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Abstract

Missions to Lagrange points are becoming increasingly popular amongst space-

craft mission planners. Lagrange points are locations in space where the gravity

force from two bodies, and the centrifugal force acting on a third body, can-

cel. To date, all spacecraft that have visited a Lagrange point have done so

using high-thrust, chemical propulsion. Due to the increasing availability of

low-thrust (high efficiency) propulsive devices, and their increasing capability

in terms of fuel efficiency and instantaneous thrust, it has now become possible

for a spacecraft to reach a Lagrange point orbit without the aid of chemical

propellant. While at any given time there are many paths for a low-thrust

trajectory to take, only one is optimal. The traditional approach to space-

craft trajectory optimization utilizes some form of gradient-based algorithm.

While these algorithms offer numerous advantages, they also have a few sig-

nificant shortcomings. The three most significant shortcomings are: (1) the

fact that an initial guess solution is required to initialize the algorithm, (2) the

radius of convergence can be quite small and can allow the algorithm to become

trapped in local minima, and (3) gradient information is not always assessable

nor always trustworthy for a given problem. To avoid these problems, this

dissertation is focused on optimizing a low-thrust transfer trajectory from a

geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method

1



of Particle Swarm Optimization (PSO). The PSO method is an evolutionary

heuristic that was originally written to model birds swarming to locate hidden

food sources. This PSO method will enable the exploration of the invariant

stable manifold of the target Lagrange point orbit in an effort to optimize the

spacecraft’s low-thrust trajectory.

Examples of these optimized trajectories are presented and contrasted with

those found using traditional, gradient-based approaches. In summary, the re-

sults of this dissertation find that the PSO method does, indeed, successfully

optimize the low-thrust trajectory transfer problem without the need for ini-

tial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation

significantly outperformed a one-degree-of-freedom formulation by at least an

order of magnitude, in terms of CPU time. Finally, the PSO method is also

used to solve a traditional, two-burn, impulsive transfer to a Lagrange point

orbit using a hybrid optimization algorithm that incorporates a gradient-based

shooting algorithm as a pre-optimizer. Surprisingly, the results of this study

show that “fast” transfers outperform “slow” transfers in terms of both ∆v and

time of flight.

2



1 Introduction

Lagrange Point Orbits (LPOs) have become increasingly important destinations

for spacecraft missions. In the past, spacecraft would travel to these orbits via

high-thrust, impulsive maneuvers. Unfortunately, these maneuvers utilize a

great deal of fuel due to the relatively low efficiency of chemical propellant.

Recently, attention has shifted to low-thrust propulsion technology that would

allow a spacecraft to utilize a high-efficiency engine to transport itself to an

LPO. This method, while slower than the chemical approach, offers a more

fuel efficient method of transportation to/from an LPO and can maximize the

payload mass transported. This type of system is ideal for cargo transportation

where the cargo or payload is not harmed by long-duration spaceflight. In this

dissertation, a method is developed to optimize a low-thrust trajectory from

a geocentric orbit to an LPO using an evolutionary algorithm called Particle

Swarm Optimization (PSO).

1.1 History of Lagrange Point Orbits

The Lagrange points (drawn in Figure 2.2) were discovered in the early 1770’s

by Leonhard Euler and Joseph Louis Lagrange [1]. Over time, it was discovered

that the dynamics of the collinear Lagrange points were unstable, therefore any

3



1 Introduction

object placed near a Lagrange point would eventually drift away. Fortunately,

however, it was a bit easier to control orbits about these Lagrange points, al-

though they, too, are generally unstable. In 1967 Szebehely [2] wrote a detailed

explanation of analytic approximations of LPOs that were very useful in quali-

tatively describing the shape of these orbits and quantitatively describing their

size and period. Farquahr [3] described the shape of a halo orbit in 1968 as

a near-circular trajectory that orbited Lagrange point L1 or L2 in the Earth-

Moon system. An observer on Earth who looked at the moon would see a halo

shape traced around the moon by the spacecraft’s trajectory. Other trajecto-

ries are also possible LPOs. These include a two-dimensional Lyapunov orbits

(kidney bean shaped orbits) and three-dimensional Lissajous orbits which are

semi-periodic in nature.

The first practical application of LPOs came in 1968 during the height of the

space race. Farquahr [3, 4, 5] noted that halo orbits around the Earth-Moon L2

point could be used by a single communications satellite to relay data back to

Earth from the far-side of the Moon. This would enable communication with

Apollo spacecraft in lunar orbit. The Apollo spacecraft would regularly loose

line-of-sight radio contact with Earth each time it passed behind the “far side”

of the Moon. It would also have allowed for a lunar landing on the far side, since

it was a mission requirement that all lunar landing attempts be made while in

communication with Earth. Unfortunately, the final Apollo 18 & 19 missions

were canceled along with any hope of constructing a LPO communications

satellite or landing on the lunar far side. Since then, other uses for Earth-

Moon Lagrange points have been considered. These include observation and

surveillance of cis-lunar space [6], navigation aids in cis-lunar space, and other

human operations and telerobotics near Lagrange points [7, 8]. The placement

4



1 Introduction

of fuel depots at Lagrange points [9] is also being considered for deep-space

travel of human and robotic cargo.

There have also been a number of missions that have entered LPOs of the

Sun-Earth system. The first spacecraft to enter an LPO was the International

Sun-Earth Explorer (ISEE) mission in 1978. This mission was sent to a halo

orbit about the Sun-Earth L1 point to study the Sun [10]. Other missions

include the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck

Space Observatory. The Genesis mission trajectory was designed almost ex-

clusively using Dynamical System Theory via heteroclinic connections between

LPOs [11]. A NASA flagship mission called the James Webb Space Telescope

(JWST) is also scheduled to be launched to the Sun-Earth L2 point in 2018

[12]. LPOs in the Earth-Moon system have also been utilized. The ARTEMIS

mission (flown in 2011) [13, 14] was sent to study the distant regions of Earth’s

magnetotail by entering Earth-Moon L1 and L2 Lyapunov orbits (in practice

they were technically Lissajous orbits because various perturbations from the

sun and planets prevented them from being perfectly periodic). To date, this

is the first and only mission to an Earth-Moon Lagrange point.

1.2 History & Background of Low-Thrust

Propulsion

In addition to standard, chemical, impulsive, high-thrust propulsion (stud-

ied in the section labeled “Two-Maneuver, Impulsive Transfers via a Hybrid

PSO/Shooting Method”) a second method exists to deliver spacecraft to La-

grange point orbits. Low-thrust propulsion is useful for changing the orbit of a
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spacecraft that is already in space (and is useless in the Earth’s atmosphere due

to drag and gravity losses) and can have many advantages over chemical (high-

thrust) technology. The main advantage of low-thrust technology is its high

specific impulse when compared with traditional chemical propulsion. Accord-

ing to the rocket equation ∆v = Ispg0 ln
(
m0
mf

)
where ∆v is the change in speed

of the rocket, g0, is the acceleration due to gravity at sea level (a constant) and

m0 and mf are the rocket’s initial and final masses (including fuel). The Isp is a

measure of the efficiency of the rocket and is an intrinsic property of the rocket

and the fuel it burns. An Isp of 3000− 9000 seconds is possible with low-thrust

technology as opposed to 200−400 seconds with chemical technology; obviously

a far more fuel efficient technology than that required for the same change in

velocity as chemical propellants. The main disadvantage of low-thrust propul-

sion is implied by its name: “low-thrust.” It might take hours, days, months,

or even years of continuous low-thrust operation to acquire the same ∆v as a

chemical rocket can provide in a matter of minutes. Most low-thrust devices

produce far less than one newton of force during their operation.

In general there are three broad categories of low-thrust propulsion: solar-

electric, variable specific impulse, and solar sailing (which, technically, requires

no fuel but can be difficult to implement and control). This dissertation will fo-

cus on solar-electric low-thrust propulsion and assume a simple case of constant

specific impulse and thrust which is generally valid in the Earth-Moon system

if avoiding Earth’s shadow. A solar-electric platform uses an array of solar cells

to produce the electricity necessary (in the kilowatt range [15]) to accelerate

charged particles away from the spacecraft to produce thrust. Today, modern

electric thrusters provide for station keeping for the most part, but also can be

used for minor orbital maintenance of communication satellites. According to
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Sovey et al. [15], the higher specific impulse of low-thrust technology saves so

much fuel mass that it nearly doubles the mass available for communications

equipment. It has also been used to propel spacecraft such as Deep Space 1

and Dawn. Deep Space 1 was launched in 1998 with the NSTAR engine that

was capable of generating 92 mN of thrust with an Ispof 3, 100 seconds while

using 2.3kW of power generated by solar panels and running for 9, 241 hours

[16]. Later, in 2007, NASA launched the Dawn mission to study asteroid Vesta

and dwarf planet Ceres using a similar engine [17, 18]. As of 2004, nearly 200

solar-electric satellites in Earth orbit utilize some form of low-thrust, electric

propulsion [19]. This growth has expanded rapidly as new technology has been

developed.

Low-thrust ion propulsion was first studied by Robert H. Goddard in 1916

while experimenting with ionized thrust in near-vacuum conditions at high

altitudes [20]. Then, in 1923, Hermann Oberth discussed possible fuel savings

of electric propulsion of charged gases in his book “Wege zur Raumschiffahrt”

or “Ways to Spaceflight” [21]. Unfortunately, the development of low-thrust

technology did not proceed very quickly because the first man-made satellites

in space did not occur until the late 1950’s. In 1959 Harold Kaufman built and

tested the first working ion thruster at NASA Glenn (then Lewis) Research

Center [15]. Suborbital and orbital testing of this concept occurred in the

1960’s and 1970’s with the Space Electric Rocket Test (SERT) program. A

similar program, the Solar Electric Propulsion System Technology (SEPST),

was also established by Jet Propulsion Laboratory around the same time [22].

Its goal was to develop low-thrust ion technology for interplanetary spacecraft

and it succeeded by developing and ground-testing a 2.5kW, 88mN ion engine

with an Isp of 3, 600 seconds [22]. Of course, the first active mission to utilize
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low-thrust technology was Deep Space 1, as previously stated.

1.3 Previous Work

Initial low-thrust optimization work dealt with the indirect method of locally

minimizing an objective function and solving a Two Point Boundary Value

Problem (TPBVP). These initial studies (1960’s) focused primarily on geocen-

tric trajectories consisting of a low-thrust spiral and interplanetary transfers

[23, 24, 25]. Over time, many authors have discussed gradient-based methods

to optimize low-thrust transfers in two-body environments [26, 27, 28, 29]. Still,

the optimization of low-thrust trajectories in a three-body environment using

stable manifold theory was not thoroughly studied until Mingotti’s series of

papers in the late 2000’s [30, 31, 32]. Mingotti’s work paved the way for the

blending of Dynamical Systems Theory (DST) with low-thrust, gradient-based

optimization pioneered in the 1960’s and 1970’s. Senet and Ocampo also con-

tributed to this field by using similar techniques to study low-thrust delivery of

spacecraft to Lagrange point orbits [33]. Unfortunately, however, all of these

methods rely on gradient-based optimization techniques that are susceptible to

poor initial guess solutions and can have a narrow radius of convergence.

The idea of heuristic spacecraft trajectory optimization has often been used

to overcome some of the inherent limitations of gradient-based optimizers. One

evolutionary method called Particle Swarm Optimization (PSO) is becoming in-

creasingly popular amongst spacecraft mission designers. Pontani and Conway

explored the application of the PSO method to various spacecraft trajectory

optimization problems [34, 35, 36]. Interplanetary trajectories were optimized

via PSO by Bessette and Spencer [37, 38] in the late 2000’s. Unfortunately,
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no researcher to date has attempted to use PSO in conjunction with, or as a

substitute for, traditional gradient-based approaches when designing a trans-

fer (either impulsive or low-thrust) to a Lagrange point orbit. The remainder

of this dissertation will focus on the solution to this problem using the PSO

method.

1.4 Present Work

In light of the previous work performed in trajectory optimization, this dis-

sertation will focus on using gradient based methods, evolutionary algorithms,

and Dynamical Systems Theory to optimize a low-thrust trajectory from a geo-

centric orbit to an Earth-Moon Lagrange point orbit. The application of the

PSO method is intended to enable the global exploration of the search-space

without a need for an a priori guess trajectory that is oftentimes too difficult

for the researcher to generate. It is a fast, easy to use and understandable algo-

rithm that can be programmed and run quickly. This is in contrast with many

gradient based algorithms that require detailed programming and guess solu-

tions and are limited to the optimization of a local search-space. The approach

designed in this dissertation can be used independently of other methods or as

a preliminary, global optimization algorithm whose results are used as initial

guess solutions for the gradient-based algorithms.

A brief summary of each chapter in this dissertation is presented here:

• Chapter 2 - Details of the dynamics of the problem are presented. The

coordinate system and equations of motion of the Circular Restricted

Three-Body Problem (CR3BP) are derived as well as the concept of the

Jacobi energy, Lagrange points, and the stability of the Lagrange points.
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The State Transition Matrix (STM) is also defined and discussed.

• Chapter 3 - Focuses on gradient-based optimization methods. Generalized

free variable and constraint vectors are defined to enable the discussion

of shooting algorithms. Single shooting and multiple shooting algorithms

are derived, as well as the method of pseudo-arclength continuation. The

chapter concludes with a discussion of a full-ephemeris integrator as well

as the SPICE/Mice packages used to implement such an integrator.

• Chapter 4 - Implements the theory covered in Chapter 3 on real-world

examples of Earth-Moon Lagrange point orbits. Various trajectories are

generated which include Lyapunov, halo, and Lissajous orbits.

• Chapter 5 - Introduces Dynamical Systems Theory in order to derive

the existence of the invariant stable manifold of a Lagrange point orbit.

The chapter begins with a discussion about the linearization of motion

about an LPO and uses Floquet’s theorem to map the dynamics to an

autonomous form. The monodromy matrix is defined and used to inves-

tigate the stable and unstable manifolds of an LPO of interest. Finally,

a method to generate the stable manifold is discussed and demonstrated

on a target LPO.

• Chapter 6 - Particle Swarm Optimization is introduced. The chapter be-

gins with a brief background on the PSO method. It then defines the

search-space and objective function used throughout the rest of this dis-

sertation as well as the boundary conditions associated with this search-

space.

• Chapter 7 - This chapter presents original research performed using a one-
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dimensional formulation of the PSO method. A low-thrust trajectory is

defined by a simple control law and is optimized to transport a spacecraft

from a Geostationary-altitude orbit to an Earth-Moon, L1, northern halo

orbit.

• Chapter 8 - This chapter builds on the content of Chapter 7 by extending

the PSO algorithm into a two-dimensional form. Attention is focused on

methods to size various parameters of the PSO algorithm to obtain high

algorithmic performance. An optimal low-thrust trajectory is obtained

and results are compared with current research.

• Chapter 9 - This chapter covers the optimization of two-maneuver, impul-

sive trajectories from Low Earth Orbit (LEO) to the same Earth-Moon,

L1, northern halo orbit using a hybrid PSO/shooting method. “Fast”

and “slow” transfers are studied and results are compared with other

published work.

• Chapter 10 - Conclusions made in Chapters 7-9 are presented as well as

general conclusions about the application of the PSO method to Dynam-

ical Systems Theory. Potential future work is also discussed.
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2 Dynamics

This chapter describes the dynamics associated with a spacecraft traveling in

the presence of a gravity field from both the Earth and Moon, simultaneously.

The differential equations associated with the Circular Restricted Three Body

Problem (CR3BP) are the dynamics of choice in this dissertation. The CR3BP

was chosen because it is the simplest dynamical model of the Earth-Moon

system that preserves the dynamics associated with Lagrange point orbits; a

key focus of this dissertation. Despite the simplicity of the CR3BP, it has been

shown to be too complex for analytical solutions of the CR3BP differential

equations of motion to exist [2]. This is in stark contrast with the differential

equations of motion of traditional spacecraft orbiting a point mass which have

analytic solutions expressed in terms of conic sections. Unfortunately, these

“Keplerian” conic orbits preclude the possibility of Lagrange point orbits due

to their low fidelity in the three-body environment of cislunar space.

The chapter begins with a discussion defining the coordinate system of the

CR3BP. This synodic reference frame is constructed in non-dimensional units

to simplify the problem and increase the accuracy of the numeric integration

of the system’s equations of motion. Next, the equations of motion are derived

using the Euler-Lagrange equations and written using state vector notation.

An integral constant of the system, known as the Jacobi integral, is defined
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and demonstrated as the only constant of the three body system. Equilibrium

points of the CR3BP are derived and called “Lagrange Points” after the math-

ematician who first discovered them in the 1700’s [2]. The Jacobi integral can

be calculated at each Lagrange point and used to define “forbidden regions”

where the spacecraft does not have enough energy to enter. Finally the chapter

closes with a discussion of the stability characteristics of the Lagrange points

as well as an introduction to the State Transition Matrix (STM) which will be

used heavily in later chapters.

2.1 Coordinate System and Definitions

Figure 2.1: CR3BP coordinate system.

In this derivation, an attempt will be made to non-dimensionalize as many

quantities as possible in order to simplify the system. First, the distance be-

tween Primary 1 (Earth) and Primary 2 (Moon) is set to one “distance unit,”
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[du] that is equal to 388, 400 km. Next, the reduced mass, µ, is defined as

µ ≡ m2

m1 +m2
(2.1.1)

with µ ∈
(

0, 1
2

]
. The masses follow the convention m1 ≥ m2 � m3 with

m3, the spacecraft mass, being negligible compared with either mass m1 or m2.

Mass m3 is so insignificant, in fact, that it does not affect the motion of either

primary (hence the “restriction” in the CR3BP). Due to this assumption, it

can be stated that m1 + m2 + m3 u m1 + m2. Furthermore, for the sake of

simplicity, define the units of mass in such a way as to set the total mass of

the system m1 + m2 = 1. The Center-of-Mass (CM) of the system (commonly

known as the barycenter) can be calculated in the usual way:

CMRelative to m1 = m1

m1 +m2
(0) + m2

m1 +m2
(1) = µ (2.1.2)

or

CMRelative to m2 = 1− CMRelative to m1 = 1− µ. (2.1.3)

A coordinate system is chosen with the barycenter as its origin as can be

seen in Figure 2.1. The positive x-axis is defined as the direction from the larger

primary to the smaller primary. The positive y-axis is defined to be in the same

direction as the velocity vector of the smaller primary (which is perpendicular

to the x-axis due to the circular nature of its orbit). Finally, the positive z-axis

is defined in such a way as to complete the right-handed triad based on the x

and y unit vectors. A non-inertial reference frame will be utilized; this frame

shall rotate with an angular velocity, ω, that exactly matches that of the two

primaries which are orbit about their common barycenter. Note that m1 is

14



2 Dynamics

located at (−µ, 0, 0) and m2 at (1 − µ, 0, 0) in this frame. This co-rotating

reference frame restricts the two primaries to remain in fixed positions along

the x-axis. A non-inertial reference frame may seem, at first, to be a needless

complication. Fortunately, however, this choice of coordinate system greatly

simplifies the problem as will be demonstrated in the subsequent sections of

this chapter.

2.2 System Dynamics

The kinetic energy and gravitational potential energy of the spacecraft, m3, can

be written as

T = 1
2m3v

2 = 1
2m3

[
(ẋ− ωy)2 + (ẏ + ωx)2 + ż2

]
(2.2.1)

V = −Gm3m1

r1
− Gm3m2

r2
(2.2.2)

and, when added, constitute the total mechanical energy of the system

E = T + V (2.2.3)

E = m3

(1
2
[
(ẋ− ωy)2 + (ẏ + ωx)2 + ż2

]
− Gm1

r1
− Gm2

r2

)
(2.2.4)

with the distances r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− [1− µ])2 + y2 + z2

being the distances from the spacecraft to the Earth and Moon, respectively.

Note that the total energy of the system needs further simplification. Because

the gravitational influence of m3 is negligible, the motion of mass m1and m2 are

governed by classical two-body dynamics. From a thorough study of Kepler’s

laws and Newtonian mechanics, it can be shown that the angular velocity ω of
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two, circular, co-rotating masses is given by

ω =

√√√√G(m1 +m2)
r3

1,2
. (2.2.5)

This can be further simplified by utilizing the dimensionless units and quantities

as defined above

ω =

√√√√G(1)
(1) =

√
G. (2.2.6)

Notice that the dimensionless definitions helped to significantly reduce the an-

gular velocity equation. Further reduction of this equation is possible by clev-

erly defining the dimensionless time units [tu] of the system to be

1 [tu] = T

2π (2.2.7)

with T being the period of the orbits of the primaries. For the Earth-Moon

system the sidereal period (orbital period) of the moon is 27.3 days. This

translates to 1 [tu] = 4.345 [days] in the Earth-Moon system. This substitution

will define
√
G = ω = 2π

2π

[
rad
tu

]
= 1 (2.2.8)

and will further simplify the total energy per unit mass as

E

m3
= ε = 1

2
[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
− 1− µ

r1
− µ

r2
(2.2.9)

which is a greatly simplified expression. Note that all simplifying assumptions

are system specific. For example, the non-normalized units in the Earth-Moon

system are very different from that of the Sun-Earth system even though their

normalized (three-body) units are identical.
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One can also write the Lagrangian, L, of the system by noting that

T = 1
2m3

[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
(2.2.10)

V = −m3

 1− µ√
(x+ µ)2 + y2 + z2

+ µ√
(x− [1− µ])2 + y2 + z2

 (2.2.11)

L = T − V (2.2.12)

L = m3

{1
2
[
(ẋ− y)2 + (ẏ + x)2 + ż2

]
+

1− µ√
(x+ µ)2 + y2 + z2

+ µ√
(x− [1− µ])2 + y2 + z2

 .
Using the Euler-Lagrange equations one can write the equations of motion of

the spacecraft as
∂L

∂x
− d

dt

∂L

∂ẋ
= 0 (2.2.13)

ẏ + x− ∂V

∂x
− d

dt
[ẋ− y] = 0 (2.2.14)

ẍ− 2ẏ = −∂V
∂x

+ x (2.2.15)

∂L

∂y
− d

dt

∂L

∂ẏ
= 0 (2.2.16)

− (ẋ− y)− ∂V

∂y
− d

dt
[ẏ + x] = 0 (2.2.17)

ÿ + 2ẋ = −∂V
∂y

+ y (2.2.18)
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∂L

∂z
− d

dt

∂L

∂ż
= 0 (2.2.19)

− ∂V

∂z
− d

dt
[ż] = 0 (2.2.20)

z̈ = −∂V
∂z

. (2.2.21)

For one final simplification, the potential function present in Equation 2.2.15

and Equation 2.2.18 can be re-defined. Let

U = V + f(x, y). (2.2.22)

Then

−∂U
∂x

=⇒ −∂V
∂x
−∂f
∂x

= −∂V
∂x

+x −→ ∂f

∂x
= −x −→ f = −1

2x
2+g(y) (2.2.23)

and

−∂U
∂y

=⇒ −∂V
∂y
−∂f
∂y

= −∂V
∂y

+y −→ ∂f

∂y
= −y −→ f = −1

2y
2+h(x) (2.2.24)

where g(y) is an arbitrary function of y only and h(x) is an arbitrary function of

x only. Matching these results one obtains an expression for U as

f = −1
2
(
x2 + y2

)
−→ U = V − 1

2
(
x2 + y2

)
(2.2.25)

U = − 1− µ√
(x+ µ)2 + y2 + z2

− µ√
(x− [1− µ])2 + y2 + z2

−1
2
(
x2 + y2

)
(2.2.26)

with U known as the “pseudopotential.” Now Equation 2.2.15, 2.2.18, and
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2.2.21 simplify to

ẍ− 2ẏ = −∂U
∂x

ÿ + 2ẋ = −∂U
∂y

z̈ = −∂U
∂z

(2.2.27)

which are the equations of motion of the system. These ballistic equations of

motion can be re-written in ballistic state-space form as

X =



x

y

z

ẋ

ẏ

ż



(2.2.28)

with

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈



=



ẋ

ẏ

ż

2ẏ − ∂U
∂x

−2ẋ− ∂U
∂y

−∂U
∂z



. (2.2.29)

As an augmentation to the ballistic Equations 2.2.28 and 2.2.29 one can also
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include the influence of a rocket-propelled thruster as

X =



x

y

z

ẋ

ẏ

ż

m



(2.2.30)

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈

ṁ



=



vx

vy

vz

2vy + Ux + ux

−2vx + Uy + uy

Uz + uz

− T
Ispgo



(2.2.31)

with thrust, T , specific impulse, Isp, and the constant gravitational accelera-

tion at sea level of, g0. The thruster will consume mass at an instantaneous

mass flow rate of ṁ and produce an acceleration of u that can be broken up

into vector components. Obviously Equations 2.2.30 and 2.2.31 degenerate into

the ballistic Equations 2.2.28 and 2.2.29 under the absence of propulsive de-

vices. Note that in this dissertation the state X and Ẋ can be of length six

or seven depending on the presence of thrust. If no thrust is present then the

final (seventh) state is always a constant and is dropped from the state vector

notation.
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2.3 Jacobi Energy Integral

Now that the equations of motion have been derived, one can study the only

conserved quantity in the CR3BP; the Jacobi Energy. Unlike the two-body

problem where both energy and angular momentum are conserved, the three-

body problem will conserve only the energy of the system (i.e. the Jacobi

energy, Jacobi integral, or Jacobi constant). To begin this analysis, first look

at the time derivative of the square of the velocity

d

dt
v2 = d

dt

(
ẋ2 + ẏ2 + ż2

)
= 2 (ẋẍ+ ẏÿ + żz̈) . (2.3.1)

By substituting the equations of motion (Equation 2.2.27) one will obtain

d

dt
v2 = 2

[
ẋ

(
2 ẏ − ∂U

∂x

)
+ ẏ

(
−2 ẋ− ∂U

∂y

)
+ ż

(
−∂U
∂z

)]
(2.3.2)

= 2
[
ẋ

(
−∂U
∂x

)
+ ẏ

(
−∂U
∂y

)
+ ż

(
−∂U
∂z

)]
.

Recall the fact that

dU

dt
= ẋ

(
∂U

∂x

)
+ ẏ

(
∂U

∂y

)
+ ż

(
∂U

∂z

)
(2.3.3)

which simplifies Equation 2.3.2 to

d

dt
v2 = −2dU

dt
−→ d

dt

[
−v2 − 2U

]
= 0. (2.3.4)

Integrating with respect to time gives

J = −v2 − 2U (2.3.5)
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to within an arbitrary constant that is assumed to be zero. The constant J is

known as the Jacobi constant and represents the only known constant of the

CR3BP. It can be seen that J is related to the total energy per unit mass (as

measured in the rotating frame) [2], ε by:

ε = 1
2 v

2 + U = −1
2 (−v2 − 2U) = −1

2J (2.3.6)

J = −2ε. (2.3.7)

One final note concerning the Jacobi energy centers on the fact that the

square of the velocity cannot, by definition, be negative. If it were negative

then the velocity would have to be imaginary which doesn’t make physical

sense. If a projectile was launched, at a speed less than the escape speed, in a

rectilinear trajectory from the surface of one of the primaries and into space,

then eventually that projectile would slow down, stop, and then turn around.

The farthest distance accessible to the projectile would occur when its velocity

was exactly zero. Any region of space beyond that point is forbidden by the

physics of the system (i.e. the system’s energy). Therefore, it becomes possible

to map both the accessible and forbidden regions of any third-body if given its

associated Jacobi Energy by the relation

J = −2Umax. (2.3.8)

This equation implicitly defines an energy surface or energy manifold; no body

with a given energy value can escape this manifold. Historically, the manifold

of accessible space is known as “Hill’s Region” with the boundary of this region

known as the “zero velocity curve.”
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2.4 Equilibrium Points

The equations of motion (Equation 2.2.27) have five equilibrium points, labeled

L1-L5, that are plotted in Figure 2.2 for the Earth-Moon system of µ = 0.01215.

Figure 2.2: Five Lagrange points for the Earth-Moon system.

It is easy to calculate the locations of these Lagrange points. This occurs

whenever ẍ = ẋ = ÿ = ẏ = 0 and Equation 2.2.27 becomes

0 = −∂U
∂x

= (µ− 1) (x+ µ)[
(x+ µ)2 + y2 + z2

] 3
2
− µ (x+ µ− 1)[

(x+ µ− 1)2 + y2 + z2
] 3

2
+ x (2.4.1)

0 = −∂U
∂y

= (µ− 1) y[
(x+ µ)2 + y2 + z2

] 3
2
− µy[

(x+ µ− 1)2 + y2 + z2
] 3

2
+ y (2.4.2)

0 = −∂U
∂z

= (µ− 1) z[
(x+ µ)2 + y2 + z2

] 3
2
− µz[

(x+ µ− 1)2 + y2 + z2
] 3

2
. (2.4.3)
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Note that Equation 2.4.2 and 2.4.3 are immediately satisfied anytime y = 0 and

z = 0, respectively. Thus, it becomes prudent to begin exploring the existence

of a stationary point that lies upon the x-axis. When y = z = 0, Equation 2.4.1

simplifies to

x+ (µ− 1) (x+ µ)
|x+ µ|3

− µ (x+ µ− 1)
|x+ µ− 1|3

= 0. (2.4.4)

It is very important to note that the absolute value signs in Equation 2.4.4

must be present as they are a direct consequence of the squaring of the terms

in the denominator. But how can one mathematically deal with the absolute

value in Equation 2.4.4? The solution is to break up Equation 2.4.4 into three

different regions based on the magnitudes of the terms within the absolute value

operator.

1. Region I consists of the section of the x−axis between Primary 1 and

Primary 2 where L1 is defined by −µ < L1 < 1−µ. Note that |L1 + µ| =

L1+µ and |L1 + µ− 1| = − (L1 + µ− 1). Substituting this into Equation

2.4.4 gives

L1 (L1 + µ)2 (L1 + µ− 1)2 + (µ− 1) (L1 + µ− 1)2 + µ (L1 + µ)2 = 0.

(2.4.5)

If Equation 2.4.5 is expanded a fifth order polynomial is obtained in terms

of L1. Unfortunately, this polynomial can not be solved for algebraically;

only a numerical solution using a numeric value for µ can be found. The

numerical solution will yield five roots; one of which is real. This real-

root is the location of the stationary point corresponding to L1. In the

case of the Earth-Moon system, where µ = 0.0122, the position of L1 =

0.8369[du].
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2. Region II consist of the x−axis lying to the right of Primary 2 where

L2 is defined by −µ < 1 − µ < L2. Note that |L2 + µ| = L2 + µ and

|L2 + µ− 1| = L2 + µ− 1. Substituting this into Equation 2.4.4 gives

L2 (L2 + µ)2 (L2 + µ− 1)2 + (µ− 1) (L2 + µ− 1)2 − µ (L2 + µ)2 = 0.

(2.4.6)

Again, this equation is a fifth order polynomial that contains only one

real-root and can only be solved for numerically. In the case of the Earth-

Moon system the position of L2 = 1.1557 [du].

3. L3 is located in Region III. This region will lie to the left of Primary 1

and is defined by L3 < −µ < 1 − µ. Note that |L3 + µ| = − (L3 + µ)

and |L3 + µ− 1| = − (L3 + µ− 1). Substituting this into Equation 2.4.4

gives

L3 (L3 + µ)2 (L3 + µ− 1)2 − (µ− 1) (L3 + µ− 1)2 + µ (L3 + µ)2 = 0.

(2.4.7)

As before, this equation is a fifth order polynomial that contains only

one real-root and can only be solved for numerically. In the case of the

Earth-Moon system the position of L3 = −1.00506 [du].

In this way three Lagrange points, L1, L2 and L3 can be found when y = z =

0. A simple process is employed to find the remaining Lagrange points when

y 6= 0. The solution is actually intractable without taking advantage of the

symmetry of the system. Referring to Equation 2.4.1, this equation is actually

very difficult to deal with unless the values of the two denominators are equal to

each other. This is the key to making the problem tractable. By inspection, one
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will note that the values x = 1
2−µ, z = 0 would be an appropriate substitution

that allows for further simplification of Equation 2.4.1 and Equation 2.4.2 to

y = ±
√

3
4 . Thus the remaining two Lagrange points are symmetric and have

values of L4 =
(

1
2 − µ,

√
3
4

)
[du] and L4 =

(
1
2 − µ, −

√
3
4

)
[du].

2.5 Jacobi Energy at Equilibrium Points

Interestingly enough, one can calculate the Jacobi energy of a particle at rest

(in the co-rotating system) and positioned at any of the five Lagrange points.

Table 2.1 summarizes the locations and energies of Lagrange Points for the

Earth-Moon system.

Table 2.1: Summary of Jacobi energies of the Lagrange points in the Earth-
Moon system.

x [du] y [du] z [du] Stability J E [Kg2s−2]
L1 0.8369 0 0 saddle 3.1883 -1.6735
L2 1.15569 0 0 saddle 3.1722 -1.665
L3 -1.00506 0 0 saddle 3.0121 -1.581
L4 0.487846 0.86602 0 stable 2.9879 -1.5683
L5 0.487846 -0.86602 0 stable 2.9879 -1.5683

Correspondingly, Figure 2.3 is a series of graphs that plot the Jacobi energies

J1-J4,5 for their corresponding Lagrange Points. The black area in Figure 2.3

represents the “forbidden region” in which the third body is forbidden to exist

given a fixed amount of energy. At energies below J1 there are three discon-

nected realms: the Earth-centered realm, the Moon-centered realm, and the

exterior realm. Once the energy is equal to that of J1, the Earth and Moon

realms merge at the location of L1. It now becomes possible for the third body

to move from the Earth realm to the Moon realm (and visa versa) through the
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“neck” region located around L1. As the energy increases further to that of L2,

the Earth, Moon, and exterior realms all become connected. At this energy

level it becomes possible for the third body to freely move between all realms

by traveling through the L1-Moon-L2 neck region. As the energy is further

increased to that of L3, another neck opens in the opposite direction. Finally,

once the energy approaches J4,5 all of the “forbidden” regions cease to exist.

This study of Jacobi energy implies that, from an energy standpoint, it is easi-

est for the spacecraft to get to the L1 point, and the most difficult for it to get

to the triangular points.

Figure 2.3: Forbidden regions with Jacobi energies (from upper left to lower
right) corresponding to L1, L2, L3, and L4,5.
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2.6 Linearization, Stability, and Bifurcation

Now that the positions of the Lagrange points are known, it is helpful to

characterize their stability. According to Equation 2.2.29 the time derivative

of the ballistic state vector is

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈



= ~f (X) =



ẋ

ẏ

ż

2ẏ − ∂U
∂x

−2ẋ− ∂U
∂y

−∂U
∂z



. (2.6.1)

The Jacobian Matrix, A(t), can be written as

A (t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−∂2U
∂x2 − ∂2U

∂x∂y
− ∂2U
∂x∂z

− ∂2U
∂x∂ẋ

2− ∂2U
∂x∂ẏ

∂2U
∂x∂ż

− ∂2U
∂y∂x

−∂2U
∂y2 − ∂2U

∂y∂z
−2− ∂2U

∂y∂ẋ
− ∂2U
∂y∂ẏ

− ∂2U
∂y∂ż

− ∂2U
∂z∂x

− ∂2U
∂z∂y

− ∂2U
∂z∂z

− ∂2U
∂z∂ẋ

− ∂2U
∂z∂ẏ

− ∂2U
∂z∂ż



=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−∂2U
∂x2 − ∂2U

∂x∂y
− ∂2U
∂x∂z

0 2 0

− ∂2U
∂y∂x

−∂2U
∂y2 − ∂2U

∂y∂z
−2 0 0

− ∂2U
∂z∂x

− ∂2U
∂z∂y

−∂2U
∂z2 0 0 0
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which reduces to

A(t) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a b d 0 2 0

b c e −2 0 0

d e f 0 0 0



(2.6.2)

with the following definitions:

a = −∂
2U

∂x2 b = − ∂2U

∂x∂y
= − ∂2U

∂y∂x
c = −∂

2U

∂y2 d = − ∂2U

∂x∂z
= − ∂2U

∂z∂x

e = − ∂2U

∂y∂z
= − ∂2U

∂z∂y
f = −∂

2U

∂z2 .

Expanding these terms gives

a = 3 (1− µ) (x+ µ)2

((x+ µ)2 + y2 + z2)
5
2
− 1− µ

((x+ µ)2 + y2 + z2)
3
2

+ 3µ (x+ µ− 1)2

((x+ µ− 1)2 + y2 + z2)
5
2

− µ

((x+ µ− 1)2 + y2 + z2)
3
2

+ 1

b = 3 (1− µ) (x+ µ) y
((x+ µ)2 + y2 + z2)

5
2

+ 3µy (x+ µ− 1)
((x+ µ− 1)2 + y2 + z2)

5
2

(2.6.3)

c = 3 (1− µ) y2

((x+ µ)2 + y2 + z2)
5
2
− 1− µ

((x+ µ)2 + y2 + z2)
3
2

+ 3µy2

((x+ µ− 1)2 + y2 + z2)
5
2

− µ

((x+ µ− 1)2 + y2 + z2)
3
2

+ 1

d = 3 (1− µ) (x+ µ) z
((x+ µ)2 + y2 + z2)

5
2

+ 3µz (x+ µ− 1)
((x+ µ− 1)2 + y2 + z2)

5
2

(2.6.4)
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e = 3 (1− µ) yz
((x+ µ)2 + y2 + z2)

5
2

+ 3µyz
((x+ µ− 1)2 + y2 + z2)

5
2

(2.6.5)

f = 3 (1− µ) z2

((x+ µ)2 + y2 + z2)
5
2
− 1− µ

((x+ µ)2 + y2 + z2)
3
2

+ 3µz2

((x+ µ− 1)2 + y2 + z2)
5
2

− µ

((x+ µ− 1)2 + y2 + z2)
3
2
.

Overall, it is possible to write the nonautonomous linearized equations of motion

(in the vicinity of the initial state) as

Ẋ = A(t)X. (2.6.6)

Of course the Jacobian matrix, A(t), becomes constant at, and very near, a

Lagrange point. This is because the velocity of the Lagrange point is zero

and its position is fixed in the CR3BP reference frame. This implies that the

nonautonomous linearized approximation of Equation 2.6.6 simplifies to the

autonomous form of

Ẋ = AX (2.6.7)

at any of the five Lagrange points of the CR3BP (note that Ẋ = 0 is the

location of the Lagrange point in this autonomous Linearization). Fortunately,

it is well known that the solution to Equation 2.6.7 is

X = X0e
At. (2.6.8)

From this solution it becomes possible to characterize the stability of a particle

placed at a Lagrange point with zero relative velocity. Note that Equation
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2.6.8 can also be expressed as the summation of the eigenvalues of A. If the

real part of all eigenvalues of A is negative then the solution will exponentially

decay back to the Lagrange point as time progresses. This is called “stable”

since any minor disturbance away from a Lagrange point will be dampened

out and return the particle back to the original Lagrange point. Conversely, if

the real part of any eigenvalue is positive, then the solution will tend toward

infinity as time progresses. This condition is called “unstable” since a minor

disturbance will cause a particle to exponentially depart the vicinity of the

original Lagrange point. Finally, a “neutrally stable” point will exist if all

eigenvalues are identically zero. This will cause a closed orbit to form about

the Lagrange point.

Unfortunately, due to the complexity of the problem, the only way to con-

tinue the study of the stability of collinear Lagrange points is through direct

numerical computation with a given value of µ. Upon numerical computa-

tion, summarized in Table 2.2, one finds that for the Earth-Moon system with

µ = 0.01215, all three collinear Lagrange points are unstable because at least

one eigenvalue is real and positive. Also note that all three collinear points are

saddle points as they are neutrally stable in two directions and unstable in a

third.
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Table 2.2: Top: Coefficients of A matrix for collinear Lagrange points in the
Earth-Moon system. Bottom: Eigenvalues of A matrix for colinear Lagrange
points in the Earth-Moon system.

a b c d e f
L1 11.295 0 -4.147 0 0 -5.147
L2 7.381 0 -2.190 0 0 -3.190
L3 3.021 0 -0.011 0 0 -1.011

λ1 λ2 λ3 λ4 λ5 λ6
L1 2.932 −2.932 2.334i −2.334i 2.268i −2.268i
L2 2.158 −2.158 1.862i −1.862i 1.786i −1.786i
L3 0.178 −0.178 1.010i −1.010i 1.005i −1.005i

Similarly, the stability of the collinear Lagrange points in the Sun-Earth

system (µ u 3× 10−6) are also all unstable saddle points as evidenced by the

λ1 eigenvalues. Figure 2.4 illustrates the stability of each collinear Lagrange

point as a function of µ. Note that all collinear points always have one unstable

eigenmode regardless of the value of µ. This supports the previous results from

the Earth-Moon and Sun-Earth cases.
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Figure 2.4: Top (L1), middle (L2), and bottom (L3) plots of the real part of
the eigenvalues of A vs. µ. All six eigenvalues are plotted for each case (four
are on the x−axis). Note that the positive values of λ make this system
unstable.
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2.7 State Transition Matrix

When undertaking numerical calculations it is often necessary to use gradient-

based, differential correction methods. Many of these methods, used in chapters

3, 4, and 5 rely on the State Transition Matrix (STM). The STM relates the

sensitivity of the final state X (X0, t) (obtained via integration of Equation

2.2.27) to the initial state X0. In other words, the STM≡ Φ (t, t0) = ∂X(X0, t)
∂Xo

or

Φ (t, t0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0



. (2.7.1)

This can be demonstrated in the following way. Suppose two trajectories exist:

trajectory X, and its variation, trajectory Y (i.e. Y is in the neighborhood

of X). According to Vallado [39], one can express the derivatives and initial

conditions as

X (t0) = X0, Ẋ = ~f (X)

Y (t0) = Y 0, Ẏ = ~f (Y )
(2.7.2)

where f is defined in Equation 2.6.1 as the state vector expression of the equa-

tions of motion of the CR3BP. The difference in these two trajectories is small

and can be expressed as
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Y = X + δX. (2.7.3)

As with Equation 2.7.2 one can write Ẏ as

Ẏ = ~f (X + δX) (2.7.4)

based on Equation 2.7.3. This can be expanded using a Taylor series centered

about X, using Equation 2.7.3

Ẏ = ~f (X) + ∂ ~f (X)
1!∂X δX + ∂ ~f (X)2

2!∂2X
δX2 + .... (2.7.5)

Note that Ẏ = Ẋ+ δẊ via a direct differentiation of Equation 2.7.3 and when

substituted into Equation 2.7.5 yields

δẊ = ∂ ~f (X)
∂X

δX +H.O.T. = A (t) δX +H.O.T. (2.7.6)

where H.O.T. represents all the higher order terms of the expansion. If the

H.O.T. are ignored, one can say that the system has been “linearized” because

the non-linear terms have been disregarded. This approximation is valid in

regions where the dynamics are only weakly nonlinear, such as the vicinity of a

Lagrange point. Assume that a solution to the differential Equation 2.7.6 has

the form

δX = Φ (t, t0) δX0. (2.7.7)

If Equation 2.7.7 is inserted into Equation 2.7.6 the result is
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Φ̇ (t, t0) = A (t) Φ (t, t0) (2.7.8)

which can be numerically integrated from an initial condition to determine the

STM at any moment in time. The initial condition is found by inserting in

t = t0 into Equation 2.7.7. When doing so, one will find that Φ (t0, t0) = I.

The dynamics presented in this chapter have laid the groundwork for many

of the subsequent studies presented in later chapters of this dissertation. This is

especially true in the next chapter where traditional, gradient-based optimiza-

tion methods are formulated, described, and demonstrated. These methods

rely on the STM as well as the dynamics of the CR3BP and are used to quickly

solve a variety of trajectory optimization problems using low-thrust or impulsive

maneuvers. Examples of this type of optimization are illustrated in subsequent

chapters of this dissertation.
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Techniques

This chapter focuses on the general optimization of two-point boundary value

problems that are commonly found in astrodynamics and spaceflight mission

planning. The scope of this chapter is limited to the traditional “gradient”

based optimization approaches that are commonly applied to spacecraft trajec-

tory optimization problems. A gradient-based algorithm utilizes information

about the gradient of an objective function (or related derivatives or a subset

of those derivatives) in order to solve it quickly and intelligently. In general,

gradient-based optimization is considered to be a more desirable optimization

method than other options (such as stochastic processes or evolutionary algo-

rithms). This is because gradient-based methods use differential calculus to

guide the solution from an initial guess (sometimes called a “seed”) to a final,

optimal solution. These algorithms converge very fast because they attempt to

utilize the maximum amount of information about a problem. They are consid-

ered to be more “intelligent” than other methods and can be mathematically

proven to locate the optimal solution given a set of boundaries [36].

Unfortunately, they also have a number of disadvantages that make them

undesirable for certain applications. First of all, gradient-based optimization
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can converge on a local, rather than the global, minima of an objective func-

tion if a poor guess is supplied or the objective function if particularly onerous.

Worse yet are situations where the gradient of an objective function is unde-

fined. Such situations arise from discontinuities, abrupt changes in curvature,

and singularities. In general, if an objective function has multiple minima and

poorly behaved gradients, then it is not a good candidate for gradient-based

methods, because they will either converge on a local minima, or will fail to

converge altogether. Fortunately, other optimization methods, such as Particle

Swarm Optimization (Chapter 6), can be used in these situations.

This chapter begins with a short discussion on free variables and constraint

vectors. With the knowledge of these vectors, it is possible to outline single

shooting and multiple shooting gradient-based techniques. Various continua-

tion methods are introduced that are capable of constructing a new and different

solution from an old solution that was found using a different method. Finally,

a discussion of a full-ephemeris integrator is given and is followed up by an

introduction to the SPICE/Mice package used in implementing this integrator.

Concrete examples of each section of this chapter can be found in corresponding

sections of Chapter 4.

3.1 Generalized Free Variable & Constraint

Vectors

When using a differential corrections algorithm to solve a two-point boundary

value problem (TPBVP), one can use free variable and constraint vectors based
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on Newton’s method [40, 41]. The free variable vector

X =



x1

:

:

xn


(3.1.1)

consists of n elements that are allowed to freely and independently change in

value during the course of a differential corrections procedure. Typically, these

elements consist of the state vector, integration times, Ti, and slack variables.

The slack variable is introduced to transform an inequality constraint into an

equality constraint. The system is also subject tom constraint equations. These

constraint equations form the Constraint Vector

F (X) =



F1 (X)

:

:

Fm (X)


= 0 (3.1.2)

and must be written in such a way that they satisfy the equation F (X) = 0.

The goal is to find a solution, X∗, which satisfies the equation F (X∗) = 0

given an acceptable error tolerance, ε. In order to accomplish this task, one

may begin with an initial free variable vector X0. One can express F (X) by

using a Taylor Series centered about X0and dropping all higher order terms

F (X) = F
(
X0

)
+DF

(
X0

) (
X −X0

)
(3.1.3)
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with the m× n Jacobian Matrix DF
(
X0

)
expressed as

DF
(
X0

)
=
∂F

(
X0

)
∂X0 =



∂F1
∂x1

.. .. ∂F1
∂xn

: . :

: . :
∂Fm

∂x1
.. .. ∂Fm

∂xn


X=X0

. (3.1.4)

Next an iterative process will be introduced into Equation 3.1.3. Note that the

substitution F (X) = 0 can be used to reduce Equation 3.1.3 to

0 = F
(
X(j)

)
+DF

(
X(j)

) (
X(j+1) −X(j)

)
(3.1.5)

where X(j) represents the current iteration and X(j+1) represents the next

iteration. If the algorithm is convergent, then
∥∥∥F (

X(j)
)∥∥∥>∥∥∥F (

X(j+1)
)∥∥∥ and

will stop iterating once
∥∥∥F (

X(j)
)∥∥∥ < ε.

There are two ways to solve for X∗ depending on the situation. If n = m

then DF is square and invertible. In this situation, a multivariate version of

Newton’s Method is appropriate

X(j+1) = X(j) −DF
(
X(j)

)−1
F
(
X(j)

)
. (3.1.6)

If, however, n > m, there exists an infinite number of solutions and DF cannot

be inverted. In this circumstance, the minimum-norm solution is used

X(j+1) = X(j) −DF
(
X(j)

)T [
DF

(
X(j)

)
DF

(
X(j)

)T ]−1
F
(
X(j)

)
. (3.1.7)

This solution minimizes the difference between the current iteration and the
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previous one. This is desirable because it typically finds the solution, X∗,

that is closest to the initial guess, X0, given the fact that there are an infinite

number of solutions.

In summary, to solve a general optimization problem using free variable and

constraint vectors one must

1. Define X and F (X) = 0,

2. Calculate the Jacobian Matrix, DF (X) , and the associated partial

derivatives therein,

3. Iteratively solve for X∗ using either Equation 3.1.6 or Equation 3.1.7

depending on the relationship between n and m.

3.2 Variable-Time, Single Shooting

One application of free variables and constraint vectors is that of Variable-

Time, Single Shooting [41]. In this application the position of the initial state

of a trajectory is fixed but the initial velocity and Time of Flight, T , are free.

Thus the free variable vector becomes

X =



ẋ0

ẏ0

ż0

T


. (3.2.1)
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The constraint vector will be written as

F (X) =


xT − xd

yT − yd

zT − zd

 (3.2.2)

with Xd representing the desired state at the end of time T . The Jacobian

Matrix can be represented as

DF (X) = ∂F (X)
∂X

=


∂xT

∂ẋ0
∂xT

∂ẏ0
∂xT

∂ż0
∂xT

∂T

∂yT

∂ẋ0

∂yT

∂ẏ0

∂yT

∂ż0

∂yT

∂T

∂zT

∂ẋ0
∂zT

∂ẏ0
∂zT

∂ż0
∂zT

∂T

 =


Φ1,4 Φ1,5 Φ1,6 ẋT

Φ2,4 Φ2,5 Φ2,6 ẏT

Φ3,4 Φ3,5 Φ3,6 żT


(3.2.3)

in accordance with Equation 2.7.1. Since the Jacobian is not a square matrix,

the minimum-norm solution may be found using Equation 3.1.7. Figure 3.1

illustrates the iterative process that begins with an initial guess trajectory (in

green) and iteratively refines that guess until the desired constraint conditions

are satisfied (red trajectory with red ×).
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Figure 3.1: The Variable-Time, Single Shooting method in action.

3.3 Variable-Time, Multiple Shooting

Next the concept of Variable-Time, Multiple Shooting will be explored. This

is a highly useful technique to use in finding sensitive trajectories, because a

number of “way-points” can be used between the initial and final states [41].

Figure 3.2 shows a trajectory that is beginning to form using the Variable-

Time, Multiple Shooting method. This trajectory is comprised of n segments
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with each segment being numerically propagated from its initial state, Xn, to

its final state, Xn+1Tn . A converged trajectory needs to be fully continuous

along its entire path. It is therefore necessary for the final state of a segment

to match the initial state of its succeeding segment. To begin, a free variable

vector is defined as

X =



X1

X2
...

Xn

T1
...

Tn−1



(3.3.1)

with 7n− 1 components. A constraint vector is defined as

F (X) =


X2, T1 −X2

...

Xn, Tn−1 −Xn

 (3.3.2)

which dictates the need for each new segment of the trajectory to start/stop

with an identical state as its preceding/proceeding segment. The constraint

vector has 6 (n− 1) components. The Jacobian can be expressed as:
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which is a 6 (n− 1) × 7n−1 matrix. This method is generalized to account

for n way-points that flow together using a continuous trajectory with a total

time of T =
n∑
i=1
Ti.

Figure 3.2: The Variable-Time, Multiple Shooting in action.

3.4 Single Parameter Continuation

The underlying concept behind Single-Parameter Continuation is relatively

straightforward. Assuming a (desired) baseline trajectory can be found us-

ing a standard optimization method, such as those outlined above, it should

also be possible to use the same techniques to find related solutions. This can

be accomplished by using the same initial state as was used with the baseline
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solution but with a small change in one of the parameters. This new initial state

will then be run through the given optimization method until a new solution

is reached. This new solution will differ from the baseline trajectory because

of the small change in one of the parameters of the initial state. This process

can be repeated numerous times to build up a “family” of trajectories that

are all based on the “baseline” trajectory and a continuation of a parameter

of interest. Traditionally, parameters that are changed can involve position,

velocity, energy, period, and so on. Normally, only one parameter is used in

this continuation scheme.

3.5 Pseudo-Arclength Continuation

In contrast to Single Parameter Continuation, Pseudo-Arclength Continuation

can vary multiple parameters during one iteration. The way in which these

parameters are altered cause the solution to move in a direction that is tangent

to the baseline solution by a user defined amount 4s . In this way, the con-

tinuation scheme moves away from the current family of trajectories in search

for new families of trajectories [41]. Let X∗i−1 be a (converged) baseline tra-

jectory that satisfies the equation F
(
X∗i−1

)
= 0. The goal is to find the next

member of the continuation scheme, X i, which often defines a new family of

trajectories. The null vector of the Jacobian Matrix, DF
(
X∗i−1

)
, is used to

generate an orthonormal null vector, 4X∗i−1, that is tangent to the family at

X∗i−1. To ensure that the new member, X i, is found by moving an amount

4s in the tangent direction, a pseudo-arclength constraint is appended to the

existing constraint vector, F (X i). The new, augmented, constraint vector is
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written as

G (X i) =

 F (X i)(
X i −X∗i−1

)T
4X∗i−1 −4s

 = 0 (3.5.1)

with the augmented Jacobian Matrix is written as

DG (X i) = ∂G (X i)
∂X i

=

 DF (X i)(
4X∗i−1

)T
 . (3.5.2)

These equations can be solved using either Newton’s Method or the minimum

norm Equation 3.1.7. This process can be repeated numerous times to generate

a large number of trajectory families.

3.6 Full Ephemeris

While the equations of motion in the CR3BP are a useful starting point for

accurate trajectory propagation, they are not accurate enough for high-fidelity

modeling. Perturbations from other gravitational bodies (i.e. Sun, Venus,

Jupiter, etc.) can cause significant changes in the trajectory of a satellite in

High Earth Orbit (HEO). These perturbations become increasingly important

in the vicinity of Lagrange points since much of the three-body effects cancel

and the resultant force is astonishingly small. In order to accurately account

for the gravitational perturbations of extra bodies, the exact position of each

body with respect to a reference point must be known at a given epoch. Once

this information is known, Equation 3.6.1, the N−body equation, can be used

to determine the acceleration on a spacecraft (sc) from N gravitational bodies
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[39].

r̈1, sc = −G (m1 +msc)
r3

1, sc
r1, sat +G

N∑
j=3

mj

(
rsc, j
r3
sc, j

− r1, j

r3
1, j

)
(3.6.1)

3.7 SPICE/Mice

If a full ephemeris force model is to be employed, the exact positions of all ma-

jor gravitational objects in the Solar System must be known at a given epoch.

While it is possible to use Keplerian models to derive algebraic approximations

of the positions of these bodies, it is much more accurate to glean this infor-

mation from direct astronomical observation. This is where the capabilities

of the SPICE kernel produced by NASA’s Navigation and Ancillary Informa-

tion Facility (NAIF) becomes paramount [42]. The primary goal of SPICE

(Spacecraft, Planet, Instrument, C-Matrix “pointing”, and Events kernel) is to

define, develop, and utilize software standards/protocols that can store data

gathered from spacecraft missions from any agency, nation, or organization in

a uniform way. One of the key functions of SPICE is its ability to quickly

retrieve ephemeris data (i.e. position and velocity relative to a coordinate sys-

tem at a given moment in time) from any time period between the 1970’s and

the 2050’s. All data is based on astronomical observation, spacecraft recon-

naissance, or advanced mathematical modeling, where appropriate. This data

represents some of the most accurate ephemeris data available to the public

and is used as the standard in many software applications [43]. This SPICE

kernel is supported by four major programing languages: C, FORTRAN, IDL,

and MATLAB. The MATLAB version, called “Mice,” is the primary language

used for this dissertation work.
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The theory of gradient-based optimization presented in this chapter is uti-

lized throughout the remainder of this dissertation. It is relied upon heavily

in Chapter 4 to successfully create a Lagrange point orbit from a set of initial

conditions. Both single and multiple shooting are used as well as continuation

techniques which are capable of identifying multiple LPO families from a sin-

gle initial guess. Additionally, gradient based optimization can be hybridized

with non-gradient optimization, as seen in Chapter 9 of this dissertation. This

technique was used to optimize a two-burn transfer to a particular LPO of

interest.
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4 Gradient-Based Optimization of

Lagrange Point Orbits

According to a linear stability analysis of Lagrange points (see Chapter 2) in the

Earth-Moon three-body system, there exists at least one or more center man-

ifolds. These center manifolds permit the existence of periodic orbits about a

Lagrange point or in the vicinity of a Lagrange point. This chapter focuses

on the construction of such Lagrange point orbits using techniques of gradient-

based optimization described in Chapter 3. Note that the use of an optimiza-

tion technique to discover and describe a particular Lagrange point orbit is

very common in present day research [41, 44, 45, 46]. The only alternative to

optimization techniques are analytic approximations of Lagrange point orbits

as discussed in Szebehely [2] and elsewhere. While these approximations make

excellent initial guess solutions for optimization algorithms, they cannot replace

these solutions due to an intrinsic lack of fidelity of the medium and long-term

dynamics.

This chapter begins by discussing the construction of a Lyapunov orbit about

the Earth-Moon, L1 point via the application of the single shooting algorithm

introduced in Chapter 3. Next, this Lyapunov orbit can be utilized as a seed

orbit to generate an entire family of Lyapunov orbits about the L1 point using
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pseudo-arclength continuation. The application of a multiple shooting algo-

rithm is discussed and applied to construct a northern halo orbit about L1.

Finally, the chapter concludes with a demonstration of these techniques under

a full-ephemeris dynamics model instead of the CR3BP.

4.1 Variable Time, Single Shooting Program

The goal of the Variable Time, Single Shooting program is to compute tra-

jectories that are closed and periodic about the Earth-Moon L1 point. This

program will take advantage of the symmetry in the dynamics found across the

x − z plane and restrict the motion of the spacecraft to the x − y plane for

simplicity. The x− z plane symmetry will ensure that any trajectory that be-

gins on the x−axis and then crosses the x−axis with a velocity vector tangent

to the x−axis (and still within the xy−plane), must produce a new trajectory

that is a reflection of the original about the x−axis [47]. This is diagrammed

in Figure 4.1.
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Figure 4.1: Reflection of the converged trajectory across the x-axis.

This program uses a Free Variable Vector of the form

X =



x0

ẏ0

1
2T

β


(4.1.1)

Note that the first two entries of Equation 4.1.1 are the initial x-position and

initial y-velocity (assumed to be positive). All other components of the state

vector are assumed to be zero. This implies that the initial position is located

somewhere on the x-axis. The third component of the Free Variable Vector is

the half-period of the orbit. This indicates that the intention of the shooting

algorithm is to find a half-orbit rather than a full orbit. Finally, if the initial

53



4 Gradient-Based Optimization of Lagrange Point Orbits

velocity is positive, then the velocity at the end of a half-period must be negative

(or else there would not be a closed orbit). This implies a constraint condition

of ẏ
(

1
2T
)
< 0. Unfortunately, this constraint condition cannot be written

into the constraint vector in its present form. Instead the condition must be

modified to

ẏ
(1

2T
)

+ β2 = 0 (4.1.2)

with β being real number known as the “slack variable.” Since β is real, the

Equation 4.1.2 can be expressed within the Constraint Vector as

F (X) =


y
(

1
2T
)

ẋ
(

1
2T
)

ẏ
(

1
2T
)

+ β2

 = 0 (4.1.3)

and the Jacobian Matrix as

DF (X) = ∂F (X)
∂X

(4.1.4)

=


∂y( 1

2T)
∂x0

∂y( 1
2T)

∂ẏ0

∂y( 1
2T)
∂T

∂y( 1
2T)
∂β

∂ẋ( 1
2T)

∂x0

∂ẋ( 1
2T)

∂ẏ0

∂ẋ( 1
2T)
∂T

∂ẋ( 1
2T)
∂β

∂(ẏ( 1
2T)+β2)
∂x0

∂(ẏ( 1
2T)+β2)
∂ẏ0

∂(ẏ( 1
2T)+β2)
∂T

∂(ẏ( 1
2T)+β2)
∂β



=


Φ2,1 Φ2,5 ẏ

(
1
2T
)

0

Φ4,1 Φ4,5 ẍ
(

1
2T
)

0

Φ5,1 Φ5,5 ÿ
(

1
2T
)

2β



where Φi,j represents the ith row and jth column of the STM, Φ
(

1
2T, 0

)
. Note

that the STM is numerically propagated from time 0 to time 1
2T in order to

populate the first six elements of the Jacobian Matrix. Three of the remaining
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elements are populated by evaluating the equations of motion at the final state

of the trajectory.

As an example, the program was seeded with an initial state taken from

tabulated values in [2]. The initial state was

X0 guess =



0.78

0.000

0.000

0.000

0.443

0.000



(4.1.5)

with an initial Tguess = 3.9. All values are in the non-dimensional units of the

CR3BP. By exploring the tradespace through many trial-and-error attempts,

the initial guess of the slack variable was set to β = 0.7. The Variable-Time,

Single Shooting algorithm ran for just over one second and used 10 iterations

to produce a closed, periodic orbit about the Earth-Moon L1 point with a

tolerance of 10−12. The integration was performed on a 3GHz Intel Core 2

Duo processor using MATLAB’s ODE113 function. The orbit can be seen in

Figure 4.2
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Figure 4.2: Closed Earth-Moon L1 orbit generated by the Variable-Time, Sin-
gle Shooting method.

The algorithm found the desired initial state to be

X0 shot =



0.777910486548393

0.0

0.0

0.0

0.455080899040143

0.0



(4.1.6)

with an orbital period of T = 4.063544575624369. Note the classic “kidney-

bean” shape of Figure 4.2 with curvature that is especially evident in the vicinity

near the Moon (shown to the right of the orbit). Also note the 15 significant

figures associated with each value reported (if the value is exactly zero, only
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two digits are reported for sake of simplicity). These 15 significant figures

correspond to the machine precision of MATLAB’s 64 bit, double-precision,

floating-point arithmetic. All values reported in this dissertation should be

assumed to be double-precision. This degree of precision is needed because

the equations of motion are numerically integrated. As the integration time

increases, so does the integration error, which is primarily due to limitations in

machine precision.

4.2 Pseudo-Arclength Continuation & Single

Shooting

The orbit found in the previous section by method of Single Shooting will now

be used as a “seed trajectory” for a Pseudo-Arclength Continuation program.

In this program the Free Variable Vector,X, was unchanged and

G (X) =

 F (X i)(
X i −X∗i−1

)T
4X∗i−1 −4s

 (4.2.1)

=



y
(

1
2T
)

ẋ
(

1
2T
)

ẏ
(

1
2T
)

+ β2(
X i −X∗i−1

)T
4X∗i−1 −4s


= 0

with

DG (X i) = ∂G (X i)
∂X i

=

 DF (X i)(
4X∗i−1

)T
 . (4.2.2)
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The baseline trajectory, X∗1, is taken from the solution given by the Single

Shooting algorithm from the previous section. Note that the orthonormal null

vector 4X∗1 was also calculated from the previous trajectory by using the

MATLAB code ”deltaXstar = null (DF ) ”. All subsequent null vectors are

calculated using the same command. Based on trial-and-error experience, the

value of ∆s = 0.012 and was constant throughout the continuation process.

The code generated 100 orbits and ran for a total of 23 seconds. Every 10th

orbit is plotted in Figure 4.3.

Figure 4.3: Orbits automatically found using Pseudo-Arclength Continuation
(outside orbit is the initial orbit).
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4.3 Variable Time, Multiple Shooting Program

In this program, the Multiple Shooting technique is used to find a trajectory

that converges into periodic motion about the Earth-Moon L1 point. The

algorithm was tested using a known periodic solution which can be found in

Table 4.1.

Table 4.1: Ten known patch points.
x y z ẋ ẏ ż

X1 0.781600000000000 0.000000000000000 0.0... 0.000000000000000 0.443081213954370 0.0...

X2 0.792032292050977 0.101076863157104 0.0... 0.085186531444790 0.395828151489133 0.0...

X3 0.911369923345768 0.252455690570353 0.0... 0.167745047434767 -0.020992012461727 0.0...

X4 0.955433598468470 0.106151039746667 0.0... -0.112048667589987 -0.372540477511669 0.0...

X5 0.930684549931070 0.006511131265643 0.0... -0.024803940496956 -0.601702268361602 0.0...

X6 0.946269109073130 -0.077568038927116 0.0... 0.142596656908626 -0.436462539017418 0.0...

X7 0.965129475968441 -0.148829574963555 0.0... 0.039514208529445 -0.301012106276146 0.0...

X8 0.923183854471848 -0.249543637080857 0.0... -0.157340342992445 -0.059034756744953 0.0...

X9 0.783201387251299 -0.040266198269010 0.0... -0.034848333296306 0.435583142613420 0.0...

X10 0.781600000001444 -0.000000000002147 0.0... 0.000000000001834 0.443081213952850 0.0...

T

X1 0.000000000000000

X2 0.236788879638363

X3 1.010884466987540

X4 1.756927859260430

X5 1.963474218828280

X6 2.120557712057200

X7 2.319415057331600

X8 2.865106111638700

X9 3.857147386090900

X10 3.948543114845460

Note that the program is capable of accepting an arbitrary number of points,

n, with n ≥ 3; in this case, n = 10. The solutions in Table 4.1 are truncated to

one significant digit for all values and then used as the baseline “patch points”

for the Multiple Shooting algorithm. After the Multiple Shooting Algorithm
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is run the ten truncated states should return to the ten known solutions in

Table 4.1. If the trajectory successfully converged, it would prove that the Mul-

tiple Shooting algorithm was indeed a highly robust algorithm since the baseline

trajectory was so badly degraded by data loss. The Variable Time, Multiple

Shooting algorithm followed most of the methodology outlined in Chapter 3

with a few minor exceptions that allowed for a closed, periodic trajectory in-

stead of an open one. The free-variable vector was defined in the usual way as

a 7n− 1 vector

X =



X1

X2
...

Xn

T1
...

Tn−1



(4.3.1)

but the constraint vector is slightly different

F (X) =



X2, T1 −X2
...

Xn−1, Tn−2 −Xn−1

Xn, Tn−1 −X1


(4.3.2)

yet still a 6 (n− 1) vector. Note that the final patch-point is designed to match

the initial patch-point as shown by the last line in Equation 4.3.2. Also note

that, on occasion, the program will not fully converge using this definition of

the constraint vector. If this is the case, then the solution is to remove the
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constraint on the y-velocity component of the final patch point. Because of

numerical integration error, it may become difficult for the solver to exactly

match the initial patch point with the final patch point. The introduction of

a “slack” variable, which allows a small amount of leeway in the y-velocity

component, will typically resolve this issue. Finally, the Jacobian matrix will

change slightly to
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which is a 6 (n− 1) × 7n− 1 matrix. Note the change in the matrix at the

bottom left corner of Equation 4.3.3 from a null matrix to an identity matrix.

This reflects the insertion of the closed-orbit boundary condition.

The results of this program can be seen in Figure 4.4. The thick lines indicate

trajectory segments that were propagated using the ten truncated patch points

computed from patch points in Table 4.1. The colors correspond to identical

trajectory segments with one set belonging to the truncated points (thick lines)

and the other belonging to the newly computed trajectory segments (thin lines).

Obviously, they are all highly undesirable and discontinuous trajectories. This

program ran for 2.2 seconds with a total of 8 iterations before converging all

segments/patch points to within 10−12 of each other. The converged patch

points can be seen as color-coded stars with their corresponding trajectory

segments of the same color. Notice that each trajectory segment matches the

one before and after. In this way, it has been demonstrated that a continuous

trajectory can be formed from a highly fragmented guess trajectory using the

Variable-Time, Multiple Shooting technique.
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Figure 4.4: Data from Variable Time, Multiple Shooting program. Thick font
represents the propagation of the initial guess, while thin font represents the
propagation of the final solution.

4.4 Example of Three-Dimensional Orbits

In general, a quasi-periodic trajectory can usually be found that maintains a

spacecraft within a fixed volume of space, for a long period of time, in the

vicinity of a Lagrange point. These trajectories are fully three-dimensional and

may or may not consist of one or more closed orbits (typically they are nearly

closed but not fully closed). These trajectories are called “Lissajous” orbits.

A special case of Lissajous orbits exist when the orbits are fully closed and

periodic. Such trajectories are known as “halo” orbits; named after the shape

they trace when viewed by an Earth-bound observer looking directly at the

Moon and observing the shape of the spacecraft’s trajectory [3]. Finally, if the
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orbit is entirely two-dimensional and lies completely within the x − y plane

of the CR3BP, it is known as a “Lyapunov” orbit. All of the orbits displayed

above are two-dimensional, Lyapunov orbits. However, there is no reason why a

multiple shooting technique cannot be used to find halo orbits. Figure 4.5 shows

the results of a multiple shooting program that calculates a three-dimensional

halo orbit. This orbit was found using the same program that was used in the

previous section, only a periodic z-component of small amplitude was added

to the initial conditions. The result was a fully converged halo orbit that

has been plotted in three-dimensions without the initial conditions displayed

for simplicity’s sake. All ten segments begin at a colored star and propagate

forward to the next trajectory segment, beginning with a different colored star.

Note that the sphere just to the right of the orbit is the Moon; plotted to the

correct scale.
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Figure 4.5: A three-dimensional Lagrange point orbit.

.

4.5 Full Ephemeris EOM Program with SPICE

The final program discussed in this chapter attempts to utilize SPICE com-

mands to accurately propagate trajectories under a full-ephemeris force model

using Equation 3.6.1. Of course, it is not enough to simply make a trajectory

propagator; it must be validated as well. Validation is accomplished by compar-

ing two trajectories propagated using the author’s MATLAB ephemeris model

with identical trajectories propagated using System Tool Kit (STK) software1.

STK software is a commercial product that has been on the market for many
1http://www.agi.com
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years and is well established as mature, tested, and validated [43]. Because of

its established history, STK is ideal benchmarking platform.

The first trajectory is based on an arbitrary initial state of

X0 =



350000 [km]

0 [km]

0 [km]

0 [km/s]

0.5 [km/s]

0 [km/s]



(4.5.1)

and was propagated for one year (365 days). This initial state represents a very

high Earth orbit with a trajectory that is bound to a region slightly beneath

the Moon’s orbit. A custom full-ephemeris propagator was created in STK. For

this study, the propagator used 10 bodies and modeled each body as a point

mass. The bodies involved are the eight planets (Mercury, Venus, Earth, Mars,

Jupiter, Saturn, Uranus, Neptune), the Sun, and the Moon. The Earth was

chosen as the “central body.” A satellite was then created and the propagator

“Astrogator” was used to generate the baseline trajectory. Note that the co-

ordinate system used by STK/Astrogator was “Earth Inertial,” which is based

on a geocentric J2000 coordinate system. The final state as computed by STK
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was

Xf =



228638.0987 [km]

279042.4137 [km]

20770.87224 [km]

−0.714259 [km/s]

0.107036 [km/s]

−0.010484 [km/s]



. (4.5.2)

If compared to the final state generated by the custom MATLAB ephemeris

model, the magnitude of the difference in position is 0.1682 [km] and the mag-

nitude of the difference in velocity is 0.00074 [m/s]. This is an exceptionally

small difference between the MATLAB ephemeris model and STK’s model and

demonstrates the high degree of accuracy and precision of the MATLAB model

created by the author of this dissertation. For the sake of comparison, the

MATLAB model was re-run three times and compared with STK. Each time

the model was run, more and more bodies were disregarded in the calculation.

The results are shown in Table 4.2. Note that the propagator is essentially

useless after the loss of the Sun.

Table 4.2: MATLAB custom propagator error.
MATLAB Propagator Earth + Moon + Sun Earth + Moon Earth
Position Error [km] 18.89 263892.56 167715.65
Velocity Error [m/s] 0.04 580.94 602.80

It is important to recognize that validation of the customMATLAB ephemeris

model using only the trajectory described above may not be sufficient. The tra-

jectories that are of primary interest in this proposal are located in the vicinity
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of Lagrange points. Since Lagrange points are equilibrium points, it is implied

that all the forces from the major primaries (Earth, Moon, and centripetal force)

roughly sum to zero. Because of this fact, perturbations from other sources (i.e.

the Sun and planets) may play an even larger role than that demonstrated in

the first trajectory discussed above. It seems appropriate that a Libration orbit

should also be verified in the custom MATLAB model.

Since an infinite number of Libration point orbits exist, a reasonable Li-

bration point orbit to model is one that has been flown before by a recent

spacecraft. To date, only one mission and two spacecraft have ever visited

any Earth-Moon Lagrange points. The THEMIS (Time History of Events and

Macroscale Interactions during Substorms) mission was launched in 2007 and

were originally intended to study the interactions between the Sun and the

Earth’s magnetic field. The mission consisted of five spacecraft and was orig-

inally intended to be terminated at the end of 2010. It was then discovered

that two of the original spacecraft had just enough fuel to insert themselves

into Lissajous orbits about Earth-Moon L1 and L2 [14, 44]. THEMIS B was

re-named ARTEMIS P1 and THEMIS C was re-named ARTEMIS P2 [48].

The ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics

of Moon’s Interaction with the Sun) mission then collected data in the vicinity

of the Lagrange points for a few months. This data is available to the public

and can be accessed on UC Berkely’s website2 [49].

The second trajectory propagated by both STK and the custom MATLAB

model is based on the state vector of ARTIMIS P1 (THEMIS B) on May 1,

2http://themis.ssl.berkeley.edu/data/themis/ Acessed on 11-11-2012
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2011 00:00:00.000 UTC. The state vector

X0 =



−346924.683095239 [Km]

120980.805483469 [Km]

16050.3697336028 [Km]

−0.372332927758167 [Km/s]

−0.882566329832206 [Km/s]

−0.408755815977972 [Km/s]



(4.5.3)

was propagated for exactly 12 days, ending on May 13, 2011 00:00:00.000 UTC.

Unfortunately the propagation time could not be extended beyond 12 days be-

cause the initial state vector was slightly off in its targeting and only allowed for

the propagation of 3/4 of an orbit before escaping the vicinity of the Lagrange

point. The ARTIMIS spacecraft would typically perform a thruster burn every

few days in order to correct its trajectory and keep it on a proper Lissajous

orbit. For that reason, it was impossible for the author to compare a later

state vector with one predicted by either STK or the custom MATLAB model

(there was no model for thruster dynamics). Nevertheless a direct compari-

son between STK and the MATLAB model was performed. The magnitude

of the difference in position was around 2.6 [m] while the magnitude of the ve-

locity difference is around 10−5 [m/s]. These small values indicate that over

relevant propagation times (nearly one orbit), the custom MATLAB model has

been validated against STK. The trajectory of the spacecraft can be seen in

CR3BP coordinates in Figure 4.6 and the same trajectory can also be plotted

in a geocentric J2000 coordinate frame shown in Figure 4.7.
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Figure 4.6: Propagated trajectory of ARTIMIS, P1 in the CR3BP reference
frame. From Left to Right: Earth, L1, Moon.

Figure 4.7: Propagated trajectory of ARTIMIS, P1 in the J2000 geocentric
reference frame. Key: Earth = green, Moon = red, spacecraft = blue.
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The methods outlined in this chapter reflect the current state-of-the-art in

trajectory construction and mission planning for Lagrange point orbits. As

demonstrated, the application of shooting methods allows for the quick identi-

fication of Lagrange point orbits. Of course these LPOs are typically unstable

and require a spacecraft to expend some stationkeeping propellant in order to

remain on the orbit over long time periods. In the next chapter, a closer ex-

amination of trajectories exiting and entering the LPO are discussed at length.

These trajectories, otherwise known as manifolds, offer insight into the dy-

namical behavior of the spacecraft. The study of these stable and unstable

manifolds can offer great insights into the navigation, optimization, and orbital

maintenance of Lagrange point orbiting spacecraft.
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Invariant Manifolds

This chapter focuses on Dynamical Systems Theory as applied to periodic or-

bits about Lagrange points in the Circular Restricted Three Body Problem

(CR3BP). A more detailed explanation can be found Perko’s book [50] and

complemented by other references [51, 52, 53, 54, 55], but a useful summary

is presented here. Dynamical Systems Theory (DST) is useful in evaluating

the stability of Lagrange Point Orbits (LPO) in the CR3BP. It is based on

an extrapolation of the stability analysis done in Chapter 2 for the individual

Lagrange points themselves, but is a bit more involved, because the focus is

on the trajectory of a periodic orbit instead of a single point in space. This

chapter begins by linearizing the motion about an LPO and applying Floquet’s

theorem to a nonautonomous mapping. Next, the monodromy matrix is used

to characterize the stability of the LPO and identify the directions of the local

stable and unstable manifolds. Finally, a procedure for the generation of the

stable manifold of a LPO is outlined and demonstrated. This manifold serves

as the search-space for the Particle Swarm Optimization algorithm as described

in Chapter 6 and demonstrated in Chapters 7, 8, and 9.
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5.1 Linearized Motion About A Periodic Orbit

The dynamics of this problem follow

Ẋ = f(X) (5.1.1)

where X is the state vector as defined in Equation 2.2.28 and f(X) represents

the dynamics of the system as defined by the equations of motion in Equation

2.6.1. Assuming that Equation 5.1.1 has a periodic orbit of period P one may

define

Xγ(t) = γ(t) (5.1.2)

as a closed, periodic path of the orbit with 0 ≤ t ≤ P . A first-order linearization

of Equation 5.1.1 is given as

Ẋγ (t) = A(t)Xγ (t) (5.1.3)

with A(t) = Df (γ(t)) being a continuous, differentiable, and T−periodic ma-

trix. Equation 5.1.3 is a non-autonomous, first order, linear system of differen-

tial equations. The solution to Equation 5.1.3 is of the form

Xγ (t) = Φ
(
t, t0

)
Φ−1

(
t0, t0

)
Xγ0 (5.1.4)

where the state transition matrix, Φ
(
t, t0

)
, is known as the fundamental

matrix for the system (Equation 5.1.3). Inserting Equation 5.1.4 into Equation

5.1.3 yields

Φ̇
(
t, t0

)
= A(t)Φ

(
t, t0

)
(5.1.5)
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with Φ
(
t0, t0

)
= Φ−1

(
t0, t0

)
= I, as was stated in an earlier chapter

by Equation 2.7.8.

5.2 Floquet’s Theorem & the Non-Autonomous

Mapping

According to Floquet’s Theorem [50], the solution for Equation 5.1.5 can be

expressed in the form

Φ
(
t, t0

)
= Q (t) eBt (5.2.1)

with Q(t) being a non-singular, differentiable, P−periodic matrix and B being

a constant matrix. Also, Q(0) = I since Φ
(
t0, t0

)
= I. According to Perko

[50], the Q(t) matrix enables the mapping of the non-autonomous Equation

5.1.3 into the autonomous form

Ẏ γ = BY γ (5.2.2)

which is identical to the form of Equation 2.6.7. This mapping is formulated as

Y γ = Q−1(t)Xγ (5.2.3)

and is shown to be a valid mapping that reduces the non-autonomous linear

system of Equation 5.1.3 to the autonomous linear system of Equation 2.6.7.

The proof of the validity of the mapping described in Equation 5.2.3 comes

primarily from Perko [50] and is summarized next.
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Mapping Proof

According to Equation 5.2.1

Q(t) = Φ(t)e−Bt. (5.2.4)

Taking the first derivative of Q(t) yields

Q̇(t) = Φ̇(t)e−Bt − Φ(t)e−BtB (5.2.5)

and substituting Equation 5.1.5 gives

Q̇(t) = A(t)Φ(t)e−Bt − Φ(t)e−BtB (5.2.6)

and an additional substitution using Equation 5.2.1 yields (note that B and

e−Bt commute)

Q̇(t) = A(t)Q(t)−Q(t)B. (5.2.7)

The mapping of Equation 5.2.3 can be easily rewritten as

Xγ(t) = Q(t)Y γ(t) (5.2.8)

and differentiated with respect to time as

Ẋγ(t) = Q̇(t)Y γ(t) +Q(t)Ẏ γ(t). (5.2.9)

Equation 5.2.7 can be used as a substitution for Q̇(t) and yields

Ẋγ(t) = A(t)Q(t)Y γ(t)−Q(t)BY γ(t) +Q(t)Ẏ γ(t) (5.2.10)
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which can be simplified as

Ẋγ(t) = A(t)Xγ(t) +Q(t)
(
Ẏ γ(t)−BY γ(t)

)
(5.2.11)

with the substitution of the mapping equation (Equation 5.2.3). Examining

Equation 5.2.11 shows that the only way this equation is true is if both the

non-autonomous Equation 5.1.3 and the autonomous Equation 5.2.2 are both

true. Since this proof began using the result of Floquet’s Theorem it demon-

strates that the utilization of Floquet’s Theorem reduces a non-autonomous

system into an autonomous system that is both simple and has a known solu-

tion. This is accomplished via the definition of a Q(t) matrix that is assumed to

be non-singular, differentiable, and P−periodic. In practice, it is very difficult

to precisely define the form of the Q(t) matrix given a specific problem. Fortu-

nately, however, it is not necessary to identify the exact form of the Q(t) matrix

because the simple knowledge of its intrinsic properties is more than enough

information to gain a great deal of insight into the dynamics of a problem.

5.3 Monodromy Matrix & Stability

Now that the validity of Floquet’s Theorem has been established the question

of the utility of this theorem remains. In theory, Equation 5.2.1 could be used

for any value of t. In practice, however, most values of t are unhelpful because

the exact form of the Q(t) matrix is unknown. Fortunately, however, there are

special values of t that allow one to take advantage of the unique properties

of the Q(t) matrix. One such value is t = t0 = 0. Plugging this value into
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Equation 5.2.1 gives the result

Φ
(
t0, t0

)
= Q(t0). (5.3.1)

Note that Φ
(
t0, t0

)
= I, as stated before. This implies that

Q(t0) = I (5.3.2)

which is an important result of the special case of t = t0 = 0. Furthermore,

because Q(t) is P−periodic,

Q(t0 + nT ) = I (5.3.3)

for any value of n, with n being a positive integer value. The monodromy

matrix,M , is defined asM = Φ
(
P, t0

)
(with n = 1) or the value of the state

transition matrix exactly one cycle after its initial value of Φ
(
t0, t0

)
= I .

Substituting n = 1 into Equation 5.2.1 gives

M = Φ
(
P, t0

)
= Q (t0 + P ) eBP (5.3.4)

which simplifies to

M = eBP (5.3.5)

via Equation 5.3.3. Equation 5.3.5 is an important result because of its impli-

cations to the stability of orbit γ. The eigenvalues of eBP are given by eλjP with

j = 1, ..., n where n is the rank of B. The eigenvalues of B, λj, are called the

characteristic exponents of orbit γ(t) while the values eλjP are called character-

istic multipliers. Referring to Equation 5.3.5 it is obvious that the eigenvalues
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of the monodromy matrix, M , are identical to these characteristic multipliers.

It turns out that the characteristic exponents, λj, determine the stability of

the orbit. This can be demonstrated by the solution of the autonomous linear

system of Equation 5.2.2 which is

Y γ (t) = Y γ0e
Bt. (5.3.6)

It is also possible to write related solutions of Equation 5.2.2 by exciting eigen-

modes of the system. Let νj be an eigenvector of B that is associated with

eigenvector λj. The solution of Equation 5.2.2 can also be expressed as the

summation of all eigenmodes of the system

Y γ (t) =
n∑
j=1
cje

λjtνj (5.3.7)

with the coefficients cj determined from Y γ0 . One can excite a single eigenmode

of the system by intentionally setting Y γ0 = νj and plugging the eigenmode

solution

Y γ(t) = νje
λjt (5.3.8)

into Equation 5.2.2. This substitution yields the familiar equation Bνj = λjνj,

which is the definition of an eigenvalue and is intrinsically true. Since the

eigenmode solution of Equation 5.3.8 has been verified as a valid solution of

Equation 5.2.2 (because it is a single term of Equation 5.3.7 and all terms are

linearly independent) it can offer a vast amount of insight into the stability

of the system. The most general form of an eigenvalue is a complex number.

Allow λj = aj + ibj where aj and bj are both real numbers. Substitution of this
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complex number into Equation 5.3.8 and using Euler’s formula gives

Y γ (t) = νje
ajt (cos bjt+ i sin bjt) . (5.3.9)

It can be seen from a simple inspection of Equation 5.3.9 that lim
t→±∞

Y γ (t)

becomes unbounded if aj ≥ 0 , is bounded if aj ≤ 0, and does not change

amplitude if aj = 0. Therefore, these stability conditions yield insight into the

stable, center, and unstable manifolds, respectively. Furthermore, this stability

relationship can be extended to the eigenvalues of the monodromy matrix via

Equation 5.3.5. The eigenvalues, Λj, of the monodromy matrix, M , are equal

to the characteristic multipliers defined above. Allowing for the substitution of

a complex number for λj gives

Λj = eλjt|t=T = eajt+ibjt|t=P = eajt (cos bjt+ i sin bjt) |t=P . (5.3.10)

The absolute value of a complex number is defined as the square root of its com-

plex conjugate. Following this definition, the absolute value of the eigenvalues

of the monodromy matrix are

‖Λj‖ = eajt|t=P . (5.3.11)

Since the stability behavior relative to aj is known, the stability as relative to

‖Λj‖ can also be directly inferred. Note that when aj = 0 the critical value of

‖Λj‖ = 1. If ‖Λj‖ < 1, the eigenmode is stable, and if ‖Λj‖ > 1, the eigenmode

is unstable. These results are summarized in Table 5.1.
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Table 5.1: Summary of eigenmode stability characteristics where Λj is an
eigenvalue of the monodromy matrix, M .

Name Symbol Stable If: Center If: Unstable If:
Characteristic

Exponents λj Re (λj) < 0 Re (λj) = 0 Re (λj) > 0

Characteristic
Multipliers Λj = eλjP ‖Λj‖ < 1 ‖Λj‖ = 1 ‖Λj‖ > 1

5.4 Characteristics of Monodromy Matrix

Eigenvalues

It can be shown that at least one of the characteristic multipliers of the closed,

periodic orbit is equal to one. This is accomplished via the following proof.

5.4.1 Λ = 1 Proof

By definition, the periodic orbit Xγ(t) = γ(t) satisfies Equation 5.1.1 as

Ẋγ (t) = f (Xγ (t)) . (5.4.1)

Differentiating Equation 5.4.1 yields

Ẍγ = Df (Xγ (t)) Ẋγ (t) (5.4.2)

but A(t) = Df (Xγ (t)) so

Ẍγ = A (t) Ẋγ (t) (5.4.3)
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which has an identical form to Equation 5.1.3 (assuming the second derivative

is replaced by the first). Recall that Equation 5.1.4 is the solution to Equation

5.1.3. Likewise,

Ẋγ (t) = Φ (t, t0) Φ−1 (t0, t0) Ẋγ0 (5.4.4)

with Φ−1 (t0, t0) = I. Note that Ẋγ0 = f (Xγ0) by Equation 5.4.1. This reduces

the solution to

Ẋγ (t) = Φ (t, t0) f (Xγ0) . (5.4.5)

Recall that Ẋγ (T ) = Ẋγ0 = f (Xγ0), due to the periodic nature of the orbit,

and Φ (t, t0) = M . Substituting this into Equation 5.4.5 when t = P gives

(1) f (Xγ0) = Mf (Xγ0) (5.4.6)

which is the definition of an eigenvector/eigenvalue equation. Note that the

eigenvalue of the monodromy matrix is 1 with an eigenvector of f (Xγ0) based

on this equation.

5.4.2 Reciprocal Pairs of Λj in the CR3BP

It was shown by Breakwell [47] and Howell [56] that the eigenvalues of M in

periodic orbits in the CR3BP occur in reciprocal pairs as
(
Λ1,

1
Λ1
, Λ2,

1
Λ2
, 1, 1

)
due to the invariance of the equations of motion of the CR3BP (Equation

2.6.1) under the transformation t → −t and y → −y. This transformation is

simply another way to state the fact that the CR3BP is time-invariant (t→ −t)

and symmetric across the y−axis (y → −y). Under this transformation, the
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autonomous linear system of Equation 5.2.2 can be rewritten as

Ẏ γ (−t) = BY γ (−t) (5.4.7)

and the solution rewritten as

Y γ (−t) = Y γ0e
−Bt. (5.4.8)

As before, the summation of eigenmode solutions is

Y γ (−t) =
n∑
k=1

cke
−λktνk (5.4.9)

which is nearly unchanged from Equation 5.3.7 except for the negative sign in

the exponent and indexing with respect to k instead of j. It is important to

note that the eigenvalues of B are both λj and λk since B remains unchanged

under the transformation (because it is constant) and both Equation 5.3.7 and

Equation 5.4.9 are valid solutions of the CR3BP dynamics. This can only be

true in two cases:

1. the trivial case where λj = λk = 0 or

2. the negative pair case where

λj =
(
λ1, λ2 = −λ1, λ3, λ4 = −λ3, λ5, λ6 = −λ5

)
and

λk =
(
λ1 = −λ2, λ2, λ3 = −λ4, λ4, λ5 = −λ6, λ6

)
.
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This result is sometimes referred to as Lyaponov’s Theorem [55]. Assuming the

nontrivial case where λ1 = −λ2 and using Equation 5.3.10, one can write

Λ1 = eλ1P

Λ2 = eλ2P = e−λ1P =
(
e−λ1P

)−1
= 1

Λ1

. (5.4.10)

This means that all of the eigenvalues of the monodromy matrix occur in re-

ciprocal pairs in the CR3BP. This, along with the Λ = 1 Proof from above,

indicate that the eigenvalues of the monodromy matrix of any closed periodic

orbit in the CR3BP are of the form

Λj =
(

Λ1,
1

Λ1
, Λ2,

1
Λ2
, 1, 1

)
(5.4.11)

or, equivalently

Λj =
(

Λ1,
Λ∗

1
Λ1Λ∗

1
, Λ2,

Λ∗
2

Λ2Λ∗
2
, 1, 1

)
(5.4.12)

where Λ∗j is the complex conjugate of Λj.

5.4.3 The Stability Index in the CR3BP

Now that the reciprocal pair relationship of the eigenvalues of the monodromy

matrix has been established, a new “stability index” can be defined [57] that will

summarize the stability of a closed, periodic orbit in the CR3BP. The stability

index, Si, is defined as

Si = 1
2

(
‖Λi‖+

∥∥∥∥ 1
Λi

∥∥∥∥) (5.4.13)
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for i = 1, 2. A periodic orbit of the CR3BP is considered “stable” (actually a

center subspace) if S1 = 1 and S2 = 1, as opposed to the orbit being unstable

for either S1 > 1 or S2 > 1. Note the stability index can never be less than 1. A

stability index near 1 indicates an orbit that will have low ∆v requirements for

station-keeping but large ∆v requirements if a change in the orbit is desired.

Conversely, transfer costs will be low for large values of the stability index and

∆v costs will be high for station-keeping. The stability index is just one of many

characteristics of a Lagrange point orbit that determines the orbits utility given

a specific mission profile.

5.5 Stable Manifold Generation

A Lagrange point orbit can be identified via either tabulated values [2] or a

numeric computation that solves a two-point boundary value problem [41, 36].

The Lagrange point orbit is then defined by an arbitrary state vector (anywhere

along the orbit), Xorbit, and the period of the orbit, P . Under controlled

CR3BP dynamics, the state vector for the spacecraft is expressed in terms of

position, velocity, and spacecraft mass as

X =



x

y

z

ẋ

ẏ

ż

m



(5.5.1)
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with the controlled CR3BP expressed in terms of a first-order differential equa-

tion as

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈

ṁ



=



vx

vy

vz

2vy + Ux + ux

−2vx + Uy + uy

Uz + uz

− T
Ispgo



. (5.5.2)

Note that the controlled form of Equation 5.5.2 degenerates to the uncontrolled

Equation 2.6.1 when the control is removed (T = 0). Numeric integration of

Equation 5.5.2 (with ballistic assumptions of u = T = 0 and m = constant)

as well as the state transition matrix for one period with the initial condition

X0 = Xorbit enables the calculation of the monodromy matrix associated with

the initial state, Xorbit. The stable eigenvector, νs, of the monodromy matrix

is multiplied by a very small number, ε, with ε = 10−10 in this dissertation. A

perturbed initial state, Xpert = Xorbit ± ενs, is then integrated backward in

time using the ballistic version of Equation 5.5.2. As in Abraham et al.,[58] the

integration is terminated when the spacecraft crosses the y − z plane from the

negative x−direction. This defines a trajectory that is a member of the stable

manifold of the nominal Lagrange point orbit bounded by the y − z plane.

The nominal Lagrange point orbit can be discretized into M states defined

as X(k)
orbit with k ∈ [1, M ]. The process is then repeated for other values of

X(k)
orbit (all of which are on exactly the same orbit) which, in turn, constructs a

stable manifold consisting of M trajectories. If a spacecraft’s state lies along a

trajectory within this manifold then the ballistic flow forward in time will take
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it to the state X(k)
orbit and the spacecraft will be automatically inserted into

the nominal Lagrange point orbit. In this way, any state within the manifold,

Xs.m. (τ01, k), can be expressed via two parameters:

1. An integer k ∈ [1, M ] that corresponds to a state on the nominal orbit

X(k)
orbit withM being the total number of states that represent a discretiza-

tion of the orbit.

2. A time parameter τ that represents the time remaining for a ballistic flow

of Equation 5.5.2 to reach the state X(k)
orbit.

Note that the eigenvalues remain constant for a given CR3BP orbit [46, 45, 52]

regardless the value of X(k)
orbit (as long as it is still a state on the orbit). Only

the eigenvectors are unique to each value of X(k)
orbit .

5.6 Example: L1 Halo Orbit and its Associated

Manifold

This example uses an Earth-Moon, L1, northern halo orbit. In this case a

“northern” halo orbit spends the majority of flight time above the northern

lunar hemisphere. This orbit, and its associated stable manifold, are used

as the destination orbit in chapters 7, 8, and 9. The orbit has a period of
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P = 2.31339 [tu] (10 days) and an initial state of

X0 = Xorbit =



0.866224052875085

0.011670195668094

0.186912185139037

0.013870554690931

0.245270168936540

−0.021792775971957



(5.6.1)

expressed in [du] and [vu]. Figure 5.1 and Figure 5.2 display multiple views of

this example orbit.
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(a)

(b)

(c)

Figure 5.1: Example northern halo orbit about Earth-Moon L1 (drawn as an
asterisk). (a) side view, (b) top view, (c) x−axis view.
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Figure 5.2: Off-axis view of the example, northern, halo orbit about Earth-
Moon L1.

The orbit is also displayed in Figure 5.3 with the states being discretized

into kmax = M = 791 points with each point corresponding to a particular

trajectory, k, on the invariant stable manifold.

Figure 5.3: The nominal Earth-Moon L1 northern halo orbit. The orbit is
broken into M = 791 points with every 10th point displayed in this figure.

This orbit was arbitrarily chosen as an example of how the PSO technique

can optimize a transfer trajectory to a complicated and highly three dimen-
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sional orbit. According to Dynamical Systems Theory (DST) the invariant

stable manifold of this northern halo orbit may be generated by the following

procedure:

1. Select a point on the orbit, X(1)
orbit , and integrate the State Transition

Matrix forward in time for one period.

2. Calculate the eigenvectors associated with the direction of the stable

manifold at X(1)
orbit .

3. Multiply this eigenvector by a small number, ε, and add/subtract this

small perturbation to X(1)
orbit .

4. Propagate this perturbed state vector backward in time until it crosses

the y − z plane from the −x direction.

This procedure can be repeated numerous times; once for each point on the

nominal orbit for k ∈ [1, N ] . All trajectories generated by points on the halo

orbit comprise the invariant stable manifold, W s, of the halo orbit. Figure 5.4

illustrates the invariant stable manifold of the Earth-moon, L1, northern halo

orbit.
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Figure 5.4: The invariant stable manifold of the nominal, L1 northern halo
orbit (green-blue trajectories). Note that the manifold never approaches the
vicinity of low Earth orbit.

Figure 5.5 illustrates the locations of the eigenvalues in the complex plane.

The eigenvalues for this example, northern, halo orbit are

Λ =



4.020036768696304

−0.354045921058469 + 0.935228039454473i

−0.354045921058469− 0.935228039454473i

1.022630802058527

0.977870017200811

0.248753943692300



(5.6.2)
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with the two stability indices as S1 = 2.13 and S2 = 1.00 quantifying the overall

instability of this example orbit.

Figure 5.5: Eigenvalues (in red) of the example northern halo orbit are plotted
with the unit circle in the complex plane.

Now that the existence of invariant manifolds has been firmly defined and

discussed, it becomes possible to use them as part of an optimization algorithm.

The next chapter focuses on the application of Particle Swarm Optimization

to solve many difficult problems without utilizing gradient-based information.

In later chapters, the particle swarm algorithm is applied to the invariant sta-

ble manifold to search for optimal “patch points” that join the manifold to a

transfer trajectory that originates near the Earth.
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6 Particle Swarm Optimization

This chapter outlines the main method of optimization used in this dissertation:

Particle Swarm Optimization (PSO). PSO is a heuristic, evolutionary-based al-

gorithm that can be used when gradient-based optimization techniques fail.

The chapter begins with a brief history of the PSO method and discusses the

formation of a search-space from the invariant stable manifold of a parent La-

grange point orbit. The search-space is parametrized for the sake of algorithmic

simplicity and an “objective”, “cost”, or “fitness” function will be defined. The

mechanisms of Particle Swarm Optimization are discussed and applied to a

hypothetical fitness function. Finally, a “local” version of PSO is defined and

boundary conditions for either version of PSO are examined in detail.

6.1 History and Background of PSO

Particle Swarm Theory is a branch of evolutionary computation known as

“swarm intelligence” and is classified as a heuristic algorithm. According to

Back [59], the history of evolutionary computation dates back to the late 1950’s

when computers were in their infancy. Since computational power was very

limited, simple heuristic approaches to problem solving were favored over more

complex and computationally expensive methods – even though they are usually
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more precise. Examples from this period are found in references [60, 61, 62]. As

Moore’s Law [63] increased computational capabilities, evolutionary algorithms

became commonplace in the engineering world.

Particle Swarm Optimization (PSO), in particular, is a relatively new algo-

rithm that was originally developed by Kennedy and Eberhart in 1995 [64].

Kennedy, a social psychologist, and Eberhart, an electrical engineer, originally

developed this algorithm to study the flocking/swarming behavior of birds. Un-

til that time, the dominant thought was that bird flocking was controlled by the

individual bird’s tendency to maintain a constant separation distance between

itself and neighboring birds [65, 66]. Kennedy and Eberhart abandoned that

reasoning and focused instead on the social dynamics of the situation. Through

much trial and error they found that they could write a very robust algorithm

using only two simple equations (Equations 6.5.2 and 6.5.3) that kept the com-

plexity of the algorithm to a minimum. They sought an algorithm that was

able to model the swarming behavior of a flock of birds attempting to locate

food within a cornfield. The “cornfield,” in this case, became known as the

search-space, which, for a given problem, is a subset of Rn and the “food” was

the minimization of an objective, fitness, or cost function such as Equation

6.4.1.

These equations involved three simple terms that controlled the movement

of each individual “particle” (a.k.a. “bird”). The first term was a simple mo-

mentum term that modeled Newtonian physics: a particle in motion will stay

in motion with constant velocity. The second term mimics the cognitive na-

ture of the bird. This term redirects the particle’s velocity vector towards the

best location yet found by that individual particle in the search-space (i.e. the

location visited with the most food in the cornfield). The final term mimics
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the social intelligence of birds. This “social” term informs each particle in the

swarm of the best location yet found by any individual member of the swarm.

The particle’s velocity vector is then redirected in that direction. This social

property was inspired by a paper written by sociobiologist Wilson [67] who

said, “In theory at least, individual members of the school can profit from the

discoveries and previous experience of all other members of the school during

the search for food. This advantage can become decisive, outweighing the disad-

vantages of competition for food items, whenever the resource is unpredictably

distributed in patches.” In addition to the influence of these three terms, a final

parameter, initially called “craziness,” was introduced into the system. This

parameter is manifested in the form of three stochastic weights that are applied

to each of the three terms mentioned above. The effect of these weights was to

introduce “crazy,” random velocities that were slightly unpredictable in nature.

As in evolutionary computation, these random variables allow the particles to

effectively explore the search-space without becoming prematurely trapped in

local minima. Kennedy and Eberhart found that this stochastic property was

essential to the efficacy of the PSO algorithm and could not remove this feature

without vastly diminishing its capability [64]. An extensive description of the

PSO algorithm can be found in references [64, 36, 68, 69].

Over the past decade, the PSO algorithm has made its way into a plethora

of scientific and engineering applications. According to a recent survey of pa-

pers by Poli [68] within the IEEE Xplore database, the PSO algorithm has

been applied to: antenna design, biomedical applications, communication net-

works, control systems, engines and motors, entertainment (games and mu-

sic), and scheduling problems – just to name a few. In fact, the application

of the PSO algorithm has seen a near exponential growth between 1995 and
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2006. It is favored by so many different fields because of its simplicity, ease

of programming, flexibility, and ability to be hybridized with more traditional

methods. A more recent application of PSO is applied to spacecraft trajec-

tory optimization problems. Interplanetary trajectories were optimized by Bes-

sette and Spencer [37, 38] while Pontani and Conway focused on multiple-

burn rendezvous problem [35] as well as general spacecraft trajectory optimiza-

tion [34, 36]. Other spacecraft trajectory optimization problems include solar

sails [70], low-thrust asteroid missions [71], and satellite coverage problems [72]

among others [73, 74].

6.2 Search Space & Low-Thrust Control Law

Using Dynamical Systems Theory, the invariant stable manifold of the nominal

Earth-Moon Lagrange point orbit was constructed as described in Chapter 5.

Next, a particular trajectory segment, k, is randomly selected from the stable

manifold, W s. From this trajectory segment a random state, Xs.m. (τ01, k), is

chosen to be a “patch point.” The “Manifold Time,” τ , is a measure of the

amount of time that is required for the spacecraft to ballistically travel from

Xs.m. to the nominal Lagrange point orbit given a particular value of k. Simi-

larly, the value τ01 represents a “normalized” Manifold Time (given k), because

this time is expressed in a range between 0 and 1, with 0 indicating a point

on the LPO, and 1 indicating a point a the far end of the manifold where the

manifold crosses the y − z plane. A low-thrust trajectory is then propagated

backwards in time, according to Equation 2.2.31, from this patch point until

the Jacobi energy of the spacecraft is equal to the Jacobi energy of a Geosyn-

chronous Earth Orbit (GEO) (or some other user-defined stopping condition);
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then the integrator stops. The control law for the low-thrust acceleration during

this propagation is quite straightforward

‖u(t)‖ = Tmax

m(t)

û(t) = v̂(t)

(6.2.1)

with Tmax being the magnitude of the maximum thrust of the engine and v̂ (t)

being a unit vector oriented in the same direction as the instantaneous, three-

body velocity of the spacecraft. This control law was successfully used by

Mingotti et al. [30] and was shown to be the most fuel and time efficient

control law obtainable. A summary of this method for an arbitrarily chosen

trajectory and patch point is described below:

1. Create an invariant stable manifold, W s, based on the nominal L-point

orbit by using DST and backwards integrating the Equation 2.2.29 of the

CR3BP

2. Arbitrarily select a trajectory, k, from this manifold and then arbitrarily

select a patch point, Xs.m. (τ01, k) , from within this trajectory

3. Using Equation 2.2.31, propagate the low-thrust trajectory from this

patch point backwards in time until the Jacobi energy matches that of

GEO.

It is now possible to describe a feasible continuous trajectory from a GEO-

energy orbit to a Lagrange point orbit given a patch point, Xs.m.. It, therefore,

becomes necessary to optimize this trajectory by identifying the optimal patch

point, X∗s.m.. Thus, the search space for the PSO technique becomes all the
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possible points within the stable manifold.

6.3 Parametrization of the Search Space

The Particle Swarm Optimization (PSO) algorithm requires the a priori defini-

tion of a “search space” where it is permitted to search for an optimal solution.

In this study, the search space is defined as all states within the invariant sta-

ble manifold, Xs.m. (τ01, k) ∈ W s, and within certain bounds. Each state is

uniquely defined by exactly two parameters: k and τ . The parameter k rep-

resents an individual trajectory member of the stable manifold (k ∈ W s) that

is generated via the method outlined in Section 6.2. The parameter τ01 is the

second parameter that defines Xs.m. and is defined relative to τ via a simple

mapping function. The time of flight, τ , represents the amount of time required

to get from an initial state to a state on the nominal Lagrange point orbit, as

defined in the Section 6.2. Unfortunately, it is impossible to define the entire

stable manifold as a search space because it is infinite in nature and a search

space (by definition) must be finite. The bounds of τ , therefore, are carefully

chosen such that a wide swath of relevant manifold states are captured within

the search space and irrelevant manifold states are excluded.

In this study, the bounds of τ are τL.B. ≤ τs.m. ≤ τU.B. with:

• τL.B. being the time that trajectory k crosses the y − z plane from the

positive x direction

• τU.B. being the time that trajectory k crosses the y − z plane located at

x = L1.

The τU.B. bound was chosen to ensure that the fitness function (Equation 6.4.1)
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can be evaluated at any point within the search space. If, for example, a patch

point was located on the moon side of L1, the control law (Equation 6.2.1) would

cause the spacecraft to flow towards a lunar orbit instead of an Earth orbit;

thus invalidating Equation 6.4.1. The opposite bound, τL.B., was chosen as a

matter of convenience and practicality. While it is true that the trajectories of

W s continue to flow for an infinite amount of time, one needs to cut off this flow

after a finite amount of time due to the limitations of computing power. Since

the run times of the PSO method can become quite large, a smaller search space

is needed to adequately converge on an optimal solution. While this limited

search space does preclude the possibility of lunar phasing maneuvers, such as

those used by Mingotti et al.[30], it is more than adequate to address a fitness

function that attempts to minimize time of flight. The values of τ are mapped

to τ01 using the simple relationship that τL.B. = 1 and τU.B. = 0. Therefore,

the values of τ for a given value of k are mapped to a normalized range of

0 ≤ τ01 ≤ 1. This mapping ensures that values of τ between τL.B. and τU.B.are

treated equally, regardless of the value of k and the time of flight between the

nominal Lagrange point orbit and the y − z plane located at x = L1.

In a similar fashion, the values of k are mapped between 1 ≤ k ≤ M via

a modulus function. In this study, k = kdesired mod (M). This means, for

example, that if kdesired = M + x then k = x assuming 0 ≤ x ≤ M . Us-

ing this technique, no value of kdesired is ever excluded from the search space

but is instead looped back onto itself in k-space. In summary, any value of

Xs.m. (τ01, k) can be uniquely parametrized, in kτ -space, in terms of τ01 and k

with the boundaries of these parameters being real numbers, 0 ≤ τ01 ≤ 1, and

positive integers, 1 ≤ k ≤M .
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6.4 Fitness Function

The fitness function used in this dissertation can be expressed as a function of

a state on the stable manifold,

J (Xs.m.) = c1 ‖eGEO (Xs.m.)− edesired‖+c2∆m (Xs.m.)+c3∆T (Xs.m.) (6.4.1)

where eGEO is the eccentricity of the GEO-energy orbit, edesired is the desired

eccentricity of the GEO-energy orbit, ∆m is the propellant mass used by the

low-thrust maneuver, and4T is the total Time of Flight (TOF) from the initial

Earth orbit to the nominal Lagrange point orbit. The constants c1, c2, c3 are

all weighting constants controlled by the researcher. In this study, the goal

is to minimize the eccentricity of the original orbit and make it as circular as

possible; therefore edesired = 0. A circular orbit is desirable because most very

low-thrust spirals, from LEO to GEO, begin and end with circular orbits. It is

well known [30] that the most efficient control law for constant thrust (Equation

6.2.1) is the tangential thrust strategy, which will increase the specific energy

of the spacecraft while leaving its eccentricity very near zero for most low-

thrust trajectories. Thus, it is important that the target GEO-energy orbit

also be near-circular if a mission planner desires to utilize a connecting low-

thrust transfer from LEO as well.

Because no one term in Equation 6.4.1 should dominate the others, the choice

of the constants c1, c2, c3 is of critical importance. In this study, the constants

101



6 Particle Swarm Optimization

c2 and c3 are chosen such that the ratio

c2∆m (Xs.m.)
c3∆T (Xs.m.)

(6.4.2)

is on the order of 1. For example, if ∆m ≈ 60 , ∆T ≈ 30 and the desired ratio

of Equation 6.4.2 was roughly 1 : 1 an appropriate choice of constants would

be c2 = 0.001, c3 = 0.002. This selection method does not require a priori

knowledge of the value of ∆m or ∆T , but rather an a priori estimate of their

relative magnitudes. Once c2 has been determined, it is possible to set a value

for c1 by setting some target threshold for the first term in Equation 6.4.1.

Values below this threshold would be overwhelmed by the other terms in Equa-

tion 6.4.1 while values above this threshold would dominate Equation 6.4.1. In

this study, a threshold value of 1% seems reasonable because it represents a

relatively small error in eccentricity. Thus the ratio

c2∆m (Xs.m.)
c1 ‖eGEO (Xs.m.)− edesired‖

(6.4.3)

should be roughly 1 : 1 assuming c2 = 0.001, ∆m ≈ 60, and the threshold

value of ‖eGEO (Xs.m.)− edesired‖ is roughly 10−2. This gives a value of c1 =

1. In summary, following the procedure outlined in this example yields the

values c1 = 1, c2 = 0.001, c3 = 0.002 for the weighting constants. This setup

ensures convergence on an optimal solution that rigidly enforces the eccentricity

constraint while minimizing the fuel usage and time of flight.
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6.5 Particle Swarm Optimization

The PSO algorithm is simple yet powerful. It consists of Np particles which are,

initially (i.e. j = 1), randomly distributed throughout the search space with a

position, χ = [τ01, k]T , and velocity, ω =
[
Vτ , Vk

]T
. Note that the position

maps to the state vector in the following manner:

χ = [τ01, k]T ⇒

Xs.m. (τ01, k) =
[
xs.m., ys.m., zs.m., ẋs.m., ẏs.m., żs.m., ms.m.

]T
.

(6.5.1)

Both the velocity and position of each particle in the search space is calculated

by Equations 6.5.2 and 6.5.3, respectively

ω
(j+1)
i =

CI (1 +R1 (i, j))ω(j)
i + CCR2 (i, j)

(
ψ

(j)
i − χ

(j)
i

)
+ CSR3 (i, j)

(
Y (j) − χ(j)

i

)
(6.5.2)

χ
(j+1)
i = χ

(j)
i + ω(j+1)

i (6.5.3)

with the superscripts indicating the jth iteration (1 ≤ j ≤ jmax) of the PSO

algorithm and the subscripts representing the ith particle (1 ≤ i ≤ Np) . Note

that R1,2,3 (i, j) represents a random number 0 ≤ R1,2,3 (i, j) ≤ 1 following

a uniform distribution, and the constants CI , CC , CS, represent the “Iner-

tial,” “Cognitive,” and “Social” weighting coefficients, respectively. The fitness

function, Equation 6.4.1, is evaluated for each particle and ψ(j)
i and Y (j) are

recorded. The “personal best” value, ψ(j)
i =

[
τ

(best)
i , k

(best)
i

]
, represents the

best known value of the fitness function recorded by particle i from iteration

1 to j. The “global best” value, Y (j) =
[
τ (best), k(best)

]
, represents the best
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known value of the fitness function, recorded by any particle in the swarm, from

iteration 1 to j. In this way, the position and velocity of each particle can be

calculated for iteration j + 1 based on the information contained in iteration j

using Equations 6.5.2 and 6.5.3.

The inertial coefficient directs the particle’s motion according to Newtonian

mechanics (i.e. motion directed along the current velocity vector). The cog-

nitive coefficient allows each particle to “remember” the best location it has

visited and acts as an attractor to that location. Finally, the social coefficient

allows each particle to “communicate” with the others in the swarm and at-

tracts particle i to that location. The values of the coefficients used in this

study have been inspired by the work of Pontani and Conway [34] and were

only modestly modified, via trial and error, to achieve reasonable convergence

while still identifying obvious local minima. They are summarized as follows:

CI = 0.15

CC = 1.00

CS = 1.00

. (6.5.4)

6.6 Local PSO

The method outlined above is excellent for identifying local minima when only a

few minima are present. Unfortunately, if a large number of local minima exist

then the global PSO algorithm displays a tendency to converge on a non-optimal

local minima instead of the best local minima discoverable. This algorithmic

shortcoming exists because the global best solution, Y (j), draws other particles

away from what is oftentimes the vicinity of a better local minimum. This is

especially true when the depth of multiple local minima are very similar. To

104



6 Particle Swarm Optimization

avoid this problem a “local” version of the PSO algorithm has been developed

and utilized in this research. This is accomplished by limiting the ability of the

particles to communicate over distances greater than some cutoff distance, rlocal.

This mirrors conditions found in nature where collaborating swarms of animals

have an inability (or a retarded ability) to communicate over vast distances,

thus allowing more time to explore nearby local minima. In this study, Y (j)

is modified to Y (j)
local(i) by utilizing the best value of a local swarm defined as

all particles within radius, rlocal, of particle i. If particle i can not “see” a

distant particle then that distant particle has no influence over the value of

Y
(j)
local(i). Typically, rlocal =

[
1
20 ,

1
16M

]T
in this study and is noted in the

text otherwise.

As the PSO algorithm evolves over j iterations, the particles in the swarm

begin to collect around various local minima. It becomes possible to define a

convergence metric, γ, for the entire system. This metric is defined by

γ(j) = N
(j)
C

Np

(6.6.1)

where N (j)
C represents the number of particles that have converged to the vicin-

ity of Y (j)
local(i). The vicinity of Y (j)

local(i)is defined to be a circular area of kτ -space,

centered on Y (j)
local(i), with a radius that is roughly 14% the size of rlocal and an

area that is roughly 2% the area of a circle of radius rlocal. Using this definition

of convergence it becomes possible to track the convergence of the PSO algo-

rithm as a function of j and even terminate the algorithm early if a sufficient

value of γ is reached.
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6.7 Search Space Boundary Conditions:

Occasionally, a particle attempts to exit the permissible search space to which

it must be bound. In such a case, a series of rules is followed to gently guide

the particle back into the search space and continue its search for the best

local minima discoverable. One reason why a particle may attempt to exit the

search space is because its velocity is too large. In this case, a saturation limit is

imposed on the velocity vector such that ω ≤ ωmax =
[
±τmax, ±kmax

]T
=[

±1
2 , ±

1
2M

]T
. In general, this velocity saturation limit is very high and

only acts upon extremely unreasonable velocity values. As a consequence, some

values of χ still fall outside the search space. If this is the case, then the τ01

component of position is bounded by the saturation limits

τ01 =


τmax = 1

τmin = 0

for τ01 > τmax

for τ01 < τmin

(6.7.1)

and the k component is bounded by the modulus function k = krequested mod M .

The velocity of this particle is also reset to ω = 0 to prevent the particle from

exiting the search space during the subsequent iteration.

This concludes the chapter introducing Particle Swarm Optimization. Recall

that in Chapter 2, the dynamics of the problem were first introduced. Chapter 3

and Chapter 4 introduced the concepts needed to construct an LPO, while

Chapter 5 discussed the theory governing the stable and unstable manifolds.

Finally, this chapter introduced the concept of Particle Swarm Optimization.

In the next few chapters, these concepts will be unified in order to optimize

transfer trajectories from an initial Earth orbit to a target LPO.
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PSO

This chapter describes the application of a basic, one-dimensional Particle

Swarm Optimization (PSO) algorithm attempting to optimize a low-thrust tra-

jectory from a geosynchronous Earth orbit (or close to it) to an Earth-Moon,

L1, northern halo orbit. Note that some content for this chapter was taken

from a publication by Abraham et al. [58] and reproduced with the author’s

and publisher’s consent. This study holds parameter k fixed and optimizes with

respect to the time parameter, τ , on a given segment of the invariant stable

manifold. Three cases are considered: (A) a basic case where the eccentricity

of the GEO-like orbit is zero, (B) a case where the eccentricity of the geocentric

orbit is zero and the propellant consumption is minimized and, (C) a case where

eccentricity, propellant, and time of flight are all, simultaneously optimized.

The cost function and PSO algorithm are based on those found in Chapter 6

while the search-space and destination Lagrange point orbit are based on those

developed in Chapter 5. An individual point in the search-space (manifold) is

evaluated by propagating, backwards in time, from that point using Equation

2.2.31 with the control law defined by Equation 6.2.1. The equations of motion

are propagated back until the Jacobi energy (Equation 2.3.5) of the spacecraft
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matches that of a spacecraft in Geosynchronous Earth Orbit (GEO). Then the

integration terminates and the fitness function is evaluated based on the fi-

nal conditions of the propagated trajectory (in geocentric orbit). Using this

method a “cost” can be assigned to the manifold patch point under considera-

tion. This process is repeated for each location visited by an individual particle

in the swarm. The swarm terminates its search when the maximum number of

iterations are reached.

7.1 Study A: Eccentricity-Only Fitness Function

7.1.1 Fitness Function

In this study, a very simple fitness function was chosen in such a way as to focus

the goal of the PSO algorithm on obtaining a circular GEO-energy orbit. This

was accomplished by setting edesired = 0 and c1 = 1, c2 = c3 = 0 in Equation

6.4.1. Therefore, the fitness function for Study A becomes

J (χ) = eGEO (χ) . (7.1.1)

A circular GEO orbit is the most likely orbit attainable by low-thrust technology

for its given specific orbital energy. Study A focuses on the exploration of the

solution space in an effort to identify all GEO-energy orbits that have a low

eccentricity (eGEO ≤ 0.01). It is important to prove that the PSO method is

able to find a large number of circular GEO-energy orbits because any usable

fuel-optimal solutions must be a subset of the acceptable solution space found

in Study A.
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7.1.2 Data

Numerous trials were conducted using the cost function found in Equation

7.1.1 with different amounts of particles, iterations, and function evaluations

per trajectory kfixed. In total, four trials were conducted and directly compared

to the stochastic Monte Carlo method. The results are summarized in Table 7.1

and Table 7.2.

Table 7.1 compares the PSO method with the Monte Carlo method via func-

tion evaluations. Note that the +/− signs correspond to W s+ and W s−, respec-

tively. Function evaluations are defined as the number of patch points visited

per trajectory kfixed. Note that an entire low-thrust trajectory is computed

for each patch point that is visited by either method. For example, the “300

Samples +” trial of the Monte Carlo method will randomly sample 300 patch

points on each trajectory of W s+ for a total of 300 function evaluations per

kfixed. The table then reports the optimal value of the cost function, Equa-

tion 7.1.1, the τs.m. and k of that value, and the amount of time it took for

the computer to complete the trial. Likewise, the same can be said for the

PSO method. The “30 Particles, 10 Iterations +” trial samples a total of 300

patch points on each trajectory of W s+ for a total of 300 function evaluations

per kfixed. The remaining columns are analogous to the Monte Carlo method.

Note that it is fair to directly compare the PSO method to the Monte Carlo

method given the same number of function evaluations. Looking at Table 7.1,

one may note that the PSO method usually finds a better optimal solution than

the Monte Carlo method regardless of the number of function evaluations used

by both methods.
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Table 7.1: Top: Results from eight Monte Carlo trials. Both the negative
perturbation (-) and positive perturbation (+) are investigated. Bottom:
Results from eight PSO trials. Both perturbations are also investigated. The
optimal case is shown in bold.
Monte Carlo Trial Optimal J = eGEO τs.m. [tu] k(±) CPU Time (hrs.)

300 Samples + 0.012573 -19.050677 764+ 23.0
300 Samples - 0.012573 -19.050677 764− 23.0

160 Samples + 0.000930 -18.101890 610+ 9.1
160 Samples - 0.001960 -19.034836 763− 9.9
80 Samples + 0.002907 -26.353585 607+ 4.6
80 Samples - 0.002931 -32.545428 610− 5.0
40 Samples + 0.001741 -19.935733 141+ 2.6
40 Samples - 0.005998 -19.996901 239− 2.5

PSO Trial Optimal J = eGEO τs.m. [tu] k (±) CPU Time (hrs.)
30 Particles, 10

Iterations +
0.001741 -19.938450 141+ 23.0

30 Particles, 10
Iterations -

0.001960 -19.030223 763− 23.0

16 Particles,
10 Iterations +

0.000930 -18.099478 610+ 9.5

16 Particles, 10
Iterations -

0.001960 -19.033287 763− 9.3

8 Particles, 10
Iterations +

0.003136 -21.995468 618+ 4.8

8 Particles, 10
Iterations -

0.002907 -26.348258 607− 4.7

8 Particles, 5
Iterations +

0.000930 -18.095750 610+ 2.4

8 Particles, 5
Iterations -

0.004073 -35.545405 503− 2.6

To further illustrate this point, refer to Table Table 7.2. The second and third

column of this table identifies the number of patch points with eGEO ≤ 0.01 for

the PSO and Monte Carlo method, respectively. Note that for a given number of

function evaluations and perturbation (i.e. +/−), the PSO method significantly

outperforms the Monte Carlo method in the number of useful patch points that
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it has identified. The fourth column indicates the ratio of the values of column

two to column three; or the ratio of useful patch points identified by the PSO

vs. that of the Monte Carlo method. Finally, the fifth column identifies the

percentage of trajectories within W s(±) that obtained a better optimum value

using the PSO method vs. the Monte Carlo method. The sixth column is

simply the complement of the fifth. Note that the PSO method significantly

outperformed the Monte Carlo method in terms of the number of suitable patch

points it was able to identify according to both measures.

Table 7.2: Comparison of PSO vs. Monte Carlo (MC) methods. Both the neg-
ative perturbation (-) and positive perturbation (+) are investigated. The
PSO and MC columns indicates the number of solutions found with an ec-
centricity less than 0.01 using the Particle Swarm Optimization and Monte
Carlo methods, respectively.
Function

Evaluations
PSO MC PSO/MC % Dominated by PSO % Dominated by MC

300+ 948 17 55.8 94.4 5.6
300- 740 14 52.8 96.9 3.1
160+ 553 16 34.5 90.7 9.3
160- 280 9 31.1 90.3 9.7
80+ 162 4 10.5 80.1 19.9
80- 104 4 26.0 82.8 17.2
40+ 16 3 5.3 71.8 28.2
40- 7 1 7 76.5 23.5

Figure 7.1 illustrates the effectiveness of the PSO method very clearly. The

figure plots the percentage of patch points in W s with eGEO ≤ 0.01 (as iden-

tified by the PSO and Monte Carlo methods) given a set amount of function

evaluations. The figure shows that the percentage of suitable patch points iden-

tified by the Monte Carlo method was fairly uniform with regard to the number

of function evaluations per kfixed. The percentage of suitable patch points iden-

tified by the Monte Carlo method is on the order of 0.001% which is fairly low
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and is to be expected from a random sampling of the search space. In contrast,

the percentage of suitable patch points identified by the PSO method varies

between 0.02% and 0.44% and generally increases with more function evalu-

ations. This provides convincing evidence that the PSO method quickly and

efficiently identifies suitable patch points far better than random chance would

allow. Additionally, it would seem that all data originating from W s+ contains

more suitable patch points than that from W s− although no clear explanation

for this phenomena currently exists.

Figure 7.1: PSO vs. Monte Carlo. Percentage of function evaluations that
yield an eccentricity less than 0.01. PSO (diamond and squares) clearly
outperformed the Monte Carlo (triangles and X’s) method. Logarithmic
curve fit (PSO) and linear curve fit (MC) are drawn for reference.

Overall, the optimal trajectory found has an eccentricity of eGEO = 0.0093
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and is located at time τs.m. = −18.10189 [tu] on trajectory number k = 610+ of

W s+ and was identified by both the PSO and Monte Carlo methods. Figure 7.2

displays the cost of each patch point visited by the PSO algorithm on trajectory

610+. Note that there are three local minima and two local maxima. The

global minimum of k = 610+ occurs at time −18.10189 [tu] and is a rather

sharp minimum, with the fitness function increasing rapidly from both the

left and right sides. Indeed, the approach towards this minimum is so abrupt

that traditional, gradient-based solvers may never reach it; instead becoming

trapped within the other two local minima. This is not the case, however, with

the evolutionary PSO technique. Note that the blue points in Figure 7.2 are

the initial guess solutions of the PSO algorithm, while the red points are the

solutions of the intermediate iterations, and the green points are the solutions of

the final iteration. While the initial points are randomly distributed throughout

the search space, the PSO algorithm quickly converges to the global minimum

of trajectory k = 610+. The majority of the function evaluations (i.e. patch

points) are located near the global minimum, which is a much more efficient

use of computational resources as opposed to a random distribution with the

Monte Carlo method.
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Figure 7.2: Fitness vs. Manifold Time: Fitness (eccentricity) of different lo-
cations along trajectory k = 610+ of the positively perturbed stable manifold
of the nominal halo orbit. A blue point indicates the location and cost of an
initial particle, red points indicate that of a particle during the optimization
process, and green points indicate that of a particle at the end of the PSO
algorithm.

Figure 7.3 shows two different views of the optimal low-thrust trajectory (red)

and its associated trajectory k = 610+ ∈ W s+ shown in green (the figure

includes the entire green trajectory and not just the portion traversed by the

spacecraft). The low-thrust spiral begins at the radius of a circular GEO-

energy orbit where a blue trajectory indicates the GEO-energy orbit that the

spacecraft has originated from. The spacecraft began with an initial mass of

m0 = 1064.8 [kg] and has a final mass of mf = 1000.0 [kg] with a mass fraction

of mf

m0
= 0.939 at the optimal patch point. The low-thrust spiral was integrated

using a maximum thrust of 500 [mN] and an Isp of 3000 seconds. The controlled

flight took 10.14 [tu] while the total time of flight took 28.24 [tu] (or 122 days).
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7 Application of One-Dimensional PSO

Figure 7.3: Optimal Low-Thrust Trajectory with eGEO = 0.0093. Shown with
parent trajectory k = 610+ as well as the nominal halo orbit. Three separate
views of this trajectory are given in order to show perspective.
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7 Application of One-Dimensional PSO

7.1.3 Optimization of an Arbitrary kfixed

Table 7.3 illustrates the optimization of nine independent trajectories of W s+,

namely kfixed = 228+ through 233+. Note that many trajectories have relatively

high values of eGEO as well as high values of the optimal eGEO for that trajectory.

Table 7.3: Optimal patch points found for nine trajectories (228+-233+) using
PSO.

kfixed Optimal τs.m. [tu] Optimal J = eGEO

228+ -23.799467 0.073514
229+ -33.269355 0.179901
230+ -33.367848 0.250249
231+ -33.545388 0.299980
232+ -30.501083 0.318315
233+ -23.892618 0.007784

Figure 7.4 represents the fitness/eccentricity generated from each patch point

visited by the PSO algorithm for kfixed = 228+ − 233+. The figure is broken

into six plots; one for each trajectory. A blue point indicates the location

and cost of an initial particle, red points indicate the location and cost of a

particle during the optimization process, and green points represent the final

location and cost of a particle at the end of the PSO algorithm. Note that the

structure of the cost functions changes significantly between successive values

of kfixed. Some functions have large fluctuations with low minima and high

maxima while others, such as 232+ have far less variability. All trajectories

display a semi-cyclic nature with periodic extrema that occur in a semi-periodic

manner. While the magnitude of each extrema can vary significantly, some can

have very similar magnitudes such as the local minima found in trajectory

233+. Also note that this simple fitness function yielded a highly non-convex

(nor concave) cost function that makes it difficult, if not impossible, for more
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traditional convex optimization methods to be used.
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Figure 7.4: Cost Map of Trajectory 228-233; 228-Top; 233-Bottom. A blue
point indicates the location and cost of an initial particle, red points indicate
that of a particle during the optimization process, and green points indicate
that of a particle at the end of the PSO algorithm. Note how the result of
the fitness function varies dramatically between adjacent trajectories (a) - (f).
This demonstrates the discontinuous nature of the cost function if viewed as
a function of trajectory number.
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7 Application of One-Dimensional PSO

7.2 Study B: Eccentricity and Fuel Optimizing

Fitness Function

7.2.1 Fitness Function

The fitness function in Study B becomes slightly more complex with the addi-

tion of the fuel-optimization constraint c2 6= 0. Therefore the fitness function

becomes

J (Xs.m.) = c1eGEO (Xs.m.) + c2∆m (Xs.m.) (7.2.1)

with the values c1 = 1 and c2 = 10−3 in accordance with Equation 6.4.3. This

choice of weighting constants ensures convergence on trajectories with very low

eccentricity values for their initial orbits, while simultaneously minimizing fuel

consumption.

7.2.2 Data

Numerous trials were conducted using the cost function found in Equation

7.2.1 with different amounts of particles, iterations, and function evaluations

per trajectory kfixed. In total, four trials were conducted and directly compared

to the stochastic Monte Carlo method. The results are summarized in Table 7.4

and Table 7.5.
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Table 7.4: Top: Results from eight Monte Carlo trials. Both the negative
perturbation (-) and positive perturbation (+) are investigated. Bottom:
Results from eight PSO trials. Both perturbations are also investigated. The
optimal case is shown in bold. A 3GHz Core 2 Duo processor was used for
the computations.

Monte Carlo Trial Opt. eGEO Opt.
4m [kg]

Opt. J τs.m. [tu] k(±) CPU
Time
[hrs.]

300 Samples + 0.000930 64.771 0.065701 -18.0903 610+ 19.2
300 Samples - 0.002931 64.759 0.067680 -32.5446 610− 18.8
160 Samples + 0.001741 64.852 0.066594 -19.9362 141+ 9.2
160 Samples - 0.001960 64.851 0.066811 -19.0354 763− 9.9

80 Samples + 0.000930 64.771 0.065701 -18.1020 610+ 5.0
80 Samples - 0.002936 64.749 0.067684 -20.0128 239− 6.4
40 Samples + 0.010044 64.794 0.074838 -20.5978 550+ 2.6
40 Samples - 0.009919 64.757 0.074676 -23.0817 760− 3.2

PSO Trial Opt. eGEO Opt.
4m [kg]

Opt. J τs.m. [tu] k(±) CPU
Time
[hrs.]

30 Particles,
10 Iterations +

0.000930 64.771 0.065701 -18.0997 610+ 23.3

30 Particles, 10
Iterations -

0.002931 64.749 0.067680 -32.5417 610− 22.3

16 Particles,
10 Iterations +

0.000930 64.771 0.065701 -18.0995 610+ 9.5

16 Particles, 10
Iterations -

0.001960 64.851 0.066811 -19.0363 763− 11.0

8 Particles, 10
Iterations +

0.000930 64.771 0.065701 -18.0951 610+ 4.6

8 Particles, 10
Iterations -

0.002931 64.749 0.067680 -32.5474 610− 4.6

8 Particles, 5
Iterations +

0.000930 64.771 0.065701 -18.0961 610+ 2.4

8 Particles, 5
Iterations -

0.004526 64.920 0.069446 -30.6836 148− 2.3
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Table 7.5: Comparison of PSO vs. Monte Carlo (MC) methods. Both the
negative perturbation (-) and positive perturbation (+) are investigated. The
PSO and MC column indicates the number of solutions found with a fitness
function less than J = 0.1 using the Particle Swarm Optimization and Monte
Carlo methods, respectively.
Function

Evaluations
PSO MC PSO/MC % Dominated by PSO % Dominated by MC

300+ 5237 244 21.46 93.1 6.9
300- 3776 168 22.5 96.5 3.5
160+ 2584 120 21.53 76.2 23.8
160- 1496 86 17.4 89.9 10.1
80+ 1159 64 18.1 81.7 18.3
80- 860 59 14.5 74.3 25.7
40+ 189 28 6.7 76.1 23.9
40- 92 25 3.7 77.8 22.2

Table 7.4 compares the PSO method with the Monte Carlo method via func-

tion evaluations and is organized in much the same way as Table 7.1 of Study

A. The only new addition is the third column corresponding to the optimal

amount of propellant used during the low-thrust maneuver. Based on the re-

sults of Table 7.4 it can be clearly seen that the PSO method matched or out-

performed the Monte Carlo method in every case. Note that the PSO method

clearly dominates the Monte Carlo method for a low number of function eval-

uations; such as 40 Monte Carlo samples vs. eight particles and five iterations

via the PSO method. Table 7.5 further demonstrates the superiority of the

PSO method. The table records the number of patch points with J ≤ 0.1

which are considered to be suitable candidates for further study. Note that the

PSO method significantly outperformed the Monte Carlo method just as was

observed in Study A.

The globally optimal patch point found in this study occurred on trajectory

k = 610+with a total propellant consumption of 4m = 64.771 kg, an eccentric-
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ity of eGEO = 0.000930, and a fitness value of J = 0.065701. Coincidentally,

this also happens to be the globally optimal patch point found in Study A and

is graphed in Figure 7.3. Figure 7.5 plots the propellant consumption verses

eccentricity of the patch points used in Study B. Note that the maximum pro-

pellant used by any point is around 74 kg and is roughly 15% more propellant

than the globally optimal value found in Study B. The figure also suggests that

the globally minimal propellant usage does not correspond to an eccentricity

of zero but closer to eGEO = 0.25 which may lower the propellant used to only

63.7 kg. Finally, at nearly zero eccentricity the range of feasible propellant con-

sumption is very narrow, differing by less than a kilogram. This suggests that

optimization with respect to propellant may not be the most fluid parameter,

given a zero eccentricity restriction, and optimization with respect to Time of

Flight (TOF) should be given more consideration.
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Figure 7.5: Propellant consumption vs. eccentricity for patch points gener-
ated in Study B.

7.3 Study C: Eccentricity, Propellant, and Time of

Flight Optimizing Fitness Function

7.3.1 Fitness Function

The fitness function in Study C becomes slightly more complex with the addi-

tion of the Time-of-Flight-optimization constraint c3 6= 0. Therefore the fitness

function becomes

J (Xs.m.) = c1eGEO (Xs.m.) + c2∆m (Xs.m.) + c3∆T (Xs.m.) (7.3.1)
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with the values c1 = 1, c2 = 10−3, and c3 = 10−4 in accordance with Equa-

tions 6.4.3 and 6.4.2. This choice of weighting constants ensures convergence

on trajectories with very low eccentricity values for their initial orbits while

simultaneously minimizing fuel consumption and TOF.

7.3.2 Data

Numerous trials were conducted using the fitness function found in Equation

7.3.1 with different amounts of particles, iterations, and function evaluations

per trajectory kfixed. In total, four trials were conducted and directly compared

to the stochastic Monte Carlo method. The results are summarized in Table 7.6

and Table 7.7.
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Table 7.6: Top: Results from eight Monte Carlo trials. Both the negative
perturbation (-) and positive perturbation (+) are investigated. Bottom:
Results from eight PSO trials. Both perturbations are also investigated. The
optimal case is shown in bold and has been independently identified twice
by two separate trials with differing amounts of particles. This demonstrates
the robustness of the PSO method.

Monte Carlo Trial Opt. eGEO Opt.

4m [Kg]

Opt.

TOF [tu]

Opt. J τs.m. [tu] k(±) CPU

Time

[hrs.]

300 Samples + 0.001926 64.666 39.40 0.070533 -29.2770 743+ 16.8

300 Samples - 0.001960 64.851 29.18 0.069729 -19.0247 763− 18.8

160 Samples + 0.003221 64.773 54.42 0.073436 -44.2802 653+ 10.4

160 Samples - 0.002936 64.749 30.14 0.070699 -20.0033 239− 9.9

80 Samples + 0.006493 64.731 30.31 0.074255 -20.1688 428+ 5.5

80 Samples - 0.005365 65.026 51.42 0.075533 -41.2405 452− 6.3

40 Samples + 0.005513 64.750 40.72 0.074335 -30.5743 237+ 2.6

40 Samples - 0.004217 64.901 47.32 0.073850 -37.1541 640− 3.2

PSO Trial Opt. eGEO

Opt.

4m [Kg]
Opt. TOF

[tu]

Opt. J τs.m. [tu] k(±)

CPU

Time

[hrs.]

30 Particles, 10

Iterations +
0.000930 64.771 28.23 0.068525 -18.0903 610+ 15.4

30 Particles, 10

Iterations -
0.001960 64.851 29.18 0.069729 -19.0240 763− 16.8

16 Particles, 10

Iterations +
0.000930 64.771 28.23 0.068525 -18.0909 610+ 8.5

16 Particles, 10

Iterations -
0.001960 64.851 29.18 0.069729 -19.0262 763− 11.1

8 Particles, 10

Iterations +
0.001741 64.852 30.09 0.069603 -19.9342 141+ 6.1

8 Particles, 10

Iterations -
0.002936 64.749 30.14 0.070699 -20.0032 239− 5.6

8 Particles, 5

Iterations +
0.001741 64.852 30.10 0.069604 -19.9450 141+ 2.4

8 Particles, 5

Iterations -
0.004526 64.920 40.85 0.073531 -30.6827 148− 3.0
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Table 7.7: Comparison of PSO vs. Monte Carlo (MC) methods. Both the
negative perturbation (-) and positive perturbation (+) are investigated. The
PSO and MC column indicates the number of solutions found with a fitness
function less than J = 0.1 using the Particle Swarm Optimization and Monte
Carlo methods, respectively.
Function Evaluations PSO MC PSO/MC % Dominated by PSO % Dominated by MC

300+ 4750 211 22.51 92.4 7.6

300- 3685 146 25.24 95.1 4.9

160+ 2325 92 25.27 87.5 12.5

160- 1383 72 19.21 89.4 10.6

80+ 879 59 14.89 78.8 21.2

80- 626 40 15.65 81.6 18.4

40+ 184 22 8.36 70.2 29.8

40- 89 13 6.84 74.9 25.1

Table 7.6 compares the PSO method with the Monte Carlo method via func-

tion evaluations and is organized in much the same way as Table 7.1 of Studies

A and B. The only new addition is a column corresponding to the optimal

spacecraft Time of Flight (TOF). Based on the results of Table 7.6 it can be

clearly seen that the PSO method outperformed the Monte Carlo method in

nearly every case. Table 7.7 further demonstrates the superiority of the PSO

method. The table records the number of patch points with J ≤ 0.1 which

are considered to be suitable candidates for further study. Note that the PSO

method significantly outperformed the Monte Carlo method just as was ob-

served in Studies A and B.

The globally optimal patch point found in this study occurred on trajectory

k = 610+with a total propellant consumption of 4m = 64.771 kg, an eccentric-

ity of eGEO = 0.000930, TOF of 28.23 [tu], and a fitness value of J = 0.065701.

Coincidentally, this also happens to be the globally optimal patch point found

in Studies A and B and is graphed in Figure 7.3. Figure 7.6 plots the TOF ver-

sus eccentricity of the patch points used in Study C. Note the cyclical nature
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of TOF at zero eccentricity. This suggests that the TOF is in great need of

optimization and has, indeed, been accomplished in Study C.

Figure 7.6: Plot of Time of Flight (TOF) vs. eccentricity for patch points
generated in Study C.

This concludes the one-dimensional study of Particle Swarm Optimization.

Conclusions of this research can be found in Section 10.1. The next chapter

focuses on the generalization of the technique found in this chapter by allowing

each particle to freely move in two dimensions instead of only one. This is

accomplished by allowing the parameter, k, to be a variable (or a degree of

freedom) within the PSO method. In this case, the searchspace becomes the

entire kτ -plane instead of τ only. This has the effect of increasing the degrees

of freedom of the searchspace and results in a significant decrease in CPU time.
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PSO

A low-thrust trajectory from a geosynchronous Earth orbit (or close to it) to

an Earth-Moon, L1, northern halo orbit is optimized via a two-dimensional

Particle Swarm Optimization (PSO) algorithm in this chapter. Note that some

content for this chapter was taken from a publication by Abraham et al. [75]

and reproduced with the author’s and publisher’s consent. In contrast with

Chapter 7, this study allows both parameter k and parameter, τ , to simultane-

ously vary as the PSO algorithm runs. The shape of the fitness function is first

discussed followed by the sizing considerations of the swarm and the number

of iterations of the PSO algorithm to perform. A convergence parameter is

then defined and used as an optional exiting flag to prevent unproductive CPU

resource utilization. Finally, varying parameters of the “local” version of the

PSO algorithm is tested and the influence on the optimal results is discussed.

The search-space and destination Lagrange point orbit are based on what is

developed in Chapter 5 while the cost function and PSO algorithm are taken

from Chapter 6. An individual point in the search-space (manifold) is evaluated

using the control law defined by Equation 6.2.1 and by propagating, backwards

in time, from that point using Equation 2.2.31. These equations of motion are
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propagated until the Jacobi energy (Equation 2.3.5) of the spacecraft matches

that of a spacecraft in Geosynchronous Earth Orbit (GEO). Once the integra-

tion terminates, the fitness function is evaluated based on the final conditions

of the propagated trajectory (in geocentric orbit). A “cost” is assigned, using

this method, to the manifold patch point under evaluation. This process is re-

peated for each location visited by an individual particle in the swarm. When

the maximum number of iterations are reached the PSO method terminates

and the optimized result is obtained.

8.1 Shape of the Fitness Function

The primary motivation for the application of evolutionary algorithms, in this

study, is the lack of convexity of the fitness function. Figure 8.1 was generated

via 150, 000 random samples of the search space (with a 24 hour CPU run-

time). The image on the top shows the raw data while the image on the

bottom illustrates a curve fit using two dimensional, cubic interpolation from

MATLAB’s “Curve Fit” toolbox. While this fit is too crude to use in the

optimization algorithm (and takes far too long to generate) it is helpful in

visualizing the complexity of the fitness function. This function has a very

large number of local maxima and minima with a wide variation in their values.

To make matters worse, many of the extrema’s values differ significantly with

other points in their immediate vicinity. This yields nearly infinite gradients

in the vicinity of these points and could lead astray even the most robust of

gradient based optimization routines unless a near-perfect initial guess is given.

Finally, a few of the best local minima have nearly identical values, making the

consistent identification of the global minimum extremely difficult.
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Figure 8.1: Top: The fitness function is plotted in kτ -space using roughly
150, 000 samples generated over a 24-hour Monte Carlo trial. Bottom: A
curve fit of this data was generated via MATLAB’s “Curve Fit” toolbox to
illustrate the non-convexity and irregular behavior of the fitness function.
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8.2 Sizing N p

The PSO algorithm was run multiple times with rlocal =
[

1
20 ,

1
16N

]T
and

jmax = 15. Each data point in Table 8.1 was averaged over 10 identical trials

with only the difference being the initial χ and ω values that are chosen ran-

domly. Referring to Figure 8.2, one will note that the average value of the cost

function, Jbest decreases as a function of Np, as expected. Initially, the decrease

is substantial but the amount of increase diminishes as each additional particle

is added to the system – especially for values of Np > 400. Based on this data, it

seems reasonable to conclude that the ideal range of Np lies somewhere between

200 and 400 particles. A PSO algorithm with less particles experiences a huge

amount of variability and offers a relatively poor average Jbest (i.e. the Np = 50

data point). Conversely, a PSO algorithm utilizing more than 400 particles will

consume copious amounts of CPU time without a significant decrease in the

average Jbest identified.

Table 8.1: Cost, convergence, and CPU time for jmax = 15 iterations and
various number of particles (Np). Each entry consists of the average of 10
identical trials with error bounds of ±1σ standard deviation.

Np
Avg. Best
Cost, Jbest

Avg. Final
Convergence,

γfinal

Avg. CPU
Time [min]

50 0.1357± 8.8% 0.71± 14% 9.0± 6%
100 0.1273± 2.8% 0.69± 7% 20.5± 4%
200 0.1260± 2.8% 0.60± 10% 42.8± 3%
400 0.1235± 2.4% 0.61± 11% 84.4± 3%
800 0.1221± 1.4% 0.61± 11% 160.0± 4%
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Figure 8.2: Values of Jbest as a function of Np for a fixed value of jmax = 15
iterations. Data taken from Table 8.1.

8.3 Sizing jmax via the Convergence Metric, γ

In the previous section, a method for determining the appropriate value of Np

was presented. This section develops a new metric that is used to determine an

appropriate number of iterations to use when terminating the PSO algorithm.

In general, there are two ways to accomplish this task. The first method is

to simply select a value for jmax before running the PSO algorithm. An ap-

propriate value of jmax is highly problem dependent and relies greatly on the

experience and intuition of the researcher [34, 36]. A new metric, γ, is proposed,

in this study, to replace jmax as the trigger that terminates the PSO algorithm.

The top plot in Figure 8.3 displays convergence (γ) as a function of PSO iter-

ation (j) for a system of 50 particles. Each point is averaged over 10 (identical)

data trials and is plotted with ±1σ error bars. Note that the convergence seems
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to initially increase exponentially with low values of j, but then logarithmically

approaches an asymptote for large values of j. This seems to indicate that, for

large numbers of PSO iterations, an increasingly diminishing rate of marginal

convergence is achieved. This relationship has been successfully fitted to the

following curve using MATLAB’s curve fitting toolbox:

c exp
(
−b

(j + a)3

)
(8.3.1)

with the fitted values of the constants being a = 7, b = 2421, and c = 0.8671

with a “goodness of fit” measured as R2 = 0.9957. In general, γmax ≤ c ≤ 1

since the value of Equation 8.3.1 is c when j = ∞. Of course, theory dictates

that γmax → 1 as jmax →∞. In practice, however, this is not always the case,

since a small number of particles can become trapped in cycles that oscillate

them between the neighborhood of one local minima and another. Also, on

occasion, a particle will oscillate for a very long time between a personal best

and global best value that are in opposite directions.
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Figure 8.3: Top: Convergence (γ) as a function of iteration number (j). Bot-
tom: Cost (J) as a function of iteration number (j).

The bottom plot in Figure 8.3 displays the cost (J) as a function of PSO

iteration (j) for the same system of 50 particles and 10 trials. The plot describes

the evolution of the best value of the cost function. Note the exponential decay
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8 Application of Two-Dimensional PSO

displayed in the cost function and fitted to the following curve:

ae−bj + c (8.3.2)

where the values of the fitted constants are a = 0.174, b = 0.2344, and c =

0.1314 with R2 = 0.9879. As j →∞ the limit of Equation 8.3.2

lim
j→∞

(
ae−bj + c

)
= c (8.3.3)

is equal to 0.1314 which is a greater value than Jbest = 0.1225. Jbest is indicated

by the dashed line in the bottom plot of Figure 8.3, where Jbest represents the

lowest value of the cost function encountered by any particle from any of the

10 trials. The difference between Jbest and c is reflected in the variability of the

last few data points in the plot where J = 0.1327± 0.0092 (±1σ) or a range of

J (j = 30)range = [0.1225↔ 0.1520].

Based on the data found in Figure 8.3 it seems reasonable to conclude that a

value of γ ≥ 0.75 is a suitable choice of terminal convergence to end the PSO

algorithm. This roughly correlates to j = [15↔ 20] iterations and places the

value of the cost function very near its asymptotic limit without wasting CPU

time on additional and unproductive iterations. It, therefore, seems reasonable

to use a value of γstop = 0.8 as a conservative termination metric for the PSO

algorithm. Inserting this value into Equation 8.3.1 and solving for j yields

jstop = 24 iterations on average.
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8 Application of Two-Dimensional PSO

8.4 Effect of the Product Np jmax on the Optimal

Solution

Since the most significant issue with PSO is the CPU run-time, and CPU run-

time is proportional to the product Np jmax, it is reasonable to investigate the

trade between Np and jmax while holding the number of integrated trajectories

(and CPU run-time) fixed. This data is presented in Figure 8.4 which plots

Jbest vs. the log of Np (semi-log plot was chosen for illustrative purposes) given

a fixed value of the product Np jmax = 3000 evaluations (trajectories integrated

according to Equation 2.2.29). Values of Np included [50, 100, 200, 400, 800].

Note that the lowest value of Jbest was captured when Np = 200 and jmax = 15.

This roughly agrees with the recommended values of Np and jmax (or γstop)

developed in the two previous sections of this study.

Figure 8.4: Plot of Jbest as a function of ln (jmax) for a fixed value of 3, 000
integrations per point. Each point was averaged over 10 identical trials with
±1σ error bounds drawn.

136



8 Application of Two-Dimensional PSO

8.5 Effect of rlocal on the Optimal Solution

The effect of the size of rlocal on the convergence and cost is best captured in

Figure 8.5 and Figure 8.6. These plots are produced by multiplying rlocal by a

scaling factor. The scaling factors used in this study are c =
[

1
4 ,

1
2 , 1, 2, 4, 8

]
where rresized = crlocal. Each data point was averaged over 10 identical trials

and plotted with ±1σ error bars using 50 particles and 15 iterations. Note

that the convergence is not significantly affected by a change in the magnitude

of rlocal, as is evidenced by the fact that any data point lies within the error

bars of any of the remaining points. Likewise, the cost typically is not affected

by the magnitude of rlocal except for extremely small values of c, as evidenced

by the plot in Figure 8.5; in which case the size of a particle’s local range of

communication is so small it is effectively “blind and deaf.”

Figure 8.5: Cost as a function of radius.
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8 Application of Two-Dimensional PSO

Figure 8.6: Convergence as a function of radius.

Figure 8.7 displays a map of local minima identified by the PSO algorithm as

plotted in kτ -space. In this particular example c = 1 and seven local minima

are identified. A green ellipse of size rlocal =
[

1
20 ,

1
16N

]T
is drawn around

each local minima to illustrate the communication limit between a particle at

the local minima and any nearby particle it can communicate with. This plot

illustrates the ability of the local PSO algorithm to simultaneously interrogate

multiple local minima instead of being limited to only one minimum using the

traditional PSO algorithm.
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8 Application of Two-Dimensional PSO

Figure 8.7: A map of the final positions of 50 particles after 15 iterations.
The green ellipses are drawn around local swarms of two or more particles
indicating a local minimum. The size of the ellipse reflects the dimensions of
rlocal =

[
1
20 ,

1
16N

]T
.

8.6 Optimal Low-Thrust Trajectory

Mindful of the results of this study’s preceding sections, a PSO algorithm was

run with the following conditions: Np = 50 particles, γstop = 0.8, rlocal =[
1
20 ,

1
16N

]T
, and jmax = 50 iterations. This setup was repeated over 10 trials

to obtain an average cost and standard deviation of Jbest−median = 0.1217 ±

0.7% with a maximum value of Jbest−max = 0.1231 and a minimum value of

Jbest−min = 0.1201. Table 8.2 shows a summary of this data with the values

of the three terms of the fitness function displayed in addition to the value

jdiscovered and jγ=0.8. jdiscovered represents the iteration number when Jbest was

discovered whereas jγ=0.8 represents the iteration number when γ = γstop = 0.8.
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8 Application of Two-Dimensional PSO

Note that, on occasion, γ < γstop when j = jmax. In this case, the PSO

algorithm terminated before reaching γstop, as desired.

The two-dimensional PSO algorithm presented in this study was relatively

fast in comparison with other published results. Abraham et al. [58] published

results that took approximately 8 − 16 hours to achieve similar values of the

fitness function using a 1-D version of the PSO algorithm on a 3GHz Intel Core

2 processor. In this 2-D study, the average CPU run-time was 34± 9 minutes

(±1σ) with a maximum value of 46 minutes and a minimum value of 22 minutes

using the same processor as with the one-dimensional study. The majority of

this variability is due to the fact that the PSO algorithm terminates in as little

as j = 26 iterations and as many as j = jmax = 50 iterations. This 2-D PSO

algorithm produces an order of magnitude decrease in the CPU run-time when

compared with the 1-D result and represents a sizable boost in performance,

usability, and practicality.

Table 8.2: Summary of the maximum, minimum, and median values of the
fitness function.

Jbest eGEO 4m [kg] TOF [tu] jdis. jγ=0.8 k τ01
JMax 0.1231 0.0017 64.85 28.27 15 37 141 0.3261
JMed 0.1217 0.0017 64.85 27.57 9 26 141 0.3257
JMin 0.1201 0.0019 64.66 26.73 4 N/A 743 0.0556

The evolution of J and γ as a function of j also agrees well with previous

data. Referring to Figure 8.8 one will find a plot of J vs. j for the median case

outlined in the center row of Table 8.2. Note that this data does not refute the

veracity of Equation 8.3.2 although the variation and limited scope of the data

limits a direct comparison. Conversely, γ vs. j in Figure 8.9 illustrates data

with only minor variation that agrees well with the form predicted by Equation
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8 Application of Two-Dimensional PSO

8.3.1.

Figure 8.8: Cost vs. iteration number for Jbest−median case.

Figure 8.9: Convergence vs. iteration number for Jbest−median case.
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The optimal trajectory corresponding to Jbest−median has been plotted in

Figure 8.10. This trajectory is representative of a typical optimized trajectory

discovered by the 2-D PSO algorithm. Note the highly three dimensional na-

ture of this transfer as the spacecraft becomes heavily influence by three-body

dynamics. Figure 8.10 is plotted in the synodic, three-body reference system

using the traditional non-dimensional units. The spacecraft begins its journey

with the geocentric, GEO-energy orbit drawn in blue. The spacecraft then ac-

tivates its low-thrust engine and tangentially thrusts itself into a spiral pattern

of increasing altitude shown in red. The low-thrust spiral is greatly deformed as

it enters a region of space that is clearly dominated by three-body effects. The

spacecraft terminates this low-thrust arc at the optimized patch point, X∗s.m.,

which is also a member of the stable manifold (and search space). The space-

craft ballistically coasts along the green trajectory and flows along the stable

manifold towards the nominal halo orbit shown in blue. The spacecraft begins

its journey with a wet mass of 1, 064.85 [kg] and arrives at the nominal halo

orbit 24 months later expending 64.85 [kg] of propellant and delivering 94% of

its original mass.
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8 Application of Two-Dimensional PSO

Figure 8.10: Optimal trajectory found using PSO. The low-thrust trajectory
is displayed in red, the ballistic coast along the manifold is shown in green,
and the geocentric and halo orbits are shown in blue.

This concludes the study found in Chapter 8. Conclusions drawn from this

chapter are summarized in Section 10.2. In the next chapter, the PSO method

is re-formulated to solve a two-burn, impulsive transfer from a Low Earth Orbit

(LEO) to the same LPO discussed in this chapter.
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9 Two-Maneuver, Impulsive

Transfers via a Hybrid

PSO/Shooting Method

The application of a basic, two-dimensional Particle Swarm Optimization (PSO)

algorithm attempting to optimize a two-burn, impulsive maneuver trajectory

from a Low Earth orbit (LEO) to an Earth-Moon, L1, northern halo orbit is

described in this chapter. Note that some content for this chapter was taken

from a publication by Abraham et al. [76] and reproduced with the author’s

and publisher’s consent. In contrast with Chapter 7 and Chapter 8, this chapter

is focused on high thrust, impulsive transfers from a geocentric Low Earth Or-

bit (LEO) to the same Lagrange point orbit constructed in Chapter 5. The cost

function and PSO algorithm are loosely based on that found in Chapter 6, but

re-designed via Equation 9.2.1 to better reflect the goals of this chapter. The

search-space and destination Lagrange point orbit are still based on what is

found in Chapter 5. An individual point in the search-space (manifold) is eval-

uated by propagating, backwards in time, from that point using ballistic Equa-

tion 2.2.29. This integration occurs after a velocity discontinuity, representing

an impulsive maneuver, is added. A final velocity discontinuity, representing
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9 Two-Maneuver, Impulsive Transfers via a Hybrid PSO/Shooting Method

the LEO departure burn, is added to the end of the propagation to circularize

the orbit in a 400 [km] altitude LEO. The fitness function is evaluated based

on the final conditions of the propagated trajectory (in geocentric orbit). A

“cost” is then assigned to the manifold patch point under consideration. This

technique is repeated for each location visited by an individual particle in the

swarm, with the swarm terminating its search when the maximum number of

iterations has been reached. The method described in this chapter represents a

hybrid between a heuristic method (PSO) and gradient based method (shoot-

ing).

9.1 Single Shooting a Two-Maneuver, Impulsive

Transfer

For a given point on the manifold, a variable time, single shooting algorithm

was used to compute the magnitude and direction of two burns: one to exit the

LEO and a second to enter the manifold (or LPO). The shooting was conducted

in the following manner. The free variable vector

Y =


vx

vy

vz

 (9.1.1)

is defined as the pre-burn velocity components of the insertion point into the

manifold/LPO. The magnitude of the velocity discontinuity between Y and the

velocity components of Xs.m. yield ∆VLPO, or the amount of delta-V required

to insert the spacecraft into the manifold/LPO. Note that the units of Y are
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9 Two-Maneuver, Impulsive Transfers via a Hybrid PSO/Shooting Method

[vu] but can easily be converted to [km/s]. The constraint vector is defined as

F =

 ‖r − rd‖
r · v

 (9.1.2)

where r is the magnitude of the distance between the spacecraft and the center

of the Earth and rd = rEarth + 400 [km] is the desired distance from the center

of the Earth (a 400 [km] altitude orbit) and v is the spacecraft’s post-burn

velocity relative to the center of the Earth. Here, rEarth = 6378 [km] represents

the radius of the Earth. All values of F are geocentric and expressed in [km]

and [km/s]. When ‖r − rd‖ = 0, the spacecraft is located at the desired altitude

corresponding to the target LEO. When r · v = 0, the spacecraft’s position

and velocity vectors are perpendicular to each other. This is the case during

apogee, perigee, or a circular orbit, if only considering the two-body dynamics

that dominate LEO. Since a circular parking LEO is desired, it is easy to

calculate the necessary ∆v required to match v. The two-body expression

for the speed of a circular orbit is given as vLEO =
√

GM
r
, where GM is the

gravitational parameter of the Earth, and r is the known distance from the

center of the Earth during the first burn. Since the spacecraft’s orbital energy

is maximized when the burn is performed perpendicular to the velocity vector,

a simple subtraction of ‖v‖ − vLEO = ∆VLEO gives the ∆v necessary to exit

the LEO and head towards the manifold insertion point. Other characteristics

of the LEO can be verified from the state XLEO = [r, vLEO]T , such as the

Keplerian orbital elements; especially eccentricity and inclination.

Given a point on the manifold and the value of Y , one can integrate the

spacecraft’s path backward in time, using Equation 2.2.29. This integration
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will terminate at the perigee of the trajectory and yield the values that define

F at the end of the trajectory. Of course the value of F is unlikely to be

equal to the null vector, even if a reasonable guess of Y is applied. An iterative

process, known as Newton’s method, is applied here to guide the single shooting

algorithm to the correct value of Y that result in F = 0. To use this method

the derivative matrix must be defined

DF =

 ∂
∂vx
‖r − rd‖ , ∂

∂vy
‖r − rd‖ , ∂

∂vz
‖r − rd‖

∂
∂vx

r · v, ∂
∂vy

r · v, ∂
∂vz

r · v

 . (9.1.3)

This matrix can then be used with Newton’s method to iteratively solve

Y new = Y −DF T
(
DF DF T

)−1
F (9.1.4)

and will terminate when ‖F ‖ ≤ ε where ε = 10−10 in this study (or any suffi-

ciently small number). Typically, ten iterations or less are needed to converge

on the appropriate solution; however, a maximum of 50 iterations are attempted

before the algorithm gives up and is unable to converge during single shooting.

In order for this shooting algorithm to converge, an appropriate initial guess

solution must be provided. A two phase approach to providing initial guess

solutions was used. The first guess is simply a velocity that is identical to

the velocity found on the manifold/LPO insertion point itself. This represents

no ∆v needed for the LPO insertion and is the best case scenario for any

insertion burn. From this guess, the shooting algorithm generally increases the

necessary ∆v and converges on a feasible solution that joins the LEO to the

LPO via a transfer arc. Unfortunately, however, an optimal transfer solution

is not guaranteed (where “optimal” is defined in terms of ∆v). Occasionally,
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for a given manifold state, the single shooting algorithm will converge to a

feasible solution with a slightly higher ∆v than necessary. To compensate for

this shortcoming, a recursive algorithm was written for improving the guess

solution. The algorithm begins with the output
(
Y (1)

)
of the first run of the

single shooting algorithm. This output,

Y (k+1) =
(

1− 1
4k

) (
Y (k) − vLPO

)
+ vLPO (9.1.5)

is used to compute the initial guess
(
Y (k+1)

)
that is used in the next iteration

of the same shooting algorithm defined above. Equation 9.1.5 serves to decrease

the initial guess of the magnitude of the LPO insertion ∆v(
∆v(k)

LPO =
∥∥∥Y (k) − vLPO

∥∥∥). Each successive iteration (with k ∈
[

1, 10
]
) will

decrease the scaling factor of the guess ∆v. Initially, when k = 1, the scaling

factor is 0.75 but that quickly increases to a factor of 0.975 when k = 10.

The shooting method and recursion method discussed above may not guar-

antee that the minimum ∆v transfer is found between a LEO and the mani-

fold/LPO insertion point, but it performs very well the majority of the time.

Indeed this single recursive single shooting method is easy to program and exe-

cutes quickly to optimize the transfer to a single manifold/LPO insertion point.

This technique, combined with PSO, proves to be a low-cost, reliable, and quick

method of optimizing impulsive transfers to LPOs.
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9.2 PSO Algorithm

9.2.1 Fitness Function

Once an insertion point has been evaluated using single shooting, the results

of that algorithm can be used to assign a “cost” to that point via an objective

function known as the fitness function. The fitness function used in this study

can be expressed as:

J (Xs.m.) = c1∆V (Xs.m.) + c2 ‖i (Xs.m.)− idesired‖ (9.2.1)

where i is the two-body orbital inclination of the LEO, ∆V = ∆VLEO + ∆VLPO

is the total ∆v required to transfer from LEO to the manifold/LPO insertion

point, and c1 and c2 are weighting constants chosen by the researcher. Note that

the eccentricity of the LEO was not included in the fitness function, as was done

in Abraham et al.[75, 58], because a zero eccentricity orbit was guaranteed by

default if the single shooting algorithm converged. In this study, typical values

of the weighting constants are c1 = 1 and c2 = 1 or c2 = 0 depending on the

importance of inclination to the orbit design. When inclination was used, the

value of idesired is 28o with respect to the Moon’s orbital plane. This roughly

represents the inclination of the International Space Station (ISS) with respect

to the Moon. Note that rdesired = rEarth + 400 [km] also mirrors the typical

value of the ISS. In this way, the orbit of the ISS can be used as a baseline

LEO orbit with only the longitude of the ascending node and the true anomaly

unspecified. If deemed important, these two orbital elements could also be

added to Equation 9.2.1.

149



9 Two-Maneuver, Impulsive Transfers via a Hybrid PSO/Shooting Method

9.2.1.1 Parametrization of the Search Space

The Particle Swarm Optimization (PSO) algorithm requires the a priori defini-

tion of a “search space” where it is permitted to search for an optimal solution.

In this study, the search space is defined as all states within the invariant sta-

ble manifold, Xs.m. (τ01, k) ∈ W s and within certain bounds. Each state is

uniquely defined by exactly two parameters: k and τ . The parameter k rep-

resents an individual trajectory member of the stable manifold (k ∈ W s) that

is generated via the method outlined in Chapter 6. The parameter τ01 is the

second parameter that defines Xs.m. and is defined relative to τ via a simple

mapping function. The time of flight, τ , represents the amount of time required

to get from an initial state to a state on the nominal Lagrange point orbit, as

defined in Chapter 6. Unfortunately, it is impossible to define the entire stable

manifold as a search space because it is infinite in nature and a search space (by

definition) must be finite. The bounds of τ , therefore, are carefully chosen such

that a wide swath of relevant manifold states are captured within the search

space, and irrelevant manifold states are excluded.

In this study, the bounds of τ are τL.B. ≤ τs.m. ≤ τU.B. with each bound being

defined in one of two ways: the “Fast Transfer” and “Slow Transfer.”

9.2.2 Fast Transfer

In the Fast Transfer the search space is bounded by,

• τL.B. being the time that trajectory k crosses the yz-plane located at

x = L1 and

• τU.B. being the time that trajectory k crosses first leaves the LPO (i.e.

τ = 0).
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9.2.3 Slow Transfer

In the Slow Transfer the search space is bounded by,

• τL.B. being the time that trajectory k crosses the yz-plane from the posi-

tive x direction and

• τU.B. being the time that trajectory k crosses the yz-plane located at

x = L1.

The first search space allows the PSO algorithm to focus on the highly localized

manifold that exists very near the LPO. While it is true that a spacecraft

inserted into this portion of the manifold may spend a considerable amount of

time in the manifold before reaching the destination LPO, this is not a problem.

The majority of mission goals (aside from rendezvous) can be achieved in an

LPO that is very near the target LPO but not necessarily on it. Since the

majority of this search space circles around the target LPO, a spacecraft placed

into this portion of the manifold can be considered to be in a Lissajous orbit (of

approximate size and shape as the target LPO) that flows into the target LPO

as time progresses forward. The exploration of this search space is particularly

attractive missions that require short time of flight transfers such as manned

missions to LPO’s.

The other search space allows the PSO algorithm to focus on the remainder

of the stable manifold. Note that any spacecraft inserted into this portion

of the manifold will have to spend an appreciable amount of time coasting

to the vicinity of the target LPO. The bound, τL.B. was chosen as a matter

of convenience and practicality. While it is true that the trajectories of W s

continue to flow for an infinite amount of time, one needs to cut off this flow
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after a finite amount of time due to the limitations of computing power [58, 75].

Since the run times of the PSO method can become quite large, a smaller search

space is needed to adequately converge on an optimal solution.

The values of τ are mapped to τ01 using the simple relationship that τL.B. = 1

and τU.B. = 0. Therefore, the values of τ for a given value of k are mapped

to a normalized range of 0 ≤ τ01 ≤ 1. This mapping ensures that values of

τ between τL.B. and τU.B. are treated equally, regardless of the value of k and

the time of flight between the nominal Lagrange point orbit and the yz-plane

located at x = L1. In a similar fashion, the values of k are mapped between

1 ≤ k ≤ N via a modulus function. In this study, k = kdesired mod N . This

means, for example, that if kdesired = N + x then k = x assuming 0 ≤ x ≤ N .

Using this technique, no value of kdesired is ever excluded from the search space

but is instead looped back onto itself in k-space. In summary, any value of

Xs.m. (τ01, k) can be uniquely parametrized, in kτ -space, in terms of τ01 and k

with the boundaries of these parameters being real numbers, 0 ≤ τ01 ≤ 1 and

positive integers, 1 ≤ k ≤ N .

9.3 Application of the Fast Transfer Case

The PSO method was used to optimize the “Fast Transfer” search space de-

scribed above. This was accomplished by setting c1 = 1 and c2 = 0 (in the

fitness function, Equation 6.4.1) for the case of optimization with respect to

any inclination and c1 = 1 and c2 = 1 for the case of a 28o desired LEO incli-

nation. In both cases, the optimal trajectories are shown in Figure 9.1. Notice

how the spacecraft immediately enters a Lissajous orbit that would be useful

for the majority of Earth-Moon L1 applications such as communications relay,
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Earth/Moon observation, and mission staging areas. As noted in Table 9.1, the

Lissajous orbit will deliver the spacecraft into the target LPO over a period of

60−90 days where it can rendezvous with another spacecraft that is on the ex-

act same orbit. Alternatively, to speed up a desired rendezvous, the spacecraft

could execute a small maneuver to decrease a rendezvous time using a modest

amount of ∆V .

Table 9.1: Summary of fast transfer to (a) any inclination and (b) a 28o incli-
nation.

J
∆VLEO
[km/s]

∆Vhalo
[km/s]

Total
∆V

[km/s]

TOF to
Inser-
tion
[days]

TOF in
Mani-
fold
[days]

TOF
Total
[days]

Fast
Transfer

3.44 3.07 0.37 3.44 4.98 90.00 94.98

Fast
Transfer

28o

3.58 3.07 0.44 3.51 4.89 60.94 65.83
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Figure 9.1: Fast transfer from a 400 km altitude LEO (red) to the target
LPO (red) via a cislunar coast (blue) following a cislunar injection burn and
a stable manifold coast (green) following a manifold injection burn. Top:
Optimized for any inclination. Bottom: Optimized for 28o inclination.
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9.4 Application of the Slow Transfer Case

The PSO method was also used to optimize the “Slow Transfer” search space

described above. As before, this was accomplished by setting c1 = 1 and

c2 = 0 for the case of optimization with respect to any inclination and c1 = 1

and c2 = 1 for the case of a 28o desired LEO inclination. In both cases, the

optimal trajectories are shown in Figure 9.2. Notice how much longer it takes

for the spacecraft to reach the vicinity of L1. Adding the values of the “TOF

to Insertion” and “TOF in pre-L1 Manifold” columns of Table 9.2 together it is

possible to calculate the time of flight required to reach the vicinity of L1 and

directly compare it to that of a fast transfer. Disregarding LEO inclination,

an optimized slow transfer requires a 22.93 day flight compared with a 4.98

day flight as seen in Table 9.1. This means that a fast transfer could move

a spacecraft to the vicinity of L1 with approximately 100 [m/s] less ∆v and

approximately 4 to 5 times quicker. Similar results exist for the 28o inclination

(ISS mission) example. In this case, the fast transfer requires 160 [m/s] less ∆v

and approximately 3 to 4 times quicker than it’s slow counterpart.

It is interesting to note that Alessi et al. [77] found that the optimal manifold

insertion point was manifold apogee; that is the point on the manifold that is

the maximum distance away from the Earth. In this study, all optimal manifold

insertion points discovered using the slow transfer search space were very near

apogee. For example, the optimal insertion point found by PSO for the “Slow

Transfer, Any Inclination” case was only 30, 000 km away from the manifold

apogee. This is only five Earth radii in size away from the apogee condition

(which is relatively small when the search space is nearly ±60 Earth radii in

diameter). Even better, was the optimal insertion point for the “Slow Transfer,
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28o Inclination” case at 3, 000 km from manifold apogee. This is less than half

an Earth radius and is about as close as one could hope for when matching

the results from Alessi et al. Strong agreement with previously published work

[77, 78] corroborates the efficacy of the PSO method as applied here.

Table 9.2: Summary of slow transfer.

J
∆VLEO
[km/s]

∆Vhalo
[km/s]

Total
∆V

[km/s]

TOF
to

Inser-
tion
[days]

TOF
in

pre-L1
Mani-
fold
[days]

TOF
in

post-
L1

Mani-
fold
[days]

TOF
Total
[days]

Slow
Transfer

3.55 3.04 0.51 3.55 3.89 19.04 131.80 154.73

Slow
Transfer

28o

3.69 3.05 0.63 3.68 3.76 11.51 121.87 137.14
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Figure 9.2: Slow transfer from a 400 km altitude LEO (red) to the target
LPO (red) via a cislunar coast (blue) following a cislunar injection burn and
a stable manifold coast (green) following a manifold injection burn. Top:
Optimized for any inclination. Bottom: Optimized for 28o inclination.

This concludes the study of the optimization of two-burn transfers from LEO

to an LPO using PSO. Conclusions are found in Section 10.3.
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10 Conclusions & Future Work

In this dissertation, a successful demonstration of a method to optimize low-

thrust (and impulsive) transfer trajectories from a geocentric orbit to an Earth-

Moon Lagrange point orbit was presented. This method involves the utilization

of the evolutionary algorithm known as Particle Swarm Optimization (PSO)

and can be used independently or in conjunction with gradient-based optimiza-

tion methods. The key principle when attempting to utilize a PSO algorithm

for spacecraft trajectory optimization is the ability to translate the problem into

one with a clearly defined search space that can be discretely or continuously

characterized by an objective function. This was accomplished by utilizing the

invariant stable manifold of the target LPO as a suitable search-space. Any

spacecraft inserted into this manifold will ballistically coast and insert into the

target LPO without additional propulsion. Each point on the manifold was

translated into a discrete “cost” value via the clever use of a tangential-thrust

control law and a simple “fitness” function. Once this search-space is defined,

the Particle Swarm Optimization algorithm is employed to identify the globally

best value (minimum) of the fitness function. Although this value is not guar-

anteed to be the globally optimal solution, the PSO method generally gets very,

very close to this solution and may be used as a pruning algorithm or a pre-

liminary search algorithm prior to the application of a different, gradient-based
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optimization routine.

10.1 Conclusions for One-Dimensional PSO

Applications

This study shows that preliminary optimization of a low-thrust transfer trajec-

tory from a GEO-energy orbit to a nominal Earth-Moon Lagrange point orbit

is indeed possible using Particle Swarm Optimization. Since the search space is

often non-convex, traditional convex optimization methods do not apply. Addi-

tionally, gradient based optimization algorithms would likely have a great deal

of difficulty avoiding a local minima. Instead, an evolutionary PSO algorithm

has proven to be a highly useful optimization technique that significantly out-

performs random chance algorithms, such as the Monte Carlo technique, as

evidenced by Figure 7.1. While a large number of function evaluations is im-

portant, the percentage of candidate trajectories identified by the PSO method

increases only logarithmically with increasing function evaluations. Since run

time increases proportionately with function evaluations it seems reasonable

to identify 160 function evaluations as a compromise between robust candi-

date identification and CPU run time. It is also interesting to discover that

the positive perturbation of the stable manifold, W s+ normally contains more

candidate patch points than its counterpart, W s−. It is unknown if this is the

result of generalized system dynamics or simply a phenomena unique to the

given nominal orbit.

The optimization of the low-thrust trajectory with respect to propellant con-

sumed and TOF was successfully demonstrated in this study. The PSO algo-
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rithm is, in general, much more successful in optimizing the trajectory than

random chance would allow. Convergence on the discrete, global minimum,

as observed in Figure 7.6, demonstrate the robustness of the PSO method; es-

pecially compared to gradient based algorithms used by Mingotti et al. [30]

which can become trapped in a local minima. Although the PSO method can

not guarantee convergence upon the globally optimal solution it does offer the

benefits of a wide coverage of the search-space and would be an ideal choice for

preliminary trajectory optimization.

10.2 Conclusions for Two-Dimensional PSO

Applications

The preliminary optimization of a low-thrust transfer from geocentric orbit to

an Earth-Moon, L1 halo orbit has been demonstrated in this study. Parti-

cle Swarm Optimization was used to prune a highly non-convex search space

that tends to trap traditional, gradient-based optimization algorithms in non-

optimal, local minima. Indeed, since the topology of the fitness function is very

rough, being filled with multiple extrema and discontinuities, a pruning method

that is capable of obtaining a guess solution very near the optimal solution is

warranted. Once the results of this PSO algorithm are obtained, they can be

refined using a gradient based approach as demonstrated by Mingotti et al.

[30, 31, 32]

It has been demonstrated, in this study, that utilizing a “local” version of

the PSO algorithm can greatly improve its ability to simultaneously interrogate

multiple minima without becoming trapped in a non-optimal, local minima.
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This result is in agreement with past research [36]. Based on the data gathered

in this study, an appropriate choice of Np is in the range of 200 to 400 particles

and a suitable value of the convergence metric is γstop ≥ 0.75. These values offer

the best compromise between a thorough interrogation of the search space and

prohibitive CPU run-time. This study also demonstrated a vast improvement

in CPU run-time when utilizing the 2-D version of the PSO algorithm as op-

posed to the 1-D version [58] utilized elsewhere. Indeed, an order of magnitude

improvement in the CPU run-time has been demonstrated between the 2-D and

1-D versions of the PSO algorithm.

The optimal trajectory found using the 2-D, local PSO algorithm was highly

three dimensional in nature – especially when three body effects are at their

maximum. This trajectory began on a circular, geocentric orbit with a Jacobi

energy equivalent to that of GEO. Three body effects are insignificant below

this orbit so lower trajectories were not studied in this research. Instead, a con-

necting low-thrust spiral or chemical Hohmann transfer was assumed. Overall,

this technique is general enough to be applied to many other Lagrange point

orbits that utilize a (initially) low-eccentricity, low-thrust transfer.

10.3 Conclusions for Two-Impulsive Burn PSO

Applications

In this study, an evolutionary algorithm called Particle Swarm Optimization,

was used in conjunction with a traditional, gradient-based optimization method

called Single Shooting. The fusion of a gradient-based technique with an evo-

lutionary algorithm attempts to blend the strengths of both methods while
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minimizing their weaknesses. While the PSO method may be much slower

than gradient-based algorithms, its robust global optimization capability when

used to optimize a non-convex objective function far exceeds that of gradient-

based methods; especially when the objective function is non-differentiable or

nearly so. On the other hand, using a shooting method to optimize a single

manifold insertion point is relatively fast (a few seconds) and can determine a

very efficient two-burn transfer trajectory. While shooting does not guarantee

the optimal transfer solution is found for a given insertion point, the method

of iterative shooting does reduce the likelihood of a non-optimal result. The

PSO/Shooting method, described above, is relatively simple to program and

requires a modest amount of resources to run. Typical run-times for a desktop

computer are on the order of 10− 20 hours but could be significantly reduced

(by one or two orders of magnitude) by utilizing a parallel computing cluster.

Due to the ease of programming and reasonable run-time, the PSO/Shooting

method is useful in preliminary optimization of space mission design or for

trajectory pruning applications.

The optimization of the sample problem given in this study is also notewor-

thy. In agreement with Alessi et al., the PSO/Shooting method identified the

optimal manifold insertion point as apogee when considering the slow transfer

search space. This result adds creditability to the PSO/Shooting method since

Alessi et al. used an entirely different method to gather their data, yet provide

similar results. In light of this published work, however, it is a bit surprising to

note that the fast transfer was superior to the slow transfer in terms of both ∆v

and time of flight. It is currently unknown whether this result is characteristic

of all LPOs or is unique to the one chosen for this study. Given enough compu-

tational power it may be useful to investigate the influence of the choice in LPO
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over the optimization results. For example, LPO’s in different systems should

be studied (Earth-Moon, Sun-Earth, Sun-Mars, etc.), LPOs about the L1, L2,

L3, and L4,5 points could be studied, and even various shapes and families of

LPO’s should be studied to see if there are any commonalities between them.

Optimal manifold insertion points at apogee may be a common characteristic

of most LPO’s but not all. It may be useful to future mission designers to know

what characteristics of a LPO lend themselves to optimal fast transfers rather

than slow transfers. This is especially true for human spaceflight to LPO’s.

10.4 Conclusions From This Work

In this dissertation, three separate studies were conducted to test the ability

of the PSO method to optimize geocentric to LPO orbit transfers. The first

study, discussed in Chapter 7, optimizes a low-thrust transfer from a circular,

geosynchronous-altitude orbit to an LPO using a restricted, 1-D search-space.

This study demonstrated that a PSO algorithm could optimize a non-convex

fitness function (defined at discrete points) faster and more accurately than a

random-guessing, Monte Carlo technique. It also showed that the PSO method

was capable of avoiding local minima in a way that gradient-based algorithms

cannot. An optimal low-thrust trajectory was generated and tested very quickly

using this technique.

The next study, found in Chapter 8, generalized the PSO method into one

that used a “local” version of the PSO algorithm and utilized a 2-D search-

space. In this study, the fitness function was further characterized as one having

numerous minima of similar magnitude and sharp discontinuities. The local

version of the PSO algorithm allowed for simultaneous interrogation of multiple
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local minima. This is in contrast with the original PSO algorithm which may,

prematurely, draw particles away from multiple minima in favor of a single

minimum. This has the potential to be detrimental to the goal of optimization,

since other minima have not been thoroughly investigated. The choice of the

parameters Np and jmax were methodically refined, and a new parameter, γstop,

was introduced to decrease unproductive CPU time. The end result was a 2-D

local PSO algorithm that ran an order of magnitude faster than its predecessor,

the 1-D version. The end result was an optimal low-thrust trajectory that

appeared to be very three-dimensional (which is uncharacteristic of Keplerian

orbits) and takes full advantage of the three-body effects of the Earth-Moon

system.

The final study, found in Chapter 9, is a bit different from the previous two.

This study focuses on impulsive, two-maneuver transfers from Low Earth Orbit

(LEO) to the target LPO via a hybrid PSO/shooting technique. This formu-

lation attempts to capture the “best of both worlds” by utilizing the gradient-

based shooting method to complement the evolutionary PSO algorithm. The

search-space was split into a “fast” and “slow” space where the fast space en-

compassed the stable manifold near the LPO, and the slow space consisted of

the remainder of the manifold. In agreement with previous research, it was

found that the optimal manifold insertion point was that of apogee in the slow

search-space case. Surprisingly, however, it was discovered that the optimal fast

transfer was superior to the optimal slow transfer, both in terms of propellant

consumption and time of flight. This is a significant result because propellant

consumption and time of flight are typically viewed in terms of a trade-off.

Here, however, no such trade is necessary.
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10.5 Future Work

Much work could be done to further investigate the techniques, algorithms, and

results initially explored in this dissertation. Ideas for future research include:

• Further investigation of tuning parameters for the PSO algorithm. This

topic was addressed in Chapter 8 but could be further refined to include an

automated method of tuning each parameter. Examples include neural

networks, genetic algorithms, or other heuristic-based approaches that

allow for the “training” or discovery of optimal tuning parameters.

• This entire study could be repeated using other evolutionary or heuristic

approaches. The results could then be compared with that found in this

study.

• Other forms of the fitness/cost/objective function could be tested and

evaluated. The form of the objective function drives the system to evolve

toward a final state that (it is hoped) is optimal. It would be interesting

to study what characteristics of a fitness function drive the system to

such a state in the shortest number of iterations. It is also important to

determine how this performance changes as the target LPO is changed.

• This entire study should be repeated using other LPOs (Lyapunov, halo,

or Lissajous) and the performance of the PSO algorithm should be recorded

for each type and family. Additionally, orbits about other Lagrange points

(L2−5) in the Earth-Moon system should be explored, as well as orbits

about Lagrange points of the Sun-Earth, Sun-Mars, Sun-Jupiter, and

other three-body systems.

165



10 Conclusions & Future Work

• Additionally, two-maneuver, impulsive transfers should be studied for

other LPOs. Fast and slow transfers should be studied and compared

to determine if fast transfers are superior to slow transfers for all LPOs

or only a subset of them (i.e. a particular family, Lagrange point, three-

body system, and so on ).
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Appendix

Additional information pertaining to a more advanced stability analysis of La-

grange points is presented here. The information in this appendix is comple-

mentary to the body of this dissertation but is not critical to its understanding.

L3 Stability Approximation with Low Values of µ

Before the advent of digital computers, it was very difficult to determine the

stability of a Lagrange point. In the 19th century it was believed that a hidden

planet, known as Planet X, may be hiding behind the Sun at the Sun-Earth

L3 point [79]. The fact that L3 is continuously hidden from Earth’s view made

testing this hypothesis nearly impossible. It is, however, possible to make some

useful approximations of the stability dynamics of the L3 point if one assumes

that µ ≪ 1
2 . If, for example, if µ ≤ 0.01 the x coordinate of the L3 point is

very well approximated by x u −1 (and, of course, y = z = 0). Plugging this
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result into the expressions for a− f gives

a = −24+50µ−46µ2+25µ3−8µ4+µ5

−8+28µ−38µ2+25µ3−8µ4+µ5

b = 0

c = 17µ−34µ2+25µ3−8µ4+µ5

−8+28µ−38µ2+25µ3−8µ4+µ5

d = 0

e = 0

f = 8−11µ+4µ2

−8+28µ−38µ2+25µ3−8µ4+µ5

. (A-1)

Since µ is small, all but the lowest term in each expression can be neglected

a = 3

b = 0

c = −17µ
8

d = 0

e = 0

f = −1

. (A-2)

Now the Jacobian Matrix becomes

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3 0 0 0 2 0

0 −17µ
8 0 −2 0 0

0 0 −1 0 0 0



(A-3)
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with corresponding eigenvalues of

λL3, µ≪ 1
2

=



i

−i

1
4

√
−8− 17µ+

√
64 + 1904µ+ 289µ2

−1
4

√
−8− 17µ+

√
64 + 1904µ+ 289µ2

1
4

√
−8− 17µ−

√
64 + 1904µ+ 289µ2

−1
4

√
−8− 17µ−

√
64 + 1904µ+ 289µ2

. (A-4)

Since µ≪ 1
2 , the µ

2 term can be immediately neglected, since it is very small

when compared with the other terms. Next the inner square root term is

expanded to Equation A-6 using the binomial expansion (Equation A-5)

(1 + x)r =
∞∑
k=0

(−r)k
k! (−x)k = 1 + rx+ 1

2r (r + 1)x2 + 1
6r (r + 1) (r + 2)x3 + ...

(A-5)
√

64 + 1904µ = 8
(

1 + 119
4 µ

) 1
2

= 8
[
1 + 119

8 µ+ 1
8

(119
8 µ

)2
+ ...

]
≈ 8+119µ.

(A-6)
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Substituting this value back into the expression for the eigenvalues (and noting

that 0 ≤ µ ≤ 1
2) gives

λL3, µ≪ 1
2

=



i

−i

1
4
√

102µ

−1
4
√

102µ

1
4
√
−16− 136µ

−1
4
√
−16− 136µ

≈



i

−i

5
2
√
µ

−5
2
√
µ√

1 + 17
2 µ i

−
√

1 + 17
2 µ i

(A-7)

Note that there is one positive, real eigenvalue that is a function of the square

root of µ. The L3 point is, indeed, unstable but the amount of instability has

now been directly expressed in terms of µ when µ≪ 1
2 . The motion of a body

at this L3 point will diverge as a function of

eλL3 t ≈ e
5
2
√
µ t. (A-8)

The time-constant τ can be defined as τ = 1
λ

= 2
5√µ . Since µ ≪ 1

2 we know

that τ is relatively large. Indeed for the Sun-Earth system τ u 230 [tu] (or 1500

years in the Sun-Earth system). While this timescale is far to short too allow

for the existence of a planet, it does bode well for space stations and spacecraft

that wish to park at the Sun-Earth L3 point and remain there for a very long

time.
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L4 and L5 Stability and Bifurcation

The stability of the L4 and L5 points, on the other hand, can be solved for

algebraically without any approximation of µ nor any other parameter. The

values of the matrix components a− f are

for L4 : a = 3
4 , b = 3

4
√

3− 3
2
√

3µ c = 9
4 d = 0 e = 0 f = −1 (A-9)

forL5 : a = 3
4 , b = −3

4
√

3+3
2
√

3µ c = 9
4 d = 0 e = 0 f = −1. (A-10)

In either case, the eigenvalues for both L4 and L5 turn out to be exactly the

same

λL4,5 =



i

−i

1
2

√
−2 + 2

√
1− 27µ+ 27µ2

−1
2

√
−2 + 2

√
1− 27µ+ 27µ2

1
2

√
−2− 2

√
1− 27µ+ 27µ2

−1
2

√
−2− 2

√
1− 27µ+ 27µ2

. (A-11)
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It is now helpful to define a new value, k = m1−m2
m1+m2

= 1 − 2µ, to simplify the

eigenvalues. Note that k ∈
(

0, 1
]
. Upon substitution

λL4,5 =



i

−i

1
2

√
−2 +

√
27k2 − 23

−1
2

√
−2 +

√
27k2 − 23

1
2

√
−2−

√
27k2 − 23

−1
2

√
−2−

√
27k2 − 23

. (A-12)

Recall that for an equilibrium point to be stable (or at least not unstable),

the real part of each eigenvalue of the Jacobian Matrix must be non-positive.

Looking at the eigenvalues above, it becomes apparent that they need to become

entirely imaginary to satisfy this condition; if the eigenvalues had any non-

zero real part, then half would be negative and half would be positive, which

obviously breaks the stability condition. By inspection, note that the following

conditions must be met for all eigenvalues to be imaginary


√

27k2 − 23 ≤ 2

27k2 − 23 ≥ 0

(1)

(2)
=


k ≤ 1

k ≥
√

23
27

(1)

(2)
. (A-13)

Since k ∈
(

0, 1
]
, condition (1) is always satisfied. Condition (2) implies

that 0 ≤ k ≤ 0.9229 or 0 ≤ µ ≤ 0.0385 or 0 ≤ m2
m1
≤ 4% (since m2

m1
= µ

1−µ). This

is a remarkable result. The stability of the L4 and L5 equilibrium points is a

function of µ only. The system will bifurcate, going from stable to unstable,
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once the critical value of µC = 1
2 −

√
69

18 u 0.0385 has been crossed. Note that

most three body systems within the solar system are below µC , with the most

notable exception being the Pluto-Charon system where µ = 0.1.
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