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ABSTRACT 

 

FEATURE SPACE AUGMENTATION: IMPROVING PREDICTION  

ACCURACY OF CLASSICAL PROBLEMS IN  

COGNITIVE SCIENCE AND  

COMPUTER VISION 

 

 

Piyush Rai Saxena, B.S., M.S. 

Marquette University, 2017  

 

The prediction accuracy in many classical problems across multiple domains has seen a rise 

since computational tools such as multi-layer neural nets and complex machine learning 

algorithms have become widely accessible to the research community. In this research, we take 

a step back and examine the feature space in two problems from very different domains. We 

show that novel augmentation to the feature space yields higher performance.   

Emotion Recognition in Adults from a Control Group: The objective is to quantify the 

emotional state of an individual at any time using data collected by wearable sensors. We 

define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and 

neutral and their respective levels at any time. The generated model predicts an individual’s 

dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each 

emotional state and anxiety. We present an iterative learning framework that alters the feature 

space uniquely to an individual’s emotion perception, and predicts the emotional state using 

the individual specific feature space.  

 

Hybrid Feature Space for Image Classification:  The objective is to improve the accuracy of 

existing image recognition by leveraging text features from the images. As humans, we 

perceive objects using colors, dimensions, geometry and any textual information we can 

gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the 

textual information. This study develops and tests an approach that trains a classifier on a 

hybrid text based feature space that has comparable accuracy to the state of the art CNN’s 

while being significantly inexpensive computationally. Moreover, when combined with 

CNN’S the approach yields a statistically significant boost in accuracy. 

Both models are validated using cross validation and holdout validation, and are evaluated 

against the state of the art.  
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1.0 INTRODUCTION 

The software design and engineering paradigm is at a tipping point. Industry centered static 

solutions are being replaced by human centered solutions. For instance, within a span of a 

decade we have moved from the static search engines based on lookup tables that were only 

changed during massive platform updates to today’s dynamic search engines that make 

individual specific recommendations based on every bit of information from live click 

streams to social media. This is the beginning of data driven software design made possible 

by advances in cheap computational horsepower[1]-[5].  

1.1 Human behavior and machine perception 

Despite the advances we are far from the “prefect” prediction engines. This can be 

attributed to the quality and quantity of useful data. Human behavior is highly variable and 

volatile. The goal of artificial intelligence is to imitate human behavior. This leads us to the 

big question. How can a machine cope with the vast variability of human behavior? There 

are two simple solutions. The first one is, increasing the type of data that a machine learning 

algorithm trains on. Statistically, this would mean the addition of more predictors that 

explain the variability within the target classes. The second would be human validation of 

the machine learning outputs and modification of the feature space to represent the human 

validation.  In both scenarios, we are augmenting the feature space. In the first scenario is an 

example of latitudinal augmentation (making a dataset wider by addition of additional 

predictors), while the second scenario is an example of longitudinal augmentation (making a 

table longer by increasing instances of recorded data) 
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Both techniques have their unique merits in increasing the prediction capability of 

artificial intelligence applications. Both try and mimic certain unique features of human 

perception. The first technique is an attempt to imitate the human ability of deductive 

reasoning. The more information we have as humans, higher is the fine-grained prediction 

accuracy. The second technique is an attempt to imitate the human ability of inductive 

reasoning, where the individuals experience and training are used to make predictions for a 

new scenario.  

The premise can be better understood with a simple thought experiment. Imagine 2 

graduate students are tasked with identifying the color of a bowling ball. To make things 

interesting, let the wavelength of the light coming from the ball (its color) be exactly half 

way between black and dark blue. Both graduate students from the Ubicomp Lab at 

Marquette University write wonderful computer vison applications to identify the color. The 

application developed by student 1 predicts black, and the application developed by the 

student 2 predicts dark blue. Which one is correct? The short answer is both are correct and 

incorrect at the same time. They are correct since they correctly imitate the creator’s 

perception; they are incorrect since that is all they do. The model’s accuracy in identifying 

color of the bowling ball ubiquitously is questionable at best. The tie is settled by a subject 

expert from imaging Physics who declares the ball to be black.  

Now, let’s look slightly beyond the mental warmup exercise. What will the 

consequences be if the students were tasked with identifying the emotions certain videos 

might induce? It is not possible to call a domain expert for whatever models our bright 

graduate students come up with. The variability of emotion perception is a great example of a 

problem where the prediction class is highly variable. A cliff diving video might induce 
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amusement in an adrenalin junkie but extreme fear in an individual with Acrophobia despite 

the physiological state of the individuals being nearly identical. Machine learning requires 

static prediction fields. Thus, the model would either predict “Amusement” or “Fear”, thus it 

will fail to predict the correct emotional response for either the adrenalin junkie or the 

Acrophobe.  

1.2 Longitudinal Feature Space Augmentation 

To solve this conundrum, we introduce the longitudinal feature space augmentation. 

To understand this, let’s take the help of another thought experiment. We were all children 

once upon a time. Imagine a child who has reached the age of reason, 7. How does that child 

act? Most actions are learnt from his experiences with his peer group which is indicative of 

the social norms prevalent (also a function of time).  He perceives the kids consuming 

alcohol behind the school to be cool, since that is the perception amongst his peers. Parental 

guidance intervenes and now the child’s perception of alcohol is altered to being a bad 

substance. What would the child do if he saw the same kids now smoking cigarettes? The 

child does not associate it with being “cool” despite what the perception of his peers might 

be.  He can now connect the alcohol intake to cigarette smoking. Both being unsuitable for 

his age. This perception is validated and strengthened by parental guidance. Over time, these 

validated perceptions shape his behavior as an adult.  

1.3 Latitudinal Feature Space Augmentation 

Now, let’s assume the same scenario occurs at a boarding school. The child might not 

have parental validation except for a goal to perform well in school. The child is aware of the 

possible target class (success vs. failure). The “alcohol consumption” and “cigarette 
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smoking” are now a part of the feature space that the child uses to classify his peers into the 

“successful” and the “failure” target classes. This is a great candidate for latitudinal feature 

space augmentation.  

These principles can be applied to machine learning problems. In this dissertation, we 

will present solutions to two unique problems. While these problems and the presented 

solutions are novel works of research in their own rites, we show the value in feature space 

augmentation.  

 The first problem from the cognitive sciences domain is real-time prediction of the 

human emotional state using physiological data from sensors. Here we will motivate and 

evaluate the application of longitudinal data augmentation. The second problem is from the 

computer vison domain is image classification of industrial equipment where we create a 

novel hybrid feature space that employs latitudinal feature space augmentation to boost the 

prediction accuracy.  

1.4 Dissertation Outline  

This dissertation in divided into 7 chapters. Chapter 1, Introduction motivates the thinking 

behind feature space augmentation. Here we describe with simple examples the concepts of 

latitudinal feature space augmentation and longitudinal feature space augmentation and their 

connection to inductive and deductive reasoning in humans. We also present the motivation 

behind the work and the novel contributions of this dissertation.  

Chapter 3 looks at Problem1, emotion modelling and recognition in a control group. Chapter 

3 is further divided into 9 subsections that talk about related works and taxonomy, 

experiment design and data collection, research questions, survey data analysis, predicting 
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dominant emotional state in a 6 category classification problem (6 emotional states) and a 3 

category prediction problem, predicting the emotional spectrum for a 7( 6 dominant 

emotional states and Anxiety) and 4 output categories( 6 dominant emotional states and 

Anxiety) and finally a proposed real time application. The feature space augmentation is a 

part of this sub-section.  

Chapter 4 looks at problem 2, Image classification using an augmented feature space. This 

section is further divided into 5 subsections including related works and taxonomy, research 

objectives, methodology, algorithm pipeline and evaluation.  

Chapter 5 includes a conclusion section that talks about our contributions and broader impact 

of this work. 

Chapters 6,7 and 8 are the references, bibliography and the appendix respectively.  
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2.0 Motivation 

Artificial intelligence is impacting our lives every day. Despite the concerns regarding the 

impact of AI on the job market there are certain application where the urgent need for AI and 

its potential game changing influence cannot be ignored. In this dissertation, we attempt to 

solve two such problems. 

2.1 Predicting the emotional state of an Individual  

Background: Ubicomp Lab at Marquette University partnered with the Milwaukee PEERS 

project in 2014 to understand the mathematics behind emotion perception in an ASD 

population [6], [7]. “PEERS is an evidence-based, manualized, 14-week (16 weeks for young 

adults), outpatient treatment program developed at the University of California at Los 

Angeles. Dr. Van Hecke is certified by UCLA to provide the PEERS program at Marquette 

University.”[6] The subjects include teens (ages 11-16) and young adults (ages 18-28) with 

Autism spectrum disorder. Our lab collected physiological data and facial images from all 

PEERS sessions since 2014. The goal of the data collection was to understand and model 

emotion perception in ASD population. Specifically, event detection to recognize the 

occurrence of anxiety. The results from facial recognition did not achieve the accuracy 

required for clinical testing while the physiological data could not be used for event detection 

due to the lack of target classes.  Thus, we designed an experiment from scratch which 

amongst other things allows for prediction of anxiety near real-time (with a lag of 60 

seconds). Moreover, ASD is a spectrum disorder. There is variability in emotion perception 

amongst individuals. To account for this variation, we propose the longitudinal feature space 

augmentation based on human input.  As a ground work for future research in mental 



7 
 

disorders we present and evaluate (against the state of art) a novel framework for individual 

specific emotion modelling. Moreover, there is merit in modelling emotional perception in 

general.  

1. According to a recent study by the CDC and the National institute of health statistics 

the rate of Autism in the United States is 1 in 45[8]. This makes Autism one of the 

fastest growing developmental disorders.  

2. The rate of Autism increased by over 119% between 2000-2010[9] 

3. An economic forecasting study conducted at University of California Davis estimates 

the current cost (direct medical, direct non-medical and productivity) related to ASD 

to rise from 268 billion USD in 2015 to 461 billion USD in 2025[10]. This could 

account for about 4% of the United States GDP. If the rate of increase does not taper, 

the costs associated with ASD will exceed diabetes and ADHD by 2025.  

4. Early intervention has significant cost benefits and benefits to the individual in 

leading a fulfilling life [11], [12]. 

a. Over 65% of the cost associated with Autism is Adult spending[13]. 

b. These costs can be reduced by 2/3 if an early intervention is provided[14]  

2.2 Novel Image Classification using a Hybrid Feature Space 

Direct Supply is an industry in senior living. The senior living industry has seen massive cuts 

in spending over the years while more of the demographic moves into assisted living and 

skilled nursing facilities. These facilities have industrial equipment (assets) that are managed 

by a service provider. Inventory management is a critical gear in this workflow. It is often 

tedious and requires significant time commitment from the facility manager. The business 
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need for an automatic inventory system was presented in Summer 2016.  The objective was 

to train a computationally efficient (given limitations of mobile phones) classifier that could 

distinguish between the 15 asset categories with a high accuracy. Current state of the art for 

image classification include convolutional neural nets(CNN) that are highly compute 

intensive and reduce an image to a minimum of 1x1000 array. This makes retraining the 

network very expensive and limits mobile phone use.  

2.3 Novel Contributions 

Both works make novel contributions to the current body of scientific work in their 

respective domains.  

2.3.1 Predicting the emotional state of an Individual  

We make the following contributions in through this research, 

i. The design and implementation of a system that can distinguish between dominant 

emotional states (using physiological data)  

a. 6-category classification (87.4% accuracy) 

b. 3-category classification (92% accuracy) 

The reported accuracy is the highest for the number of prediction classes among all 

surveyed works.  

ii. The design and implementation of a system to predict the emotional spectrum 

(levels of all 6 dominant emotions and anxiety) for an individual. This is a 

completely novel work with nothing similar found in the literature review. 
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iii. A novel feature space augmentation algorithm that allows the feature space to be 

tailored to the emotion perception unique to every individual. This is a completely 

novel work with nothing similar found in the literature review. 

iv. An in-depth study that spatially locates the emotions (based on feature space) and 

identifies variability in emotional perception and over laps between dominant 

emotions. 

v. We achieve functional accuracy using PPG alone (the technology in most modern 

hears rate monitors). The accuracy is 87.4 % in a 6-category classification and 92% 

in a 3-category classification was achieved. This is significant since our system can 

be implemented using only a 25$ wearable sensor watch (heartrate only). This is 

significant cost savings when compared to other commercial systems that cost 

upwards of 1500$.  Our technology can be massively scaled due to the low costs. 

vi. We will share a data set of over 600 instances (each instance contains a 1x7 survey 

response and 5 physiological time series and a class), the raw data set with the 

videos used for the study and the data collection application as part of supplemental 

materials. This is the largest dataset (number of subjects) recorded to date.  

2.3.2 Novel Image Classification using a Hybrid Feature Space 

i. Algorithm to re-encode based on a text based feature space. This feature space has unique 

properties. It performs as well as the state of the art CNN’s while training a classifier on a 

15-dimension feature space compared to 1000’s of dimensions in the CNN. This leads to 

significant computational efficiency (training times and prediction speeds)  



10 
 

ii. Higher Information hybrid feature space- the addition of the text based features leads to a 

statistically significant information gain creating a classifier that boosts the classification 

accuracy of the state of the art image classification algorithms including Neural nets and 

key point extractors.    
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3.0 PROBLEM 1 

Problem Statement: Emotion modelling and prediction uses real time wearable sensors. We 

are surrounded by an IOT web where our interactions with the digital world, are used to 

predict our actions to some end. Most of these predictions are centered around the physical 

world, such as activity recognition and fall detection, in this study, we focus our attention on 

the psychological world and emotional state of the individual. During an experimental study 

with 85 participants we induced specific emotions using audio-visual stimulus and collected 

physiological data, including heart rate, blood volume pressure(BVP), inter beat interval(IBI) 

and electrodermal activity(EDA) along with a self-report indicating the levels of 6 emotional 

states, Amusement, Anger, Sad, Disgust, Fear and Neutral. Additionally, we recorded a self-

reported score for Anxiety. The videos used to induce emotions were validated in a recently 

published study in Psychology. The data collected was used to create models that identify the 

dominant emotional state and predict the emotional spectrum (levels of all emotional states) 

of an individual. An iterative learning framework is implemented to account for variability in 

emotional perception (the same stimulus might induce opposite emotional responses in 

different individuals) and generate an emotional spectrum unique to the individual. We report 

over 87 percent classification accuracy in a 6-category classification (dominant emotional 

state) and over 92 percent accuracy in a 3-category (positive, negative, neutral) classification. 

The emotional spectrums for the 6-state classification were modelled using the self-report 

data and the physiological data recorded during the experiment. The model was implemented 

in a server based application to identify the dominant emotional state and produce the 

emotion spectrum using 60 second streams of physiological data collected using wearables. 

Finally, we outline key implications for the design and implementation of a real-time 
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application with an iterative learning module for the prediction of the dominant emotional 

state and the corresponding emotion spectrum, unique to an individual’s emotion perception. 

 

 

 

Figure 1: Research Objectives 

The paradigm of situation-aware applications focuses at providing solutions unique to 

the situation of an individual. Significant effort has been put towards understanding the 

components that can define the state of an individual [15]-[20]. As a general example, two 

individuals that walk into the same room might have entirely different emotional states. One 

could be the boss and other the employee about to be fired. The major challenge from a 

situation awareness perspective is how we can identify those unique states. Moreover, we 
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need to establish if one dominant state can sufficiently define the emotional state. With 

respect to the boss-employee example, the employee would possibly experience a multitude 

of emotions such as anger, fear, anxiety and disgust. Which one of these states would be the 

dominant emotion would vary based on individual’s experiences and perception. In this 

study, we demonstrate an approach to identify six dominant emotional states and the emotion 

spectrum unique to an individual (1x6 array with levels for each emotional state) using 

psychological data recorded during an experiment. Moreover, we propose and implement an 

iterative learning framework that allows for the general model to evolve and tailor itself to 

itself to the emotion perception unique to an individual. The current state of the art real-time 

emotion detection leverages the advances in computer vision to detect small changes in facial 

features [20]-[22]. This approach, while being highly efficient, is limited to the times when a 

facial image of acceptable resolution is available. Our approach allows for continuous 

emotion monitoring using a low-cost wearable heart rate monitor. This will allow us to tie the 

state of an individual to the data collected from the individual IOT touchpoints, thus creating 

a holistic picture that unites the digital world to human psychology. 

3.1 Related Work and Taxonomy  

We compare our system to the state of the art research in the public domain based on the 

following characteristics, 

Prediction accuracy: Prediction accuracy refers to the percent of instances classified 

correctly by a machine learning algorithm. Our system achieves a maximum of 92 % 

accuracy for a 3-category classification (Positive, Negative and Neutral) and an 87.4% 

accuracy for a 6-category classification (Amusement, Sad, Fear, Neutral, Anger, Disgust). 
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This is referred to the valance level in a lot of research. The arousal level (low, medium, 

high) is a continuous variable (0-100) in our work.  

Prediction granularity: Granularity refers to the number of predicted classes. Our work 

includes, 

o 6 category Classification –valence level 

o 3 category Classification - valance level  

o 1x7 Emotion spectrum with scores for valence level categories and Anxiety 

Computational efficiency: Computational efficiency can be derived from the time taken for 

feature extraction, training a classifier and prediction times. Since this information is not 

readily available for most of the published research, we will compare the dimension of the 

feature space as a measure for computational efficiency (, higher feature dimensions require 

higher training times, more complex models and higher prediction times). Our feature space 

is 3 dimensional.   

 

Scope of Real time implementation: Real time implementation depends on multiple factors. 

The most important being a continuous data stream (use to predict state). This could be 

physiological data, facial images, audio data and data from social media. The second critical 

requirement is mobility. It is not practical to expect mass use of a system that requires 

multiple sensors strapped to an individual. Wearable sensor used in our work, E4 Empatica 

wristband provides a great balance between a continuous data stream and non-intrusive and 

non-obstructive data collection[23].   
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Implementation of an iterative learning framework: This is an element unique to our 

work alone. It allows the AI predicting emotional states to rapidly evolve and tailor the 

feature space uniquely to an individual’s emotion perception. Moreover, an iterative learning 

framework acknowledges that emotions do not exist discretely; there is overlap between 

affective states (proven in the analysis section). Thus, at any time there exists an emotional 

spectrum, a 1x 7 vector with the proportion of each affective state and anxiety.  

The autonomic nervous system regulates the unconscious actions of the body. It 

includes two primary divisions: Sympathetic nervous system (SNS) and Parasympathetic 

nervous system (PSNS). Sympathetic nervous system- like other divisions- operates through 

a string of tightly interconnected neurons[24], [25]. Albeit a significant portion is within the 

CNS (Central Nervous System), the Sympathetic nervous system is commonly considered as 

one of the components of the PNS (Peripheral Nervous System). The fundamental process of 

the sympathetic nervous system is to excite or stimulate the fight-or-flight response of the 

human body. On the other hand, the fundamental process of the parasympathetic nervous 

system which is to stimulate the "feed and breed" response, and after that, to the "rest-and-

digest" response of the human body[26], [27].  From a computer scientist’s perspective, we 

can think of the SNS and the PSNS as systems that counter each other. For instance, how 

angry one might become is governed by the SNS and the rate at which the individual calms 

down is governed by PSNS. Hence, it is theoretically possible to model one system if the 

response from the other is known. 

Significant work has been done in the affective computing domain aimed at 

identifying affective states using data from wearable sensors, facial recognition, audio signals 

and even social media.  A 2017 work by Ragot et al. compares the effectiveness of laboratory 
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sensor BIOPAC-MP150 to a wearable sensor Empatica E4 in terms of emotion recognition 

accuracy [23], [28], [29]. The study with 19 subjects validates the use of wearable sensors for 

emotion recognition outside the laboratory based on the physiological response recorded by 

both systems to the International Affective Picture System (IAPS) database [30].  The data 

was categorized under three levels of valence, positive, negative and neutral and three levels 

of arousal, high, medium and low. Nine specific features including HR, AVNN, SDNN, and 

rMSSD, Pnn50, LF, HF, RD and AVSCL were extracted to train the machine learning 

classifier.  The authors used an 80-20 split with cross validation, reporting 66% accuracy for 

the valence level and 70% accuracy for the arousal level.  Minhad et al. presented a study 

that uses physiological sensor data (specifically skin conductance) to model the emotional 

states of happiness, sadness, disgust, fear and anger [31]. The authors report an accuracy of 

over 70 % across the 5 categories.  A 2016 study titled An Emotion Recognition System 

Based on Physiological Signals Obtained by Wearable Sensors by He et.al conducted 

experiments aimed at inducing joy, sadness, anger and pleasure on 11 subjects [32]. 

Electrocardiogram (ECG) and respiration (RSP) were recorded. The authors use a 145-

dimension feature space to for classification with a SVM. The recognition accuracy was 

81.82, 63.64, 54.55, and 30.00 % for joy; sadness, anger, and pleasure, respectively 

(average accuracy of 57.34%).  Maaoui et al. published their work on emotion recognition in 

2010[33]. The study used a linear discriminant classifier trained on a 30-dimensional feature 

space to predict 6 valence levels with an accuracy of 92%. The features space is derived from 

50 second recordings of Blood volume pulse, Electromyography, Skin conductance, Skin 

Temperature and respiration for a subject pool of 10 participants. The features extracted are 

taken from Picard et al. [34] . While this work has a higher accuracy than our valence level 
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predictions (87.4%) the training set for this work includes 6 instances 50 second time series 

for each emotion compared to over 65 instances of 50 seconds-120 seconds time series for 

each emotion in our work.  The 2001 work by Picard et al. at is one of the most iconic works 

that laid the foundation of emotion recognition using physiological data [34]. The proposed 

feature extraction is still widely used (along with other features) in the research community. 

The authors gathered data from 4 sensors measuring electromyogram, blood volume 

pressure, skin conductance and respiration. 6 features are extracted from each time series. 

The feature space was used to predict the emotional states including Neutral, Anger, Grief, 

Joy and Reverence using Fisher projection and Sequential floating forward search. The 5-

category classification yielded a 46.3% accuracy and a 3-category classification (Anger, Joy 

and Reverence) yielded an 88.3 % accuracy. 

In Emotion Recognition Using Bio-sensors: First Steps towards an Automatic 

System, Haag et al. utilize EMG, EDA, ST, ECG, Respiration to create a feature space 

contain the running mean, running standard deviation and slope of the signals to predict the 

valance and the arousal level[30], [35]. A neural net is used as a predictor. Results were 

evaluated based on a tolerance of 10 and 20 percent (i.e. if the prediction was within the 

tolerance, the instance was classified correctly). A 10 percent bandwidth (tolerance) leads 

to 90% classification accuracy of valance levels and 63% accuracy in arousal levels.  The 

major concern we have with this research is that the entire study is based on data collected 

from 1 individual. Moreover, valance and arousal describe a plane where all emotions lie 

and not the location (coordinates) of emotional states. Thus, the classification is abstract 

(high valence-high arousal, low valance-low arousal, high valence-low arousal and low 

valence-high arousal).  
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To recognize emotion in speech, J.P. Arias et al. presented a shape-based modeling of 

fundamental frequency contour in 2014 [36]. Here, with the help of the functional data 

analysis, they suggested neutral reference models identify emotions in the fundamental 

frequency and experienced considerably higher accuracy. This approach was applied to 

identify the most emotionally striking segments, and by using a natural database, verified at 

the sub-sentence level.   

Zhang et al. delineated the process to detect emotions (happy, sad and neutral) by using 

the Kinect 3D Facial Points[37]. For this purpose, the authors used 1347 3D facial points by 

the Kinect V2.0, selected the key points, and performed the feature extraction. Machine 

learning classifiers were employed to create the emotion identification models.  

Soleymani et al. presented a continual emotion detection approach using a unique 

combination of facial expressions and EEG signals[38]. In this approach, each subject was let 

to view a short emotional video. Then, multiple annotators were set to continually provide 

the valence levels by following the frontal facial videos of each subject. Here, besides the 

facial fiducial points, the authors used power spectral features from EEG signals as features 

to identify the valence levels for each of the frames. In [39], Claudio Loconsole et al. 

proposed a unique methodology to extract facial features and recognize the facial emotions 

automatically with high accuracy. Employing real-time face tracker, they extracted two 

distinct features such as linear features and eccentricity. Then, these features trained the 

machine learning classifiers. This method allowed 6 primary Ekman's emotions classification 

in real time without requiring any prior information of facial traits and manual intervention.  

          To detect human emotion, M. Liu et al. combined multiple kernel methods on the 

Riemannian Manifold at [40]. In this approach, each of the video clips was described by the 
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covariance matrix, linear subspace, and Gaussian distribution. These images set models 

were observed as points residing on Riemannian manifolds. After that, for similarity 

measurement, Riemannian kernels are applied on these models accordingly.         

Veenendal et al. analyzed the emotion recognition in a group and crowd 

ambiance[41]. In this course, the edge detection was practiced with a Mesh Superimposition 

to extract the regarding features. The authors applied the feature movement (based on the 

shift from the reference point) to track across the strings of the images from a color channel. 

Furthermore, to validate their approach, they captured video of a group of subjects on 

spontaneous emotions while watching sports competitions.   

          R. Rakshit et al. proposed emotion detection using HRV (Heart Rate Variability) 

features obtained from the PPG (photoplethysmogram) signals in[42]. In this study, a Pulse 

Oximeter was used to collect heart rate signals and detect emotional states. The HRV 

features are obtained from both the time and frequency domain and then employed for 

emotion classification. The researchers extracted features from the PPG signal received in the 

baseline neutral and the emotion elicitation phase. Employing the HRV features, as well as 

the standard video stimuli, they analyzed three emotions: happy, neutral, and sad.  

         Rao et al. proposed an affective topic model for the social-emotion recognition 

regarding the social media platform and offered an intermediate layer to meet the objective 

[43]. This model can be implemented to classify (or incorporate) the social-emotions 

regarding the unlabeled documents (texts or records) aimed at developing a social-emotion 

lexicon.  
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Lei et al. concentrated on building a social-emotion identification approach for the 

online reports leading to social-emotion lexicon generation [44]. It also focused on emotion-

ambiguity detection and the context-dependence of the sentiment orientations.  

To enhance the multimedia Content, F. Yu et al. presented an experimental research 

on the speech-based emotion recognition in [45]. The primary dataset is a collection of 

written texts comprising of emotional speech with 721 short speeches. These speeches 

express four target emotions (happiness, anger, neutral, and sadness. The investigation 

revealed that the emotion prediction based on textual data alone is not accurate.  

 

 

 

 

Figure 2: Taxonomy of emotion detection 

 

Based on the literature survey we can break down the Emotion recognition application into 5 

major categories listed in Figure 2: Taxonomy of emotion detection. While surveys, audio, facial 
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images and social media have their merits, they are not suitable for the problem we are trying 

to solve. Our goal is continuous emotion recognition, possible exclusively via mobile wearable 

sensors.  The data flow from audio and social media is not continuous. While 24-hour video 

feeds of surveys (even at discrete time intervals) are not practical. Moreover, the social media 

data and video feeds (for facial image based emotion recognition) pose significant privacy and 

security risks for an individual.  Moreover, a significant work done using wearable sensors 

involves devices such as electrocardiograph and respiration rate monitors which are not 

mobile.  A wearable senor watch is a practical solution (if it can make accurate predictions) 

for a system that can be scales across a wide variety of populations. 

3.2 Experiment Design and Data Collection 

We conducted an experimental study to collected survey responses and physiological time 

series data in response to a data set of videos. 85 subjects between the ages of 18-24 were 

recruited for the study. The data set used was leveraged from Hewig et al. that recorded 

survey responses to classify the videos into dominant emotional states [46]. These states 

include Amusement, Anger, Neutral, Sad, Fear and Disgust.  
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Figure 3 Pertinent Research Questions 

 

The data for our study was collected using an application deployed on R Shiny 

server.  Each subject watched 9 videos, 1 from each emotional state and the other 3 were 

randomly selected from distinct emotional states. Physiological time series data including 

heartrate, blood volume pressure, electrodermal activity and inter-beat interval was recorded 

using the Empathica E4 wearable sensor watch [23], [47]. After each video, the subjects 

completed a survey rating the emotional states on a scale of 1-10, with an additional score for 

Anxiety.  All participants arrived at the study location 15 minutes prior to the scheduled start 

time. The participants waited in the lobby with a graduate student who explains the entire 

process. This allowed the emotional state to be normalized before participating in the study. 

The survey after each video was also intended for the same purpose with the goal being to 

prevent bleeding of emotional responses from one video to another. 
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3.2.1 Videos Used for emotion induction  

 

The primary goal of the study is to identify the dominant emotional groups using the 

physiological response from an individual. Thus, we must ensure that the model is not fitted 

to the physiological responses from a certain video of a certain length. To achieve this, the 

training data (used for model generation) for each emotional state contains responses from 3 

distinct videos of different lengths. This allows us to capture the features that are specific to 

an emotional state and not a specific video. Moreover, it adds the constraint to the feature 

selection process, i.e. the features used for model generation should be independent of the 

length of physiological time series. The video data set was manually curated by our 

team. The video playlist can be found at, 

https://www.youtube.com/playlist?list=PLjCBhI2RQVqIWKcishzr22R1ghBKRNfnL 

 

Table 1: Videos used for inducing emotion 

 

Movie  Target Emotion Length  

Witness Anger 2:12 

Gandhi  Anger 3:02 

My Bodyguard Anger 4:20 

When Harry met Sally Amusement 3:19 

On Golden Pond Amusement 1:26 

An officer and a gentleman Amusement 2:21 

Silence of the Lambs Fear 3:56 

Halloween Fear 4:16 

Marathon Man Fear 3:00 

Pink Flamingos Disgust 1:07 

Maria’s Lovers Disgust 1:42 

The Godfather Disgust 1:53 

An officer and a gentleman Sad 2:33 

The killing fields Sad 2:30 

The Champ Sad 4:08 

https://www.youtube.com/playlist?list=PLjCBhI2RQVqIWKcishzr22R1ghBKRNfnL
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The Last emperor Neutral 2:04 

Hannah and her sisters Neutral 2:16 

All the Presidents’ men Neutral  2:02 

 

 

 

Figure 4: Data Collection application hosted on shiny.io 

 

The data collection application can be found at https://marquetteubicomp.shinyapps.io/Validation/ 

 

3.2.2 Application architecture  

A sample instance of the data collection process can be seen below in Figure 4. Each study 

consists of 9 instances tied together by a random ID. IRB approval was obtained by 

Marquette University’s office of research and sponsored programs (OSRP) []. One of the 

defining features of this work is the size of the subject pool. The objective here was to 

accommodate every participant within a 30-minute window and have a less than 5-minute 

turnover (time between consequent participants) while maintaining data quality and integrity.  

https://marquetteubicomp.shinyapps.io/Validation/
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The video-survey loop is repeated 9 times. Every new participant initiates a unique randomly 

generated key. After each survey, a .csv file with the random key, video ID (string defined by 

unique video name and the order in which the video appears), time stamps (beginning and 

end of video) and 1x7 array from the self-report is uploaded to drop-box.  Once the subject 

clicks the final submit button a subroutine (R script) automatically moves the data for the 

instance (entire study duration for a subject) from the watch to the E4 administered server 

and from the E4 server to drop box with the unique key generated (generated for the survey 

data) for the individual. The process generates a data frame in R. This allows the researchers 

to run data validation and integrity subroutines in real time and identify errors caused due to 

equipment failure or software failure (glitch in the collection application) in real time. 

Moreover, this data structure allows for easy analysis since the data can be sorted by 

individual subjects, video-id, survey results or the target class. The target class is the class 

associated with the video as validated in Hewig et al.[46].  

Table 2: Data Structure for each instance  

 

Subject 

ID 

Video 

ID 

Time 

Start 

Time 

End 

E4 

Data-

HR 

E4 

Data-

EDA 

E4 

Data-

IBI 

E4 

Data-

BVP 

Survey    

Results  

Target 

Class 

INT STRING NUM NUM TS TS TS TS 1X7 

ARRAY 

STRING 
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Figure 5: Data collection sample instance workflow 
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3.2.3 Physiological Signals 

The physiological signals were recorded using Empatica’s E4 wristband and Q-sensor[23], 

[47].  

Electrodermal activity(EDA): EDA is a measurement of the changes in the skin 

conductance. Emotional activation, increased cognitive workload or physical exertion lead to 

the bodies response of sweating. The electrical conductance increases significantly (to be 

detected by sensors) due to the increased sweat accumulation in sub dermal pores[47]. The 

E4 sensor passes a small current through the electrodes in dermal contact and measures the 

skin conductance. Higher activation leads to larger volume of sweat accumulation in 

subdermal pores and thus, higher skin conductance. The EDA is measured in micro 

Siemens.[47] . The compound EDA signal is composed of, 

Tonic EDA: This refers to the baseline skin conductance, in absence of external stimuli. 

Graphically, these are the smooth underlying slowly changing signals[47].  

Phasic EDA: These refer to the abrupt increase in the skin conductance level. Phasic EDA is 

not continuous and highly correlated with external stimuli[47].  

Blood Volume Pulse, inter beat interval and Heartrate: The E4 uses the 

Photopletysmography (PPG) to estimate the Blood volume pulse[47]. This is the same 

technology that is used in most modern day wearable sensor watches. Heartrate is derived 

from the PPG signal by computing the intervals between adjacent peaks. The inter beat 

interval timing is used to compute the instantaneous heart rate. The E4 watch combines a red 

and a green light to remove motion related artifacts from the BVP signal[47]. The IBI signal 
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refers to the distance between heartbeats. The algorithm to calculate the PPG is a proprietary 

and undisclosed[47]. 

 

 

 

Figure 6 : IBI calculation using PPG[47] 

 

3.2.4 Data Cleaning and Preprocessing  

The biggest source of error was empty surveys, i.e. the individual watched the video but 

submitted a survey with zeros for all response categories.  While this data can be used to see 

if there is a map between the physiological time series data and the true classification (based 

on Hewig et al.[46]) it cannot be used to model the emotional spectrum. Thus, the data 
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corresponding to zero survey responses was discarded. Other sources of error included 

equipment failures and human error. There were instances where the sensor watch recorded 

no data and had to be reset and instances where the individual loosened the sensor watch 

leading to non-continuous dermal contact and thus, erroneous readings.  The application was 

created to ensure minimal pre-processing with subroutines that generated indicators of data 

quality for each instance. These are explained in detail in the experiment design section. 

 

 

 

Figure 7: Splitting the Time series data by instance 

 

3.3 Research Questions  

To model emotional response as a function of physiological sensor data we need to develop 

a better understanding of emotional response. These questions (below) are critical for 

modelling the emotional spectrum and have implications in the development of a real-time 

application. In this section, we develop the hypothesis that will be tested in the later 

sections.  
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3.3.1 Understanding Emotional Perception 

i. Emotional perception is variable and differences exist amongst individuals. While 

majority of the data should validate the true class (dominant emotional state) 

established in Hewig et al. we expect instances with deviations [46]. Two completely 

similar physiological states might be caused due to different emotional states in two 

individuals. There is a higher likelihood that variation in perception would arise in 

emotional states closely related e.g. anger and fear. 

ii. We predict the existence of an emotional spectrum. The emotional state might have a 

dominant component but it is a mixture of emotions.   

iii. We can leverage the physiological time series data to spatially locate the emotional 

states and understand their overlap. For instance, “Amusement” and “Disgust” might lie 

on the opposite ends of the spectrum, while “Sadness” and “Fear” might lie closer to 

“Disgust” and even overlap. We can reconstruct this space using the features extracted 

from the physiological time series that best distinguish between the target class. This 

feature space is unique for every individual and a function of time. It changes over time 

with life experiences.   

3.3.2 Understanding Anxiety 

The original dataset from Hewig et al. did not include anxiety as an emotional state [46]. The 

survey was designed to include a score for anxiety. We predict that anxiety exists as a non-

continuous emotional state that overlaps multiple dominant emotional states. i.e. it is possible 

to be anxious waiting for good news, overlap with / proximity to “Amusement” and it is 
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possible to be anxious anticipating something negative, overlap with /proximity to “Fear”, 

“Disgust” or “Anger”  

3.3.3 Existence of a map from physiological data to dominant emotional state 

We predict that the existence of a unique feature space (derived from the physiological data) 

which can be leveraged to train a machine learning classifier that distinguishes between the 

target classes with very high accuracy. 

3.3.4 Existence of a map from the physiological data to the survey data   

We predict the existence of a map (multivariate regression or neural net) that connects the 

survey data to the physiological data (feature space derived from physiological data). Thus, 

we believe it is possible to predict survey results with high accuracy given the physiological 

feature space.  

3.3.5 Observation Period for real-time application  

The primary goal of the data analysis is to develop a model independent of the length of the 

physiological time series that identifies the dominant emotional state and the corresponding 

spectrum. However, for a real-time implementation we need to identify a time “t” for which 

to extract the features, classify the dominant emotional state and generate a spectrum. We 

suspect this would be a machine learning and simulation problem.  
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Figure 8: Pertinent Research Questions 

 

3.4 Survey Data Analysis 

As we test the hypothesis and try to get answers to the research challenges posed it is 

important to identify the end goal. We want to use physiological sensor data to identify the 

dominant emotional state and predict the emotional spectrum. We expect higher error rates 

while predicting the emotional spectrum due to variability in emotional perception. However, 

we expect both models to serve as a basis for the iterative learning that allows for the model 

to evolve and tailor itself to the emotional perception of the individual. We will use survey 

responses to model the emotional spectrum as a function of the physiological time series 

features.  
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3.4.1 Survey Responses  

 

 

We would expect the distribution of the survey results for a target emotional group to be 

unimodal. i.e. for a target class (Amusement, Anger, Disgust, Sad, Fear, and Neutral) all 

responses would lie within that target class. However, this is found to be not true. Table 3 

contains correlations amongst columns for each of the target class. The data from each subset 

was normalized (mean of column set to 0 and variance set to 1). The reason for this step is to 

have a relative distribution of the column (survey responses for the magnitude of the state) 

across the entire population. The p-values associated with the correlations can be found in 

Table 4. 

 

Table 3 Correlations between dominates states for a target class 

 

Target Class Survey Reponses-Correlation 

 
Amusement Neutral Anger Fear Disgust Sad Anxiety 

Neutral 0.088561 1 -0.10399 0.15654 -0.02272 -028448 0.009395 

Anger 0.094521 -0.01167 1 0.330934 0.414545 0.46673 0.293252 

Amusement 1 -0.20043 0.174053 -0.01881 -0.12139 0.190844 -0.01241 

Fear -0.07152 -0.19728 0.187189 1 0.100622 0.198019 0.623399 

Disgust -0.29017 -0.30572 0.466622 0.46505 1 0.385963 0.482161 

Sad 0.062531 -0.31094 0.247254 0.39548 0.229376 1 0.336707 
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Table 4 P-value for the correlations in Table 3 

 

Target Class Survey Responses 

 
Amusement Neutral Anger Fear Disgust Sad Anxiety 

Neutral 0.395989 NA 0.318571 0.131884 0.82794 0.005455 0.928389 

Anger 0.383848 0.914553 NA 0.001743 6.56E-05 5.20E-06 0.005841 

Amusement NA 0.059661 0.102832 0.86111 0.257122 0.073217 0.908082 

Fear 0.502937 0.062351 0.077286 NA 0.345353 0.061361 5.30E-11 

Disgust 0.006406 0.003982 5.23E-06 5.67E-06 NA 0.000222 2.26E-06 

Sad 0.55821 0.002855 0.0188 0.000114 0.029652 NA 0.001175 

 

3.4.2 Variability in emotional perception 

 

Emotional perception is unique to everyone. Despite being in the same physiological state the 

perception can be different amongst two individuals. The boxplot below shows the 

distribution of level of Neutral (survey response) across all dominant emotions. While most 

of the survey responses lie within the neutral category, there are statistically significant 

responses under disgust and amusement indicating, the subjects had a neutral response to 

videos intended to induce amusement and disgust. A possible reason for this could be 

cultural changes. The videos used in the study are from popular movies released before the 

year 2000 while the study population consists of individuals between the ages of 18 and 21. 

This it is likely, that certain videos failed to induce the target emotion in a portion of the 

population. This is different from overlap of emotional states (discussed in 3.4.3) since there 
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is almost no correlation between “Neutral” target class and “Amusement”, “Disgust” survey 

responses. Moreover, Amusement and Disgust lie on opposite sides of Neutral with respect 

to emotional perception. Thus, we can conclude that this is an example of the variability in 

emotional perception.  

Table 5: Correlations amongst survey responses for "Neutral" 

 

Target Class Survey Reponses-Correlation 
 

Amusement Neutral Anger Fear Disgust Sad Anxiety 

Neutral 0.088561 1 -0.10399 0.15654 -0.02272 -028448 0.009395 

Target Class Survey Responses, P-value associated with the correlations 
 

Amusement Neutral Anger Fear Disgust Sad Anxiety 

Neutral 0.395989 NA 0.318571 0.131884 0.82794 0.005455 0.928389 

 

 

 

Figure 9: Distribution of survey responses from “Neutral" across dominant emotional states 
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3.4.3 Overlap in emotional states 

 

 

We must also account for the overlap of emotional groups. While there is no overlap in 

extreme states such as amusement and disgust, there is significant overlap between closely 

associated emotions. The boxplot below shows the distribution of level of Disgust (survey 

response) across all dominant emotions. Unlike Table 5, where there is a statistically 

significant difference in the mean of responses between Neutral and other emotional states 

the, box plot in Figure 9 indicates an overlap between the states of Disgust (target class), 

Anger and Fear. Moreover, Fear and Anger survey responses have a relatively high, 

statistically significant positive correlation for the target class “Disgust”.  

 

Table 6: Correlations amongst survey responses for "Disgust" 

 

Target Class Survey Reponses-Correlation 
 

Amusement Neutral Anger Fear Disgust Sad Anxiety 

Disgust -0.29017 -0.30572 0.466622 0.46505 1 0.385963 0.482161 

Target Class Survey Responses-, P-value associated with the correlations 
 

Amusement Neutral Anger Fear Disgust Sad Anxiety 

Disgust 0.006406 0.003982 5.23E-06 5.67E-06 NA 0.000222 2.26E-06 
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Figure 10: Distribution of responses for "Disgust" across target emotions 

 

3.4.4 Anxiety 

 

The boxplot (Figure 11) below shows the distribution of level of Anxiety (survey response) 

across all dominant emotions. The survey responses indicate that anxiety is a discontinuous 

state that intersects with the emotional states of disgust, sad, anger and Fear.  The means and 

the standard deviations are statistically very close for the states of disgust, sad and anger 

while the mean is higher for the state of fear, indicating that higher levels of anxiety occur in 

conjunction with fear. Moreover, there is statistically significant correlation between the 

target class’s “Fear”, “Disgust”, “Anger”, “Sad” and survey responses for “Anxiety”. 
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Table 7: Correlation between Anxiety responses and responses from target class's 

 

 Dominant Emotional States (survey responses) 

Anxiety Amusement Anger Fear  Disgust Sad Neutral 

Correlation -0.012 0.293 0.6233 0.4821 0.3367 0.009 

P-value 0.928 0.0058 0.0000 0.0000 .001 0.092 

 

 

 

 

Figure 11: Distribution of "Anxiety “across dominant emotional states 

 

3.4.5 Predicting Dominant State using Survey Data 

 

Validating survey results provides us an insight into individual emotion perception, overlaps 

in emotional states and establishes the credibility of the data set as a reliable source of audio-

visual stimuli for induction of the target emotional state. For this model, we used 537 survey 

observations of 6 dominant emotional states. We used a Linear SVM classifier. While the 
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model achieves an overall accuracy of 73.7 %( 25%hold-out validation), it provides 

important insights into emotional perception.  The model results indicate,  

i. The variability in emotion perception and overlap between emotional states is more 

significant between states that are closer (we will define a feature space later in this 

paper). E.g. 21 % of videos with “Disgust” as the true response were miss-classified 

as “Fear.  This reinforces the concept of overlap of emotional states discusses in 

3.4.3. 

ii. The neutral category has the highest false discovery rate. This reinforces the concept 

of variability in emotional perception discussed in 3.4.2. 

 

 

 

Figure 12: Confusion Matrix -predicting dominant emotional state given survey data 
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Figure 13: Confusion Matrix 2- predicting dominant emotional state given survey data 

 

3.5 Predicting Dominant Emotional State -Six Response Classes  

The next step per the research objectives is to find a map between the physiological data and 

the dominant emotional state. To accomplish this, we must assume there exists a feature 

space that explains the variability within physiological data for our target class’s. Once this 

feature space is found we train multiple machine learning classifiers to identify which 

classifier leads to the highest accuracy for the chosen feature space. 
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3.5.1 Feature Selection  

The feature selection process was ad-hoc. We examined each possible feature individually to 

determine if its use as a classifier would be warranted. One again due to variable length time 

series, the features was scale independent. Our analysis revealed that the RMS levels (for EDA, 

HR, and BVP) were the best predictors for classification into the 6 dominant emotional 

states. We tested feature spaces composed of multiple predictors from time domain and the 

outlined in [34]. These include, mean, median, variance, mean of absolute first differences, 

mean of absolute second differences, mean of absolute value of first differences and mean of 

absolute value of second differences. The frequency domain signals included magnitude and 

phase information from signal FFT, signal periodicities, signal power etc. The RMS level of 

normalized signals performed best with our dataset. We also tried a reconstructed phase space 

approach well suited for non-linear time series[48], [49]. While the approach shows promise 

the classification accuracy was lower than the one through RMS level and the computational 

needs are significantly higher making real-time implementation challenging. 

 

 

Figure 14: Distribution of HR feature across 6 dominant states 
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Figure 15:Distribution of BVP feature across 6 dominant states 

 

 

Figure 16: Distribution of EDA feature across 6 dominant states 

 

3.5.2 Prediction accuracy for a 6-category classification  

The feature boxplots in Figure 14,Figure 15 and Figure 16validate the use of root mean square 

level of the physiological data (hear rate, electrodermal activity and blood volume pressure) as 

predictors for the classification model. The model was trained using 410 instances and tested 
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on 140 instances. The cubic KNN model achieves the highest accuracy (using only 

physiological data) using all three features (87%). Using heartrate alone the cubic KNN 

achieves an accuracy of 77%. A cubic SVM that combined the physiological data with the 

survey responses achieves an accuracy of 93%. This is significantly higher than the accuracy 

achieved using survey responses alone (79%). While this, does not have any implications for 

the real-time application (uses only physiological data), it reiterates the information gain due 

to the physiological data. We calculate RMS for normalized signals. 

 

𝑋𝑟𝑚𝑠 = √
1

𝑁
∑ |𝑋𝑛|

𝑁

𝑛=1
 

 

 

Figure 17: Model Accuracy for a 6-category classification 
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Figure 18: Confusion matrix for 6-category classification | 87.4% accuracy  

 

An accuracy of 87.4 % was achieved using the feature space constituted by EDA, BVP and 

HR time series features using a Cubic KNN classifier. This result further validates the 

concepts of variability in emotional perception and overlapping emotional states. The 

accuracy of physiological data – target class is higher than survey data- target class. This 

indicates similar physiological states in two individuals might have different emotional 

states. In most scenarios, we expect variability in perception, for instance “Neutral” being 

classified as “Amusement” in some cases and “Anger” in some cases. While, in other cases 

we can expect an overlap of dominant states.  Such as Fear being classified as “Anger” and 

vice versa.  
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3.5.3 Feature Space for a 6-category classification  

As hypothesized in 3.4.1 we plot the feature space for the six dominant emotional 

states. The observations (features representing the dominant emotional states) are represented 

by points in the plot using principle component analysis. The feature space validates the 

hypotheses in 3.4. The cluster centers (center of the ellipse) for Disgust and Amusement are 

far apart. There is also significant overlap between Fear, Sad and Anger. Figure 19 is a PCA 

visualization of the feature spaced used to train the classifier.  It makes sense intuitively since 

the cluster centers of all negative emotional states except Disgust are a lot closer and show 

significant overlap while the distance of the “Neutral” cluster is closer to Amusement than 

Disgust.  

 

 

 

Figure 19: Spatial Locations of Emotional States for a 6-category classification  
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3.5.4 KNN Classifier  

A KNN Classifier is used with the following hyper parameters, 

• The number of nearest neighbors  , 5 

• Distance measure , Minkowski  

• Weight measure , equal  

• Distance weight measure , inverse square  

These hyper parameters are validated in the Evaluation section.  The cubic KNN classifier is one of 

the simplest classifiers. It is very effective for our problem given the low dimension feature space.   
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3.6 Predicting Dominant Emotional State -Three Response Classes  

For a three-response classification, the data from Sad, Angry, Disgust and Fear was binned 

together in a category named “Negative”. The data from Amusement was named “Positive”. 

A data set with 90 instances of each category was randomly sampled. Statistical and time 

series features were extracted from each instance.   

3.6.1 Feature Selection  

The feature selection process was ad-hoc. We examined each possible feature individually to 

determine if its use as a classifier would be warranted. One again due to variable length time 

series, the features was scale independent. Our analysis revealed that the RMS levels (for EDA, 

HR, and BVP) were the best predictors for classification into the 6 dominant emotional 

states. We tested feature spaces composed of multiple predictors from time domain and the 

outlined in [34]. These include, mean, median, variance, mean of absolute first differences, 

mean of absolute second differences, mean of absolute value of first differences and mean of 

absolute value of second differences. The frequency domain signals included magnitude and 

phase information from signal FFT, signal periodicities, signal power etc. The RMS level of 

normalized signals performed best with our dataset. We also tried a reconstructed phase space 

approach well suited for non-linear time series[48], [49]. While the approach shows promise 

the classification accuracy was lower than the one through RMS level and the computational 

needs are significantly higher making real-time implementation challenging. 
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Figure 20: Distribution of BVP features across 3 emotional classes 

 

 

Figure 21: Distribution of EDA features across 3 emotional classes 
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Figure 22:Distribution of HR features across 3 emotional classes 

 

3.6.2 Prediction accuracy for a 3-category classification  

The feature boxplots in Figure 20,Figure 21 and Figure 22validate the use of root mean 

square level of the physiological data (hear rate, electrodermal activity and blood volume 

pressure) as predictors for the classification model. The model was trained 

using 200 instances and tested on 70 instances. For a three-category classification (Positive, 

Negative and Neutral) the maximum accuracy (92%) was achieved using a weighted KNN 

model and electrodermal activity as a predictor. There was no information gain when 

heartrate and blood volume pressure were added as predictors. The weighted KNN yielded an 

accuracy of 87% with just heart rate as a predictor. 
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Figure 23:Model accuracy for a 3-category classification 

 

This is a significant finding. The accuracy for a 3-category classification did not increase 

when EDA feature was added as a predictor. The cost of measuring BVP is significantly less 

compared to the upfront cost and the maintenance cost associated with EDA sensors. There is 

almost a 25 x cost differential and the EDA wearable sensors require electrodes be replaced 

after a specified period of time.   
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Figure 24: Confusion matrix for a 3-category classification | 92% accuracy 

 

As expected we achieve higher classification accuracy in a 3-category classification. The 

concept of variability in emotion perception discussed in 3.4.2 is evident here, where in 

certain instances with significant “Negative” responses being classified as” Neutral”  

 

3.6.3 Feature space for a 3-category classification  

As hypothesized we plot the feature space for the three dominant emotional states. The 

observations (features representing the dominant emotional states) are represented by points 

in the plot using principle component analysis. The feature space validates the hypotheses in 

3.4. The cluster centers are significantly far apart for the Negative and Positive states. The 
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Neutral cluster center is closer to the Positive cluster. Once again, this plot reiterates the 

overlap between the emotional states. Figure 25 is a PCA visualization of the feature spaced 

used to train the classifier.  It makes sense intuitively since the cluster centers of all negative 

emotional states except Disgust are a lot closer and show significant overlap while the 

distance of the “Neutral” cluster is closer to Amusement than Disgust.  

 

 

Figure 25: Spatial locations for emotions for a 3-category classification 

3.6.4 Cubic KNN Classifier  

A KNN Classifier is used with the following hyper parameters, 

• The number of nearest neighbors  , 2 

• Distance measure , Euclidean  

• Weight measure , equal  

• Distance weight measure , equal 
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These hyper parameters are validated in the Evaluation section.  The cubic KNN classifier is one of the 

simplest classifiers. It is very effective for our problem given the low dimension feature space 

 

3.7 Predicting the Emotional Spectrum 

Emotional spectrum is a 1x (n+1) that defines the activation associated with each of the n 

dominant emotions and Anxiety. This is a novel contribution of this work. To create an 

emotional spectrum, we must assume that a mapping from the physiological time series data 

to the survey data exists (a map between the feature space occupied by the physiological data 

and the feature space occupied by the survey values). In the following sections, we will 

present results from a 1x7 emotional spectrum and 1x4 emotional spectrum.   

3.7.1 Six-Category Classification | 1x7 Spectrum 

A 100 Neural network with 100 hidden neurons was used to train on the Input Data (1x3 

physiological feature space and the dominant emotion using the Levenberg-Marquardt 

algorithm [50]-[52]. The target was set to a 1x7 array that represents activation levels for 

“Amusement”, “Anger”, “Neutral”, “Sad”, “Disgust”, “Fear” and “Anxiety. A 70-15-15 split 

between the training (375 instances), testing (81 instances) and validation (81 instances) set 

was used. The results from the regression are presented in Figure 27 and Figure 28. 
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Figure 26: Network Architecture | Prediction 1x7 emotional spectrum 

 

 

Figure 27: Regression Output | 1x7 spectrum 
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Figure 28| Error Histogram| 1x7 spectrum 

 

3.7.2 Three-Category Classification | 1x4 Spectrum  

A 100 Neural network with 100 hidden neurons was used to train on the Input Data (1x3 

physiological feature space and the dominant emotion using the Levenberg-Marquardt 

algorithm[50]-[52]. The target was set to a 1x7 array that represents activation levels for 

“Positive”, “Negative”, “Neutral”, and “Anxiety. The score for the “Negative input was 

computed as the mean of the nonzero scores for “Anger”, “Sad”, “Disgust” and “Fear”. A 70-

15-15 split between the training (375 instances), testing (81 instances) and validation (81 

instances) set was used. The regression results are presented in Figure 29 and Figure 30. 
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Figure 29| Regression output | 1x4 spectrum 

 

 

Figure 30| Error Histogram |1x4 spectrum 

 

Regression R Values measure the correlation between outputs and targets. An R value of means 

a close relationship, 0 a random relationship.  
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3.8 Real Time Application  

We have implemented the models generated for detecting the dominant emotional state and 

the corresponding emotional spectrum in a real-time application. We are currently running a 

beta test with 10 participants. The participants are graduate students in computational math. 

The application detects the dominant emotional state and the emotional spectrum using 60 

second streams of data. We recognize that the models were trained based on the data 

obtained from a small portion of the demographic; moreover, there is variation in emotion 

perception within that population. To account this variation and the experiment population, 

we implemented an iterative learning framework that allows for the model to be tailored to 

an individual’s unique emotion perception. The user data is streamed to a Matlab application 

that hosts the classification model developed in Chapter 3. The prediction made by model is 

transferred to an iterative learning module where the user input is used to modify the feature 

space (from the original dataset) and a new model is learned based on the modified feature 

space. The next prediction is made using the retrained model. The process of validation and 

retraining creates a model unique to the individual’s emotion perception. 
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3.5.2 System Architecture  

 

 

Figure 31: System Architecture 
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3.5.3 Iterative Learning framework 

The iterative learning framework (longitudinal feature space augmentation) allows the 

application to improve the accuracy of predictions by tailoring the model to an 

individual. The dominant state and the emotional spectrum are predicted using the features 

extracted from physiological sensor data. User validation allows the application to modify 

the feature space for the individual and retrain the individual specific model. 

 

Figure 32: Motivation for Iterative Learning 

 

 The model will not do well in a highly variable feature space - predicted class problem (The 

distribution of feature| Response will have high variance). An example of such a situation 

would be prediction of emotional response. There is tremendous variability in physiologic 

responses (same heart rates in 2 people could be caused by opposing stimuli) and emotion 

perception amongst humans. The amount of data needed to account for such variability and 

make the model reliable would be impractical. Moreover, the feature space in the diagram 

above is derived from a dataset that assumes that a stimulus would induce the target 
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emotional response. While this may show promising results within a specific population. 

The accuracy will decrease when the properties of the data set change. 

 

 

Figure 33: Human Enabled Iterative Learning Framework 
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3.9 Evaluation 

The machine learning classifier to predict dominant emotional state is validated on the test 

data using 5-fold cross validation, 10-fold cross validation, 15-fold cross validation, 20-fold 

cross validation, 25-percent holdout validation and 50-perent holdout validation. The 50% 

holdout validation yields the most conservative estimates. The results from 50-percent 

holdout validation are presented in this work.  The Levenberg-Marquart [52] algorithm used 

in the neural net based regression uses 15% of the data as the test set and 15% as a validation 

set.   The evaluation parameters for the regression are presented in 3.7 . 

3.9.1 Six-Category Classification: kNN 

Table 8: Hyper parameter optimization – minimize 5-fold cross validation loss- 6 categories 
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Figure 34: Hyperparameter optimization- cross-validation loss, 6-Categories 

 

 

Figure 35: Hyperparameter optimization- Objective function model, 6-Categories 
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3.9.2 Three-Category Classification; kNN 

Table 9: Table 8: Hyper parameter optimization – minimize 5-fold cross validation loss- 3 

categories 
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Figure 36: Figure 33: Hyperparameter optimization- cross-validation loss, 3-Categories 

 

 

Figure 37: Hyperparameter optimization- Objective function model, 3-Categories 
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3.9.3 Comparing our work to other state of the art 

Table 10: Comparing results to other significant works 
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4.0 PROBLEM 2 

Problem Statement: Combining Image features and text features from optical character 

recognition (OCR) to create a hybrid classifier for robust image prediction in an iterative 

machine learning framework. The goal of this study is to improve the accuracy of existing 

image recognition by leveraging text features from the images. As humans, we perceive 

objects using colors, dimensions, geometry and any textual information we can gather. 

Current image recognition algorithms rely exclusively on the first 3 and do not use the 

textual information. This study develops and tests an approach that allows for inclusion on 

the text features in the learning algorithm. The study includes an iterative learning layer that 

allows for the system to improve over time through human machine interaction.  

Data  

The data set used for this work is the Asset and Tag images dataset curated from the industry 

sponsor for this project. The data set contains about 200,000 images from building assets. 

Building assets include industrial equipment such as HVAC units, PTACKS, Microwaves 

etc. There are a total of 15 classification categories that make up over 92 percent of the 

assets. These 15 categories constitute the image labels. Each asset has 2 images, image1 

being an isometric view of the asset and Image 2 being a close-up of a Tag with 

Manufacturer name and other model details. There is a tremendous variability (within the 

same class) within the asset images which can be attributed to image quality (illumination, 

scale, and perspective), age of equipment, and variations due to multiple manufacturers and 

models. 
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4.1 Related Works and Taxonomy 

Convolutional Neural Nets and Image recognition 

Convolutional neural networks can be traced back to Hopfield et al. in 1982[53]. However, 

the foundation of all CNN’s can be traced back to the back-propagation algorithm proposed 

in 1986 by Rumelhart et al[54]. The first practical application was published in 1998 by 

LeCun et al. where the neural net LeNet 5 was used to classify the MINST dataset[55], 

[56].The work lead to a 99.2 % accuracy.  Hubel et al. proposed the architecture of human 

visual perception[57]  . The paper defines visual perception mechanism as a layered 

architecture of neurons within the human brain. This inspired scientists to reconstruct this 

architecture to aid computer vison.  

Input Data: CNN’s are used on images in computer vison. A 3-channel image (RGB) 

contains 3 matrices representing RGB intensities of nxm pixels. Given we have 8-bit pixels, 

each pixel represents a value between 0-255.  

Convolution Kernels: A convolution kernel (also called a filter) is a matrix of real valued 

entries that operates on the entire image, transforming the information contained in the pixels 

to information used for analysis.  The convolution of the kernel with the image yields 

activation maps. These are the regions where the features specific to the kernel are detected. 

The values contained in the convolution kernel iterate over the training set leading to a kernel 

that best identifies regions of the image suitable for feature extraction. 
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Kernel Operations  

1. The kernel of size mxn is convolved with image patches of the same dimension.  

2. The convolved entry (real number) becomes an entry in the activation matrix.  The 

value is normalized by dividing by the dimension of the convolution kernel.  (the 

convolution value is obtained by the dot product of the image patch and the kernel) 

3.  The kernel is then convolved with another mxn patch by sliding it over the patch by a 

stride value (number of columns), till the activation matrix for the entire image is 

complete.  

Convolution Layer: The act of convolving an image with many filters and creating a stack of 

featured images is called a convolution layer. It’s called a “layer” since it’s an operation, that 

can be stacked with other layers.  

Pooling (shrinking the image stack): Pooling involves picking a window size and a stride 

length. The window is walked across the filtered image and the maximum value is recorded 

for each window.  

Rectified Linear Unit: RELU is a normalization operation. Every negative value is changed 

to zero.  

Deep stacking: The convolution, ReLU and Pooling layers are stacked man times, leading to 

a filtered (significant dimension reduction) of the original image.  

Fully Connected Layer:  the stacked filtered images are converted to a list (1 dimensional) 

with each vector having a target label. Fully connected layers may also be stacked.   
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Backpropagation and Gradient descent: Each feature pixel (convolution layer) and voting 

weight (fully connected layer) are adjusted based on the error. The lowest point on the error 

gradient curve is used to assign the weights.  

Hyperparameters (user defined parameters):  User inputs, these include, 

• Number of features (kernels) 

• Size of features  

• Pooling window size 

• Pooling window stride  

• Number of neurons in the fully connected layer  

• Number and order of layers 

 

 

Figure 38 : Basic CNN Architecture [58]  

 

There has been tremendous research in the field of CNN’s. ImagNet is one of the largest 

opensource image database[59]. The database currently contains over 14 million images from 

1000 categories. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an 
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yearly competition that features object localization for thousand categories, object detection 

for two hundred categories and object localization for 30 fully labelled categories[59]. 

MatConvNet is a Matlab toolbox for implementing the state of the art CNN’s in Matlab[60]. 

The results from the most popular models are presented in the table below. The prediction is 

made using a CNN that leads to a multinomial distribution of the predicted classes. The top-1 

score checks if the target class is the same as the class with the highest probability.  The top- 

5 score checks if the target class is the same as the top 5 predicted classes.  

Table 11: Model Performance on ILSVRC 2012 validation data[60] 

 

 

 

 

 

 

 

 

 

 

model introduced top-1 err. top-5 err. images/s 

matconvnet-vgg-
verydeep-16 

2014 28.3 9.5 200.9 

vgg-verydeep-19 2014 28.7 9.9 166.2 

vgg-verydeep-16 2014 28.5 9.9 200.2 

googlenet-dag 2014 34.2 12.9 770.6 

matconvnet-alex 2012 41.8 19.2 2133.3 
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Transfer Learning: Transfer learning is the process of taking a pretrained CNN and 

finetuning it for another dataset. In this context, the pretrained CNN can be thought of as a 

feature extractor. The layer preceding the fully connected layer is used as the feature for any 

given image (image decomposed into an array). Thus, a set of labelled images can be 

encoded into the CNN feature space and machine learning algorithms can be used to train 

classifiers on this feature space. Training a CNN from scratch is an extremely compute 

intensive process. This can be attributed to the iterative nature of training that employs back 

propagation and gradient descent to generate the convolution kernel. Feature extraction using 

transfer learning takes advantage of the well-developed CNN architecture and is significantly 

less compute intensive. In [61], [62] the authors show that the features extracted from the 

activation of a deep convolutional network can be trained in a fully supervised learning 

environment and can be repurposed for novel tasks.  

AlexNet: In [63] the authors trained a deep convolutional neural net to classify 1.2 

million high-resolution images from the ImageNet LSVRC 2010[59] into 1000 categories. 

The neural net contains 60 million parameters and 650,000 neurons is composed of five 

convolutional layers with intermediate pooling layers and three fully connected layers. The 

network won under the top-5 test error rate category at the ILSVRC 2012 [59]. This was one 

of the foundations of GPU trained CNN’s.  
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Figure 39:AlexNet Transfer Learning Framework[64] 

 

VGG-VD-19: In [65] the authors investigate the effect of the depth of a CNN on the 

accuracy in large scale image recognition problems. The authors show that significant increase 

in the prediction accuracy can be achieved using weight layers with a depth of 16-19 layers. 

The mode placed first in the ILSVRC 2014 in the localization and classification 

challenges[59]. The network configuration is presented in the table below. 
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Table 12: CovNet Configuration VGG-VD [65] 

 

 

The fc7 layer from AlexNet[63] and the FC-1000 layer from VGG-VD-19[65] are used as 

feature extraction layers. fc7 encodes an image into a 1x4096 feature vector and FC-1000 

encodes an image as a 1x1000 vector.   
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Image Classification using Visual Bag of words  

In [66] the authors describe a method of encoding images into features using a visual bag of 

words model. The algorithm generates a histogram of visual word occurrences that the image 

is composed of. The steps outlined in the workshop[66] are, 

1. Separate the images into a test and training set  

2. Create a Bag of Features: The bag of features is creating a vocabulary of visual words 

using k-means clustering. The vocabulary   is generated by using feature descriptors 

extracted from the training set. The k-means algorithm groups the descriptors into 

user defined clusters. The feature detectors used are SIFT(scale invariant feature 

transform)[67], [68] and SURF(speeded up robust features)[69]. 

3. Each image is encoded into a feature vector (1xnumber of clusters) based on the 

occurrence (frequency) of   visual words within the image.  

4. A machine learning classifier is used to train on the encoded image space.  

5. The classifier is validated using the model with the test set.  

 

 

Figure 40: Encoding Images into bag of visual words[70] 
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4.2 Research Objectives  

Encode an image based on a text based feature space and train a classifier on re-encoded images 

and finally compare its performance (accuracy and computational efficiency) to   the state of 

the art classification algorithms, 

1. Convolutional Neural Nets (transfer learning and feature extraction) 

i.     Alexnet 

ii.    VGG-VD19 

2. Key point Detection 

iii.     SIFT 

iv.    SURF 

3. Create a hybrid feature space combining image and text features and evaluate its 

performance relative to CNN’s and key point detection based methods. This is 

accomplished by, 

i. Creating a vocabulary for the problem space 

ii. Converting the vocabulary to a document term matrix 

iii. Re-encoding images into a lower dimension (15) space 

• Creating a boosting algorithm 

iv. Training a classifier on the new space and a combination of the new 

space and the image features from CNN.  
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4.3 Methodology 

In this section, we talk about the hardware used, the general process of encoding images to a 

text based feature space and the MSER (Maximally stable extermal images) for text 

extraction from natural scenes.  

4.3.1 Hardware Used 

For this work a 2 PC’s with dual hex core Xeon processors (48 cores with hyper threading), 

512 gigabytes of ram and an NVidia GeForce 1080Ti (3500 CUDA cores) were used. The 

machines were a part of a Matlab Distributed Computing Server.   

The preprocessing and natural image OCR and the machine learning algorithms were 

completed using the CPU cores while the Convolutional Deep Learning Nets were run on the 

Nvidia GPU using existing Matlab compatible CUDA libraries. 

4.3.2 Encoding an Image onto a text based feature space 

Encoding an image into a text based feature has many implications for the classification 

problem, 

1. It allows for significant dimension reduction compared to other algorithms. The 

image of a specific size is encoded into a 1x1000 vector in state of the art Convolutional 

Neural Nets such as VGG-VG19 and Alex Net at the final fully connected layer. The layers 

before that have much higher dimensions (e.g. fc7 in AlexNet encodes an image into a vector 

with over 4000 dimensions). Text based encoding encodes an image of any size to a 1xm 

vector (m is the number of classification categories) 
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2. In this specific problem (15 classification categories) the machine learning algorithm 

is trained on a 15-dimensional feature space. This allows significantly faster training and re-

training times (discussed in the Results section) framework. 

4.3.3 MSER Algorithm (maximally stable extermal regions) 

MSER is a blob detection algorithm proposed by Matas et al[71]. The algorithm extracts co-

variant regions from an image. The motivation behind MSER is based on identifying regions 

that show minimal variation across a wide range of thresholds. All pixels below a threshold 

are white and the ones above are black. The set of connected components across the 

threshold are the sets of extermal regions detected.  

Extermal region implies that all pixels within the boundary have a lower or higher intensity 

compared to the pixels outside the region boundary. The steps outlined in [72] are, 

1. Simple luminance thresholding of the image sweeping the threshold intensity from 

back to white. 

2. Extraction of Extermal Regions  

3. Iteratively find the threshold at which the region is maximally stable.  

4. Keep the region descriptors as features  

The hyperparameters (user defined) include maximum area, minimum area and maximum 

variation of pixel intensity within the region.  
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Figure 41: Algorithm Description[71] 

 

4.4 Algorithm Pipeline 

 

 

Figure 42: Algorithm pipeline for hybrid feature space 
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4.4.1 Text extraction using MSER and Natural Image OCR -Illustrated Example  

MSER algorithm is extremely effective in detecting text in unstructured images. An 

unstructured image contains random scenarios[73]. Bill boards are a common example of 

unstructured images since they have a combination of images and text. Traditional OCR 

performs well with text documents but poorly with unstructured images. The tag images from 

the industrial equipment image database is a good candidate for MSER application. 

 

 

Figure 43: Sample Asset Image 
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Detecting extermal regions: The MSER feature detector is used to identify extermal 

regions. The image is converted to grayscale and a threshold for image sweeping is defined. 

This step detects the possible candidates for extermal regions.  

 

 

Figure 44: Detected MSER regions 

 

Removing Non-Text Regions: Since the image might contain non-text MSER regions 

geometric properties can be used to remove non-text regions. This is accomplished by a rule 

based approach combined with a machine learning classifier that distinguished between text 

and non-text regions based on region properties[74]. Authors in [75], [76] present geometric 

properties that can distinguish between next and non-text regions detected by MSER 
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algorithm. These region properties as defined in [77] include, aspect ratio, eccentricity 

(Returns a scalar that specifies the eccentricity of the ellipse that has the same second-

moments as the region. The eccentricity is the ratio of the distance between the foci of the 

ellipse and its major axis length. The value is between 0 and 1. (0 and 1 are degenerate cases. 

An ellipse whose eccentricity is 0 is a circle, while an ellipse whose eccentricity is 1 is a line 

segment.), Euler number (Returns a scalar that specifies the number of objects in the region 

minus the number of holes in those objects.), Extent (Returns a scalar that specifies the ratio 

of pixels in the region to pixels in the total bounding box. Computed as the Area divided by 

the area of the bounding box) and Solidity (Returns a scalar specifying the proportion of the 

pixels in the convex hull that are also in the region. Computed as Area/Convex Area). Stroke 

width variation is also used as a metric to identify text regions based on the approach 

proposed in [76]. We also added a rule based approach that removes regions with number of 

pixels less than the median pixels per regions. This filter significantly improved the detected 

text for the tag image dataset.  
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Figure 45: Filtered text based regions 

 

Merging text regions : The MSER regions detected contain individual characters. The goal of 

OCR is to detect complete words and sentences that can be used to gather context about the 

text. This is accomplished by creating and iteratiely expanding boingboxes to detect overlap.  
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Figure 46: Creating bounding box around detected regions 

 

The bounding boxes are expanded by a small amount in the x direction (since the words/ 

sentences go left to right). The bounding boxes are then collapsed based on a user defined 

overlap ratio. The detailed code can be found in the Appendix. The OCR (pretrained 

classifier) is run on individual bounding boxes to predict words and the probability of 

prediction.  
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Figure 47: Expanded Bounding Box 

 

 

Figure 48: Detected text 
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4.4.2 Data Cleaning and Preprocessing  

The text extracted from each image is saved as a table with terms, bounding box coordinates 

and prediction confidence as columns. The preprocessing steps include lemmatization, 

removal of stop words, punctuations and special characters. The tables from each category 

are then concatenated creating 15 tables, 1 for each classification category. As an added 

preprocessing measure, the terms with frequency less than the mean term frequency for each 

classification category are removed.  The primary reason for this step is to create a 

vocabulary (representing each category) of manageable size. This decreases the number of 

terms by 60 percent which decreases the sparsity of the document term matrix significantly. 

The document term matrix is read into the memory as a broadcast variable in an SPMD 

(single program multiple data) framework, i.e. it cannot be dumped until the batch process is 

completed. The size of the document term matrix has memory implications, especially in 

GPU computing where the GPU memory is a performance bottle neck.  

4.4.3 Document Term Matrix  

The concatenated term tables for each category are converted to a corpus of 15 documents, 

each representative of a classification category. A document term matrix is a numeric matrix 

the categories as rows and terms as columns. For this study, we generate a 15 x 150000 

matrix. An element i, j represents the frequency of term j for the ith document (classification 

category). Despite the preprocessing measures, the DTM is a sparse matrix.  The document 

term matrix is used to encode images (matrices of any size) into a text based feature space. 

The columns of the DTM are marginalized (column sum equals 1).  Each column (term) now 

represents the probability of a term occurring in a specific corpus. While most of, much of 



86 
 

terms in the DTM are do not have dictionary accuracy, the goal is to capture word 

permutations that might be representative of a category. For instance, a natural image with 

the word “refrigeration” might yield incomplete terms such as “referi”, “ref”, “referige” etc. 

where each term represents a column in the DTM, with a large enough data set (such as 

TELS) it is possible to create a granular feature space, i.e. each permutation appears with 

high frequency in the DTM that makes the re encoding effective. Moreover, it is possible to 

boost the results by combining the contributions of each permutation to the feature space. 

4.4.4 Encoding Images onto a text based feature space  

Feature encoding is a form of dimension reduction technique. In this work, we encode an mxn 

matrix into a 1x15 vector using the document term matrix. Each element of this vector 

represents the volume of text in the image that comes from a certain classification category (15 

categories). The encoded images create a 15-dimension feature space that is used to train 

machine learning classifiers. 

Table 13: Document-term matrix 

 

 T1 T2 T3 T4 T5 T m 

Cat1 .5 .3 .1 …. …… …….. 

Cat2 .2 .7 .2 ……. …….. ……….. 

Cat3 .3 0 .7 …….. …….. …….. 

. …….. …….. …….. …….. …….. …….. 

. …….. …….. …….. …….. …….. …….. 

Cat 15 …….. …….. …….. …….. …….. …….. 
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The rows of Table 1.0 represent the 15 classification categories while the columns represent 

the all terms (from the vocabulary of extracted text). A new image undergoes the Natural 

Image OCR aided by the MSER algorithm. The text from the image is converted to a term 

frequency matrix. 

Table 14: Term frequency table for sample image 

 

Term Frequency of the mth term 

T1 f1 

T2 f2 

Tm fm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sample image has m terms T1 to Tm with frequencies f1 to fm . Let V define a 

n dimensional feature space on to which the image is encoded. 

V  = [V1  V2   V3 …………………………….Vn ]     

Each element of this vector corresponds to, the volume of the image text that 

belongs to a specific category. E.g. the second term of V would represent the 

volume of image text that from Category 2. Hence, if n is the number of categories 

and m is the total terms in the DTM, A.  Then, 

V1  =        f1 A11 + f2A12 +f3A13 +……….fmA1m. 

More generally,  

For i = 1.......n     

V = length (n) 

Vi = ∑ 𝑓𝑚
𝑗=1 j Aij 

End 
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4.4.5 NIOCR-Function  

The MESR text detection and the image classification algorithm described in 4.4.4 were 

implemented in a single function for implementation in an SPMD framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function [ vec ] = NIocr( img,dtm,vocabulary)% imgloc - image location   
try 
  
vec =[]; 
colorImage = imread(img); 
I = rgb2gray(colorImage); 
  
%% Detect MSER regions.  
[mserRegions, mserConnComp] = detectMSERFeatures(I, ... 
    'RegionAreaRange',[30 14000],'ThresholdDelta',.8,'MaxAreaVariation',0.1); 
  
%% Use regionprops to measure MSER properties 
mserStats = regionprops(mserConnComp, 'BoundingBox', 'Eccentricity', ... 
    'Solidity', 'Extent', 'Euler', 'Image'); 
if isempty(mserStats)~=1 
  
%% Compute the aspect ratio using bounding box data. 
bbox = vertcat(mserStats.BoundingBox); 
w = bbox(:,3);   
h = bbox(:,4); 
aspectRatio = w./h; 
  
%% Threshold the data to determine which regions to remove. These thresholds 
% may need to be tuned for other images. 
filterIdx = aspectRatio' > 2; 
filterIdx = filterIdx | [mserStats.Eccentricity] > .99 ; 
filterIdx = filterIdx | [mserStats.Solidity] < .1; 
%% Remove regions 
mserStats(filterIdx) = []; 
mserRegions(filterIdx) = []; 
%% Bounding Boxes 
%Get bounding boxes for all the regions 
bboxes = vertcat(mserStats.BoundingBox); 
  
%% Added by PRS : Remove non-informative blocks  
%non-informative blocks-the blocks with pixels less than the median pixels. 
  
for j = 1:numel(mserStats) 
  [mserStats(j).pixels]= numel(mserStats(j).Image); 
end 
if isempty(mserStats) ~= 1 
med  = median((cat(1.,mserStats.pixels))); 
k    =  find(cat(1.,mserStats.pixels)<1*med); 
mserStats([k])=[]; 
bboxes = vertcat(mserStats.BoundingBox); 
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%% Bounding Box: Convert from the [x y width height] bounding box format to 
the [xmin ymin] 
%xmax ymax] format for convenience. 
xmin = bboxes(:,1); 
ymin = bboxes(:,2); 
xmax = xmin + bboxes(:,3) - 1; 
ymax = ymin + bboxes(:,4) - 1; 
bboxes= [xmin ymin xmax-xmin+1 ymax-ymin+1]; 
  
%% Bounding Box: Expand the bounding boxes by a small amount. 
expansionAmount = 0.04; 
xmin = (1-expansionAmount) * xmin; 
%ymin = (1-expansionAmount) * ymin; 
xmax = (1+expansionAmount) * xmax; 
%ymax = (1+expansionAmount) * ymax; 
% Clip the bounding boxes to be within the image bounds 
xmin = max(xmin, 1); 
ymin = max(ymin, 1); 
xmax = min(xmax, size(I,2)); 
ymax = min(ymax, size(I,1)); 
%Show the expanded bounding boxes 
expandedBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1]; 
%IExpandedBBoxes = 
insertShape(colorImage,'Rectangle',expandedBBoxes,'LineWidth',3); 
%figure 
%imshow(IExpandedBBoxes) 
%title('Expanded Bounding Boxes Text') 
  
%% Bounding Box: Compute the overlap ratio | Merge boxes 
overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes); 
% Set the overlap ratio between a bounding box and itself to zero to 
% simplify the graph representation. 
n = size(overlapRatio,1); 
overlapRatio(1:n+1:n^2) = 0; 
%% Create the graph 
g = graph(overlapRatio); 
%plot(g); 
  
%% Find the connected text regions within the graph 
componentIndices = conncomp(g); 
% Merge the boxes based on the minimum and maximum dimensions. 
xmin = accumarray(componentIndices', xmin, [], @min); 
ymin = accumarray(componentIndices', ymin, [], @min); 
xmax = accumarray(componentIndices', xmax, [], @max); 
ymax = accumarray(componentIndices', ymax, [], @max); 
  
%% Compose the merged bounding boxes using the [x y width height] format. 
textBBoxes = [xmin ymin xmax-xmin+1 ymax-ymin+1]; 
  
%% Bounding Box: Remove bounding boxes that only contain one text region 
numRegionsInGroup = histcounts(componentIndices); 
textBBoxes(numRegionsInGroup == 1, :) = []; 
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%% Preprocess the image to fine-tune results 
ocrtxt = ocr(I, textBBoxes,'TextLayout','Block'); 
  
if isempty(ocrtxt)~= 1 
  
    %% Create a Table  
coordinates = vertcat(ocrtxt.WordBoundingBoxes); %box coordinates  
words = (vertcat(ocrtxt.Words)); 
confidence = num2cell(vertcat(ocrtxt.WordConfidences)); 
xmin = num2cell(coordinates(:,1)); 
ymin = num2cell(coordinates(:,2)); 
xmax = num2cell(coordinates(:,3)); 
ymax = num2cell(coordinates(:,4)); 
table = horzcat(words,confidence,xmin,ymin,xmax,ymax); 
  
tmp =table(:,1); 
t1 = tabulate(tmp); % COMMENT| NOTE : The 3rd column - percent can also be used 
for re-encoding purposes  
t1 = cell2table(t1); 
t1.colind = zeros(height(t1),1); %colind will be the column index  
  
for q = 1:height(t1) 
    loc = find(ismember(vocabulary,lower(char(t1.t11(q))))); 
    if isempty(loc)==1 
        t1.colind(q)=0; 
    else  
        t1.colind(q) = loc ;  
     
    end 
end 
  
rowt1 = t1.colind >0; 
t1 = t1(rowt1,:); 
if isempty(t1)== 1 
 vec = zeros(1,15); 
else 
t1.Properties.VariableNames{1} = 'Term'; 
t1.Properties.VariableNames{2} = 'Frequency'; 
t1.Properties.VariableNames{3} = 'Percentage'; 
t1.Properties.VariableNames{4} = 'ColumnIndex'; 
     
for w =1:15 
for e = 1:height(t1) 
     t2(e,w) = t1.Frequency(e)*dtm((w),t1.ColumnIndex(e)) ;   
         
end         
end 
      vec = sum (t2,1); 
  
end 
  
else 
     vec = zeros(1,15); 
end 
  
else 
     vec = zeros(1,15); 
end 
  
else 
     vec = zeros(1,15); 
end 
catch 
    vec = zeros(1,15); 
end 
end 
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4.4.6 Boosting results using Levenshtein Distances  

 

The document term matrix contains over 15 thousand text objects. These text objects include 

sequences of text and numbers. There is variation with the text object. Certain text objects 

are words that can be found in a dictionary, such as “pressure”, while certain text objects, 

like manufacturer name, serial number and model number cannot be found in an English 

dictionary but can be referenced from an industrial equipment lexicon which makes the 

metadata associated with each image (part of the image database). However, there is a third 

class of text objects which makes up the major proportion of the class. These include 

permutations of the first two classes.  The MSER, OCR  combination does a poor job when it 

comes to exact matches[71].  This can be attributed to the image quality attributes discussed 

in the subheading “Data” under the Problem Statement section. For instance, the word 

“pressure” has multiple permutations such as “pressur”, “presuresss” etc. The document term 

matrix was created with terms that occurred multiple times. Thus, we can be confident that 

each of these permutations does occur multiple times throughout the tag image database and 

is not an isolated occurrence. The encoding algorithm defined under “Encoding an image 

onto a text based feature space” encodes the image based only on the occurrence of exact 

matches. Thus, the weight of the permutations is completely ignored in the encoding process.  

For instance, let the term predicted by the NI-OCR function be “pressure”.  Probability 

(Categoryi| pressure) is used to encode the image while Probability (Categoryi| 

permute[pressure]) is ignored. While we (humans) can make the decision that “pressur” and 

“pressure” are the same and the missing leading “e” can be attributed to the output of the 

MSER [ ] text detection algorithm, a machine lacks the context to make that connection. To 

overcome this and generate context so that the algorithm might use the weights from the 
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permutations of the detected text we use a boosting algorithm that employs Levenshtein 

Distance [78].  

Levenshtein distance is a string distance measure[78]. For single words, it can be defined as 

the number of operations (insertions, deletions and substitutions) that transform one string 

into another. For the example described, the distance between “pressure” and “pressur” 

would be 1. This gives the machine a measure to generate connections between the detected 

string and the terms in the document term matrix to identify reasonable permutations of the 

original string. However, the cut off distance (beyond what Levenshtein distance are the 

terms unrelated) needs to be either user defined or machine learned. We use the distribution 

of Levenshtein distances for a subset of terms to define the cutoff.  

 

 

Figure 49 Distribution of String distances for sample term-[Vocabulary] 
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We need to determine the percentile for which the string distance is less than the cutoff. To 

determine this, a simulation was run for a subset with 3 percentiles, .05 %, 2.5% and 5%. The 

highest classification accuracy was achieved for .05%  i.e. terms with string distances over 

.05 percentile are dropped. The weights of the remaining terms are used to encode the image.  

Table 15: Document term matrix 

 

 T1 T2 T3 T4 T5 T m 

Cat1 .5 .3 .1 …. …… …….. 

Cat2 .2 .7 .2 ……. …….. ……….. 

Cat3 .3 0 .7 …….. …….. …….. 

. …….. …….. …….. …….. …….. …….. 

. …….. …….. …….. …….. …….. …….. 

Cat 15 …….. …….. …….. …….. …….. …….. 

 

Table 16: Terms detected by NI-OCR 

 

Term Frequency of the mth term 

T1 f1 

T2 f2 

Tm fm 

 

The document term matrix and the sample terms detected for an image are used as inputs for 

the mathematical formulation described below.  
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Mathematical Formulation 
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4.4.7 Results 

Table 17: Comparison to AlexNet 

 

 

 

Table 18: Comparison with VGG-VD19 
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Table 19: Comparison to SURF 

 

 

 

Table 20: Cluster Size vs. Test Accuracy: SIFT based bag of features 

 

 

 

 

 

 

 

 

 

 

 
Testing Accuracy based on a 50 % holdout validation  

Test 
ID  

Images 
per 

category 

Cluster 
size 

Strongest 
Features 

Training 
Accuracy 

Testing Accuracy Time (min) 

1 500 10000 0.99 0.96 0.6 44 

2 500 20000 0.99 0.98 0.6 70 

3 750 10000 0.99 0.95 0.58 73 

4 750 20000 0.99 0.98 0.63 111 

5 750 40000 0.99 Fail Fail Fail 

6 750 30000 0.99 0.98 0.63 144 

7 900 10000 0.99 0.95 0.62 94 

8 970 30000 0.99 0.98 0.66 190 
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Figure 50: Cubic SVM trained on Image features-AlexNet | True positive-False 

Negative|Accuracy 85.8 % 
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Figure 51: Cubic SVM trained on Image features-AlexNet | Positive Prediction-False 

Discovery Rate|Accuracy 85.8 % 
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Figure 52: Ensemble Bagged Tree trained on Text features | True Positive-False 

Negative|Accuracy 83.7 % 
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Figure 53: Ensemble Bagged Tree trained on Text features | Positive Prediction-False 

Discovery Rate |Accuracy 83.7 % 
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Figure 54: Ensemble Subspace Discriminant trained on Combined Features (Alexnet) | True 

Positive-False Negative|Accuracy 92.7 % 



102 
 

 

 

Figure 55: Ensemble Subspace Discriminant trained on Combined Features (Alexnet) | 

Positive Prediction-False Discovery Rate |Accuracy 92.7 % 
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Figure 56: Linear Discriminant trained on Image features-VGG-VD19 | True Positive-False 

Negative|Accuracy 85.6 % 
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Figure 57: Linear Discriminant trained on Image features-VGG-VD19 | Positive Prediction-

False Discovery Rate |Accuracy 85.6 % 
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Figure 58: Linear Discriminant trained on Combined Features (VGG-VD) | True positive-

False Negative|Accuracy 92.6 % 
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Figure 59: Linear Discriminant trained on Combined Features (VGG-VD) | Positive 

prediction-False Discovery Rate |Accuracy 92.6 % 
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Figure 60: Quadratic SVM trained on Image features-SURF | True Positive-False 

Negative|Accuracy 60.8 % 
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Figure 61: Quadratic SVM trained on Image features-SURF | Positive prediction-False 

Discovery Rate |Accuracy 60.8 % 
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Figure 62: Ensemble Subspace KNN trained on Combined Features (SURF) | True positive-

False Negative|Accuracy 83.8 % 
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Figure 63: Ensemble Subspace KNN trained on Combined Features (SURF) | Positive 

Prediction-False Discovery Rate |Accuracy 83.8 % 

 

4.5 Evaluation 

The algorithms are compared by comparing the prediction accuracy of the of the classifiers 

trained in the respective feature space’s. These are provided in 4.4.7, Results.   
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4.5.1 Comparing our feature space to state of the art 

The dataset used to create this table includes over 20000 images evenly spread across 15 

classification categories. The accuracy was obtained using a 50 percent holdout validation 

(25 percent holdout validation, 5-fold cross validation, 10-fold cross validation and 20-fold 

cross validation were also conducted.) since it was the most conservative estimate. It must 

also be noted that the accuracy presented in the table below is the highest accuracy obtained 

using 22 separate machine learning classifiers. For more information please refer to Table 

17,Table 18,Table 19 . For more background on the machine learning classifiers please refer 

to the appendix.  

Table 21: Comparison table  

 

 Accuracy  Prediction Speed 

(obs/sec) 

Training Time 

(sec) 

Preprocessing time 

(sec/image) 

VGG-VD 19 85.6 980 47.43 9.61 

Alex Net 85.8 4.8 5689 14.45 

SURF 60.8 18 1203.7 15.73 

Text 83.8 14000 19.72 5.24 

Hybrid VGG-VD 19 92.6 610 53.8 14.85 

Hybrid Alex Net 92.7 14 5901 19.69 

Hybrid SURF 83.8 85 574 20.97 
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Figure 64: Comparing our work to the state of the art 
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5.0 CONCLUSION 

5.1 Contributions 

1. In this research, we present and test the feature space augmentation techniques to 

imitate the human behavior associated with inductive and deductive reasoning. The 

human enables iterative learning framework ( a subset of longitudinal feature space 

augmentation) is a novel concept.  

2. In the emotion recognition (longitudinal FSA) problem we present 3 models, 

i. 6 category dominant state model: The accuracy we achieve is the highest 

amongst related works (87.4%).  

ii. 3 category classification model: We achieve the highest accuracy amongst 

the related works. Moreover, we establish for the first time that there is no 

information gain from introducing PPG in a 3 category classification (92%).  

iii. Emotional Spectrum is a novel concept introduced and validated in this work.  

Moreover, the dataset curated is the largest “stimuli-emotion induction” database in the 

scientific field.  

3. The image recognition problem (latitudinal FSA) introduces a novel robust feature 

that matches the accuracy of the state of the art CNN’s and is significantly less 

compute intensive. The compact feature provides statistically significant information 

gain when added to CNN based image features.  
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5.2 Broader Impact 

This work is aligned with the Marquette sprit of “Magis” and Service. It is our privilege at 

this fine institution to advance the body of science that has an impact on the world. Our work 

in Autism and Image recognition were both inspired by the goal of improving lives of 

members in our community. It is our responsibility to embrace “Cura Personalis”. I have 

faith that the work presented in this dissertation will have a meaningful impact on the 

community.  

5.2.1 Short Term 

The system (emotion recognition) designed will be implemented at the PEERS intervention 

at Marquette University. In the past we have struggled to scale the computational aspect to 

the entire class due to the cost of the sensors. However, PPG sensors are 1/25 the cost of the 

E4 sensors currently being used. This would allow is to equip the entire class with wearable 

sensors. The human enabled iterative learning framework (longitudinal FSA) will allow us to 

tailor the model to specific individuals. An emotional state dashboard will significantly 

reduce the trained personnel required to run such interventions and allow for larger class 

sizes. It will make intervention cheaper and accessible to more individuals. The image 

classifier (problem 2) will be implemented in a network independent mobile application. 

5.2.2 Long Term  

Over a longer period, we expect the (emotion detection) system (human enabled iterative 

learning, the data collection system, dominant state model and the emotional spectrum 
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model) will be expanded to other mental disorders such as post-traumatic stress disorder 

(PTSD), Schizophrenia and Hypertension.  

5.3 Future Work 

This work will be expanded by the new graduate students at the ubicomp lab to implement 

real time systems for emotion modelling and recognition in ASD populations and veterans, 

both of which are current lab collaborations. The image classification algorithm will be 

implemented as a part of a larger asset management program at Direct Supply.  
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