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ABSTRACT 

 

 

 

INVARIANT TWO COMPONENT STRUCTURE OF THE REPEATABLE BATTERY 

FOR THE ASSESSMENT OF NEUROPSYCHOLOGICAL STATUS (RBANS) 

 

 

Elisabeth M. Vogt 

 

Marquette University, May 2015 

 

 

 

 

The Repeatable Battery for the Assessment of Neuropsychological Status 

(RBANS: Randolph, 1998, 2012) is a brief neurocognitive instrument used to evaluate 

cognitive functioning in clinical settings. While this test is used regularly, investigation of 

the factor structure has resulted in inconsistent findings across samples. It was 

hypothesized that inconsistent RBANS dimensional structures are the result of 

methodological differences and not solely due to unique sample characteristics. The 

present study utilized empirically supported extraction criteria (Parallel Analysis; 

Minimum Average Partial Procedure) and uniformly investigated five samples. RBANS 

data from four samples were previously published (Carlozzi, Horner, Yang, & Tilley, 

2008; Duff, Hobson, Beglinger, O'Bryant, 2010; Duff et al., 2006; Wilde, 2006) and a 

new clinical sample was obtained from the Gundersen Health System, Memory Center. 

The congruence of factor structures was investigated by conducting orthogonal vector 

matrix comparisons (Barrett, 2005), and a robust two factor structure reliably emerged 

across samples. The invariant RBANS two factor structure primarily emphasized 

memory and visuospatial functioning. This finding definitively clarifies the RBANS 

factor structure and the relationships between subtests and indices. Due to the expansive 

use of the RBANS, this psychometric knowledge has significant clinical implications. 
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Introduction 

 

 

 

 Neuropsychological assessment has a rich history that evolved from the 

convergence of multiple fields and continues to progress. Individuals within philosophy, 

science, medicine, education, art and many other disciplines have considered the 

relationship between brain, body and behavior in historical texts (Lezak, Howieson, 

Bigler, & Tranel, 2012). Today as an applied science, clinical neuropsychology focuses 

on the behavioral manifestation of cognitive impairment. Assessment comprises a core 

component of clinical neuropsychology practice. As evidence, a survey reported that 80% 

of neuropsychologists engage in clinical assessment at least four hours weekly and 33% 

spend 20 or more hours evaluating patients per week (Camara, Nathan, & Puente, 2000). 

Neuropsychological evaluations inform clinicians and patients of a wide variety of 

important diagnostic and treatment-related issues (Schoenberg & Scott, 2011).  

 With refinement of cognitive theories, establishment of the field of 

neuropsychology has increased and subsequently the standardized instruments used by 

clinical neuropsychologists to infer cognitive functioning evolved and increased in 

sensitivity (Lezak et al., 2012). In a typical, comprehensive, neuropsychological 

assessment multiple domains are evaluated which may include intelligence, attention, 

executive functioning, verbal and visual fluency, immediate memory, working memory, 

delayed memory, language, visuospatial ability, sensory and motor abilities, personality 

features, and emotional symptoms (Strauss, Sherman, & Spreen, 2006). Hundreds of 

standardized measures exist to evaluate many of the fore-mentioned domains. For 

example, the Neuropsychological Assessment Battery (NAB; Stern & White, 2003) 
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includes multiple tasks and evaluates attention, language, memory, spatial and executive 

functioning in the span of four hours. Alternatively, a neuropsychological test may 

evaluate one specific function, such as confrontation object naming, by utilizing a 

measure such as the Boston Naming Test in 10 to 20 minutes (Kaplan, Goodglass, & 

Weintraub, 2001). Neuropsychologists reported on average that assessments typically 

require five hours to complete, however, this approach may not be possible or practical 

for many clinical populations (National Academy of Neuropsychology Board of 

Directors, 2007). In response to this, abbreviated testing batteries with adequate 

psychometric properties have been developed that are advantageous to clinicians. 

The Repeatable Battery for the Assessment of Neuropsychological Status 

 

 

 

 This project aims to evaluate specific psychometric properties of the Repeatable 

Battery for the Assessment of Neuropsychological Status (RBANS; Randolph, 1998; 

RBANS Update; Randolph, 2012). Development of the RBANS addressed a need for 

brief assessment measures that are sensitive to cognitive impairment in multiple cognitive 

domains. Individually administered and typically taking less than 30 minutes, it evaluates 

a range of cognitive abilities and has shown utility in a variety of clinical settings (e.g. 

see Aupperle, Beatty, Shelton, & Gontkovsky, 2002; Beatty, Ryder, Gontkovsky, Scott, 

McSwan, & Bharucha, 2003; Larson, Kirschner, Bode, Heinemann, & Goodman, 2005; 

McKay, Casey, Wertheimer, & Fichtenberg, 2007; Wilk, Gold, Humber, Dickerson, 

Fenton, & Buchanan, 2004).  

 Consideration of cognitive theory and neuropsychological functioning guided 

selection of specific subtests included in the RBANS (Schoenberg & Scott, 2011). These 
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subtests are conceptually similar to popular and validated neuropsychological assessment 

measures and combine to create summary scores that reflect typical neuropsychological 

constructs (Lezak et al., 2012; Randolph, 1998). The 12 RBANS subtests contribute to 

five cognitive index scores (for more complete descriptions see Table 1). The Immediate 

Memory Index includes List Learning and Story Memory subtests, which are designed to 

assess auditory short-term memory and learning. A Visuospatial/Constructional Index 

consists of Figure Copy, to assess constructional organization, and Line Orientation, to 

evaluate visuospatial organization. Picture Naming, a confrontation naming task, and 

speed of verbal fluency, assessed with the Semantic Fluency subtest, comprise the 

Language Index. An Attention Index includes a simple attention task, Digit Span, and the 

Coding subtest, which evaluates processing speed and simple attention. The Delayed 

Memory Index was designed to assess temporal memory, and requires the examinee to 

recall previously presented stimuli presented earlier during the RBANS (i.e., List Recall, 

List Recognition, Story Recall and Figure Recall). An overall Total Scale index score is 

derived by combining all indices.  

As previously mentioned, RBANS subtests parallel frequently utilized and well-

validated neuropsychological measures (Camara et al., 2000). Meaningfully distinctive 

from corresponding traditional neuropsychological, RBANS subtests include fewer items 

resulting in quicker administration. For example, the RBANS Line Orientation subtest 

was modeled after the Judgment of Line Orientation Test (JLO; Benton, Hamsher, 

Varney, & Spreen, 1983). The Benton JLO test contains 30 items with only a small 

portion of the stimuli line drawn and takes approximately 20 minutes to complete, 
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whereas, the RBANS Judgment of Line Orientation subtest includes 10 items with a full 

stimuli line and takes roughly two minutes to complete. 
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Table 1 

 

Description of the Repeatable Battery for the Assessment of Neuropsychological Status 

 

Index Subtest  Description  

Immediate 

Memory  

List 

Learning 

 

 

Story 

Memory  

The examinee immediately recalls as many words as possible from a list 

of 10 semantically unrelated words presented orally repeated over 4 

learning trials 

 

The examinee immediately recalls a short orally presented story over two 

trials.  

 

Visuospatial/ 

Constructional  

Figure Copy 

 

 

Line 

Orientation  

The examinee draws a multipart geometric design while it remains 

displayed. 

 

The examinee sees 13 numbered lines radiating from a single point in a 

semicircular fan-shaped pattern. Below that are two lines and the 

examinee determines what lines they match by placement and direction 

over ten trials with varying line sets within a time limit. 

 

Language  Picture 

Naming 

 

Semantic 

Fluency  

The examinee names 10 line drawings of common objects.  

 

The examinee verbally generates as many exemplars as possible from 

semantic categories in 60 seconds. 

  

Attention  Digit Span 

 

 

Coding  

The examiner is orally presented increasingly long strings of digits and 

then asked to repeat the digits in order.  

 

The examinee views a key with geometric shapes and corresponding 

numbers and fills in empty boxes below the shapes with the correct 

numbers in a timed task. 

 

Delayed 

Memory  

List Recall  

 

 

List 

Recognition  

 

Story 

Memory 

 

 

Figure 

Recall  

The examinee recalls as many words as possible from the list presented 

during List Learning. 

 

The examinee hears 20 words (10 targets & 10 distracters) and asked to 

indicate whether each word was presented during List Learning.  

 

 

The examinee retells the story presented during Story Memory.  

 

 

 

The examinee draws the figure initially copied. 

 

Total Scale  

 

 
Sum of all five indices  

 

Source: Adapted from Groth-Marnat (2009); Randolph (1998); Strauss, Sherman, & Spreen (2012) 



 6 
 

RBANS: Psychometric properties. 

 

 

 

 Standardized assessment measures with strong validity and reliability allow 

clinicians to make more accurate judgments regarding functioning. In other words, the 

psychometric properties of a test directly relate to its usefulness (Lezak et al., 2012). As 

an example, an unreliable memory test will exhibit varying degrees of association with a 

criterion and subsequently demonstrate little clinical or research value. A long standing 

area of research within the broad field of assessment pertains to the evaluation of 

psychometric properties of tests.  

 Since publication of the RBANS in 1998, multiple studies evaluated the 

reliability, validity, and clinical utility of the measure. In fact, a recently conducted 

cursory literature search identified over 1,200 studies that utilized the RBANS. The need 

for a clear understanding of the meaning attached to a RBANS score is further 

highlighted by the frequent usage of the RBANS in multiple settings. The RBANS has 

proved particularly useful during inpatient neuropsychological evaluations when 

comprehensive testing is not practical (Lezak et al., 2012). While this measure was 

originally developed for dementia evaluations, clinicians have utilized the RBANS as a 

key aspect of assessment across multiple clinical populations such as those presenting 

with Parkinson’s disease (Beatty et al., 2003), stroke (Larson et al., 2005), multiple 

sclerosis (Aupperle et al, 2002; Beatty, 2004), schizophrenia (Wilk et al., 2004) and 

traumatic brain injury (McKay et al., 2007), among others. Consistent with literature 

investigating traditional neuropsychological tests, individuals with clinical conditions 

invariably perform worse on the RBANS subtests than the RBANS normative sample. 
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Indicative of the integration of this measure into neuropsychological practice, the 

RBANS served as a “gold standard” in a research study that evaluated the negative 

predictive power and positive predictive power of novel, brief, computerized 

neuropsychological assessment (Woodhouse et al., 2013).  

Reliability  

 

 

 

 An important psychometric property, reliability impacts the utility of a measure. 

In general, reliability reveals the consistency of measurement (Slick, 2006). Defined 

several different ways, reliability statistics include: internal consistency, consistency over 

time, consistency across alternate forms, and consistency across raters. Reliability 

provides some indication of the error (the degree of and sources of variability that 

influence a test score) associated with a specific test score (Slick, 2006). Traditional 

benchmarks for reliability coefficients are suggested as follows: very high +.90, high .80 

to .89, adequate .70 to .79, marginal .60 to .69, and low < .59 (Slick, 2006). Types of 

reliability are explained in the following paragraphs with related RBANS empirical 

findings. 

 Internal reliability (also known as internal consistency) conveys the degree to 

which different items of the same measure are correlated. It is typically conveyed by 

reporting split-half reliability coefficients or coefficient alpha. Split-half reliability is 

established by dividing a test in two and evaluating the association between the two 

halves. On average, across age groups RBANS internal consistency, determined through 

split-half reliability (Spearman-Brown), was reported to be .80 (Randolph, 1998). 

Reliability coefficients of the Total Scale were high (.86 to .94), but the individual 
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indices were significantly lower (range .55 to .78; Hobart, Goldberg, Bartko, & Gold, 

1999; Randolph, 1998).  

 Coefficient alpha indicates the degree to which a set of items measures a single 

dimension (as opposed to the association between parts of a test). McKay and colleagues 

(2007) investigated the internal consistency of RBANS indices in a sample of patients 

who had sustained traumatic brain injuries and reported a wide range of alpha 

coefficients. While the Total Score (α = .83), Delayed Memory (α = .77), 

Visuospatial/Constructional (α = .76), and Immediate Memory (α = .75) indices exhibited 

good internal consistency, the remaining RBANS indices had unacceptable internal 

consistency (Attention α = .16; Language α = .33).  Ultimately, this raises the question of 

whether select indices (e.g., Attention and Language) evaluate a single latent construct.  

 Test-retest reliability describes the stability of measurement when the same test is 

administered to a single individual at different points in time. A test with good temporal 

stability minimally changes for normal individuals that are not experiencing cognitive 

decline. With respect to the RBANS, Duff and colleagues (2005) investigated the 

stability of RBANS index and subtest scores over a period of one year. Utilizing a sample 

of 455 “typically aging” adults over 65 years, it was reported that the Total Score was 

most stable (.83) and individual indices varied significantly. Test-retest reliability of 

indices ranged from low (Language = .53) to adequate (Total Score = .83). Evaluation of 

test-retest reliability of subtests demonstrated similar variability and ranged from low 

(Figure Copy = .51) to adequate (Coding = .81). 

 A novel feature of the RBANS, relative to many other neuropsychological 

measures and batteries, is that alternate forms have been published for serial evaluation. 
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The advantage of alternate forms is that a repeat assessment could be conducted while 

minimizing (but not eliminating) the confounding variable of practice effects (Randolph, 

1998). Alternate form consistency, between Form A (the form most frequently 

administered by clinicians) and Form B of the RBANS, was reported by Randolph (1998) 

to be high for the Total Score (.82), but again variable for indices (ranging from 

Language r =.46 to Attention r = .80). Two follow-up studies with patients who had 

schizophrenia revealed a similar alternate form reliability pattern with the Total Score 

demonstrating excellent reliability (r = .84) and other indices varying widely. The 

Language Index demonstrated the lowest stability, whereas the Attention Index 

demonstrated the highest reliability (Wilk et al., 2002: Language r =.36 and Attention r 

=.76; Gold et al., 1999: Language r = .56, and Attention r = .91). Overall, given the 

varying alternate form reliability coefficients across RBANS indices, it is recommended 

that only the Total Scale index score be utilized to evaluate change in cognitive 

functioning over time (Groth-Marnat, 2009; Strauss et al., 2006). 

 Interrater reliability is also important to consider because it explains the amount 

of variance in scores due to examiner judgment, or in other words, this reliability 

evaluates the consistency of administration and scoring (Slick, 2006). Evaluation of the 

interrater reliability of the Design Copy and Design Memory subtests was investigated 

because those subtests include somewhat subjective scoring criteria. Randolph’s (1998) 

report of inter-rater consistency of the Figure Copy and Figure Recall were acceptable 

and reported as identical reliability coefficients (r = .85). An alternative scoring system 

has been established for these subtests in response to researchers’ concerns that 

individuals were obtaining scores lower than expected (Duff, Patton, Schoenberg, Mold, 
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Scott, & Adams, 2003; Gontkovsky, Beatty, & Mold, 2004). The interscorer reliability of 

the modified criteria is higher than the original criteria developed by Randolph (Figure 

Copy r = .94; Figure Recall r = .98; Duff, Leber, Patton, Schoenberg, Mold, Scott, & 

Adams, 2007). 

 Reliability is important to consider when selecting tests because it impacts the 

standard error of measurement (SEM). SEM indicates the amount of error that is 

associated with measurement, and determines the degree to which a specific score might 

fluctuate for a single person (Slick, 2006). The SEM of a score is inversely related to the 

reliability of the measure, so as reliability increases SEM decreases. RBANS index scores 

SEM values varied, ranging from 3.84 to 6.65 (Randolph, 1998). By definition, those 

Index scores with poorer reliability (Visuospatial/Construction and Language) had the 

largest SEM values (6.65 and 6.52, respectively). The overall composite score exhibits 

the strongest reliability (Total Scale SEM = 3.84) supporting previously mentioned 

reports that this index is most stable at single evaluation points and in assessing cognitive 

change over time. 

Validity 

 

 

 

 The fore-mentioned types of reliability (e.g. consistency of the RBANS) provide 

necessary framework to evaluate the validity of the RBANS (e.g. accuracy of construct 

assessment). Validity provides the property of meaning attached to a test score (Slick, 

2006). The concept of validity is often incorrectly described simply as whether or not a 

test measures what it is intended to measure. More specifically, validity refers to the 

appropriateness or accuracy of the interpretation of test scores (Slick, 2006). There are 
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certainly situations when a valid measure will not be appropriate to use in a specific 

context (e.g., using an intelligence test validated with English speaking adults with a 

Spanish speaking student). There is a relationship between validity and reliability: a valid 

measure must be reliable, but the inverse is not true.  

 Validation of a test is a continual process, and it is believed that validation of 

measures is not only the responsibility of the test developer but also those that utilize the 

test in clinical practice and research (American Educational Research Association, 

American Psychological Association, & National Council on Measurement in Education, 

1999). Messick (1995) proposed a comprehensive model of validity in which six 

separate, distinguishable types of evidence contribute to validity in order to create 

evidence for interpretation of a measure (content related, substantive, structural, 

generalizability, external, and consequential evidence sources). The Standards for 

Educational and Psychological Testing (1999) propose a similar model that includes: 

evidence based on test content, response processes, internal structure, relations to other 

variables, and consequences of testing. However, the inclusion of consequences of testing 

as evidence for validity is frequently criticized as too far reaching (Slick, 2006). While 

many models of validity exist, the most commonly seen is a tripartite model that 

includes: content validity, criterion-related validity, and construct validity (Slick, 2006). 

The tripartite model of evidence for validity and related RBANS empirical literature will 

be discussed. 

 Content validity refers to the quality of test measure in relation to the relevance 

representativeness of the test content. The RBANS content was based on a theoretical 

model of cognition and supported by use of tasks that are similar to other well validated 
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measures. For example the RBANS includes a verbal fluency task (Semantic Fluency) 

that is similar to the Controlled Oral Word Association test (Benton, Hamsher, & Sivan, 

1994), a visual perception task (Line Orientation) which is similar to the JLO test, and 

other tasks that are shortened versions of empirically validated measures. Utility of 

abbreviated versions of these longstanding measures demonstrated to assess specific 

cognitive constructs (e.g., verbal fluency) clearly suggests content validity (Randolph, 

1998). 

 Criterion-related validity encompasses concurrent and predictive validity. 

Concurrent validity is important for neuropsychological test measures used to identify 

cognitive impairment associated with specific disorders. In other words, concurrent 

validity demonstrates the clinical sensitivity of the measure. Predictive validity refers to 

the ability of the measure to accurately inform a clinician of possible future outcomes 

(Slick, 2006). At the time of development, the clinical sensitivity and clinical utility of 

the RBANS were investigated with adults that had various neurological and psychiatric 

disorders (Randolph, 1998). In brief, it was reported that Index Score patterns varied as 

expected based upon cognitive profiles typically associated with differing neurocognitive 

impairment in clinical samples of individuals with Alzheimer’s disease, Vascular 

Dementia, Mixed Dementia, Huntington’s Disease, Parkinson’s Disease, Depression, 

Schizophrenia, or Traumatic Brain Injury. 

 In addition, the ability of RBANS scores to accurately predict return to work, 

instrumental activities of daily living, and disability outcomes has been investigated. 

Predictive validity of the RBANS was demonstrated when clinical outcomes of patients 

that experienced a stroke were accurately predicted at 12 months status-post stroke 
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(Larson et al., 2005). Specifically, Larson and colleagues (2005) determined that the 

RBANS Total Score, Language, Immediate Memory, Delayed Memory, and 

Visuospatial/Construction indices demonstrated predictive validity in stroke patients due 

to strong, positive correlations with cognitive disability after one year. Notably, the 

Attention Index was not correlated with disability outcome. 

In recent years, numerous researchers have additionally provided empirical 

evidence for concurrent validity of the RBANS. Specifically, Index scores were found to 

demonstrate distinct and reliable patterns in normal and psychiatric samples 

demonstrating the clinical utility of the RBANS to distinguish impairment from non-

impairment (Gold et al., 1999; Hobart et al., 1999; Iverson, Brooks, & Haley, 2009; Wilk 

et al., 2002).  Researchers have also further demonstrated the clinical utility of this 

measure with various neurological and psychiatric disorders such as Alzheimer’s disease 

(Randolph, Tierney, Mohr, and Chase, 1998), Parkinson’s Disease (Beatty et al., 2003), 

stroke (Larson et al., 2003), and general cognitive decline (Duff et al., 2008) in which the 

RBANS displayed the pattern of performance expected for each clinical population. Each 

of these specific clinical populations demonstrated distinct patterns of results on the 

RBANS, demonstrating the range of domains measured and clinical efficacy of the 

measure.  

 Construct validity of a test measure is determined through multiple ways, 

including: evaluation of convergent and divergent validation, and component/factor 

identification through factor analysis. Overall construct validity of the RBANS was 

originally demonstrated with convergent and discriminant validity of the RBANS in 

correlational analyses with other commonly used neuropsychological assessments 
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(Randolph, 1998). RBANS indices converged with measures of intelligence, memory, 

language, attention, and executive functioning in an expected manner (Gold, Queern, 

Iannone, & Buchanan, 1999; Hobart et al., 1999; Larson et al., 2005; McKay et al., 2007; 

Pachet, 2007; Randolph, 1998).  

Factor Structure of the RBANS 

 

 

 

The internal or underlying structure of the RBANS has been investigated by 

researchers who have sought to evaluate RBANS construct validity. A primary goal in 

determining the factor structure of a neuropsychological assessment measure is to 

summarize relationships between variables (e.g. RBANS subtests) in order to define the 

underlying dimensions, which are then inferred to reflect cognitive constructs 

(Tabachnick & Fidell, 2013). The factor structure is important because it informs the 

fidelity of the scoring structure to the construct assessed by the test (Messick, 1995). A 

clearly defined factor structure helps clinicians evaluate the construct validity of the test 

and directly affects the credibility of the measure in clinical decision making (King, 

Bailie, Kinney, & Nitch, 2012). 

 When the RBANS was published, exploratory factor analysis (EFA) and 

confirmatory factor analysis (CFA) were not reported in the manual (Randolph, 1998). 

To date, six studies investigating the factor structure of the RBANS have provided 

inconsistent results, which has left clinicians to question what constructs are evaluated 

and the validity of the Index structure (Carlozzi, Horner, Yang, and Tilley, 2008; Duff et 

al., 2006; Garcia, Leahy, Corradi, & Forchetti, 2008; King et al., 2012; Schmitt, 

Livingston, Smernoff, Reese, Hafer, & Harris, 2010; Wilde, 2006). In the following 
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sections, factor analysis and related methodological decisions will be elaborated upon to 

explain convergent and divergent results that have appeared in the literature. 

Confirmatory factor analysis 

 

 

 

 In CFA, theory dictates what factor structure should be observed. The “fit” 

between a hypothesized factor structure and the actual data is then evaluated (Tabachnick 

& Fidell, 2013). In other words, researchers specify how specific items (e.g., subtests) 

relate to assumed theoretical constructs. Three CFA studies have been conducted to 

investigate the RBANS factor structure (Carlozzi et al., 2008; Duff et al., 2006; King et 

al., 2012). Each study has evaluated whether the underlying factor structure of the 

RBANS was consistent with the RBANS Index structure. Both a 5 factor structure to 

mirror the index organization and a single factor structure to replicate the overall score 

were investigated (Carlozzi et al., 2008; Duff et al., 2006; King et al., 2012).  Across 

diverse samples, including community dwelling older adults (Duff et al., 2006), veterans 

referred to a memory disorder clinic (Carlozzi et al., 2008), and patients with psychiatric 

disorders (King et al., 2012), CFA results have not supported a five or one factor 

structure. Notably across studies, immediate and delayed memory indices were highly 

correlated, which contributed to a misfit between the underlying structure and 

expectation. This is not surprising given that numerous factor analytic studies 

investigating memory have found a single memory dimension that encompasses both 

immediate and delayed memory (Delis, Jacobson, Bondi, Hamilton, & Salmon, 2003; 

Dowling, Hermann, La Rue, & Sager, 2010; Hoelzle, Nelson, & Smith, 2011). 
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 It is noteworthy that some researchers have expressed concern that CFA might not 

be an ideal method to evaluate the construct validity of measures (Lee & Aston, 2007). It 

has been observed that traditional fit indices (e.g., χ
2 

test) reject models that are only 

trivially misspecified when the sample size is large (Bentler & Bonett, 1980). 

Additionally, confirmatory factor analysis may lack sensitivity for relationships between 

variables that may be highly discreet or complex since these must be specified by the 

researcher a-priori (Hoelzle & Meyer, 2013). As an illustration, this is a possible 

explanation for why omnibus Big Five personality inventories have not replicated when 

evaluated with CFA models (Church & Burke, 1994; Gignac Bates, & Jang, 2007; 

McCrae et al., 1996), despite the influence of factor analytic methods on the development 

of the Big Five model of personality. Previously described RBANS CFA studies should 

be interpreted with this in mind. In other words, the failure of CFA methods to support 

specified models does not necessarily mean the battery is invalid: rather, it raises 

questions about the relationship between subtests and composition of indices. This 

conclusion suggests alternative methods should be considered to evaluate construct 

validity.  

Exploratory factor analysis 

 

 

 

 EFA is an alternative method to evaluate construct validity. In contrast to CFA, 

which is theory driven, EFA is a data driven method of variable reduction where multiple 

variables (e.g. subtests) are organized into factors or components that reflect relationships 

(e.g. cognitive constructs) between the variables (Goldberg & Velicer, 2006). EFA 

methods have been utilized to investigate the RBANS factor structure 6 times (see Table 
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2; Carlozzi et al., 2008; Duff et al., 2006; Garcia et al., 2008; King et al., 2012; Schmitt et 

al., 2010; Wilde, 2006). A cursory review of this broad literature provides evidence that 

different factor structures have been reported, which clearly raises the question of 

whether the RBANS has an invariant factor structure. 
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Table 2  

RBANS Factor Analytic Studies Overview 

Study Sample Subtests 

Analyzed 

Method Rotation Extraction 

Criteria 

Latent Constructs  

(% Variance Explained) 

Wilde 

(2006) 

210 

Patients 

with CVA 

 

12 PCA 

 

Varimax EV > 1 

Scree Plot 

1. Language/ Verbal 

Memory (37%) 

 

2. Visual / Visual Memory 

(24%) 

 

Duff 

et al. 

(2006) 

824 

Normal 

Aging 

Adults 

 

9 CFA 

ML EFA 

 

Varimax 

Promax 

EV > 1 

Scree Plot 

1. Verbal Memory 

 

2. Visual Processing 

 

(60% Combined) 

 

Garcia  

et al. 

(2008) 

351  

Memory 

Clinic 

Patients 

 

12 PCA 

 

Direct 

Oblimin 

EV > 1 

Scree Plot 

1. Memory (39.5%) 

 

2. Visuomotor Processing 

(13.51%) 

 

3. Verbal Processing 

(8.42%) 

 

Carlozzi 

et al. 

(2008) 

175 

Memory 

Clinic 

Patients 

 

11 CFA 

ML EFA 

 

Varimax Chi-Square  

Test 

Variance 

Explained 

1. Memory, visual motor, 

verbal fluency (89.4%) 

 

2. Visuospatial & 

Attention (10.6%) 

 

Schmitt 

et al. 

(2010) 

636  

Memory 

Clinic 

Patients 

12 PCA 

PAFA 

 

Varimax 

Promax 

EV > 1 

Scree Plot 

1. Memory & Learning 

 

2. Visuospatial & 

Attention 

 

(54.4% Combined) 

 

King  

et al. 

(2012) 

167  

Patients 

with SCZ 

12 CFA 

PAFA 

PCA 

Promax EV > 1 

Scree Plot 

SE of Scree 

Horn’s PA 

MAP 

 

1. Memory (13.9%) 

2. Speed of Processing 

(8.2%) 

Note. CVA = Cerebral vascular accident; SCZ = Schizophrenia; PCA = Principal components analysis; ML = 

Maximum likelihood; EFA = Exploratory factor analysis; EV = Eigenvalue; CFA = Confirmatory factor analysis; 

PAFA = Principal axis factor analysis; SE of Scree = Standard error of the scree plot; PA = Parallel analysis;  

MAP = Minimum average partial 
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 Inspection of the pattern of factor loadings in Table 3, reveals similarities and 

discrepancies across studies. Published factor loadings with methodological similarities 

are grouped accordingly in Table 3. Importantly, actual values of factor loadings vary 

dependent upon methodology utilized (e.g. PCA vs. ML EFA, rotation) so specific 

loadings cannot be equated across all samples (Tabachnick & Fidell, 2013). Nevertheless, 

across studies, it appears that the key primary loadings on one factor typically reflect 

memory functioning (List Learning, Story Memory, List Recall, List Recognition, Story 

Recall). The Figure Recall subtest loading varies across studies between a first primarily 

memory factor and second factor typically reflecting visuospatial abilities or attention. 

The greatest discrepancy across studies is how processing speed, language and attention 

tasks are associated with factors.  
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Table 3 

RBANS Factor Analytic Study Factor Loadings and Eigenvalues 

RBANS 

Subtests 

Wilde 

(2006)a 

Schmitt et al. 

(2010)a 

King et al. 

(2012)a 

Duff et al. 

(2006)b 

Carlozzi et al. 

(2008)b 

Garcia et al. 

(2008)c 

 
1 2 1 2 1 2 1 2 1 2 1 2 3 

List 

Learning 
.84 .14 .85 -.05 .85 -.05 .66 .27 .66 .42 .24 -.13 .54 

Story 

Memory 
.75 .07 .65 .16 .65 .16 .76 .23 .85 .26 .56 .11 .36 

Figure 

Copy 
.02 .92 .02 .53 .02 .53 .11 .64 .26 .65 .04 .91 -.14 

Line 

Orientation 

.11 .82 .01 .59 .01 .59 .14 .53 .23 .82 -.05 .85 .05 

Picture 

Naming 

.67 .05 -.07 .57 -.07 .57 ‒ ‒ .37 .52 .19 .08 .55 

Semantic 

Fluency 
.70 .21 -.01 .53 -.01 .53 ‒ ‒ .55 .40 .20 .29 .51 

Digit Span .48 .07 .16 .30 .16 .30 ‒ ‒ .30 .34 -.22 .08 .71 

Coding .41 .71 .21 .46 .21 .46 .31 .53 .59 .62 .11 .67 .27 

List Recall .74 .22 .86 -.11 .86 -.11 .71 .20 .67 .25 .84 -.08 .01 

List 

Recognitio

n 

.78 .15 .74 -.02 .74 -.02 .56 .19 .59 .42 .59 .05 .23 

Story 

Recall 
.77 .24 .71 .20 .71 .20 .80 .25 .77 .33 .87 .01 .01 

Figure 

Recall 

.23 .79 .28 .44 .28 .44 .37 .57 .56 .49 .82 .16 -.20 

Eigenvalue 5.33 1.98 5.39 1.06 5.39 1.06 4.09 1.29 17.2 2.04 4.74 1.62 1.01 

Note. Primary factor loadings are in boldface. Duff (2006) excluded Digit Span, Picture Naming, and Semantic Fluency subtests 

from analyses. 
a = Pattern matrix factor loadings after varimax rotation in PCA. b = Factor loadings after varimax rotation in maximum likelihood 
EFA. c = Pattern matrix factor loadings after direct oblimin rotation in PCA. 
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 Researchers have posited that the previously described inconsistent RBANS 

factor structures reflect sample specific differences  (see Table 4; Duff et al., 2006; 

Garcia et al., 2008; King et al., 2012; Schmitt et al., 2010; Wilde, 2006). It has been 

argued that underlying sample characteristics (e.g. normal cognitive functioning, memory 

impairment, psychiatric diagnoses) obscure the underlying cognitive constructs that may 

emerge in EFA and therefore impact the resulting solution (Delis, Jacobson, Bondi, & 

Hamilton, 2003). Garcia and colleagues (2008) reported a 3 factor EFA solution from a 

mixed clinical sample of outpatients with memory disorders and suggested this solution 

differed in terms of sample characteristics when compared to other RBANS factor 

analytic studies.  Duff and colleagues (2006) and King and co-authors (2012) offered a 

highly similar explanation for factor solution differences. Simply stated, authors of 

previous factor analytic studies proposed that solutions vary as a function of underlying 

sample characteristics. However, as demonstrated in Table 2, researchers found very 

similar solutions with clinical and non-clinical groups suggesting that alternative factors 

(e.g. methodology) might contribute to subtle solution discrepancies.  
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Table 4 

 

Sample Characteristics of Published RBANS Factor Analytic Studies 

 

Study Sample Gender Age (SD) Ethnicity/Race 

Wilde (2006) 210 Clinical 

Inpatients with 

CVA in Rehab 

Unit 

50.5% Female 

49.5% Male 

61.91(13.97) 

 

59.5% Caucasian 

41.9% African American 

7.6% Hispanic 

1.0% Asian 

 

Duff et al. (2006) 824 Non-Clinical 

Community 

Dwelling Adults 

 

57% Female 

43% Male 

73.4(5.8) 86% Caucasian 

Garcia et al. (2008) 351 Clinical 

Outpatients with 

Memory Disorders 

 

58.7% Female 

41.3% Male 

77.9(7.5) 99% Caucasian 

Carlozzi et al. 

(2008) 

 

175 Clinical 

Outpatient 

Veterans  in VA 

Memory Center 

 

0%  Female 

100% Male 

74.1(8.0) 71.4% Caucasian  

28.6%  African American 

Schmitt et al. 

(2010) 

636 Clinical 

Outpatients  with 

Dementia or MCI 

60.9%Female 

39.1%  Male 

76.61(7.29) 88% Caucasian  

4% African American 

 1% Hispanic 

0.5% Asian American 

7% Unknown 

 

King et al. (2012) 167  Clinical 

Inpatients with 

Schizophrenia 

11.4% Female 

88.6% Male 

42.76(9.73) 44% Caucasian 

27% African American 

14% Hispanic/Latino 

6.6% Multiethnic 

4.8% Asian/Pacific 

Islander   

4.2% other 

 

 

 

 

 The belief that sample based differences might ultimately impact the factor 

structure, is consistent with ideas put forth by Delis, Jacobson, Bondi, & Hamilton 

(2003). They investigated the factor structure of California Verbal Learning Test (CVLT; 

Delis, Kramer, Kaplan, & Ober, 1994, 2000) in samples of (a) healthy participants, (b) 

individuals with Alzheimer’s disease (AD), and (c) individuals with Huntington’s 
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disease. The CVLT assesses immediate and delayed memory through a verbally 

administered word list so based upon cognitive theory the expectation was that a two 

factor solution reflecting immediate and delayed memory would emerge. The CVLT 

factor structure differed in the clinical sample of patients with Alzheimer’s disease. A one 

factor solution was present in that sample, whereas a two factor solution was observed in 

the two other groups.  

 Based on the previously described findings, Delis and colleagues (2003) 

concluded that utilization of factor analysis for validity testing was an “outdated 

approach.” In response to this position, Larrabee (2003) clarified why different solutions 

emerged when the CVLT factor structure was investigated across different samples. He 

highlighted that the sample of patients with AD had memory issues that could be 

characterized as rapid forgetting, which may have produced a floor effect that 

confounded results. Larrabee reiterated that factor analysis is an important method to 

evaluate clinical tests and highlighted the importance of careful subject selection and 

attention to methodological decisions. In regards to the current measure of focus, two 

samples from memory clinics demonstrated that immediate and delayed memory tasks 

loaded onto a primary memory component (Carlozzi et al., 2008; Garcia et al., 2008). In 

both studies individuals were not separated into groups based upon diagnosis (e.g. 

disorders with significant delayed memory impairment) which likely prevented a floor 

effect. Duff and colleagues (2006) demonstrated this same pattern in which immediate 

and delayed memory tasks loaded onto a single factor in a non-clinical sample. 

 The issue of whether analyzing patient and non-patient samples should result in 

consistent factor solutions has been thoroughly explored by researchers interested in 
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measures that quantify mood and personality features. For example, O’Connor (2002) 

investigated the factor structure of 37 different personality and psychopathology 

measures. Multiple clinical and non-clinical samples were identified and each sample was 

factor analyzed using empirically supported methods (described in greater detail below). 

O’Connor (2002) conclusively identified that factor structures generally replicated across 

clinical and non-clinical samples for each measure when appropriate methods were 

utilized. A similar finding was reported by Hoelzle and Meyer (2009) where an invariant 

factor structure underlying the Personality Assessment Inventory (Morey, 1991) was 

reported across clinical and non-clinical samples. Therefore, while researchers purport 

that different samples often yield different factor structures, it appears that this variability 

may actually reflect methodological decisions made by researchers and not underlying 

sample characteristics. The following sections will briefly describe methodological issues 

that may be contributing to inconsistent factor solutions across different samples.   

Extraction Method 

 

 

 

 It is often overlooked that there are multiple way to conduct EFA. Factor analysis 

(FA) and principal components analysis (PCA) are both data driven approaches to 

identify underlying dimensions, but they differ in theory. Traditional FA extracts factors 

that are comprised of common variance, whereas PCA extracts components that consist 

of unique, shared, and error variance. Mathematically, the primary difference is what 

value is placed on the main diagonal of the correlation matrix (Goldberg & Velicer, 2006; 

Tabachnick & Fidell, 2013). In FA, the covariance between variables is analyzed and 

error and unique variance is excluded: values in correlation matrix diagonal are 
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communalities of the shared variance between variables (e.g., values between 0 and 1; 

Tabachnick & Fidell, 2013). In PCA, ones are in the diagonal of the correlation matrix 

and all variance, including error and unique variance, is disseminated to the components 

(Tabachnick & Fidell, 2013). Since error and unique variance are omitted in FA, the 

observed variables and observed correlation matrix are not fully reproduced, the factors 

are approximates.  

 Tabachnick and Fidell (2013) advise that if the research goal is to determine a 

theoretical solution without variability influenced by error and unique variance then FA 

should be selected, whereas, PCA will produce a unique mathematical solution 

accounting for test score error. On the other hand, others suggest the difference between 

the two methods does not meaningfully impact results (Goldberg & Velicer, 2006; 

Hoelzle & Meyer, 2013). Consistent with this position, two RBANS factor analytic 

studies reported that when both FA and PCA were conducted similar results were 

obtained (Carlozzi et al., 2008; King et al., 2012). This suggests that decisions pertaining 

to extraction method are unlikely to account for differences observed when reviewing 

RBANS factor analytic studies.   

Extraction criteria 

 

 

 

 An important methodological decision when conducting factor analysis is to 

determine how many factors will be retained. Four previous factor analytic RBANS 

studies (Duff et al., 2006; Garcia et al., 2008; Schmitt et al., 2010; Wilde, 2006) utilized 

the two most common methods to determine factor retention, factors with eigenvalues 

greater than one (i.e., Kaiser’s criterion; Kaiser, 1960) and visual examination of a scree 
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plot (Cattell, 1966). Carlozzi and colleagues (2008) reported that criteria for judging the 

number of factors to extract included investigation of Maximum Likelihood and chi 

square test statistics, which ultimately resulted in a two factor solution.  

 The methods used by researchers to investigate the RBANS factor structure are 

somewhat inconsistent with best practice guidelines (Fava & Velicer, 1992a, 1992b; 

Goldberg and Velicer, 2006; Hoelzle & Meyer, 2013; Hubbard & Allen, 1987; Zwick & 

Velicer, 1982, 1986). In brief, empirical research suggests that multiple methods of factor 

extraction should be utilized in order to identify a reliable factor solution which include: 

interpretation of the scree plot, Horn’s (1965) parallel analysis, and the Minimum 

Average Partial (MAP) Procedure (Velicer, 1976). King and colleagues (2012) are the 

only researchers that followed these recommendations for factor extraction. They utilized 

five methods (Kaiser’s criterion, interpretation of the scree plot, parallel analysis, MAP 

procedure, and evaluation of the Standard Error of Scree) to determine the number of 

factors in the solution. These guidelines did not converge; Kaiser’s criterion indicated 

that two factors should be retained and all other methods suggested a one factor solution. 

Despite converging evidence that one factor should be retained, King (2012) selected a 

final solution that was supported only by Kaiser’s criterion, a factor retention strategy 

that is not supported by empirical evidence. It is a significant issue that researchers have 

not uniformly utilized empirically-supported guidelines to determine how many factors to 

retain. Research suggests that neglect of empirical guidelines for factor retention might 

result in inconsistent findings across studies (Hoelzle & Meyer, 2009; O’Connor, 2002). 

It is possible that if empirically-supported procedures were implemented, an invariant 

factor structure may emerge.   



 27 
 

Rotation 

 

 

 

 Determining how extracted factors will be rotated prior to interpretation is also an 

important methodological decision, and recommendations clearly indicate that when 

factors (e.g., distinct cognitive constructs) are known to be correlated oblique rotation 

(e.g. Direct Oblimin) should be selected (Tabachnick & Fidell, 2013). Interestingly, only 

one RBANS factor analytic study utilized an oblique method of rotation (Garcia et al., 

2008). Four of the prior studies (Carlozzi et al., 2008; Duff et al., 2006; Schmitt et al., 

2010; Wilde, 2006) utilized orthogonal rotational (e.g. Varimax), which assumes that 

factors are uncorrelated. This is a questionable decision because by nature cognitive 

constructs are correlated with each other (e.g., attention is meaningfully related to 

memory functioning).  Researchers likely selected varimax rotation because it often 

results in easily interpreted solutions by attempting to maximize high and minimize small 

loadings (Hoelzle & Meyer, 2013). A third rotation, Promax, which involves aspects of 

oblique and orthogonal rotation, was utilized in three studies (Duff et al., 2006; King et 

al., 2012; Schmitt et al., 2010). In short, this procedure rotates orthogonal factors to 

oblique positions (Tabachnick & Fidell, 2012). Promax rotation, while typically referred 

to as an oblique rotation actually appears to be more similar to a basic orthogonal 

rotation.  

 It is unclear how researchers’ decisions to use either orthogonal or oblique 

rotation might impact findings. If obliquely rotated factors are not highly correlated, they 

will approximate an oblique solution. This likely explains why Duff and colleagues 

(2006) and Schmitt and colleagues (2010) reported that varimax and promax rotations 
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resulted in similar solutions. On the other hand, to the degree that obliquely rotated 

factors are highly correlated, the solution is likely to diverge with an orthogonally rotated 

solution. In any event, there is a strong theoretical rationale for using oblique rotation 

given the well documented relationships between cognitive abilities.   

Current Study and Significance 

 

 

 

 Based upon a review of literature, it is clear that discrepant RBANS factor 

structures have been reported. A common factor emerges across studies that reflects the 

latent construct of memory, but questions remain as to whether an invariant factor 

structure might be present. While many authors (Duff et al., 2006; Garcia et al., 2008; 

King et al., 2012; Schmitt et al., 2010; Wilde, 2006) have suggested discrepant findings 

are related to sample-based issues, there is a body of literature that suggests 

methodological issues, specifically factor retention decisions, may meaningfully 

contribute to these differences (Hoelzle & Meyer, 2009; Larrabee, 2003; O’Connor, 

2002). The overarching goal of the present study was to evaluate whether an invariant 

RBANS factor structure might emerge after systematically analyzing different RBANS 

datasets using empirically supported methods (Goldberg & Velicer, 2006; Hoelzle & 

Meyer, 2013; Tabachnick & Fidell, 2013). If a replicable factor structure is identified, 

novel construct component scores (i.e., empirically derived composite scores) could be 

generated that would offer clinically relevant information about patients’ cognitive 

functioning. Theoretically, these scores should be more reliable and provide clinically 

relevant information regarding an individual’s neurocognitive functioning. Important 

follow-up research might then evaluate the incremental gain of using empirically-based 
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factor scores over traditional RBANS index scores in identifying cognitive symptoms 

associated with neurologic and psychiatric conditions. 

To achieve this goal, the present study sought to obtain RBANS data from 

multiple adult samples and proposed that a consistent factor structure might emerge 

between several adult clinical and non-clinical samples. The congruence of factor 

solutions could then be investigated by conducting orthogonal vector matrix comparisons 

in order to determine whether a structure reliably emerges across samples (Barrett, 1986). 

The outcome of this study could clarify the factor structure of the RBANS, the 

relationships between subtests and indices, and the construct validity of this measure. 

Due to the expansive use of this neuropsychological instrument, a definitive 

conceptualization of this instrument may have significant clinical implications in that it 

would clarify the relationships between subtests and indices. In other words, it would 

foster more accurate interpretation of RBANS data.    

Method 

 

 

 

 The present study sought to reanalyze previously published RBANS data and 

evaluate a new clinical sample that has not yet been investigated. The latter sample 

consists of archival clinical data obtained from a memory clinic (Gundersen Health 

System) and is described below. Carlozzi and colleagues (2008) published their RBANS 

correlation matrix so it was possible to include that data in analyses. Wilde (2006) had 

previously supplied the correlation matrix from his RBANS factor analytic study for a 

prior research project (Hoelzle, 2008) so that sample is also included in analyses. 

Additionally, a literature review was conducted to locate additional published RBANS 
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subtest correlation matrices utilizing raw scores. Over 50 articles were reviewed, and no 

additional matrices were located. 

 Through personal communication, the correlation matrices describing the 

relationships between RBANS subtests were requested from each of the remaining four 

corresponding authors of the previously published RBANS factor analytic studies (Duff 

et al., 2006; Garcia et al., 2008; King et al., 2012; Schmitt et al., 2010). Kevin Duff 

graciously supplied the RBANS correlation matrix that was previously analyzed (Duff et 

al., 2006) and numerous other correlation matrices, of which one sample was of sufficient 

size for further analyses (Duff,  Hobson, Beglinger, O'Bryant, 2010). The remaining 

authors did not provide correlation matrices, so it was not possible to investigate those 

samples (Garcia et al., 2008; King et al., 2012; Schmitt et al., 2010). 

Samples and Procedures 

 

 

 

 Samples. 

 

 

 

 The samples are independently described in the following sections. Archival data 

from patients assessed in the Gundersen Health System Memory Center in La Crosse, 

Wisconsin was obtained and analyzed. Institutional Review Board Approval was 

obtained for this archival study from both Gundersen Health System and Marquette 

University. The author of this study collected and de-identified the neuropsychological 

data and entered all testing results into SPSS version 20 database (SPSS, Inc., Chicago, 

IL). The patients within this sample were evaluated by a multidisciplinary team in a 

comprehensive memory assessment clinic. The Gundersen Health System Memory 
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Center sample included 393 patients who were evaluated between January 1, 2009 and 

June 1, 2013. Participants with significant cognitive impairment [e.g., Mayo Short Test of 

Mental Status (Kokmen, E., Naessens, J. M., & Offord, K. P., 1987) score <14 or severe 

intellectual disability, n = 48] were administered an abbreviated neuropsychological 

battery that did not include the RBANS and are therefore excluded from this study. 

Patients included in this study (n = 345) ranged in age from 44 to 96 years (mean = 

75.29, SD = 8.68). Fifty-three percent (n = 186) of this sample was female. Estimates of 

premorbid intellectual functioning indicated this sample was within the average range 

[Wechsler Test of Adult Reading (WTAR; Psychological Corporation, 2001) n = 130, M 

= 95.43(15.66); ACS Test of Premorbid Functioning (TOPF; Wechsler, 2009) n = 217, M 

= 94.08(11.23)]. The majority this sample completed high school [M = 12.66(3.10)]. This 

sample was diverse diagnostically, though the majority of patients received a diagnosis of 

dementia (Alzheimer’s Disease 24.9%, Dementia NOS 18.8%, Cognitive Disorder NOS 

13.2%, Vascular Dementia 10.9%, Frontotemporal Dementia 7.6%, Mild Cognitive 

Impairment 7.1%, Normal/No Impairment 5.1%, Mixed Dementia 5.1%, Lewy Body 

Dementia 2.3%, Parkinson’s Dementia 1.5%, Pervasive Developmental Disability 1.5%, 

ADHD 0.8%, Wernicke-Korsakoff’s 0.3%). Racial and ethnic identity was not reliably 

available for this sample in electronic medical records, though the sample was 

predominantly Caucasian and not of Hispanic origin. 

 A target sample size of 300 was selected based upon a review of published 

benchmark recommendations of sample size for PCA. Based upon empirical literature 

review, Hoelzle and Meyer (2013) reported that each of the following have been 

recommended as sufficient sizes; 100 to 150 participants (Gorsuch, 1983; Kline, 1979), 
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200 to 250 participants (Cattell, 1978; Guilford, 1954), 300 participants (Tabachnick & 

Fidell, 2012), or 500 participants (Comrey & Lee, 1992). Velicer and Fava (1998) 

empirically investigated the effect of various sample sizes (e.g., 50, 100, 150, 200, 400, 

or 800) on factor loadings, and identified that low, but non-trivial, loadings (.40) were 

significantly impacted by smaller sample sizes (e.g., 50-200). Previous factor analytic 

studies of the RBANS have demonstrated some low primary factor loadings (see Table 

1). Based upon review of these recommendations, the intended enrollment for the new 

sample was to be at least 300 participants. Additionally, this sample size is in line with 

previously published RBANS factor analytic studies that have included 167 to 864 

participants (see Table 4). 

 All remaining patients (N = 345) underwent a comprehensive neuropsychological 

evaluation at time of diagnosis. This intentionally selected clinical sample demonstrates 

homogeneity in some criterion (e.g., age range) and heterogeneity in other criterion (e.g., 

resulting diagnosis). The balance of homogeneity and heterogeneity of a sample in a 

factor analytic study is important for generalizability (Goldberg & Velicer, 2006). 

Furthermore, this specific memory center sample was selected in order to ensure that 

variables exhibit a spread in scores necessary for correlations to be strong and subsequent 

factors to emerge in the analysis (Tabachnick & Fidell, 2013). Additionally, this sample 

was selected in order to avoid the occurrence of floor effects (e.g., scores that cluster at 

the lowest values possible) or ceiling effects (e.g., majority of scores at the highest end of 

the distribution) since restriction in range directly affects the strength of factor loadings 

and strength of correlations (Fabrigar et al., 1999). For ease of identification, in 
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subsequent writing and tables this novel clinical sample will be referred to as the “Vogt 

sample.” 

 Sample characteristics of the previously published studies are briefly described in 

this section. Carlozzi and colleagues (2008) investigated the factor structure of the 

RBANS utilizing data from 175 veterans seen in a memory clinic. Patients within the 

Carlozzi (2008) sample were on average 74.1 (8.0) years old, primarily Caucasian 

(71.4%), male (100%), and had 11.3 (4.0) years of education. Diagnosis resulting from a 

comprehensive memory evaluation varied (Cognitive Disorder NOS 23.2%, Alzheimer’s 

Disease 13.7%, Mild Cognitive Impairment 19.6%, Normal/No Impairment 15.0%, 

Vascular/ Possible Vascular Dementia 8.9%, 6.0% Dementia NOS, Mixed Dementia 

5.4%, Lewy Body Dementia 1.1%, Frontotemporal Dementia 0.6%). 

 Wilde (2006) investigated the factor structure of the RBANS utilizing a sample of 

210 patients (50.5% female) who had an ischemic stroke and were completing inpatient 

rehabilitation. Average age was 61.9 (13.97) years, average education was 12.27 (3.06), 

and patients were racially and ethnically diverse (Caucasian 59.5%, African American 

42%, Hispanic 7.6%, and Asian 1%). Location of stroke varied within this sample (Left 

37%, Right 44%, Bilateral 19%), as did lesion location (Cortical 38%, Subcortical 31%, 

Posterior fossa 16%, Multifocal 15%). 

 RBANS data from a non-clinical community dwelling elderly group of 

volunteers, commonly referred to as the Oklahoma group (n = 796), were investigated in 

a previous factor analytic study (Duff et al., 2006), an age-and-education correction study 

(Duff et al., 2003) and numerous other RBANS studies (Duff et al., 2009; Duff et al., 

2008; Duff et al., 2007; Duff et al., 2005; Patton, Duff, Schoenberg, Mold, Scott, & 



 34 
 

Adams, 2005). The correlation matrix provided by Duff had a slightly different sample 

size than was reported in initial publication. Given this, sample characteristics presented 

in this research are approximated based on Duff and colleagues published factor analysis. 

Individuals within this sample were estimated to be on average 73.4 (5.8) years old and 

primarily Caucasian (86%). There were slightly more women than men (Female 58%). 

The majority of these participants were cognitively intact and likely to have completed at 

least high school (59%).  

 An additional sample of RBANS data was provided by Duff that has not 

previously been utilized in a factor analytic study. Duff, Hobson, Beglinger, and 

O’Bryant (2010) investigated the clinical utility of the RBANS in differentiating 

individuals with Mild Cognitive Impairment (MCI; n = 72) and individuals that are 

cognitively intact (n = 71). The correlation matrix with RBANS data provided was 

comprised of a slightly larger sample size than reported in the publication (N = 173) so 

sample characteristics are again approximates based on previously published material. 

Average age of the entire sample was approximately 78.7 (7.7) years and mean education 

was 15.4 (2.5) years (Duff et al., 2010). Individuals were primarily women (81%) and all 

were Caucasian. 

Procedures: Statistical Analysis 

 

 

 

 PCA was conducted to evaluate the underlying dimensional structure of each 

sample. While this method technically extracts components, the term factor will be used 

interchangeably since this is common in the literature. As previously described, the goal 

of PCA is to investigate the correlations between variables (i.e., subtests) and organize 
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this information into a smaller number of factors that infer underlying constructs. The 

methodological steps and decisions in the current project are presented below.  

 Tabachnick and Fidell (2013) caution that samples should not be pooled in 

analyses since they may differ in unknown ways that might impact the underlying factor 

structure (or cause it to subtly shift) so each sample was investigated individually. Prior 

to conducting analyses, the Kaiser-Meyer-Olkin (KMO) statistical index was reviewed to 

evaluate whether there was problematic collinearity between variables (Kaiser, 1981). A 

KMO statistic greater than .70 indicates that the data is well suited for analysis due to the 

indication that variance is shared across variables and not only between pairs of variables 

(Hoelzle & Meyer, 2013). All previously published samples were appropriate for analysis 

(Carlozzi et. al., 2008, KMO = .91; Duff et al., 2006, KMO = .88; Duff et al., 2010, 

KMO = .83; Wilde, 2006, KMO = .87). The Vogt sample KMO was .87, which also 

indicates the data was suitable for PCA. 

 In PCA the greatest amount of shared variance is identified and assigned to the 

first factor, the next largest amount of shared variance is brought in line with the second 

component, and this process continues for subsequent components until all variance is 

accounted for (Tabachnick & Fidell, 2013). The greatest amount of variance is always 

extracted in the first component and less in subsequent components, and the amount of 

variance credited to each is reflected in a standardized eigenvalue (Hoelzle & Meyer, 

2013). It is necessary to consider the number of variables present to determine the 

amount of variance explained by an eigenvalue. In the current study, there are twelve 

RBANS subtests so if the first component has an eigenvalue of 8.00 it accounts for 

66.67% (e.g. 8.00/12 * 100) of the total variance.  
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 A key methodological decision in EFA is determining how many factors to 

extract from the observed correlation matrix. While extracting too many factors may 

result in a solution that more closely recreates the original correlation matrix, it increases 

the odds that meaningful factors will split and result in unreliable components (Fava & 

Velicer, 1992b). If a parsimonious solution is sought, the investigator may risk extracting 

too few factors, combining distinct components and oversimplifying the solution (Fava & 

Velicer, 1992b). Employing empirically supported extraction techniques improves the 

likelihood that a reliable solution will emerge across diverse samples (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Hoelzle & Meyer, 2009; O’Connor, 2002). Supported and 

unsupported procedures will be presented in the following paragraphs. 

 A simple procedure often used to guide retention decisions is Kaiser’s Criterion, 

which states that all components with eigenvalues greater than one should be retained 

(Kaiser, 1960). The problem with this approach is that the number of eigenvalues greater 

than one is directly related to the number of variables analyzed. The number of 

components retained typically ranges between one-fifth to one-third of the total number 

of variables analyzed, regardless of the actual underlying structure of data (Zwick & 

Velicer, 1982). If Kaiser’s criterion were the only extraction utilized in the present study, 

it might be predicted that two to four components would be expected to have eigenvalues 

greater than one. Published RBANS factor analytic studies support this prediction, 

Kaiser’s criterion consistently recommended retention of two or three components (see 

Table 2; Carlozzi et al., 2008; Duff et al., 2006; Garcia et al., 2008; King et al., 2012; 

Schmitt et al., 2010; Wilde, 2006). Despite this method being commonly utilized, 

empirical research conclusively demonstrates that Kaiser’s criterion regularly results in 
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over-extraction and inconsistent component solutions (Fabrigar et al., 1999; Hubbard & 

Allen, 1987; Preacher & MacCallum, 2003; Zwick & Velicer, 1982).  

 Visual examination of the scree plot, or eigenvalue plot, is another frequently 

utilized technique for component extraction (Cattell, 1966). The researcher examines the 

scree plot to look for the elbow, or sharp break in the curve since the earlier eigenvalues 

will always be larger than subsequent values. While this approach works well when there 

are unique factors that account for significant amounts of variance, the technique tends to 

be highly subjective, so alternative factor extraction or retention guidelines should be 

utilized as well (Goldberg & Velicer, 2006). When factor differentiation is weak, 

researchers unreliably identify the sharp break between descending eigenvalues (Linn, 

1968; Zwick & Velicer, 1982). 

 Parallel analysis (PA) also examines eigenvalues, but is considered a more 

reliable technique since sampling error is considered (Horn, 1965). PA involves 

generating correlation matrices from random data that includes the same number of 

variables and subjects as the actual correlation matrix. The eigenvalues from the 

randomly generated data are then compared to the actual eigenvalues and only factors 

with eigenvalues greater than those from the random data are retained. Simulated 

empirical investigations have reported that PA is one of the most accurate methods in 

determination of the dimensions present in PCA (Crawford, Green, Levy, Lo, Scott, 

Svetina, Thompson, 2010; Velicer et al., 2000; Zwick & Velicer, 1986).   

 The Minimum Average Partial (MAP) procedure is an alternative extraction 

technique initially designed for PCA (Velicer, 1976). The MAP procedure sequentially 

removes each component from the original correlation matrix and then creates a partial 



 38 
 

correlation matrix. As each component is removed, the average of the squared partial 

correlations is computed. As long as each component contains common variance, the 

average of the squared partial correlations should decrease. This value increases when the 

component consists of unique variance, and at that point suggests over-extraction. In 

other words, the suggested number of components to retain is determined at the point at 

which the average squared partial correlation is smallest. Empirical research has 

determined that the MAP procedure is the most reliable extraction technique (Zwick & 

Velicer, 1982, 1986). 

 In summary, there are a number of different procedures that researchers have 

followed to determine how many factors should be extracted in PCA. Unfortunately, the 

methods most often utilized, Kaiser’s criterion and the interpretation of scree plots, are 

most likely to result in non-replicating solutions. Factor retention decisions in the present 

study are based upon PA and MAP procedure results.  

 After determining how many factors will be extracted, the next step is to rotate 

the matrix of loadings to aid interpretability (Golberg & Velicer, 2006). An orthogonal 

rotation creates a simple structure by producing 90-degree angles between all 

components so that the correlations between them are zero. In contrast, oblique rotation 

does not distort relationships between components allowing for the actual relationships 

between constructs to emerge (Hoelzle & Meyer, 2013). As noted previously, the 

decision was made to implement oblique rotation for theoretical reasons and because 

empirical research has demonstrated that cognitive constructs are correlated (Carroll, 

1993; Deary, 2000; Hoelzle, Nelson, & Smith, 2010). In the present study an oblique 

rotation, Direct Oblimin, was utilized. Finally, factor solutions were carefully reviewed to 
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determine what latent constructs have been identified. Interpretatively, items with strong 

loadings will reflect the cognitive construct whereas those variables with loadings near 

zero will indicate the absence of a construct.  

 Utilization of empirically validated methods is likely to result in the most reliable 

and robust solutions, however, it does not quantify the similarity of solutions obtained 

from different samples. Often CFA is utilized to determine fit of a solution across 

samples, however, for reasons previously described (e.g. poor sensitivity to discreet 

relationships, misfit in large samples) it is not always the most optimal approach. 

Orthogonal vector matrix comparison (Barrett, 1986) is an alternative method to compare 

the congruency of multiple factors across samples. Implementation of this technique 

evaluated the similarity of RBANS factor solutions beyond visual examination of 

loadings (as previous RBANS factor analytic studies have done). This is an important 

aspect of this research because solutions can sometimes appear to be inconsistent when 

they are actually similar. Orthogonal vector matrix comparison methods rotate one 

sample structure in order to align it with a solution from another sample (Barrett, 1986; 

Barrett, Petrides, Eysenck, & Eysenck, 1998). Rotation occurs to maximally align the 

solutions in three dimensional space, without distorting the original component solutions, 

when a sample solution is compared to a target solution (Barrett, 1986; Barrett et al., 

1998; Hoelzle & Meyer, 2009; Hopwood & Donnellan, 2010).  

 Vector matrix comparison methods result in congruence coefficients that indicate 

how well factors match one another (Hopwood & Donnellan, 2010). Recommendations 

for interpreting congruence coefficients vary somewhat. Barrett (1998) suggests 

benchmarks that are at least .80 to .95 to demonstrate good similarity and coefficients at 
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.98 and above indicate an identical factor structure between samples. More refined 

interpretive guidelines have been put forth as well; excellent = .98 – 1.00, good .92 - .98, 

borderline = .82 - .92, poor = .68 - .82 (MacCallum, Widaman, Zhang, & Hong, 1999). In 

the present study, orthogonal vector matrix comparisons were completed using Orthosim 

2.1 software (Barrett, 2005) to quantify the similarity of RBANS structure across 

different samples. 

 Comparison of single component structures requires a different statistical process 

than multidimensional component structures. Tucker’s Congruence Coefficient accounts 

for both the pattern and magnitude of loadings in order to determine if a single factor 

solution is replicated across samples (Levine, 1977; Korth & Tucker, 1975). Benchmarks 

for interpretation of congruence coefficients are reported as; similar = .85 - .94 and 

identical = .95 – 1.00 (Lorenzo-Seva & ten Berge, 2006). Additionally, single component 

structures can be compared using Pearson’s r when a solution has few small loadings 

(<.40) to, again, compare pattern and magnitude of loadings. Multiple small loadings 

within a factor will generate a large r value masking the impact of more significant 

loadings, so caution is warranted when utilizing Pearson’s r (Lorenzo-Seva & ten Berge, 

2006). In summary, conclusions regarding replication of invariant structure across diverse 

samples are based upon vector matrix comparisons, Tucker’s congruence coefficient, and 

Pearson’s r. 
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Results 

 

 

 

Factor Retention  
 

 

 

 PCA was conducted separately for each sample. The afore-mentioned factor 

retention guidelines (e.g. Kaiser’s Criterion of Eigenvalues >1, Cattell’s visual 

examination of the Scree Plot, Horn’s Parallel Analysis, and Velicer’s MAP) were 

considered and the respective number of components suggested by each are presented in 

Table 5. Not surprisingly given limitations previously discussed, Kaiser’s criterion and 

visual examination of the Scree Plot resulted in discrepant recommendations regarding 

how many factors to retain across samples. For example, Kaiser’s criterion and visual 

examination of the Scree Plot suggested retention of one, two, three, or four factors 

across and within samples. Whereas, PA and MAP indicated retention of either 1 or 2 

factors and demonstrated much greater consistency within samples. PA and MAP data 

analysis procedures are described further in the following paragraphs. Given that these 

methods are considered superior to others, two and one factor solutions will be further 

investigated. 
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 PA was conducted individually with each sample using O’Connor’s (2000) syntax 

and results are presented in Table 6. PA compares actual eigenvalues to eigenvalues from 

500 randomly generated datasets that have the same parameters as the actual data. In this 

analysis, 500 correlation matrices of random data were generated with the same number 

of subtests (e.g. 12) and matched sample size. PA recommends that a component should 

be retained when the actual eigenvalue is larger than the corresponding randomly 

generated eigenvalue. Zwick and Velicer (1986) recommends comparing actual 

eigenvalues to the 95
th

 percentile of randomly generated eigenvalues (as opposed to mean 

eigenvalue) to decrease risk of over-extraction in situations when sample sizes are small 

and expected factor loadings are low. In the present study, PA indicated retaining one 

factor in two samples (Carlozzi et al., 2008; Duff et al., 2010) and two factors in the other 

three samples (Duff et al., 2006; Wilde, 2006; Vogt). Interpretively, retention 

recommendations would not have changed if actual eigenvalues were compared to the 

mean PA eigenvalues as opposed to the 95
th

 percentile of randomly generated 

Table 5 

 

 Principal Components Analysis Extraction Criteria Results Summary 

 

 Carlozzi et al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde  

(2006) 

Vogt 

Sample Size 175 173 796 210 345 

EV >1 2 4 2 2 3 

Scree Plot 1 2 3 2 1 

PA 1 1 2 2 2 

MAP 1 - 2 1 1 - 2 2 1 - 2 

Note: EV = Eigenvalue, PA = Parallel Analysis, MAP = Minimum Partial Average; MAP ranges reflect 

minor differences between MAP procedures not exceeding .04 
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eigenvalues.  

 

 

 

 

Velicer’s MAP (1976) procedure was also conducted using syntax generated by 

O’Connor (2000). In this process, the average squared correlation is computed from each 

observed correlation matrix. Each component is then partialed out in a compounding 

fashion (e.g. meaning that in the first step one component is extracted, then in the second 

step two components are extracted) and the average squared partial correlation is 

computed at each step. The average squared partial correlation decreases as common 

variance is continually removed. When an extracted component is based upon unique 

Table 6 

RBANS Actual and Random Eigenvalues from Horn’s Parallel Analysis 

 Carlozzi et al. (2008) Duff et al.  

(2010) 

Duff et al.  

(2006) 

Wilde  

(2006) 

Vogt 

 Real 

EV 

M 95th 

EV 

Real 

EV 

M 95th 

EV 

Real 

EV 

M 95th 

EV 

Real 

EV 

M 95th 

EV 

Real 

EV 

M 95th 

EV 

 

1 6.51 1.45 1.56 4.63 1.46 1.57 5.00 1.20 1.25 5.33 1.41 1.51 5.27 1.31 1.39 

2 1.02 1.32 1.41 1.20 1.33 1.42 1.35 1.15 1.19 1.98 1.30 1.37 1.38 1.23 1.28 

3 .89 1.23 1.30 1.07 1.24 1.30 .98 1.11 1.14 .90 1.21 1.27 1.06 1.17 1.21 

4 .71 1.15 1.22 1.02 1.15 1.21 .82 1.07 1.10 .69 1.14 1.20 .82 1.11 1.15 

5 .58 1.08 1.13 .90 1.08 1.13 .74 1.04 1.07 .65 1.08 1.12 .67 1.06 1.11 

6 .47 1.01 1.06 .76 1.02 1.07 .59 1.01 1.03 .50 1.02 1.07 .57 1.01 1.05 

7 .41 .95 1.00 .66 .95 1.00 .56 .98 1.00 .46 .96 1.00 .55 .97 1.01 

8 .38 .89 .94 .49 .89 .94 .52 .95 .98 .40 .90 .94 .46 .92 .96 

9 .35 .83 .88 .44 .82 .88 .49 .92 .95 .35 .84 .89 .39 .88 .92 

10 .27 .76 .81 .38 .76 .81 .45 .89 .91 .30 .79 .83 .37 .83 .87 

11 .25 .70 .75 .27 .69 .75 .32 .85 .88 .24 .72 .78 .31 .78 .82 

12 .17 .62 .68 .18 .61 .68 .19 .81 .84 .21 .64 .71 .16 .72 .77 

 1 1 2 2 2 

Note: Real EV = Actual data eigenvalue; M = Mean eigenvalue of randomly generated data; 95th EV = 95th percentile eigenvalue of 
randomly generated data; Bold and italic values indicate the number of components recommended for retention.  
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variance specific to a subtest or pair of subtests, the average partial correlation then 

increases. So the smallest of the average partial correlations indicated the number of 

components to extract. Results of the MAP procedure for the present study are shown in 

Figure 1. In the present study, MAP indicated retaining one factor in Duff et al., 2010 and 

two factors in a different samples Wilde, 2006. The other three samples (Carlozzi et al.; 

2008, Duff et al., 2006; Vogt) exhibited two average partial correlations that were 

extremely close (e.g. < 0.04) suggesting that both 1 and 2 factor solutions should be 

explored. 

 

 

 
 

 

 

Figure 1. Velicer’s MAP procedure indicating number of components to be retained for each RBANS 

sample. 
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Component structure 

 

 

 PCA was conducted specifying a two component solution for each sample and 

solutions were rotated utilizing Direct Oblimin rotation to allow for correlated 

dimensions. Factor loading results for each sample are presented in Table 7. Latent 

constructs were inferred by considering the magnitude of factor loadings. Examination of 

two factor solutions revealed similarity across diverse samples. The first Factor strongly 

suggests a Memory construct (List Recall, Story Recall, List Learning, List Recognition, 

Story Memory, Semantic Fluency, and Figure Recall). The Memory factor explains the 

majority of RBANS score variance (see Table 7; Range 39% to 54% of Total Score 

variance across samples). Since PCA conducted systematically across samples the factor 

loadings displayed in Table 7 can be equated and averaged across samples to offer a 

simplified picture of the factor structure. 

 It is notable that the Figure Recall subtest displayed meaningful cross loading in 

two samples, and in the Wilde (2006) sample the subtest is strongly associated with a 

non-memory dimension. Nevertheless, most reliably, Figure Recall is associated with 

Factor 1. The latent construct of the first factor is conceptualized as primarily comprised 

of memory tasks. Semantic Fluency subtest, a verbal fluency task that involves rapidly 

recalling information from specific categories, also reliably loads there. This verbal 

fluency task may be conceptualized as a language, executive functioning, or memory 

task. In this two component solution, it appears the latent construct of memory retrieval 

emerges to converge with other RBANS memory subtests. 
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 Factor 2 appears to reflect a Visuospatial construct (Figure Copy, Line 

Orientation, and Coding). The Coding subtest has meaningful factor loadings on both 

dimensions. These cross loadings could be attributed to the attentional and visuospatial 

component required in Coding that is conceptually similar to the attention requirements 

in list and story learning tasks. Additionally, Coding and Semantic Fluency possess a 

mutual speed component and performance in each of these tasks could be similar. 

However, Coding loads most reliably onto the second visuospatial component. The 

second visuospatial factor accounted for between 9% and 17% of the total score variance, 

which is meaningfully less than the first factor.  

 Two remaining subtests, Picture Naming and Digit Span did not consistently load 

on either factor. In the Carlozzi and colleagues sample (2008) and in the Duff and 

colleagues (2006) sample the picture naming subtest loaded onto the second Visuospatial 

factor. However, in the Wilde (2006) sample the Picture Naming subtest loaded onto the 

first Memory factor. When loadings were average across samples, the Picture Naming 

subtest did not load on to either factor.  The Digit Span subtest loaded on the second 

factor in the Carlozzi and colleagues (2008) samples, however, in the Wilde (2006) 

sample Digit Span loaded on the first factor. Again, when average loadings were 

examined across samples the Digit Span subtest loadings were not strong enough to 

reliably load on either factor. 
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Table 7  
 

Two Component RBANS Oblique Rotated Pattern Matrices 

 
 Carlozzi et al. 

(2008) 

Duff et al. (2010) Duff et al. 

(2006) 

Wilde  

(2006) 

Vogt Average 

Loadings 

 1 2 1 2 1 2 1 2 1 2 1 2 

List Learning .75 .14 .85 .06 .75 .09 .86 -.03 .76 .12 .79 .08 

Story Memory .77 .11 .72 .06 .75 .11 .78 -.09 .75 .12 .75 .06 

Figure Copy -.07 .85 -.22 .81 -.05 .76 -.15 .96 -.12 .80 -.12 .84 

Line 

Orientation 

-.04 .89 .07 .48 -.16 .83 -.04 .79 -.01 .81 -.04 .76 

Picture Naming .20 .56 .23 .25 .03 .62 .69 -.03 .24 .35 .28 .35 

Semantic 
Fluency 

.65 .14 .60 .11 .40 .23 .70 .08 .62 .18 .59 .15 

Digit Span .06 .51 .12 .38 .09 .37 .50 -.02 .23 .14 .20 .28 

Coding .48 .48 .59 .27 .24 .59 .31 .66 .22 .70 .37 .54 

List Recall .94 -.22 .87 -.18 .89 -.10 .74 .08 .89 -.17 .87 -.12 

List 

Recognition 
.66 .16 .83 -.28 .80 -.12 .80 -.01 .78 -.08 .77 -.07 

Story Recall .89 -.02 .81 -.20 .82 .08 .77 .09 .91 -.08 .84 -.03 

Figure Recall .45 .42 .60 .15 .36 .46 .10 .79 .74 .01 .45 .37 

Eigenvalue 6.51 1.02 4.63 1.20 5.00 1.35 5.33 1.98 5.27 1.38  

Correlation .61  .53  .48  .36  .44   

Percent of 
Variance 

Explained 

54.27 8.49 38.54 10.0 41.70 11.25 44.41 16.49 43.92 11.50 44.57 11.6 

Total Variance 
Explained 

62.75  48.57  52.96  60.89  55.42  56.12 

 

 

 

 Additional analyses were conducted to evaluate one factor RBANS solutions 

since PA and MAP provided some support for retaining only one factor in several 

samples (see Table 8). The majority of RBANS subtests meaningfully loaded onto the 

factor. Subtests with strongest loadings were generally memory tasks indicating the 

primary presence of the cognitive construct of memory, though language, processing 

speed, and perceptual organization are also meaningfully emphasized. Digit Span had 

relatively low loadings on the one factor solution (Pattern matrix loadings < .40) in three 

samples. The amount of variance explained in the single factor solution mirrors the 
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amount of variance explained by the Memory factor in the two factor solution (see Tables 

7 and 8). 

 

 

Table 8 

RBANS Single Component Solution 

 Carlozzi et 

al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde  

(2006) 

Vogt Averaged 

Loadings 

List Learning .82 .86 .76 .80 .81 .81 

Story Memory .82 .74 .78 .68 .80 .76 

Figure Copy .65 .07 .55 .50 .41 .44 

Line Orientation .71 .23 .50 .51 .52 .49 

Picture Naming .66 .32 .51 .63 .46 .52 

Semantic Fluency .72 .64 .55 .71 .72 .67 

Digit Span .49 .25 .36 .46 .31 .37 

Coding .86 .68 .67 .72 .67 .72 

List Recall .70 .80 .74 .75 .75 .75 

List Recognition .75 .73 .64 .75 .70 .71 

Story Recall .82 .80 .82 .79 .83 .81 

Figure Recall .78 .65 .70 .61 .72 .69 

Eigenvalue 6.51 4.63 5.00 5.33 5.27 5.35 

Percent of Variance 

Explained 

54.27 38.54 41.70 44.41 43.92 44.57 
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Component comparison 

 

 

 

 While using the “eyeball test” to look for similarities in patterns and loadings can 

be informative, it does not provide conclusive evidence of pattern replication (Levine, 

1977). Quantitative methods of factor comparison were utilized to determine if an 

invariant structure replicated across samples. Results of vector matrix comparison of the 

two component solution using Orthosim 2.1 (Barrett, 2005) are displayed in Table 9. 

General interpretation of congruence coefficients are based upon two sets of benchmark 

recommendations. As offered by Barrett and colleagues (1998), congruency coefficients 

of .85 or greater indicate a replicated factor structure and coefficients of .98 or higher 

indicate identical solutions. More delineated guidelines offer benchmarks for congruency 

as; excellent = .98 – 1.00, good .92 - .98, borderline = .82 - .92, poor = .68 - .82 

(MacCallum et al., 1999). As stated previously, when vector matrix comparisons are 

conducted each sample is individually designated as the target sample and then the other 

samples are sequentially compared to that primary sample. Resulting congruence 

coefficients vary slightly dependent upon which sample is the primary sample so all 

congruency coefficients are reported in Table 9.  

 Overall, vector matrix comparisons strongly support a two component solution  

 

with all coefficients except 1 meeting Barrett’s (1998) guidelines for factor replication  

 

(see Table 9). In addition when considering the delineated guidelines, 33 out of 40  

 

congruence coefficients meet MacCallum and colleagues (1999) good or excellent  

 

benchmarks. Interestingly, there were several instances of borderline congruence in  

 

second factor comparisons with the Wilde (2006) sample when compared to Carlozzi et  

 



 50 
 

al. (2008) and Duff et al. (2010). The Orthosim program specifies which test variables are  

 

involved when there is misfit (i.e., low congruency). Picture Naming and Digit Span  

 

subtests displayed poor congruency. When PCA was conducted, the Wilde (2006) sample  

 

was the only sample in which the Picture Naming and Digit Span subtests loaded strongly  

 

onto the first factor. Further, when PA or MAP recommended retention of a single factor  

 

in the Carlozzi and colleagues (2008; PA) and the Duff and colleagues (2010; MAP)  

 

samples, there is suggestion of a weaker second factor relative to other samples. These  

 

issues likely contributed to the subtly lower congruency coefficients. 

 

 
 

 

 

 

 In order to investigate the similarity of one component solutions across samples, 

 

 two methods of single component comparison were utilized. Tucker’s Congruence  

 

Coefficients were calculated (Levine, 1977; Lorenzo-Seva & ten Berge, 2006) and nearly  

 

all samples displayed identical excellent congruence with each other (see Table 10, below  

 

Table 9 

Two  Component Vector Matrix Comparisons with 12 RBANS Subtests 

 Carlozzi et al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde (2006) Vogt 

 
1 2 1 2 1 2 1 2 1 2 

Carlozzi (2008) - - .96 .94 .95 .93 .95 .88 .98 .95 

Duff (2010) .98 .94 - - .97 .97 .93 .87 .98 .94 

Duff (2006) .99 .96 .97 .95 - - .95 .90 .99 .96 

Wilde (2006) .94 .91 .95 .84 .93 .92 - - .95 .88 

Vogt .98 .96 .98 .92 .98 .96 .95 .90 - - 
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the diagonal). Additionally, Pearson r correlations were calculated to investigate  

 

relationships between the single component structures and loadings (Levine, 1977). All  

 

single component solutions were significantly, positively correlated (Table 10; above the  

 

diagonal). Both procedures indicate a single factor RBANS dimension is invariant across  

 

samples. 

 

 

 
Table 10 

Single Component Solution Comparisons with 12 RBANS Subtests 

 Carlozzi et al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde  

(2006) 

Vogt 

Carlozzi (2008) - .72** .84** .74** .85** 

Duff (2010) .94 - .83** .92** .93** 

Duff (2006) .99 .96 - .80** .91** 

Wilde (2006) .99 .96 .99 - .88** 

Vogt .99 .98 .99 .99 - 

Note: Tucker’s Congruence Coefficients located below the diagonal and Pearson’s r values are above the 

diagonal. ** p < .01 

 

 

 

Discussion 

 

 

 

 Neuropsychological test validation is an ongoing process that requires 

examination of a measure utilizing multiple clinical and non-clinical samples. Test 

validity is directly related to clinical utility and thus an important area of focus for 

researchers and clinicians, alike. The present study investigated the factor analytic 

structure of the RBANS, a widely used neuropsychological measure (e.g., see Randolph, 

1998, 2012). To date, six studies have been conducted to evaluate the RBANS factor 
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structure and reported slightly different solutions (see Tables 2 and 3; Carlozzi et al., 

2008; Duff et al., 2006; Garcia et al., 2008; King et al., 2012; Schmitt et al., 2010; Wilde, 

2006). However, any comparison of previous factor analytic solutions is confounded 

because different methods were utilized. Many researchers have explained that divergent 

factor analytic findings are related to sample based differences. However, it seems 

plausible that solution discrepancies are actually the result of methodological decisions, 

such as the decision to retain factors with eigenvalues greater than one and the use of 

orthogonal rotation. Nonetheless, this body of literature clearly suggests that CFA and 

EFA results are inconsistent with the theoretically developed RBANS five index and 

single neuropsychological score structure (Carlozzi et al., 2008; Duff et al., 2006; Garcia 

et al., 2008; King et al., 2012; Schmitt et al., 2010; Wilde, 2006). 

 Other non-factor analytic RBANS studies have also demonstrated poor internal 

consistency and construct validity of select indices, most notably Attention and Language 

(Beatty et al., 2003; Beatty et al., 2004; Larson et al., 2005, McKay et al., 2007). While 

the RBANS is marketed as a stand-alone core battery or screening tool to evaluate 

multiple cognitive domains (e.g. Immediate Memory, Visuospatial/Construction, 

Attention, Language, Delayed Memory; Randolph, 2012; 1998), empirical research 

suggests that clinicians should consider the degree to which the RBANS successfully 

does this. This study is novel because empirically supported factor retention methods 

were uniformly applied to multiple samples to identify an invariant RBANS structure and 

quantitative methods were utilized to evaluate structure replication across samples. The 

data driven investigation of this measure reveals a strong first component of memory and 
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a second visuospatial component, indicating that the five domain approach may be too far 

reaching.  

 Of primary concern in the current investigation was inclusion of empirically 

validated methods in order to determine the most reliable factor solution. Application of 

consistent extraction method (e.g. PCA) and rotation (e.g. Oblique) allowed similar factor 

structures to emerge across solutions. Factor retention decisions, however, are arguably 

the most critical to structure conclusions (Hayton et al., 2004; Hoelzle & Meyer, 2009; 

Hubbard & Allen, 1987; O’Connor, 2002; Zwick & Velicer, 1982). Consistent with 

expectations, Kaiser’s criterion and visual examination of the scree plot displayed 

inconsistency in factor retention recommendations both across and within samples. 

Horn’s PA (1965) and Velicer’s MAP (1976) procedures indicated retention of one or 

two factors. One factor retention were suggested from PA and MAP in the Carlozzi and 

colleagues (2006; PA) and Duff and colleagues (2010; MAP) samples, whereas, PA and 

MAP suggested retention of two factors in the remaining samples. Hence, both two and 

one factor solutions were explored to alleviate risk of over- or under-extraction. Under-

extraction creates loss of important information and neglect of potentially important 

latent constructs, whereas, over-extraction diffuses data and places too much importance 

on trivial factors (Fava & Velicer, 1992b; Hayton et al., 2004; Wood et al.,1996). Thus, 

balance is important and was carefully examined. 

 Previous researchers have purported that differences in the number of factors to 

retain, the pattern in which subtests load onto factors, and the emergence of latent 

constructs could be sample specific (Delis et al., 2003; Duff et al., 2006; Garcia et al., 

2008; King et al., 2012; Schmitt et al., 2010; Wilde, 2006). Analysis of diverse samples, 
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both clinical and non-clinical, revealed that a replicable solution does in fact emerge. 

Previous literature has utilized an “eye ball” method to infer similarity of a two factor 

RBANS solution across samples (Carlozzi et al., 2008; Duff et al, 2009; Garcia et al., 

2008). The present study was the first to utilize a quantitative method to evaluate 

solutions of multiple samples. Vector matrix comparison revealed the presence of an 

invariant two factor RBANS solution across diverse samples (e.g. see Barrett, 2005). 

Furthermore, this invariant structure demonstrates that factor analytic solution 

discrepancies that appeared in the literature previously are not due solely to sample 

characteristics but rather methodological decisions. 

 Utilizing PCA, a two factor RBANS solution clearly emerges across multiple 

samples with a first prominent memory factor and second visuospatial factor. 

Furthermore, the majority of congruency coefficients were good to excellent in vector 

matrix comparisons. Interestingly, two subtests, Picture Naming and Digit Span, did not 

consistently load on either factor when investigating pattern matrix loadings (see Table 

7), and this minimally impacted overall congruency of solutions because the loadings 

were not prominent in defining factors. Notably, in several comparisons, these subtests 

did contribute to slightly lower congruency coefficients between two respective samples. 

Additional exploratory analyses were performed to evaluate the replication of a two 

factor solution with Picture Naming and Digit Span removed. Overall, this improved the 

majority of congruence coefficients (see Table 11) and confirms that these subtests 

contributed to lower than exceptional congruency across samples. 
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Table 11 

Two  Component Vector Matrix Comparisons with 10 RBANS Subtests  

(Picture Naming and Digit Span Removed) 

 Carlozzi et al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde  

(2006) 

Vogt 

 
1 2 1 2 1 2 1 2 1 2 

Carlozzi (2008) - - .97 .92 .98 .98 .98 .96 .98 .95 

Duff (2010) .97 .96 - - .97 .98 .97 .94 .98 .93 

Duff (2006) .98 .98 .98 .95 - - .98 .98 .99 .96 

Wilde (2006) .98 .95 .98 .91 .98 .98 - - .97 .90 

Vogt .98 .96 .98 .90 .98 .97 .97 .91 - - 

  

              Given that PA and the MAP procedure provided some support for the retention 

of one factor in select samples (see Table 5), PCA was again conducted and one factor 

solutions were investigated. Examination of this solution revealed that the majority of 

subtests loaded onto the single component with the exception of Digit Span in most of the 

samples. Additionally, quantitative analysis of factor congruency across samples revealed 

strong evidence for solution replication. However, when a one factor solution was 

specified, the amount of variance explained mirrored the first memory factor. In addition, 

the subtests that most strongly defined the dimension were tasks involving memory. It 

appears that the underlying cognitive construct of single total score of the RBANS is not 

general neuropsychological status, but rather predominantly memory functioning. This 

suggests that an empirically derived single factor score would be most sensitive to 

memory deficits as opposed to other cognitive issues that a patient might be experiencing. 
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A single factor structure, in comparison to the robust two factor solution, compresses 

RBANS subtests that evaluate visuospatial functioning. This is a clear disadvantage for 

the one factor solution. Moreover, one could argue that, clinically a two factor solution is 

more informative and would have greater clinical utility.  

 As an exercise to demonstrate the potential drawback of over-extraction, 

additional analyses were conducted to explore a three factor RBANS solution. One 

previous study reported a three factor solution (Garcia et al, 2008) and two extraction 

criteria (e.g. Kaiser’s criteria and visual examination of the scree plot) indicated the 

possibility of retaining three factors. A three factor solution clearly resulted in over-

extraction since the third factor was typically only defined by Digit Span and the other 

RBANS subtests shifted between factors 1 and 2 in an inconsistent manner (see 

Appendix A). Additionally, vector matrix comparisons indicated poor replication of a 

three factor solution (see Appendix B). Specifically, many of the congruency coefficients 

were in the borderline, or lower, range (26/60) and with only a few coefficients in the 

exceptional range (8/60). These findings clearly demonstrate the importance of utilizing 

empirically supported factor retention strategies (e.g. PA and MAP) in order to identify 

an invariant factor structure.  

 Importantly, the present study revealed valuable information regarding specific 

indices and subtests within the RBANS. Attention and Language indices did not emerge 

in this study nor in previous factor analytic studies (Carlozzi et al., 2008; Duff et al., 

2006; Garcia et al., 2008; King et al., 2012; Schmitt et al., 2010; Wilde, 2006) due to 

typically low (or at best moderate) relationships between subtests that comprise these 

indices. Previous RBANS literature has revealed poor internal consistency of the 
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Attention and Language indices (Beatty et al., 2003; Beatty et al., 2004; Larson et al., 

2005, McKay et al., 2007) and the current research offers further indication poor 

construct validity.  Empirical investigation reveals that often a minimum of three 

measures assessing a common construct must be present for a related component to 

emerge (Velicer & Fava, 1998). The RBANS does not possess enough purely language 

and attention tasks for these indices to emerge in factor analytic investigations.  

 It is not surprising that Picture Naming and Digit Span subtests do not appear to 

reliably load with Memory or Visuospatial factors given the discrepancy between 

constructs. Examination of the individual correlation matrices reveals small associations 

between these two subtests with other RBANS subtests. There is a ceiling effect (i.e., 

concentration of scores at the top range with small variance) present in the Picture 

Naming subtest in these samples (see Appendix C; Range of M = 8.87 to 9.56; Range of 

SD = 0.81 to 1.53) and in the normative sample (Picture Naming M = 9.47 SD = 0.73; 

Randolph, 1998). Restricted range in a subtest attenuates the relationships between that 

task and others within the test (Fabrigar et al., 1999). In other words, a skewed subtest is 

limited in its ability to meaningfully correlate with other subtests that are more normally 

distributed (Goldberg & Velicer, 2006). Additionally, a ceiling effect present in both 

clinical (Carlozzi et al., 2008; Wilde, 2006; Vogt sample) and non-clinical samples (Duff 

et al., 2006; Randolph, 1998) suggests potentially limited clinical utility of the Picture 

Naming subtest. Clinical implications of this finding might involve either a revision of 

the Picture Naming subtest to include more items and increase the difficulty of 

confrontation naming items or consideration could be given to eliminating the subtest in 

an RBANS revision.  
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 Examination of the RBANS two component solution reveals low loadings for the 

Digit Span subtest and inconsistency in loading on either factor. The RBANS digit span 

forward task is conceptually an attention task. As stated previously, empirical 

investigation reveals that often a minimum of three measures assessing a common 

construct must be present for a related component to emerge (Velicer & Fava, 1998).  

Consequently, there simply is not sufficient representation of this construct to enable 

Digit Span to load reliably onto a component. Interpretation of single subtest to represent 

a cognitive construct may not be optimally reliable nor sensitive and may ultimately 

impact the clinical utility of the measure. Further, standardized testing procedure dictate 

administration of only the first trial in a set when the first item in the set is passed in 

interest of brevity. Anecdotally, in clinical settings tasks assessing working memory are 

frequently administered in addition to the RBANS. Recommended revision to the 

RBANS could include expansion of the digit span task to include backward and 

sequencing components (similar to the Wechsler Adult Intelligence Scale-Fourth Edition 

Digit Span subtest; Wechsler, 2009). To further develop a working memory component, 

an additional working memory task, such as mental arithmetic or letter-number 

sequencing could also be added to the RBANS. Assessment of working memory could 

improve clinical utility of the RBANS across diverse populations, as this construct is 

often impaired in psychiatric (e.g. anxiety and mood disorders) and neurologic conditions 

(e.g., dementias, mild traumatic brain injury). 
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Conclusions  
 

 

 

 Widespread agreement exists that a viable and defensible factor structure does not 

emerge from a single analysis. An optimal factor structure is one that is replicated across 

multiple diverse samples, with varying sample size (Goldberg & Velicer, 2006). 

Exploratory factor analysis can be used to identify whether an invariant structure emerges 

across samples. The present study has documented an invariant two component solution 

through exploratory analysis and confirmed pattern replication through vector matrix 

comparison (Barrett, 2005). These factors primarily reflect Memory (e.g. List Recall, 

Story recall, List Learning, List Recognition, Story Memory, Semantic Fluency, & Figure 

Recall) and Visuospatial (e.g. Figure Copy, Line Orientation, & Coding) cognitive 

constructs within the RBANS. Furthermore, Picture Naming and Digit Span subtests 

were demonstrated to have low convergence with other RBANS subtests, do not 

consistently load onto factors, and adversely impact the component replication.  

 Additionally, the present study has empirically supported the position that 

differences in RBANS factor solutions are primarily due to methodological decisions and 

are not solely related to unique sample characteristics. Simply put, the RBANS factor 

structure is relatively invariant across diverse samples. Previous studies RBANS factor 

analytic studies (Duff et al., 2006; Garcia et al., 2008; King et al., 2012; Schmitt et al., 

2010; Wilde, 2006) reported differences between solutions are due to sample differences, 

frequently citing Delis and colleagues (2003) investigation of the CVLT. However, 

O’Connor (2002) empirically demonstrated that invariant solutions can be found in 

personality measures across diverse samples. This research offers evidence that 
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previously published RBANS solution discrepancies were due to methodological 

decisions, most importantly, factor retention strategies. The present study uniformly 

utilized PCA, PA and the MAP procedure to guide factor retention decisions, and oblique 

rotation. Moreover, empirical methods evaluating replication of factor solutions (Barrett, 

2005; Levine, 1977; Lorenzo-Seva & ten Berge, 2006) quantified invariance, which is 

preferable to the commonly used “eye ball” test. Of note, the present study demonstrated 

the utility of congruency comparison in a neuropsychological measure. A two component 

solution reliably emerged and demonstrated good congruence across diverse samples. 

Also importantly, an invariant structure of the RBANS is apparent across clinical and 

non-clinical samples. 

 This investigation of the RBANS provides important clinical insights. The 

underlying structure of the RBANS suggests the five domain theoretical design of the 

RBANS is inconsistent with how subtests naturally co-vary. The RBANS component 

structure suggests Memory and Visuospatial constructs are most reliably assessed. 

Furthermore, the Picture Naming subtest demonstrates a ceiling effect in clinical and 

non-clinical samples, thus impacting overall clinical utility. Also, noteworthy the Digit 

Span subtest does not converge with other tasks within the RBANS. This information in 

combination with findings that select Index scores have problematic reliabilities, suggests 

that clinicians should be cautious when interpreting those composite scores.   

Future Directions 

 

 

 

 An identified invariant RBANS factor structure has implications for future 

research and clinical practice. Component scores could be developed using a normative 
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sample and a unit-weighting scheme or exact factor score approach (Grice, 2001a; 

2001b). Each of these analysis procedures could be explored to determine whether the 

empirically derived factor scores or theoretically developed Index scores were more 

useful in detecting cognitive impairment or meaningful change from a baseline level of 

functioning. Factor scores may provide better clinical utility because theoretically, they 

should have greater reliability and therefore, be more sensitive to change. Duff and 

colleagues (2009) recognized the likely presence of a two factor solution and developed 

data for a Verbal and Visual Indices and a Total Scale Index based upon data for the 

OKLAHOMA sample. The present study strongly supports consideration of Memory and 

Visuospatial Indices, but raises questions regarding the utility of a Total Scale Index 

because it would primarily reflect memory functioning. Future exploration of Memory 

and Visuospatial component scores is warranted in clinical samples with well-defined 

impairment affecting the respective constructs. 

Additionally, findings suggest that future revisions to the RBANS may include 

revision or elimination of the Picture Naming subtest. The Digit Span subtest could be 

expanded (e.g. backward and sequencing trials added) and another conceptually similar 

subtest could be added in order to increase the likelihood that a factor reflecting working 

memory reliably emerges across samples. A re-conceptualization and revision to the 

RBANS to allow clinicians the ability to assess verbal working memory within the 

RBANS may be useful across multiple populations and improve clinical utility.   
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Appendix A 

Three Component RBANS Oblique Rotated Pattern Matrices 
 

 Carlozzi et al. 

(2008) 

Duff et al. (2010) Duff et al. (2006) Wilde  

(2006) 

Vogt 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

List 
Learning 

.73 -.08 .17 .85 .06 .02 .75 .05 .16 .86 -.03 .05 .65 .10 .33 

Story 

Memory 
.75 .11 .05 .70 -.03 .15 .75 .03 .28 .56 -.05 .43 .67 .12 .20 

Figure 

Copy 

-.07 .90 -.03 -.13 .90 .12 -.05 .78 .01 -.13 .95 -.01 -.08 .84 -.18 

Line 

Orient. 

-.04 .84 .14 .02 .14 .60 -.15 .77 .20 -.10 .85 .13 -.04 .82 .05 

Picture 

Naming 

.19 .61 -.04 .37 .37 -.09 .03 .66 -.07 .54 -.01 .28 .23 .37 .01 

Semantic 

Fluency 
.63 .02 .27 .59 .02 .16 .40 .26 -.04 .76 .06 -.08 .51 .15 .32 

Digit 
Span 

.05 .05 .93 .03 -.13 .80 .12 .04 .91 .01 .06 .88 -.05 -.03 .92 

Coding .47 .42 .19 .57 .09 .32 .23 .61 -.03 .28 .66 .07 .12 .67 .26 

List 

Recall 
.92 -.14 -.11 .88 -.09 -.17 .88 -.04 -.10 .79 .07 -.05 .88 -.12 .02 

List 

Recog. 
.65 .30 -.23 .78 -.36 .04 .79 -.04 -.18 .90 -.03 -.15 .79 -.02 -.07 

Story 
Recall 

.87 -.02 .06 .83 .05 -.08 .81 -.04 -.17 .67 .11 .21 .92 -.01 -.07 

Figure 

Recall 

.44 .43 .04 .64 .23 -.06 .35 .53 -.14 .21 .76 -.18 .79 .08 -.20 

EV 6.51 1.02 .89 4.63 1.20 1.07 5.00 1.35 .98 5.33 1.98 .90 5.27 1.38 1.06 

r 

__   __   __   __   __   

.58 __  .14 __  .46 __  .34 __  .42 __  

.28 .27 __ .19 .04 __ .09 .17 __ .34 .12 __ .26 .18 __ 

Percent 

of 
Variance 

Explained 

54.3 8.5 7.4 38.5 10.0 8.91 41.7 11.3 8.20 44.4 16.5 7.51 44.0 11.5 8.9 
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Appendix B 

Three Component Vector Matrix Comparison with 12 RBANS Subtests 

 Carlozzi et al. 

(2008) 

Duff et al. 

(2010) 

Duff et al. 

(2006) 

Wilde (2006) Vogt 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Carlozzi 

(2008) 

- - - .96 .91 .75 .98 .97 .90 .96 .90 .85 .98 .95 .95 

Duff 

(2010) 

.96 .62 .75 - - - .97 .93 .79 .95 .87 .72 .98 .91 .84 

Duff 

(2006) 

.98 .97 .91 .98 .89 .79 - - - .96 .92 .94 .99 .96 .87 

Wilde 

(2006) 

.95 .91 .85 .96 .85 .69 .95 .94 .93 - - - .96 .91 .84 

Vogt .98 .96 .94 .98 .92 .79 .98 .97 .85 .95 .91 .84 - - - 
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Appendix C 

RBANS subtest raw scores means and standard deviations 

 
 Carlozzi et al. 

(2008) 

Duff et al. 

(2006) 

Wilde (2006) 

 

Vogt 

 

Subtest Range N = 175 N = 796 N = 210 N = 345 

List Learning 0 - 40 16.05 (5.49) 24.7 (5.9) 20.31 (5.82) 16.28 (5.48) 

Story Memory 0 - 24 10.56 (5.03) 15.8 (4.5) 13.86 (4.30) 10.12 (5.04) 

Figure Copy 0 - 20 13.24 (4.63) 18.2 (2.1) 14.33 (4.94) 17.60 (2.67) 

Line Orientation 0 - 20 13.35 (5.18) 15.9 (3.6) 11.91 (4.79) 13.29 (4.59) 

Picture Naming 0 - 10 9.06 (1.31) 9.56 (0.81) 8.87 (1.53) 9.10 (1.20) 

Semantic Fluency 0 - 40 12.46 (5.29) 18.1 (4.7) 13.28 (5.04) 12.48 (4.87) 

Digit Span 0 - 16 8.70 (2.41) 11.46 (2.79) 8.68 (2.42) 8.52 (2.15) 

Coding 0 - 89 20.47 (13.45) 35.9 (10.7) 17.84 (11.67) 27.82 (11.92) 

List Recall 0 - 10 1.28 (1.75) 5.0 (2.6) 2.78 (2.46) 1.32 (1.99) 

List Recognition 0 – 20 16.13 (3.02) 18.9 (1.6) 17.40 (2.58) 15.77 (3.03) 

Story Recall 0 - 12 4.02 (3.37) 7.9 (3.0) 6.02 (2.82) 3.63 (3.15) 

Figure Recall 0 - 20 6.01 (4.92) 12.9 (4.3) 8.82 (4.93) 5.20 (5.55) 

Note: Duff et al., 2010 reported subtest scores as standard scores not raw scores in publication, thus, 

omitted from table. 
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