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ABSTRACT 

A FOURIER DESCRIPTION OF COVARIANCE, AND SEPARATION OF 
SIMULTANEOUSLY ENCODED SLICES WITH  

IN-PLANE ACCELERATION IN FMRI 
 
 

Mary C. Kociuba 
 

Marquette University, 2016 
 

Functional magnetic resonance imaging (fMRI) studies aim to identify localized 
neural regions associated with a cognitive task performed by the subject. An indirect 
measure of the brain activity is the blood oxygenation level dependent (BOLD) signal 
fluctuations observed within the complex-valued spatial frequencies measured over time. 
The standard practice in fMRI is to discard the phase information after image 
reconstruction, even with evidence of biological task-related change in the phase time-
series. In the first aim of this dissertation, a complex-valued time-series covariance is 
derived as a linear combination of second order temporal Fourier frequency coefficients. 
As opposed to magnitude-only analysis, the complex-valued covariance increases the 
sensitivity and specificity in fMRI correlation analysis, which is particularly 
advantageous for low contrast-to-noise ratio (CNR) fMRI time-series. In the remaining 
aims, increased statistical significance is achieved through a higher sampling rate of the 
fMRI time-course, by simultaneously magnetizing multiple slice images. With multi-
frequency band excitations, a single k-space readout reconstructs to an image of 
composite aliased slice images. To disentangle the signal, or aliased voxels, phase and 
coil encoding techniques are incorporated into the data acquisition and image 
reconstruction. Inter-slice signal leakage, which also manifests as improper placement of 
the BOLD signal, presents in the separated slice images from induced correlations as a 
result of suboptimal simultaneous multi-slice (SMS) reconstruction methods. In the 
second aim of this dissertation, the Multi-coil Separation of Parallel Encoded Complex-
valued Slices (mSPECS) reconstruction method is proposed as a solution to preserve the 
activation statistics in the separated slice images through a Bayesian approach of 
sampling calibration images. In the third aim of this dissertation, the mSPECS 
reconstruction is extended to include In-Plane Acceleration (mSPECS-IPA), to 
reconstruct aliased slice images with additional in-plane subsampling using a two-
dimensional orthogonal phase encoding derivation of Hadamard encoding. Mitigating 
induced correlations with mSPECS(-IPA), results in accurately placed functional 
activation in the previously aliased complex-valued slice images. The development of 
novel complex-valued analysis and reconstruction methods in fMRI strengthens the 
significance of the activation statistics and precludes inter-slice signal leakage, so the true 
underlying neural dynamics are modeled in complex-valued fMRI data analysis.  
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Chapter 1: Introduction 

 

1.1 Motivation 

 

 Functional magnetic resonance imaging (fMRI) is a noninvasive technique to map 

and characterize brain activity through time. Across the magnetic resonance (MR) 

imaging pipeline of acquisition, reconstruction, processing, and analysis, the optimization 

of each step is central to motivate the use of fMRI in clinical applications along with 

accurate modeling of population neural dynamics. The standard in fMRI is to discard the 

phase before the statistical analysis of the data, despite evidence of biologically induced 

task related change in the phase time-series. The primary research goal of this dissertation 

is to develop novel statistical methods in complex-valued fMRI correlation analysis and 

simultaneous multi-slice functional magnetic resonance imaging (SMS-fMRI) 

reconstruction methods.  

 In this dissertation, the increased sensitivity and specificity of complex-valued 

time-series correlation analysis in fMRI, versus the standard of a magnitude-only time-

series correlation analysis, is demonstrated with a temporal Fourier frequency description 

of covariance. A key motivation for including the phase information in correlation 

analysis is to utilize task information from low contrast-to-noise ratio (CNR) fMRI data 

sets. The noise in the phase time-series also scales relative to the signal-to-noise ratio 

(SNR), as . Improving the significance of fMRI activation statistics in data with relatively 

high noise variability reduces the extent signal processing is required to examine the 
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signal of interest, and thus avoiding processing induced correlations, so the true 

underlying signal of interest can be examined in the fMRI statistical analysis.  

 A higher sampling rate of slice images in MR is possible with parallel imaging 

methods or simultaneously magnetizing multiple slice images, and corresponds to 

increased statistical significance in fMRI analysis. Often fast image acquisition and 

reconstruction methods focus on speed rather than accuracy. Correlation induced from 

substandard aliased slice image separation, presenting as “clusters” of false activation, is 

a substantial obstacle in SMS-fMRI acquisition and reconstruction schemes. In this 

dissertation, a complex-valued SMS-fMRI reconstruction method, Multi-coil Separation 

of Parallel Encoded Complex-valued Slice (mSPECS), is developed to separate 

simultaneously excited slice images while preserving the fMRI blood oxygenation level 

dependent (fMRI-BOLD) signal in the separated fMRI time-series. The mSPECS model 

is extended to include additional In-Plane Acceleration (mSPECS-IPA), the mSPECS-

IPA reconstruction method, through a novel orthogonal 2-dimensional Hadamard phase 

encoding of the aliased measured slice images with subsampling in-plane and aliasing 

through-plane. Reducing the scan time required to measure the signal in MR without 

sacrificing image quality, is one of the prominent research challenges in modern MRI. 

The development of SMS-fMRI reconstruction methods, to yield high spatial and 

temporal resolution, is critical for accurate whole brain image volume mapping and 

advancing the field of fast imaging methods in fMRI. 
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1.2 Aims  

 

1.2.1 Aim 1:  A Fourier Description of Covariance 

 

The goal of the first aim of this dissertation is to develop a linear matrix 

representation of correlation between the complex-valued time-series of voxels in the 

temporal Fourier frequency domain. With a real-valued isomorphism representation of 

Fourier reconstruction, complex-valued correlation is computed in the voxel temporal 

frequency domain with complex-valued time-series data, rather than with the standard of 

time-series correlation of magnitude only data. The advantage of the framework is 

demonstrated through a comparison of the sensitivity and specificity of complex-valued 

time-series correlation to magnitude-only time-series correlation in simulation with 

surfaces representing varying magnitude and phase CNR values. The framework is also 

demonstrated with experimental human subject fMRI data, where the magnitude-only 

and complex-valued time-series for low and high CNR voxels are examined.  

 

1.2.2 Aim 2:  mSPECS 

 

The goal of the second aim of this dissertation is to develop an SMS-fMRI 

reconstruction method, mSPECS, to minimize residual artifacts from un-aliasing of slice 

images throughout a time-series, so the BOLD signal in the separated slice images is 

placed in the proper slice. Improving temporal resolution while mitigating inter-slice 

signal leakage is a significant challenge of SMS imaging in fMRI. Inter-slice signal 
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leakage manifests as “clusters” of false activations or as residual anatomical structure in 

previously aliased regions. Fast imaging methods often focus on speed with little 

attention to the statistical implications of SMS acquisition and reconstruction methods. 

To implement the mSPECS slice image separation method, the SMS-fMRI time-series is 

acquired with a Hadamard multi-frequency band (MB) pulse sequence, which 

simultaneously magnetizes multiple slice images with a modulated phase encoding of the 

complex-valued slice images. The mSPECS method combines orthogonal square 

Hadamard matrices with the coil and phase encoding of the measured aliased slice 

images, and a bootstrap sampling algorithm to disentangle the complex-valued aliased 

slice images at each time point in the fMRI time-series. The mSPECS reconstruction 

method is demonstrated by computing the activation statistics, in a simulated complex-

valued fMRI time-series and using artificially aliased complex-valued experimental 

human subject fMRI data, for acceleration factors up to 8. This speed-up of the 

acquisition is ideal to achieve a higher sampling rate of slice images, and hence voxel 

time points, increasing the sensitivity of fMRI activation statistics in the fMRI time-series 

analysis, allowing faster observation of brain function.  

 

1.2.3 Aim 3: mSPECS-IPA 

 

The goal of the third aim of this dissertation is to integrate in-plane subsampling 

within mSPECS, to develop the mSPECS-IPA reconstruction method.  An increased 

acceleration is achieved by separating aliased slice images with mSPECS-IPA from 

omitting spatial frequency measurements in the k-space readout, which results in wrap 
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around artifacts in the raw reconstructed slice image. The mSPECS-IPA reconstruction 

method simultaneously unstacks complex-valued slice images through-plane, unwraps 

the complex-valued slice images in-plane, and combines the complex-valued coil images 

with a strategic phase encoding of the aliased slice images. The method employs 2-

dimensional phase encodes both in-plane and through-plane to conserve the Hadamard 

orthogonality introduced in mSPECS. The mSPECS-IPA encoding and reconstruction 

technique speeds-up the complex-valued fMRI time-series acquisition, while maintaining 

the integrity of separated slice images through strategic in-plane phase encoding. The 

mSPECS-IPA reconstruction method is demonstrated by computing the activation 

statistics, in a simulated complex-valued fMRI time-series and with a simulation using 

artificially aliased complex-valued experimental human subject fMRI data, for a net 

acceleration factor up to 16. This aim also serves to examine the trade-off between in-

plane and through-plane net accelerations for mSPECS(-IPA), as there is an SNR penalty 

from in-plane subsampling not observed with through-plane only SMS acquisitions.  As 

with mSPECS, the speed-up of the acquisition, possible with an mSPECS-IPA 

reconstruction, improves the statistical definition of networks in the brain and reveals 

subtleties within the BOLD signal.  
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1.3 Background 

 

1.3.1   Signal Acquisition 

 

The nuclear magnetic resonance signal measured with magnetic resonance (MR) 

techniques is a measure of the net magnetization of protons within a voxel. The main 

magnetic field, B0, from the MR scanner is created from electric current flowing through 

loops of wire at superconducting temperatures. Protons will align to this strong external 

magnetic field with a net magnetization parallel to the main magnetic field. To produce 

the MR signal, the protons are perturbed from this equilibrium state with a radio 

frequency (RF) pulse. The RF pulse, tuned to the Larmor frequency of the proton, is 

transmitted to transfer energy from the RF coil to the protons. As the protons absorb the 

RF energy, the longitudinal net magnetization is tipped towards the transverse plane, and 

after the RF transmitter is turned off, the protons return to the lower energy state. The 

protons emit energy equal to the difference between the two energy states, this creates a 

sinusoidally varying voltage in the receiver coils, which is the MR signal.  

The difference in magnetic susceptibilities between physiological tissues is a 

basic contrast mechanism in MR imaging. The longitudinal relaxation constant, T1, is a 

measure of the exponential recovery time of the net magnetization to the parallel state, 

and the transverse exponential decay of signal is characterized by spin-spin interactions, 

T2, or both spin-spin interactions and magnetic field inhomogeneties, T2*.  Immediately 

following the tipping of the net magnetic field, the net spins are in phase and over time 

they lose their coherence and the transverse magnetization decays, resulting in a decaying 
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signal. Phase coherence is required for a strong MR signal, a spin echo reverses this 

dephasing, so the signal produced in the receive coils is strongest when the spins are in 

phase. For different contrast in the slice images, e.g. T2*-weighted slice images or T1-

weighted slice images, the echo time (TE) and time repetition (TR), or the time to repeat 

the experiment, are chosen based on the tissue relaxation and recovery properties at a 

given magnet strength. In fMRI, a longer TE, on the order of 30-40 ms for 3T, is required 

to measure the signal for T2*-weighted slice images [Lauterbur, 1973; Bloch, 1946]. 

To form MR images, magnetic gradient fields spatially encode the object in the 

scanner by changing the local precession frequency, so each measurement in k-space 

readout is a unique orientation of the frequency and phase of the spins. The k-space 

readout is the spatial frequency coefficients of the object in the two-dimensional image 

space, with the center of the image defining the object, and the periphery defining the 

spatial resolution. The introduction of echo planar imaging (EPI) [Mansfield, 1977; 

Mansfield et al., 1977], offered a significant reduction in scan time, making it possible to 

acquire data fast enough, i.e. a TR less than 3 seconds, to model neural dynamics in fMRI 

studies. In EPI, an entire slice image is acquired after a single RF excitation, which is 

possible with spatial encoding from rapidly switching gradients traversing through k-

space. Although, one of the largest obstacles in MRI today is still the time required to 

measure the k-space signal.  

With no omission of k-space measurements, the k-space readout is sampled 

systematically over time. The gradients are spatially varied in the phase, frequency, and 

slice encoding directions to Fourier encode the object in the scanner. When an 

electromagnetic field in the transverse plane tips the longitudinal spins, and if a gradient 
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is applied in the direction of slice selection only spins that have a specific Larmor 

frequency will match the excitation pulse. The complex-valued MR signal measured is 

the sum of the signals generated by the net magnetization of the protons excited within 

the voxel, and the measured complex-valued signal is reconstructed to the image domain 

with an inverse Fourier transform (IFT) [Lauterbur, 1973, Haacke et al., 1999]. 

 

1.3.2   Functional MRI 

 

Functional MRI is a valuable non-invasive tool for mapping brain activity and 

useful in diagnostic settings, as well as the study of cognitive dynamics in specialized 

patient settings. Certain patient populations, i.e. populations with degenerative 

neurological conditions, will exhibit decreased activation as disease progresses or before 

the onset of physical disease symptoms. For example, Alzheimer’s patient populations 

have shown decreased activation when performing memory tasks compared to healthy 

subjects [Golby et al., 2005]. In the past decade studies published implementing or 

researching fMRI methods have increased exponentially, and large publically available 

fMRI data sets, like the human connectome project or the UK biobank, continue to make 

the analysis of fMRI data popular and lead to technical developments such as improved 

MR scanner hardware for higher quality images.  

Functional MRI studies aim to identify localized neural regions associated with a 

cognitive task. The increased neural activity increases blood flow and the metabolic rate 

in the active region, leading to a decreased ratio of deoxygenated hemoglobin to 

oxygenated hemoglobin in the localized area. Since the deoxygenated hemoglobin has a 
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higher magnetic susceptibility, reducing the deoxygenated to oxygenated hemoglobin 

ratio contributes to less spin dephasing in the local signal. Thus active neural regions 

experience a prolonged T2* signal, and fMRI data are generally acquired with T2* based 

pulse sequences, i.e. gradient echo-echo planar imaging, to detect local inhomogeneities 

in the magnetic field. This contrast mechanism is known as the blood oxygen level 

dependent signal (BOLD) [Thulborn et al., 1982; Bandettini et al., 1992; Ogawa et al., 

1990].  The complex-valued signal is measured over time, while the subject performs the 

prescribed task, generally in a block design, moderated with a stimulus. While 

fluctuations are observed in the BOLD signal during task performance through 

successively measuring image slices, the BOLD signal is an indirect measure of the 

hemodynamic response to neural activity. An experimental design of periodically 

presenting the stimulus to the subject reduces noise and increases the statistical power of 

the analysis of task fMRI data by matching the voxel time-series to the experimental 

block design, rather than a single event.  

  The BOLD fluctuations are measured as a complex-valued fMRI signal over time 

in the spatial frequency domain, then the k-space readout is reconstructed to the image 

domain with the inverse Fourier transform. Before the statistical analysis of the fMRI 

data, the phase portion of the data is generally discarded, despite physiologically useful 

information contained in the phase [Hoogenraad et al., 2001]. Previous research suggests 

that phase-only change arises from large draining vessels [Menon et al., 2002], or 

proposes methods to filter phase signal contributions from large vessels [Menon et al., 

2002; Nencka et al. 2007]. Although, other models support the notion that randomly 

oriented vasculature yield phase change in fMRI studies [Zhao et al., 2007; Feng et al., 
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2009]. Neuronal action potentials reflected in the BOLD signal may also be present in the 

phase [Bodurka et al., 1999, 2002; Bandettini et al., 2005; Heller et al., 2007].  Compared 

to the magnitude time-series, the noise in the phase time-series is prominent, and 

particularly susceptible to magnetic field inhomogeneities and physiological fluctuations. 

Before the statistical analysis of complex-valued data, dynamic modeling of the phase 

time-series is required to extract the biological signal of interest. It has been previously 

demonstrated that modeling an fMRI time-series with both magnitude and phase 

increases the power of the activation statistics [Rowe et al., 2004; Rowe et al., 2005a; 

Rowe 2005b; Rowe et al., 2009] over those from magnitude-only models. 

 

1.3.3   Complex-Valued fMRI Reconstruction and Activation  

 

  To describe complex-valued image reconstruction in MRI, consider a prow×pcol 

complex-valued k-space readout reconstructed to a single image with the discrete inverse 

Fourier transform (IFT). With a real-valued isomorphism representation [Rowe et al., 

2007] of the Fourier reconstruction operator, Ω, and the k-space readout in vector form, 

st, an image vector, yt, for a single image time point, t, is reconstructed as 

yt = Ωst.                   [1.1] 

Equivalently, with the forward Fourier Transform  

Ω-1 = Ω,  

the k-space readout is written as 

st = Ωyt.                          [1.2] 
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In Eq. [1.1] and [1.2], the signal and image vectors are 2p×1, where p=prowpcol is the 

number of voxels, and the real parts are stacked over the imaginary parts, so st = (sR′,sI′)′ 

and yt = (yR′,yI′)′. The real parts in each vector are organized as sR = (sR1,…,sRp) ′ and yR = 

(yR1,…,yRp) ′, and the imaginary parts in each vector are organized as sI = (sI1,…,sIp) ′ and 

yI = (yI1,…,yIp) ′. To build up the real-valued matrix framework, consider the 

representation of the inverse Fourier reconstruction operator, where Ω!and Ω!denote the 

real and imaginary parts of the IFT, respectively,  

Ω =    Ω! −Ω!
Ω! Ω!

                      

where Ω! and Ω! are constructed with the Kronecker product,  

ΩR = [(ΩyR ⊗ΩxR) - (ΩyI ⊗ΩxI)]  

ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)].  

The jkth element of the pcol×pcol Fourier matrix Ωx is  

(Ωx)jk = w  (!
!!"#
! !!)(!!!"#! !!)  

where j and k have indexing values from 0 to pcol-1 with  

w = !
!
𝑒!!!/!!"#  for the IFT and  w = 𝑒!!!!/!!"#  for the forward Fourier transform (FT), 

[Rowe et al., 2007]. In Fig. 1.1, the complex-valued measured signal, or spatial 

frequencies, SR + iSI, is reconstructed with the real and imaginary parts of the IFT, ΩxR + i 

ΩxI,  to the complex-valued image with real and imaginary parts, VR + iVI, which 

correspond to the magnitude and phase images for a single TR.  
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Figure 1.1: (a) Complex-valued image reconstruction for a single k-space readout, and 
(b) the equivalent magnitude and phase images. 
 
 

  At this step in the functional MR imaging pipeline, after the acquisition of the 

signal and image reconstruction, and before the statistical analysis of the fMRI data, the 

standard is to process the data to improve the signal-to-noise ration (SNR). Typical 

processing operations include spatial and temporal smoothing, image registration, global 

signal regression, motion correction. Despite the perceived gains in SNR or reduced 

variability in fMRI data sets achieved during processing, serious statistical implications 

result from commonly applied processing operations [Friston et al., 1999; Klein et al., 

2009; Murphy et al., 2009; Nencka et al. 2009; Chai et al., 2012; Saad et al., 2012; 

Karaman et al., 2014;]. The primary effort of this dissertation is not to address the 

complications of signal processing in fMRI, but rather to motivate the use of the phase 

time-series in the analysis of fMRI data, and most notably to develop a novel image 

reconstruction method for fast imaging methods. Reaching the processing step in the MR 

(ΩyR+ iΩyI)! (SR+ iSI)! (ΩxR+ iΩxI)! (VR+ iVI)!

+i!

×! ×!
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imaging pipeline with higher quality data, requires less signal processing, so processing 

induced correlations are avoided, thus the true signal is observed during analysis.    

  After image reconstruction and processing of the functional MRI data, the 

activation statistics are computed on the image time-series to detect the regions of 

activation associated with the task performed in the experiment. In this dissertation, the 

complex-valued activation statistics are computed on the complex-valued image time-

series, as described in Rowe 2005b. A complex-valued image reconstructed from the 

observed complex-valued spatial frequencies observed at time-point t for a single voxel, 

is represented in a 2×1 vector with the real and imaginary parts, yRt and yIt, 

𝑦!"
𝑦!" = 𝜌!cos  (𝜃!)

𝜌!sin  (𝜃!)
+

𝜂!"
𝜂!" .                           [1.3] 

Eq. [1.3] is also equivalently written in terms of polar coordinates for the observed 

magnitude and phase, rt and ϕt, a time point t,  

𝑟!cos  (𝜙!)
𝑟!sin  (𝜙!)

= 𝜌!cos  (𝜃!)
𝜌!sin  (𝜃!)

+
𝜂!"
𝜂!" .              [1.4] 

This complex-valued model includes both the temporally varying magnitude, ρt, and 

phase, θt, at time-point t, with the real and imaginary error, ηRt and ηIt. For a time-series 

of length n, the complex-valued model is more generally written,  

𝑦 = 𝐴! 0
0 𝐴!

𝑋 0
0 𝑋

𝛽
𝛽 + 𝜂,            [1.5] 

where y is a 2n×1 vector, with real parts stacked over the imaginary parts. The design 

matrix X, is of dimension n×(q+1), where q is the number of non-baseline regressors. The 

n×n matrices A1 and A2 contain the n×1 vectors, cos(θ) and sin(θ), along the diagonals, 

respectively. In the fMRI analysis in this dissertation q=1, so only the baseline signal and 
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the block design task are considered in the model. In Eq. [1.5], both magnitude and phase 

are written at time-point t, for q regressors as,  

ρt = β0 + β1x1t + … + βqxqt, 

θ t = γ0 + γ1x1t + … + γqxqt . 

The 2n×1 error vector, η, with the real parts stacked over the imaginary parts, is 

distributed as η~N(0,σ2I2⊗In). Functional activation in a voxel is detected by testing the 

null hypothesis of H0:Cβ=0, Dγ=0 (no activation in the voxel magnitude and phase time-

courses), against the alternative hypothesis of H1:Cβ≠0, Dγ≠0 (activation in the voxel 

magnitude and phase time-courses). For q=1, the full row rank hypothesis constraint 

matrices for the magnitude and phase, C and D, are set equal to (0,1) to test if the 

coefficient in the reference functions is 0.   

  The maximum likelihood estimates (MLEs) of the parameters- magnitude, phase, 

and variance- are estimated under each of the hypotheses. For the alternative hypothesis, 

H1:Cβ≠0, Dγ≠0, of unrestricted magnitude and phase, the MLEs for the magnitude,  𝛽, 

phase, 𝛾, and variance, 𝜎!, are derived as, 

𝛽 = (𝑋!𝑋)!!𝑋′𝑟, 

𝛾 = (𝑍′𝑍)!!𝑍′𝜙, 

𝜎! = !
!!
[(𝑟 − 𝑋𝛽)! 𝑟 − 𝑋𝛽 + 2(𝑟 − 𝑟)′  𝑋𝛽]. 

Where 𝑟 is the n×1 vector, with time-point t corresponding to the tth element in the vector 

is represented as  

𝑟! = 𝑟!cos(𝜙t – 𝑥!!𝜙  ),  

𝑍 is the n×(q+1) matrix with the tth row written as  
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𝑧! = 𝑥!! 𝑟!𝑥!!𝛽 

and 𝜙 is the n×1 vector with time-point t corresponding to the tth element in the vector is 

represented as  

𝜙! = 𝜙!   𝑟!𝑥!!𝛽 

 and the observed magnitude and phase, rt and ϕt, at time-point t are as described in Eq. 

[1.4]. 

  As for the linearly restricted magnitude and phase hypothesis, or the null 

hypothesis, H0:Cβ=0, Dγ=0, the MLEs are estimated with the magnitude and phase 

Lagrange restrictions, ψ’(Cβ – 0)  and δ’(Dγ – 0), and the  magnitude,  𝛽, phase, 𝛾, and 

variance, 𝜎!, are derived as, 

𝛽 = 𝜓(𝑋!𝑋)!!𝑋′𝑟,          

𝛾 = Λ(𝑍′𝑍)−1𝑍′𝜙,           

𝜎! = !
!!
[(𝑟 − 𝑋𝛽)  ′ 𝑟 − 𝑋𝛽 + 2(𝑟 − 𝑟)′  𝑋𝛽],       

𝜓 = 𝐼! − (𝑋!𝑋)!!𝐶![𝐶 𝑋!𝑋 !!𝐶!]!!𝐶, 

Λ = 𝐼! − (𝑍′𝑍)!!𝐷![𝐷 𝑍′𝑍 !!𝐷!]!!𝐷. 

Where 𝑟 is the n×1 vector, with time-point t corresponding to the tth element in the vector 

is represented as  

𝑟! = 𝑟!cos(𝜙t – 𝑥!!𝜙),  

𝑍 is the n×(q+1) matrix with the tth row written as  

𝑧! = 𝑥!! 𝑟!𝑥!!𝛽, 
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and 𝜙 is the n×1 vector with time-point t corresponding to the tth element in the vector is 

represented as  

𝜙! = 𝜙!   𝑟!𝑥!!𝛽 

 and the observed magnitude and phase, rt and ϕt, at time-point t are as described in Eq. 

[1.4]. 

  With the MLEs for both hypotheses derived, the generalized likelihood statistics 

for the complex valued activation model, -2logλC, is derived as 

-2logλC = 2nlog
!!

!!
,  

with the variance for the null hypothesis in the numerator, and the variance for the 

alternative in the denominator. For large sample sizes and a constraint difference between 

the null hypothesis and alternative hypothesis of 1, the signed likelihood ratio, 

ZC = sign(C𝛽)   −2log𝜆!   , 

is approximated to the standard normal distribution [Rowe and Logan, 2004; Severini, 

2001]. Even with evidence of task-related change in the phase time-series and the 

increased power of the activation statistics with the inclusion of the phase, the standard in 

the MR imaging pipeline is to discard the phase portion of the data after image 

reconstruction. In the first chapter of this dissertation, the utility of correlation between 

complex-valued time-series in fMRI analysis, is demonstrated in low CNR voxels. 
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1.3.4   Parallel MRI 

 

  The remaining parts of this introduction chapter return to the acquisition and 

reconstruction of the fMRI time-series. Temporal resolution in fMRI is important to 

distinguish neural events through time, and spatial resolution is important to correctly 

identify brain regions of interest. Although, achieving both satisfactory spatial and 

temporal resolution is difficult. Increasing the dimensions of the k-space readout for each 

slice acquisition increases the spatial resolution of the reconstructed images, yet reduces 

the temporal resolution by extending the time for successive acquisition of slice images. 

Decreasing the k-space readout measurements for each slice image acquisition reduces 

the time for successive acquisition, so spatial resolution is reduced with increased 

temporal resolution. Parallel imaging, or in-plane acceleration, methods achieve a speed-

up of acquisition through subsampling the k-space readout at multichannel receive coils, 

by reducing the number of phase encodes.  The spatial information from the multichannel 

receive coil sensitivities is incorporated in the image reconstruction to recover spatial 

information. The two standard pMRI reconstruction methods for in-plane accelerated 

imaging are SENSitivity Encoding (SENSE) [Pruessman et. al, 1999] and Generalized 

Autocalibrating Partially Parallel Acquisition (GRAPPA) [Griswold et. al, 2002]. 

Accelerated in-plane imaging methods do not increase the rate at of k-space 

measurements, but omit the number of measurements for a single k-space readout, 

allowing a speed-up of acquisition time without requiring faster switching gradients. 

SENSE is an image space reconstruction method, where the in-plane aliased are 

reconstructed before the signal is and disentangled, and GRAPPA is a k-space 
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reconstruction method, where the k-space readout is interpolated before image 

reconstruction, the mSPECS and mSPECS-IPA reconstruction methods presented in this 

dissertation are image space models, so the SENSE reconstruction algorithm will be 

focused upon. 

  Multichannel receive coils are advantageous in MRI since combining multiple 

coil images improves the image SNR, through increasing the number of averages for the 

slice image. As the number of receive coils is increased the sensitivity at each coil is 

reduced because the coils are smaller, thus there is an optimal SNR and noise trade-off 

regarding the number of coils used in MR imaging studies. For fully sampled k-space 

readouts, the default procedure to combine coil images with the root mean square of the 

coil images for each slice. In the context of reconstruction of subsampled the k-space 

readout with multichannel receive coils, optimal coil geometry and distinct coil 

sensitivity profiles among the aliased voxels, leads to improved slice images during the 

voxel separation. The SENSE reconstruction algorithm is also implemented with fully 

sampled k-space. The geometry factor or g-factor is a coil dependent noise amplification 

factor that is derived from a ratio of SNR with no acceleration to an SNR with 

acceleration for each slice. The g-factor increases as the acceleration factor increases and 

varies spatially, and also describes how well aliased voxels are separated based on a 

given coil configuration.  

  In second and third aims of this dissertation, the complex-valued receive coil 

sensitivity profiles are estimated by taking the image mean in the time dimension at each 

coil. An example of mean magnitude unprocessed images is show in Fig. 1.2a for 32-

channel receive coils. The mean coil images are normalized and the anatomical structure 
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is removed, by averaging the mean coil images to a single image. To refine the raw coil 

sensitivity profiles, a low order, i.e. on the order of 2 or 3, polynomial is fit to a local 

plane for each voxel, as shown in Fig. 1.2b, this is a standard image processing 

procedure. 

 

 

 

Figure 1.2: Experimental example of (a) magnitude mean coil slice images, and the (b) 
the corresponding estimated receive coil sensitivity maps. 
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  To accelerate the acquisition, the number of phase encodes in the k-space readout 

are decreased in a systematic approach.  Switching one encoding gradient consistently in 

the same direction is less demanding on the gradients than alternating the switching in 

two directions, both phase encoding (PE) and frequency encoding (FE), and thus less 

time consuming during the k-space readout. A fully sampled k-space readout corresponds 

to an acceleration factor of R=1, as seen in Fig. 1.a where R=2, increasing the 

acceleration factor corresponds in a distance between acquired lines of RΔky. In fMRI, in-

plane parallel imaging methods are often implemented with an acceleration of only 2 to 

3.  

 The center of the k-space readout is included in the signal readout, as it defines the 

general distribution of the object in image space, and skipping lines of the k-space 

readout results in wrap around aliasing artifacts of the reconstructed slice images due to 

failure to meet the Shannon-Nyquist sampling criteria. Fig. 1.3b is an illustration of the 

magnitude reconstructed images from subsampled the k-space readout for R=2, at 4 

receiver coils located at the four edges of the slice image, where the image at each 

acceleration has R voxels aliased. As illustrated in Fig. 1.3c, the spatial information 

derived from receiver coil sensitivity profiles are required to compensate for the missing 

phase encoding lines in the subsampled arrays.  

  With SENSE aliased images are reconstructed from a subsampled k-space readout 

of acceleration R. Consider a single (x,y) voxel location, for nC receiver coils the 

complex-valued coil sensitivities at the jth coil measuring the voxel is represented as  

Sj = [SR ,-SI; SI ,SR]j.  
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The complex-valued R aliased voxels in the aliased images are described with a 2nC×1 

real-valued vector a, with real and imaginary parts measured at nC coils 

a = Sv + ε.                     [1.6] 

This subsampling creates an inverse imaging problem with an over determined system of 

equations. In Eq. [1.6], S is an 2nC×2R matrix with the fully sampled complex-valued coil 

sensitivities, illustrated in Fig. 1.3a, for the R aliased voxels in the nC coils, v is a 2R×1 

vector of the real and imaginary parts of the R aliased true voxel values, and ε is a 2nC×1 

vector of the nC complex-valued additive measurement noise in each aliased voxel. 

  The aliased slice images, reconstructed from the subsampled k-space readout 

acquired at each coil, are un-aliased through a least squares estimation with the fully 

sampled coil sensitivity maps. Thus, the images are measured as illustrated with Fig. 1.3b 

for a single TR, then using the spatial information of the complex-valued coil sensitivity 

profiles shown in Fig. 1.3a the images are reconstructed as in Fig. 1.3c. In SENSE 

reconstruction, the SNR is not uniform throughout the reconstructed slice image, in-plane 

acceleration methods have an SNR penalty equal to the square root of the acceleration, R. 

Aliased voxel separation with SENSE reconstruction has also been shown to induce a 

systematic spatial correlation across previously aliased voxels [Bruce et al., 2011]. The 

residual aliasing artifacts resulting from in-plane pMRI methods, present differently than 

from the through-plane SMS methods. Intra-slice leakage with pMRI methods is readily 

identifiable, as it will appear as ghosting artifacts in the unwrapped image. With through-

plane accelerations, the source of inter-slice signal leakage is difficult to identify, as the 

artifacts lack the continuity observed with the in-plane accelerations.  
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Figure 1.3: Schematic of SENSE reconstruction for an acceleration factor of 2, (a) k-
space readout subsampled with R = 2, with the sampled lines marked with a straight line 
and the dotted lines are the skipped lines in the k-space readout, (b) the subsampled k-
space readout is reconstructed to aliased images, (c) receiver coil sensitivity maps 
estimated from fully sampled data, (d) the aliased images and sensitivity maps are 
combined with the SENSE matrix inversion to reconstruct the aliased image. 
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1.3.5  Simultaneous Multi-Slice 

 

  Echo planar imaging methods are commonly used to measure BOLD contrast in 

fMRI studies, where each slice image is individually magnetized from a RF pulse and 

reconstructed from a single complex-valued k-space readout. In-plane acceleration 

methods achieve an acceleration factor of 2 or 3, with an SNR penalty relative to the 

number of skipped rows.  Shortening the length of the echo train, or the number of echoes 

required for the phase encoding lines within a TR, by omitting k-space measurements 

reduces image distortions from magnetic field inhomogeneities, since long echo trains are 

susceptible to geometric distortions from T2* relaxation.  Reducing the TE also decreases 

the specific absorption rate (SAR), or RF heating, by reducing the number of RF pulses 

required for the acquisition. Although in fMRI, temporal resolution is constrained by the 

long TE required to maintain the BOLD contrast in the reconstructed slice images, yet a 

short enough TR is desirable to model neural dynamics with full brain coverage. SMS-

fMRI imaging techniques overcome this limitation by simultaneously exciting multiple 

slice images, while maintaining a long enough TE for BOLD contrast, to achieve higher 

acceleration rates than in-plane acceleration methods alone. SMS is a rapidly advancing 

imaging technique which substantially speeds up scan time compared to traditional in-

plane methods, with a marginal SNR loss in the reconstructed slice images. There is some 

signal loss associated with SMS methods, from a reduction of the excitation with the 

Ernst angle to avoid complications with SAR, and the magnetization is not fully 

recovered from one excitation to the next.  
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  Omission of measurements of the spatial frequency coefficients or the 

simultaneous magnetization of multiple slice images allows for a higher sampling rate of 

time points in a given time period. This is an important development for fMRI analysis in 

high-resolution whole brain acquisitions. Similar to increasing the number of averages 

with multiple measurements via multi-channel receive coils, increasing the number of 

time points decreases the noise variability within the BOLD measurements. A higher 

image sampling rate also reveals more subtleties within neural networks for a better 

statistical definition of the neural networks. Often the primary focus in fast imaging 

methods is to increase image speed at the expense of accuracy of the acquisition and 

reconstruction methods. Data quality is compromised when suboptimal reconstruction 

methods are implemented. This induces aliasing artifacts in the separated slice images 

where it may be difficult to identify the origin of artifacts, or the improper placement of 

the BOLD signal, where false activation is detected in regions previously aliased with the 

functional region of interest. Poorly designed reconstruction methods may also result in 

temporal autocorrelation is the separated slice image time-series.  

  Multiple slices in the image domain are simultaneously excited with multi-

frequency band RF pulses, or composite RF pulsed, during acquisition. In single-band 

imaging a single slice image is reconstructed from a single k-space readout; in multi-band 

imaging a single image, of superimposed slice images, is reconstructed from a single k-

space readout. The aliased slice locations are selected through altering the RF pulse with 

the Fourier shift theorem, such that the desired offset of the slice images is observed in 

the image domain. Before the introduction of multi-channel phased receive coil arrays in 

MR scanners, early method for simultaneously magnetizing multiple slice images 
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implemented phase encoding techniques in the pulse sequence to disentangle the slice 

images.  

  In Hadamard encoded slice image acquisitions, the simultaneously excited slice 

images are individually labeled with multi-frequency band slice selection RF pulses, 

where the RF pulse modulates the phase encoding in a Hadamard pattern. So the 

complex-valued reconstructed Hadamard encoded slice images are resolved through 

solving a system of linear equations after the aliased images are reconstructed. The nS 

Hadamard encoded aliased slice image time repetition patterns are illustrated in Fig. 1.4, 

for an example of nS=4 aliased slice images for the δ=nS
 aliasing patterns. Fig. 1.4a is the 

aliased reconstructed image, which is a sum or a difference of the slice images 

represented in Fig. 1.4b. In this dissertation, the aliased image time-series, for the 

mSPECS(-IPA) reconstruction, is acquired with a Hadamard multi-frequency band pulse 

sequence, with the Hadamard encoding matrices constructed with the Sylvester method 

[Sylvester, 1867],   

𝐻! = 1  

for a two slice image aliasing scheme, where the zth column refers to the zth slice image 

and the δth row refers the δth aliasing pattern, 

𝐻! =
1            1
1  − 1 , 

this is generalized to include the number of aliased slice images, nS, in powers of 2  

𝐻!! =
𝐻!!!! 𝐻!!!!
𝐻!!!! −𝐻!!!!

            [1.7] 

where k ≥ 2, and 𝐻!! is of dimension 2k×2k.  
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Figure 1.4: (a) The nS=4 complex-valued aliased slice images acquired over 4 
consecutive time repetitions, corresponding to the δth aliasing patterns, are the sum and 
difference of the (b) the individual complex-valued slice images. 
 

 
Figure 1.5: Hadamard matrices increase in powers of two with mutually orthogonal rows 
and columns. The black boxes denote +1, and the white boxes denote -1. 
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  In standard Hadamard separation schemes, the superimposed slice images are 

separated from measurements over the length of TRs equivalent to the number of 

simultaneously excited slice images. So, if two slice images are simultaneously measured  

over two time repetitions with a Hadamard pattern of order 2, the two sequential time 

repetitions are summed to resolve the first slice image, and subtracted to resolve the 

second slice image. The slice image separation, by solving a system of linear equations,  

results in an increased SNR compared to standard single-band EPI, although there is no 

net reduction in scan time. The addition and subtraction schemes are also more 

susceptible to signal loss from motion or other instabilities during acquisition than 

standard single-band EPI [Mueller et al., 1988; Souza et al., 1988]. Phase Offset Multi-

Planar (POMP) [Glover, 1991], is another early SMS phase encoding technique, where 

only the phase of one slice image is partially manipulated in a two slice image excitation 

experiment. With the field-of-view (FOV) increased, the reconstructed image consists of 

the two simultaneously magnetized slice images, where one slice image is shifted by half 

a FOV, from the phase manipulation, so there is no overlap between the two slice images.    

  With the advent of multi-channel phased receive coil arrays, coil encoding 

methods are introduced as another means to speed-up acquisition in the context of SMS 

methods. A multi-slice version of in-plane SENSE implements the complex-valued 

receiver coil sensitivity profiles to disentangle the aliased voxels across multiple slice 

images at once. The technique requires the number of slice images aliased to be less than 

or equal to the number of receiver coils, and separates the aliased voxels with a matrix 

inverse approach using in-plane SENSE methodology with additional equations 

[Larkman et al., 2001]. Although, for whole volume brain acquisitions, the small 
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distances between the aliased slice images presents an ill-conditioned unaliasing problem 

and g-factor noise amplification in the reconstructed images. A standard practice in SMS 

acquisitions is to interleave slice images during acquisition, with an odd number of total 

packets to prevent signal saturation [Setsompop et al., 2012].  

 

 
Figure 1.6: Diagram of interleaved slice images for two packets, packet 1 is denoted by 
the white lines and packet 2 is denoted by the grey lines of (a) 4 axial slice images in 
each packet, and (b) 4 sagittal slice images in each packet. 
 
 

  An example of slice interleaving for whole volume acquisitions is shown for the 

first two packets consisting of four simultaneously excited slice images, where the slice 

images in packet one are denoted by the white lines and the slice images in packet two 

are denoted by the grey lines, containing four aliased slices in Fig. 1.6. Other studies 

investigating full volume acquisition employed SMS imaging methods with a 3-

dimensional Fourier transform (3DFT) and coil encoding imaging techniques  [Weiger et 

al., 2002; Breuer et al., 2006], although preference is given to an SMS approach for fMRI 

studies. 

   

a)! b)!
!
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  In the past five years, SMS acquisition and reconstruction methods have quickly 

evolved. One of the most significant advancements in the field of SMS imaging is the 

development of Controlled Aliasing in Parallel Images Results in Higher Acceleration 

(CAIPIRINHA). CAIPIRINHA is an SMS multi-frequency EPI method where the phase 

in the slice images is partially modulated [Breuer et al., 2005; Nunes et al., 2006]. Similar 

to POMP, the phase is partially manipulated in the simultaneously magnetized slice 

images, although the reconstructed images acquired with a CAIPIRINHA sequence have 

superimposed slices, and coil encoding methods provide additional spatial information to 

separate the aliased slice images. The phase manipulation of the spatial frequency 

coefficients during acquisition corresponds to shifts in the FOV in the image domain. The 

CAIPIRINHA shifts present a solution for the ill-conditioned unaliasing problem, by 

increasing distances in the aliased voxel values and the related coil sensitivity profiles, as 

well as utilizing the full FOV, thus reducing the number of aliased voxels in the aliased 

image.  

  To achieve high acceleration factors and successfully disentangle aliased slice 

images, multiple encoding methods, i.e. phase and coil encoding, are required during 

multi-frequency band acquisitions. Although, images significantly degrade for 

accelerations higher than 8 [Chen et al., 2015], and fMRI inter-slice signal leakage is 

introduced in acquisitions with multi-frequency band factors greater than 4, [Todd et al., 

2015]. Inter-slice signal leakage or residual aliasing artifacts, arise from the correlation 

between previously aliased slices, where substandard encoding methods result in 

improper placement on the mean signal in the separated slice images. In addition to 

strategic experimental design with encoding patterns during image acquisition, the slice 
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image separation reconstruction methods also play a critical role in the quality of the 

separation of aliased slice images, since the accuracy of the slice image separation is a 

function of both acquisition and reconstruction. Efforts have been made to characterize 

and mitigate the inter-slice leakage arising from suboptimal reconstruction methods 

[Cauley et al., 2014; Moeller et al., 2012; Xu et al., 2013]. However, a more recent study 

has shown that the reconstruction methods, in a comparison of commonly applied SMS k-

space slice separation methods, introduce inter-slice leakage of the BOLD signal in SMS-

fMRI reconstructed time-series [Todd et al., 2015].  The last two chapters of this 

dissertation address the need for novel statistical methods for the reconstruction of multi-

frequency band acquisitions in fMRI.   
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Chapter 2: A Fourier Description of Covariance 

 

2.1 Introduction  

	
  

  This chapter outlines a method to describe correlation between two time-series 

with both magnitude and phase, equivalently real and imaginary parts, through exploiting 

the linear relationship between the image domain and spatial frequency domain. 

Traditionally both magnitude-only and complex-valued models require time-series with 

the time-points, however, complex-valued time-series correlation analysis with temporal 

frequency coefficients is also possible. It has previously been shown how complex-

valued temporal frequency coefficients contribute to the correlations between voxels in 

the cerebral cortex for magnitude-only non-task data [Cordes et al., 2001]. Similarly, in 

this manuscript the spatial correlation between complex-valued time series is described as 

a linear combination of second order voxel temporal frequency coefficients. The chapter 

advances the frequency correlation description into a linear matrix framework with an 

application to a complex-valued simulation demonstrating the strength of the framework 

at varying degrees of magnitude and phase CNR values, as well demonstrating its utility 

in experimental complex-valued human subject fMRI data through examining 

correlations for voxel time-courses with high and low CNRs.   

     While measuring the k-space readout, unwanted image acquisition artifacts and 

physiological noise obscure the true underlying signal of interest. To improve the SNR, 

various preprocessing operations, i.e. temporal frequency filtering or magnitude image 

smoothing, are incorporated in the processing and reconstruction pipeline, and 
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physiologic noise sources are commonly regressed out from the signal [Birn et al., 2006; 

Glover et al., 2000; Hahn et al., 2012; Hu et al., 1995]. It is well documented that the 

application of these operations induce local spatial and temporal correlations into neural 

regions that were previously uncorrelated [Friston et al., 2000; Nencka et al., 2009; 

Davey et al., 2013]. One application of the linear framework developed in this chapter, is 

to describe how signal processing alters the structure of the spatial covariance matrix, 

such that induced correlation is a result of increased overlapping frequency content 

between voxels after processing. Signal processing will alter the activated voxel’s 

temporal frequency spectrums, by spreading voxel task activated peaks temporally and 

spatially. Correlation will be induced between voxels as a result of increased overlapping 

frequency content between the two voxels’ Fourier frequency spectrums.   

  An experimental fMRI time-series is plotted in Fig. 2.1a with the real and 

imaginary parts of the voxel’s time-series and the corresponding temporal frequency 

coefficients; Fig. 2.1b with the magnitude and phase parts of the voxel’s time-series and 

the corresponding temporal frequency coefficients. Note, the task-related peak in Fig. 2.1, 

is observed in both the real and imaginary spectra, and the magnitude and phase spectra. 

So, if another voxel has a task-activated peak, the two voxels would be expected to share 

a significant correlation. This notation for spatial correlation is advantageous since 

various physiological signals are also confined to specific frequency ranges. Respiratory 

and cardiac cycle fluctuations are characterized around 0.2-0.3 Hz and 1 Hz in a voxel’s 

temporal frequency spectrum, although they are often aliased to low frequencies in fMRI 

signal acquisition [Birn et al., 2006; Bhattacharyya et al., 2004; Shmueli et al., 2007]. 

The summation notation of spatial correlation that is described here, allows relative 
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contributions to the correlation to be quantified by segregating the natural partitions in a 

voxel’s temporal frequency spectrum. Compared to magnitude-only correlations, 

applying this framework with complex-valued data more accurately identifies regions of 

spatial correlation, and reduces the false positives in correlation maps. This result is most 

significant in low magnitude CNR data sets since including the phase in the complex-

valued correlation results in increased sensitivity of identifying correlated regions.  

 

 

 
Figure 2.1: (a) The real and imaginary parts of an “activated” voxel time-series from an 
fMRI experiment, and the Fourier transform of the time-series, with the corresponding 
task-peak observed in both real and imaginary parts, (b) The magnitude and phase parts 
of a voxel an “activated” time-series from an fMRI experiment, and the Fourier transform 
of the time-series, or temporal frequencies, with the corresponding task-peak observed in 
both magnitude and phase parts.   
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2.2 Theory  
	
  
	
  
	
  
     To reconstruct images over n TRs, the complex-valued spatial frequencies are 

represented in the real-valued 2pn×1 vector s, with each successive TR concatenated to 

the vector. An analogous explanation describes the organization of the real-valued image 

2pn×1 vector, v, which is reconstructed with the Kronecker product,  

v = (In⊗Ω)s.                [2.1] 

A 2pn×2pn permutation matrix, P, reorders the elements of vector v so the real-valued 

time-series 2pn×1 vector  

y=Pv  

is now ordered by voxel rather than ordered by image. The voxel ordered time-series is 

Fourier transformed into the temporal frequency domain, with the 2n×2n temporal 

forward Fourier transform (FT) matrix, ΩT, as opposed to the 2p×2p spatial Fourier 

operations. The real-valued 2pn×1 vector f consists of the temporal frequencies of each 

voxel stacked upon the corresponding imaginary temporal frequencies is represented,  

f = (Ip⊗ΩT)v.                                                               [2.2] 

For voxel ω, the 2n×1 real-valued voxel time-series is denoted yα, with real parts stacked 

over imaginary parts yω=(yωR′,yωI′)′  so the real and imaginary parts in each vector are 

organized as yωR=(yωR1,…,yωRn)′  and yωI=(yωI1,…,yωIn)′, with a mean and covariance 

structure of µRω and µIω., σ2
RωIn and σ2

IωIn. The corresponding temporal frequencies for 

voxel α are denoted in the 2n×1 vector fω, where  

yω = ΩT fω  

and  
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fω = ΩT yω,  

are organized similarly to the time-series equivalent. With an analogous description of 

another voxel ϑ, the spatial covariance between the two voxels is simply written,  

cov(yω, yϑ) = (yω - µω)′ (yϑ – µϑ)/(2n).          

   Assuming the time-series is demeaned, then the covariance between two voxels in 

terms of temporal frequencies is represented as, 

cov(yω, yϑ) = (yω′ yϑ )/(2n) = (ΩT fω )′ (ΩT fϑ) = ( fω ′fϑ)/4                    [2.3] 

The spatial covariance in Eq. [2.3] is expanded to a p×p spatial covariance matrix, Σ, 

such that the entry (ω, ϑ) in Σ represents the spatial covariance between the two 

demeaned real-valued voxel time-series of voxel ω and voxel ϑ. By defining D as the 

diagonal matrix consisting of the diagonal elements of Σ, a p×p spatial correlation matrix 

is written as,  

R = D-1/2 Σ D-1/2.            [2.4]    

By aggregating the second order temporal frequencies into biologically meaningful or 

experimentally relevant bands, the influence preprocessing steps have on each voxel 

temporal frequency spectrum can be quantitatively measured. In an fMRI study, the 

frequency corresponding to the activation is considered when dividing the spectrum into 

bands. To understand the contribution each temporal frequency band yields to spatial 

correlation, the correlation is expressed as, the spatial covariance matrix can be written as 

a summation of covariance of each band and b is the total number of bands, 

Σ = Σ1 + … + Σb,                                        [2.5] 

and the Eq. [2.5] spatial correlation matrix can be written as a summation of correlation 

of bands 
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R = D-1/2(Σ1 + … + Σb)D-1/2 =  R1 + … + Rb.         [2.6] 

   The linear matrix representation of the spatial covariance and correlation, allows 

one to measure the effect of the temporal and spatial processing operators. Define a p×p 

spatial smoothing operator, Sm, which filters the real and imaginary components 

separately with a Gaussian kernel. Continuing the notation used in Eq. [2.1] with a 

demeaned time-series notation, the smoothed 2pn×1 temporal frequency vector is 

constructed with the multiplication  

ys = (Ip⊗ΩT)P(I2n⊗Sm)v.  

The series of operations applied to the temporal frequencies is defined with 2pn×2pn 

operator,  

O = (I2n⊗Sm)P(Ip⊗ΩT)  

such that the 2pn×1 unprocessed and processed time-series vectors ordered by voxel are 

represented as in Eqn. [2.3],  

 v = (Ip⊗ΩT)y and vs = Ov .  

The 2pn×2pn spatiotemporal covariance matrix for the 2pn×1 real-valued image time-

series, v, in terms of temporal frequency spectrum, is defined as  

cov[v] = Γ,                                 [2.7] 

and the covariance matrix with processing operators is defined 

cov[vs] = OΓO′.                                         [2.8] 

Eq. [2.7] and [2.8] are described in terms of temporal frequencies, where the spatial 

component of Eq. [2.7] is equivalent to Σ described in Eq. [2.3], through a process of 

summing real and imaginary diagonal values to achieve a p×p magnitude-squared spatial 

correlation matrix such that the temporal component is held constant. Magnitude-squared 
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correlation is asymptotically equivalent to magnitude-only correlation [Birn et al, 2006; 

Rowe et al, 2009].  

 

2.3 Methods  
	
  
	
  
	
  
2.3.1    Simulation  

 

To demonstrate the improved sensitivity and specificity of correlation between 

complex-valued time-series over correlation between magnitude time series in functional 

MRI studies, a MATLAB simulation is run with a varying degree of magnitude contrast-

to-noise ratio (CNRρ) and the phase contrast-to-noise ratio (CNRϕ). The SNR is defined 

as the baseline magnitude signal over the standard deviation of the noise in the time-

series,  

SNR = 
!
𝜎
               [2.9] 

For the CNR, the amplitude is defined as the difference between the baseline signal and 

the task related change in the signal for the magnitude and phase components of the time-

series, Aρ and Aϕ, so  

CNRρ = 
!!
𝜎

,                       [2.10] 

CNRϕ = 
!!
𝜎 !

.             [2.11] 

Assuming normally distributed noise in the real and imaginary channels, with a large 

SNR, the standard deviation of a phase-only time-series is σ/ρ, and the CNRϕ is 
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proportional to the SNR. Typically in fMRI studies, the task related signal change in the 

magnitude Aρ corresponds to approximately a 1-2% signal change, and the task related 

change in the phase Aϕ has been found to be approximately π/36 [Menon et al., 2002]. To 

compare magnitude-only and complex-valued correlations, two 96×96 surfaces are 

generated with 720 time-points and standard normal random noise added to the real and 

imaginary channels. As visualized in Fig. 2.2, each voxel has a ρ between 0 and 50, and a 

task generated to represent a magnitude amplitude Aρ between 0 and 1, and a phase 

amplitude Aϕ between 0 and π/36. The magnitude-only and complex-valued correlations 

are computed between the two time-series in each surface with equivalent parameter 

settings, so there is a 96×96 corresponding matrix for magnitude-only and complex-

valued. To compare the correlations between the two models, the Fisher-z transform, z, is 

computed and plotted for each time-series correlation, r, as 

z = ½ ln 1+𝑟
1−𝑟 . 

 

 

Figure 2.2: Surfaces representing the (a) magnitude, ρ, (b) Aρ, and (c) Aϕ parameters used 
to generate the simulated time-series. 
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2.3.1    Human Subject Data 

	
  
	
  

An experimental fMRI human data set was acquired with bilateral finger tapping 

in a block design with an initial 16 s rest followed by 22 epochs of 16 s of task and 16 s 

of no task using a 3.0 T Discovery MR750 MRI scanner (General Electric, Milwaukee, 

WI) with a GE single channel quadrature head coil. The data was acquired with ten 

interleaved axial slices that are 96×96 in dimension and 4 mm thick. A superior slice with 

activation was chosen for analysis. The imaging parameters included a 24.0 cm FOV, a 

TR/TE of 1000/39 ms, a flip angle of 25°, an acquisition bandwidth of 111 kHz, and an 

effective echo spacing of 0.672 ms. The phase encoding direction was oriented as 

posterior to anterior (bottom to top in images). Images were Nyquist ghost corrected 

using the three navigator echoes method [Nencka et al., 2009] and dynamic B0 field 

corrected using the TOAST single echo technique [Hahn et al., 2009]. 

To demonstrate the utility of the framework, voxel temporal spectrums are 

analyzed after applying a spatial smoothing operator with a Gaussian kernel with a full-

width-half-max (FWHM) of 3 voxels, followed by an ideal high-pass band filter (<0.009 

Hz) and an ideal low-pass band filter (>0.08 Hz). The spatial correlation is decomposed 

into three correlation bands, R1, R2, R3, such that sum of the bands equals the total 

correlation. The complex-valued correlation bands that are selected correspond to the 

frequency band ranges 0.0009 - 0.024 Hz, 0.026 - 0.037 Hz, 0.038 - 0.08 Hz, with the 

task-activated frequency peak is observed in R2. The complex activation for the data was 

computed as described in the first chapter of this dissertation [Rowe 2005b], and four 
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voxels were chosen based on their complex-valued activation locations: two in the motor 

cortex and two in the supplementary motor cortex.   

The two voxels in each location are chosen so that one voxel has a high CNRρ and 

CNRϕ, and the other has a low CNRρ and CNRϕ. As shown in Fig. 2.3, the locations are 

chosen from the SNR, CNRρ, and CNRϕ maps for the experimental human subject data. 

These values for each voxel time-series are computed with the unrestricted MLEs, from 

the complex-valued model described in the introductory chapter, presented in Eq. [1.5], 

for the magnitude 𝛽, phase, 𝜑, and variance, 𝜎! parameters. Aside from the baseline 

signal, or intercept, the only regressor, β1, corresponds to the on and off periods in the 

time-series for the bilateral finger tapping task. In this complex-valued model the 

magnitude and phase for a single time-point t is described or modeled as,  

ρt = β0 + β1x1t, 

ϕt = φ0 + φ1x1t . 

The SNR, CNRρ, and CNRϕ, written in Eq. [2.9], Eq. [2.10], and Eq. [2.11], is 

analogously defined for the complex-valued experimental human subject data, with the 

unrestricted MLEs,  

SNR = 
𝛽!
𝜎

  

CNRρ = 
𝛽!
𝜎

,   

CNRϕ = 
𝜑!
𝜎
𝛽!

.  
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Figure 2.3: The SNR, CNRρ, and CNRϕ maps for the experimental human data. 
	
  
	
  
	
  
2.4 Results 
 
 
	
  
2.4.1    Simulation Results 

  In Fig. 2.4, the Fisher-z transform statistics for the magnitude-only and complex-

valued correlations are computed for the surfaces generated with the parameters 

described in Fig. 2.2. Including the phase half of the data in the complex-valued 

correlation calculation yields an increased sensitivity of the correlation value, as 

illustrated by comparing the top left corner of the Fisher-z map in Fig. 2.4a to the one in 

Fig. 2.4b, with a difference map of magnitude-only and complex-valued in Fig. 2.4c. The 

additional information of the phase time-series improves the strength of correlation 

detected at lower magnitude CNR values.  
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Figure 2.4: The Fisher-z transform of the (a) magnitude-only, MO, and (b) complex-
valued, CV, correlation, and the (c) difference (CV – MO) between the correlations.  
	
  
	
  
	
  
2.4.2    Human Subject Data Results 

 

  Fig. 2.5 and Fig. 2.6 contain the four seed voxel complex-valued and magnitude-

only correlation maps for the experimental fMRI data in the motor cortex and 

supplementary motor cortex. In Fig. 2.5b, the magnitude-only and complex-valued 

correlation maps are identical since computing the magnitude-only and complex-valued 

correlations are equivalent for a magnitude-only data set. In Fig. 2.6b, the magnitude-

only and complex-valued correlation maps are noticeably distinguishable since 

computing the magnitude-only and complex-valued correlations are not equivalent for a 

complex-valued data set. As described in Eq. [2.6], the spatial correlations are computed 

with the temporal frequencies, which are aggregated into bands as seen in Fig. 2.5a and 

Fig. 2.6a. The magnitude-only correlation maps appear to contain more correlations 

outside the expected task-activated region compared to the complex-valued maps. 

Particularly in the low CNR seed voxels, the less defined motor cortex in the magnitude-
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only correlation maps corroborates the results observed in the simulation in Section 2.4.1. 

The complex-valued correlations have a higher sensitivity than the magnitude-only 

correlations in both regions with activation. All voxels are located in the motor cortex or 

supplementary motor cortex, and exhibit task-activated correlation in R2, where the task 

frequency peak is located, as in Fig. 2.5a and Fig. 2.6a. In Fig. 2.5b, the general location 

of the apparent false positive magnitude-only correlation is around the edge of the brain 

as is characteristic of a motion artifact. Since the data has been minimally processed, 

motion artifacts are present in the data and have not been corrected, as observed along the 

edges of the brain.  

 
 

 
 
Figure 2.5: Experimental magnitude-only, MO, fMRI spatial correlation maps for each 
seed voxel (a) by the correlation bands, R1, R2, R3 corresponding to the frequency band 
ranges 0.0009 - 0.024 Hz, 0.026 - 0.037 Hz, 0.038 - 0.08 Hz, and (b) the total correlation 
map magnitude-only, MO, and complex-valued, CV, and for high and low CNR in motor 
cortex and supplementary motor cortex. 
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Figure 2.6: Experimental complex-valued, CV, fMRI spatial correlation maps for each 
seed voxel (a) by the correlation bands, R1, R2, R3 corresponding to the frequency band 
ranges 0.0009 - 0.024 Hz, 0.026 - 0.037 Hz, 0.038 - 0.08 Hz, and (b) the total correlation 
map magnitude-only, MO, and complex-valued, CV, for high and low CNR in motor 
cortex and supplementary motor cortex. 
 
 

2.5 Discussion  
	
  
	
  
	
  
  A linear matrix representation of correlation between complex-valued time-series 

in the temporal Fourier frequency domain for functional MRI (fMRI) data analysis was 

developed. In a simulation comparing decreasing CNR magnitude and phase values, it 

was illustrated that the Fisher-z transform of complex-valued correlations were higher 

than for magnitude-only correlations for low CNR fMRI time-series. In the experimental 

human data, a comparison of R2 in Fig. 2.6a and Fig. 2.6a shows increased sensitivity of 
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estimating correlations with including the phase time-series. These results agree with 

previous studies investigating the statistical power of using complex-valued data over 

magnitude-only data in fMRI studies. In comparison to the magnitude-only correlations, 

the complex-valued correlations have reduced error, and more distinctive regions of 

activation in the motor cortex and the supplementary motor cortex for voxels with lower 

magnitude and phase CNR, since the magnitude-only signal has no rotational information 

to leverage for sensitivity. While the framework is demonstrated for task fMRI data, a 

natural application of this framework is to non-task fMRI, where the spatial correlation is 

measured to detect long-range connectivity.  

  The temporal Fourier frequency description in this study is also advantageous to 

locate the temporal frequency range where correlations are induced. Common processing 

and reconstruction methods have been shown to induce correlation of no biological origin 

[Davey et al. 2013; Bruce et al. 2011; Bruce et al. 2013]. In this study a framework is 

presented where signal processing operations and parallel image reconstruction 

procedures, applied to the complex-valued k-space readout, can be represented as real-

valued matrix operators. The second order temporal frequency spatial covariance 

representation describes spatial correlation as a function of increased overlapping 

frequency content. Consider a scenario where initially voxel a and b are correlated, b and 

c are correlated, but a and c are not correlated. If the reconstructed images are smoothed, 

which has been previously shown to induce correlation, spatial correlation between a and 

b arises from overlapping frequency content between temporal frequency spectrums of a 

and c. Similar reasoning can be used to discuss the correlation between b and c, and the 

lack of correlation between a and c. As shown in Section 2.4.1, the matrix multiplication 
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of the linear operators with the spatial covariance matrix, quantitatively describes the 

compounding impact of spatial and temporal operators to the second order temporal 

frequencies. Combining this matrix multiplication framework with biologically or 

experimentally relevant frequency bands pertaining to fMRI data, provides insight into 

the impact of signal processing on statistical analysis and clinical interpretations from the 

data. The application of the theory to complex-valued data validates the increased 

statistical strength of using complex-valued models, specifically in minimally processed 

data sets or data sets with high noise variability. Including the phase in the analysis 

increases the sensitivity of the correlation in low magnitude contrast-to-noise ratio 

functional MRI data.  
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Chapter 3: mSPECS 
 
 
 
3.1 Introduction 
	
  
	
  
	
  

  This chapter presents an SMS reconstruction method, a Multi-coil Separation of 

Parallel Encoded Complex-valued Slices (mSPECS), for a Hadamard encoded MB 

acquisition in fMRI. An early SMS imaging strategy used only receiver coil sensitivity 

profiles to separate the individual slice images [Larkman et. al, 2001]. More recently, 

studies combine coil sensitivities along with the use of incremental shifts in either the 

frequency or the phase encoding directions [Setsompop et. al, 2013]. These 

CAIPRIHANA shifts in the FOV achieve a larger differential among the coil sensitivity 

profiles and aliased voxel values, improving the stability, or condition number, of the 

separation matrix and aliased voxel separation. Implementing multiple slice image 

encoding methods allows higher MB factors in SMS-fMRI acquisitions, as there is more 

spatial information to disentangle the signal. With SMS imaging, temporal efficiency is 

limited by high-resolution images, or improved at the expense of aliasing artifacts in 

previously aliased slices. Efforts have been made to characterize and alleviate signal 

leakage in separated slice images in the context of optimized SMS acquisition and 

reconstruction methods [Moeller S et. al, 2012; Setsompop et. al, 2013; Cauley et. al, 

2014]. Despite the advancements in SMS imaging, as acceleration factors increase, there 

is not always sufficient information for placing the BOLD signal in the un-aliased voxels, 

resulting in signal leakage in the previously aliased voxels. SMS inter-slice signal 

leakage may be non-uniform across previously aliased slices, making it difficult to 
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identify the source of the image distortion, and the unsatisfactory slice image separation 

may appear as brain connectivity during the fMRI analysis [Todd et. al, 2016]. 

  To use Hadamard phase encoding in SMS acquisitions, the RF pulse modulates 

the phase magnetization in each excited slice image, so a single k-space readout is 

reconstructed into a single slice image with the excited slices superimposed [Muller et. al, 

1988; Souza et. al, 1988]. With Hadamard encodes, a unique phase is imparted to each 

slice in a cyclical pattern throughout the complex-valued time-series, individual complex-

valued slice images are resolved through solving a system of linear equations over 

sequential time repetitions, with no net acceleration achieved after the slice separation. 

With the mSPECS reconstruction for Hadamard encoded aliased slice images, a MB 

factor of nS simultaneously excited slices achieves an acceleration factor up to A=nS. In 

this dissertation, the MB factor refers to the number of aliased slice images acquired 

during the slice image acquisition, and A refers to the observed acceleration after the 

aliased slice image separation.  

  The mSPECS reconstruction model combines the spatial encoding information 

from a phased array of multi-channel receive coils and the intrinsic orthogonal properties 

of Hadamard matrices. The standard in the SMS-fMRI reconstruction methods is to 

derive spatial information from fully sampled reference data to derive spatial information 

regarding the individual slice images, i.e. the multi-channel receive coil sensitivity 

profiles, or calibrate the aliased slice time-series. In mSPECS, fully sampled complex-

valued calibration images are bootstrapped sampled and artificially aliased. The bootstrap 

sampling algorithm at each time point is the key mechanism of the mSPECS 

reconstruction to prevent induced correlation between previously aliased voxels, and 
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most significantly, to accurately place the BOLD signal in the separated slice images. 

Without the mitigation inter-slice signal leakage in SMS-fMRI acquisition and 

reconstructions, brain networks will not be appropriately modeled in whole volume fMRI 

studies.  

 

3.2 Theory 
	
  
	
  
	
  
  The Multi-coil Separation of Parallel Encoded Complex-valued Slices (mSPECS) 

reconstruction method is a one-step process of slice image separation and coil image 

combination, as opposed to methods of separating the coil images for each slice image 

then combining the nC coil images into a single image. The coil sensitivity profiles are 

derived from fully sampled slice images, i.e. from slice images acquired with no in-plane 

or through plane acceleration. In the mSPECS method, H, as constructed in Eq. [1.7], is 

the Hadamard aliasing matrix for an experiment with nS aliased slice images, and is of 

dimension nS×nS. For example, an acquisition of nS = 4 aliased slice images uses the 

orthogonal Hadamard aliasing matrix, 

H = 

1
1
1
1

            1
      −1
            1
      −1

            1
            1
      −1
      −1

            1
      −1
      −1
            1

. 

The scaling of Hadamard matrices in powers of 2 is visually demonstrated in Fig. [1.5]. 

Row δ and column z of H is denoted Hδ,z for the Hadamard aliasing pattern δ, 

corresponding to a given TR, for slice z. The nS aliased slice images is the number of 

aliased slice images per packet, also known as the MB factor. The term packet refers to 

the number of aliased slice groups, i.e. nS = 4 for 2 packets is a total of 8 slices images 
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acquired with MB 4. For a full volume acquisition, multiple interleaved slice image 

packets are excited for a TR, as shown in Fig. 1.6. Fig. 3.1 is a diagram of the slice 

profiles for 2 aliased slice images in 2 packets acquired over 2 TRs, where the first TR 

corresponds to the [+ +] Hadamard excitation, the second TR corresponds to the  

[+ -] Hadamard excitation, then the pattern will repeat for the subsequent TRs.  

The remaining parts of the Theory section is divided into three parts, first is a 

description of a single aliased voxel value from a Hadamard encoded acquisition 

measured at multiple coils, second is a description of the bootstrap sampling and the 

artificial aliasing of the voxel values from the calibration slice images measured at 

multiple coils, and third is a description of the separation of the aliased voxel values with 

a discussion on the correlation of the previously aliased voxel values.  
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Figure 3.1: Slice profiles for a Hadamard encoded acquisition of A = nS = 2 aliased slice 
images in 2 packets for a total of 4 slice images. 
 
 
 
A Single Aliased Voxel 

 

  In one packet, a single aliased voxel, aj,δ, in the same (x,y) voxel location across 

nS slices, with the Hadamard encode δ, measured at coil j, in image space is written as the 

summation 

aj,δ =   !!
!  !  ! Hδ,s Sj,s βs + εj.           [3.1] 

The Hadamard coefficient Hδ,z will be either 1 or -1, and the 2×1 vector aj,δ is the real and 

imaginary parts of an aliased voxel acquired with the Hadamard aliasing pattern δ 

measured at coil j. In Eq. [3.1], aj,δ is written as the sum of the 2×1 vector βz, the real and 

Slice 1 Slice 2 Slice 3 Slice 4

packet 1

packet 2

packet 1

packet 2

TR = 1

TR = 2
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imaginary parts of the true voxel value in slice z, weighted by the 2×2 matrix of real and 

imaginary coil sensitivities at coil j. The real and imaginary coil sensitivities correspond 

to the same (x,y) voxel location as βz for slice z at coil j, in a skew symmetric matrix,  

Sj,z = [SR,-SI;SI,SR]j,z.  

The 2×1 vector εj=(εjR,εjI)  is the measurement error with real and imaginary parts at coil j 

with a mean of E(εj) = 0 and covariance of cov(εj) = σ2I2.  

  To separate the nS aliased voxels at a single voxel location, the goal is to estimate 

𝛽, the separated voxel values from one packet. The number of sequential time-points, nα, 

where nα is an integer between 1 and nS, is the number of sequential TRs in the Hadamard 

encoded acquisition included in the separation of a single separated aliased voxel at one 

time point. If the data is acquired in packets of nS aliased slices, the net acceleration of 

the slice image time-series acquisition is  

A=nS/nα.    

The measured aliased voxel in Eq. [3.1] is generalized across nC coils for nS aliased slices 

with nα sequential time-points included in the separation, as 

a = XAβ+ε.                     [3.2] 

In Eq. [3.2], a and ε are of dimension 2nCnα×1, and the error vector, ε, has the mean of  

E(ε) = 0,  

and a covariance of 

cov(ε) =σ2I2ncnα,             [3.3] 

XA is of dimension 2nCnα×2nS, and β is of dimension 2nS×1. For the δth aliasing pattern, 

the aliasing matrix (XA)δ of dimension 2nC×2nS is constructed by multiplying the 

Hadamard coefficients with the coil sensitivities,  
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(XA)δ = 𝐻!,!
𝑆!,!
⋮

  𝑆!!,!
,… ,𝐻!,!!

𝑆!,!!
⋮

  𝑆!!,!!
.       

This is generalized to XA, of dimension 2nαnC×2nS, for the incorporation of nα sequential 

TRs in the aliased voxel separation, 

XA = [(XA) 1,…,(XA)  𝑛𝛼]′.                         [3.4] 

  Similar to previous efforts to disentangle simultaneously excited slices with coil 

sensitivities [Larkman et al., 2001], although with an additional phase manipulation 

[Muller et al., 1988; Souza et al., 1988], the 2nS×1 vector of separated voxel values, 𝛽, 

can be estimated,  

𝛽  =(X'A XA)-1 X'A a, 

with a covariance between the previously aliased voxels across the nS slices,  

cov(  𝛽  )=σ
2 (XA′XA)-1.              [3.5] 

To reduce the covariance between previously aliased voxels, and thus minimize 

correlation induced from the aliased voxel separation process, the mSPECS method 

combines the coil and phase encoding with calibration images into the least squares 

estimation. The novelty of the mSPECS reconstruction is a bootstrapping sampling and 

artificial aliasing of calibration voxel values, from a separate acquisition of fully-sampled 

slice image time-series, that are artificially aliased in the remaining Hadamard pattern for 

a given TR. This mechanism of incorporating calibration slice images in the SMS-fMRI 

reconstruction, prevents inter-slice signal leakage, which may present as “clusters” of 

false activation, between previously aliased voxel regions, as a result of correlation 

induced during aliased voxel separation.   

 



	
   54	
  

Bootstrap Sampling and Artificial Aliasing  

 

  To separate an aliased coil slice image, nS bootstrap sampled coil slice images 

from the fully-sampled calibration slice image time-series are averaged, then artificially 

aliased. This mean bootstrap sampling and artificial aliasing algorithm is repeated for 

each time-point in the aliased slice image time-series. For a single time-point, a voxel in 

the same (x,y) location across the nS slices measured at nC coils, bootstrap sampled from 

the calibration slice image time-series, is represented in the 2nSnC×1 vector, 𝜈, and the 

mean bootstrap sample for each time point is represented in the 2nSnC×1 vector, 𝜈 . The 

true mean voxel values, to be aliased in the same (x,y) location across the nS slices, from 

the calibration slice images are represented by the 2nS×1 vector µ, with the same voxel 

indices as in β for Eq. [3.2].  The vector, 𝜈, has a 2nSnC ×1 error vector, η, with η=(ηR,ηI) 

corresponding to the real and imaginary parts of the measurement error of the coil 

calibration slice images for nS slices measured at nC coils. The calibration slice coil 

images measurement error has a mean of  

E(η)=0,  

and a covariance of 

cov(η)=σ2I2ncns.             [3.6] 

  In the mSPECS model, for the δth aliasing pattern, in the aliased voxel separation 

in Eq. [3.2], the mean calibration images, 𝜈, are artificially aliased with the 2nC(nS -

1)×2nSnC aliasing matrix Cδ, is the Kronecker product of the +1 and -1 Hadamard 

coefficients and vectors of ones, is 

Cδ = 𝟏!! ⊗ [𝐻!,!⊗12,…,  𝐻!,!! ⊗12].                
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The (nS -1)×nS matrix 𝐻!is the remaining (nS -1)×nS with the δth acquisition removed from 

the H matrix, so that Cδ is the remaining (nS-1) orthogonal ways the true fully acquired 

voxels across the nS slices could be aliased with a Hadamard matrix. An illustration of the 

origin of 𝐻! to create the potential aliasing matrices, Cδ, for the nS aliasing patterns, is 

shown in Fig. 3.2 for a Hadamard encoded time-series with nS=4 aliased slice images.  

Fig. 3.2a is the time-series aliasing pattern that repeats every nS TRs, denoted by the blue 

dotted line in the figure. The first 4 TRs correspond to Hadamard aliasing of the four 

aliased slice images shown in Fig. 3.2b, with the four aliasing patterns shown as the sum 

and difference of the individual slice images. Fig. 3.2c depicts the four artificial aliasing 

matrices for MB4 for the δth aliasing pattern equivalent to the δth row of a Hadamard 

matrix of dimension nS×nS where δ=1…nS, and the gray shaded region designated the   

nS-1 ways to artificially alias the calibration slice images corresponding to the δth aliasing 

pattern. 
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Figure 3.2: (a) The rotating Hadamard encodes to alias nS=4 slice images (column) for n 
time-points (row), repeated every nS TRs, denoted by the blue dotted line,  (b) nS=4 
aliased slice images acquired over 4 consecutive time repetitions are the sum and 
difference of  the individual complex-valued slice images, (c) and the corresponding 
artificial aliasing matrices, 𝐻, for the δ th aliasing pattern.  

 

  To incorporate nα subsequent TRs from the aliased voxel acquisition, the 

corresponding aliasing matrices, Cδ, are placed along the diagonal to create a single 

aliasing matrix C, of dimension 2nCnα(nS -1)×2nSnCnα, 

C =
𝐶!    0
   ⋱   
0    𝐶!!

                 [3.7] 
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Artificially aliasing the mean bootstrap sampled voxels, 𝜈, and the corresponding error 

vector, η, from the calibration images with the aliasing matrix in Eq. [3.7] results in a 

2nαnC(nS -1)×1 vector,    

υ = C𝜈 = CAµ + Cη,                         [3.8] 

where µ has been previously defined as the 2nS ×1 vector of the true calibration voxel 

values with real and imaginary parts. The matrix CA is a coil sensitivity matrix with 

Hadamard coefficients, analogous to (XA)δ, for the artificially aliased calibration voxels is 

the 2nC(nS -1)×2nS matrix, 

(CA)δ = 𝐻!,!⊗
𝑆!,!
⋮

  𝑆!!,!
,… ,𝐻!,!! ⊗

𝑆!,!!
⋮

  𝑆!!,!!
.                     

Similar to Eq. [3.4], (CA)δ is generalized to CA, of dimension 2nαnC(nS -1)×2nS, for the 

incorporation of nα sequential TRs in the aliased voxel separation, 

CA = [(CA)1 , … ,(CA)  !!]′.   

 

A Separation of Aliased Voxel Values 

 

  With the mSPECS approach, to separate the aliased voxel values, Eq. [3.2] and 

Eq. [3.8] are concatenated into one equation,  

𝑎
𝜐 = 𝑋!𝛽  

  

𝐶!𝜇    
+

𝜀
𝐶𝜂 .                           [3.9]     

If ya is the 2nαnSnC×1 vector of acquired aliased voxel values stacked over the artificially 

aliased voxel values such that ya =(a′,υ′)′, and X is the two aliasing matrices 

concatenated, X=[XA′, CA′ ]′ of dimension 2nαnSnC×2nS, then the separation of the aliased 

voxel values in Eq. [3.9] is a least squares estimate of the form  
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𝛽  =(X′X)-1X′ya, 

The 2nS×1 vector of estimated separated voxel values with real and imaginary parts, is 

also written 

𝛽  =(X'A XA+ C'A CA)-1(X'A a+ C'A υ) 

To view the mSPECS approach as a Bayesian method, where a~N(β, σ2I2ncnα) and 𝜈 ~N(µ, 

σ2I2ncnαns), so the posterior mean is  

E[  𝛽  ]=(X'A XA+ C'A CA)-1(X'A β+ C'A µ), 

such that the separated voxel values are a weighted combination of prior and likelihood 

mean voxel values, or calibration and artificially aliased voxel values. 

  The covariance of the added measurement error of a measured aliased voxel in 

Eq. [3.2] measured at nC coils, which is nα sequential TRs incorporated into mSPECS, 

cov(ε) =σ2I2ncnα            [3.10] 

and the covariance of the artificially aliased nS calibration voxel values measured at nC 

coils, which is nα sequential TRs in Eq. [3.8] is 

cov(Cη)=σ2I2ncnα (ns -1).             [3.11] 

In both Eq. [3.10] and Eq. [3.11], there is no covariance between the real and imaginary 

parts, and a constant variance of σ2 for both real and imaginary parts. The 

2nαnCnS×2nαnCnS covariance matrix for the 2nαnCnS ×1 vector ya, consisting of aliased and 

artificially aliased voxel values is 

cov(ya)=
𝜎!𝐼!!!!! 0

0 𝜏!𝐼!!!!!(!!!!)
.                                                                          [3.12] 
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If there is no variation, i.e. no random sampling of the calibration voxel values with 

mSPECS, among the average calibration slice images used to separate each aliased image 

then τ2=0. The bootstrapping adaptation averages nS randomly selected calibration images 

for each TR in 𝑣! to obtain τ2= σ2, such that the covariance in Eq. [3.12] results in the 

2nS×2nS matrix,  

cov(𝛽  )=σ2 (XA′XA+ CA′CA)-1. 

The inclusion of the calibration images through the mSPECS method reduces correlation 

between the previously voxel values, compared to Eq. [3.5], since CA′CA acts as a 

regularizer, which improves the condition of Eq. [3.12]. In SMS-fMRI, induced 

correlation from the un-aliasing of the slice images throughout the time-series, presents 

as inter-slice signal leakage among previously aliased voxels, with false activation 

detected in these regions.  

 

3.3 Methods  

	
  
	
  

The mSPECS method is demonstrated with Hadamard encoded simulated 

phantom and experimental human data. With Hadamard matrix dimensions increasing in 

powers of two, the design of task timings must also increase in powers of two to 

accommodate various accelerations determined post acquisition, by varying nα in the 

mSPECS method. Table 3.1 lists the accelerations and timings for both the simulation 

and the experimental human subject data. In both settings, the data is acquired with a MB 

factor = 8, i.e. nS = 8 aliased slices. An 8 second TR, for a net acceleration of 1, is based 

from the timing of full volume acquisitions, so 9 packets of 8 aliased slices are measured 
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yielding 72 slices in 8 seconds with no acceleration. The net acceleration after slice 

separation is defined as the number of aliased slices over the number of sequential TRs 

used included in the reconstruction, 

A = nS /nα . 

The notation “mSPECS 2” denotes an implementation of mSPECS with A=2. The 

number of sequential TRs used for reconstruction changes the TR length, from TRacq (the 

acquired TR length as defined in Fig. 3.1) to TRsep (the TR length of the separated slice 

image time-series) with 

TRsep = TRacqnα. 

The total time of the time-series remains the same, although the number of time points 

differs before and after slice separation, where the time-points post slice image separation 

is equivalent to the starting number of TRs divided by nα. 

 
	
  

Acceleration TRs(acq) Task nS nα TRacq TRsep TRs(sep) 
mSPECS 1 600 16 s 8 8 1 s 8 s 75 
mSPECS 2 600 16 s 8 4 1 s 4 s 150 
mSPECS 4 600 16 s 8 2 1 s 2 s 300 
mSPECS 8 600 16 s 8 1 1 s 1 s 600 

 
Table 3.1: Acquisition and reconstruction timings for mSPECS. 

 
 
 
3.3.1    Digital Phantom Simulation   

 

An fMRI digital phantom data set was generated with a block-design of task 

activity, with an initial rest of 64 seconds followed by 9 epochs of 32 seconds no task and 

32 seconds task using MATLAB (The Mathworks, Natick, MA, USA). The data was 
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generated for eight sagittal slice images that are 96×96 in dimension to represent one 

packet in a full brain volume Hadamard encoded acquisition.  The noiseless time series 

was generated for each slice image with a theoretical 𝑇!∗ weighted phantom similar to 

[Karaman et al., 2016]. The initial 𝑇!∗ weighted phantom has initial values between 0 and 

1, then weighted for maximum SNR of 30 in the magnitude, yielding an approximate 

SNR of 30 in the CSF, 15 in the grey matter, and 7 in the white matter, and a mean phase 

is added to the slice images varied from 8π/36 to π/36 from slice one to slice eight 

decreasing in increments of π/36. The calibration time-series was generated with 40 TRs 

from the complex-valued phantom. The slices are first weighted by complex-valued 

simulated 16-channel coil sensitivity maps, then standard Gaussian noise was added to 

the real and imaginary components of the time series. The simulated coil profiles were 

generated with a bivariate normal probability density function, and the first 4 coils are 

placed in the four corners and the next 4 coils on the four edges, then repeated for a total 

of 16 receive coils. Sixteen weighting matrices, with values between 0 and 1, are 

generated, rotated for each slice, and applied to the coil profiles, such that each slice has a 

unique weighting of the 16-channel coil profiles. For the complex-valued coil profiles, a 

phase of π/12 is added to each coil profile. 

In the simulation, the task was generated in one unique 6×6 voxel square region 

of interest (ROI) rotating clockwise for each slice with a magnitude CNR, as defined in 

Eq. [2.9], of 0.5. For a magnitude CNR of 0.5, the magnitude within the ROI is increased 

by 0.5 for 32 TRs and then returning to baseline for the following 32 TRs for the 9 

epochs. Before the complex-valued time-series was summed in the slice direction, the 

Hadamard phase encoding was simulated. With no in-plane acceleration, i.e. mSPECS, 
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the rotating Hadamard pattern resembled Fig. 1.4, depending on the number of aliased 

slices or multiband factor. Once the complex-valued slices are multiplied by the +1 or -1 

Hadamard phase encode coefficient, they weighted by the complex-valued 16-channel 

coil sensitivities, then summed in the slice direction. Standard Gaussian noise was added 

to the real and imaginary components of the time series. One time-series of Hadamard 

aliased images, simulated with MB8, was then separated using the mSPECS model and 

separated with nα=1, 2, 4, and 8, or equivalently written as mSPECS 1, mSPECS 2, 

mSPECS 4, mSPECS 8, and fMRI activation was calculated in each separated voxel 

using the complex-valued fMRI model in [Rowe 2005b]. 

 

3.3.2    Experimental Human Subject Data 

 

An experimental fMRI human data set with Hadamard encoding was acquired 

with a visual flashing checkerboard stimulus presented in a block design with an initial 

64 seconds rest followed by 9 epochs of 32 seconds on and 32 seconds off using a 3.0 T 

Discovery MR750 MRI scanner (General Electric, Milwaukee, WI) with a 32-channel 

receive coil. A visual task to maximize the region of activation in the sagittal slice 

orientation. The data was acquired with nine interleaved sagittal packets that are 96×96 in 

dimension and 2 mm thick. Eight Hadamard encoded slices are simultaneously 

magnetized within each slice packet, for a total of 72 slice images after slice image 

separation. The imaging parameters included a 24.0 cm FOV, a TR/TE of 1000/41 ms, a 

flip angle of 11°, an acquisition bandwidth of 250 kHz, and an effective echo spacing of 

0.500 ms. The phase encoding direction was oriented as posterior to anterior (bottom to 
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top in images) and images were Nyquist ghost corrected. An experimental non-task fMRI 

human data set without Hadamard encoding, to be used as the calibration time-series, was 

acquired using a 3.0 T Discovery MR750 MRI scanner (General Electric, Milwaukee, 

WI) with a 32-channel receive coil. The data was acquired with 72 sagittal slices that are 

96×96 in dimension and 2 mm thick.  The imaging parameters included a 24.0 cm FOV, 

a TR/TE of 8000/41 ms, a flip angle of 11°, an acquisition bandwidth of 250 kHz, and an 

effective echo spacing of 0.500 ms. The phase encoding direction was oriented as 

posterior to anterior (bottom to top in images) and images were Nyquist ghost corrected. 

Before applying the mSPECS separation to the aliased slices, a phase correction is 

applied to the aliased time-series, and both a phase and magnitude correction is applied to 

the calibration images. First, each Hadamard pattern in the aliasing phase time-series is 

corrected. The mean phase of each Hadamard pattern is estimated, and then subtracted 

from the phase time-series. The remaining error of the phase time-series is fit to a local 

third order polynomial, with a the local fit region of 11×11 voxels, and the mean phase is 

added back to the phase time-series. Second, the full complex-valued Hadamard aliased 

time-series is separated with addition and subtraction, and the mean phase of the 

separated slice time-series is estimated. The calibration image phase time-series is also 

corrected in the same way. The mean phase of the slice time-series is estimated, and then 

subtracted from the phase time-series. The remaining error of the phase time-series is 

again fit to a local third order polynomial, with a the local fit region of 11×11 voxels, and 

the mean phase estimated from the Hadamard separated images is added back to the 

calibration time-series. The difference in magnitude between the voxels in the calibration 

coil images and Hadamard coil image time-series is reconciled by multiplying the 
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magnitude calibration images with a magnitude difference ratio of 0.2. The magnitude 

difference ratio is the mean magnitude Hadamard separated images at each coil divided 

by the mean magnitude calibration images at each coil, with the regions of signal dropout 

masked in the Hadamard separation for the estimation of the ratio.  

  The raw 32-channel receive coil sensitivity maps are estimated from the 

calibration slice images. The complex-valued coil sensitivity profiles are estimated by 

averaging the image mean in the time dimension at each coil. The mean coil images are 

normalized, by averaging the mean coil images to a single image, and the sensitivity 

maps are fit to a local polynomial, the local fit region is 13×13 voxels and the polynomial 

is of order three, to remove variability in the maps. The aliased images were then 

separated using the mSPECS model, and fMRI activation was calculated in each 

separated voxel using the complex-valued fMRI model in [Rowe 2005b]. The Hadamard 

aliased images, acquired with MB8, was then separated using the mSPECS model and 

separated with A=1, 2, 4, and 8, or equivalently written as mSPECS 1, mSPECS 2, 

mSPECS 4, mSPECS 8, and fMRI activation was calculated in each separated voxel 

using the complex-valued fMRI model in [Rowe 2005b]. 

 
	
  
3.4 Results  
	
  
	
  
	
  
3.3.1    Simulation Results  

 

 The mean magnitude and phase for the calibration slice images for the eight 

complex-valued aliased slice images for the digital phantom simulation are shown in Fig. 
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3.3, the calibration slice images are measured with the simulated 16-channel receive coils 

and the fully sampled coil images are combined with a SENSE reconstruction. The mean 

magnitude and phase for the Hadamard separated slice images for the eight complex-

valued aliased slice images for the digital phantom simulation are shown in Fig. 3.4, the 

aliased slice images are measured with the simulated 16-channel receive coils, separated 

with adding and subtracting the complex-valued images, and the separated slice coil 

images are combined with a SENSE reconstruction. In Fig 3.5 and Fig 3.6 are the 

calibration magnitude and phase slice images of the mean time-series separated for the 

reconstructions of mSPECS 1, mSPECS 2, mSPECS 4, and mSPECS 8. Across the four 

accelerations, in the mean separated slice magnitude and phase images, there are no signs 

of residual aliasing (slice leakage) induced from slice image separation.  

 After the mSPECS slice image separation of the aliased time-series, the fMRI 

activation statistics are calculated in each voxel with a complex-valued activation model 

[Rowe 2005b]. The z-scores for the activation statistics are mapped in Fig 3.7, and the 

regions where the activation was placed is highlighted by the green box in each slice. The 

activation maps are thresholded at 2, and the region outside the digital phantom is 

masked. Since the activation is placed in a unique 6×6 region in each slice image, before 

simulating the aliased time-series, and there are no incremental shifts in the FOV, inter-

slice signal leakage stemming from the slice separation process is easily identifiable by 

visually examining previously aliased voxel locations. The regions within the green 

boxes show strong activation clusters. The average z-scores increase as the acceleration 

increases, as a higher sampling rate corresponds to a strengthened statistical significance, 

although the z-scores in mSPECS 4 and mSPECS 8 appear similar. The z-scores in  
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mSPECS 2 are  higher than mSPECS 1, yet the difference between the z-scores in 

mSPECS 2 versus  mSPECS 4 or mSPECS 8 is not as large. There are no clusters of 

“active” voxels outside the green boxes in Fig 3.7, so active voxels outside indicate false 

positives from noise in the time-series, rather than inter-slice signal leakage. 
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Figure 3.3: Mean calibration digital phantom magnitude slice images and phase slice 
images, with the numbering 1 through 8 referring to the slice image number. 
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Figure 3.4: Time-series mean Hadamard separated digital phantom magnitude slice 
images and phase slice images, with the numbering 1 through 8 referring to the slice 
image number. 
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Figure 3.5: Mean magnitude mSPECS separated slice images from the Hadamard 
encoded digital phantom simulation for the accelerations of mSPECS 1, mSPECS 2, 
mSPECS 4, and mSPECS 8. 
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Figure 3.6: Mean phase mSPECS separated slice images from the Hadamard encoded 
digital phantom simulation for the accelerations of mSPECS 1, mSPECS 2, mSPECS 4, 
and mSPECS 8.	
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Figure 3.7: Activation statistics for the mSPECS separated slice images from digital 
phantom simulation for the accelerations of mSPECS 1, mSPECS 2, mSPECS 4, and 
mSPECS 8. 
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3.3.2    Human Subject Data Results  

The mean magnitude and phase for the calibration slice images for the eight 

complex-valued aliased slice images for the digital phantom simulation are shown in Fig. 

3.8, the calibration slice images are measured with the 32-channel receive coils and the 

fully sampled coil images are combined with a SENSE reconstruction. The mean 

magnitude and phase for the Hadamard separated slice images for the eight complex-

valued aliased slice images for the digital phantom simulation are shown in Fig. 3.9, the 

aliased slice images are measured with the 32-channel receive coils, separated with 

adding and subtracting the complex-valued images, and the separated slice coil images 

are combined with a SENSE reconstruction. In Fig 3.10 and Fig 3.11 are the calibration 

magnitude and phase time-series mean of the slice images separated for the 

reconstructions of mSPECS 1, mSPECS 2, mSPECS 4, and mSPECS 8. In the four 

accelerations, there is signal dropout in the same locations across for each slice image. 

The signal dropout regions in the magnitude in Fig. 3.9 correspond to the same regions 

seen in Fig. 3.10. The mSPECS separation is susceptible to the same signal dropout 

observed in the addition and subtraction schemes. This signal dropout is a data quality 

issue, arising from complications with subject motion, rather than a direct result of the 

mSPECS separation itself. As acceleration increases, the mean magnitude images in Fig 

3.10 show less decreased signal attenuation. During acquisition if there is a “bad” 

aliasing pattern throughout the time-series, i.e. the +/- orthogonality is not maintained 

during the slice excitations, the impact will lessen as acceleration increases with the  

mSPECS approach to aliased slice image separation. 
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 After the mSPECS slice image separation of the aliased time-series, the fMRI 

activation statistics are calculated in each voxel with a complex-valued activation model 

[Rowe 2005b]. The z-scores for the activation statistics are mapped in Fig 3.12. The 

activation maps are thresholded at 1.5, and the region outside the brain is masked. While 

there does not appear to be signal leakage from the BOLD signal, the activation maps are 

noisy, which may be potentially structured noise as a result of subject motion. Slice 6 

shows the most well defined region of activation in the visual cortex, this finding 

corroborates the signal dropout observed in the magnitude images in Fig. 3.11. Note, the 

data has been minimally processed, to prevent processing induced correlations presenting 

in the separated slice image time-series. The activation observed within the frontal lobe, 

which may be attributed to subject motion with respect to the flashing checkerboard 

stimulus. As demonstrated in Appendix A, aliased slice images separated with mSPECS 

are susceptible to artifacts from phase transitions despite efforts to calibrate the 

Hadamard aliased acquired time-series to the calibration time-series.  
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Figure 3.8 Mean calibration magnitude slice images and phase slice images, with the 
numbering 1 through 8 referring to the slice image number. 
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Figure 3.9: Mean Hadamard separated magnitude slice images and phase slice images, 
with the numbering 1 through 8 referring to the slice image number. 
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Figure 3.10: Mean magnitude mSPECS separated slice images from the Hadamard 
encoded human subject data for the accelerations of mSPECS 1, mSPECS 2, mSPECS 4, 
and mSPECS 8. 
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Figure 3.11: Mean phase mSPECS separated slice images from the Hadamard encoded 
human subject data for the accelerations of mSPECS 1, mSPECS 2, mSPECS 4, and 
mSPECS 8. 
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Figure 3.12: Activation statistics for the mSPECS separated slice images from the 
Hadamard encoded human subject data for the accelerations of mSPECS 1, mSPECS 2, 
mSPECS 4, and mSPECS 8. 
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3.5 Discussion  
	
  
	
  
	
  
 Without whole brain volume fMRI-SMS acquisitions and separation methods, 

either spatial or temporal resolution is constrained during experimental data acquisition. 

Although, many SMS reconstruction techniques ignore the statistical implications of fast 

imaging methods on the fMRI time-series analysis. The implementation of the mSPECS 

separation in simulation yields very promising results. In simulation, the activation in 

each slice is accurately placed and there is no task signal leakage between previously 

aliased voxels. Increasing the acceleration yields a higher sample size and improves the 

statistical significance of the data, so larger z-scores are observed as the acceleration 

increases, with the most substantial gains observed the z-scores between the 

reconstructions of mSPECS 1 and mSPECS 2.  

The benefits of an implementation of the mSPECS separation in an acquisition of 

a Hadamard encoded fMRI time-series is less straightforward than observed in 

simulation. The quality of the mSPECS slice separation is dependent on the acquisition, 

and Hadamard addition and subtraction schemes are susceptible to signal dropout from 

subject motion or potentially from non-orthogonal phase encoding arising from magnetic 

field inhomogeneities. The mSPECS separated slice images from the human 

experimental data also present artifacts arising in the separated magnitude images from 

phase transitions between voxels as shown in simulation in Appendix A. Another 

potential draw back with mSPECS, as with any SMS reconstruction methods, is the 

potential for artifacts in the separated slice images, as a result of the motion between the 

calibration and Hadamard MB acquisitions. Despite the impact of phase wrapping in 
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mSPECS reconstruction, the development of complex-valued SMS reconstruction 

methods allows for increased statistical significance from a higher sampling rate of time 

points, and complex-valued fMRI analysis which has been shown to improve fMRI 

activation statistics.   
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Chapter 4: mSPECS-IPA   

 

4.1 Introduction  
	
  
	
  
	
  

   This chapter presents an SMS reconstruction method, a Multi-coil Separation of 

Parallel Encoded Complex-valued Slices with In-Plane Acceleration (mSPECS-IPA).  

This chapter builds on the mSPECS reconstruction model in the previous chapter, with an 

additional acceleration achieved with in-plane subsampling in the SMS-fMRI acquisition. 

In the absence of pMRI and SMS imaging methods, the temporal resolution of full 

volume high resolution images in fMRI are constrained by a long TR. As described in the 

previous chapter, higher sampling rates in fMRI are desirable to increase statistical power 

of the analysis allowing a faster observation of brain function and reduction of scan time.  

In fast imaging methods in fMRI, it is possible to subsample both in-plane and through-

plane.  Note, in this chapter, the MB factor refers to the number of aliased slice images 

acquired during acquisition, while R refers to the number of rows omitted during the 

spatial frequency measurements, and the observed acceleration after the collapsed slice 

image separation and intra-slice unwrapping is the “net acceleration.” Achieving an 

overall net acceleration of 8 by acquiring 8 aliased slices is not equivalent to acquiring 4 

aliased sliced with an in-plane acceleration of R=2. The phrase “net acceleration” is used 

loosely in this chapter to refer to the aggregate subsampling in-plane and through-plane, 

as the scan time speed up observed from simultaneously exciting multiple slices is not 

equivalent to omitting the equivalent number of lines in k-space. Also, SMS methods do 

not suffer the SNR penalty observed with traditional pMRI methods, or in-plane 
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accelerations. In the Human Connectome Project, pilot studies evaluated additional in-

plane subsampling with SMS acquisitions, and ultimately decided against in-plane 

subsampling and implemented an MB of 8, although recommended implementing an MB 

of 6 [Glasser et al., 2013; Ugurbil et al., 2013; Van Essen et al., 2013]. In addition to 

decreasing SNR, in-plane subsampling also reduces the acceptable number of aliased 

slices acquired during acquisition, and lower MB factors may lead to a long TRs. 

A recent study comparing inter-slice signal leakage in commonly implemented 

SMS-fMRI EPI acquisition and reconstruction methods, conservatively recommended 

accelerations of both in-plane acceleration and through-plane accelerations equal to 2, for 

a net acceleration of 4. Increasing the through-plane acceleration factors to 3 or 4, for a 

net acceleration of 6 or 8, is recommended if the study design, imaging parameters, and 

reconstruction algorithms are optimized [Todd et al., 2015].  Without the optimization of 

these parameters, there is a risk of false activation in previously aliased voxel locations. 

The study also neglects to compare pure MB factors, i.e. no in-plane subsampling, to 

acquisitions with accelerations in both in-plane and through-plane.  

In the theory section of this chapter, the mSPECS reconstruction method is extended to 

accommodate additional in-plane acceleration methods. The viability of mSPECS-IPA is 

shown in simulation, and an examination of the trade-off between in-plane and through-

plane accelerations is presented. As with mSPECS, mSPECS-IPA reconstruction method 

implements a bootstrap sampling algorithm as a key component to mitigate inter-slice 

signal leakage. Although, the novelty of the mSPECS-IPA reconstruction is the two 

dimensional phase encoding method proposed in this section, so orthogonality is 

maintained between the voxels that are aliased both in-plane and through-plane. The 
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activation statistics for mSPECS and mSPECS-IPA are examined with a digital phantom 

and experimental human data simulation for various acceleration factors achieved with 

and without in-plane acceleration.  

 

4.2 Theory  
	
  
	
  
	
  
  The Multi-coil Separation of Parallel Encoded Complex-valued Slices with In-

Plane Acceleration (mSPECS-IPA) reconstruction method is a one-step process of aliased 

voxel separation, with both in-plane and through-plane acceleration, and coil image 

combination, as opposed to methods of separating the coil images for each slice image 

then combining the nC coil images into a single image. In this section, the notation from 

the mSPECS chapter is written to incorporate additional aliasing from in-plane 

subsampling. 

 

Two-Dimensional Phase Encoding 

 

  As with mSPECS, H, as constructed in Eq. [1.7], is the in-plane Hadamard 

aliasing matrix for an experiment with nS aliased slices, and is of dimension nS×nS. The 

rotating in-plane Hadamard aliasing pattern, as used in mSPECS, is shown in Fig. 4.1a. 

Row δ and column z of H is denoted Hδ,z for the Hadamard aliasing pattern δ, 

corresponding to a given TR, for slice z. With mSPECS-IPA there is an additional in-

plane aliasing, as illustrated in Fig. 4.1b for an in-plane acceleration of 2 and 4, the in-

plane Hadamard encodes are represented with  
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M = (PRHR)′,  

where HR is derived as described in Eq. [1.7] and is of dimension R×R.	
   

 
 

 
 
Figure 4.1: (a) The through slice plane aliasing pattern for MB4, with δth aliasing pattern 
in white and the artificial aliasing pattern shaded in gray (b) the in-plane aliasing pattern 
for IPA2 and IPA4, with δth aliasing pattern in white and the artificial aliasing pattern 
shaded in gray. 
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Figure 4.2: (a) Two-dimensional Hadamard aliasing pattern for nS=4 aliased slices, with 
an in-plane acceleration of R=2, (b) two-dimensional Hadamard aliasing pattern for  
nS=4 aliased slices, with an in-plane acceleration of R=4. 
 

+ + + +

+ - + -

+ + - -

+ - - +

+
-

+
-

+
+

+
+

δ = 1 

δ = 2 

δ = 3 

δ = 4 

+ + + +

+ - + -

+ + - -

+ - - +

+
-
+
-

+
+
-
-

+
-
-
+

+
+
+
+

δ = 1 

δ = 2 

δ = 3 

δ = 4 

        MB4 IPA4b) 

        MB4 IPA2a) 



	
   86	
  

The matrix operation PR shifts rows one step  

PRHR = PR(h1,..,hR) ′ = (hR, h1,…, hR-1)′,  

the shift is required to maintain orthogonality with both the in-plane and through-plane 

aliasing patterns, as demonstrated in Fig. 4.1b where the in-plane encoding for the first 

aliasing pattern is the second Hadamard column. In Fig. 4.2a, the two-dimensional 

aliasing pattern is demonstrated for nS=4 aliased slices, with an in-plane acceleration of 

R=2; in Fig. 4.2b, the two-dimensional aliasing pattern is demonstrated for nS = 4 aliased 

slices, with an in-plane acceleration of R=4.  In the figure, the 1 or -1 across the top of 

slice images corresponds to the through-plane aliasing, and the 1 or -1 along the side of 

the slice images corresponds to the in-plane aliasing. The new aliasing matrix for the δth 

acquisition, Gδ of dimension R×nS, is constructed with the multiplication δth column, mδ, 

of the in-plane aliasing matrix, M, and δth row, hδ, of through-plane aliasing matrix, H, 

Gδ = mδhδ.             [4.1] 

When R < α, which is often the case, and M is of dimension R×R, the number of 

acquisitions, or aliased slices, exceed the number of columns in M, so the in-plane 

aliasing pattern repeats such that δ=R+1 corresponds to the first column in M.  

  Similar to Eq. [3.1] in mSPECS, a single aliased voxel, aj,δ, is aliased across nS 

slices through-plane, with an extra in-plane aliasing dimension of acceleration R. Fig. 4.3 

is an illustration of the indexing of the aliased locations, Fig. 4.3a describes the 

reconstructed aliasing voxel locations for the subsampled k-space readout with an 

acceleration of R=2 for a single slice image. The three images are concatenated to 

illustrate the wrapping from failing to meet the Shannon-Nyquist sampling rate, and the 

acceleration of R results in a reconstructed image of dimension py/R×px, with the red dot 
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in the aliased image corresponding to the locations of the two blue dots in the fully 

sampled image. Fig. 4.3b and 4.3c describe the Hadamard aliasing locations in the 

mSPECS-IPA for the fourth acquisition as described in Fig. 4.1 and Fig. 4.2 in an 

example with nS=4 aliased slices. The red dot in Fig. 4.3b is the acquired aliased voxel 

that is the Hadamard sum of voxel locations represented by the blue dots Fig. 4.3c. 

 

  

 
 
Figure 4.3:  Aliased voxel locations are depicted for (a) Eq. [1.6] for an in-plane 
acceleration R=2, with arrows pointing to the un-aliased locations, (b) an in-plane 
acceleration, R=2, and through-plane acceleration, nS =4, as in Eq. [4.2], corresponding to 
the voxel locations in (c). 
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A Single Aliased Voxel 

 

  In one packet, a single aliased voxel, aj,δ, in the same (x,y) voxel location across 

nS slices, with the Hadamard encode δ, measured at coil j, in image space is written as the 

summation 

aj,δ =   !!
!  !  !

!    
!!  ! (Gδ)m,s (Sj)m,s βm,s + εj.         [4.2]  

In Eq. [4.2], if R=1, then Eq. [4.2] is equivalent to Eq. [3.1] for a single aliased voxel in 

mSPECS. The 2×1 vector aj,δ is written as the sum of the 2×1 vector βq,z, the real and 

imaginary parts of the true voxel value q in slice z, weighted by the 2×2 matrix of real 

and imaginary coil sensitivities at coil j. The (Gδ)q,z value is either 1 or -1, and specific to 

value q in slice z. The real and imaginary coil sensitivities (Sj)q,z correspond to the same 

voxel q location as  βq,z for slice z at coil j, in a skew symmetric matrix,  

(Sj)x,z = [SR, -SI; SI ,SR]j,q,z.  

The 2×1 vector εj=(εjR,εjI)  is the measurement error with real and imaginary parts at coil j 

with a mean of E(εj) = 0 and covariance of cov(εj) = σ2I2.  

  To separate the nSR aliased voxels, the goal is to estimate 𝛽, the true separated 

voxel values from one packet. The number of sequential time-points, nα, where nα is an 

integer between 1 and nSR, is the number of sequential TRs in the Hadamard encoded 

acquisition included in the separation of a single separated aliased voxel at one time 

point. If the data is acquired in packets of nS aliased slices with an in-plane subsampling 

of R, the net acceleration of the slice image time-series acquisition is defined 

A = nSR/nα.  
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The measured aliased voxel in Eq. [4.2] is generalized across nC coils for nSR voxel 

locations with nα sequential time-points included in the separation, as 

a = XAβ+ε.                    [4.3]  

In Eq. [4.5], a and ε are of dimension 2nCnα×1, and the error vector, ε, has the mean of  

E(ε) = 0,  

and a covariance of 

cov(ε) =σ2I2ncnα,             [4.4] 

XA is of dimension 2nαnC×2nSR, and β is of dimension 2nSR×1, so nS and R correspond to 

the through-plane aliasing and in-plane aliasing dimensions, respectively. The sensitivity 

aliasing matrix, XA, is the coil sensitivities multiplied by the Hadamard 1 or -1 

coefficient, so for the Hadamard aliasing pattern δ, and the real-valued nC coil 

sensitivities for voxel q in slice z are represented in  

λq,z = ([𝑆!,…,  𝑆!!]′)q,z  

of dimension 2nC×2, so 

(XA)δ = (𝐺!)!,!𝜆!,!  ,… , (𝐺!)!,!!𝜆!,!! ,… , (𝐺!)!,!𝜆!,!,… , (𝐺!)!,!!𝜆!,!! .                

This is generalized to XA, of dimension 2nαnC×2nSR, for the incorporation of nα sequential 

TRs in the aliased voxel separation, 

XA = [(XA) 1,…,(XA)  𝑛𝛼]′.                         [4.5] 

  Similar to previous efforts to reconstruct images with lines of k-space omitted 

during image acquisition [Pruessmann et al., 1999], disentangling simultaneously excited 

slices with coil sensitivities [Larkman et al., 2001], with an additional phase manipulation 

[Muller et al., 1988; Souza et al., 1988], the 2nSR×1 vector of separated voxel values, 𝛽, 

can be estimated,  
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𝛽  =(X'A XA)-1 X'A a, 

with a covariance between the previously aliased voxels across the nS slices,  

cov(  𝛽  )=σ
2 (XA′XA)-1.              [4.6] 

To reduce the covariance between previously aliased voxels and improve the aliased 

voxel separation, and thus minimize correlation induced from the aliased voxel separation 

process, the mSPECS-IPA method combines the coil encoding and a two dimensional 

Hadamard phase encoding, with calibration images into the least squares estimation. The 

novelty of the mSPECS-IPA reconstruction is the two dimensional Hadamard phase 

encoding, in addition to the bootstrapping sampling and artificial aliasing of calibration 

voxel values. The mechanism of incorporating calibration slice images in the SMS-fMRI 

reconstruction, mitigates inter-slice signal leakage, which may present as “clusters” of 

false activation, between previously aliased voxel regions, as a result of correlation 

induced during aliased voxel separation.   

 

Bootstrap Sampling and Artificial Aliasing   

 

  In the mSPECS-IPA reconstruction model, calibration images are artificially 

aliased with the two-dimensional aliasing patterns, shown in Fig. 4.1 and Fig. 4.2, to 

achieve higher accelerations in post acquisition image separation. To separate an aliased 

coil slice image, nSR bootstrap sampled coil slice images from the fully-sampled 

calibration slice image time-series are averaged, then artificially aliased. This mean 

bootstrap sampling and artificial aliasing algorithm is repeated for each time-point in the 

aliased slice image time-series. For a single time-point, a voxel in the same (x,y) location 
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across the nSR voxels measured at nC coils, bootstrap sampled from the calibration time-

series, is represented in the 2nCnSR ×1 vector, 𝜈, and the mean sample for each time point 

is represented in the 2nCnSR ×1 vector, 𝜈. The true mean voxel values of the mean 

calibration images, 𝜈, to be aliased in the same nSR voxel locations, are represented by 

the 2nSR ×1 vector µ, with the same voxel indices as in β for Eq. [4.3].  The vector, 𝜈, has 

a 2nCnSR ×1 error vector, η, with η=(ηR,ηI) corresponding to the real and imaginary parts 

of the measurement error of the coil calibration slice images for nSR voxels measured at 

nC coils.  The calibration slice coil images measurement error has a mean of  

E(η)=0,  

and a covariance of 

cov(η)=σ2I2ncnsR.  

  In the mSPECS-IPA model, for the δth aliased pattern, in the aliased voxel 

separation in Eq. [4.3], the mean calibration images, 𝜈, are artificially aliased with the 

2nαnC(nS-1)×2nSnCR aliasing matrix Cδ, is the Kronecker product of the +1 and -1 

Hadamard coefficients and vectors of ones, is 

Cδ = 𝟏!! ⊗ [(𝐺!)!,!⊗12,…,  (𝐺!)!,!! ⊗12,…, (𝐺!)!,!⊗12,…,  (𝐺!)!,!! ⊗12].         

The (nS -1)R ×nSR matrix 𝐺! is the remaining (nS -1)R × nSR with the δth acquisition 

removed from the G matrix, so that Cδ is the remaining (nS-1) orthogonal ways the true 

fully acquired voxels across the nS slices could be aliased with a Hadamard matrix. An 

illustration of the origin of 𝐺! to create the potential aliasing matrices, Cδ, for the nSR 

aliasing patterns, is shown in Fig. 4.4 for a Hadamard encoded time-series with nS=4 

aliased slice images with an in-plane acceleration of R=2, also written as mSPECS 4 – 

IPA 2.  Fig. 4.4a is the time-series through-plane aliasing pattern that repeats every nS 
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TRs, and Fig 4.4b is the time-series in-plane aliasing pattern that repeats every R TRs. 

Fig. 4.4c and Fig. 4.4d depict the artificial aliasing matrices for mSPECS 4 – IPA 2 for 

the δth aliasing pattern equivalent to the δth row of a Hadamard matrix of dimension nS×nS 

where δ=1…nS, and the gray shaded region designated the nS-1 ways to artificially alias 

the calibration slice images corresponding to the δth aliasing pattern, and q corresponds to 

the in-plane aliasing pattern such that q=1…R. 

  To incorporate nα subsequent TRs from the aliased voxel acquisition, the 

corresponding aliasing matrices, Cδ, are placed along a the diagonal to create a single 

aliasing matrix C, of dimension 2nCnα(nS -1)×2nSnCnαR, 

C =
𝐶!    0
   ⋱   
0    𝐶!!

                 [4.7] 

Artificially aliasing the mean bootstrap sampled voxels, 𝜈, and the corresponding error 

vector, η, from the calibration images with the aliasing matrix in Eq. [4.7] results in a 

2nαnC(nS -1)R×1 vector,    

υ = C𝜈 = CAµ + Cη,                         [4.8] 

where µ has been previously defined as the 2nSR ×1 vector of the true calibration voxel 

values with real and imaginary parts. The matrix CA is a coil sensitivity matrix with 

Hadamard coefficients, analogous to (XA)δ, for the artificially aliased calibration voxels is 

the 2nC(nS -1)×2nSR matrix, 

(CA)δ= (𝐺!)!,!⊗ 𝜆!,!,… , (𝐺!)!,!! ⊗ 𝜆!,!! ,… , (𝐺!)!,!⊗ 𝜆!,!,… , (𝐺!)!,!! ⊗ 𝜆!,!! .  

Similar to Eq. [4.5], (CA)δ is generalized to CA, of dimension 2nαnC(nS -1)×2nSR, for the 

incorporation of nα sequential TRs in the aliased voxel separation, 

CA = [(CA)1 , … ,(CA)  !!]′.   
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Figure 4.4 (a) The through slice plane aliasing pattern for MB4, with δth aliasing pattern 
in white and the artificial aliasing pattern shaded in gray (b) the in-plane aliasing pattern 
for IPA2, with δth aliasing pattern in white and the artificial aliasing pattern shaded in 
gray, (c) the corresponding artificial aliasing matrices, 𝐺, for the δth aliasing pattern for 
the in-plane aliasing pattern q=1, and (d) the corresponding artificial aliasing matrices, 𝐺, 
for the δth aliasing pattern for the in-plane aliasing pattern q=2. 
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A Separation of Aliased Voxel Values 

 

  With the mSPECS approach, to separate the aliased voxel values, Eq. [4.3] and 

Eq. [4.8] are concatenated into one equation, 

𝑎
𝜐 = 𝑋!𝛽  

  

𝐶!𝜇    
+

𝜀
𝐶𝜂 .                                      [4.9] 

If ya is the 2nαnCnSR ×1 vector of acquired aliased voxel values stacked over the 

artificially aliased voxel values such that ya =(a′,υ′)′, and X is the two aliasing matrices 

concatenated, X=[XA′, CA′]′ of dimension 2nαnSnC×2nSR, then the separation of the aliased 

voxel values in Eq. [4.9] is a least squares estimate of the form  

𝛽  =(X′X)-1X′ya, 

The 2nSR×1 vector of estimated separated voxel values with real and imaginary parts, is 

also written 

𝛽  =(X'A XA+ C'A CA)-1(X'A a+ C'A υ) 

To view the mSPECS-IPA approach as a Bayesian method, where a~N(β, σ2I2ncnα) and 

𝜈~N(µ, σ2I2ncnαnsR), so the posterior mean is  

E[  𝛽  ]=(X'A XA+ C'A CA)-1(X'A β+ C'A µ), 

such that the separated voxel values are a weighted combination of prior and likelihood 

mean voxel values, or calibration and artificially aliased voxel values. 

    The covariance of the added measurement error of a measured aliased voxel in 

Eq. [4.3] measured at nC coils, with is nα sequential TRs incorporated into mSPECS, 

cov(ε) =σ2I2ncnα            [4.10] 
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and the covariance of the artificially aliased nS calibration voxel values measured at nC 

coils, with is nα sequential TRs in Eq. [4.9] is 

cov(Cη)=σ2I2ncnα (ns -1)R.           [4.11] 

In both Eq. [4.10] and Eq. [4.11], there is no covariance between the real and imaginary 

parts, and a constant variance of σ2 for both real and imaginary parts. The 

2nαnCnSR×2nαnCnSR covariance matrix for the 2nαnCnSR ×1 vector ya, consisting of 

aliased and artificially aliased voxel values is 

cov(ya)=
𝜎!𝐼!!!!! 0

0 𝜏!𝐼!!!!!(!!!!)!
.                                                                        [4.12] 

If there is no variation, i.e. no random sampling of the calibration voxel values with 

mSPECS-IPA, among the average calibration slice images used to separate each aliased 

image then τ2=0. The bootstrapping adaptation averages nSR randomly selected 

calibration images for each TR in 𝑣! to obtain τ2= σ2, such that the covariance in Eq. 

[4.12] results in the 2nSR×2nSR matrix,  

cov(𝛽  )=σ2 (XA′XA+ CA′CA)-1. 

The inclusion of the calibration images through the mSPECS-IPA method reduces 

correlation between the previously voxel values, both in-plane and through-plane, since 

CA′CA acts as a regularizer. In SMS-fMRI, induced correlation from the un-aliasing of the 

slice images throughout the time-series, presents as inter-slice signal leakage among 

previously aliased voxels, with false activation detected in these regions.  
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4.3 Methods 
	
  
	
  
	
  

The mSPECS-IPA method is demonstrated with a MATLAB digital phantom 

simulation and an experimental human data simulation. With Hadamard matrix 

dimensions increasing in powers of two, the design of task timings must also increase in 

powers of two to accommodate various accelerations determined post acquisition, by 

varying nα in the mSPECS-IPA method. In this section, various in-plane and through-

plane accelerations are also examined as described in Table 4.1, with the IPA and MB 

parameters. In the six scenarios, the following through-plane aliasing is examined- an 

acquisition of 8 aliased slice images, for an MB8, with 8 aliased slices acquired in a 

single packet, an acquisition of 4 aliased slice images, for an MB4, with 4 aliased slices 

acquired in two packets where the first packet contains slices 1, 3, 5, and 7, and the 

second packet contains slices 2, 4, 6, and 8, an acquisition of 2 aliased slice images, for 

an MB2, with 2 aliased slice images acquired in four packets where the first packet 

contains slices 1 and 5, the second packet contains slices 2 and 6, the third packet 

contains slices 3 and 7, and the fourth packet contains slices 4 and 8. The three through-

plane accelerations, MB2, MB4, and MB8, are simulated with no in-plane acceleration, 

IPA1, and with an in-plane acceleration of 2, IPA2, with the subsequent net accelerations 

written in Table 4.1. Note, in the theory section of this chapter, nS denotes the number of 

aliased slices or MB factor, and R is the in-plane acceleration or IPA, which is the 

number of rows omitted in k-space. Only an in-plane acceleration of 2 is demonstrated, as 

an in-plane acceleration of 4 is not feasible in fMRI studies since the echo time is too 
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short for BOLD contrast, and an in-plane acceleration of 3 will not maintain the 

orthogonality of the 2-dimensional Hadamard encoding. 

 
 

Scenario IPA MB Net acceleration 
1 2 8 16 
2 2 4 8 
3 2 2 4 
4 1 8 8 
5 1 4 4 
6 1 2 2 

 
Table 4.1: Scenarios examined for varying accelerations in mSPECS(-IPA). 

 
 
 
 The timings for the mSPECS-IPA reconstructions are described in Table 4.2, 

similar to the notation in the previous section, “mSPECS 4 – IPA 2” denotes an 

mSPECS-IPA reconstruction with a through-plane acceleration of 4 and an in-plane 

acceleration of 2. Although the mSPECS 2 – IPA 1 and mSPECS 4 – IPA 1, are different 

reconstructions than the mSPECS 2 and mSPECS 4 in the previous chapter, since an MB 

of 2 and 4 is used, rather than MB8. The simulations generated for the six scenarios are 

acquired over the same length of time, 672 seconds. Increasing the net acceleration factor 

corresponds to a higher sampling rate. An acceleration of 8 corresponds to a TR of 1 

second. This is chosen as the baseline TR, since the goal of the mSPECS(-IPA) 

reconstruction methods is to implement in whole volume fMRI and acquire multiple 

packets within the TR. With a 1 second TR, 8 other packets with 8 aliased slices within 

each packet, yield a total of 72 slices acquired. An MB of 8 was achieved with the human 

connectome project, although implementing an MB of 6 is recommended from the human 
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connectome researchers [Glasser et al., 2013; Ugurbil et al., 2013; Van Essen et al., 

2013]. 

 
 

Reconstruction IPA MB npack TR TRs 
mSPECS 2 – IPA 1 1 2 4 4 s 84 
mSPECS 4 – IPA 1 1 4 2 2 s 168 
mSPECS 8 – IPA 1 1 8 1 1 s 336 
mSPECS 2 – IPA 2 2 2 4 2 s 168 
mSPECS 4 – IPA 2 2 4 2 1 s 336 
mSPECS 8 – IPA 2  2 8 1 0.5 s 672 

 
Table 4.2: Scenarios examined for varying accelerations in mSPECS(-IPA). 

 
 
 

The coil sensitivity maps in this chapter, for both the digital phantom simulation 

and human data simulation, were generated with a bivariate normal probability density 

function, and the first 4 coils are placed in the four corners and the next 4 coils on the 

four edges, then repeated for a total of 16 receive coils. Sixteen weighting matrices, with 

values between 0 and 1, are generated, rotated for each slice, and applied to the coil 

profiles, such that each slice has a unique weighting of the 16-channel coil profiles. For 

the complex-valued coil profiles, a phase of π/12 is added to each coil profile. 

 

4.3.1    Digital Phantom Simulation   
 
 
 

A fMRI digital phantom data set was generated with a block-design of task 

activity, with an initial rest of 16 second rest followed by 21 epochs of 16 seconds on and 

16  seconds using MATLAB (The Mathworks, Natick, MA, USA). The data was 

generated for eight axial slice images that are 96×96 in dimension to represent one packet 
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in a full brain volume Hadamard encoded acquisition.  The noiseless time series was 

generated for each slice with a theoretical 𝑇!∗ weighted phantom similar to [Karaman et 

al., 2016].  The initial 𝑇!∗ weighted phantom has initial values between 0 and 1, then 

weighted for maximum SNR of 30 in the magnitude, yielding an approximate SNR of 30 

in the CSF, 15 in the grey matter, and 7 in the white matter, and a mean phase is added to 

the slice images varied from 8π/36 to π/36 from slice one to slice eight decreasing in 

increments of π/36. The SNR and CNR valued in the digital phantom simulation are 

based of the human subject data used in the experimental simulation. A calibration time-

series was generated with 45 TRs from the complex-valued phantom. The slices are first 

weighted by the simulated complex-valued 16-channel coil sensitivities. Then standard 

Gaussian noise was added to the real and imaginary components of the time series.  

In the simulation, the task was generated in one unique 6×6 voxel square region 

of interest (ROI) rotating clockwise for each slice with a magnitude CNR of 0.5, as 

defined in Eq. [2.9]. For a magnitude CNR of 0.5, the magnitude within the ROI is 

increased by 0.5 for 16 TRs and then returning to baseline for the following 16 TRs. 

Before the complex-valued time-series was summed in the slice direction, the Hadamard 

phase encoding was simulated. With no in-plane acceleration, i.e. mSPECS, the rotating 

Hadamard pattern resembled Fig. 1.4, depending on the number of aliased slices or 

multiband factor. Once the complex-valued slices are multiplied by +/- Hadamard phase 

encode, they were weighted by the complex-valued 16-channel coil sensitivities, then 

summed in the slice direction. Standard Gaussian noise was added to the real and 

imaginary components of the time series. For the scenarios with in-plane acceleration, or 

IPA 2, the rotating Hadamard pattern for the slice encoding resembled Fig. 4.1, 
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depending on the number of aliased slices or multiband factor. After the phase encoding, 

the slice images are Fourier transformed to k-space, every other line is deleted to simulate 

in an in-plane acceleration of R=2, and the spatial frequencies are inverse Fourier 

transformed back to image space. The new images are now of dimension 96/R×96, or 

48×96. 

The main goal of the mSPECS(-IPA) reconstructions is faster observation of brain 

function, to illustrate this mechanism time-series of the six scenarios outlined in Table 

4.1, mSPECS 2 – IPA 1, mSPECS 4 – IPA 1, mSPECS 8 – IPA 1, mSPECS 2 – IPA 2, 

mSPECS 4 – IPA 2, mSPECS 8 – IPA 2, for net accelerations of 2, 4, 8, 4, 8, and 16, 

respectively. In each scenario, the time-series is 672 seconds, although the number of 

TRs varies depending on the acceleration, as the net acceleration factors increase, a 

higher the sampling rate is achieved. The aliased slice time-series images were then 

separated using the mSPECS(-IPA) separation method, and the fMRI activation was 

calculated in each separated voxel using the complex-valued fMRI model in [Rowe et al., 

2005b]. To evaluate the mSPECS(-IPA) separation, the separated time-series is compared 

to the original, with the activation statistics are further examined at each acceleration, by 

plotting the z-statistic, to demonstrate the power of high MB factors in fMRI analysis.  

 

4.3.2 Human Subject Data Simulation   
 
 
 

An experimental fMRI human data set was acquired with bilateral finger tapping 

in a block design with an initial 16 s rest followed by 22 epochs of 16 s on and 16 s off 

using a 3.0 T Discovery MR750 MRI scanner (General Electric, Milwaukee, WI) with a 
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GE single channel quadrature head coil. The data was acquired with ten interleaved axial 

slices that are 96×96 in dimension and 4 mm thick. The two most inferior slices were 

omitted so that there were eight slice images, for simulation up to MB8, utilized in the 

experimental human data simulation. The imaging parameters included a 24.0 cm FOV, a 

TR/TE of 1000/39 ms, a flip angle of 25°, an acquisition bandwidth of 111 kHz, and an 

effective echo spacing of 0.672 ms. The phase encoding direction was oriented as 

posterior to anterior (bottom to top in images). Images were Nyquist ghost corrected 

using the three navigator echoes method [Nencka et al., 2009] and dynamic B0 field 

corrected using the TOAST single echo technique [Hahn et al., 2009]. Over the course of 

22 epochs, a bilateral finger tapping experiment was performed in a block-design, and the 

SNR was determined, using Eq. [2.9] and Eq. [2.10] to be about 50 in the gray matter and 

20 in the white matter and magnitude CNR was approximately 1, which were 

incorporated for the previous simulation. The starting mean magnitude for the slice 

images is shown in Fig. 4.20. The complex-valued activation statistics [Rowe, 2005b], 

smoothed with a Gaussian kernel with a FWHM of 3, for the original time-series is also 

shown in Fig. 4.20. 

Before implementing mSPECS-IPA, a phase correction is applied to the phase 

time-series for the calibration time-series and aliased time-series. This phase correction 

applied is similar to the method described in the single-coil version of the mSPECS(-

IPA) separation, SPECS [Rowe et al., 2016]. First, the angular phase mean of the time-

series is estimated and removed for each voxel time-series. The resultant difference of the 

voxel time-series was fit to a local second order polynomial a local fit region of 11×11 

voxels,  then the polynomial fitted difference phase is added to a mean phase for each 
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slice. The first 3 time point in for each slice time-series were deleted, and the next 45 

time repetitions are set as the calibration complex-valued time-series, leaving the 

remaining 672 time repetitions for the Hadamard aliased time-series simulation.  The 

calibration images are weighted by the complex-valued 16-channel coil sensitivities.  

As with the digital phantom simulation, to generate the aliased functional time-

series, the Hadamard phase encoding was simulated based on the acquisition, as well as 

the number of aliased slices and the in-plane acceleration. With no in-plane acceleration, 

i.e. mSPECS, the rotating Hadamard pattern resembled Fig. 1.4, depending on the 

number of aliased slices or multiband factor. Once the complex-valued slices are 

multiplied by +/- Hadamard phase encode, they were weighted by the complex-valued 

16-channel coil sensitivities, then summed in the slice direction. Standard Gaussian noise 

was added to the real and imaginary components of the time series. For the scenarios with 

in-plane acceleration, the rotating Hadamard pattern for the slice encoding resembled Fig. 

4.1, depending on the number of aliased slices or multiband factor. After the phase 

encoding, the slice images are Fourier transformed to k-space line, every other line is 

deleted to simulate in an in-plane acceleration of R=2, and the spatial frequencies are 

inverse Fourier transformed back to image space. The new images are now of dimension 

96/R×96, or 48×96. 

The main goal of the mSPECS(-IPA) reconstructions is faster observation of brain 

function, to illustrate this mechanism time-series of the six scenarios outlined in Table 

4.2, mSPECS 2 – IPA 1, mSPECS 4 – IPA 1, mSPECS 8 – IPA 1, mSPECS 2 – IPA 2, 

mSPECS 4 – IPA 2, mSPECS 8 – IPA 2, for net accelerations of 2, 4, 8, 4, 8, and 16, 

respectively. The aliased slice time-series images were then separated using the 
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mSPECS(-IPA) separation method, and the fMRI activation was calculated in each 

separated voxel using the complex-valued fMRI model in [Rowe et al., 2005b]. To 

evaluate the mSPECS(-IPA) separation, the separated time-series is compared to the 

activation statistics for the original activation statistics. 

 

4.4 Results   
	
  
	
  
	
  
4.4.1    Digital Phantom Simulation Results 

 

 The initial digital phantom magnitude and phase axial slice images for the 

simulation are shown in Fig. 4.5. The separated magnitude images of the time-series 

mean are shown in Fig. 4.6 for the mSPECS 2, mSPECS 4, and mSPECS 8 with no in-

plane acceleration, or IPA 1, and shown in Fig. 4.8 for the mSPECS 2, mSPECS 4, and 

mSPECS 8 with an in-plane acceleration of R=2, or IPA2. The corresponding separated 

phase images of the time-series mean are shown in Fig. 4.6 for the mSPECS 2, mSPECS 

4, and mSPECS 8 with no in-plane acceleration, or IPA1, and shown in Fig. 4.8 for the 

mSPECS 2, mSPECS 4, and mSPECS 8 with an in-plane acceleration of R=2, or IPA2. 

For the R=1 scenario, or the mSPECS reconstruction, there is no apparent residual 

aliasing from the time-series separation, and each acceleration appears identical in the 

separated magnitude and phase images. For the R=2 scenario, or the mSPECS-IPA 

reconstruction, there is residual aliasing from the time-series separation. Although, the 

residual aliasing is an in-plane artifact, with a pattern resembling the fold-over artifacts 

illustrated in Fig. 4.3a. The in-plane aliasing is more noticeable as the number of aliased 
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slices within a packet increases, is observed in both the separated magnitude and phase 

slice images of the time-series mean, and also appears to be a function of the mean phase 

in the initial slice image time-series. Phase transitions in mSPECS(-IPA) is further 

explored in Appendix A. Another comparison with the mSPECS(-IPA) methods is to 

examine the trade-off with number of aliased slices and in-plane acceleration for the 

same acceleration factors. For an acceleration of 4, the preferred scenario for the 

mSPECS(-IPA) methods is the mSPECS 4 – IPA 1 over the mSPECS 2 – IPA 2. Unlike 

parallel imaging methods or in-plane accelerations, there is no intrinsic SNR penalty with 

SMS methods. However, for an acceleration of 8, the preferred scenario is not as 

straightforward when comparing the mean magnitude and phase of mSPECS 8 – IPA 1 to 

mSPECS 4 – IPA 2. To distinguish the favorable scenarios for the same accelerations, the 

activation statistics are examined. 

  After the mSPECS(-IPA) slice image separation of the aliased time-series, the 

fMRI activation statistics are calculated in each voxel with a complex-valued activation 

model [Rowe 2005b]. The z-scores for the activation statistics are mapped in Fig 4.10 and 

Fig. 4.11, and the regions where the activation was originally placed is highlighted by the 

green box in each slice. The activation maps are thresholded at 2.5, and the region outside 

the digital phantom is masked. Since the activation is placed in a unique 6×6 region in 

each slice image, before simulating the aliased time-series, and there are no incremental 

shifts in the FOV, inter-slice signal leakage stemming from the slice separation process is 

easily identifiable by visually examining previously aliased voxels in the same (x,y) 

locations. Intra-slice signal leakage, or aliasing artifacts from the image wrapping due to 

in-plane acceleration, will appear in the fold-over as described in Fig. 4.3. The regions 
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within the green boxes show strong activation clusters. As discussed in the mSPECS 

chapter, the average z-scores increase as the acceleration increases, with a comparison of 

IPA 1 and IPA 2, the activation statistics in IPA 1 are slightly increased, although there is 

not a substantial difference between the two scenarios. There are no apparent clusters of 

“active” voxels outside the green boxes in Fig 4.10 and Fig. 4.11, so any active voxels 

outside the voxels indicate false positives from noise in the time-series, rather than inter-

slice signal leakage. 
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Figure 4.5: Initial magnitude slice images and phase slice images for the phantom 
simulation,, with the numbering 1 through 8 referring to the slice image number. 
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Figure 4.6: Mean magnitude separated images from the digital phantom simulation for 
the net acceleration of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – IPA 1), and 8 (mSPECS 8 
– IPA 1).  
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Figure 4.7: Mean phase separated images from the digital phantom simulation for the net 
acceleration of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – IPA 1), and 8 (mSPECS 8 – IPA 
1). 
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Figure 4.8: Mean magnitude separated images from the digital phantom simulation for 
the net acceleration of 4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– IPA 2), and 16 (mSPECS 
8 – IPA 2). 
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Figure 4.9: Mean phase separated images from the digital phantom simulation for the net 
acceleration of 4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– IPA 2), and 16 (mSPECS 8 – IPA 
2). 
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Figure 4.10: Activation statistics from the mSPECS separated images from the digital 
phantom simulation for the net acceleration of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – 
IPA 1), and 8 (mSPECS 8 – IPA 1). 
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Figure 4.11: Activation statistics from the mSPECS separated images from the digital 
phantom simulation for the net acceleration of 4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– 
IPA 2), and 16 (mSPECS 8 – IPA 2). 
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4.4.2    Experimental Human Subject Data Simulation Results 

 

The initial experimental human subject data magnitude and phase axial slice 

images for the simulation are shown in Fig. 4.12. The separated magnitude images of the 

mean time-series are shown in Fig. 4.13 for the mSPECS 2, mSPECS 4, and mSPECS 8 

with no in-plane acceleration, or IPA 1, and shown in Fig. 4.15 for the mSPECS 2, 

mSPECS 4, and mSPECS 8 with an in-plane acceleration of R=2, or IPA2. The 

corresponding separated phase images of the mean time-series are shown in Fig. 4.14 for 

the mSPECS 2, mSPECS 4, and mSPECS 8 with with no in-plane acceleration, or IPA1, 

and shown in Fig. 4.16 for the mSPECS 2, mSPECS 4, and mSPECS 8 with with an in-

plane acceleration of R=2, or IPA2. For the R=1 scenario, or the mSPECS 

reconstruction, there is no apparent residual aliasing from the time-series separation, and 

each acceleration appears identical in the separated magnitude images. Although, the is a 

discrepancy between the mSPECS(-IPA) separated slice images in Fig. 4.14 and Fig 4.16 

and the initial phase images in Fig. 4.12 at the π/-π boundary. For the R=2 scenario, or 

the mSPECS-IPA reconstruction, there is residual aliasing from the time-series 

separation. Although, the residual aliasing is an in-plane artifact, with a pattern 

resembling the fold-over artifacts illustrated in Fig. 4.3a. The in-plane aliasing is more 

noticeable as the number of aliased slices within a packet increases, is observed in both 

the mean separated magnitude and phase slice images, and the wrap-around artifacts are 

more noticeable in the phase images for mSPECS 4 - IPA 2 and mSPECS 8 - IPA 2, as 

seen in Fig. 4.15. Phase transitions in mSPECS(-IPA) and signal attenuation is further 

explored in Appendix A. Another comparison with the mSPECS(-IPA) methods is to 
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examine the trade-off with number of aliased slices and in-plane acceleration for the 

same acceleration factors. For an acceleration of 4, the preferred scenario for the 

mSPECS(-IPA) methods is the mSPECS 4 – IPA 1 over the mSPECS 2 – IPA 2. Unlike 

parallel imaging methods or in-plane accelerations, there is no intrinsic SNR penalty with 

SMS methods. However, for an acceleration of 8, the preferred scenario is more 

straightforward when comparing the mean magnitude and phase of mSPECS 8 – IPA 1 to 

mSPECS 4 – IPA 2, than in the digital phantom simulation. In the experimental human 

data simulation, the slice image quality degrades faster at higher acceleration from the 

uncontrolled phase, or phase wrapping. Compared to the digital phantom simulation, the 

detail of the experimental human data makes potential residual aliasing artifacts harder to 

identify. To distinguish the favorable scenarios for the same accelerations, the activation 

statistics are examined. 

  After the mSPECS(-IPA) slice image separation of the aliased time-series, the 

fMRI activation statistics are calculated in each voxel with a complex-valued activation 

model [Rowe 2005b]. The z-scores for the activation statistics are mapped in Fig 4.17 and 

Fig. 4.18. The activation maps are thresholded at 1.25, and the region outside the brain is 

masked. Since there are no incremental shifts in the FOV, inter-slice signal leakage 

stemming from the slice separation process is easily identifiable by visually examining 

previously aliased voxels in the same (x,y) locations. The motor cortex show strong 

activation clusters in Slice 1 and Slice 2 for IPA1 and IPA2. As discussed in the mSPECS 

chapter, the average z-scores increase as the acceleration increase, which is apparent in 

the comparison of mSPECS 2 and mSPECS 4 for both IPA1 and IPA2. The activation 

statistics for mSPECS 8 IPA1 and mSPECS 8 IPA2 compared to the other accelerations, 
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show reduced false activation outside the primary motor cortex and the primary motor 

cortex is more distinguishable. With a comparison of IPA1 and IPA2, the activation 

statistics in IPA1 are slightly increased, although there is not a substantial difference 

between the two scenarios. There are no apparent new clusters of “active” voxels in the 

motor cortex region in Fig 4.17 and Fig. 4.18 in the inferior slice images, so any active 

voxels outside the voxels indicate false positives from noise in the time-series, rather than 

inter-slice signal leakage. 
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Figure 4.12: Initial magnitude and phase slice images for the experimental human data 
simulation, with the numbering 1 through 8 referring to the slice image number. 
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Figure 4.13: Mean magnitude separated images from the human data simulation for the 
net acceleration of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – IPA 1), and 8 (mSPECS 8 – 
IPA 1). 
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Figure 4.14: Mean phase separated images from the human data simulation for the net 
acceleration of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – IPA 1), and 8 (mSPECS 8 – IPA 
1). 
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Figure 4.15: Mean magnitude separated images from the human data simulation for the 
net acceleration 4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– IPA 2), and 16 (mSPECS 8 – 
IPA 2). 
 

1

2

3

4

5

6

7

8

mSPECS 2
IPA 2

mSPECS 4
IPA 2

mSPECS 8
IPA 2

20 

0 



	
   120	
  

 
Figure 4.16: Mean phase separated images from the human data simulation for the net 
acceleration of 4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– IPA 2), and 16 (mSPECS 8 – IPA 
2). 
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Figure 4.17: Activation statistics from the human data simulation for the net acceleration 
of 2 (mSPECS 2 – IPA 1), 4 (mSPECS 4 – IPA 1), and 8 (mSPECS 8 – IPA 1). 
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Figure 4.18: Activation statistics from the human data simulation for the net acceleration 
4 (mSPECS 2 – IPA 2), 8 (mSPECS 4– IPA 2), and 16 (mSPECS 8 – IPA 2). 
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4.5 Discussion  
	
  
	
  
	
  

The results of the digital phantom and experimental human simulations readily 

demonstrate the utility of the mSPECS-IPA reconstruction algorithm for accelerations up 

to 16 for Hadamard SMS data acquisitions with in-plane subsampling. Not only is the 

bootstrap calibration algorithm adopted from mSPECS for mSPECS-IPA, but the 

novelity introduced with mSPECS-IPA is the spatial encoding to maintain orthogonality 

both in-plane and through-plane. This approach places the activation in the correct 

location through minimizing the correlation induced for voxel separation. The mSPECS(-

IPA) methods address the lack of SMS reconstruction techniques that allow a true 

reduction of the time required for the time-series acquisition, without sacrificing the 

quality of the activation statistics.  

The time-series unaliasing artifacts, from in-plane unaliasing, in the digital 

phantom simulations are more apparent than in the experimental human simulations. 

They may be more visually apparent in the digital phantom simulations, since the 

magnitude images are less intricate compared to the experimental human data slice 

images, so the artifacts are easily identifiable. The in-plane artifacts in the mean phase 

images for both simulations display similar levels of residual in-plane aliasing 

particularly in mSPECS 4 – IPA 2 and mSPECS 8 – IPA 2. In the experimental human 

simulation, the increased acceleration factor yields a more distinguishable motor cortex 

region, with or without the in-plane acceleration, as this increases the number of time 

points sampling, which corresponds to increased statistical confidence in the data. The 
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development of mSPECS to include the in-plane aliasing dimensions, yields a more 

dynamic SMS reconstruction method.  
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Chapter 5: Conclusions  
 
 
 
5.1 Summary of Presented Work  
	
  
 
  
  The development of novel complex-valued statistical analysis and reconstruction 

methods in fMRI, improves the modeling of the fMRI time-series so the true neural 

networks of interest are accurately identified. With the complex-valued description of 

correlation, increased sensitivity and specificity was demonstrated with seed voxels in the 

motor cortex with low CNR. With a reduction of spurious false correlation observed in 

the complex-valued data, the increased power of the complex-valued description of 

covariance is particularly advantageous for low CNR fMRI data sets or small population 

studies. The increased specificity and sensitivity of complex-valued data over magnitude-

only data also reduces the post reconstruction processing required to improve the SNR 

and CNR of the fMRI data before the analysis. This is a beneficial aspect of the complex-

valued framework, as signal processing has been shown to induce correlations, and 

different processing pipelines may induce systematic correlations across multiple 

subjects.  

  The ability to identifying neural networks of interest is also a function of the 

quality of the slice image acquisition and reconstruction methods. SMS-fMRI methods 

are advantageous for fMRI, as they correspond to a higher sampling rate yielding a 

higher sample size compared to traditional EPI methods with no acceleration. More time 

points increases the degrees of freedom, which increases the number of regression 

coefficients for a more robust analysis of the fMRI data. Whole volume SMS-fMRI 
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acquisitions are also beneficial to freeze out motion artifacts within the volume 

acquisition for a single TR. Although, minimizing induced correlation and residual 

aliasing artifacts are a substantial obstacle in SMS-fMRI acquisition and reconstruction 

schemes. The mSPECS(-IPA) reconstruction methods presented  address the need for the 

development of SMS reconstruction methods that prevent inter-slice signal leakage in 

previously aliased voxels. 

  Correlation between previously aliased slices is a result of poor disentanglement 

of the signal or separation of the mean voxel values. The mSPECS separation technique, 

avoids residual artifacts from unaliasing, by implementing a bootstrap sampling 

algorithm of calibration images for each TR across the time-series, and incorporating the 

orthogonal coefficients of Hadamard coefficients in the acquisition and the coil 

sensitivity separation matrix. The mSPECS-IPA method builds on the mSPECS method 

by incorporating in-plane subsampling to achieve higher accelerations for ultra-fast 

observation of brain function.  The novelty of mSPECS-IPA is the orthogonal 2-

dimensional Hadamard phase encoding of the aliased slice images, so the orthogonality 

aliased images is maintained in-plane and through-plane. Both mSPECS and mSPECS-

IPA were shown to accurately place the BOLD signal after the aliased slice image 

separation, and showed promising results for accelerations with an MB8 and IPA2. 

Optimizing fMRI analysis methods and SMS-fMRI techniques of data acquisition and 

reconstruction with respect to slice separation methods allows for faster observation of 

the true cognitive dynamics, and increases the application of fMRI in clinical settings. 
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5.2 Future Work  
	
  
	
  
	
  
  As for the work described in the first chapter on complex-valued correlation in 

low CNR data sets, a natural extension of the project would be to apply the framework to 

functional connectivity MRI (fcMRI). In fcMRI, the subject does not perform a task 

during the time-series image acquisition. The resting state neural networks are found in 

the low temporal frequency range, and detected with seed voxel correlation analysis. 

Another interesting application to the temporal Fourier framework would be to 

implement the framework to fcMRI or fMRI data sets to a population study. Including 

the phase in the time-series analysis increases the statistical power of the analysis, 

making complex-valued fMRI analysis particularly advantageous for studies with a small 

number of subjects. Thus, an interesting study would be to examine the threshold, at 

which the number of subjects in the study reduces the significance of the added 

sensitivity and specificity of including the phase in the statistical analysis of the data.  

  As for the last two chapters, an application of the mSPECS and mSPECS-IPA 

reconstruction methods, to a blipped-CAIPI acquisition, rather than Hadamard encoded 

acquisitions, would be a worthwhile application to the reconstruction methods. Although, 

there are potential difficulties associated with blipped-CAIPI acquisitions, such as 

disentangling the signal of interest from the ghosting artifacts in the reconstructed 

images. The mSPECS and mSPECS-IPA methods easy facilitate the blipped-CAIPI 

acquisitions by changing the Hadamard aliasing matrices to reflect the shifted FOV 

aliasing patterns associated with blipped-CAIPI acquisitions. A single coil version, the 
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Separation of Parallel Encoded Complex-valued Slices (SPECS), with the blipped-CAIPI 

shifts has been recently published [Rowe et al., 2016]. 
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Appendix A: A demonstration of signal attenuation in mSPECS(-IPA) 
images from phase accumulation in the aliased time-series. 
 
 
  A MATLAB simulation demonstrates the signal attenuation in mSPECS(-IPA) 

separated Hadamard encoded arising from phase wrapping. Four slices are generated with 

a magnitude with a theoretical 𝑇!∗ weighted phantom similar to [Karaman et al., 2016]. 

The initial 𝑇!∗ weighted phantom has values between 0 and 1, the magnitude is weighted 

by a factor of 20, and a mean phase is added to each slice of 1π/36, 5π/36, 9π/36, 15π/36.  

To demonstrate the phase wrapping a phase differential in a 14×14 region is added to the 

phase in each slice of 1π/3, 2π/3, π, 4π/3, respectively. The initial mean magnitude and 

phase images are shown in Fig. A.1. A time-series is generated of 100 time points for 

each slice, then weighted by the complex-valued 32-channel coil sensitivities , with 

standard Gaussian noise added to each slice image. The Hadamard encoded time-series is 

simulated for an mSPECS-IPA reconstruction, as described in Chapter 4 of this 

dissertation, with an MB factor of 4 and in-plane subsampling of 2, MB4 IPA2. 

 

 

 
Figure A.1: Original mean magnitude and phase images across 4 slices. 
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  The calibration images for the four slices are simulated with the same magnitude 

and phase as with the aliased time-series.  Two separation scenarios are demonstrated in 

the simulation. In the first scenario, the fully sampled calibration time-series is generated 

with the 14×14 phase wrapped regions, and in the second scenario, the fully sampled 

calibration time-series is generated without the phase wrapped regions. The calibration 

time-series is then generated for 16 time points, then weighted by the complex-valued 32-

channel coil sensitivities, and standard Gaussian noise is added to each slice image. 

  The aliased time-series is separated with the mSPECS-IPA method described in 

Chapter 4. The mean separated magnitude and phase slice images are shown for scenario 

1, the scenario with the 14×14 phase wrapped regions in the calibration images, in Fig. 

A.2, and for scenario 2, the scenario without the 14×14 phase wrapped regions in the 

calibration images, in Fig. A.3. 

 

 
Figure A.2: mSPECS-IPA reconstructed mean magnitude and phase images across 4 
slices with the calibration images described in scenario 1.  
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Figure A.3: mSPECS-IPA reconstructed mean magnitude and phase images across 4 
slices with the calibration images described in scenario 2. 
 

In both scenarios, the wrapping in the phase time-series spreads to the magnitude images 

after slice separation with mSPECS-IPA. Since the mSPECS(-IPA) separation method is 

a reconstruction using the real and imaginary parts of the acquired series, discontinuities 

initially presented in the phase time-series that are not reflected in the magnitude time-

series, may arise in the post separation magnitude time-series, despite the calibration 

time-series. 
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Appendix B: Magnitude correlation for mSPECS(-IPA). 
 
 
  The magnitude-only correlation is computed for mSPECS(-IPA) separated sliced 

images in the MATLAB simulation in Aim 3. In Fig. B.1 and Fig. B.2, the center voxel is 

chosen as the seed voxel for each slice in the second packet, which contains the four even 

slices, reconstructed with mSPECS 4 – IPA 1 and mSPECS 4 – IPA 2. In the figures, the 

96×96 images along the diagonal correspond to the correlation between the seed voxel 

and the other voxels within the slice, and the off diagonal 96×96 images correspond to 

the correlation between the seed voxel and another slice denoted by the slice column 

number. Without an mSPECS(-IPA) reconstruction high correlation among previously 

aliased regions is expected. In both scenarios, no increased correlation among previously 

aliased voxels is observed. 
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Figure B.1: MO correlation for the second packet reconstructed with mSPECS 4 - IPA 1.  
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Figure B.2: MO correlation for the second packet reconstructed with mSPECS 4 - IPA 2.  
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