previous section

and shown in Figure 4.4 plays a crucial role both in understanding the objectives

of the controller and in judging its performance. The significant component of the

tracking error e∗s, representing the difference between the significant components of

the target ∆y∗tars and the significant components of the output ∆y∗s , can be written

as

e∗s = ∆y∗tars −∆y∗s = S−1
s UT

s Q
1/2(∆ytar −∆y)

= S−1
s UT

s Q
1/2(ytar − y) = S−1

s UT
s Q

1/2e, (4.32)

where e = ∆ytar −∆y = ytar − y denotes the tracking error. It is critical to realize at

this point that the dynamic component of the controller introduced in Section 4.2.3

is designed to reduce not the tracking error e but the significant components of the

tracking error e∗s as decided by the static component of the controller designed in

Section 4.2.2, which takes care of the decoupling of the system and the selection of

the significant control channels based on the significant basis given by the columns

of Q−1/2UsSs. The cost function

Js = (e∗s)
TS2

s (e
∗
s) = (∆y∗tars −∆y∗s)

TS2
s (∆y

∗
tars −∆y∗s)

=
k∑

i=1

σ2
i (∆y

∗
tari
−∆y∗i )

2 ,
k∑

i=1

Jsi , (4.33)

which reduces to the the cost function (4.15) as t → ∞, could therefore be used to

evaluate the performance of the controller.
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In other words, the objective of the controller is only to drive the component of

the output ∆y lying in the subspace generated by the significant basis close to the

component of the target ∆ytar lying in the same subspace. The difference between

these two components is indeed the part of the tracking error e that can be driven to

zero or removed by the controller if enough actuation is available. The tracking error

can then be written as e = erm + enrm, where erm is the removable tracking error

and enrm is the unremovable tracking error, which has no projection on the subspace

generated by the significant basis, i.e. S−1
s UT

s Q
1/2enrm = 0. The removable tracking

error can be written as

erm = Q−1/2UsSse
∗
s = Q−1/2UsSs[S

−1
s UT

s Q
1/2e]

= Q−1/2UsSs[S
−1
s UT

s Q
1/2(∆ytar −∆y)] (4.34)

= Q−1/2UsU
T
s Q

1/2∆ytar −Q−1/2UsU
T
s Q

1/2∆y

= (Q−1/2UsU
T
s Q

1/2∆ytar + yFF )− (Q−1/2UsU
T
s Q

1/2∆y + yFF ).

The controller is then designed to reduce erm, or equivalently, to drive the sig-

nificant output ∆ys = Q−1/2UsU
T
s Q

1/2∆y close to the significant target ∆ytars =

Q−1/2UsU
T
s Q

1/2∆ytar.

It is important to realize that, regardless of the number of significant singular

vectors used for control design, the objective of the MIMO controller is not to achieve

tight regulation for a finite number of components of the significant output but to

reduce a removable tracking error that includes all the components of the output.

The proposed controller is designed to drive the outputs as close as possible to their

target values in order to minimize the overall weighted tracking error, which some-

times may result for instance in increasing the tracking error for some components of

the output if this leads to a decrease of the tracking error for some other components
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that produces a net reduction of the overall weighted tracking error. It is therefore

not expected individual and independent control of a finite number of points on the

profile but a consistent reduction of the overall weighted tracking error. As the overall

weighted tracking error is driven to zero, tight regulation of all the components of

the output is achieved (in the subspace generated by the basis of significant singular

vectors). However, it is unrealistic to expect no tracking error. As long as the control

effort is limited by physical (actuation saturation) or design (actuation penalization)

constraints, there will be some unreachable target output. Besides the saturation of

the actuators, which is inherent to any physical system, in this work we penalize the

control effort during both the static controller design (weighting matrix R) and the

dynamic controller design (weighting function Wu). Therefore, neither the cost func-

tion (4.33) nor the removable error (4.35) will be driven to zero by the controller since

its goal is not the pure elimination of tracking error but the combined minimization

of tracking error and control effort.

It is also critical to understand that the controller is designed for a limited band-

width. The weighting functions Wp and Wu, which are functions of the frequency,

not only impose relative weights on the tracking error and the control effort but also

define the bandwidth over which the weights are imposed. In this way, the closed-loop

transfer functions are shaped in the frequency domain with a particular bandwidth

that will of course affect the response of the system. This can be appreciated from

Figure 4.6 (a), which shows the frequency response of the sensitivity function Ms

that relates the target signal with the tracking error. It is possible to note that for

frequencies below 1 Hz, the tracking error is attenuated, while for frequencies above

1 Hz, it is not. This implies that the closed-loop system will be able to track only

targets with frequency content below 1 Hz. The bandwidth of the closed-loop system

is directly correlated with the bandwidth of the open loop system, which is assumed
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Table 4.2: Actuator Limits in DIII-D (some limits are due to practical constraints on
operating the actuators while others (e.g., Ip) are defined as administrative limits)

Channel Actuator Min Max Units
1 Ip 0.3 1.5 MA
2 Co-beam Power 0 12.5 MW
3 Ct-beam Power 0 5 MW
4 Blanced-beam Power 0 2.5 MW
5 Total EC Power 0.3 3 MW

during the modeling procedure by choosing the frequency content of the excitation

(input) signals during the system identification experiment and the cutoff frequency

of the low-pass filter (3.7).

Finally, it is always important to remember that the plasma response models used

for control design in this work are linear and valid only around the reference state

used during the system identification experiment. The linearity of the model limits

the controller to applications where the control objective is just the regulation of the

system around the reference state. Moreover, attempting just regulation around a

reference state different from that used for system identification may limit the closed-

loop performance.

4.2.5 Design of Anti-windup Compensator

The DIII-D tokamak is a nonlinear complex system, which is subject to actuator

saturations as shown in Table 4.2. At the moment of designing the mixed-sensitivity

H∞ MIMO controller (4.31), the actuator saturations were not considered, i.e., û = u

and ∆û = ∆u. As a result of saturation, the actual plant input may be different from

the output of the controller. In this case the controller output does not drive the

plant input and, as a consequence, the states of the controller may wind up because

the plant does not respond as expected, which can cause the behavior of the system
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to deteriorate dramatically or even become unstable. To cope with the negative

effects of saturation, the goal is not to redesign the proposed MIMO controller but to

design an anti-windup compensator that keeps the controller well-behaved and avoid

undesirable oscillations when saturation is present. The anti-windup compensator

must in addition leave the nominal closed-loop unmodified when no saturation is

present. The anti-windup augmentation is written as

ẋaw = Aawxaw +Baw(û− u) + γ(u, û)λ

s = Cawxaw

λ = −cxaw − Aawxaw −Baw(û− u)

, (4.35)

where û denotes the output of the saturation function defined as

ûi = sat
umaxi

umini
(ui) =





umaxi if umaxi < ui

ui if umini < ui < umaxi

umini if ui < umini

, (4.36)

where umaxi and umini are the maximum and minimum saturation limits for ith input

channel, for i = 1, . . . ,m, γ(u, û) = 1 if u = û and 0 otherwise, and c is a positive

constant. The system matrices (Aaw, Baw, Caw) of the anti-windup compensator are

chosen identical to the system matrices (A,B,C) of the plant P in (3.8) [65, 66, 67].

When û 6= u (saturation), the anti-windup compensator should keep the controller

well-behaved and avoid undesirable oscillations. To achieve this goal, the output of

the anti-windup compensator s must modify the nominal closed-loop system as shown

in Figure 4.1. In this case, γ ≡ 0 and the anti-windup compensator (4.35) reduces to

ẋaw = Aawxaw +Baw(û− u)

s = Cawxaw

. (4.37)
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The relation between input and output of the linear model (4.37) can be expressed

in terms of its transfer function AW (s), i.e.,

∆S(s)

∆Û(s)−∆U(s)
= AW (s) = Caw(sI − Aaw)−1Baw, (4.38)

where s denotes the Laplace variable and ∆S(s) and ∆Û(s) − ∆U(s) denote the

Laplace transforms of the output s and the input û− u respectively. It is possible to

note from Figure 4.1 that the input to the controller will be in this case equal to

∆Y (s)−∆S(s) = P (s)∆Û(s)− AW (s)(∆Û(s)−∆U(s)), (4.39)

where both (3.8) and (4.38) have been used. By choosing the system matrices

(Aaw, Baw, Caw) of the anti-windup compensator identical to the system matrices

(A,B,C) of the plant model, the transfer functions P (s) and AW (s) are also identical.

Therefore, the input to the controller reduces to

∆Y (s)−∆S(s) = P (s)∆U(s), (4.40)

which represents the response of the system to the unsaturated control input ∆U(s)

requested by the controller. The anti-windup compensator hides the saturation from

the nominal controller [65, 66, 67] and guarantees in this way that the controller

remains well behaved.

When û = u (no saturation), the anti-windup compensator should leave the nom-

inal closed-loop unmodified. To achieve this goal, the output of the anti-windup

compensator s, and therefore its state xaw, must be forced to zero. In this case, γ ≡ 1
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and the anti-windup compensator (4.35) reduces to

ẋaw = −cxaw
s = Cawxaw

. (4.41)

With the freedom of choosing the positive constant c, the state xaw will converge to

zero arbitrarily fast and so will the output s.

4.2.6 Control Algorithm Implementation in the DIII-D PCS

The controller was implemented as a discrete-time state-space system with a sampling

time of 20 milliseconds. This sampling time was set based on the modulation of the

motional Stark effect (MSE) beam used to obtain q profile measurements in real-

time, which was modulated on for 10 milliseconds then off for 10 milliseconds. The

measurements provided to the PCS by rtEFIT, are βN , the plasma current Ip, the

poloidal stream function at the magnetic axis ψaxis and at the plasma boundary

ψbdry, and the safety factor q on a normalized flux spatial domain ψn = ψ−ψaxis
ψbdry−ψaxis

.

The safety factor q(ψrtn ) is provided by rtEFIT at 64 evenly spaced points ψrtnk =

0, 1/64, 2/64, . . . , 63/64. By using the relationship between the toroidal flux and

the mean effective minor radius, a coordinate transformation algorithm (see [51],

Appendix D) has been implemented in the PCS as part of this work to construct the

to-be-controlled magnetic profile (q, ι, Ψ = 2πψ, or θ , ∂ψ/∂ρ̂) as a function of ρ̂

from the data provided by the rtEFIT algorithm (q(ψrtn ), ψaxis, ψbdry, and Ip).
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Table 4.3: Initial Conditions
Shot Identification Reference Dist. I Dist. II Dist. III
Ip 0.9045 MA 0.9013 MA 0.8997 MA 0.8957 MA 0.8972 MA
βN 1.8840 2.3897 2.3122 2.4097 2.3763
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Figure 4.7: Rotational transform ι profile (a) and safety factor q profile (b) for shots
#140090, #146417, #146419, #147704 and #147707 at t = 2.5 s.

4.3 Closed-loop Simulated and Experimental Re-

sults

Simulated and experimental results are presented in this section to illustrate the per-

formance of the proposed feedforward + feedback control scheme. The whole control

system, which combines the MIMO controller and the anti-windup compensator, is

shown in Figure 4.1. A reference (feedforward) control shot #146417 for the con-

trol experiment was run first without feedback control in order to reproduce flat-top

conditions of the system identification experiment. Figure 4.7 compares ι and q at

t = 2.5 s for the typical system identification shot #140090 and the reference control

shot #146417, and Table 4.3 provides the values of Ip and βN at t = 2.5 s for both

shots. Both the figure and the table show that the reproduction is not completely
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Table 4.4: Input Disturbances
Number ∆Ipd ∆PCOd ∆PCTd ∆PBLd ∆PECd

Disturbance I 0.02 MA -0.25 MW 0 MW -0.25 MW -0.1 MW
Disturbance II 0.1 MA 0 MW 0 MW 0 MW 0 MW
Disturbance III 0.1 MA 0.1 MW 0 MW -0.1 MW 0MW

successful, neither in terms of the q or ι profiles, nor in terms of βN , which can impact

the closed-loop performance due to the questionable validity of the linear model. The

feedforward inputs (after t = 2.5 s), denoted as uFF , for the reference control shot

#146417, which are represented by red dashed lines in the figures in this section, are

Ip = 0.9 MA, PCO = 1.9838 MW, PCT = 0 MW, PBL = 2 MW, and PEC = 1.4415

MW. The feedforward inputs are rather different from those used during the system

identification experiment, which are given by Ip = 0.85 MA, PCO = 3.2681 MW,

PCT = 0 MW, PBL = 0 MW, and PEC = 1.4431 MW (after t = 2.5 s). This choice

was driven by the decision of: i- moving the feedforward input values away from

the saturation values and providing more headroom for the feedback controller while

approximately preserving the total NBI power; ii- creating a to-be-tracked target pro-

file slightly different from the system-identification reference profile (assuming good

reproduction of system-identification conditions at t = 2.5 s). The ι profile and βN

resulting from these reference (feedforward) inputs in shot #146417, denoted as yFF ,

are used as targets in the control experiments and represented by red dashed lines in

the figures in this section.

The goal for both simulations and experiments was to demonstrate that the pro-

posed controller is capable of regulating the system around target ι profile and βN

even in the presence of disturbances. Note that since the control goal is regulation,

∆ytar ≡ 0 ⇐⇒ ytar = yFF in all the control experiments. As discussed in Sec-

tion 4.2.4, this implies that ∆ytars = ∆ytar ≡ 0 and erm = yFF − (∆ys + yFF ). Since
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the goal of the controller is to drive erm close to zero while minimizing the control

effort, it is therefore of interest to compare ∆ys+yFF with ytar(= yFF ), which are rep-

resented by black dashed-dotted lines and red dashed lines, respectively, in the figures

in this section. Three sets of input disturbances (shown in Table 4.4) were created

for this purpose. The input disturbances of the plasma current and H&CD powers

can be expressed as ∆ud = [∆ITpd , ∆P T
COd

, ∆P T
CTd

, ∆P T
BLd

, ∆P T
ECd

]T (see Figure 4.1

or Figure 4.4 for disturbance injection point). Disturbance I, representing relatively

large disturbances in the neutral beam powers and a small disturbance in the plasma

current, is introduced at t = 3.5 s to test ι profile control. Disturbance II, represent-

ing a relatively large disturbance in the plasma current, is introduced at t = 3 s to

test ι profile control. Disturbance III, representing relatively large disturbances in

both the plasma current and the neutral beam powers, is introduced at t = 3 s to

test simultaneous ι profile and βN control.

The decision of not smoothening the target signal ytar(= yFF ) obtained as a direct

measurement from the reference (feedforward) control shot #146417, although not

optimal and leading to a more complicated analysis of the results, responds to the

convenience of minimizing operations between discharges to avoid implementation

mistakes and to maximize the experimental time. The objective is however by no

means the tracking of the measurement noise. The high-frequency noise cannot be

indeed tracked by the closed-loop system due to its limited bandwidth (see Figure 4.6

(a)). It is therefore expected that most of the noisy component of the target be filtered

by the closed-loop system itself and approximately the same closed-loop response be

obtained regardless of using a noisy or a smoothened target signal.

During the control experiments, the counter-injection beam was not available and

the gryotrons were either poorly controlled or unavailable. The unavailability of

the counter-injection beam was known right before the experiment, allowing for the
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redesign of the controllers in preparation for this condition by setting a high value for

the associated weight in the R matrix. Associating a high weight to an unavailable

actuator instead of removing it from the model, which would indeed be a better

solution, allows for the redesign of the controller without modifying its number of

outputs, reducing in this way the risk of controller implementation problems when

the actuator is lost right before the experiment. The gyrotrons were lost during the

experiment, not allowing for the redesign of the controller. Note that the controller

does not request counter-injection beam power but it does request gyrotron power.

The proposed controllers were tested in the flat-top phase of the discharge, from

ti = 2.5 s to tf = 6 s in both simulations and experiments. To allow for comparison

between simulations and experiments, the experimental situations are replicated in

the simulation studies.

4.3.1 Case 1: Rotational Transform ι Profile Control under

Disturbance I

When the objective is the control of just the ι profile, only the state equation of the

slow model (3.5) is used for control design (model (3.8) is reduced by eliminating

the second rows in both the state and output equations). All singular values are

kept during the controller design (k = m = 5) in this case. The plasma current Ip

plays a significant role in controlling the ι profile at the plasma boundary, and the

counter-injection beam was not available in the experiment; therefore, the matrix is

set as R = diag([0.1, 0.25, 1000, 0.5, 0.25]). Equal weight is put on each tracking

error component, i.e., Q = diag([1, 1, 1, 1, 1]).

Figure 4.8 shows simulation results. The simulated closed-loop-controlled in-

puts (solid blue lines) are shown in Figure 4.8 (a) and compared with the refer-
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Figure 4.8: Rotational transform ι profile closed-loop-controlled simulation (shot
#146419): (a) Inputs, (b) Outputs. Disturbance I. Light-gray background: feed-
back on - disturbance off, dark-gray background: feedback on - disturbance on.
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ence open-loop inputs (red dashed lines). The controller rejects the disturbance in

the plasma current Ip rather slowly, and Ip nearly stays constant during the simula-

tion, as shown in Figure 4.8 (a.1). Beam and gyrotron powers, shown in Figure 4.8

(a.2)-(a.5), are modulated by the feedback controller away from their reference values

without hitting saturation limits. The simulated closed-loop-controlled ι profile at

ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 (solid blue lines) is shown in Figure 4.8 (b). Moreover, the

significant output (dashed-dotted black lines) is compared with the (significant) tar-

get (red dashed lines) in the same figure. In the first second of the simulation, from

t = 2.5 s to t = 3.5 s, the controller regulates ι around the target; afterwords the

controller strives to reject the disturbance injected at t = 3.5 s, keeping the tracking

error under 10%.

Figure 4.9 shows the experimental results obtained from shot #146419. The

experimental closed-loop-controlled inputs are shown in Figure 4.9 (a) and compared

with the reference open-loop inputs (red dashed lines). Both the values requested by

the ι-profile controller (magenta dashed-dotted lines) and the values achieved by the

dedicated plasma current, beam power and gyrotron power dedicated controllers (blue

solid lines) are illustrated in the figure. Note that while the plasma current and beam

power controllers successfully deliver the values requested by the ι-profile controller,

the EC power control is very poor during this discharge, which can be interpreted as

an additional input disturbance. The trends of all experimental inputs (Figure 4.9

(a)) are very similar to those obtained in simulations (Figure 4.8 (a)), which suggests

that the data-driven linear model successfully approximates the ι profile response

around the reference profile. The experimental closed-loop-controlled ι profile at

ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 (solid blue lines) are shown in Figure 4.9 (b). In addition,

the significant output (dashed-dotted black lines) is compared with the (significant)

target (red dashed lines) in the same figure. From t = 2.5 s to t = 3.5 s, there are
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Figure 4.9: Rotational transform ι profile closed-loop-controlled experiment (shot
#146419): (a) Inputs, (b) Outputs. Disturbance I. Light-gray background: feedback
on - disturbance off, dark-gray background: feedback on - disturbance on.
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Figure 4.10: Plasma ι(ρ̂) profile at time t= 2.538, 4.018, 5.018, 5.998 s (shot
# 146419).

no input disturbances, and the tracking errors are less than 0.5%. Disturbance I is

injected at t = 3.5 s and its effect is very clear from Figure 4.9 (a). The tracking

quality clearly deteriorates after t = 3.5 s but the controller manages to drive the

system within a 10% margins around the target profile. As in the simulation study,

the plasma current Ip nearly keeps a constant value and shows a rather sluggish

behavior. In addition, the available actuation does not seem to be fully used.

A series of four plasma ι profiles at different times during the experiment are

shown in Figure 4.10. The red dashed line denotes the (significant) target profile,
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Figure 4.11: Control performance metrics (shot #146419 - Disturbance I): (a) Cost
function, (b) Removable tracking error for ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8. Light-
gray background: feedback on - disturbance off, dark-gray background: feedback on
- disturbance on.

the black squares represent the significant output, and the blue circles represent the

measured ι profile at different locations (the solid circles denote the control points).

As can be seen from Figure 4.10 (a), the initial profile is very close to the target,

which implies that the conditions of shot #146417 have been successfully reproduced

at t = 2.5 s. After the input disturbances are injected into the system, the tracking

errors become larger. As the time goes on, the controller rejects the disturbance, and

the errors become smaller, which is shown in Figure 4.10 (b), (c), (d).

Figure 4.11 illustrates some metrics related to the performance of the controller.

On the left, Figure 4.11 (a) shows the performance index Js (4.33), while on the right,
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Figure 4.11 (b) shows the removable tracking error erm (4.35). Since k = m = p = 5

in this case, all outputs and targets live in the subspace generated by the significant

singular vectors. In other words, ∆ys = ∆y, ∆ytars = ∆ytar, and all the tracking

error is removable (e = erm). This explains the fact that blue solid lines and dashed-

dotted black lines are coincident in Figure 4.8 and Figure 4.9, and blue circles and

black squares are coincident in Figure 4.10. Under these conditions, the controller

could in principle drive the output to the target. This is not shown, however, in any

of the figures. Instead, the controller seems to drive the tracking error to a small

(note scale in Figure 4.11 (a)) but non-zero steady value both in the experiment

and in the simulation. As discussed in Section 4.2.4, this could be explained by the

controller trying to minimize control effort at the expense of a larger tracking error.

This would be consistent with the observed actuator behavior (weak and sluggish

actuation) and would indicate the need to reduce the weight R in comparison with

the weight Q. There is, however, another reason for this behavior, which is the lack

of two actuators (PCT and PEC). Since m = 3 in practice, the controller is able to

independently actuate the system only in three different directions (input singular

vectors). This implies that only three different output singular vectors are indeed

available for the generation of the system output in a space of dimension p = 5,

which makes ∆ys (∆ytars) indeed different from ∆y (∆ytar) and the tracking error

not completely removable.

4.3.2 Case 2: Rotational Transform ι Profile Control under

Disturbance II

To improve the tracking performance while avoiding spending a lot of control effort

for a marginal improvement of the cost function value, the control weight matrix is
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Figure 4.12: Rotational transform ι profile closed-loop-controlled simulation (shot
#147704): (a) Inputs, (b) Outputs. Disturbance II. Light-gray background: feedback
on - disturbance off, dark-gray background: feedback on - disturbance on.
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redefined as R = diag([0.01, 0.25, 1000, 0.5, 0.25]) and only the two most signif-

icant singular values (k = 2) are preserved in this case study. In this way more Ip

regulation is allowed and the effort by the controller is focused on reducing the two

most significant contributions to the cost function value (see the contributions by the

different singular values in Figure 4.11 (a) as an example). Note that this decision is

rather conservative because up to k = 3 singular values could have been kept accord-

ing to the number of available actuators (Ip, PCO, PBL). Equal weight is put on each

tracking error component, i.e., Q = diag([1, 1, 1, 1, 1]).

Figure 4.12 shows simulation results. The controller now rejects the disturbance

in the plasma current Ip more quickly and drives the Ip close to the constant reference

(feedforward) value, as shown in Figure 4.12 (a.1). Beam and gyrotron powers, shown

in Figure 4.12 (a.2)-(a.5), are weakly modulated by the feedback controller within the

saturation limits and are driven towards to their reference (feedforward) values by

the end of the discharge. In the first 0.5 second of the simulation, from t = 2.5 s to

t = 3 s, the regulation results for the undisturbed plant are satisfactory for all control

points (ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8) as shown in Figure 4.12 (b). Once the disturbance

in the plasma current is injected at t = 3 s, its effect on the outer ι profile becomes

clearly notable from Figure 4.12 (b.5), where it is shown that the ι value at ρ̂ = 0.8

ramps up. The robust controller rejects the disturbances and reduces the tracking

errors in less than one second, keeping them below 5% for the rest of the discharge.

Figure 4.13 shows the experimental results obtained from shot #147704. As shown

in Figure 4.13 (a.1), the ι-profile controller rejects the plasma current disturbance

rather fast and the dedicated Ip controller delivers the requested current very closely.

The working beams successfully follow the values requested by the ι-profile controller

but the EC H&CD system is not available during the discharge and does not deliver

the requested value, which introduces an additional disturbance into the closed-loop
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system that the controller must overcome. Both the EC H&CD system and the

counter-injection beam have important effects on the plasma resistivity and toroidal

current density in the center of the plasma. This can be appreciated by examining

the steady-state gains of the system in Figure 4.2, where both PCT and PEC strongly

affect the inner part of the steady-state ι profile. The lack of EC H&CD power reg-

ulation, added to the unavailability of the counter-injection beam, makes the control

of the inner ι profile very challenging as observed clearly from Figure 4.13 (b.1)-(b.2).

Since the plasma current disturbance is quickly rejected after t = 3 s, the outer pro-

file tracking errors are kept small. There are nearly no tracking errors after t = 4

s for ι at ρ̂ = 0.5, 0.6, 0.8 as noted from Figure 4.13 (b.3)-(b.5). During the experi-

ment, the requested EC and balanced-beam powers reach saturation and activate the

anti-windup compensator, which causes the difference observed between simulation

(Figure 4.12) and experiment (Figure 4.13).

A series of four plasma ι profiles at different times during the experiment are

shown in Figure 4.14. As can be seen from Figure 4.14 (a), the initial profile is very

close to the target, which implies that the conditions of shot # 146417 have been

successfully reproduced at t = 2.5 s. After the input disturbances is injected into

the system, the tracking performance deteriorates, particularly in the inner region of

the plasma as shown in Figure 4.14 (b). As time goes on, the controller rejects the

disturbance and forces the tracking errors at ρ̂ = 0.5, 0.6, 0.8 to become smaller as

shown in Figure 4.14 (c)-(d). Due to the unavailability of both the EC H&CD and

the counter-injection NBI systems in this experiment, the tracking performance at

ρ̂ = 0.2, 0.4 remains rather poor during the whole discharge.

Since (k = 2) < (m = p = 5) in this case, not all the outputs live in the subspace

generated by the significant singular vectors. In other words, ∆ys 6= ∆y and not all

the tracking error is removable (e = erm + enrm). This explains the fact that blue
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Figure 4.13: Rotational transform ι profile closed-loop-controlled experiment (shot
#147704): (a) Inputs, (b) Outputs. Disturbance II. Light-gray background: feedback
on - disturbance off, dark-gray background: feedback on - disturbance on.
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Figure 4.14: Plasma ι(ρ̂) profile at time t= 2.538, 3.518, 4.518, 5.518 s (shot
# 147704). Target (red dashed line), significant ι (black squares) and experimen-
tal ι (blue circles) profiles.

solid lines and dashed-dotted black lines are not coincident in Figure 4.13, and blue

circles and black squares are not coincident in Figure 4.14. It is however possible

to note from these figures that the two dominant output singular vectors can indeed

reproduce quite well the outer part of the profile, i.e., ∆ys ≈ ∆y in the outer region.

This is not the case in the in inner region, where there is a marked difference between

∆ys and ∆y, and therefore a significant unremovable tracking error. This can be

explained by examining the steady-state gains of the system in Figure 4.2, where the
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Figure 4.15: Control performance metrics (shot #147704 - Disturbance II): (a) Cost
function, (b) Removable tracking error for ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8. Light-
gray background: feedback on - disturbance off, dark-gray background: feedback on
- disturbance on.

responses of the system to both PCO and PBL, the only beam groups available in this

experiment, show a marked difference between ∆ȳs and ∆ȳ in the inner region and

a good match in the outer region. Therefore, it is not only the unavailability of PEC

and PCT but also the inability of PCO and PBL to make ∆ys ≈ ∆y in the inner region

the reasons for a poor tracking performance at ρ̂ = 0.2, 0.4 as shown in Figure 4.13

and Figure 4.14. However, what is important from the point of view of the controller

performance is its ability to drive ∆ys close to zero, or ∆ys + yFF (dashed-dotted

black lines) close to ytar = yFF (red dashed lines), as shown in Figure 4.13 for all

the points of the ι profile, including those in the inner region (ρ̂ = 0.2 and ρ̂ = 0.4).
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This can also be appreciated from Figure 4.14, where the significant output profile

∆ys + yFF (black squares) is driven close to the target profile ytar = yFF (red dashed

lines). The time evolution of the significant components of the cost function Js (4.33)

in Figure 4.15 (a) shows the effectiveness of the controller in rejecting the disturbance

within the subspace generated by the dominant singular vectors. Note that the effect

of the disturbance is mainly captured by the most dominant output singular vector.

This can be explained by noting that Disturbance II (see Table 4.4) heavily affect the

most dominant input singular vector (see Figure 4.3 (b)). Figure 4.15 (b) shows that

all the removable tracking error erm (4.35) components are driven close to zero.

4.3.3 Case 3: Rotational Transform ι Profile and βN Control

under Disturbance III

Due to the large difference in plasma resistivity between the center and the edge,

the current density rapidly equilibrates at the edge, and evolves slowly in the center.

This, combined with the actuation limitations discussed in Section 4.3.2, makes the

control of the inner ι profile very challenging. Recognizing the lack of capability for

controlling the inner part of the profile, and to prevent the controller from spending

a large amount of control effort through the available actuators trying to reduce

the tracking error in the inner region without any significant improvement in overall

performance, the state weight matrix is chosen as Q = diag([0.05, 0.1, 1, 1, 1, 1])

(the weights of the tracking errors associated with ι(0.2, t) and ι(0.4, t) are reduced).

The main control effort is therefore applied to ι(0.5, t), ι(0.6, t), ι(0.8, t), and βN(t).

Moreover, in order to be able to evaluate the controller effectiveness in regulating

the ι profile and βN(t) within the limited controllable region defined by the available

actuators, only the two most important singular values (k = 2) are preserved in this
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Figure 4.16: Closed-loop simulation (shot #147707): (a) Inputs, (b) Outputs. Distur-
bance III. Light-gray background: feedback on-disturbance off, dark-gray background:
feedback on-disturbance on, white background: feedback off-disturbance on.
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case study. Note that this decision, as in the previous case, is rather conservative

because up to k = 3 singular values could have been preserved. The expectation is

that the three available actuators will provide the capability of actuating in these

two most dominant directions. The other control parameters are the same as in

Section 4.3.2. The feedback controller is turned on and off throughout the discharge,

i.e., OFF for 0 to 2.5 s, ON for 2.5 to 4.75 s, OFF for 4.75 to 5 s, and ON for 5 to 6 s.

Figure 4.16 shows simulation results. In the first 0.5 second of the simulation,

from t = 2.5 s to t = 3 s, the controller regulates ι and βN around the target values.

When the disturbance is initially introduced into the system at t = 3 s, the outer ι

profile moves away from the target value immediately. As shown in Figure 4.16 (a.1),

the disturbance in the plasma current is rejected by the controller and the reference

(feedforward) value is recovered after the transient. Beam and gyrotron powers, shown

in Figure 4.16 (a.2)-(a.5), are modulated by the feedback controller away from their

reference values without hitting saturation limits. Due to the increased level of beam

power, βN also moves away from its target value. The feedback controller finally

rejects the effects of the input disturbance after around 1.75 s, and both the target

ι profile and βN evolutions are once again effectively tracked. Then the controller is

turned off for 0.25 second from t = 4.75 s to t = 5 s, and the tracking errors become

larger. In the final second of the simulation, from t = 5 s to t = 6 s, the controller is

turned back on and it rejects nearly all the effects of the disturbance by repeating the

control actions already observed during the first on-period from t = 3 s to t = 4.75 s.

Based on the results from Figure 4.16, we can note that the outer ι profile is strongly

affected by the plasma current and βN is strongly affected by the beam and gyrotron

powers. The controller tries to recover the target ι profile without producing large

βN excursions. Once the disturbance is rejected, the ι profile and βN are driven to

the target values.
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Figure 4.17: Experiment (shot #147707): (a) Inputs, (b) Outputs. Disturbance
III. Light-gray background: feedback on - disturbance off, dark-gray background:
feedback on - disturbance on, white background: feedback off - disturbance on.
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Figure 4.17 shows the experimental results obtained from shot #147707. The

plasma current (Figure 4.17 (a.1)) and the beams (Figure 4.17 (a.2)-(a.4)) successfully

follow the requested values without exhibiting any saturation. The EC (Figure 4.17

(a.5)), used for plasma heating and current drive, is off during the experiment. The

difference between achieved and requested values of PEC (Figure 4.17 (a.5)) can be

interpreted as an additional disturbance because, as explained before, the controller

has not been redesigned to avoid using the EC H&CD system and still requests a PEC

value. It can be noted from Figure 4.18 (a) that it is indeed not possible to reproduce

the target profile in the center of the plasma (ι at ρ̂ = 0.2) at the beginning of the

closed-loop control experiment (t = 2.5 s), i.e., the conditions of the reference control

shot #146417 at t = 2.5 s have not been successfully reproduced in this case. This is

also reflected in the initial condition of the time trace for ι at ρ̂ = 0.2 in Figure 4.17

(b). It may be important to appreciate from Figure 4.7 that the initial profile is closer

in this case to that achieved in the system identification shot #140090 at t = 2.5.

From t = 3 s to t = 4.75 s, the controller rejects the input disturbance very effectively.

Note from Figure 4.17 (b) how both the ι profile and βN recover their target values

after the transient produced by the injection of disturbances at t = 3 s. This is in

part due to the fact that the achieved control inputs follow the requested values very

well for the working actuators. When the controller is turned off at t = 4.75 s, the

actuator values drift away from the feedforward values immediately and a tracking

error becomes noticeable particularly for βN and the outer ι profile. Finally, the

feedback controller is turned on at t = 5 s and it drives back the ι profile and βN to

their target values, rejecting once again the effects of the input disturbance. When

the experimental input and output signals in Figure 4.17 are compared with those in

Figure 4.16, which are predicted by the identified model in closed-loop simulations,

it is possible to observe a remarkable similarity. Since the input signals (Figure 4.16
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(a) and Figure 4.17 (a)) are determined exclusively by the controller based on the

measurements provided by the diagnostics, the observed similarity is another proof

of the capability of the identified model to capture the plasma dynamics.

A series of six plasma profiles at different times of the shot #147707 are shown in

Figure 4.18. Due to the design of the weight matrix Q, the control effort is mainly

applied to ι(0.5, t), ι(0.6, t), ι(0.8, t) and βN . The ι tracking errors in the center of

the plasma are larger than the ι tracking errors at the edge of plasma. This is in

part explained by the fact that, as shown in Figure 4.18 (a), the target profile is not

reproduced at the initial time probably due to the loss of critical actuators (counter-

injection NBI and EC powers). After the input disturbances are injected into the

system, these tracking errors become larger, as shown in Figure 4.18 (b). As time

goes on in shot #147707, the tracking errors become smaller as shown in Figure 4.18

(c), (d) thanks to the action of the feedback controller. When the feedback controller

is turned off, the tracking errors increase once again as shown in Figure 4.18 (e) before

recovering after the controller is turned back on as shown in Figure 4.18 (f).

Since (k = 2) < (m = 5), (p = 6) in this case, not all the outputs live in the

subspace generated by the significant singular vectors. Therefore, as in the previous

case, ∆ys 6= ∆y and not all the tracking error is removable (e = erm + enrm). This

explains the fact that blue solid lines and dashed-dotted black lines are not coincident

in Figure 4.17, and blue circles and black squares are not coincident in Figure 4.18.

Similarly to the previous case, the two dominant output singular vectors can indeed

reproduce quite well the outer part of the profile, i.e., ∆ys ≈ ∆y in the outer region.

This is not the case in the in inner region, where there is a marked difference between

∆ys and ∆y, and therefore a significant unremovable tracking error. What is impor-

tant from the point of view of the controller performance is its ability to drive ∆ys

close to zero, or ∆ys+yFF (dashed-dotted black lines) close to ytar = yFF (red dashed

112



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 2.538 s

 

 

Experimental Output
Significant Output
(Significant) Target

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 3.018 s

 

 

Experimental Output
Significant Output
(Significant) Target

(a) Feedback ON, Disturbance OFF (b) Feedback ON, Disturbance OFF

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 3.218 s

 

 

Experimental Output
Significant Output
(Significant) Target

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 4.738 s

 

 

Experimental Output
Significant Output
(Significant) Target

(c) Feedback ON, Disturbance ON (d) Feedback ON, Disturbance ON

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 5.018 s

 

 

Experimental Output
Significant Output
(Significant) Target

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normalized l

f

Time: 5.998 s

 

 

Experimental Output
Significant Output
(Significant) Target

(e) Feedback ON, Disturbance ON (f) Feedback ON, Disturbance ON

Figure 4.18: Plasma ι(ρ̂) profile at time t= 2.538, 3.018, 3.218, 4.738, 5.018, 5.998 s
(shot # 147707). Target (red dashed line), significant ι (black squares) and experi-
mental ι (blue circles) profiles.

113



3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

P
er

fo
rm

a
n
ce

In
d
ex

J
s

time [s]

 

 
Js1

Js2

2.5 3 3.5 4 4.5 5 5.5 6
−0.1

−0.05
0

0.05

ι(
0.

2,
t)

Removable tracking error erm

2.5 3 3.5 4 4.5 5 5.5 6
−0.02
−0.01

0
0.01

ι(
0.

4,
t)

2.5 3 3.5 4 4.5 5 5.5 6
−15
−10

−5
0
5

x 10
−3

ι(
0.

5,
t)

2.5 3 3.5 4 4.5 5 5.5 6
−20
−10

0
x 10

−3

ι(
0.

6,
t)

2.5 3 3.5 4 4.5 5 5.5 6
−0.03
−0.02
−0.01

0
0.01

ι(
0.

8,
t)

 

 

e
rm

2.5 3 3.5 4 4.5 5 5.5 6
−0.2

0
0.2
0.4

β N
(t

)

time [s]

(a) (b)

Figure 4.19: Control performance metrics (shot #147707 - Disturbance III): (a) Cost
function, (b) Removable tracking error for ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 and
βN . Light-gray background: feedback on - disturbance off, dark-gray background:
feedback on - disturbance on, white background: feedback off - disturbance on.

lines), as shown in Figure 4.17 for all the points of the ι profile. This can also be

appreciated from Figure 4.18, where the significant output profile ∆ys + yFF (black

squares) is driven close to the target profile ytar = yFF (red dashed lines). Note,

as a difference from the previous case, that the removable component of the error is

relatively small during all the discharge in the inner region (ρ̂ = 0.2 and ρ̂ = 0.4),

i.e., ∆ys + yFF ≈ ytar = yFF for ρ̂ = 0.2 and ρ̂ = 0.4. This may be related to the

selection made for the components of the matrix Q associated with these outputs,

which makes almost the entirety of the error unremovable freeing the controller from

the responsibility of tightly regulating the ι profile at these points. The time evolu-
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tion of the significant components of the cost function Js (4.33) in Figure 4.19 (a)

shows the effectiveness of the controller in rejecting the disturbance within the sub-

space generated by the dominant singular vectors. Note that in this case the effect of

the disturbance is captured by the two most dominant output singular vectors since

Disturbance III (see Table 4.4) projects not only on the first but also on the second

most dominant input singular vector (see Figure 4.3 (b)). Figure 4.19 (b) shows that

all the removable tracking error erm (4.35) components are driven close to zero.

4.4 Conclusion

A robust, model-based, MIMO, ι-profile and βN controller has been designed for the

flat-top phase of DIII-D H-mode discharges. The design is based on a two-timescale

linear, dynamic, plasma-response model, which has been identified around a reference

profile during the current flat-top phase. The feedback controller is designed based

on this model to regulate the system around a target, which is assumed to be close

to the reference profile around which the model has been identified, even in the

presence of various disturbances. Singular value decomposition of the steady state

transfer function is used to decouple the system and identify the most relevant control

channels. The mixed sensitivity H∞ technique is used to minimize the tracking error

and to optimize control effort ignoring the saturation. Then the closed-loop system

is augmented with an anti-windup compensator in order to minimize the effects of

any control input constraint. The proposed controller represents one of the first

profile controllers integrating magnetic and kinetic variables ever implemented and

experimentally tested in DIII-D.

The preliminary experimental results presented in this work, although limited in

number and constrained by actuators problems, show good progress towards routine
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current profile control in DIII-D and leaves valuable lessons for control redesign.

The controller has been proven effective at reducing the removable component of the

tracking error, which has been defined as the part of the tracking error that can

be driven to zero based on the control authority given by the number of significant

singular values retained during the selection of the most relevant control channels.

The number of significant singular values should be no greater than the number of

available actuators. Demonstration of full profile control is still pending and will

require the availability of all the actuators and the use of all the control channels.

Some rather sluggish and weak actuation observed in the closed-loop experiment

may not be related to the inability of the controller to actuate in some directions be-

cause of limited actuation or neglected control channels but to the limited bandwidth

of the closed-loop system. More aggressive controllers could be designed in this case

by increasing the frequency content of the excitation (input) signals during the sys-

tem identification experiment, by increasing the cutoff frequency, or even better, by

eliminating the need to choose a cutoff frequency associated with the slow dynamics

of the system during the identification of the data-driven model, by increasing the

weight Q and decreasing the weight R (tighter control at the expense of more control

effort) during the design of the static component of the controller, and by selecting

weights Wp and Wu leading to an increase of the closed-loop response bandwidth

during the design of the dynamic component of the controller. The anti-windup com-

pensator would be an indispensable companion of these more aggressive controllers.

In addition, it would be critical to simultaneously control βN while controlling the

ι profile to prevent the controller from triggering MHD instabilities in its aggressive

effort to achieve the desired target profile. The risk of triggering MHD instabilities

in our search for a faster response is however not reserved to an aggressive feed-

back control action. As we introduce more vigorous excitations in order to increase
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the bandwidth of the data-driven response model, we also increase the likelihood of

triggering MHD instabilities during the open-loop system identification experiment,

which clearly represents another challenge associated with the design of data-driven

controllers.

More experimental tests are needed to assess the appropriateness of using data-

driven linear models for current profile control. Being able to control the current

profile during the ramp-up and ramp-down phases, being able to regulate the current

profile for different scenarios (around different reference states), or being able to drive

the current profile from one target profile to another will most likely require adaptive

or nonlinear control approaches based on richer dynamic models obtained by a first-

principles-driven modeling approach. However, the preliminary control experiments

carried out at DIII-D suggest that regulation of the current profile around a reference

state during the flat-top phase of the discharge, as is the objective of this work,

may be possible using a data-driven linear modeling and control approach if enough

actuation is available. However, a serious study on the performance of the regulator

as the target state moves away from the reference state around which the linear model

has been identified is still pending. In relation to the control approach proposed in

this work, the sensitivity of the static component of the controller, which decides the

most relevant control channels by a SVD approach, to un-modeled or mis-modeled

plasma response and its impact on performance need further analysis.
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Chapter 5

PTRANSP Simulation and

Experimental Test of a Robust

Current Profile and Normalized

Beta Controller for Off-axis

Current Drive Scenarios in DIII-D

5.1 Introduction

In this chapter, we extend the work presented in Chapter 4 in many important ar-

eas. Firstly, the off-axis current drive is introduced to the experiments, which could

provide more heating in the mid-radius of the tokamak that would not be possible

with only on-axis current drive. This capability should greatly increase the parameter

space available for AT scenario development [61]. Secondly, the start time of the con-

trol phase is moved backward from the current flat-top phase to the current ramp-up
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phase. The plasma equilibrium continually evolves during the ramp-up phase, but

the identified model describes the linearized response around a particular equilibrium

in the flat-top phase. In order to increase the validity range of the identified model,

we increase/decrease the singular values of the identified model to form a series of

models to cover a neighborhood of the desired equilibria. DK-iteration, combining

H∞ synthesis and µ analysis, is applied to synthesize a closed-loop controller that

minimizes the control error and optimizes input effort. Then, the robust controller

is successfully tested in the PTRANSP code [68], a tokamak transport analysis code,

before experiments to evaluate the influence of the off-axis current drive system in

DIII-D. Finally, a profile control experiment integrating magnetic and kinetic vari-

ables on DIII-D illustrates the performance of the proposed controller.

This chapter is organized as follows. In Section 5.2, the designs of the plasma con-

trol algorithm and the anti-windup compensator are described. Closed-loop PTRANSP

simulated results with off-axis current drive (CD) are presented in Section 5.3, and ex-

perimental results from the DIII-D tokamak are presented in Section 5.4. Section 5.5

states the conclusions.

5.2 Control System Design

5.2.1 Singular Value Decomposition

The relation between the inputs and the outputs in the linear dynamic off-axis model

(3.10) can be expressed in terms of its transfer function P (s), i.e., ∆Y (s)
∆U(s)

= P (s) =

COA(sI−AOA)−1BOA, where s denotes the Laplace variable and ∆Y (s) and ∆U(s) de-

note the Laplace transforms of the output ∆y and the input ∆u respectively. Assum-

ing a constant target ∆ȳtar and closed-loop stabilization, the system will reach steady

state as t→∞. It is possible to define ∆ȳ = limt→∞∆y(t), ∆ū = limt→∞∆u(t), and

119



ē = limt→∞ e(t) = ∆ȳtar − ∆ȳ. Therefore, under these assumptions the closed-loop

system is specified by

∆ȳ = P̄∆ū = −COAA−1
OABOA∆ū, ∆ū =

¯̂
Kē, (5.1)

where K̂(s) represents the transfer function of the to-be-designed controller and
¯̂
K =

K̂(0).

In order to weight the control effort and tracking error, two positive definite

weighting matrices R ∈ <m×m and Q ∈ <p×p are introduced to the system, where

p = 6 is the number of outputs and m = 5 is the number of inputs. We then define

the “weighted” steady-state transfer function, and its singular value decomposition

(SVD) as P̃ = Q1/2P̄R−1/2 = USV T , where S = diag(σ1, σ2, · · · , σm) ∈ <m×m,

U ∈ <p×m (UTU = I), and V ∈ <m×m (V TV = V V T = I). By invoking the proper-

ties of the SVD, the matrix Q−1/2US defines a basis of the steady-state output values,

and the matrix R−1/2V defines a basis of the steady-state input values. By defining

∆ȳ∗ = S−1UTQ1/2∆ȳ, ∆ȳ∗tar = S−1UTQ1/2∆ȳtar, and ∆ū∗ = V TR1/2∆ū, a square

decoupled system is obtained:

∆ȳ∗ = S−1UTQ1/2∆ȳ = S−1UTQ1/2Q−1/2USV TR1/2∆ū = ∆ū∗.

Substituting these expressions into the performance index J̄ = ēQēT , we can obtain

the steady state cost function:

J̄ = (∆ȳ∗tar −∆ȳ∗)TS2(∆ȳ∗tar −∆ȳ∗) =
m∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2.

It is usually the case where σ1 > · · · σk � σk+1 > · · · > σm > 0. To avoid spend-

ing a lot of control effort for a marginal improvement of the cost function value, we
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Figure 5.1: Mixed-sensitivity H∞ control problem.

partition the singular value set into significant singular values Ss and negligible sin-

gular values Sn. We can write U =

[
Us Un

]
, V =

[
Vs Vn

]
, S = diag(Ss, Sn),

and approximate the cost function J̄ by

J̄s =
k∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2 = (∆ȳ∗tars −∆ȳ∗s)
TS2

s (∆ȳ
∗
tars −∆ȳ∗s),

where ∆ȳ∗tars = S−1
s UT

s Q
1/2∆ȳtar, ∆ȳ∗s = S−1

s UT
s Q

1/2∆ȳ, ē∗s = ∆ȳ∗tars − ∆ȳ∗s and

∆ū∗s = V T
s R

1/2∆ū. The matrix bases reduce to Q−1/2UsSs and R−1/2Vs, and the

decoupled system,

PDC = S−1
s UT

s Q
1/2PR−1/2Vs, (5.2)

represents a one-to-one relationship between the inputs ∆ū∗s and the outputs ∆ȳ∗s .

More details of SVD can be obtained from the Section 4.2.2.
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5.2.2 Design of µ Synthesis Controller

It is important to recall that the model P (3.10) was identified using only data after

2.5s during the current flat-top phase. The start time of the control phase in the exper-

iment was moved backward from 2.5 s to 1 s, i.e., during the current ramp-up phase.

The plasma state continually changes during the plasma current ramp-up phase, and

as a result, the plasma response model (3.10) should change. In order to partially

account for this, we define the decoupled identified model PDC (5.2) as the nominal

model, and assume the singular values of the system PDC can increase/decrease to

form a broad frequency range covering a neighborhood of plasma states, which define a

range of uncertainty ∆P . The new plasma model can be considered as the sum of PDC

with uncertainty ∆P , which is formulated into a robust control framework. There is

always a trade-off between the performance of the controller and the robustness prop-

erties of the closed-loop system. The maximum increasing/decreasing magnitude of

the singular values represents the desired robustness level of the closed-loop system.

In this work, the singular values Ss are assumed to increase and decrease 20% to

attempt to capture the dynamic character of the plasma state equilibrium evolution

during the current ramp-up phase.

The decoupled system PDC (5.2) based on P (3.10) is chosen as the nominal

model, which is denoted as P0. The singular values Ss decrease 20% to obtain a

new system PDCt = (0.8S−1
s )UT

s Q
1/2PR−1/2Vs, which is denoted as Ptop, and has

the highest magnitude over the frequency range considered. The singular values Ss

increase 20% to obtain another new system PDCb = (1.2S−1
s )UT

s Q
1/2PR−1/2Vs, which

is denoted as Pbot, and has the lowest magnitude. The top and bottom uncertainty

can be expressed in state-space form as:
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∆Ai = Ai − A0 ∆Bi = Bi −B0

∆Ci = Ci − C0 ∆Di = Di −D0

where the subscript i ∈ 1, 2 refers to the top and bottom respectively. The state-space

system matrices are now written as uncertain matrices as

A = A0 +
2∑

i=1

δi∆Ai B = B0 +
2∑

i=1

δi∆Bi

C = C0 +
2∑

i=1

δi∆Ci D = D0 +
2∑

i=1

δi∆Di (5.3)

where δ1 ∈ [0, 1] and δ2 ∈ [0, 1]. By conducting a frequency analysis of the uncertain

model of the system (5.3), the uncertain model is shown to capture the behavior of

the family of decoupled plasma models.

By exploiting the structure of the state matrices (5.3) and using singular value

decomposition, the system can be expressed in the conventional P ′′−∆ control frame-

work (black dashed block in Figure 5.1), by employing the method outlined in [59].

See Section 2.4 for an example of this technique. Using the partition of the generalized

plant P ′′ =



P ′′11 P ′′12

P ′′21 P ′′22


, the input/output equations are

∆y∆ = P ′′11∆u∆ + P ′′12(∆u∗s + ∆u∗ds),

∆y = P ′′21∆u∆ + P ′′22(∆u∗s + ∆u∗ds),

where ∆u∗s = V T
s R

1/2∆u, ∆u∗ds = V T
s R

1/2∆ud, and ∆ud is the input disturbance.

The control goal is to design a k×k feedback controller K, where k is the number

of significant singular values. The corresponding block diagram of the system is shown

123



in Figure 5.1 where the weight functions Wp(s) and Wu(s) are parameterized as

Wp(s) = Kp

( s
M1

+ wb1

s+ wb1A1

)2

, Wu(s) = Ku

(
s+ wb2A2
s
M2

+ wb2

)2

and the coefficients Mi, Ai, wbi, for i ∈ 1, 2, as well as Kp and Ku, are design

parameters.

The feedback system can now be expressed in the conventional ∆ − P ∗ − K

robust control framework, shown in Figure 5.2, where ∆ is the uncertainty, P ∗ is the

generalized plant (red dotted block in Figure 5.1) , K is the feedback controller, and

[ZT
1 , Z

T
2 ]T = [(Wpe

∗
s)
T , (Wu∆u

∗
s)
T ]T is the weighted performance signal. The closed-

loop transfer function from the input [∆y∗Ttars , ∆u∗Tds ]T to the output

[
ZT

1 ZT
2

]T
is

defined as

Tzr = Fu(N,∆), (5.4)

where ∆y∗tars = S−1
s UT

s Q
1/2∆ytar, ∆y∗s = S−1

s UT
s Q

1/2∆y, e∗s = ∆y∗tars −∆y∗s , and the

subsystem

N = Fl(P
∗, K) =



WpMs −WpMsP

′′
22

WuKMs −WuKMs


 . (5.5)

The sensitivity transfer function Ms is defined as Ms = (I + P ′′22K)−1. We seek a

controller K(s) that robustly stabilizes the system and minimizes the H∞ norm of

the transfer function Tzr(N,∆), i.e.,

min
K(s)
‖Tzr(N,∆)‖∞= min

K(s)
(sup
ω
σ̄[Tzr(N,∆)(jω)]), (5.6)

where σ̄ represents the maximum singular value. The control method employed in

this work to achieve the control goal (5.6) is the µ synthesis design technique.

There is no direct method to synthesize a µ-optimal controller, however the DK-
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Figure 5.2: Model in ∆− P ∗ −K Robust Control Framework

iteration method [59], which combines H∞ synthesis and µ analysis, can be used to

obtain an iterative solution. This method starts with an upper bound on µ in terms

of the scaled singular value µ(N) ≤ min(σ̄(DND−1). Then, we seek a controller that

minimizes the peak value over frequency of this upper bound

min
K

(min
∥∥DN(K)D−1

∥∥
∞).

To validate the designed controller, the robust stability of the closed-loop system

is determined. The system is written in the N −∆ structure, and the robust stability

is determined by evaluating the structured singular value

µ(N11(jω)) =
1

min{km| det(I − kmN11∆) = 0} (5.7)

where N11 is the transfer function from the input ∆u∆ to the output ∆y∆. The

closed-loop system is robustly stable for all allowable perturbations if and only if

µ(N11(jω)) < 1,∀ω. Figure 5.3 shows a plot of the structured singular value µ versus
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Figure 5.3: Structured Singular Value µ versus Frequency

frequency, and as can be seen µ < 1 for all frequencies. Therefore, the closed-loop

system is robustly stable. In other words, the controller stabilizes the whole family

of models.

In practice, the control input and measured output of the original system P are ∆u

and ∆y, respectively. The measured output is in turn used to compute the tracking

error e = ∆ytar −∆y. As shown in Figure 5.1, the overall ι-profile and βN controller

for system P can be computed as

K̂(s) =
∆U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q

1/2 (5.8)

where ∆U(s) and E(s) denotes the Laplace transforms of ∆u and e, respectively, and

where the relationships e∗s = S−1
s UT

s Q
1/2e, ∆u = R−1/2Vs∆u

∗
s have been used.
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5.2.3 Design of the Anti-windup Compensator

The DIII-D tokamak is a nonlinear complex system, which is subject to actuator

saturations as shown in Table 4.2. At the moment of designing the robust MIMO

controller (5.8), the actuator saturations were not considered. As a result of satura-

tion, the actual plant input may be different from the output of the controller. In this

case the controller output does not drive the plant input and, as a consequence, the

states of the controller may wind up because the plant does not respond as expected,

which can cause the behavior of the system to deteriorate dramatically or even become

unstable. The goal is not to redesign the proposed MIMO controller but to design

an anti-windup compensator that keeps the controller well-behaved and avoid unde-

sirable oscillations when saturation is present. The anti-windup compensator must

in addition leave the nominal closed-loop unmodified when no saturation is present.

Details of the anti-windup compensation can be obtained from the Section 4.2.5.

5.3 Closed-loop PTRANSP Simulations

PTRANSP is a time dependent tokamak transport analysis code developed at the

Princeton Plasma Physics Laboratory (PPPL) [68]. The code provides a means to

invert data from tokamak experiments, to provide a picture of the processes which

account for the confinement and heating in tokamak plasmas. The code incorporates

a wealth of physics modeling for neutral beam heating, neutral transport, diagnostic

simulations, etc. Some quantities, for instance the current density profile and neutral

density profile, can be predicted by models to supplement the measured data in the

simulation. The advantage is that the interpretation of the data is more direct and

comparison with theoretical models is straightforward.

PTRANSP reads diagnostic data from tokamak experiments, and after extensive
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Figure 5.4: The architecture of the closed-loop PTRANSP simulation.

computational modeling, creates over 150 scalar functions and 300 profile functions

of time describing the plasma. These functions represent parameters, measured or

calculated, which together describe the evolution of an experimental tokamak sys-

tem. The inputs to the code include the plasma current Ip, the surface voltage Vsur,

the NBI and EC powers, and the spectroscopic measurements of hydrogen and im-

purity confinement times τp in addition to profile measurements of electron density

ne, electron temperature Te, and ion temperature Ti. On the basis of the experi-

mental measurements, PTRANSP solves the magnetic field diffusion equation for the

poloidal magnetic field Bθ in order to evaluate the current density profile j. From

these quantities the ohmic input power POH , the electron energy confinement time

τEe, and the safety factor q are calculated [68]. The ι profile, which is our control

variable, is defined as the inverse of the safety factor q profile. The parameter βN is

a measured input in PTRANSP, so we cannot control it.
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In PTRANSP, experimental data is used directly to calculate the plasma state

evolution without feedback. In order to form the closed-loop simulation, we combined

the PTRANSP code with Matlab. A general framework for closed-loop feedback

control implemented in PTRANSP is shown in Figure 5.4. The PTRANSP solver is

set to evolve in time only the ι profile based on the updated Ip, beam powers (PCO,

POA, and PCT ), and EC power PEC output by the feedback controller. The feedback

portion of the controller was implemented as a discrete time state-space controller

with a sampling time of 20 milliseconds, because the controller implemented in DIII-

D PCS has a sampling time of 20 milliseconds. The PTRANSP calculation stops every

20 milliseconds, and sends the calculated output y to Matlab. Based on the tracking

error, Matlab calculates the next step input û, and sends it back to PTRANSP. Then

the PTRANSP code calculates the plasma state evolution for the next 20 milliseconds.

This configuration provides us the ability to test the feedback controller in reference

tracking and disturbance rejection simulations before experiments.

In our case, the closed-loop simulation is based on the robust controller (5.8), and

the anti-windup compensator is added to minimize the effects of any control input

saturation. The reference shot for PTRANSP is shot #147626, which is a shot with

off-axis neutral beam injection, and the feedforward inputs and target ι profiles are

shown in Figure 5.5 (red dashed line). The feedback controller is turned on at t = 2.5

s, and the disturbance is introduced at t = 3 s, which are δIp = 0.1 MA, δPCO = −0.1

MW, δPOA = 0 MW, δPCT = 0 MW, and δPEC = −0.3 MW. A good control

performance on the boundary of ι profile and βN was observed in the Section 4.3. An

important goal of the model-based current profile controller is to regulate ι profile in

the center precisely, since this affects confinement and stability for advanced scenarios.

In order to reach this goal, we take Q = diag([5, 2.5, 1.5, 1.5, 1.5, 0.5]) to increase

the weights of the tracking errors associated with ι(0.2, t) and ι(0.4, t), and the control

129



2.5 3 3.5 4 4.5 5 5.5 6
0.9

1

1.1

I p [M
A]

2.5 3 3.5 4 4.5 5 5.5 6
1.6

1.8

2

2.2

P CO
 [M

W
]

2.5 3 3.5 4 4.5 5 5.5 6
3.8

3.9

4

4.1

4.2

P O
A [M

W
]

 

 
PTRANSP (FF+FB) input
PTRANSP (FF) input with disturbance
Reference (FF) input

2.5 3 3.5 4 4.5 5 5.5 6
−0.1

0

0.1

0.2

P CT
 [M

W
]

2.5 3 3.5 4 4.5 5 5.5 6
2.5

3

3.5

4

P EC
 [M

W
]

Time [s]

(a)

2.5 3 3.5 4 4.5 5 5.5 6
0.5

0.6

0.7

0.8

0.9

ι(0
.2

,t)

 

 
PTRANSP (FF+FB) output
PTRANSP (FF) output with disturbance
Reference (FF) target output

2.5 3 3.5 4 4.5 5 5.5 6
0.5

0.6

0.7

ι(0
.4

,t)

2.5 3 3.5 4 4.5 5 5.5 6
0.45

0.5

0.55

0.6

0.65

ι(0
.5

,t)

2.5 3 3.5 4 4.5 5 5.5 6

0.4

0.45

0.5

ι(0
.6

,t)

2.5 3 3.5 4 4.5 5 5.5 6

0.24

0.26

0.28

0.3

0.32

ι(0
.8

,t)

Time [s]

(b)

Figure 5.5: PTRANSP simulation with off-axis NBI: (a) Feedforward (FF) inputs,
FF inputs with disturbance and feedforward+feedback (FF+FB) control inputs; (b)
Reference target ι profile, FF with disturbance ι profile and FF+FB ι profile.
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weight matrix is redefined as R = diag([0.5, 0.1, 0.1, 0.1, 0.05]). The parameter c

for the anti-windup compensator is set as 0.1.

The simulated closed-loop-controlled inputs (solid blue lines) are shown in Fig-

ure 5.5 (a) and compared with the reference open-loop inputs (red dashed lines) and

another feedforward open-loop inputs with disturbance (dot-dash line). The simu-

lated closed-loop-controlled ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 (solid blue lines) are

shown in Figure 5.5 (b) and compared with the target values (red dashed lines) and

the feedforward open-loop outputs with disturbance (dot-dash line). By examining

Figure 5.5 (b) , we see that with feedforward control only the target profile is not

achieved in the presence of the disturbance. In the first 0.5 second of the closed-loop

simulation, from t = 2.5 s to t = 3 s, the controller works well, and the ι profile

is regulated around the target values. Then the disturbance is introduced into the

system at t = 3 s, and the plasma current, beam and gyrotron powers are modulated

around their reference values without saturation by the feedback controller. Due to

the design of the weight matrix Q, the control effort is mainly applied to ι(0.2, t) and

ι(0.4, t), and the controller increases POA and the total EC power PEC and requests

the Ip to decrease to drive the system towards the desired inner ι profile. Note that

the inner ι profile response is much slower than the boundary ι profile response, and

the effect of the control effort on the inner ι profile is shown with a time delay. This is

due to the high temperature and slow diffusivity in the core relative to the boundary.

Improved performance can be observed from the comparison between the controlled

results (solid blue line) and uncontrolled results (dotted-dashed line).
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5.4 Experimental Results on DIII-D

The chosen reference plasma state was that of a 1.65 T, βN -controlled AT scenario,

at a central plasma density, neo ≈ 3.5× 1019m−3 and plasma current, Ip = 1.05 MA.

In order to compare relevant experimental results with PTRANSP simulation, the

same controller was applied and the same input disturbances were introduced in the

experiment. The target ι profile and βN obtained from shot #147634 with these

discharge parameters are shown in Figure 5.6 (red dashed line). The disturbance was

introduced at t = 4.5 s, and the feedback controller was turned on and off throughout

the discharge according to

∆u =





0 to 1 second OFF

1 to 5.8 second ON

5.8 to 6.3 second OFF

. (5.9)

The inputs prescribed by the feedforward+feedback controller represent the ref-

erence values to the dedicated physical control loops on the DIII-D tokamak. Fig-

ure 5.6 (a) shows the reference (red dashed lines), requested feedforward+feedback

inputs (solid blue lines) and achieved inputs (dotted-dashed lines) during the experi-

ment (shot #150749). As shown in Figure 5.6 (a.1)-(a.4), the plasma current and the

beam powers successfully follow the requested values. During the shot, the total EC

power is limited to around 2 MW, but the requested value goes up to 6 MW (Fig-

ure 5.6 (a.5)). The difference between achieved and requested values of EC power

can be interpreted as a large disturbance that the controller must try to overcome.

After t ≈ 2.5 s, the PCO reaches saturation, which activates the anti-windup compen-

sator in an attempt to keep the states of the feedback controller from winding up.

The experimental closed-loop-controlled ι profile at ρ̂ = 0.2, 0.4, 0.5, 0.6, 0.8 and βN
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Figure 5.6: Experiment (shot #150749) with off-axis NBI: (a) FF inputs, requested
FF+FB control inputs and achieved control inputs; (b) Reference target ι profile and
βN and experimental closed-loop-controlled ι profile and βN .
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Figure 5.7: Plasma ι(ρ̂) profile at time t= 1.318, 3.618, 4.618, 5.918 seconds from
shot #150749 on DIII-D.

(solid blue lines) are shown in Figure 5.6 (b) and compared with the target values

(red dashed lines). The controller regulates the ι profile close to the target profile

until the disturbance is introduced, even in the current ramp-up phase. The total EC

power could not follow the requested value, making the control of the inner ι profile

and βN more challenging. The controller drives some of the beams into saturation

and requests the plasma current to decrease, which increases the tracking error in the

outer part of the ι profile, in order to try to reduce the tracking error in the inner

part of the ι profile. When the controller is turned off at t = 5.8 s, the actuator values
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drift away from the feedforward+feedback values immediately. Because the outer ι

profile is more quickly influenced by Ip, the tracking errors at ρ̂ = 0.5, 0.6, and 0.8

become smaller with the increasing of Ip.

The introduction of the off-axis NBI into the experiment placed the plasma in a

different operating state with respect to the reference state around which the model

was identified. As a result, the validity of the linear plasma model may limit the

performance of the model-based controller in this operating scenario. During the

closed-loop experiment, the EC power request was not achieved, therefore, the feed-

back controller output was no longer driving the plant, and as a result, the states

of the controller were incorrectly updated. Finally, the actuator saturation during

the experiment limited the ability of the feedback controller to manipulate the profile

evolution. In order to evaluate the whole ι profile, a series of four plasma profiles at

different times during shot #150749 are shown in Figure 5.7. Although the model was

identified using only data after 2.5 s, the model-based controller performs reasonably

well in the current ramp-up phase, which is shown in Figure 5.7 (a). Before t = 4.2 s,

the controller regulates the ι profile close to the target profile (Figure 5.7 (b)). After

this time, the tracking errors become larger. The input disturbances are injected into

the system at t = 4.5 s, and the controller decreases the Ip to decrease the ι profile

near the plasma boundary in order to attempt to track the desired inner ι profile as

shown in Figure 5.7 (c). However, the tracking errors increase further as shown in

Figure 5.7 (d).

5.5 Conclusion

A robust, model-based, MIMO, ι profile and βN controller was designed for DIII-D.

The design was based on a linear, identified model for H-mode discharges, includ-
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ing uncertainty. The proposed controller was simulated in PTRANSP, and then the

controller was experimentally tested in DIII-D. More experimental tests are needed

to assess the appropriateness of using data-driven linear models for current profile

control. The sensitivity of the static component of the controller to un-modeled or

mis-modeled plasma response and its impact on performance need further analysis.

Being able to control the current profile during the ramp-up and ramp-down phases,

and being able to regulate the current profile for different scenarios will most likely

require robust or nonlinear control approaches based on richer dynamic models ob-

tained by a first-principles-driven modeling approach. The author will discuss this

problem in the following chapter.
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Chapter 6

Physics-based Control-oriented

Modeling of the Poloidal Flux

Profile Evolution in Advanced

Tokamak Scenarios in DIII-D

6.1 Introduction

The tokamak is a high order, distributed parameter, nonlinear system with a large

number of instabilities, and even under restrictive assumptions the poloidal flux pro-

file, or equivalently current profile, models are highly nonlinear and based on partial

differential equations (PDEs). The complexity of these first-principles models needs

to be reduced to facilitate design of compact and reliable control strategies. During

the model simplification process, there is always a trade-off between the simplicity of

the model and both its physics accuracy and range of validity. First-principles-driven

modeling provides the freedom of arbitrarily handling this trade-off and deciding on
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the level of simplicity, accuracy and validity of the model. Several first-principles-

driven, control-oriented, PDE models have been recently proposed for current profile

control [22, 23, 24]. The model developed for DIII-D [22] is valid for low-confinement

(L-mode) discharges, and has been used to determine optimal feedforward actuator

trajectories that achieve and sustain a desired current profile [41]. The model has

also been used to design complementing feedback controllers that add robustness

against disturbances and model uncertainties, which have been experimentally tested

in DIII-D [49, 50, 51].

In this work, the author converts the first-principles physics model of the evolu-

tion of the poloidal magnetic flux profile in DIII-D, which is related to the current

profile evolution, into a form suitable for control design by combining it with sim-

plified control-oriented versions of physics-based models of the electron density and

temperature profiles, the plasma resistivity, and the non-inductive current-drives,

with emphasis on high performance, H-mode, operating scenarios, thereby obtaining

a first-principles-driven model. This model is developed with the goal of extending

the control strategy employed in [49, 50, 51] to high performance H-mode scenarios,

characterized by particle and energy transport barriers near the plasma boundary,

which improve the plasma performance and result in the formation of large gradients

in both the plasma density and temperature profiles that increase the complexity of

the coupling between the magnetic and kinetic plasma parameters via the increase of

the plasma self-generated “bootstrap current” [69].

The objective in developing the simplified physics-based models of the plasma

parameters is to capture the dominant physics that describe how the control actua-

tors affect the plasma parameters, and hence the current profile evolution, in H-mode

scenarios. Progress towards physics-based modeling of the plasma profile evolutions

has been recently reported in [22, 23, 24]. The first-principles-driven model of the
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current profile evolution is extended from L-mode to H-mode, by modeling the self-

generated “bootstrap current”. Additionally, to utilize the full capabilities of the

heating and current drive (H&CD) system, the effects of the actuators are modeled

independently, instead of lumping them into a single input, to exploit the full capa-

bilities of a given machines H&CD system [53]. The advanced tokamak simulation

code, PTRANSP [68], which employs complex physics models to predict the plasma

state evolution in the tokamak through exhaustive consumption of computational re-

sources, is employed to obtain simulated data of the plasma state evolution to tailor

the first-principles-driven models to the DIII-D tokamak. The tailored models are em-

ployed to design feedback control algorithms to control the current profile evolution

in H-mode scenarios in DIII-D in Chapter 7 [54].

This chapter is organized as follows. In Section 6.2, the physics model of the

poloidal flux profile evolution is introduced, and the actuators in the tokamak are

discussed. The simplified physics-based models of the electron density and temper-

ature profiles, plasma resistivity, and non-inductive current-drives are described in

Section 6.3. In Section 6.4, the physics-based control-oriented model of the poloidal

flux profile evolution is presented. In Section 6.5 and 6.6, the author tailors the

models for on-axis and off-axis current drive scenarios, respectively, and compares

the control-oriented model prediction to experimental data from DIII-D. Section 6.7

states the conclusions.
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6.2 Current Profile Evolution Model

The evolution of the poloidal magnetic flux is given by the magnetic diffusion equa-

tion [70, 71]:

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂
(ρ̂F̂ ĜĤ

∂ψ

∂ρ̂
) +R0Ĥη(Te)

< j̄NI · B̄ >

Bφ,0

, (6.1)

where ψ is the poloidal stream function which is related to the poloidal flux Ψ, i.e.

Ψ = 2πψ, η is the plasma resistivity, Te is the electron temperature, µ0 is the vacuum

permeability, j̄NI is any external source of non-inductive current density (EC, NBI,

bootstrap current), B̄ is the magnetic field, Bφ,0 is the magnetic field at the geometric

major radius R0, the parameter ρb is the effective minor radius of the last closed

magnetic flux surface and <> denotes a flux-surface average. The parameters F̂ , Ĝ

and Ĥ are geometric factors pertaining to the magnetic configuration of a particular

plasma equilibrium, and are defined as,

F̂ (ρ̂) =
R0Bφ,0

RBφ(R,Z)
, Ĝ(ρ̂) =<

R2
0

R2
|∆ρ|2 >, Ĥ(ρ̂) =

F̂

< R2
0/R

2 >
,

where Bφ is the toroidal magnetic field at the spatial location, and R is the major

radius of the flux surfaces. The boundary conditions are given by

∂ψ

∂ρ̂
|ρ̂=0 = 0,

∂ψ

∂ρ̂
|ρ̂=1 = −µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

Ip(t), (6.2)

where Ip(t) is the plasma current.

There are several actuators that can manipulate the current profile evolution in

DIII-D. The first actuator is the total plasma current Ip. The second actuator is

the neutral beam injection (NBI) system. Injecting beams of highly energetic neu-
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tral particles into the plasma provides a source of non-inductive current as well as

plasma heating through collisions. The beams in the clockwise direction in Figure 3.2

(30L/R, 150L/R, 210L/R, and 330L/R) are referred to as nbi1, nbi2, · · · , nbi8 in this

dissertation. The third actuator is the electron cyclotron (EC) heating and current

drive system. The frequency of the radio waves, which are injected into the plasma

through electron cyclotron (gyrotron) launchers, can be tuned to excite the electrons.

There are six gyrotrons in DIII-D (Gyrotron 1, 2, · · · , 6), which are referred to as

ec1, ec2, · · · , ec6 in this dissertation. The final actuator is the electron density, which

is controlled by gas-feeding and pellet launchers.

6.3 Simplified Physics-based Models of Plasma Pa-

rameters

The objective in developing the simplified physics-based models of the plasma pa-

rameters is to capture the dominant physics that describe how the control actuators

affect the plasma parameters, and hence the current profile evolution. The simplified

models are developed with particular care being taken to ensure their applicability to

H-mode scenarios [53].

Electron Density Modeling

The control action employed to regulate the electron density is assumed to weakly

affect the radial distribution of the electrons. Therefore, the electron density ne(ρ̂, t)

is modeled as

ne(ρ̂, t) = nprofe (ρ̂, tr)un(t), (6.3)
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where tr is a reference time, nprofe (ρ̂, tr) is a reference electron density profile and

un(t) regulates time evolution of the electron density.

Electron Temperature Modeling

The slowly evolving electron temperature profile evolution is modeled as

Te(ρ̂, t) = kTe(ρ̂, tr)
T profe (ρ̂, tr)

nprofe (ρ̂, tr)

Ip(t)
√
Ptot(t)

un(t)
, (6.4)

where T profe (ρ̂, tr) is a reference electron temperature profile at a reference time tr,

and Ptot(t) is the total power injected into the plasma. The constant kTe(ρ̂, tr) is

expressed as

kTe(ρ̂, tr) =
ne(ρ̂, tr)

Ip(tr)
√
Ptot(tr)

.

Plasma Resistivity Modeling

The plasma resistivity η(Te) scales with the electron temperature as

η(ρ̂, t) =
ksp(ρ̂, tr)Zeff
Te(ρ̂, t)3/2

, (6.5)

where Zeff is the effective average charge of the ions in the plasma. The constant

ksp(ρ̂, tr) is expressed as

ksp(ρ̂, tr) =
η(ρ̂, tr)Te(ρ̂, tr)

3/2

Zeff
.
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Non-inductive Current Drive Modeling

The total non-inductive current drive is produced by EC, NBI and the bootstrap

current and is expressed as

< j̄NI · B̄ >

Bφ,0

=
6∑

i=1

< j̄eci · B̄ >

Bφ,0

+
8∑

i=1

< j̄nbii · B̄ >

Bφ,0

+
< j̄bs · B̄ >

Bφ,0

, (6.6)

where j̄eci is the non-inductive current generated by the ith gyrotron launcher in

EC system, j̄nbii is the non-inductive current generated by the ith NBI and j̄bs is the

non-inductive current generated by the bootstrap effect.

The non-inductive toroidal current density provided by each gyrotron launcher is

modeled as

< j̄eci · B̄ >

Bφ,0

= keci(ρ̂, tr)jeci(ρ̂, tr)
Te(ρ̂, t)

ne(ρ̂, t)
Peci(t), (6.7)

where jeci(ρ̂, tr) is a reference deposition profile for each respective current drive

source, the term Te(ρ̂, t)/ne(ρ̂, t) represents the current-drive efficiency [72], and the

normalizing gyrotron constant keci is expressed as

keci(ρ̂, tr) =
ne(ρ̂, tr)

Te(ρ̂, tr)Peci(tr)
.

Therefore, the normalized gyrotron deposition profile at the reference time tr is ex-

pressed as

jnormeci
(ρ̂, tr) =

jeci(ρ̂, tr)

Peci(tr)(
Te(ρ̂,tr)
ne(ρ̂,tr)

)
=
jeci(ρ̂, tr)ne(ρ̂, tr)

Peci(tr)Te(ρ̂, tr)
= jeci(ρ̂, tr)keci(ρ̂, tr).

The non-inductive toroidal current density provided by each NBI is modeled as

< j̄nbii · B̄ >

Bφ,0

= knbii(ρ̂, tr)jnbii(ρ̂, tr)
Te(ρ̂, t)

ne(ρ̂, t)
Pnbii(t), (6.8)
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where jnbii(ρ̂, tr) is a reference deposition profile, and the normalizing NBI constant

knbii is expressed as

knbii(ρ̂, tr) =
ne(ρ̂, tr)

Te(ρ̂, tr)Pnbii(tr)
.

The normalized NBI deposition profile is expressed as

jnormnbii
(ρ̂, tr) =

jnbii(ρ̂, tr)

Pnbii(tr)(
Te(ρ̂,tr)
ne(ρ̂,tr)

)
=
jnbii(ρ̂, tr)ne(ρ̂, tr)

Pnbii(tr)Te(ρ̂, tr)
= jnbii(ρ̂, tr)knbii(ρ̂, tr).

Based on the assumption of tight coupling between the electron and ion species

in the plasma, the bootstrap current is modeled as [73]

< j̄bs · B̄ >

Bφ,0

=
R0

F̂ (ρ̂)

1

∂ψ/∂ρ̂
[2L31Te

∂ne
∂ρ̂

+ (2L31 + L32 + αL34)ne
∂Te
∂ρ̂

], (6.9)

where L31, L32, L34 and α depend on the reference plasma magnetic equilibrium and

on particle collisionality in the plasma.

6.4 Physics-based Control-oriented Model of Poloidal

Magnetic Flux Evolution

By combining the control-oriented models (6.3)-(6.9) with the magnetic diffusion

equation (6.1), the desired first-principles-driven, control-oriented model of the poloidal

magnetic flux profile evolution is obtained. The first term is expressed as:

η(Te)

µ0ρ2
bF̂

2
(ρ̂, t) = f1(ρ̂)u1(t), (6.10)

where

f1 =
kspZeff

µ0ρ2
bF̂

2(kTe
T profe

nprofe
)3/2

, u1 =
u

3/2
n

(Ip
√
Ptot)3/2

.
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The terms for the six gyrotrons in the EC system are expressed as:

R0Ĥη(Te)
< j̄eci · B̄ >

Bφ,0

= fi+1(ρ̂)ui+1(t), (6.11)

where i ∈ {1, 2, 3, 4, 5, 6}, and

fi+1 =
R0ĤkspZeffkecij

dep
eci

(kTeT
prof
e nprofe )1/2

, ui+1 =
Peci

(Ip
√
Ptot)1/2u

1/2
n

.

The terms for the eight beams in the NBI system are expressed as:

R0Ĥη(Te)
< j̄nbii · B̄ >

Bφ,0

= fi+7(ρ̂)ui+7(t), (6.12)

where i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and

fi+7 =
R0ĤkspZeffknbiij

dep
nbii

(kTeT
prof
e nprofe )1/2

, ui+7 =
Pnbii

(Ip
√
Ptot)1/2u

1/2
n

.

The bootstrap current term is expressed as:

R0Ĥη(Te)
< j̄bs · B̄ >

Bφ,0

= (
∂ψ

∂ρ̂
)−1f16(ρ̂)u16(t), (6.13)

where

u16 =
u

3/2
n

(Ip
√
Ptot)1/2

,

f16 =
kJevR

2
0ĤkspZeff

F̂ (kTe
T profe

nprofe
)3/2

[kTe(2L31 + L32 + αL34)
dT profe

dρ̂
+ 2L31kTe

T profe

nprofe

dnprofe

dρ̂
].
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By using the models (6.10)-(6.13), the developed first-principles-driven, control-oriented

model of the poloidal magnetic flux profile evolution is expressed as

∂ψ

∂t
=
f1u1

ρ̂

∂

∂ρ̂
(ρ̂Dψ

∂ψ

∂ρ̂
) +

15∑

i=2

fiui + (
∂ψ

∂ρ̂
)−1f16u16(t), (6.14)

with boundary conditions:

∂ψ

∂ρ̂
|ρ̂=0 = 0,

∂ψ

∂ρ̂
|ρ̂=1 = −k17u17(t),

where

Dψ = F̂ ĜĤ, k17 =
µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

, u17(t) = Ip(t).

6.5 Model Tailored for On-axis Current Drive Sce-

narios

We now employ on-axis current drive experimental data (shot #146419) and simu-

lated data from the PTRANSP advanced tokamak simulation code [68] configured to

the DIII-D geometry to tailor the first-principles-driven model to an on-axis current

drive, H-mode, scenario in DIII-D that has energy and particle transport barriers

near the plasma boundary. The auxiliary H&CD actuators on DIII-D are 6 inde-

pendently configurable gyrotron launchers and 8 neutral beam launchers, where 6

are co-current-injection and 2 are counter-current-injection. The parameters related

to the magnetic configuration of the plasma equilibrium are shown in Figure 6.1 (a)

and (b), the reference profiles for the various models are shown in Figure 6.1 (d), (e)

and (h), the normalizing constants are shown in Figure 6.1 (c), (f) and (i), and the

normalized auxiliary current deposition profiles are shown in Figure 6.1 (g) and (j).
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Figure 6.1: On-axis Current Drive Scenarios: (a) Magnetic Configuration Pa-
rameters, (b) Bootstrap Current Coefficients, (c) Temperature Coefficient kTe
(109m−3A−1W−1/2) & Resistivity Coefficient ksp (10−8ΩmkeV 3/2), (d) Electron Den-
sity Profile nprofe (m−3) & Electron Temperature Profile T profe (keV), (e) Refer-
ence Gyrotron Current Deposition Profiles jdepeci

(105Am−2), (f) Gyrotron Model
Coefficients keci (1014m−3keV −1W−1), (g) Normalized Gyrotron Deposition Profile
jnormeci

(1018Am−5keV −1W−1), (h) Reference NBI Current Deposition Profiles jdepnbii
(104Am−2), (i) NBI Model Coefficients knbii (1014m−3keV −1W−1), (j) Normalized
NBI Deposition Profile jnormnbii

(1018Am−5keV −1W−1).

The other model constants are Bφ,0=1.68 T, R0=1.76 m, ρb=0.80 m, and Zeff=1.75.

The steady state gains of the on-axis first-principles-driven model for the ι profile

are shown in Figure 6.2. In the figure, the steady state response ∆ῑ to unitary changes

in the various inputs is plotted, where the dimensionless parameter ∆un is given by

0.1, ∆Peci and ∆Pnbij are given by 1 MW (co-injection is “+” and counter injection

is “-”) and ∆Ip is given by 0.1 MA, where i ∈ {1, 2, · · · , 6} and j ∈ {1, 2, · · · , 8}.

The plasma current Ip is the most capable actuator in adjusting the magnetic profile

in absolute terms (shown in Figure 6.2 (a.1)), and the time evolution of the electron

density un leads to the smallest change in the magnetic profile (shown in Figure 6.2

(a.2)). The EC powers lead to changes in the ∆ῑ profile, which are based on the

injection positions of the gyrotrons. Based on Figure 6.1 (e) and (g), we can observe
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that the injection positions of Gyrotron 1, 3 and 4 are close, and therefore the steady-

state responses ∆ῑ to these three gyrotrons are very similar (shown in Figure 6.2

(a.3), (a.4), and (b.1)). The co-injection (30L/R, 150L/R, and 330L/R) and counter-

injection (210L/R) beams are also very powerful, affecting the profile in different

directions in agreement with prior experiments.

0 0.5 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

∆
ῑ
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Figure 6.2: Steady state gains for the ι profile response for on-axis current drive
scenarios. Note: the inputs are ∆Peci (1 MW), ∆Pnbij (1 MW), ∆un (0.1), and ∆Ip
(0.1 MA), where i ∈ {1, 2, · · · , 6} and j ∈ {1, 2, · · · , 8}.
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Figure 6.3: Control inputs applied during first-principles-driven model simulation and
DIII-D shot #146417 (current in MA and power in MW).

6.5.1 Comparison between First-principles-driven Model Pre-

diction and Experimental Data

We now describe a study that compares the evolution of the plasma parameters

predicted by the first-principles-driven (FPD) model to the experimentally achieved

plasma parameters in DIII-D on-axis shot #146417. The inputs (total plasma current

Ip, total gyrotron launcher powers
∑6

i=1 Peci , total neutral beam injection powers
∑8

i=1 Pnbii , and density regulation un) applied during both the simulation and the

experiment are shown in Figure 6.3, time traces of ψ at various normalized effective

minor radii are shown in Figure 6.4, and a comparison of the first-principles-driven

model predicted and the experimentally achieved ψ and q profiles at various time

instances is shown in Figure 6.5 (a)-(d) and Figure 6.5 (e)-(h), respectively. As

shown in the figures, the trends of the first-principles-driven model predicted plasma

parameters show good agreement with the experimental results.
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Figure 6.4: Time trace of poloidal magnetic flux ψ at various spatial locations. Note:
first-principles-driven model (solid) and experimentally achieved (dash).

6.6 Model Tailored for Off-axis Current Drive Sce-

narios

We now employ off-axis current drive experimental data (shot #147626) and analyzed

results for the same shot from the PTRANSP code configured to the DIII-D geom-

etry to tailor the first-principles-driven model to an off-axis current drive, H-mode,
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Figure 6.5: Poloidal magnetic flux profile ψ(ρ̂) (a)-(d) and safety factor profile q(ρ̂)
(e)-(h) at various time instances.
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Figure 6.6: Off-axis Current Drive Scenarios: (a) Magnetic Configuration Pa-
rameters, (b) Bootstrap Current Coefficients, (c) Temperature Coefficient kTe
(109m−3A−1W−1/2) & Resistivity Coefficient ksp (10−8ΩmkeV 3/2), (d) Electron Den-
sity Profile nprofe (m−3) & Electron Temperature Profile T profe (keV), (e) Refer-
ence Gyrotron Current Deposition Profiles jdepeci

(105Am−2), (f) Gyrotron Model
Coefficients keci (1014m−3keV −1W−1), (g) Normalized Gyrotron Deposition Profile
jnormeci

(1018Am−5keV −1W−1), (h) Reference NBI Current Deposition Profiles jdepnbii
(105Am−2), (i) NBI Model Coefficients knbii (1014m−3keV −1W−1), (j) Normalized
NBI Deposition Profile jnormnbii

(1018Am−5keV −1W−1).

scenario that has energy and particle transport barriers near the plasma boundary.

The parameters related to the magnetic configuration of the plasma equilibrium are

shown in Figure 6.6 (a) and (b), the reference profiles for the various models are

shown in Figure 6.6 (d), (e) and (h), the normalizing constants are shown in Fig-

ure 6.6 (c), (f) and (i), and the normalized auxiliary current deposition profiles are

shown in Figure 6.6 (g) and (j). The other model constants are Bφ,0=1.65 T, R0=1.78

m, ρb=0.82 m, and Zeff=1.49. Comparing with the on-axis current drive scenarios,

the beam-line optical axes of 150L and 150R in the off-axis current drive scenarios

are inclined up to 16.5◦ (shown in Figure 3.5), while the other beam-line optical axes

are unchanged. The introduction of the off- axis beams provides more heating in the

mid-radius of the tokamak. In Figure 6.6 (h) and (j), the peaks of jdepnbi3
and jdepnbi4

move
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from ρ̂ ≈ 0.1 to ρ̂ ≈ 0.4.

The steady state gains of the off-axis first-principles-driven model for the ι profile

are shown in Figure 6.7. In the figure, the steady state response ∆ῑ to unitary changes

in the various inputs is plotted, where the dimensionless parameter ∆un is given by

0.1, ∆Peci and ∆Pnbij are given by 1 MW (co-injection is “+” and counter injection is

“-”) and ∆Ip is given by 0.1 MA, where i ∈ {1, 2, · · · , 6} and j ∈ {1, 2, · · · , 8}. The

plasma current Ip is the most capable actuator in adjusting the magnetic profile in

absolute terms (shown in Figure 6.7 (a.1)). The steady state ∆ῑ response to the time

evolution of the electron density un is shown in Figure 6.7 (a.2). The differences of

the spatial injection positions of gyrotrons (shown in Figure 6.6 (e) and (g)) lead to

the differences of the steady-state ∆ῑ response in Figure 6.7 (a.3)-(a.5) and (b1)-(b3).

The co-injection and counter-injection beams affect the profile in different directions

in agreement with prior experiments and on-axis model.
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Figure 6.7: Steady state gains for the ι profile response for off-axis current drive
scenarios. Note: the inputs are ∆Peci (1 MW), ∆Pnbij (1 MW), ∆un (0.1), and ∆Ip
(0.1 MA), where i ∈ {1, 2, · · · , 6} and j ∈ {1, 2, · · · , 8}.
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Figure 6.8: Control inputs applied during first-principles-driven model simulation and
DIII-D shot #147394 (current in MA and power in MW).

6.6.1 Comparison between First-principles-driven Model Pre-

diction and Experimental Data

We now describe a study that compares the evolution of the plasma parameters

predicted by the first-principles-driven (FPD) model to the experimentally achieved

plasma parameters in DIII-D off-axis shot #147394. The inputs (total plasma current

Ip, total gyrotron launcher powers
∑6

i=1 Peci , total neutral beam injection powers
∑8

i=1 Pnbii , and density regulation un) applied during both the simulation and the

experiment are shown in Figure 6.8, time traces of ψ at various normalized effective

minor radii are shown in Figure 6.9, and a comparison of the first-principles-driven

model predicted and the experimentally achieved ψ and q profiles at various time

instances is shown in Figure 6.10 (a)-(d) and Figure 6.10 (e)-(h), respectively. As

shown in the figures, the trends of the first-principles-driven model predicted plasma

parameters show good agreement with the experimental results in the off-axis current

drive scenarios.
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Figure 6.9: Time trace of poloidal magnetic flux ψ at various spatial locations. Note:
first-principles-driven model (solid) and experimentally achieved (dash).
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Figure 6.10: Poloidal magnetic flux profile ψ(ρ̂) (a)-(d) and safety factor profile q(ρ̂)
(e)-(h) at various time instances.
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6.7 Conclusion

The author develops a general simplified physics-based modeling approach to convert

the first-principles physics model that describes the current profile evolution in the

tokamak into a form suitable for control design, with emphasis on high performance

operating scenarios. The first-principles-driven models’ prediction capabilities are

demonstrated by comparing the prediction to experimental data for DIII-D in the

on-axis and off-axis current drive scenarios. It is important to note we are modeling-

for-control, consequently, the model needs only to capture the dominant physics of

the system dynamics as one of the main characteristics of feedback is the ability to

deal with model uncertainties. The tailored models are employed to design feedback

control algorithms to control the current profile evolution in H-mode scenarios in DIII-

D [54], which will be discussed in the Chapter 7. Experimental testing of the designed

controllers is part of our future work and will help assess the true requirements for

model accuracy.
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Chapter 7

First-principles-driven Control of

the Rotational Transform Profile in

High Performance Discharges in

the DIII-D Tokamak

7.1 Introduction

In this chapter, we extend the previous work [48, 49, 50, 51] by developing first-

principles-driven feedback controllers for current profile in high-confinement (H-mode)

scenarios. Firstly, the governing infinite dimensional PDE (6.14) is approximated by

a finite dimensional system of ordinary differential equations to facilitate the synthesis

of a feedback controller by employing a truncated Taylor series expansion in space.

While the state of the reduced-order model is linearized around a given feedforward

operating trajectory, the control input nonlinearities are preserved through a non-

linear transformation, and a time-varying state-space representation of the deviation

166



dynamics is derived. Secondly, a singular value decomposition of the static gain ma-

trix of the nominal plant model is employed to determine which linear combinations

of the plant outputs we can effectively control. The mixed sensitivity H∞ control

method is applied to synthesize a closed-loop controller that minimizes the reference

tracking error and rejects external disturbances with minimal control energy. Finally,

the control performances of the first-principles-driven model-based controller and a

previously designed data-driven model-based controller in Section 4.2 are compared.

The first-principles-driven controller shows the potential for improving the closed-loop

performance, especially near the center of the plasma.

This chapter is organized as follows. In Section 7.2, a first-principles-driven model

for the plasma rotational transform ι profile evolution is presented. In Section 7.3, the

PDE model is linearized around the feedforward trajectories of the system. Based on

the linear model, the design of the plasma control algorithm is described. Closed-loop

simulated and the comparison results are presented in Section 7.4. Section 7.5 states

the conclusions.

7.2 Plasma Rotational Transform Profile Evolu-

tion Model

By combining the control-oriented models (6.3)-(6.9) with the magnetic diffusion

equation (6.1), the desired first-principles-driven, control-oriented model of the poloidal

magnetic flux profile evolution is obtained in (6.14). The rotational transform ι pro-

file, defined as ι(ρ̂, t) = −dΨ/dΦ, is written as

ι(ρ̂, t) = −dΨ

dΦ
= −

2π ∂ψ
∂ρ̂

∂Φ
∂ρ

∂ρ
∂ρ̂

= − θ

Bφ,0ρ2
b ρ̂

, CFP (ρ̂)θ, (7.1)
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where θ(ρ̂, t) = ∂ψ
∂ρ̂

(ρ̂, t) is the gradient of the poloidal flux profile. Therefore, we

develop a model for θ, so we can control the ι profile evolution. Using the chain rule,

(6.14) is expanded as

∂ψ

∂t
=
f1u1

ρ̂
(ρ̂
∂ψ

∂ρ̂

dDψ

dρ̂
+Dψ

∂ψ

∂ρ̂
+ ρ̂Dψ

∂2ψ

∂ρ̂2
) +

15∑

i=2

fiui + (
∂ψ

∂ρ̂
)−1f16u16. (7.2)

By differentiating (7.2) with respect to ρ̂, the PDE governing the evolution of θ(ρ̂, t)

is found to be

∂θ

∂t
= (h11

∂2θ

∂ρ̂2
+ h12

∂θ

∂ρ̂
+ h13θ)u1(t) +

15∑

i=2

dfi
dρ̂
ui(t) + (

1

θ

df16

dρ̂
− f16

θ2

∂θ

∂ρ̂
)u16(t), (7.3)

with boundary conditions

θ(0, t) = 0, θ(1, t) = −k17u17(t),

where h11 = f1Dψ, h12 =
f1Dψ
ρ̂

+ f ′1Dψ + 2f1D
′
ψ, and h13 = f ′1D

′
ψ + f1D

′′
ψ +

f ′1Dψ
ρ̂

+

f1D′ψ
ρ̂
− f1Dψ

ρ̂2
.

7.3 Control System Design

A general framework for real-time feedforward+feedback control of magnetic plasma

profiles has been implemented in the DIII-D PCS [51]. The controller is implemented

as a discrete-time state-space system with a sampling time of 20 ms. This sampling

time is set based on the modulation of the motional Stark effect (MSE) beam used to

obtain ι profile measurements in real-time. In this section, a multi-input-multi-output

(MIMO) feedback controller based on the first-principles-driven model (7.1)-(7.3) is

proposed for the regulation of the evolution of the ι profile on DIII- D.
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7.3.1 Model Reduction and Linearization

The model (7.3) is discretized in space using a truncated Taylor series expansion to

approximate the spatial derivatives to construct a reduced-order model suitable for

control design. The non-dimensional domain of interest, [0, 1], is represented as l

nodes, and the spacing between the nodes, ∆ρ̂, is defined as ∆ρ̂ = 1/(l− 1). Central

finite difference spatial derivative approximations of O(∆ρ̂2) are used in the interior

node region, 2 ≤ i ≤ (l − 1). The reduced-order discretized model is expressed as

Ẋ = W (X, u), (7.4)

where X = [θ2, θ3, · · · , θl−1]T , u = [u1, u2, · · · , u17]T , and W is a nonlinear function of

the states and inputs. Let XFF , uFF and yFF be the feedforward trajectories of the

states, inputs and outputs, and these feedforward trajectories satisfy

ẊFF = W (XFF , uFF ), yFF = CFPXFF . (7.5)

By defining the perturbation variables x = X − XFF and ∆u = u − uFF , a linear

model suitable for tracking control design can be obtained. Inserting the perturbation

variables into (7.4) results in

ẊFF + ẋ = W |XFF ,uFF +
∂W

∂X
|XFF ,uFFx+

∂W

∂u
|XFF ,uFF∆u+ · · ·

Ignoring the higher order terms, a series of linear models are expressed as:

ẋ =
∂W

∂X
|XFF ,uFFx+

∂W

∂u
|XFF ,uFF∆u = AFP (t)x+BFP (t)∆u.
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Figure 7.1: Frequency Study of First-principles-driven Plasma Models

By defining the outputs ∆y = y − yFF , we can obtain

yFF + ∆y = CFP (XFF + x).

Therefore, we obtain a linear time-variant, dynamic, state-space model, i.e.,

ẋ = AFP (t)x+BFP (t)∆u, ∆y = CFPx. (7.6)

A frequency study of the family of the state-space models (7.6), which compares

the maximum singular values of the time-variant ι profile models, shows that the

models do not have a large magnitude difference, as shown in Figure 7.1. Based on

this frequency study, the model at 1.75 s is chosen as the nominal model, denoted as

PFP0 and expressed as

ẋ = AFP0x+BFP0∆u, ∆y = CFP0x. (7.7)

The feedback controller is designed based on (7.7).
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7.3.2 Singular Value Decomposition

Assuming a constant target ∆ȳtar and closed-loop stabilization, the system will reach

steady state as t→∞. It is possible to define ∆ȳ = limt→∞∆y(t), ∆ū = limt→∞∆u(t),

and ē = limt→∞ e(t) = ∆ȳtar −∆ȳ. Therefore, the closed-loop system is specified by

∆ȳ = P̄FP0∆ū = −CFP0A
−1
FP0

BFP0∆ū, ∆ū =
¯̂
Kē,

where PFP0(s) is the transfer function of (7.7) and P̄FP0 = PFP0(0), and K̂(s) repre-

sents the transfer function of the to-be-designed controller and
¯̂
K = K̂(0).

In order to weight the control effort and tracking error, two positive definite

weighting matrices R ∈ <m×m and Q ∈ <p×p are introduced to the system, where

p = l − 2 is the number of outputs and m is the number of inputs. We then define

the “weighted” steady-state transfer function, and its singular value decomposition

(SVD) as P̃FP0 = Q1/2P̄FP0R
−1/2 = USV T , where S = diag(σ1, σ2, · · · , σm) ∈ <m×m,

U ∈ <p×m (UTU = I), and V ∈ <m×m (V TV = V V T = I). By invoking the proper-

ties of the SVD, the matrix Q−1/2US defines a basis of the steady-state output values,

and the matrix R−1/2V defines a basis of the steady-state input values. By defining

∆ȳ∗ = S−1UTQ1/2∆ȳ, ∆ȳ∗tar = S−1UTQ1/2∆ȳtar, and ∆ū∗ = V TR1/2∆ū, a square

decoupled system is obtained:

∆ȳ∗ = S−1UTQ1/2∆ȳ = S−1UTQ1/2Q−1/2USV TR1/2∆ū = ∆ū∗.

Substituting these expressions into the performance index J̄ = ēQēT , the steady state

cost function is obtained as:

J̄ = (∆ȳ∗tar −∆ȳ∗)TS2(∆ȳ∗tar −∆ȳ∗) =
m∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2.
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Figure 7.2: H∞ Control Formulation

It is usually the case where σ1 > · · ·σk � σk+1 > · · · > σm > 0. To avoid spend-

ing a lot of control effort for a marginal improvement of the cost function value, we

partition the singular value set into significant singular values Ss and negligible sin-

gular values Sn. We can write U =

[
Us Un

]
, V =

[
Vs Vn

]
, S = diag(Ss, Sn),

and approximate the cost function J̄ by

J̄s =
k∑

i=1

σ2
i (∆ȳ

∗
tari
−∆ȳ∗i )

2 = (∆ȳ∗tars −∆ȳ∗s)
TS2

s (∆ȳ
∗
tars −∆ȳ∗s),

where ∆ȳ∗tars = S−1
s UT

s Q
1/2∆ȳtar, ∆ȳ∗s = S−1

s UT
s Q

1/2∆ȳ, ē∗s = ∆ȳ∗tars − ∆ȳ∗s and

∆ū∗s = V T
s R

1/2∆ū. The matrix bases reduce to Q−1/2UsSs and R−1/2Vs, and the

decoupled system,

PFPDC = S−1
s UT

s Q
1/2PFP0R

−1/2Vs, (7.8)

represents a one-to-one relationship between the inputs ∆ū∗s and the outputs ∆ȳ∗s .

More details of SVD can be found in Section 4.2.2.

7.3.3 Design of Mixed Sensitivity H∞ Controller

The mixed sensitivity H∞ technique is used to design the plasma ι profile controller,

which can minimize the tracking error e(t) while using as little feedback control ef-

172



fort as possible. The structure of the proposed controller is shown in Figure 7.2,

where K is the feedback controller, ∆ud is the input disturbance, Z1 = Wpe
∗
s,

Z2 = Wu∆u
∗
s, and Wp and Wu are two frequency-dependent weighting functions. The

feedback system shown in Figure 7.2, is expressed in the conventional P ∗−K control

framework. The generalized plant P ∗ is the transfer function from the input sig-

nals [∆y∗Ttars , ∆u∗Ts ]T to the output signals [ZT
1 , Z

T
2 , e

∗T
s ]T , where ∆u∗s = V T

s R
1/2∆u,

∆y∗tars = S−1
s UT

s Q
1/2∆ytar, ∆y∗s = S−1

s UT
s Q

1/2∆y, and e∗s = ∆y∗tars−∆y∗s . The closed-

loop transfer function is given by the lower linear fractional transformation (LFT),

i.e.,

Tzw = Fl(P
∗, K) =



WpMs

WuKMs


 , (7.9)

where the sensitivity transfer function Ms is defined as Ms = (I + PFPDCK)−1. Our

purpose is to seek a controller K(s) that stabilizes the system and minimizes the H∞

norm of the transfer function Tzw, i.e.,

min
K(s)
‖Tzw(P ∗, K)‖∞= min

K(s)
(sup
ω
σ̄[Tzw(P ∗, K)(jω)]),

where σ̄ represents the maximum singular value. This statement defines a mixed

sensitivity H∞ control problem, and the goal is to minimize both the tracking error

(WpMs) and the control effort (WuKMs) at the same time. The weighting functions

Wp = diag{Wpi} and Wu = diag{Wui} are

Wpi(s) = (
s/
√
Mpi + ωpi

s+ ωpi
√
Hpi

)2, Wui(s) = (
s+ ωui

√
Hui

s/
√
Mui + ωui

)2,

where the coefficients Mpi , ωpi , Hpi , Mui , ωui , and Hui , for i = 1, 2, · · · , k, are de-

sign parameters in the H∞ control synthesis. Finally, the overall plasma rotational

173



transform ι profile controller can be written as

K̂(s) =
∆U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q

1/2, (7.10)

where ∆U(s) and E(s) denotes the Laplace transform of ∆u and e respectively.

7.3.4 Nonlinear Transformation

The outputs of the feedforward+feedback controller now need to be converted to the

physical actuator signals, Ip, Peci , Pnbij , and un, and we employ the inverse nonlinear

transformations of the control inputs of (7.3) to accomplish this. However, there are

only eight beams in NBI, six gyrotrons in EC, plasma current Ip and density evolu-

tion parameter un, totalling sixteen independent actuators in DIII-D, but there are

seventeen inputs in (7.3). Therefore, it is impossible to obtain a unique relationship

between the u in (7.3) and physical actuator signals.

There are two different types of NBI beams in DIII-D: co-current and counter-

current injection, which allows an important capability of mixed co-injection and

counter-injection to heat the plasma without driving current. Based on this capability,

a new variable, denoted as balanced-beam NBI power PBL, is introduced in the model.

The beam power Pnbii is therefore expressed as Pnbii = Pnbii,CD + γnbiiPBL, with

i ∈ {1, 2, · · · , 8}, where Pnbii,CD is the portion of the total NBI power that drives

current and γnbii is the fraction of balanced-beam power contributed by each beam.

The objective is to determine the γnbii for each beam that minimizes the non-inductive

current drive by PBL. This defines a constrains linear optimal control problem,

min
γnbii

JBL, s.t.
8∑

i=1

γnbii = 1, (7.11)
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where JBL is a cost function, defined as

JBL =

∫ 1

0

(
8∑

i=1

ĵdepnbii
(ρ̂)γnbiiPBL)2dρ̂, (7.12)

where ĵdepnbii
is the normalized deposition profile, defined as ĵdepnbii

= jdepnbii
/Pnbii . The

parameter jdepnbii
is a reference deposition profile for the ith beam of NBI.

The total power Ptot in DIII-D is expressed as Ptot = Pohm+
∑6

i=1 Peci+
∑8

i=1 Pnbii−

Prad. The ohmic power Pohm and the radiated power Prad are typically small, and

can be ignored comparied with the injected power from NBI and EC. Therefore, the

total power Ptot is written as

Ptot ≈
6∑

i=1

Peci +
8∑

i=1

Pnbii =
6∑

i=1

Peci +
8∑

i=1

Pnbii,CD + PBL.

The inverse nonlinear transformation between the inputs in (7.3) and the physical

acturators are:

Ip = u17, Peci =
ui+1u16

u
2/3
1

, Pnbij,CD =
uj+7u16

u
2/3
1

,

PBL = (
u16

u1u17

)2 −
15∑

k=2

uku16

u
2/3
1

, un =
u16

u
1/3
1

, (7.13)

where ul = uFFl + ∆ul, i ∈ {1, 2, · · · , 6}, j ∈ {1, 2, · · · , 8}, and l ∈ {1, 2, · · · , 17}.

7.3.5 Design of Anti-windup Compensator

At the moment of designing the H∞ controller (7.10), the actuator saturations were

not considered. As a result of saturation, the controller output does not drive the

plant input and, as a consequence, the states of the controller may wind up because

the plant does not respond as expected. An anti-windup compensator is needed to
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Figure 7.3: Rotational transform ι profile reference, closed-loop (data-driven model-
based controller) simulated & experimental inputs (shot # 147704). Light-gray back-
ground: feedback on-disturbance off, dark-gray background: feedback on-disturbance
on, white background: feedback off-disturbance off.

minimize the adverse effect of any control input saturation, and the ι profile controller

in DIII-D is augmented with an anti-windup compensator. Details of the anti-windup

compensation can be obtained from Section 4.2.5.

7.4 Closed-loop Simulations and Comparison

7.4.1 Model Verification

The objective in developing the simplified first-principles-driven model (6.14) is to

capture the dominant physics that describe how the control actuators affect the

plasma parameters, and hence the current profile evolution. Therefore, the actual
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Figure 7.4: Model Verification Formulation.

controlled variable profile evolution in DIII-D may differ slightly from the evolution

predicted by the PDE model (6.14). A model validation procedure was carried out by

comparing the model prediction with experimental data. In Chapter 3, a data-driven

model-based ι profile controller was designed for H-mode scenarios in DIII-D, and was

tested experimentally (shot # 147704). Therefore a closed-loop simulation using the

first-principles-driven (FPD) model and the experimentally tested data-driven (DD)

controller is executed with the same conditions that were set in shot 147704. The

model validation procedure is shown in Figure 7.4. We set the feedforward inputs

(solid-dotted black lines in Figure 7.3), target ι profiles (solid-dotted black lines in

Figure 7.5), and input disturbance (δIp = 0.1 MA) equal to those utilized during the

experiment. The feedback controller was active during the experiment in the interval

[ti, tf ] = [2.5, 6], and this same time interval is chosen for the simulation study. The

EC system and counter-injection beam (210R) were off during the experiment, so

they are not used in the simulation. The actuators are the plasma current Ip, the

co-current NBI power PCO, distributed equally between the 150L and 330L beams,

and the balanced-beam NBI power PBL, distributed equally between the 150R and

210L beams, in both experiment and simulation. The simulated and experimental
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closed-loop-controlled ι profile at ρ̂ = [0.2, 0.4, 0.5, 0.6, 0.8, 0.9] are shown in Fig-

ure 7.5. The trends of all simulated inputs (Figure 7.3) and outputs (Figure 7.5) are

very similar to those obtained in experiments, which suggests that the PDE model

successfully captures the dominant physics of the ι profile response.
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Figure 7.5: Rotational transform ι profile reference, closed-loop (data-driven model-
based controller) simulated & experimental outputs (shot # 147704). Light-gray
background: feedback on-disturbance off, dark-gray background: feedback on-
disturbance on, white background: feedback off-disturbance off.
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Figure 7.6: Control Performance Comparison.

7.4.2 Closed-loop Performance Comparison between First-

principles-driven and Data-driven Model-based Con-

trollers

Our previous ι profile controller in H-mode was based on the data-driven model

(Chapter 3), which is only valid around the reference plasma state during the sys-

tem identification experiment. The effectiveness of the data-driven model-based con-

trollers may be limited when the plasma state moves away from the reference state.

First-principles-driven modeling techniques allow for the derivation of models captur-

ing the nonlinear response of the current profile to control actuation. The closed-loop

simulation in this section is based on the first-principles-driven (FPD) magnetic dif-

fusion equation (6.14), which represents the poloidal magnetic flux profile evolution

during the discharge in DIII-D. The structure of the control performance comparison

between the first-principles-driven (FPD) and data-driven (DD) model-based con-

trollers is shown in Figure 7.6. The goal of the comparison is to demonstrate that

the proposed controller is capable of regulating the system around a target ι profile

even in the presence of multiple disturbances.

179



Time [s]

ι(
0

.1
,t

)

 

 

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

1.2

FF (Target)

FF + Dist.

FF + Dist. + FB (FPD)

FF + Dist. + FB (DD)

Time [s]

ι(
0

.2
,t

)

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

(a) (b)

Time [s]

ι(
0

.3
,t

)

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

Time [s]
ι(

0
.4

,t
)

1 2 3 4 5 6
0.2

0.4

0.6

0.8

(c) (d)

Time [s]

ι(
0

.6
,t

)

1 2 3 4 5 6
0.2

0.3

0.4

0.5

Time [s]

ι(
0

.7
,t

)

1 2 3 4 5 6
0.2

0.25

0.3

0.35

0.4

(e) (f)

Time [s]

ι(
0

.8
,t

)

1 2 3 4 5 6
0.15

0.2

0.25

0.3

Time [s]

ι(
0

.9
,t

)

1 2 3 4 5 6
0.1

0.15

0.2

0.25

(g) (h)

Figure 7.7: Simulated Outputs at ρ̂ = 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9. Light-
gray background: feedback on - Disturbance I on, dark-gray background: feedback
on - Disturbance II on, white background: feedback on - disturbance off.

180



Table 7.1: Input Disturbances (Units: MA & MW)
Dis. ∆Ipd ∆Pec1d ∆Pec2d ∆Pec3d ∆Pec4d ∆Pec5d ∆Pec6d ∆und
∆ud1 0.1 0 0 0 0 0 0 0
∆ud2 0.1 -0.1 -0.1 -0.25 -0.25 -0.1 -0.2 0

∆Pnbi1d ∆Pnbi2d ∆Pnbi3d ∆Pnbi4d ∆Pnbi5d ∆Pnbi6d ∆Pnbi7d ∆Pnbi8d
0 0 -0.25 -0.25 0 0 0 0
0 0 -0.25 -0.25 0 0 -0.25 -0.25

The reference plasma current, density evolution parameter, and heating and cur-

rent drive (H&CD) powers come from a feedforward shot #146417, denoted as uFF ,

and the ι profile resulting from these reference (feedforward) inputs, denoted as yFF ,

are used as targets in the simulation, which are represented by black dotted lines in

the figures in this section. Based on the present pulse capability of each gyrotron in

the EC system, the EC power is turned on at t = 2.5 s. Two different disturbances

∆udi = [∆Ipd , ∆Pecj,d , ∆Pnbik,d , ∆und ], shown in Table. 7.1, are introduced to the

simulation, where i ∈ {1, 2}, j ∈ {1, · · · , 6}, and k ∈ {1, · · · , 8}. Disturbance I, ∆ud1 ,

representing a relatively large disturbance (0.1 MA) in Ip and small total disturbance

(0.5 MW) in the NBI, is introduced at t = 2 s to test the regulating capability of

the ι profile control. Disturbance II, ∆ud2 , representing a relatively large disturbance

(0.1 MA) in Ip and large total disturbance (1 MW) in the NBI and EC, is introduced

at t = 3 s to test ι profile control in different equilibrium. The start time of the

control phase is moved backward from the current flat-top phase (2.5 s) to the cur-

rent ramp-up phase (0.5 s). In order to compare control performances of the different

controllers, we plot them in the same pictures (Figure 7.7-7.9).

The closed-loop-controlled ι profile (blue solid lines by the first-principles-driven

(FPD) controller, and magenta dashed-dotted lines by the data-driven (DD) con-

troller) at ρ̂ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 are shown in Figure 7.7. In
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Figure 7.8: Closed-loop Simulated Plasma ι(ρ̂) profile at time t =
2.0, 3.0, 3.5, 4.0, 5.0, 6.0 seconds

addition, the feedforward (target) outputs (black solid-dotted lines) and feedforward

with disturbances (brown circle lines) are shown in the same figure. In order to keep

the outer profile tracking errors small, the plasma current disturbance is quickly re-

jected by the FPD and DD controllers after t = 3 s. There are nearly no tracking

errors after t = 4 s for ι at ρ̂ ≥ 0.4 as noted from Figure 7.7 (d)-(i). Note that the

inner ι profile response is much slower than the boundary ι profile response, which is
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due to the high temperature and slow diffusivity in the core relative to the boundary.

This effect is explicitly taken into account at by including the temperature profile

model in the FPD model. In the data-driven approach (Chapter 3), system identi-

fication technique assumes the limited bandwidth for the ι profile response, which

may pose a risk to closed-loop performance due to the neglected dynamics. Com-

paring with the DD controller, the control performance of the FPD controller to the

inner part of the ι profile (ρ̂ ≤ 0.2) is improved, as shown in Figure 7.7 (a)-(b). A

series of six plasma ι profiles at different times during the simulation are shown in

Figure 7.8. The black solid-dotted lines denote the target profiles, and we see that

with feedforward control only the target profile is not achieved in the presence of the

disturbance (brown circle lines). Improved performance can be observed from the

comparison with the controlled results by the FPD controller (blue solid lines) and

the DD controller (magenta dashed-dotted lines).

The closed-loop outputs of the first-principles-driven (FPD) controller (blue solid

lines) are compared with the closed-loop outputs of the data-driven (DD) controller

(magenta dashed-dotted lines) in Figure 7.9. The two controllers reject the distur-

bance in the plasma current Ip quickly and drive the Ip around the constant reference

(feedforward) value when the boundary ι profile reaches the target, as shown in Fig-

ure 7.9 (a). Beam and gyrotron powers, shown in Figure 7.9 (c)-(l), are weakly mod-

ulated by the DD model-based controller within the saturation limits, but strongly

controlled by the FPD model-based controller. When the whole ι profile, especially

the inner part of ι profile, reaches the target in the end of the simulation, H&CD

powers are driven towards to their reference (feedforward) values by the FPD con-

troller. After the disturbances especially with ∆ud2 are applied, the inputs of some

gyrotrons and the 210L NBI reach saturation and activate the anti-windup com-

pensator as shown in Figure 7.9 (d), (f), (g) and (k). The electron density is not
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Figure 7.9: Rotational Transform ι Profile Closed-loop Simulated Inputs for Each
Actuator: Reference (feedforward) inputs (black solid-dotted lines), feedforward in-
puts with disturbances (brown circle line), feedforward+feedback control by First-
principles-driven (FPD) controller (blue solid lines), and feedforward+feedback con-
trol by Data-driven (DD) controller (magenta dashed-dotted lines). Light-gray back-
ground: feedback on - Disturbance I on, dark-gray background: feedback on - Dis-
turbance II on, white background: feedback on - disturbance off.

controlled by the DD controller, so un is the same as the reference input. The FPD

model includes the electron density model, which gives the new capability to control

the density, as shown in Figure 7.9 (b). The central goal of current profile control is

to regulate ι precisely in the inner part of plasma. Closed-loop simulated results by

the first-principles-driven model-based controller in Figure 7.7 and Figure 7.8 show

the control performance improvements in the inner part of the ι profile.
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7.5 Conclusion

A first-principles-driven, model-based, multi-input-multi-output (MIMO), ι profile

controller has been designed for the H-mode discharges in DIII-D. The control de-

sign is based on the control-oriented model. The feedback controller can regulate the

system to the target, even in the presence of various disturbances. Singular value

decomposition of the steady state transfer function is used to decouple the system

and identify the most relevant control channels. The mixed sensitivity H∞ technique

is used to minimize the tracking error and to optimize control effort. The prelimi-

nary simulation results presented in this work show good progress towards current

profile control in DIII-D. When compared with the control performance of a previous

data-driven model-based current profile controller, the proposed first-principles-driven

model-based H∞ controller shows potential for improving control regulation in the

inner part of the ι profile.
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Chapter 8

Conclusion and Future Work

This dissertation work has focused on plasma current, position, shape and current

density profile control in advanced tokamak operating scenarios. In this final chapter,

we summarize our research work and briefly describe some areas that merit future

research.

8.1 Contributions of Dissertation

The contributions of this dissertation are:

1. Model-based MIMO shape controllers were designed for NSTX. The design of

the shape controller was based on linearized plasma response models in the

current ramp-up phase and flat-top phase. The availability of independent

current and position controllers transformed the shape control problem into

an output tracking problem. Singular value decomposition of the steady state

transfer function was used to decouple the system and identify the most relevant

control channels, and the shape controllers were designed using this decoupled

system. The DK-iteration technique, combining H∞ synthesis and µ analysis,
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was used to minimize the tracking error and optimize input effort. The proposed

controllers were tested in simulations, and shows potential for expanding present

experimental control capabilities.

2. A mixed-sensitivity H∞, model-based ι profile and βN controller for on-axis

current drive scenarios was designed for DIII-D. The design was based on a

two-timescale linear, data-driven, plasma-response model around a reference

profile during the current flat-top phase in H-mode. The feedback controller

can regulate the system to the target, which was close to the reference equi-

librium, even in the presence of various disturbances. The feedback controller

was then augmented with an anti-windup compensator, which keeps the given

profile controller well-behaved in the presence of magnitude constraints in the

actuators and leaves the nominal closed-loop unmodified when no saturation is

present. The proposed controller represented one of the first profile controllers

integrating magnetic and kinetic variables ever implemented and experimen-

tally tested in DIII-D. Although limited in number and constrained by actua-

tors problems, the preliminary experimental results show good progress towards

routine current profile control in DIII-D.

3. A model-based robust ι profile and βN controller for off-axis current drive sce-

narios was designed for DIII-D. Since the linear model was identified around

a desired equilibrium in the current flat-top phase, an uncertainty was intro-

duced to the identified model to partially account for the dynamic character

of the plasma state equilibrium evolution in the current ramp-up phase. By

using the DK-iteration technique, a robust controller was designed to stabilize

this family of plasma models, which were reformulated into a nominal model

with uncertainty. The proposed controller was tested in closed-loop PTRANSP
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simulation, and then was experimentally tested in DIII-D. More experimental

tests are needed to assess the appropriateness of using data-driven linear models

for current profile control in off-axis current drive scenarios. The sensitivity of

the static component of the controller to un-modeled or mis-modeled plasma

response and its impact on performance need further analysis.

4. A physics-based control-oriented modeling approach to convert the first-principles

physics model describing the current profile evolution in the tokamak into a

form suitable for control design was developed, with emphasis on high perfor-

mance operating scenarios. The PTRANSP simulation code was employed to

tailored the model to on-axis and off-axis current drive scenarios, respectively.

The first-principles-driven models’ prediction capabilities were demonstrated by

comparing the prediction to experimental data for DIII-D.

5. A mixed sensitivity H∞, first-principles-driven, model-based, ι profile controller

was designed for H-mode discharges in DIII-D. The feedback controller could

regulate the system to the target, even in the presence of various disturbances in

simulations. The preliminary simulation results presented show good progress

towards current profile control in DIII-D. When compared with the control

performance of a previous data-driven model-based current profile controller,

the proposed first-principles-driven model-based controller shows potential for

improving control regulation in the inner part of the ι profile. The proposed

controller will be tested in the DIII-D 2013 experimental campaign.

8.2 Future Work

The construction of the ITER tokamak has raised awareness of the need of integrating

different and sometimes competing controllers. So far, control efforts in tokamak
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Figure 8.1: Integrated Control Configuration.

plasmas usually focused on individual and isolated objectives. However, this approach

is sometimes unrealistic since different control objectives may be heavily coupled.

This is the case of plasma shape and current profile control. For example, regulation

of the total plasma current has been described above as a control output for the

shape control problem (2.2) and at the same time as a control input for the current

profile control problem (boundary control) (7.3). The neutral beams affect current

profile control (6.8), and at the same time are inputs in the linearized axisymmetric

plasma response models (2.1) used for shape control. In addition, the axisymmetric

plasma response model (2.1) needed for shape control is obtained as a linearized

response around a MHD equilibrium characterized by a specific current distribution

or profile. Therefore, the MHD equilibrium is changed when the current profile is

modified, and the axisymmetric plasma response models for shape control may need
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to be updated in real time. For all these reasons, as shown in Figure 8.1 in red, we

intend to consider an integrated approach to simultaneous control of plasma shape

and current profile. Accomplished work is denoted by a red solid line, while future

work is denoted by a red dashed line. For the simulation of the transport equations

(current, density, temperature), it should be planned to integrate PTRANSP into

MATLAB/SIMULINK.

The initial step toward integrating multiple individual controls in ITER is to in-

tegrate the multivariable model-based shape, vertical position, and current controller

with the current density profile controller. The long term goal is to integrate this com-

bined controller with control of rotation profile, density profile, pressure profile, and

radial E-field, using feedback commands to actuators such as gas injectors, pumps,

neutral beams, electromagnetic heating and current drives.
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