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ABSTRACT 
 

NEURAL CORRELATES OF THE EXTREME MALE BRAIN THEORY  
IN ADOLESCENTS WITH AND WITHOUT 

AUTISM SPECTRUM DISORDERS 
 

 
Audrey Meyer Carson, M.S. 

 
Marquette University, 2013 

 
 

 The Extreme Male Brain (EMB) theory (Baron-Cohen, 2003) is a behavioral 
theory of autism spectrum disorders (ASD), suggesting that the triad of behavioral 
impairments in ASD can be conceptualized psychologically as impairment in 
empathizing, coupled with a superior capacity for systemizing.  Despite studies of the 
behavioral manifestations of this theory, it lacks neurological findings, specifically 
evidence of less coordinated activity between the left and right hemisphere in ASD (i.e. 
more lateralized activity).  This study attempted to investigate neural correlates of the 
EMB theory utilizing EEG coherence, an index of neural connectivity, to determine if a 
more lateralized profile exists in the brain of adolescents with ASD compared to typically 
developing teens.  In addition, relationships among coherence values and behavioral data 
were explored, and group membership was predicted using a “traditional model” of ASD 
characteristics (social skills and ratings of autism symptomatology) and an “EMB theory 
model” (EEG coherence and behavioral ratings of empathizing and sympathizing).  
Results revealed that teenagers with ASD displayed decreased coherence between the left 
and right frontal lobes in the alpha and theta frequency bands, while coherence between 
the frontal and temporal-parietal lobes within each hemisphere did not differ from 
typically developing teens at any frequency band.  This pattern of results suggests that 
teens with ASD displayed a more lateralized profile, consistent with the EMB theory.  
Also, increased frontal-frontal coherence at the alpha and theta frequencies was 
associated with increased social skills in the total sample.  In addition, the EMB model 
and the traditional characteristics model did not differ in their ability to correctly classify 
the groups, as a significant difference between the percent classified by each group did 
not emerge.  Taken together, it seems that male adolescents with ASD display a more 
lateralized neural profile with less connectivity between the hemispheres than their 
typically developing peers.  This pattern provides neural support for the EMB theory of 
autism, while also highlighting a potentially important neural marker for ASD.
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Autism spectrum disorder (ASD) encompasses a collection of pervasive 

developmental disorders noted for marked impairments in a triad of behavioral domains: 

social development, communication, and restricted and repetitive interests and behaviors.  

Persons with ASD experience difficulties with the pragmatics of social interactions and 

communication and often display preferences for engaging in specific interests to the 

neglect of social opportunities and development.  ASD currently affects 1 in 88 children 

(1 in 50 boys: CDC, 2012), a number that continues to rise.  Although considered a brain-

based disorder, diagnosis continues to rely on behavioral criteria (APA, 2000), as 

understanding of the neural substrates of the disorder lags behind.  As such, marrying 

behavioral theories with neurobiological conceptualizations of the disorder provides an 

opportunity for insight into ASD.   

One such behavioral theory, the Extreme Male Brain (EMB) theory of autism 

(Baron-Cohen, 2003) is an extension of the empathizing-systematizing (E-S) theory of 

psychological sex differences (Baron-Cohen, Wheelwright, Lawson, Griffin, & Hill, 

2002).  The EMB theory suggests that the triad of behavioral impairments in ASD can be 

conceptualized psychologically as impairment in empathizing, coupled with a superior 

capacity for systemizing.  As described in the E-S theory (Baron-Cohen et al., 2002), 

empathizing indicates an ability to put oneself in another’s position and understand how 

they are feeling—in a sense, to “read” the emotional climate (Baron-Cohen, 2003).  This 

skill would be dependent on connections between the hemispheres that allow for the 

multi-domain integration of emotion, cognition, and behavior. Systemizing, on the other 

hand, indicates the drive to analyze objects and events (Baron-Cohen & Belmonte, 2005), 

and is more supported by local connections within each hemisphere that support a detail-
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oriented processing style. Thus, in ASD, decreased connections between the hemispheres 

would be observed, while connections within each hemisphere would remain intact 

(Baron-Cohen & Belmonte, 2005).  Although well researched in behavioral and 

biological studies, sufficient neurological findings supporting this theory are lacking.  

The current study will review the relevant behavioral research concerning the EMB 

theory, as well as discuss EEG coherence and investigate theorized neurological 

correlates for the EMB theory.  Primarily, this study will attempt to provide neurological 

support for the EMB theory via a study of brain activity utilizing electroencephalogram 

(EEG), in order to find evidence suggesting that brain activity in ASD mimics the 

patterns suggested by this theory: less connected, more lateralized brain activity.  

Specifically, differences between EEG coherence, an index of connectivity (Nunez & 

Srinivasan, 2006) will be examined between adolescents with ASD and typically 

developing adolescents.  After exploration of relationships among coherence values and 

behavioral data, group membership (i.e. ASD group versus the typically developing 

group) will be predicted utilizing EEG coherence and behavioral ratings of empathizing 

and systemizing. 

Autism Spectrum Disorders 
 

As previously mentioned, ASD is a pervasive developmental disorders with 

symptoms generally identifiable prior to the third birthday (APA, 2000) and persistent 

throughout the lifespan.  A general agreement in the literature exists regarding the 

presence of early cortical overgrowth (in both white and gray matter) during the first four 

years of life in ASD (Schumann et al., 2010; Courchesne et al., 2007).  Young children 

with ASD have received much attention in research and as targets of intervention, due to 
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the consistent finding that early and intensive intervention leads to the best possible 

outcomes for persons with ASD (i.e., Dawson et al., 2010).  As ASD is considered a 

brain-based disorder, it seems that early interventions hold the best opportunity to mold 

the young, plastic brain.  However, adolescence in typically developing children has 

recently been targeted as a busy period of neural development, second only to the bursts 

of development observed in early life (Blakemore, 2008).  As such, understanding this 

brain-based disorder in teenagers with ASD is also of interest.  Teens with ASD have a 

unique experience in adolescence, as they must combat the typical difficulties that 

accompany the increasing demands of peer relationships in adolescence (Brown, 2004; 

Brown & Klute, 2006) while possessing core deficits that make the pragmatics of social 

relationships overwhelming and difficult to understand.  The EMB theory of autism 

allows for a behavioral conceptualization of these difficulties unique to ASD as being 

understood primarily due to an advanced capacity for systemizing along with deficits in 

empathizing in ASD.  

The Extreme Male Brain Theory of Autism 
 

A thorough understanding of the EMB theory requires exploration of the E-S 

theory (Baron-Cohen et al., 2002) and its support.  The E-S theory asserts that certain 

brain “types” exist, based on the amount of empathizing and systematizing abilities 

present in the individual.  The term empathizing indicates two primary abilities: 

attributing mental states to oneself and to others in order to make sense of one’s own and 

others’ actions, and conjuring emotional reactions appropriate to others’ mental states 

(Baron-Cohen & Belmonte, 2005).  On the other hand, systemizing indicates the drive to 

analyze objects and events in order to understand their structure and predict future 
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behavior (Baron-Cohen & Belmonte, 2005).  Systems include anything governed by rules 

that specify input-operation-output relationships, which requires an exacting eye and 

mind for details (Baron-Cohen, 2003).  In the E-S theory, scores on empathizing and 

systematizing can be compared, utilizing standard deviations from the mean in order to 

categorize a person’s brain type.  A balanced brain (Type B) suggests a balanced profile, 

where empathizing and systematizing abilities are seen in the same proportions in an 

individual.  In brain Type E, empathizing is one or two standard deviations higher than 

systemizing, whereas in brain Type S the opposite profile is observed (Baron-Cohen, 

2003).  Importantly, this theory suggests that the key point is the discrepancy between the 

scores, rather than absolute score.  A person scoring two standard deviations above the 

mean on systematizing would still be classified as having a Type E brain if their 

empathizing scores were three standard deviations above the mean.  As such, the 

proportions and possibility of asymmetries in ability are crucial.   

Type E Brain.  Baron-Cohen (2003) argues that females spontaneously empathize 

more often than males, suggesting that women are more likely than men to be classified 

as having a Type E brain than men.  Although some debate exists as to whether women 

actually posses more empathy or if social desirability plays a part in the gender 

differences observed (Singer & Lamm, 2009; Davis, 1994), behavioral evidence for sex 

differences in the precursors of empathy have been found from the first moments of life.  

For example, female neonates were found to show a stronger interest in a face, while 

male neonates were more intrigued by a physical-mechanical mobile (Connellan, Baron-

Cohen, Wheelwright, Batki, & Ahluwalia, 2000).  In addition, at 12-months of age, girls 

prefer to watch a video of a person talking without volume over a video of cars 
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(considered a predictable mechanical system), whereas boys show the opposite 

preference (Lutchmaya & Baron-Cohen, 2002).  One-year-old girls have also been found 

to display more empathic concern (visual expression of concern about another), prosocial 

behavior (efforts to help), and engage in more hypothesis testing (attempts to 

comprehend distress of another) than same-age boys (Zahn-Waxler, Robinson, & Emde, 

1992).  Though these differences were small in magnitude, they were consistently present 

in this study of differences of empathy in twins. 

Girls and boys also show differences in play that provide evidence for differences 

in early precursors to empathy.  For example, girls are less likely to engage in “rough-

housing” in preschool (Rose & Rudolph, 2005), which typically involves wrestling and 

play fighting rather than talking, sharing, and other skills dependent on empathy.  

Interestingly, when examining sharing with one toy in all-girl groups, the girl who plays 

with the toy more than the others utilizes verbal skills, rather than physical tactics, to 

maneuver the toy into her hands again, showing reliance on mindreading rather than 

physicality to obtain the desired result (Baron-Cohen, 2003).  With age, peer 

relationships become more complex, and sex differences in behavioral styles with peers 

continues to reflect girls’ strength in empathizing.  For example, girls are more likely to 

cooperate, display prosocial behavior, and self-disclose to friends.  In addition, their 

interactions with peers tend to involve prolonged dyadic interactions, rather than group 

play with recognized dominance hierarchies established through competitive play, as 

boys do (Rose & Rudolph, 2006).  The ability to make sense of other’s actions and 

reciprocate emotional reactions appropriate to the situation and other’s feelings is integral 

in the play described as prominent in girls as opposed to boys. 
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In addition to play skills, sex differences emerge in other domains related to 

empathizing. Theory of Mind (ToM) skills—a cognitive component of empathizing that 

indicates an ability to understand that others have unique points of view and to be able to 

make predictions about other’s behavior or mental states (Baron-Cohen, 2003)—are 

evident in children as young as three or four years-old (Walker, 2005; Happe, 1995; 

Sullivan, Zaitchik, & Tager-Flusberg, 1994) and are typically investigated through false-

belief tests at this age.  Walker (2005) reports that three to five year-old girls displayed 

better ToM understanding.  In first-grade, girls do seem to be more skilled at determining 

the intentions of others and at effectively problem-solving social issues (Putallaz, 

Hellstern, Sheppard, Grimes, & Glodis, 1995), and at age seven girls are better able to 

detect a social faux pas—an indication of better empathizing—than boys (Baron-Cohen, 

O’Riordan, Jones, Stone, & Plaisted, 1999).  Differences of styles in communication have 

also been discussed, suggesting that girls and women are more cooperative, reciprocal, 

and collaborative in communication (e.g. Baron-Cohen, 2003).  

In a more direct test of empathy skills, preadolescent girls have been found to be 

superior in evaluating the feelings and intentions of characters in a story (Bosacki & 

Astington, 1999).  These early differences in ToM skills continue to contribute to 

empathizing skills through adulthood, as women score higher on emotion recognition 

tasks (Baron-Cohen, Jolliffe, Mortimore, & Robertson, 1997) and are more accurate than 

men when asked to determine an emotion from simply looking at a person’s eyes during 

the “Reading the Mind in the Eyes” task (Eyes-C; Baron-Cohen, Wheelwright, Hill, 

Raste, & Plumb, 2001).  Chapman and colleagues (2006) administered the Eyes-C and 

the child version of the Empathizing Quotient (EQ-C; Auyeung et al., 2009), a parent-
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report of empathy, to school-age boys and girls whose mothers had undergone an 

amniocentesis during pregnancy, providing access to their fetal testosterone levels.  Fetal 

testosterone levels have been found to inversely correlate with eye contact at 12-months 

of age (Lutchmaya, Baron-Cohen, & Raggatt, 2002) and quality of social relationships at 

age four, but to positively correlate with narrow interests at four years-old (Knickmeyer, 

Baron-Cohen, Raggatt, & Taylor, 2005).  In Chapman and colleagues’ (2006) study, a 

significant negative correlation was found between fetal testosterone and scores on the 

Eyes-C and EQ-C, again suggesting a biological component to empathy beginning 

prenatally.   

Lastly, the Empathizing Quotient (EQ; Baron-Cohen & Wheelwright, 2004) was 

designed as a quick and effective questionnaire for assessing empathy within adults and 

has shown that females within the general population score higher on the EQ than men 

(Baron-Cohen & Wheelwright, 2004) and people with ASD (Wheelwright et al., 2006).  

Variations of the EQ have been developed for children (Auyeung et al., 2009) and 

adolescents (Auyeung, Allison, Wheelwright, & Baron-Cohen, 2012) and have shown the 

same results: girls score higher on ratings of empathy than boys.  These studies lend 

support to the idea that females are, on average, more likely to display empathizing 

behaviors than men and display behaviors associated with the Type E brain. 

Type S Brain.  Mirroring the Type E brain, Baron-Cohen (2003) suggests that 

more males are classified as having a Type S brain and display a drive to understand and 

build systems.  Within the context of the E-S theory, six major systems exist that can be 

analyzed and/or constructed: technical systems (i.e. computers, vehicles, physics, etc.); 

natural systems (ecology, biology, meteorology, etc.); abstract systems (math, logic, 
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grammar, maps, etc.); social systems (politics, committees, groups of friends, etc.); 

organizable systems (encyclopedias, museums, stamp collections, etc.); and motoric 

systems (golf swing, finger movements required to play piano, etc.).  Some of the early 

evidence for men being more likely to display systemizing abilities includes differences 

in children’s play.  As discussed previously, girls tend to display more sharing and 

prosocial behavior in play (Rose & Rudolph, 2006), whereas boys often show preferences 

that display an aptitude for systemizing.  For example, boys as young as one year are 

more likely to independently select to play with toys related to systems, such as vehicles 

and construction blocks (Servin, Bohlin, & Berlin, 1999).  In addition, this interest in 

systems in young children is evident in boys from pre-industrial societies, who, when 

asked to draw a picture, chose to draw tools and weapons—examples of more universal 

systems (Baron-Cohen, 2003). 

In addition to these differences in early play preferences, more males tend to 

choose careers requiring superior skills in systemizing.  For example, in 2007-2008, the 

vast majority of bachelor’s degrees in engineering, computer and information sciences, 

and physical sciences and science technologies were awarded to males (National Center 

for Education Statistics, 2010).  Although debates may emerge as to various reasons why 

these sex differences in these job areas may exist—including possible discrimination, 

stereotype threat, or societal pressures regarding gendered stereotypes—these fields focus 

on constructing and understanding systems, which Baron-Cohen (2003) argues could 

reflect a male preference for working with systems. Interestingly, variances in male 

scores in mathematics—an abstract system and important foundational skill for work in 

system-driven fields—are 10-20% greater than females, resulting in more men at either 
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end of the distribution of abilities.  This finding suggests that men are more likely to fall 

within the highest range of the ability distribution in mathematics and may give an edge 

in systemizing abilities to a portion of men (Ceci & Williams, 2010a).  Further evidence 

for more men possessing an aptitude for systemizing abilities is derived from robust 

findings that men excel in spatial ability (Voyer, Nolan, & Voyer, 2000), and even male 

infants between four- and five-months old have been found to mentally rotate better than 

same-age females (Ceci & Williams, 2010b).  In addition, males tend to score higher on 

tasks utilizing systemizing such as directional cues when reading maps and in map-

making (Kimura, 2000; Galea & Kimura, 1993) or predicting movement of levers from 

studying mechanical diagrams (Lawson, Baron-Cohen, & Wheelwright, 2004).  

Interestingly, a study reporting neurological sex differences also supports the idea that on 

average men are more likely to be systemizers.  Cheng and colleagues (2006) 

investigated sex differences in the mirror neuron system by examining mu suppression in 

the primary motor cortex.  Mu suppression provides an index of the engagement of the 

mirror neuron system—activated not only when one performs an action, but also when 

watching others’ perform actions—which has been hypothesized to play an important 

role in humans’ ability to understand another’s actions.  Cheng et al. (2006) reported that 

men in their study displayed smaller mu suppression to a hand performing a motor action, 

but showed greater mu suppression to moving dots.  The authors suggest that men may be 

treating the moving dots as an object—perhaps a part of a system—which would be more 

likely to trigger response in the premotor cortex, whereas women were not.   

As with empathizing abilities, a succinct self-report questionnaire for assessing 

systemizing was established: the Systemizing Quotient (SQ; Baron-Cohen, Richler, 
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Bisarya, Gurunathan, & Wheelwright, 2003).  The SQ shows the expected sex 

differences, with men scoring higher on the SQ than women and persons with ASD 

scoring higher than both typically developing men and women (Baron-Cohen et al., 2003; 

Wheelwright et al., 2006).   These results were also replicated in a sample of college 

students, with men more likely to be classified as having a Type S brain and to display 

more systemizing abilities, as evidenced by higher scores on block design tasks (Carroll 

& Chiew, 2006).  The SQ has also been adapted for children (Auyeung et al., 2009) and 

adolescents (Auyeung et al., 2012).) and has shown similar results.  Taken together, 

systemizing abilities seem to be more likely to be developed within males than females, 

with men more likely to be classified as having a Type S brain. 

The Extreme Male Brain.  Within this conceptualization, ASD can be understood 

as an extreme variant of the typical male brain with superior strengths in systematizing 

coupled with a decreased capacity for, or even deficit in, empathizing.  Roots for this 

conceptualization of ASD stem back to Hans Asperger who wrote: “The autistic 

personality is an extreme variant of male intelligence. Even within the normal variation, 

we find typical sex differences in intelligence . . . In the autistic individual, the male 

pattern is exaggerated to the extreme” (Asperger, 1944, as cited in Baron-Cohen, 2003, p. 

149).  Results of behavioral tasks suggest this pattern, with persons with ASD performing 

more poorly on various measures of empathizing.  For example, persons with ASD score 

lower than men (who score lower than women) on various tests of ToM, including asking 

persons to read emotionality from only looking at someone’s eyes (Baron-Cohen et al., 

2001a) and recognizing social faux pas (Baron-Cohen et al., 1999).  Adults with ASD 

also score lower on the Friendship Questionnaire—which asks about individual 
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differences about preferences for closeness and quality of friendships and interacting with 

others for the sake of interacting—than men (who score lower than women; Baron-Cohen 

& Wheelwright, 2003).  Lastly, persons with high-functioning ASD or Asperger’s 

Syndrome (regardless of sex) score significantly lower on the EQ (Baron-Cohen et al., 

2003; Baron-Cohen & Wheelwright, 2004) than typically developing women and men.  

These results suggest agreement with an exaggerated male profile, as men, on average, 

score lower than women on these tests related to constructs of empathy. 

In addition to differences in empathizing, persons with ASD can be described as 

being excellent systemizers.  A part of the diagnostic criteria for autism (APA, 2000), the 

restricted and repetitive interests of persons with ASD often involve closed-systems, such 

as trains, computers, or bird migration patterns.  In addition, the presence of lining up 

behaviors, such as lining up toys in a specific manner rather than displaying creative play 

(Baron-Cohen, 2003), is another diagnostic consideration in ASD that indicates a 

preference for systems.  Also, children with Asperger Syndrome score well above 

expected for their mental age on tests of intuitive physics, which ask participants to infer 

the cause of a non-agent’s movement and draws upon traits associated with systemizing, 

but lower than expected for their mental age on tests of intuitive psychology, where the 

cause of an agent’s movement is inferred and utilization of empathizing abilities are 

required (Baron-Cohen, Wheelwright, Spong, Scahill, & Lawson, 2001).  Persons with 

ASD also have been shown to have superior detailed local perception, a prerequisite for 

systemizing, as they score higher than males (who score higher than females) on the 

Embedded Figures Test (Jolliffe & Baron-Cohen, 1997).  This task requires exceptional 

attention to detail in order to perform well.  In addition, persons with ASD have been 
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shown to have faster and more accurate attention to detail than males (and females) on 

visual search tasks (O’Riordan, Plaisted, Driver, & Baron-Cohen, 2001), again 

suggesting a strength in characteristics of systemizing in persons with ASD.  Lastly, 

persons with ASD also score significantly higher on the SQ than control groups (Baron-

Cohen et al., 2003), once again displaying this strength in systemizing abilities in 

comparison to typically developing males and females. 

Coherence: An Index of Neural Connectivity 
 

Given that ASDs are conceptualized as brain-based disorders, the gap between the 

neurobiology of ASD and behavioral theories must be addressed.  The assemblage of 

atypicalities in social functioning, communication, and stereotyped behaviors in ASD 

suggests, from a neurobiological perspective, a large-scale dysfunction of the association 

cortex that does not impact primary motor and sensory cortex (Minshew & Williams, 

2007).  In addition, a growing literature supports the notion that neural connectivity—

referring generally to the coordination or integration of brain regions—is compromised in 

ASD (see Wass, 2011, for a recent review), though various theories exist regarding 

exactly how this connectivity has diverged from typical development.  Currently, general 

consensus has supported the idea that aberrant connectivity in ASD is marked by short-

range over-connectivity coupled with long-range under-connectivity (Wass, 2011; 

Casanova & Trippe, 2009; Minshew & Williams, 2007; Courchesne & Pierce, 2005).  

More specifically, structural evidence from post mortem histological studies of persons 

with ASD has found irregularities in minicolumns: “radially oriented arrangements of 

cellular elements, which have a stereotypical morphometry and are distributed throughout 

the cortex” (Casanova & Trippe, 2009, p. 1433).  Findings suggest that minicolumns in 
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persons with ASD are more numerous, densely packed, and narrow, while maintaining 

the same number of cells per minicolumn (Casanova et al., 2002a; Casanova et al., 

2002b; Casanova et al., 2006a, Casanova et al., 2006b), indicating that disruptions exist 

at a cellular level which may lead to excessive local connectivity.   

In addition, abnormalities in long-range connectivity have been studied via 

functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and 

EEG.  For example, an fMRI study by Kleinhans and colleagues (2008) reported 

decreased functional connectivity in ASD in areas associated with the “social brain,” 

particularly during a face-processing task.  Anderson and colleagues (2011) also found 

decreased long-range, interhemispheric connectivity (measured by fMRI) in areas 

associated with behavioral abnormalities in autism, including the sensorimotor cortex, 

anterior insula, fusiform gyrus, superior temporal gyrus, and superior parietal lobe.  

Recent work (Assaf et al., 2010; Monk et al., 2009; Weng et al., 2010) has focused on 

underconnectivity in the default mode network in ASD, which includes the posterior 

cingulate cortex, retrosplenial cortex, lateral parietal cortex/angular gyrus, medial 

prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus.  This 

network has been shown to be active during passive resting states, as well as during 

cognitive processes associated with deficits in ASD, such as autobiographical memory, 

future prospection, and ToM.  Although some conflicting results exist (i.e. Monk et al., 

2009 also reported some areas of stronger connectivity), reports show a tendency for 

decreased connectivity in the default network in ASD as compared to typically 

developing controls (Assaf et al., 2010; Weng et al., 2010).  In addition, more severe 

social difficulties (from parent-report on the SRS and clinician ratings on the ADOS—



14 

both measures to be discussed in more detail below) were associated with weaker 

connectivity in the default network (Assaf et al., 2010; Weng et al., 2010), as were more 

severe restricted and repetitive interests (Weng et al., 2010).  Criticisms of fMRI research 

on connectivity include the use of a few regions of interest in order to investigate 

connectivity (Wass, 2011), which could miss other regions of activity, as well as its 

insufficient temporal accuracy especially during tasks (Spear, 2010).   

Another method for studying connectivity, EEG coherence can inform behavioral 

theories, as it provides understanding as to how different brain regions associated with 

certain behaviors interact.  Briefly, EEG is a non-invasive method of measuring the 

waveforms associated with the electrical activity in the brain.  The signal is believed to 

originate in the gray matter of the cerebral cortex, generating from the ionic current flow 

in the apical dendrites of pyramidal cells (Rippon, 2006).  Currently, waveforms of five 

different ranges are commonly reported and discussed in EEG literature, including: delta 

(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz; 

Blinkowska & Durka, 2006).  These frequency bands are thought to represent a different 

level of conscious awareness, though the understanding of the type of information 

processing and behavioral associations with each frequency band remains limited and a 

current focus of research.  Each frequency can also be analyzed in terms of EEG power 

or EEG coherence.  Power analysis allows for measurement of the magnitude of the 

neural signal at a given frequency band (Hughdahl, 1995; Rippon, 2006), whereas 

coherence analysis provides an index of connectivity that estimates the level of 

synchronization between neural populations.  Synchronized neural activity is reflected as 

high coherence values and indicates functional cortical connectivity between two areas, 



15 

while low coherence values indicate that two brain regions are acting independently 

(Murias, Webb, Greenson, & Dawson, 2007; Nunez & Srinivasan, 2006).  Notably, EEG 

coherence reflects synchronized connectivity, not brain activity, e.g. two brain regions 

may show dampened activity, but still be highly synchronized and show high coherence 

values.  

Studies of EEG coherence in ASD are limited and are better equipped to provide 

insight into long-range connectivity, as EEG records cortical activity through the skull 

making reports of specific, dense brain regions difficult (Spear, 2010).  Still, Murias and 

colleagues (2007) reported a novel study of EEG coherence in adults with ASD during an 

eyes-closed resting state, finding reduced coherences in short-distance electrode pairs in 

the alpha frequency (8-12 Hz) in the frontal regions, as well as increased coherences in 

the theta frequency (3-6 Hz) at short-distance frontal and left temporal electrode pairs.  In 

addition, Murias et al. (2007) reported reduced EEG coherence in the alpha frequency in 

long-range connections across the whole brain.  Another study of EEG coherence in 

children ages 6-11 found evidence of global underconnectivity in ASD during an eyes-

closed, resting state (Coben et al., 2008).  The authors report decreased alpha coherence 

between the left and right hemispheres of the temporal lobe, as well as reduced coherence 

in delta (1.5-3.5 Hz) and theta (3.5-7.5 Hz) frequencies within each hemisphere.  Lastly, 

previous work by the author (Carson, Gregor, Scheidt, & Van Hecke, in preparation) 

found evidence of reduced EEG coherence between the left and right frontal lobes in 

ASD, suggesting decreased long-range connectivity between the hemispheres.  However, 

this work did not find evidence of global, reduced long-range connectivity.  Analysis of 

intra-hemispheric coherence between the left frontal and parietal-temporal lobe, as well 
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as right frontal and parietal-temporal lobe, did not show group differences in coherence.  

Although previous work seems to include activity both within the hemispheres and 

between the hemispheres when discussing “long-range connectivity,” this last study 

(Carson et al., in preparation) suggests that differences may arise in long-range 

connectivity within the hemispheres (i.e. intra-hemispheric coherence: left frontal lobe to 

left parietal-temporal lobe) versus between the hemispheres (i.e. inter-hemispheric: left 

frontal lobe to right frontal lobe), indicating a need to better demarcate types of long-

range connectivity and their specific disruptions, if any, in ASD.  

In fact, another body of literature exists suggesting that long-range connectivity 

between the hemispheres may be disrupted in ASD on both a structural and functional 

level.  The corpus callosum (CC) is the largest and most principal white matter structure 

in the brain, consisting of 200 million axons connecting the left and right hemispheres of 

the brain.  In ASD, the CC has become an area of interest, considering its involvement in 

inter-hemispheric transfer of sensory information relevant to multiple cognitive processes 

(e.g. Schulte et al., 2005; Pollman et al., 2004; Mathias et al., 2004).   The CC plays a 

primary role in the integration of a variety of functions, as its task is to seamlessly 

incorporate the functions of the hemispheres of the brain, including memory storage and 

retrieval, attention and arousal, language, and the integration of a variety of sensory fields 

(Giedd, 2008).  Studies of the CC in ASD have reported abnormalities; for example, 

three- and four-year-old children with ASD have been found to have smaller CC than 

typically developing controls when accounting for the increase in ASD cerebral volume 

(Boger-Megiddo et al., 2006).  Further, when the ASD group was divided into a group 

with autism and a group with PDD-NOS (considered a less severely affected group), the 
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group with autism had significantly smaller CC than the control group, while 

comparisons between the PDD-NOS group and control group yielded only trends towards 

significance.  Additionally, pre-adolescent boys with autism were found to have reduced 

total area of the CC, as well as significant thinning within the genu and splenium regions 

of the CC, when compared to typically developing controls (Vidal et al., 2006).  

Interestingly, the genu connects fibers in the orbitofrontal cortex, an area associated with 

understanding social and emotional cues (Mah, Arnold, & Grafman, 2004), as well as the 

ability to guess about another’s mental state (ToM; Sabbagh, 2004).   

Two other studies (Keary et al., 2009; Alexander et al., 2007) of the CC in autism 

with wide age ranges (ages 8-45 and ages 7-33, respectively) demonstrate similar 

findings of reduced CC size, further suggesting a general trend for reduced CC in ASD 

across the lifespan.  Interestingly, persons with developmental absence (agenesis) of the 

CC (AgCC) display difficulties with social communication and social interaction in ways 

that overlap with the diagnostic criteria for ASD (Paul et al., 2007; Brown & Paul, 2000), 

suggesting the crucial role the CC has in allowing the coordination of various brain 

regions for social interactions.   

Neurological Correlates of the EMB Theory 
 

Proposed neural profiles of the Type E and Type S brains types help to bridge the 

gap between behavioral implications and neurological evidence of the EMB theory.  

Within this framework, it is expected that a Type E brain would display increased 

connectivity across the brain and a Type S brain would display decreased connectivity 

between the two hemispheres (Baron-Cohen & Belmonte, 2005).  The behavioral 

differences between men and women, especially those pertaining to language, have been 
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suggested to be due to these differing patterns of neural activation.  Specifically, during 

language tasks, women have been shown to display more bilateral activation in the 

inferior frontal gyrus (i.e. Baxter et al., 2003; Clements et al., 2006) and posterior areas 

of the middle/superior temporal gyrus (i.e. Kansaku,Yamaura, & Kitazawa, 2000; 

Phillips, Lowe, Lurito, Dzemidzic, & Mathews, 2001).  This bilateral activation could 

indicate that more neural resources are devoted to language processing in women, 

whereas men are more likely to rely on the left hemisphere (i.e. Clements et al., 2006).  

These findings have also been replicated in children (Burman, Bitan, & Booth, 2008).   

Additional support for the idea that women (and thus, the Type E brain) present 

with more bilateral activation includes evidence from female stroke patients, who have 

been found to experience less impairment after lesions of the left hemisphere than men 

(McGlone, 1980).  Additionally, Sowell and colleagues (2007) reported that in a sample 

of typical adults, women had increased gray matter thickness in the left and right 

temporal and parietal cortices, which could contribute to the female advantage in 

language tasks, as these areas are involved in language production.  In addition, this study 

reported the women’s cortices in the right hemisphere were especially thicker in 

comparison to men, which they indicate is usually non-dominant for language.  This 

increased cortical thickness could indicate a better connected brain with additional 

resources for use during language skills or other behaviors associated with these areas, 

including empathizing skills as the temporal and parietal cortices are the location of the 

proposed “social brain” circuit (Adolphs, 2001; Brothers, 1990).  As seen in persons with 

AgCC (Paul et al., 2007; Brown & Paul, 2000), connections between the hemispheres 

play a crucial role in social behaviors, suggesting that those with higher empathizing 
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skills would have richer, more developed connections between the two hemispheres.  

Indeed, empathy has been found to activate brain areas that integrate information from a 

variety of neural sources in a typical sample (Ochsner et al., 2004).  Thus, it seems that 

utilization of empathy requires the coordination of various brain regions, including 

between the hemispheres.  The Type E brain would then be expected to display increased 

connectivity between the hemispheres, while the Type S brain would show the opposite 

pattern.   

A theoretical connectionist model suggested by Lewis and Elman (2008) explored 

the idea of cortico-cortical connectivity and brain size and provides further insight into 

the neurological correlates of the EMB theory.  Their model suggests that connectivity 

between the hemispheres may be impacted within physically larger brains, especially 

those with accelerated brain growth.  Their model found that larger brains rely more on 

local connections within each hemisphere, which require fewer neural resources to 

sustain computationally and physically.  Given that only a (somewhat) finite amount of 

neural resources exist within the brain and that long-distance connections require more 

resources to develop, a larger brain adapts by relying increasingly on connectivity within 

each hemisphere.  Interestingly, in the general population, men have consistently been 

found to have greater total brain volume (Gur et al., 1999; Nopoulos et al., 2000; 

Goldstein et al., 2001).  This finding is evident from the first few months of life (Gilmore 

et al., 2007), with larger gray and white matter volumes found in newborn males 

compared to newborn females.  Connecting this finding to the EMB theory, males may 

allocate more resources to short-range connections due to their larger brain size, resulting 

in a neurological profile that is more lateralized.  Indeed, a study of healthy adults found 
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that connection length (i.e. the physical length of connection fibers) in the CC was 

negatively correlated with degree of connectivity, suggesting that cortical networks are 

optimized to conserve neural resources (Lewis, Theilmann, Sereno, & Townsend, 2009).  

As larger brains tend to have longer fibers (Braitenberg, 2001), these findings also 

suggest that enlarged brain size may contribute to disrupted connectivity between the 

hemispheres.  Further, children with ASD as young as two have been shown to have 

greater cerebral volume than typically developing children (Hazlett et al., 2005), though 

this initial overgrowth seems to slow, as group differences in brain size disappears in 

adolescence (Redcay & Courchesne, 2005).  Still, this initial overgrowth may contribute 

to different connectivity patterns developing in ASD (Wass, 2011), as discussed in Lewis 

and Elman’s (2008) connectionist model.  Specifically, it may be that neural development 

in ASD is especially predisposed to develop functional connections which rely on 

increased local connectivity, in part due to their larger brain size in childhood.  This 

altered connectivity would result in an extreme profile of the typical male brain with 

significantly decreased connectivity between the hemispheres. 

In fact, larger brains have been found to show increased connectivity within the 

hemispheres relative to connectivity between the hemispheres (Luders, Narr, Zaidel, 

Thompson, and Toga, 2006), which fits within the framework of the EMB theory as a 

Type S brain would be expected to show decreased inter-hemispheric connectivity.  

Gender differences evident in Luders and colleagues’ (2006) study showed that women 

had decreased asymmetry across the CC compared to men, suggesting that women have 

thicker, more pronounced connections between the hemispheres. Lastly, a recent study by 

Chou, Cheng, Chen, Lin, and Chu (2011) analyzed white matter microstructure in men 
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and women, correlating their results to the EQ and SQ.  Their results support the EMB 

theory of autism, in that scores on the EQ in females, but not males, were positively 

correlated with more ordered neural structure (fractional anisotropy in white matter) in 

areas associated with the social brain (inferior parietal lobule and superior temporal 

gyrus).  In addition, scores on the SQ in males, but not females, were found to be 

positively correlated with fractional anisotropy in areas associated with the analytic brain 

(occipital gyrus and postcentral gyrus; Baron-Cohen & Belmonte, 2005). Chou and 

colleagues (2011) also reported that women were found to have white matter 

microstructure better suited for communications across the hemispheres (greater 

fractional anisotropy associated with decreased radial diffusivity), which they suggest 

could be the foundation for greater empathizing skills in women.  These findings provide 

more direct evidence for neural support of the EMB theory, though studies relating 

functional connectivity to the behavioral presentations associated with the EMB theory 

are needed.  Work by Carson and colleagues (in preparation) suggested a pattern of 

decreased communication between the hemispheres, but intact communication within the 

hemispheres from a study of EEG coherence in adolescents with and without ASD.  

However, this study lacks behavioral evidence to link this pattern of neural activity to the 

EMB theory.  Thus, this study aims to explore connections between EEG coherence and 

measures of empathizing and systemizing in groups of adolescents with and without 

ASD.  More specifically, the aims of the present study are:	
  

I. To examine whether EEG coherence differs between adolescents with ASD and 

typically developing adolescents.   
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II. To examine relationships between behavioral measures and EEG coherence 

between the frontal lobes. 

III. To determine the best predictors of group membership within the sample by 

analyzing how EEG coherence and behavioral indicators of the EMB theory 

contribute to group membership, in comparison to how parent reports of social 

skills and characteristics associated with autism contribute to group membership. 

The hypotheses that will be tested in the current study are as follows: 

Ia.   Adolescents with ASD will show decreased coherence between the frontal lobes 

in comparison to typically developing adolescents in alpha, beta, theta, delta, and 

gamma bands. 

Ib.   EEG coherence within the left frontal and temporal-parietal lobes will not differ 

between adolescents with ASD and typically developing adolescents in alpha, 

beta, theta, delta, and gamma bands (Carson et al., in preparation). 

Ic.   EEG coherence within the right frontal and temporal-parietal lobes will not differ 

between adolescents with ASD and typically developing adolescents in alpha, 

beta, theta, delta, and gamma bands (Carson et al., in preparation).  

IIa.  EEG coherence between the frontal lobes will be positively correlated with 

empathizing capabilities (i.e. the EQ). 

IIb.  EEG coherence between the frontal lobes will be negatively correlated with 

severity of autism (i.e. the AQ). 

IIc.  EEG coherence between the frontal lobes will be positively correlated with social 

skills, and thus negatively correlated with the total score of the SRS. 
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IId. EEG coherence between the frontal lobes will be negatively correlated with 

systematizing capabilities (i.e. the SQ). 

IIIa.  Group membership (ASD vs. TYP) will be accurately determined from the 

following predictors: systematizing capabilities (i.e. SQ scores), empathizing 

capabilities (i.e. EQ scores), and EEG coherence between the frontal lobes. 

IIIb.  Group membership (ASD vs. TYP) will be accurately determined from the 

following predictors: parent report of social skills (i.e. total score of the Social 

Responsiveness Scale) and characteristics associated with autism (i.e. AQ 

scores). 

IIIc.  Group membership will be more accurately determined from the following 

predictors: systematizing capabilities (i.e. SQ scores), empathizing capabilities 

(i.e. EQ scores), and EEG coherence between the frontal lobes, in comparison to 

membership predicted by parent report of social skills and characteristics of 

autism.  
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Method 
 

Data collection for this study was reviewed and continuously approved by the 

Marquette University Internal Review Board (IRB).  Data was collected with 

collaboration from Amy Van Hecke’s, Ph.D., laboratory, which included financial 

support from the Autism Society of Southeastern Wisconsin (ASSEW). 

Participants             
 
 
 Sixty-one male adolescents, ages 11-15, were recruited for participation in this 

study.  Thirty-two typically developing male adolescents were recruited via flyers and 

online advertisements.  Typically developing teens had no history of ASD or a sibling 

with ASD.  In addition, their caregiver completed the Autism Spectrum Screening 

Questionnaire (ASSQ; Ehlers, Gillberg, & Wing, 1999) and Child Behavior Checklist 

(CBCL; Achenbach & Rescorla, 2001), in order to ensure the absence of a diagnosis on 

the autism spectrum and other behavioral concerns.  

 Twenty-nine male adolescents with ASD were recruited for participation in the 

Marquette University Program for the Enrichment and Education of Relational Skills 

(PEERS).  PEERS is a social skills group aimed at teaching high-functioning adolescents 

with ASD how to make and keep friends (Laugeson, Frankel, Mogil, & Dillon, 2009).  

As a part of their participation in PEERS, community diagnoses for teens with ASD are 

confirmed via administration of the Autism Diagnosis Observation Schedule (ADOS:  

Lord, Rutter, DiLavore, & Risi, 1999), Module 3 or 4, which is appropriate for children 

aged 11 to 15 who are able to speak in competent, full sentences.  The ADOS is 
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considered a gold standard among autism diagnostic tools and recommended for use in 

research (Tanguay, 2000). 

All participants were required to speak relatively well, in English, in full 

sentences and to have at least one parent agree to participate as well.  Adolescents were 

administered the Kaufman Brief Intelligence Test (KBIT: Kaufman & Kaufman, 1990) to 

ensure their intelligence quotient (IQ) scores were above or equal to 70.  This cutoff was 

established as the IQ criteria for participation in PEERS and, for continuity, was utilized 

with the control group as well.  The K-BIT was normed on over 2,000 children and had 

good internal consistency (IQ composite: .94) and test-retest reliability (.92-.95).  

One typically developing participant was excluded due to an elevated 

internalizing subscale on the CBCL.  Left-handed subjects (three in the TYP group and 

three in the ASD group) were not included in the analysis, due to concerns of possible 

lateralization effects on coherence values.  Therefore, the final samples included 28 

adolescents in the TYP group and 26 adolescents in the ASD group, for a total sample 

size of 54.   

Medication use was noted for all participants using the following classifications: 

1) none, 2) medications to treat attention problems, 3) medications to treat mood 

disorders, and 4) multiple medications.  Statistically significant differences were noted 

between the groups for medication use, with none of the TYP group reporting taking 

medications for behavior or mood [t (52) = -5.785, p <.001].  In the ASD group, ten teens 

reportedly took no medication, three teens were on medications for attention problems, 

six teens were on medications to treat mood disorders, and seven teens were taking 



26 

multiple medications.  No statistically significant differences were found for age, IQ, or 

race/ethnicity (see Table 1). 

Table 1.  Descriptive Statistics 

                 ASD Group               TYP Group 
 
Variable_____________________      Mean_       SD_                      Mean_       SD___ 
 
Age  (years) 12.85         1.32 13.00         1.47 
IQ   101.58       18.36                     107.25       13.99 
AQ Total*      32.62         6.56    13.39        5.21 
EQ Total*      16.46         7.58    43.64        13.82 
SQ Total      36.27         13.94    34.68        17.15 
SRS Total*      101.50       21.75    24.25        16.46 
Delta Frequency Band 

Frontal-Frontal               .215           .112      .261          .122 
Left Frontal-Temporal              .333           .143    .325          .100 
Right Frontal-Temporal            .266           .106        .273          .114 

Theta Frequency Band 
Frontal-Frontal               .470           .225      .612          .180 
Left Frontal-Temporal              .453           .178    .452          .124 
Right Frontal-Temporal            .366           .158        .401          .105 

Alpha Frequency Band 
Frontal-Frontal*               .500           .256      .734          .224 
Left Frontal-Temporal              .455           .165    .514          .157 
Right Frontal-Temporal            .408           .187        .448          .177 

Beta Frequency Band 
Frontal-Frontal               .284           .137      .361          .141 
Left Frontal-Temporal              .310           .104    .311          .078 
Right Frontal-Temporal            .247           .082        .290          .092 

Gamma Frequency Band 
Frontal-Frontal               .280           .151      .333          .078 
Left Frontal- Temporal             .262           .087    .275          .136 
Right Frontal-Temporal   .206           .086        .220          .090 

 
Note.  Frontal-Frontal= Coherence values from frontal lobe electrodes F3 and F4.  Left Frontal-Temporal= 
Coherence values from frontal lobe electrode F3 and Temporal electrode T5.  Right Frontal-Temporal= 
Coherence values from frontal lobe electrode F4 and Temporal electrode T6. IQ = KBIT total score. AQ = 
Autism Quotient total score.  EQ = Empathizing Quotient total score.  SQ = Systemizing Quotient total 
score. SRS= Social Responsiveness Scale total score.    * denotes statistically significant difference 
between the group means at p < .005.  
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Females were excluded from analysis due to the significantly lower numbers of 

female participants with ASD in the PEERS program.  As boys are four times more likely 

to be diagnosed with ASD than girls (Kogan et al., 2009), this gender difference in 

participants is not unusual.   

Procedures  
 

 Participants with ASD were recruited through the Marquette University PEERS 

program and were naïve to the PEERS intervention, meaning at the time of data 

collection they had not received the intervention.  Recruitment of typically developing 

adolescents occurred via online advertising.  Study information was posted on 

Craigslist.org and local family websites, such as Milwaukeemoms.com.  A description of 

the study was disseminated to the Marquette community on two occasions via a weekly 

email update sent to students, faculty, and staff.  In addition, flyers describing the study 

were posted in the community, including in grocery stores, coffee shops, and other public 

areas.  Finally, a collaboration with a doctoral student in the Biomedical Engineering 

Department, whereby participants recruited are able to participate in both research 

protocols, with overlapping information (i.e. KBIT scores) shared between the two 

investigators, was established.  This relationship was approved by the Marquette 

University Institutional Review Board (IRB). 

For typically developing adolescents, interested families contacted the study 

author in order to set up an appointment via the contact information provided on 

recruitment materials.  For adolescents with ASD, participation in the current study was 

conducted through the required research component for PEERS and did not require 

additional testing or participation. 
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All participants completed consent and assent forms.  For participants with ASD, 

the measures and procedures described were collected in accordance with the procedures 

approved by the Marquette University IRB as a part of the larger Marquette University 

PEERS study.  For all participants, following the consent procedure, parents completed 

behavioral questionnaires: ASSQ (Ehlers et al., 1999), the CBCL (Achenbach & 

Rescorla, 2001), the Adolescent Empathy Quotient (EQ; Auyeung et al., 2012), the 

Adolescent Systemizing Quotient (SQ; Auyeung, et al., 2012), the Adolescent Autism 

Spectrum Quotient (AQ; Baron-Cohen, Hoekstra, Knickmeyer, & Wheelwright, 2006), 

and the Social Responsiveness Scale (SRS: Constantino, 2005).  While the parent 

completed behavioral questionnaires, the typically developing group participated in the 

KBIT and the participants with ASD participated in the KBIT and ADOS.  Upon 

completion of behavioral testing, teens were accompanied by their parents to Dr. Van 

Hecke’s research laboratory to complete the EEG.  Adolescents were asked to sit quietly 

in a comfortable chair facing a 19-inch presentation video monitor. 

EEG net application began by the experimenter first asking the participant to 

remove any jewelry (ears, neck, bracelet, face jewelry) and hair accessories. A 64 

channel EGI HydroCell Sensor Net (Electrical Geodesics, Eugene, OR) was used.  After 

soaking the net in electrolyte solution, net application began. The examiner placed the 

EEG net on the participants’ heads.  All impedances were maintained at or below 50 

kOhm and a CZ reference was utilized during recording.  After ensuring the child was 

comfortable, EEG data collection began during an alert, eyes-open condition.  A total of 

three minutes of continuous EEG was collected. 

Measures 
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 Adolescent Empathy Quotient (EQ) and Adolescent Systemizing Quotient (SQ).  

The Adolescent EQ and SQ (Auyeung et al., 2012) were developed as adolescent 

versions of the Empathy Quotient (Baron-Cohen & Wheelwright, 2004) and Sympathy 

Quotient (Baron-Cohen et al., 2003), self-report questionnaires assessing empathy and 

systemizing.  The Adolescent EQ and SQ contain a list of statements about situations, 

experiences, and interests where empathizing and systemizing are required and asks 

parents to rate how strongly they agree with each statement about their adolescent with a 

Likert scale format.  The Adolescent EQ and SQ show well-established variability, 

internal consistency (EQ: α = 0.96; SQ: α = 0.90) and test retest reliability (EQ: r = 0.83, 

p<0.001; SQ: r = 0.84, p<0.001; Auyeung et al., 2012).  Additionally, the current sample 

also demonstrated good reliability and internal consistency on both the EQ (EQ total: α = 

0.94) and the SQ (SQ total: α = 0.89).  Akin to patterns observed in children and adults, 

adolescent girls scored higher on the EQ than adolescent boys, who scored higher than 

adolescents with ASD (Auyeung et al., 2012).  Adolescents with ASD scored highest on 

the SQ, followed by teenage boys then teenage girls (Auyeung et al., 2012). 

Adolescent Autism Spectrum Quotient (AQ).  The Adolescent AQ (Baron-Cohen 

et al., 2006) was developed as an adolescent version of the Autism Quotient (Baron-

Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001), a quick and quantitative self-

report measure for assessing the number of autistic traits a person possesses.  The 

Adolescent AQ is completed by parents of teens, asking them to rate how much they 

agree with 50 statements about their teens using a Likert scale.  Five areas are assessed 

with ten questions each: social skill, attention switching, attention to detail, 

communication, and imagination.  Cronbach’s α coefficents for each group were all in 
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the range 0.6-0.9, suggesting the measure has reasonable construct validity.  This 

measure also has good test-retest reliability and was shown to distinguish between 

typically developing teens and adolescents with ASD (Baron-Cohen et al., 2006).  In the 

current sample, excellent internal consistency was found on the AQ (AQ total: α = .922) 

Social Responsiveness Scale (SRS). The SRS (Constantino, 2005) consists of 65 

items that measure social awareness, reciprocal social communication, social anxiety, 

social information processing, and autistic traits.  The SRS produces t-scores for six 

subscales: Social Awareness, Social Cognition, Social Communication, Social 

Motivation, Autistic Mannerisms, and Total Score.  T-scores above 76 are indicative of a 

diagnosis of autism and atypical development in that area.  The scale was normed by 

gender and age on a sample of more than 1,600 4-18-year-old children.  The scale 

exhibits good reliability and validity, with all scales reporting α > .70 in published 

samples (Constantino et al., 2003), as well as the current sample (SRS total: α = .98). 

Data Preparation 
 

EEG signals from 64 channels were amplified and digitized at a sampling rate of 

1000 samples per second using an EGI (Electrical Geodesics, Inc., Eugene, OR) 

Geodesic EEG System, Net Amps 300.  Raw EEG data was transferred from the EGI 

system used to collect data to the Scan 4.3 program (Neuroscan, Inc., Charlotte, NC).  All 

preparation and analysis of the EEG data was conducted within the Neuroscan 4.3 Edit 

program.  Data was re-referenced offline to an average reference configuration and was 

high pass filtered at .3-50 Hz.  Any segments of continuous EEG data with movement, 

muscle activity, and eye artifact were identified manually and rejected from analyses 

using information from electro-oculogram channels.  Artifact-free data was then epoched 
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into 1-second segments (1024 points).  A Fast Fourier Transform with a Hanning window 

of 1-second width and 50% overlap between consecutive windows was used to average 

artifact-free epochs for both conditions.  A minimum of 30 artifact-free epochs (or 30 

seconds of continuous EEG) was necessary in order for a participant’s data to be included 

in analyses.  Average spectral power (microvolts squared) was computed by summing the 

power in the 0-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha), 12-30 Hz (beta), and 30-50 

Hz (gamma) bins.  Coherence was then calculated based on delta, theta, alpha, beta, and 

gamma values within the Scan 4.3 program’s coherence transform (Neuroscan, Inc., 

Charlotte, NC).  Coherence is a linear correlation coefficient that primarily estimates the 

amount of synchronization between any two data channels (Nunez & Srinivasan, 2006).  

Coherence values range between 0 and 1.  A coherence value of 1 indicates a high level 

of connectivity, or relatedness, between the two electrodes.  A coherence value of 0, 

however, indicates the two electrodes are not related.  Further, a coherence of 0.5 in one 

frequency band, for example, indicates that at this frequency, 50 percent of the variance 

in one channel can be explained by the other channel (Nunez & Srinivasan, 2006).  Three 

pairs of electrodes were selected (10-20 standard locations): a left frontal lobe electrode 

(F3) and a right frontal lobe electrode (F4); a left frontal lobe electrode (F3) and a left 

temporal-parietal lobe electrode (T5); and finally a right frontal lobe electrode (F4) and a 

right temporal-parietal lobe electrode (T6).  All statistical analyses were conducted using 

the SPSS 20.0 General Linear Model (SPSS, Inc., 2011) program.  
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Results 
 
 

Descriptive statistics are presented in Table 1.  As stated previously, the final 

sample sizes included 28 adolescents in the TYP group and 26 adolescents in the ASD 

group, for a total sample size of 54.  All variable distributions were examined for 

skewness, kurtosis, and sphericity, when applicable.  Coherence values were determined 

to be skewed; therefore, data were normalized by calculating the square root and 

performing a Fisher z-transform of these values (Coben et al., 2008).  After 

transformation, all skewness values were within acceptable limits.  Kurtosis values 

suggested that all coherence values demonstrated a platykurtic distribution. 

Results of the First Set of Hypotheses: Differences in Coherence Between Groups   
 

To examine the first set of hypotheses—regarding differences in coherence 

between the adolescents with ASD (ASD) and typically developing adolescents (TYP)—

a three-way, mixed analysis of variance (ANOVA) was conducted.  The coherence value 

(ranging from 0 to 1) served as the dependent variable.  For independent variables, 

diagnosis (ASD or TYP) was utilized as the between groups factor, coherence electrode 

pairing (frontal-frontal; left frontal-left temporal-parietal; and right frontal-right 

temporal-parietal) was utilized as a three-level within-groups factor, and frequency band 

(gamma, delta, theta, alpha, and beta) was utilized as a five-level within-groups factor.  

Initially, participants’ IQ scores from the KBIT and medication use were included as 

covariates.  However, when these variables were included in the models, the results did 

not differ from those cited below.  Therefore, K-BIT scores and medication use were not 
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included as covariates in the final model in order to preserve power.  The Huynh-Feldt 

correction was utilized when violations of sphericity were noted.    

Results of the repeated measures ANOVA found significant main effects of 

frequency band (F(3.697, 192.235) = 44.589, p = .001, partial η2 = .462) and electrode 

pair (F(2, 104) = 92.215, p  .001, partial η2 = .639).  A marginally significant main effect 

for diagnosis was also found (F(1,52) = 3.821, p = .056),   Significant two-way 

interactions were also found for electrode pair x frequency band (F(4.538, 235.973) = 

48.324, p = .001, partial η2 = .482), electrode pair x diagnosis (F(2, 104) = 3.576, p = 

.031, partial η2 = .064), and frequency band x diagnosis (F(3.697, 192.235) = 3.803, p = 

.007, partial η2 = .068).   Finally, results of the repeated measure ANOVA indicated a 

significant three-way interaction: frequency band x electrode pair x diagnosis (F(4.538, 

235.973) = 4.493, p = .001, partial η2 = .08).  Follow-up analyses were conducted on the 

three-way interaction to obtain a better understanding of group differences (see Figure 1).  
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Figure 1.  Results of First Repeated Measures ANOVA 

	
  
 

 

 

 

 

 

 

 

 

 

 

 
For follow-up analyses, three separate two-way repeated measures ANOVAs 

were conducted to investigate differences between the groups at various frequency bands 

in each electrode pairing: left frontal-temporal, right frontal-temporal, and frontal-frontal.  

Each repeated measure ANOVA utilized coherence value as the dependent variable, and 

for independent variables, diagnosis served as the between groups factor with frequency 

band (gamma, delta, theta, alpha, and beta) as a five-level within-groups factor.  The first 

repeated measures ANOVA investigated the left frontal-temporal electrode pairing (see 

Figure 2).  Results indicated a significant main effect for frequency band (F(3.299, 

171.543) = 51.740, p = .001, partial η2 = .499) and a non-significant two-way interaction 

for frequency band x diagnosis (F(3.299, 171.543) = 1.037, p = .382, partial η2 = .020).   
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Figure 2.  Results of Repeated Measures ANOVA: Left Frontal-Temporal Electrode 
Pairing. 
 
 

 

 

 

 

 

 

 

 

The second repeated measures ANOVA investigated the right frontal-temporal 

electrode pairing, which revealed similar results to the left frontal-temporal pairing.  A 

significant main effect for frequency band (F(2.978, 154.857) = 57.996, p = .001, partial 

η2 = .527) and a non-significant two-way interaction for frequency band x diagnosis 

(F(2.978, 154.857) = 0.479, p = .696, partial η2 = .009) were found (see Figure 3).   
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Figure 3.  Results of Repeated Measures ANOVA: Right Frontal-Temporal Electrode 
Pairing. 
 

 
 

Lastly, the third repeated measures ANOVA investigated the frontal-frontal 

coherence electrode pairing.  Results revealed a significant main effect for frequency 

(F(3.014, 156.715) = 109.923, p = .001, partial η2 = .679), as well as a significant two-

way interaction between frequency band and diagnosis (F(3.014, 156.715) = 6.298, p = 

.001, partial η2 = .108).  These results indicate that differences in coherence between the 

typically developing adolescents and teens with ASD were only found in the frontal-

frontal electrode pair (see Figure 4). 
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Figure 4.  Results of Repeated Measures ANOVA: Frontal-Frontal Electrode Pairing. 
 

 
 

As the frontal-frontal electrode pairing yielded a significant two-way interaction, 

independent samples t-tests were conducted on this pairing in order to better understand 

group differences in frontal-frontal coherence at various frequencies.  Utilizing a 

corrected p-value of p = .01 for multiple tests, no significant differences were found 

between the groups in the following frequency bands: delta (t (51.991) = 1.465, p = .149), 

beta (t (51.877) = 2.055, p = .045), and gamma (t (50.997) = 1.313, p = .195).  Significant 

differences did emerge between adolescents with ASD (M = .47, SD = .22) and typically 

developing adolescents (M = .61, SD = .18) in the theta frequency band (t (47.942) = 

2.544, p = .01).  Significant differences also were found between adolescents with ASD 

(M = .50, SD = .26) and typically developing adolescents (M = .73, SD = .22) in the alpha 

frequency band (t (49.838) = 23.561, p = .001).  These results indicate that typically 

developing teens have significantly higher frontal-frontal coherence in the theta and alpha 

bands than teens with ASD (see Figure 5). 
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Figure 5.  Results of Independent Samples T-Test: Frontal-Frontal Coherences. 

	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, the data supported aspects of hypothesis (Ia), in that adolescents with 

ASD demonstrated decreased coherence between the frontal lobes in comparison to 

typically developing adolescents in alpha and theta bands, but not also delta, beta, and 

gamma bands.  In addition, the data supported hypotheses (Ib) and (Ic), as typically 

developing teens and teens with ASD did not differ in coherence values between the left 

frontal and left temporal-parietal lobes or between the right frontal and right temporal-

parietal lobes.   

Results of the Second Set of Hypotheses: Relations of Coherence and Behavioral 
Characteristics 

* 

 

* denotes significant group difference at p < .01. 
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The second set of hypotheses investigated whether behavioral indicators of EMB 

theory and parent report of social skills and characteristics associated with autism were 

related to EEG coherence. Frontal-frontal coherence was chosen for the focus of this 

analysis, given the significant group differences in this coherence measure from 

Hypothesis 1 analyses.  As several skewed distributions emerged in the data, Spearman 

correlations were computed, in order to examine associations among coherence values 

between the left and right frontal lobes (beta, alpha, theta, delta, and gamma), behavioral 

indicators of the EMB theory (SQ and EQ), social skills ratings (SRS-Total Score), and 

characteristics associated with autism (AQ) in the entire sample.  A corrected p-value of 

p = .01 was utilized.  Results of the correlation of the whole sample indicated that frontal-

frontal coherence at the alpha frequency was significantly negatively correlated with SRS 

total score (r = -.356, n = 54, p = .008).  In addition, results of the correlation of the 

whole sample revealed a significant negative correlation between frontal-frontal 

coherence at the theta frequency and SRS total score (r = -.342, n = 54, p = .01).  Thus, 

increased frontal-frontal coherence at the alpha and theta frequencies are associated with 

increased social skills per parent report in the total sample.  In addition, the entire sample 

revealed a trend toward a negative correlation between frontal-frontal coherence in the 

alpha frequency and AQ total score (r = -.293, n = 54, p  = .032), meaning that increased 

frontal-frontal coherence at the alpha frequency was marginally associated with less 

characteristics of autism per parent report.   See Table 2. 
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Table 2.  Spearman’s Rho Correlations for Total Sample: Frontal-Frontal Coherence 
and Behavioral Data. 
 
Variable Empathizing  

Quotient 
Systemizing  
Quotient 

Autism 
Quotient 

SRS Total 
Score 

Delta F5.F6 Coherence .081 -.152 -.127 -.109 

Theta F5.F6 Coherence .214 -.158 -.248 -.342* 

Alpha F5.F6 Coherence .214 -.241 -.293 -.356** 

Beta F5.F6 Coherence .086 -.104 -.129 -.186 

Gamma F5.F6 Coherence .162 -.031 -.154 -.197 

 Note. * = p < .01, ** = p < .005.  N = 54.  F5.F6 = frontal-frontal coherence between the left electrode (F5) 
and right electrode (F6) in the frontal lobes. 
 
 

Additional Spearman’s correlations were computed for each group; however, no 

significant correlations emerged within either the adolescents with ASD or the typically 

developing adolescents.  See Table 3 and Table 4.   
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Table 3. Spearman’s Rho Correlations for ASD Group: Frontal-Frontal Coherence and 
Behavioral Data. 
 
Variable Empathizing  

Quotient 
Systemizing  
Quotient 

Autism 
Quotient 

SRS Total 
Score 

Delta F5.F6 Coherence .112 -.087 -.272 -.121 

Theta F5.F6 Coherence -.199 -.161 -.100 -.023 

Alpha F5.F6 Coherence -.234 -.071 .109 .022 

Beta F5.F6 Coherence -.158 -.022 .184 .113 

Gamma F5.F6 Coherence -.272 -.003 .183 .116 

Note. * = p < .01, ** = p < .005.  N = 28.  F5.F6 = frontal-frontal coherence between the left electrode (F5) 
and right electrode (F6) in the frontal lobes. 

 

Table 4. Spearman’s Rho Correlations for TYP Group: Frontal-Frontal Coherence and 
Behavioral Data. 
 
Variable Empathizing  

Quotient 
Systemizing  
Quotient 

Autism 
Quotient 

SRS Total 
Score 

Delta F5.F6 Coherence -.206 -.159 .290 .239 

Theta F5.F6 Coherence .113 -.162 .149 -.244 

Alpha F5.F6 Coherence -.234 -.348 .192 .170 

Beta F5.F6 Coherence -.271 -.206 .169 .081 

Gamma F5.F6 Coherence .094 -.093 -.117 -.182 

Note. * = p < .01, ** = p < .005.  N = 26.  F5.F6 = frontal-frontal coherence between the left electrode (F5) 
and right electrode (F6) in the frontal lobes. 
 
 

In summary, the results of the correlation did not support hypotheses (IIa) and 

(IId), as frontal-frontal coherence was not positively correlated with empathizing 
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capabilities (i.e. the EQ), nor was frontal-frontal coherence negatively correlated with 

systematizing capabilities (i.e. the SQ).  The data did support aspects of hypotheses (IIb) 

and (IIc), in that frontal-frontal coherence in the alpha frequency was negatively 

correlated with severity of autism [i.e. the AQ; hypothesis (IIb)] and frontal-frontal 

coherence in the alpha and theta frequencies were positively correlated with social skills 

[negatively correlated with the total score of the SRS; hypothesis (IIc)].   

Results of the Third Set of Hypotheses: Predictors of Group Membership 
 
 

In order to examine whether EEG coherence, EMB behavioral characteristics, or 

classic social skills and autism symptoms were associated with group membership, two 

discriminant function analyses were conducted.  First, a discriminant function analysis 

was done to examine the accuracy of behavioral indicators of the EMB theory as 

predictors of group membership.  Predictor variables were entered in one step and 

included the total scores on the EQ and SQ, as well as EEG coherence between the left 

and right frontal lobe at all five frequencies.  The two groups being compared were 

typically developing teens (N = 28) and teens with ASD (N = 26).  The chi-square for this 

discriminant function was statistically significant (χ2 (7) = 55.487, p = .001) and had a 

canonical correlation of .826; thus, it was highly related to group membership.  Overall, 

the prediction of group membership was quite good; Wilks’s Λ, which is analogous to 1 - 

η2 or the percentage of variance in the discriminant scores that is not explained by group 

membership, was .32.  Thus, 68% of the variance in discriminant scores was due to 

between-group differences.  Overall, 90.7% of the subjects were correctly classified by 

the discriminant analysis (24 correctly classified as typically-developing, 1 incorrectly 

classified as typically developing, 25 correctly classified as ASD, and 4 incorrectly 
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classified as ASD; see Figure 6).  Using the arbitrary cutoff of .50 to decide which of the 

standardized discriminant coefficients are large (Warner, 2008), only two of the predictor 

variables had large coefficients for the standardized discriminant function: EQ (.973) and 

frontal-frontal coherence in the alpha frequency (.640).  The other predictor values had 

small standardized discriminant coefficients (SQ = .037; delta frontal-frontal coherence = 

-.114; theta frontal-frontal coherence = -.118; beta frontal-frontal coherence = .158; and 

gamma frontal-frontal coherence = -.160) . 

Figure 6.  Discriminant Analysis for the EMB Theory Model: Number Correctly and 
Incorrectly Classified for Each Group. 

 
 

The second discriminant analysis examined the accuracy with which group 

membership was determined from the following predictors: parent report of social skills 

(i.e. total score of the Social Responsiveness Scale) and characteristics associated with 

autism (i.e. AQ scores).  As before, predictor variables were entered in one step, and the 

two groups being compared were typically developing teens (N = 28) and teens with ASD 

(N = 26).  The chi-square for this discriminant function was statistically significant (χ2 (2) 

= 86.218, p = .001) and had a canonical correlation of .903; thus, it was highly related to 
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group membership.  Overall, the prediction of group membership was quite good; 

Wilks’s Λ was .18.  Thus, 82% of the variance in discriminant scores was due to 

between-group differences.  Overall, 96.3% of the subjects were correctly classified by 

the discriminant analysis (27 correctly classified as typically-developing, 1 incorrectly 

classified as typically developing, 25 correctly classified as ASD, and 1 incorrectly 

classified as ASD; see Figure 7).  Using the arbitrary cutoff of .50 to decide which of the 

standardized discriminant coefficients are large (Warner, 2008), only SRS total score had 

a large coefficient for the standardized discriminant function: SRS = .793).  The other 

predictor value had a small standardized discriminant coefficient (AQ = .287).  Finally, to 

determine if a significant difference existed between the percent correctly classified by 

the discriminant analyses (i.e. the 90.7% correctly predicted via the indicators of EMB 

theory model and the 96.3% correctly predicted via the parent-reported social skills and 

characteristics of autism model) a z-test was performed on the proportions.  Results 

indicate that a significant difference did not exist between these two percentages (z = 

1.18, p = .24, two-tailed). 
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Figure 7.  Discriminant Analysis for the Traditional Characteristics Model: Number 
Correctly and Incorrectly Classified for Each Group. 

 
 

 

Thus, support was found for hypotheses (IIIa) and (IIb), as both discriminant 

function analysis models accurately predicted group membership (90.7% correctly 

predicted via the indicators of EMB theory model and 96.3% correctly predicted via the 

parent-reported social skills and characteristics of autism model).  Hypothesis (IIIc) was 

not supported, as a significant difference did not emerge between the two models. 
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Discussion 
 
 

This study investigated neural correlates of the Extreme Male Brain (EMB) 

theory by investigating EEG coherence, traditional behavioral characteristics of ASD, 

and behavioral indicators of the EMB theory in adolescent males with and without ASD.  

Results of the first hypothesis, investigating EEG coherence between the groups, revealed 

group differences in frontal inter-hemispheric coherence.  Teens with ASD demonstrated 

significantly lower coherence between the left and right frontal lobes in the alpha and 

theta frequencies than the typically developing group.  In contrast, long-distance intra-

hemispheric EEG coherence between the frontal and temporal-parietal lobes did not 

differ between the groups at any frequency, suggesting that connectivity within each 

hemisphere does not deviate from typical development in this sample.  These results are 

similar to the author’s previous findings in a different sample of 8-12 year-old males and 

females (Carson et al., in preparation), which also found no differences in intra-

hemispheric connectivity between the left and right frontal and temporal-parietal lobes 

but reduced inter-hemispheric coherence in the frontal lobes.  Murias et al. (2007) also 

reported decreased alpha coherence in long-distance connections in adults with ASD.  

These findings suggest an important distinction between inter-hemispheric long-distance 

connectivity and intra-hemispheric long-distance connectivity may exist in ASD, 

warranting further exploration. 

Further, male teens with ASD displaying decreased inter-hemispheric alpha and 

theta connectivity in the frontal lobes as compared to typically developing male teens is 

suggestive of a more lateralized profile in ASD, particularly considering that intra-

hemispheric connectivity within each hemisphere (left and right frontal to temporal-
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parietal coherence) did not differ between the groups.  These neural findings indicate 

support for the EMB theory, in that they demonstrate a more lateralized profile in ASD, 

at least at the alpha and theta frequencies.  Indeed, these results correspond to recent 

studies of typically developing men and women, which have revealed anatomical and 

functional differences in neural organization and connectivity that suggest dimorphic 

organization of the brain in men and women.  For example, parasaggital asymmetries in 

the CC were examined between healthy men and women, with men showing more 

pronounced and significant asymmetry in the CC, particularly in the anterior body 

(Luders et al., 2006).  The authors suggest that differences between the sexes are 

reflected in the organization and distribution of callosal fibers.   

Further, recent studies of the typical brain, using a large, international, multi-site 

sample, have indicated that females display a more connected brain than males (Tomasi 

& Volkow, 2012a), in that females have greater local functional connectivity when 

controlling for total brain volume, gray matter, white matter, and age.  A study utilizing 

this same sample (Tomasi & Volkow, 2012b) found that male brains showed increased 

rightward lateralization in short-range connections as compared to females.  Though 

females displayed greater leftward lateralization in the inferior frontal cortex, this finding 

was the only instance where women showed greater lateralization than men in this 

sample.  These results further suggest that the typical male brain is less connected and 

more lateralized than the typical female brain.  Findings from the current study suggest 

that the brain in ASD may indeed be an extreme variant of the typical male brain, with 

the current sample of adolescent males displaying a more lateralized profile that the 

typical male brain.  Future studies should investigate whether differences in inter-
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hemispheric EEG coherence differs between typically developing males and females, in 

order to determine if the findings reported in this study support the idea that brain activity 

in ASD is an extreme variant of the typical male brain, as opposed to the typical brain. 

Additionally, relating behavioral measures to neural activity was an important 

aspect of exploring the relationship between the behavioral characteristics of the EMB 

theory and underlying brain activity.  Yet, no significant correlations emerged between 

the EQ and SQ and frontal-frontal coherence at any frequency in the total sample ASD 

group, or TYP group.  It may be that a lack of power related to sample size resulted in no 

significant relationships emerging.  Further study and replication are warranted in order 

to better understand the relationship between behavioral measures of the EMB theory and 

inter-hemispheric coherence.  However, results of the current study did reveal that 

parental report of social skills in the total sample emerged as being significantly related to 

coherence at the alpha and theta frequencies, meaning that better social skills were 

correlated with higher inter-hemispheric frontal coherence at the alpha and theta 

frequencies in the total sample.  Interestingly, when correlations were conducted within 

each sample, no significant relationships emerged in either group, which, again, may be 

due to a lack of power related to sample size.  Replication with a larger sample is needed 

in order to fully understand the relationship between frontal-frontal coherence and social 

skills; however, better social skills was related to higher frontal-frontal coherence in the 

whole sample, suggesting an important relationship between neural activity in this region 

and social skills, the hallmark deficit of ASD. 

Despite results of the correlational analysis, further support for the EMB theory 

was found in the results of the discriminant analyses in this study, as the “EMB model” 
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(i.e. EEG coherence between the left and right frontal lobes at all five frequencies, as well 

as empathizing and systemizing characteristics) correctly predicted 90.7% of the cases 

into their appropriate group (ASD vs. TYP).  It seems that relying upon the EMB theory 

resulted in a high rate of accuracy in predicting teens with ASD, with only one teen with 

ASD being inaccurately classified as typically developing.  The “traditional 

characteristics model” (i.e. parent rating of social skills and characteristics associated 

with autism), on the other hand, did accurately predict a larger percent of cases (96.3%), 

but this percent classified was not significantly different from the EMB model.  

Examination of the results of the discriminant analysis reveal that the traditional 

characteristics model demonstrated decreased type I error, in that the traditional 

characteristics model had fewer false positives with only one typically developing teen 

being incorrectly classified in the ASD group, versus four typically developing teens 

being incorrectly classified in the ASD group in the EMB model.  Whether increased 

sample size would see a reduction in this type I error in the EMB model is uncertain, but 

should be examined in future studies.   

Another possible explanation may be that the EMB model is more sensitive to the 

broad autism phenotype (BAP), which describes behaviors observed in relatives of 

persons with ASD that mirror symptom domains of autism, but are milder in their 

manifestation (Losh et al., 2009).  Though exclusion criteria in the current study resulted 

in no members of the typically developing group having a sibling with autism, extended 

family history was not noted.  Future studies could further explore this idea that the EMB 

theory is sensitive to the BAP.  Overall, it appears that the EMB model is a viable model 

for classifying teens with ASD versus typically developing teens.  Interestingly, when 
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examining coefficients in the EMB model, EQ and frontal-frontal coherence in the alpha 

frequency emerge as the largest coefficients in this discriminant analysis, further 

indicating the importance of alpha coherence in both typical development and in ASD. 

The emergence of significant differences in inter-hemispheric frontal-frontal 

coherence in specific frequency bands (alpha and theta), rather than all five bands, leads 

to questions about the significance of these frequency bands with regards to known 

functional associations.  To date, a firm literature on coherence frequency bands and their 

related functions has yet to be established, and a search of electronic databases resulted in 

few studies associating coherence in specific frequency bands with specific behaviors or 

functions.  However, some evidence suggests that alpha EEG coherence in frontal regions 

may be related to working memory functions in typical development (i.e. Sauseng et al., 

2005), and one study (Mathewson et al., 2012) reported that decreased alpha coherence in 

posterior regions was related to decreased attention to detail, as reported on the AQ, in 

adults with ASD.  Though this study did not report differences in frontal regions, it does 

provide evidence that alpha coherence may continue to differ in ASD into adulthood.  

The current study contributes to this literature of relating behavioral characteristics to 

activity in varying frequencies, in that, as discussed previously, inter-hemispheric frontal 

coherence in the alpha and theta frequencies was related to better social skills in the total 

sample.  This literature remains in its infancy, requiring further investigation before a 

more thorough understanding of the relationship between the different coherence 

frequency bands and various processes or behaviors can be achieved.   

Although an understanding of coherence frequency bands and their related 

functions/behaviors is not well established, a broader literature exists for the functional 
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significance of the different frequency bands when examining EEG power.  Rather than 

exploring connectivity between various electrodes like EEG coherence, EEG power is 

believed to reflect brain activity, specifically the electric potential differences in neuronal 

dendrites from transmembrane currents in the gray matter of cerebral cortex.  Different 

EEG frequencies are thought to reflect the activity of distributed systems, which could 

either be wide-spread or local, and may work together as various functional processes 

demand (Rippon, 2006).  Both theta and alpha rhythms have been found to be related to 

specific cognitive processes.  Theta may serve as an index of hippocampal activity and be 

related to the limbic system; as such, theta activity has been related to memory 

performance (i.e. Rohm et al, 2001; Klimesch et al., 1997, 2001; Burgess & Gruzelier, 

1997).  Indeed, a study of children with dyslexia found that successful task performance 

is related to increases in theta in frontal regions (Rippon & Brunswick, 1998, 2000).  

Additionally, alpha activity has been associated with thalamocortical networks and is also 

associated with memory functions (Rippon, 2006).  For example, those performing more 

successfully on memory tasks demonstrate higher alpha activity than bad performers 

(Klimesch, 1997).  Although the current study examined EEG coherence during an eyes-

open, resting condition, it is interesting to consider that these frequencies necessary for a 

vital human process (memory) are demonstrating atypical patterns in EEG coherence in 

teens with ASD.   

Alpha and theta activity have also been interpreted as reflecting top-down 

processing or internal mental activity in typical development (von Stein & Sarnthein, 

2000).  Taken in consideration with results of the current study—which investigated EEG 

coherence in an eyes-open, resting state—it could be that teens with ASD are less well 
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“connected” at rest and not as engaged in top-down processing as typically developing 

teens.   Although von Stein and Sarnthein’s (2000) suggestion relates to EEG power, and 

not EEG coherence specifically, it may be that the cortex in teens with ASD may not be 

as active as seen in typical development. 

Looking forward, the pattern of increased lateralization in the teens with ASD 

could potentially suggest an important neural marker for ASD.  Specifically with regards 

to typical developmental changes in EEG coherence, Barry and colleagues (2004) 

reported that typical children (ages 8-12) demonstrate a significant increase in alpha 

frequencies in frontal regions at age ten, and both alpha and theta coherence showed a 

significant linear increase from age 8 to age 12 in frontal regions (delta frequencies also 

showed this increase).  Developmentally, it appears that increases in alpha and theta 

frequencies are expected at this age.  Though the scope of the current study did not 

include developmental changes in coherence in ASD, results of this study did indicate 

that teens with ASD are already lagging behind in this region of neural connectivity.  

Indeed, this decreased connectivity as compared to typically developing peers may be 

evident as early as toddlerhood.  Dinstein and colleagues (2011) found decreased inter-

hemispheric connectivity in the inferior frontal gyrus and superior temporal gyrus in 

toddlers with ASD in a fMRI study comparing toddlers with ASD to language-delayed 

and control toddlers during sleep.  Additionally, a negative correlation existed between 

autism severity and inferior frontal gyrus synchronization, indicating a link between 

behavioral characteristics and neural activity may exist early in development (Dinstein et 

al., 2011).  Taken together, increased lateralization, as marked by decreased inter-
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hemispheric connectivity in the frontal lobes, could potentially serve as a neural marker 

for ASD, providing neural support for the behavioral diagnosis of a brain-based disorder. 

Although the current study offers many exciting possibilities for understanding 

the underlying neurology of ASD, it does present with limitations.  Although this study 

recruited a relatively large sample in comparison to previously published studies of EEG 

coherence in ASD (i.e. Murias et al., 2007; Mathewson et al., 2012), potential concerns 

with power emerged, including issues with non-significant correlations when examining 

groups individually.  A larger sample size may have allowed for a more clear 

understanding of associations between behavioral ratings and EEG coherence.  Also, in 

utilizing EEG, temporal accuracy and a non-invasive method of measuring brain activity 

were gained, which is particularly helpful in studying teens with ASD.  However, EEG 

limits findings to surface cortical activity and cannot lend insight into the deeper, 

subcortical connections in the brain.  As this field is emerging, a lack of appropriate 

comparison groups also exists, as many of the other EEG studies in ASD are conducted 

with adults.  Further, no other studies (to this author’s knowledge) have explicitly tested 

the neurological underpinnings of the EMB theory of ASD, leading to a lack of 

supporting literature for these findings. However, this literature may be developing, as 

this author’s previous work did demonstrate similar findings of lateralized activity in 

ASD (Carson et al., in preparation). Also, this study exclusively focused upon a sample 

of boys; however, studies comparing EEG coherence in typically developing males and 

females is important for establishing neural correlates of the EMB theory.  Though some 

research suggests that typically developing men may show more lateralized neural 

activity than typically developing women (i.e. Tomasi & Volkow, 2012a; Luders et al., 
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2006), these studies should be replicated utilizing EEG coherence and in the context of a 

study investigating the EMB theory, specifically.  Additionally, social behavior was 

measured based on parent report, which may offer a more subjective view of social 

functioning than other methods, such as more objective, in vivo observations of social 

behavior. 

In conclusion, results of this study indicate a more lateralized neural profile in 

teen boys with ASD, demonstrating less connectivity between the hemispheres in the 

frontal lobes than typically developing peers, and that this connectivity was related to 

social skills.  These results suggest agreement with the Extreme Male Brain theory of 

autism (Baron-Cohen, 2003), providing preliminary evidence that neural underpinnings 

for this behavioral theory exist.  Further, discriminant analysis demonstrated that the 

EMB theory predicts group membership as accurately as a traditional model, using 

ratings of social skills and characteristics associated with autism, though it does present 

with greater type I error.  The EMB theory, therefore, emerges as an interesting 

behavioral theory of ASD which now has supporting neural evidence.  Clinically, this 

profile of persons with ASD being superior systemizers, with a deficit in empathizing, 

could provide particularly useful.  Current therapies for persons with ASD already utilize 

strengths in systemizing to support deficits in empathizing (including applied behavioral 

analysis and demonstrated in books, such as Temple Grandin and Sean Barrow’s The 

Unwritten Rules of Social Relationships: Decoding Social Mysteries through the Unique 

Perspectives of Autism, 2005).  This study now indicates that further work in this area 

should be done in under to determine if increased lateralization in ASD could be utilized 

as a neural marker for ASD.  Preliminary studies (Dinstein et al., 2011; Carson et al., in 
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preparation; and this current study) suggest that this area warrants further exploration, as 

identifying a unique neural marker in ASD has important clinical implications.  For 

example, behavioral interventions could attempt to target the neural atypicalities in ASD, 

attempting to change the course of brain development in ASD.  Van Hecke and 

colleagues’ work (in press) demonstrates that neural changes in lateralization as a result 

of a behavioral intervention are possible in teens with ASD.  The lateralized profile found 

in this study could potentially serve as a marker of change in future studies.  Future 

studies could look to replicate these findings, both in teens and in older and younger age 

groups, as well as find ties to behavioral rating scales, which the current study was unable 

to do in each group.  Still, this study offers an important contribution to the existing 

literature on the understanding of brain activity in ASD, suggesting that teens with ASD 

display a unique neural profile of increased lateralization, consistent with the EMB 

theory of autism. 
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