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ABSTRACT

FEATURE SPACE AUGMENTATION: IMPROVING PREDICTION
ACCURACY OF CLASSICAL PROBLEMS IN
COGNITIVE SCIENCE AND
COMPUTER VISION

Piyush Rai Saxena, B.S., M.S.

Marquette University, 2017

The prediction accuracy in many classical problems across multiple domains has seen a rise
since computational tools such as multi-layer neural nets and complex machine learning
algorithms have become widely accessible to the research community. In this research, we take
a step back and examine the feature space in two problems from very different domains. We
show that novel augmentation to the feature space yields higher performance.

Emotion Recognition in Adults from a Control Group: The objective is to quantify the
emotional state of an individual at any time using data collected by wearable sensors. We
define emotional state as a mixture of amusement, anger, disgust, fear, sadness, anxiety and
neutral and their respective levels at any time. The generated model predicts an individual’s
dominant state and generates an emotional spectrum, 1x7 vector indicating levels of each
emotional state and anxiety. We present an iterative learning framework that alters the feature
space uniquely to an individual’s emotion perception, and predicts the emotional state using
the individual specific feature space.

Hybrid Feature Space for Image Classification: The objective is to improve the accuracy of
existing image recognition by leveraging text features from the images. As humans, we
perceive objects using colors, dimensions, geometry and any textual information we can
gather. Current image recognition algorithms rely exclusively on the first 3 and do not use the
textual information. This study develops and tests an approach that trains a classifier on a
hybrid text based feature space that has comparable accuracy to the state of the art CNN’s
while being significantly inexpensive computationally. Moreover, when combined with
CNN’S the approach yields a statistically significant boost in accuracy.

Both models are validated using cross validation and holdout validation, and are evaluated
against the state of the art.
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1.0 INTRODUCTION

The software design and engineering paradigm is at a tipping point. Industry centered static
solutions are being replaced by human centered solutions. For instance, within a span of a
decade we have moved from the static search engines based on lookup tables that were only
changed during massive platform updates to today’s dynamic search engines that make
individual specific recommendations based on every bit of information from live click
streams to social media. This is the beginning of data driven software design made possible

by advances in cheap computational horsepower[1]-[5].

1.1 Human behavior and machine perception

Despite the advances we are far from the “prefect” prediction engines. This can be
attributed to the quality and quantity of useful data. Human behavior is highly variable and
volatile. The goal of artificial intelligence is to imitate human behavior. This leads us to the
big question. How can a machine cope with the vast variability of human behavior? There
are two simple solutions. The first one is, increasing the type of data that a machine learning
algorithm trains on. Statistically, this would mean the addition of more predictors that
explain the variability within the target classes. The second would be human validation of
the machine learning outputs and modification of the feature space to represent the human
validation. In both scenarios, we are augmenting the feature space. In the first scenario is an
example of latitudinal augmentation (making a dataset wider by addition of additional
predictors), while the second scenario is an example of longitudinal augmentation (making a

table longer by increasing instances of recorded data)



Both techniques have their unique merits in increasing the prediction capability of
artificial intelligence applications. Both try and mimic certain unique features of human
perception. The first technique is an attempt to imitate the human ability of deductive
reasoning. The more information we have as humans, higher is the fine-grained prediction
accuracy. The second technique is an attempt to imitate the human ability of inductive
reasoning, where the individuals experience and training are used to make predictions for a

new scenario.

The premise can be better understood with a simple thought experiment. Imagine 2
graduate students are tasked with identifying the color of a bowling ball. To make things
interesting, let the wavelength of the light coming from the ball (its color) be exactly half
way between black and dark blue. Both graduate students from the Ubicomp Lab at
Marquette University write wonderful computer vison applications to identify the color. The
application developed by student 1 predicts black, and the application developed by the
student 2 predicts dark blue. Which one is correct? The short answer is both are correct and
incorrect at the same time. They are correct since they correctly imitate the creator’s
perception; they are incorrect since that is all they do. The model’s accuracy in identifying
color of the bowling ball ubiquitously is questionable at best. The tie is settled by a subject

expert from imaging Physics who declares the ball to be black.

Now, let’s look slightly beyond the mental warmup exercise. What will the
consequences be if the students were tasked with identifying the emotions certain videos
might induce? It is not possible to call a domain expert for whatever models our bright
graduate students come up with. The variability of emotion perception is a great example of a

problem where the prediction class is highly variable. A cliff diving video might induce



amusement in an adrenalin junkie but extreme fear in an individual with Acrophobia despite
the physiological state of the individuals being nearly identical. Machine learning requires
static prediction fields. Thus, the model would either predict “Amusement” or “Fear”, thus it
will fail to predict the correct emotional response for either the adrenalin junkie or the

Acrophobe.

1.2 Longitudinal Feature Space Augmentation

To solve this conundrum, we introduce the longitudinal feature space augmentation.
To understand this, let’s take the help of another thought experiment. We were all children
once upon a time. Imagine a child who has reached the age of reason, 7. How does that child
act? Most actions are learnt from his experiences with his peer group which is indicative of
the social norms prevalent (also a function of time). He perceives the kids consuming
alcohol behind the school to be cool, since that is the perception amongst his peers. Parental
guidance intervenes and now the child’s perception of alcohol is altered to being a bad
substance. What would the child do if he saw the same kids now smoking cigarettes? The
child does not associate it with being “cool” despite what the perception of his peers might
be. He can now connect the alcohol intake to cigarette smoking. Both being unsuitable for
his age. This perception is validated and strengthened by parental guidance. Over time, these

validated perceptions shape his behavior as an adult.

1.3 Latitudinal Feature Space Augmentation

Now, let’s assume the same scenario occurs at a boarding school. The child might not
have parental validation except for a goal to perform well in school. The child is aware of the

possible target class (success vs. failure). The “alcohol consumption” and “cigarette



smoking” are now a part of the feature space that the child uses to classify his peers into the
“successful” and the “failure” target classes. This is a great candidate for latitudinal feature

space augmentation.

These principles can be applied to machine learning problems. In this dissertation, we
will present solutions to two unique problems. While these problems and the presented
solutions are novel works of research in their own rites, we show the value in feature space

augmentation.

The first problem from the cognitive sciences domain is real-time prediction of the
human emotional state using physiological data from sensors. Here we will motivate and
evaluate the application of longitudinal data augmentation. The second problem is from the
computer vison domain is image classification of industrial equipment where we create a
novel hybrid feature space that employs latitudinal feature space augmentation to boost the

prediction accuracy.

1.4 Dissertation Outline

This dissertation in divided into 7 chapters. Chapter 1, Introduction motivates the thinking
behind feature space augmentation. Here we describe with simple examples the concepts of
latitudinal feature space augmentation and longitudinal feature space augmentation and their
connection to inductive and deductive reasoning in humans. We also present the motivation

behind the work and the novel contributions of this dissertation.

Chapter 3 looks at Problem1, emotion modelling and recognition in a control group. Chapter
3 is further divided into 9 subsections that talk about related works and taxonomy,

experiment design and data collection, research questions, survey data analysis, predicting



dominant emotional state in a 6 category classification problem (6 emotional states) and a 3
category prediction problem, predicting the emotional spectrum for a 7( 6 dominant
emotional states and Anxiety) and 4 output categories( 6 dominant emotional states and
Anxiety) and finally a proposed real time application. The feature space augmentation is a

part of this sub-section.

Chapter 4 looks at problem 2, Image classification using an augmented feature space. This
section is further divided into 5 subsections including related works and taxonomy, research

objectives, methodology, algorithm pipeline and evaluation.

Chapter 5 includes a conclusion section that talks about our contributions and broader impact

of this work.

Chapters 6,7 and 8 are the references, bibliography and the appendix respectively.



2.0 Motivation

Artificial intelligence is impacting our lives every day. Despite the concerns regarding the
impact of Al on the job market there are certain application where the urgent need for Al and
its potential game changing influence cannot be ignored. In this dissertation, we attempt to

solve two such problems.

2.1 Predicting the emotional state of an Individual

Background: Ubicomp Lab at Marquette University partnered with the Milwaukee PEERS
project in 2014 to understand the mathematics behind emotion perception in an ASD
population [6], [7]. “PEERS is an evidence-based, manualized, 14-week (16 weeks for young
adults), outpatient treatment program developed at the University of California at Los
Angeles. Dr. Van Hecke is certified by UCLA to provide the PEERS program at Marquette
University. ”’[6] The subjects include teens (ages 11-16) and young adults (ages 18-28) with
Autism spectrum disorder. Our lab collected physiological data and facial images from all
PEERS sessions since 2014. The goal of the data collection was to understand and model
emotion perception in ASD population. Specifically, event detection to recognize the
occurrence of anxiety. The results from facial recognition did not achieve the accuracy
required for clinical testing while the physiological data could not be used for event detection
due to the lack of target classes. Thus, we designed an experiment from scratch which
amongst other things allows for prediction of anxiety near real-time (with a lag of 60
seconds). Moreover, ASD is a spectrum disorder. There is variability in emotion perception
amongst individuals. To account for this variation, we propose the longitudinal feature space

augmentation based on human input. As a ground work for future research in mental



disorders we present and evaluate (against the state of art) a novel framework for individual
specific emotion modelling. Moreover, there is merit in modelling emotional perception in

general.

1. According to a recent study by the CDC and the National institute of health statistics
the rate of Autism in the United States is 1 in 45[8]. This makes Autism one of the
fastest growing developmental disorders.

2. The rate of Autism increased by over 119% between 2000-2010[9]

3. An economic forecasting study conducted at University of California Davis estimates
the current cost (direct medical, direct non-medical and productivity) related to ASD
to rise from 268 billion USD in 2015 to 461 billion USD in 2025[10]. This could
account for about 4% of the United States GDP. If the rate of increase does not taper,
the costs associated with ASD will exceed diabetes and ADHD by 2025.

4. Early intervention has significant cost benefits and benefits to the individual in
leading a fulfilling life [11], [12].

a. Over 65% of the cost associated with Autism is Adult spending[13].

b. These costs can be reduced by 2/3 if an early intervention is provided[14]

2.2 Novel Image Classification using a Hybrid Feature Space

Direct Supply is an industry in senior living. The senior living industry has seen massive cuts
in spending over the years while more of the demographic moves into assisted living and
skilled nursing facilities. These facilities have industrial equipment (assets) that are managed
by a service provider. Inventory management is a critical gear in this workflow. It is often

tedious and requires significant time commitment from the facility manager. The business



need for an automatic inventory system was presented in Summer 2016. The objective was
to train a computationally efficient (given limitations of mobile phones) classifier that could
distinguish between the 15 asset categories with a high accuracy. Current state of the art for
image classification include convolutional neural nets(CNN) that are highly compute
intensive and reduce an image to a minimum of 1x1000 array. This makes retraining the

network very expensive and limits mobile phone use.

2.3 Novel Contributions

Both works make novel contributions to the current body of scientific work in their

respective domains.

2.3.1 Predicting the emotional state of an Individual

We make the following contributions in through this research,

1. The design and implementation of a system that can distinguish between dominant
emotional states (using physiological data)
a. 6-category classification (87.4% accuracy)
b. 3-category classification (92% accuracy)
The reported accuracy is the highest for the number of prediction classes among all
surveyed works.
1. The design and implementation of a system to predict the emotional spectrum
(levels of all 6 dominant emotions and anxiety) for an individual. This is a

completely novel work with nothing similar found in the literature review.



1il. A novel feature space augmentation algorithm that allows the feature space to be
tailored to the emotion perception unique to every individual. This is a completely

novel work with nothing similar found in the literature review.

1v. An in-depth study that spatially locates the emotions (based on feature space) and
identifies variability in emotional perception and over laps between dominant

emotions.

v. We achieve functional accuracy using PPG alone (the technology in most modern
hears rate monitors). The accuracy is 87.4 % in a 6-category classification and 92%
in a 3-category classification was achieved. This is significant since our system can
be implemented using only a 25$ wearable sensor watch (heartrate only). This is
significant cost savings when compared to other commercial systems that cost

upwards of 15008. Our technology can be massively scaled due to the low costs.

vi. We will share a data set of over 600 instances (each instance contains a 1x7 survey
response and 5 physiological time series and a class), the raw data set with the
videos used for the study and the data collection application as part of supplemental

materials. This is the largest dataset (number of subjects) recorded to date.

2.3.2 Novel Image Classification using a Hybrid Feature Space

i.  Algorithm to re-encode based on a text based feature space. This feature space has unique
properties. It performs as well as the state of the art CNN’s while training a classifier on a
15-dimension feature space compared to 1000°s of dimensions in the CNN. This leads to

significant computational efficiency (training times and prediction speeds)



1.

10

Higher Information hybrid feature space- the addition of the text based features leads to a
statistically significant information gain creating a classifier that boosts the classification
accuracy of the state of the art image classification algorithms including Neural nets and

key point extractors.
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3.0 PROBLEM 1

Problem Statement: Emotion modelling and prediction uses real time wearable sensors. We
are surrounded by an IOT web where our interactions with the digital world, are used to
predict our actions to some end. Most of these predictions are centered around the physical
world, such as activity recognition and fall detection, in this study, we focus our attention on
the psychological world and emotional state of the individual. During an experimental study
with 85 participants we induced specific emotions using audio-visual stimulus and collected
physiological data, including heart rate, blood volume pressure(BVP), inter beat interval(IBI)
and electrodermal activity(EDA) along with a self-report indicating the levels of 6 emotional
states, Amusement, Anger, Sad, Disgust, Fear and Neutral. Additionally, we recorded a self-
reported score for Anxiety. The videos used to induce emotions were validated in a recently
published study in Psychology. The data collected was used to create models that identify the
dominant emotional state and predict the emotional spectrum (levels of all emotional states)
of an individual. An iterative learning framework is implemented to account for variability in
emotional perception (the same stimulus might induce opposite emotional responses in
different individuals) and generate an emotional spectrum unique to the individual. We report
over 87 percent classification accuracy in a 6-category classification (dominant emotional
state) and over 92 percent accuracy in a 3-category (positive, negative, neutral) classification.
The emotional spectrums for the 6-state classification were modelled using the self-report
data and the physiological data recorded during the experiment. The model was implemented
in a server based application to identify the dominant emotional state and produce the
emotion spectrum using 60 second streams of physiological data collected using wearables.

Finally, we outline key implications for the design and implementation of a real-time
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application with an iterative learning module for the prediction of the dominant emotional

state and the corresponding emotion spectrum, unique to an individual’s emotion perception.

Emotion Recognition using wearable sensor Data

Recognize the emotional state of an individual using data collected from a wearable
sensors for a real time implementation

Novel Contribution

Variablity in
perception
Human Emotion S
Overlap of Accuracy
N N emotional states
—e Granularity
Data Collection —
Equipment Computational
— | Effeciency

Is it a saperate

Understand emotion?
Anxiety = -
Is it some function

of other states?

Figure 1: Research Objectives

The paradigm of situation-aware applications focuses at providing solutions unique to
the situation of an individual. Significant effort has been put towards understanding the
components that can define the state of an individual [15]-[20]. As a general example, two
individuals that walk into the same room might have entirely different emotional states. One
could be the boss and other the employee about to be fired. The major challenge from a

situation awareness perspective is how we can identify those unique states. Moreover, we
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need to establish if one dominant state can sufficiently define the emotional state. With
respect to the boss-employee example, the employee would possibly experience a multitude
of emotions such as anger, fear, anxiety and disgust. Which one of these states would be the
dominant emotion would vary based on individual’s experiences and perception. In this
study, we demonstrate an approach to identify six dominant emotional states and the emotion
spectrum unique to an individual (1x6 array with levels for each emotional state) using
psychological data recorded during an experiment. Moreover, we propose and implement an
iterative learning framework that allows for the general model to evolve and tailor itself to
itself to the emotion perception unique to an individual. The current state of the art real-time
emotion detection leverages the advances in computer vision to detect small changes in facial
features [20]-[22]. This approach, while being highly efficient, is limited to the times when a
facial image of acceptable resolution is available. Our approach allows for continuous
emotion monitoring using a low-cost wearable heart rate monitor. This will allow us to tie the
state of an individual to the data collected from the individual IOT touchpoints, thus creating

a holistic picture that unites the digital world to human psychology.

3.1 Related Work and Taxonomy

We compare our system to the state of the art research in the public domain based on the

following characteristics,

Prediction accuracy: Prediction accuracy refers to the percent of instances classified

correctly by a machine learning algorithm. Our system achieves a maximum of 92 %
accuracy for a 3-category classification (Positive, Negative and Neutral) and an 87.4%

accuracy for a 6-category classification (Amusement, Sad, Fear, Neutral, Anger, Disgust).
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This is referred to the valance level in a lot of research. The arousal level (low, medium,

high) is a continuous variable (0-100) in our work.

Prediction granularity: Granularity refers to the number of predicted classes. Our work

includes,
o 6 category Classification —valence level
o 3 category Classification - valance level

o 1x7 Emotion spectrum with scores for valence level categories and Anxiety

Computational efficiency: Computational efficiency can be derived from the time taken for

feature extraction, training a classifier and prediction times. Since this information is not
readily available for most of the published research, we will compare the dimension of the
feature space as a measure for computational efficiency (, higher feature dimensions require
higher training times, more complex models and higher prediction times). Our feature space

is 3 dimensional.

Scope of Real time implementation: Real time implementation depends on multiple factors.

The most important being a continuous data stream (use to predict state). This could be
physiological data, facial images, audio data and data from social media. The second critical
requirement is mobility. It is not practical to expect mass use of a system that requires
multiple sensors strapped to an individual. Wearable sensor used in our work, E4 Empatica
wristband provides a great balance between a continuous data stream and non-intrusive and

non-obstructive data collection[23].



15

Implementation of an iterative learning framework: This is an element unique to our

work alone. It allows the Al predicting emotional states to rapidly evolve and tailor the
feature space uniquely to an individual’s emotion perception. Moreover, an iterative learning
framework acknowledges that emotions do not exist discretely; there is overlap between
affective states (proven in the analysis section). Thus, at any time there exists an emotional

spectrum, a 1x 7 vector with the proportion of each affective state and anxiety.

The autonomic nervous system regulates the unconscious actions of the body. It
includes two primary divisions: Sympathetic nervous system (SNS) and Parasympathetic
nervous system (PSNS). Sympathetic nervous system- like other divisions- operates through
a string of tightly interconnected neurons[24], [25]. Albeit a significant portion is within the
CNS (Central Nervous System), the Sympathetic nervous system is commonly considered as
one of the components of the PNS (Peripheral Nervous System). The fundamental process of
the sympathetic nervous system is to excite or stimulate the fight-or-flight response of the
human body. On the other hand, the fundamental process of the parasympathetic nervous
system which is to stimulate the "feed and breed" response, and after that, to the "rest-and-
digest" response of the human body[26], [27]. From a computer scientist’s perspective, we
can think of the SNS and the PSNS as systems that counter each other. For instance, how
angry one might become is governed by the SNS and the rate at which the individual calms
down is governed by PSNS. Hence, it is theoretically possible to model one system if the
response from the other is known.

Significant work has been done in the affective computing domain aimed at
identifying affective states using data from wearable sensors, facial recognition, audio signals

and even social media. A 2017 work by Ragot et al. compares the effectiveness of laboratory



16

sensor BIOPAC-MP150 to a wearable sensor Empatica E4 in terms of emotion recognition
accuracy [23], [28], [29]. The study with 19 subjects validates the use of wearable sensors for
emotion recognition outside the laboratory based on the physiological response recorded by
both systems to the International Affective Picture System (IAPS) database [30]. The data
was categorized under three levels of valence, positive, negative and neutral and three levels
of arousal, high, medium and low. Nine specific features including HR, AVNN, SDNN, and
rMSSD, Pnn50, LF, HF, RD and AVSCL were extracted to train the machine learning
classifier. The authors used an 80-20 split with cross validation, reporting 66% accuracy for
the valence level and 70% accuracy for the arousal level. Minhad et al. presented a study
that uses physiological sensor data (specifically skin conductance) to model the emotional
states of happiness, sadness, disgust, fear and anger [31]. The authors report an accuracy of
over 70 % across the 5 categories. A 2016 study titled An Emotion Recognition System
Based on Physiological Signals Obtained by Wearable Sensors by He et.al conducted
experiments aimed at inducing joy, sadness, anger and pleasure on 11 subjects [32].
Electrocardiogram (ECG) and respiration (RSP) were recorded. The authors use a 145-
dimension feature space to for classification with a SVM. The recognition accuracy was
81.82, 63.64, 54.55, and 30.00 % for joy; sadness, anger, and pleasure, respectively
(average accuracy of 57.34%). Maaoui et al. published their work on emotion recognition in
2010[33]. The study used a linear discriminant classifier trained on a 30-dimensional feature
space to predict 6 valence levels with an accuracy of 92%. The features space is derived from
50 second recordings of Blood volume pulse, Electromyography, Skin conductance, Skin
Temperature and respiration for a subject pool of 10 participants. The features extracted are

taken from Picard et al. [34] . While this work has a higher accuracy than our valence level
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predictions (87.4%) the training set for this work includes 6 instances 50 second time series
for each emotion compared to over 65 instances of 50 seconds-120 seconds time series for
each emotion in our work. The 2001 work by Picard et al. at is one of the most iconic works
that laid the foundation of emotion recognition using physiological data [34]. The proposed
feature extraction is still widely used (along with other features) in the research community.
The authors gathered data from 4 sensors measuring electromyogram, blood volume
pressure, skin conductance and respiration. 6 features are extracted from each time series.
The feature space was used to predict the emotional states including Neutral, Anger, Grief,
Joy and Reverence using Fisher projection and Sequential floating forward search. The 5-
category classification yielded a 46.3% accuracy and a 3-category classification (Anger, Joy

and Reverence) yielded an 88.3 % accuracy.

In Emotion Recognition Using Bio-sensors: First Steps towards an Automatic
System, Haag et al. utilize EMG, EDA, ST, ECG, Respiration to create a feature space
contain the running mean, running standard deviation and slope of the signals to predict the
valance and the arousal level[30], [35]. A neural net is used as a predictor. Results were
evaluated based on a tolerance of 10 and 20 percent (i.e. if the prediction was within the
tolerance, the instance was classified correctly). A 10 percent bandwidth (tolerance) leads
to 90% classification accuracy of valance levels and 63% accuracy in arousal levels. The
major concern we have with this research is that the entire study is based on data collected
from 1 individual. Moreover, valance and arousal describe a plane where all emotions lie
and not the location (coordinates) of emotional states. Thus, the classification is abstract
(high valence-high arousal, low valance-low arousal, high valence-low arousal and low

valence-high arousal).
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To recognize emotion in speech, J.P. Arias et al. presented a shape-based modeling of
fundamental frequency contour in 2014 [36]. Here, with the help of the functional data
analysis, they suggested neutral reference models identify emotions in the fundamental
frequency and experienced considerably higher accuracy. This approach was applied to
identify the most emotionally striking segments, and by using a natural database, verified at
the sub-sentence level.

Zhang et al. delineated the process to detect emotions (happy, sad and neutral) by using
the Kinect 3D Facial Points[37]. For this purpose, the authors used 1347 3D facial points by
the Kinect V2.0, selected the key points, and performed the feature extraction. Machine
learning classifiers were employed to create the emotion identification models.

Soleymani et al. presented a continual emotion detection approach using a unique
combination of facial expressions and EEG signals[38]. In this approach, each subject was let
to view a short emotional video. Then, multiple annotators were set to continually provide
the valence levels by following the frontal facial videos of each subject. Here, besides the
facial fiducial points, the authors used power spectral features from EEG signals as features
to identify the valence levels for each of the frames. In [39], Claudio Loconsole et al.
proposed a unique methodology to extract facial features and recognize the facial emotions
automatically with high accuracy. Employing real-time face tracker, they extracted two
distinct features such as linear features and eccentricity. Then, these features trained the
machine learning classifiers. This method allowed 6 primary Ekman's emotions classification
in real time without requiring any prior information of facial traits and manual intervention.

To detect human emotion, M. Liu et al. combined multiple kernel methods on the

Riemannian Manifold at [40]. In this approach, each of the video clips was described by the
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covariance matrix, linear subspace, and Gaussian distribution. These images set models
were observed as points residing on Riemannian manifolds. After that, for similarity
measurement, Riemannian kernels are applied on these models accordingly.

Veenendal et al. analyzed the emotion recognition in a group and crowd
ambiance[41]. In this course, the edge detection was practiced with a Mesh Superimposition
to extract the regarding features. The authors applied the feature movement (based on the
shift from the reference point) to track across the strings of the images from a color channel.
Furthermore, to validate their approach, they captured video of a group of subjects on
spontaneous emotions while watching sports competitions.

R. Rakshit et al. proposed emotion detection using HRV (Heart Rate Variability)
features obtained from the PPG (photoplethysmogram) signals in[42]. In this study, a Pulse
Oximeter was used to collect heart rate signals and detect emotional states. The HRV
features are obtained from both the time and frequency domain and then employed for
emotion classification. The researchers extracted features from the PPG signal received in the
baseline neutral and the emotion elicitation phase. Employing the HRV features, as well as
the standard video stimuli, they analyzed three emotions: happy, neutral, and sad.

Rao et al. proposed an affective topic model for the social-emotion recognition
regarding the social media platform and offered an intermediate layer to meet the objective
[43]. This model can be implemented to classify (or incorporate) the social-emotions
regarding the unlabeled documents (texts or records) aimed at developing a social-emotion

lexicon.
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Lei et al. concentrated on building a social-emotion identification approach for the
online reports leading to social-emotion lexicon generation [44]. It also focused on emotion-
ambiguity detection and the context-dependence of the sentiment orientations.

To enhance the multimedia Content, F. Yu et al. presented an experimental research
on the speech-based emotion recognition in [45]. The primary dataset is a collection of
written texts comprising of emotional speech with 721 short speeches. These speeches
express four target emotions (happiness, anger, neutral, and sadness. The investigation

revealed that the emotion prediction based on textual data alone is not accurate.
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Figure 2: Taxonomy of emotion detection

Based on the literature survey we can break down the Emotion recognition application into 5

major categories listed in Figure 2: Taxonomy of emotion detection. While surveys, audio, facial
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images and social media have their merits, they are not suitable for the problem we are trying
to solve. Our goal is continuous emotion recognition, possible exclusively via mobile wearable
sensors. The data flow from audio and social media is not continuous. While 24-hour video
feeds of surveys (even at discrete time intervals) are not practical. Moreover, the social media
data and video feeds (for facial image based emotion recognition) pose significant privacy and
security risks for an individual. Moreover, a significant work done using wearable sensors
involves devices such as electrocardiograph and respiration rate monitors which are not
mobile. A wearable senor watch is a practical solution (if it can make accurate predictions)

for a system that can be scales across a wide variety of populations.

3.2 Experiment Design and Data Collection

We conducted an experimental study to collected survey responses and physiological time
series data in response to a data set of videos. 85 subjects between the ages of 18-24 were
recruited for the study. The data set used was leveraged from Hewig et al. that recorded
survey responses to classify the videos into dominant emotional states [46]. These states

include Amusement, Anger, Neutral, Sad, Fear and Disgust.
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Figure 3 Pertinent Research Questions

The data for our study was collected using an application deployed on R Shiny
server. Each subject watched 9 videos, 1 from each emotional state and the other 3 were
randomly selected from distinct emotional states. Physiological time series data including
heartrate, blood volume pressure, electrodermal activity and inter-beat interval was recorded
using the Empathica E4 wearable sensor watch [23], [47]. After each video, the subjects
completed a survey rating the emotional states on a scale of 1-10, with an additional score for
Anxiety. All participants arrived at the study location 15 minutes prior to the scheduled start
time. The participants waited in the lobby with a graduate student who explains the entire
process. This allowed the emotional state to be normalized before participating in the study.
The survey after each video was also intended for the same purpose with the goal being to

prevent bleeding of emotional responses from one video to another.
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3.2.1 Videos Used for emotion induction

The primary goal of the study is to identify the dominant emotional groups using the
physiological response from an individual. Thus, we must ensure that the model is not fitted
to the physiological responses from a certain video of a certain length. To achieve this, the
training data (used for model generation) for each emotional state contains responses from 3
distinct videos of different lengths. This allows us to capture the features that are specific to
an emotional state and not a specific video. Moreover, it adds the constraint to the feature
selection process, i.e. the features used for model generation should be independent of the
length of physiological time series. The video data set was manually curated by our
team. The video playlist can be found at,

https://www.youtube.com/playlist?list=PLijCBhI2RQVqIWKcishzr22R 1 ghBKRNfnL

Table 1: Videos used for inducing emotion

Movie Target Emotion Length
Witness Anger 2:12
Gandhi Anger 3:02
My Bodyguard Anger 4:20
When Harry met Sally Amusement 3:19
On Golden Pond Amusement 1:26
An officer and a gentleman Amusement 2:21
Silence of the Lambs Fear 3:56
Halloween Fear 4:16
Marathon Man Fear 3:00
Pink Flamingos Disgust 1:07
Maria’s Lovers Disgust 1:42
The Godfather Disgust 1:53
An officer and a gentleman Sad 2:33
The killing fields Sad 2:30
The Champ Sad 4:08



https://www.youtube.com/playlist?list=PLjCBhI2RQVqIWKcishzr22R1ghBKRNfnL

The Last emperor ‘ Neutral 2:04
Hannah and her sisters Neutral 2:16
All the Presidents’ men Neutral 2:02

Marquette University Video Validation

Happy

Mea  Fill the detalisicomplate the Survey

Figure 4: Data Collection application hosted on shiny.io

The data collection application can be found at https:/marquetteubicomp.shinyapps.io/Validation/

3.2.2 Application architecture

A sample instance of the data collection process can be seen below in Figure 4. Each study

consists of 9 instances tied together by a random ID. IRB approval was obtained by

Marquette University’s office of research and sponsored programs (OSRP) []. One of the
defining features of this work is the size of the subject pool. The objective here was to

accommodate every participant within a 30-minute window and have a less than 5-minute
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turnover (time between consequent participants) while maintaining data quality and integrity.
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The video-survey loop is repeated 9 times. Every new participant initiates a unique randomly
generated key. After each survey, a .csv file with the random key, video ID (string defined by
unique video name and the order in which the video appears), time stamps (beginning and
end of video) and 1x7 array from the self-report is uploaded to drop-box. Once the subject
clicks the final submit button a subroutine (R script) automatically moves the data for the
instance (entire study duration for a subject) from the watch to the E4 administered server
and from the E4 server to drop box with the unique key generated (generated for the survey
data) for the individual. The process generates a data frame in R. This allows the researchers
to run data validation and integrity subroutines in real time and identify errors caused due to
equipment failure or software failure (glitch in the collection application) in real time.
Moreover, this data structure allows for easy analysis since the data can be sorted by
individual subjects, video-id, survey results or the target class. The target class is the class

associated with the video as validated in Hewig et al.[46].

Table 2: Data Structure for each instance

Subject | Video | Time | Time | E4 E4 E4 E4 Survey Target
ID ID Start | End | Data- | Data- | Data- | Data- | Results Class
HR | EDA | IBI | BVP

INT STRING | NUM | NUM | TS TS TS TS 1X7 STRING

ARRAY




26

Consent Form

Instructions

|
Step 1
l

Press the red button once

Ptk peit el e il T
B the 1en shite wernune

Prewe (P renl Dl e Ve
Now please..
1. Complete the Survey:

2. Then click “Submit™ button:

Bemoere your finger from the white sermar

il

Step 1
!
Video end

3. Once Submittied, click on the next video:

Figure 5: Data collection sample instance workflow
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3.2.3 Physiological Signals

The physiological signals were recorded using Empatica’s E4 wristband and Q-sensor[23],

[47].

Electrodermal activity(EDA): EDA is a measurement of the changes in the skin
conductance. Emotional activation, increased cognitive workload or physical exertion lead to
the bodies response of sweating. The electrical conductance increases significantly (to be
detected by sensors) due to the increased sweat accumulation in sub dermal pores[47]. The
E4 sensor passes a small current through the electrodes in dermal contact and measures the
skin conductance. Higher activation leads to larger volume of sweat accumulation in
subdermal pores and thus, higher skin conductance. The EDA is measured in micro

Siemens.[47] . The compound EDA signal is composed of,

Tonic EDA: This refers to the baseline skin conductance, in absence of external stimuli.

Graphically, these are the smooth underlying slowly changing signals[47].

Phasic EDA: These refer to the abrupt increase in the skin conductance level. Phasic EDA is

not continuous and highly correlated with external stimuli[47].

Blood Volume Pulse, inter beat interval and Heartrate: The E4 uses the
Photopletysmography (PPG) to estimate the Blood volume pulse[47]. This is the same
technology that is used in most modern day wearable sensor watches. Heartrate is derived
from the PPG signal by computing the intervals between adjacent peaks. The inter beat
interval timing is used to compute the instantaneous heart rate. The E4 watch combines a red

and a green light to remove motion related artifacts from the BVP signal[47]. The IBI signal
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refers to the distance between heartbeats. The algorithm to calculate the PPG is a proprietary

and undisclosed[47].
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Figure 6 : IBI calculation using PPG[47]

3.2.4 Data Cleaning and Preprocessing

The biggest source of error was empty surveys, i.e. the individual watched the video but
submitted a survey with zeros for all response categories. While this data can be used to see
if there is a map between the physiological time series data and the true classification (based

on Hewig et al.[46]) it cannot be used to model the emotional spectrum. Thus, the data
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corresponding to zero survey responses was discarded. Other sources of error included
equipment failures and human error. There were instances where the sensor watch recorded
no data and had to be reset and instances where the individual loosened the sensor watch
leading to non-continuous dermal contact and thus, erroneous readings. The application was
created to ensure minimal pre-processing with subroutines that generated indicators of data

quality for each instance. These are explained in detail in the experiment design section.
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Figure 7: Splitting the Time series data by instance

3.3 Research Questions

To model emotional response as a function of physiological sensor data we need to develop
a better understanding of emotional response. These questions (below) are critical for
modelling the emotional spectrum and have implications in the development of a real-time
application. In this section, we develop the hypothesis that will be tested in the later

sections.
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3.3.1 Understanding Emotional Perception

i. Emotional perception is variable and differences exist amongst individuals. While
majority of the data should validate the true class (dominant emotional state)
established in Hewig et al. we expect instances with deviations [46]. Two completely
similar physiological states might be caused due to different emotional states in two
individuals. There is a higher likelihood that variation in perception would arise in
emotional states closely related e.g. anger and fear.

ii. We predict the existence of an emotional spectrum. The emotional state might have a
dominant component but it is a mixture of emotions.

iii. We can leverage the physiological time series data to spatially locate the emotional
states and understand their overlap. For instance, “Amusement” and “Disgust” might lie
on the opposite ends of the spectrum, while “Sadness” and “Fear” might lie closer to
“Disgust” and even overlap. We can reconstruct this space using the features extracted
from the physiological time series that best distinguish between the target class. This
feature space is unique for every individual and a function of time. It changes over time

with life experiences.

3.3.2 Understanding Anxiety

The original dataset from Hewig et al. did not include anxiety as an emotional state [46]. The
survey was designed to include a score for anxiety. We predict that anxiety exists as a non-
continuous emotional state that overlaps multiple dominant emotional states. i.e. it is possible

to be anxious waiting for good news, overlap with / proximity to “Amusement” and it is
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possible to be anxious anticipating something negative, overlap with /proximity to “Fear”,

“Disgust” or “Anger”

3.3.3 Existence of a map from physiological data to dominant emotional state

We predict that the existence of a unique feature space (derived from the physiological data)
which can be leveraged to train a machine learning classifier that distinguishes between the

target classes with very high accuracy.

3.3.4 Existence of a map from the physiological data to the survey data

We predict the existence of a map (multivariate regression or neural net) that connects the
survey data to the physiological data (feature space derived from physiological data). Thus,
we believe it is possible to predict survey results with high accuracy given the physiological

feature space.

3.3.5 Observation Period for real-time application

The primary goal of the data analysis is to develop a model independent of the length of the
physiological time series that identifies the dominant emotional state and the corresponding
spectrum. However, for a real-time implementation we need to identify a time *“t” for which
to extract the features, classify the dominant emotional state and generate a spectrum. We

suspect this would be a machine learning and simulation problem.
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Figure 8: Pertinent Research Questions

3.4 Survey Data Analysis

As we test the hypothesis and try to get answers to the research challenges posed it is
important to identify the end goal. We want to use physiological sensor data to identify the
dominant emotional state and predict the emotional spectrum. We expect higher error rates
while predicting the emotional spectrum due to variability in emotional perception. However,
we expect both models to serve as a basis for the iterative learning that allows for the model
to evolve and tailor itself to the emotional perception of the individual. We will use survey
responses to model the emotional spectrum as a function of the physiological time series

features.



3.4.1 Survey Responses

We would expect the distribution of the survey results for a target emotional group to be

unimodal. i.e. for a target class (Amusement, Anger, Disgust, Sad, Fear, and Neutral) all

responses would lie within that target class. However, this is found to be not true. Table 3

contains correlations amongst columns for each of the target class. The data from each subset

was normalized (mean of column set to 0 and variance set to 1). The reason for this step is to

have a relative distribution of the column (survey responses for the magnitude of the state)

across the entire population. The p-values associated with the correlations can be found in

Table 4.

Table 3 Correlations between dominates states for a target class

Target Class

Neutral
Anger
Amusement
Fear
Disgust

Sad

Amusement

0.088561

0.094521

-0.07152

-0.29017

0.062531

Neutral

-0.01167

-0.20043

-0.19728

-0.30572

-0.31094

Anger

-0.10399

0.174053
0.187189
0.466622

0.247254

Fear

0.15654

0.330934

-0.01881

0.46505

0.39548

Survey Reponses-Correlation

Disgust

-0.02272
0.414545
-0.12139

0.100622

0.229376

Sad

-028448

0.46673

0.190844

0.198019

0.385963

Anxiety
0.009395
0.293252
-0.01241
0.623399
0.482161

0.336707
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Table 4 P-value for the correlations in Table 3

Target Class Survey Responses

Amusement Neutral  Anger Fear Disgust  Sad Anxiety
Neutral 0.395989 NA 0.318571 0.131884 0.82794  0.005455 0.928389
Anger 0.383848 0914553 NA 0.001743 6.56E-05 5.20E-06 @ 0.005841
Amusement NA 0.059661  0.102832 0.86111  0.257122 0.073217 0.908082
Fear 0.502937 0.062351  0.077286 NA 0.345353  0.061361 5.30E-11
Disgust 0.006406 0.003982  5.23E-06 5.67E-06 NA 0.000222  2.26E-06
Sad 0.55821 0.002855  0.0188 0.000114  0.029652 NA 0.001175

3.4.2 Variability in emotional perception

Emotional perception is unique to everyone. Despite being in the same physiological state the
perception can be different amongst two individuals. The boxplot below shows the
distribution of level of Neutral (survey response) across all dominant emotions. While most
of the survey responses lie within the neutral category, there are statistically significant
responses under disgust and amusement indicating, the subjects had a neutral response to
videos intended to induce amusement and disgust. A possible reason for this could be
cultural changes. The videos used in the study are from popular movies released before the
year 2000 while the study population consists of individuals between the ages of 18 and 21.
This it is likely, that certain videos failed to induce the target emotion in a portion of the

population. This is different from overlap of emotional states (discussed in 3.4.3) since there
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is almost no correlation between “Neutral” target class and “Amusement”, “Disgust” survey
responses. Moreover, Amusement and Disgust lie on opposite sides of Neutral with respect
to emotional perception. Thus, we can conclude that this is an example of the variability in

emotional perception.

Table 5: Correlations amongst survey responses for "Neutral"

Target Class Survey Reponses-Correlation
Amusement  Neutral Anger Fear Disgust Sad Anxiety
Neutral 0.088561 1 -0.10399 0.15654 -0.02272 -028448 0.009395
Target Class Survey Responses, P-value associated with the correlations
Amusement Neutral  Anger Fear Disgust  Sad Anxiety
Neutral 0.395989 NA 0.318571 0.131884 0.82794  0.005455 0.928389

Distribution of survey responses from”Neutral” across dominant emotional states
T T T T

|

Survey Value (unitless)
[=] - N w o 6] [+:] ~ o [+]
T

| L 1 L} 1 1
Disgust Sad Neutral Amusement Anger Fear
Dominant emotional states

Figure 9: Distribution of survey responses from “Neutral" across dominant emotional states



3.4.3 Overlap in emotional states

We must also account for the overlap of emotional groups. While there is no overlap in
extreme states such as amusement and disgust, there is significant overlap between closely
associated emotions. The boxplot below shows the distribution of level of Disgust (survey
response) across all dominant emotions. Unlike Table 5, where there is a statistically
significant difference in the mean of responses between Neutral and other emotional states
the, box plot in Figure 9 indicates an overlap between the states of Disgust (target class),
Anger and Fear. Moreover, Fear and Anger survey responses have a relatively high,

statistically significant positive correlation for the target class “Disgust”.

Table 6: Correlations amongst survey responses for "Disgust"

Target Class Survey Reponses-Correlation
Amusement Neutral  Anger Fear Disgust  Sad Anxiety
Disgust -0.29017 -0.30572 0.466622 0.46505 1 0.385963 0.482161
Target Class Survey Responses-, P-value associated with the correlations
Amusement Neutral  Anger Fear Disgust  Sad Anxiety

Disgust 0.006406 0.003982  5.23E-06 5.67E-06 NA 0.000222  2.26E-06

36
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Distribution of responses for "Disgust” across target emotions
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Figure 10: Distribution of responses for "Disgust" across target emotions

3.4.4 Anxiety

The boxplot (Figure /1) below shows the distribution of level of Anxiety (survey response)
across all dominant emotions. The survey responses indicate that anxiety is a discontinuous
state that intersects with the emotional states of disgust, sad, anger and Fear. The means and
the standard deviations are statistically very close for the states of disgust, sad and anger
while the mean is higher for the state of fear, indicating that higher levels of anxiety occur in
conjunction with fear. Moreover, there is statistically significant correlation between the

target class’s “Fear”, “Disgust”, “Anger”, “Sad” and survey responses for “Anxiety”.



38

Table 7: Correlation between Anxiety responses and responses from target class's

Dominant Emotional States (survey responses)

Anxiety Amusement = Anger Fear Disgust Sad Neutral
Correlation -0.012 0.293 0.6233 0.4821 0.3367 0.009
P-value 0.928 0.0058 0.0000 0.0000 .001 0.092

Distribution of survey responses for "Anxiety" across dominant emotional states
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Figure 11: Distribution of "Anxiety “across dominant emotional states

3.4.5 Predicting Dominant State using Survey Data

Validating survey results provides us an insight into individual emotion perception, overlaps
in emotional states and establishes the credibility of the data set as a reliable source of audio-
visual stimuli for induction of the target emotional state. For this model, we used 537 survey

observations of 6 dominant emotional states. We used a Linear SVM classifier. While the
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model achieves an overall accuracy of 73.7 %( 25%hold-out validation), it provides
important insights into emotional perception. The model results indicate,

1. The variability in emotion perception and overlap between emotional states is more
significant between states that are closer (we will define a feature space later in this
paper). E.g. 21 % of videos with “Disgust” as the true response were miss-classified
as “Fear. This reinforces the concept of overlap of emotional states discusses in
3.4.3.

ii.  The neutral category has the highest false discovery rate. This reinforces the concept

of variability in emotional perception discussed in 3.4.2.
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Figure 12: Confusion Matrix -predicting dominant emotional state given survey data
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3.5 Predicting Dominant Emotional State -Six Response Classes
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The next step per the research objectives is to find a map between the physiological data and

the dominant emotional state. To accomplish this, we must assume there exists a feature
space that explains the variability within physiological data for our target class’s. Once this
feature space is found we train multiple machine learning classifiers to identify which

classifier leads to the highest accuracy for the chosen feature space.
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3.5.1 Feature Selection

The feature selection process was ad-hoc. We examined each possible feature individually to
determine if its use as a classifier would be warranted. One again due to variable length time
series, the features was scale independent. Our analysis revealed that the RMS levels (for EDA,
HR, and BVP) were the best predictors for classification into the 6 dominant emotional
states. We tested feature spaces composed of multiple predictors from time domain and the
outlined in [34]. These include, mean, median, variance, mean of absolute first differences,
mean of absolute second differences, mean of absolute value of first differences and mean of
absolute value of second differences. The frequency domain signals included magnitude and
phase information from signal FFT, signal periodicities, signal power etc. The RMS level of
normalized signals performed best with our dataset. We also tried a reconstructed phase space
approach well suited for non-linear time series[48], [49]. While the approach shows promise
the classification accuracy was lower than the one through RMS level and the computational

needs are significantly higher making real-time implementation challenging.

RMS Level - normalized HeartRate
I | I I |
0.998 — — ﬁ ‘ =
0.996 =T | I { ‘ 4
; — 1 -
: —l__ g I
0.994 — I g -
——
_ +
$ 0992 [~ 5|
o
- —
(%]
= 099 ¥
o [
[
0.988 ; ~
[
i
0.986 — =
1
1
0.984 — 1 =1
1 | | I 1 |
Disgust Sad Neutral Amusement Anger Fear
Dominant Emotional States ( Classification Categories)

Figure 14: Distribution of HR feature across 6 dominant states
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Figure 16: Distribution of EDA feature across 6 dominant states

3.5.2 Prediction accuracy for a 6-category classification

The feature boxplots in Figure /4,Figure /5 and Figure /6validate the use of root mean square
level of the physiological data (hear rate, electrodermal activity and blood volume pressure) as

predictors for the classification model. The model was trained using 410 instances and tested
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on 140 instances. The cubic KNN model achieves the highest accuracy (using only
physiological data) using all three features (87%). Using heartrate alone the cubic KNN
achieves an accuracy of 77%. A cubic SVM that combined the physiological data with the
survey responses achieves an accuracy of 93%. This is significantly higher than the accuracy
achieved using survey responses alone (79%). While this, does not have any implications for
the real-time application (uses only physiological data), it reiterates the information gain due

to the physiological data. We calculate RMS for normalized signals.
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Figure 17: Model Accuracy for a 6-category classification
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Figure 18: Confusion matrix for 6-category classification | 87.4% accuracy

An accuracy of 87.4 % was achieved using the feature space constituted by EDA, BVP and
HR time series features using a Cubic KNN classifier. This result further validates the
concepts of variability in emotional perception and overlapping emotional states. The
accuracy of physiological data — target class is higher than survey data- target class. This
indicates similar physiological states in two individuals might have different emotional
states. In most scenarios, we expect variability in perception, for instance “Neutral” being
classified as “Amusement” in some cases and “Anger” in some cases. While, in other cases
we can expect an overlap of dominant states. Such as Fear being classified as “Anger” and

vice versa.
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3.5.3 Feature Space for a 6-category classification

As hypothesized in 3.4.1 we plot the feature space for the six dominant emotional

states. The observations (features representing the dominant emotional states) are represented
by points in the plot using principle component analysis. The feature space validates the
hypotheses in 3.4. The cluster centers (center of the ellipse) for Disgust and Amusement are
far apart. There is also significant overlap between Fear, Sad and Anger. Figure /9 is a PCA
visualization of the feature spaced used to train the classifier. It makes sense intuitively since
the cluster centers of all negative emotional states except Disgust are a lot closer and show
significant overlap while the distance of the “Neutral” cluster is closer to Amusement than

Disgust.
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Figure 19: Spatial Locations of Emotional States for a 6-category classification



3.5.4 KNN Classifier

A KNN Classifier is used with the following hyper parameters,

The number of nearest neighbors , 5

Distance measure , Minkowski

Weight measure , equal

Distance weight measure , inverse square

These hyper parameters are validated in the Evaluation section. The cubic KNN classifier is one of

the simplest classifiers. It is very effective for our problem given the low dimension feature space.

46
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3.6 Predicting Dominant Emotional State -Three Response Classes

For a three-response classification, the data from Sad, Angry, Disgust and Fear was binned
together in a category named “Negative”. The data from Amusement was named “Positive”.
A data set with 90 instances of each category was randomly sampled. Statistical and time

series features were extracted from each instance.

3.6.1 Feature Selection

The feature selection process was ad-hoc. We examined each possible feature individually to
determine if its use as a classifier would be warranted. One again due to variable length time
series, the features was scale independent. Our analysis revealed that the RMS levels (for EDA,
HR, and BVP) were the best predictors for classification into the 6 dominant emotional
states. We tested feature spaces composed of multiple predictors from time domain and the
outlined in [34]. These include, mean, median, variance, mean of absolute first differences,
mean of absolute second differences, mean of absolute value of first differences and mean of
absolute value of second differences. The frequency domain signals included magnitude and
phase information from signal FFT, signal periodicities, signal power etc. The RMS level of
normalized signals performed best with our dataset. We also tried a reconstructed phase space
approach well suited for non-linear time series[48], [49]. While the approach shows promise
the classification accuracy was lower than the one through RMS level and the computational

needs are significantly higher making real-time implementation challenging.
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3.6.2 Prediction accuracy for a 3-category classification

The feature boxplots in Figure 20,Figure 2/ and Figure 22validate the use of root mean
square level of the physiological data (hear rate, electrodermal activity and blood volume
pressure) as predictors for the classification model. The model was trained

using 200 instances and tested on 70 instances. For a three-category classification (Positive,
Negative and Neutral) the maximum accuracy (92%) was achieved using a weighted KNN
model and electrodermal activity as a predictor. There was no information gain when
heartrate and blood volume pressure were added as predictors. The weighted KNN yielded an

accuracy of 87% with just heart rate as a predictor.
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Figure 23:Model accuracy for a 3-category classification

This is a significant finding. The accuracy for a 3-category classification did not increase
when EDA feature was added as a predictor. The cost of measuring BVP is significantly less
compared to the upfront cost and the maintenance cost associated with EDA sensors. There is
almost a 25 x cost differential and the EDA wearable sensors require electrodes be replaced

after a specified period of time.
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Figure 24: Confusion matrix for a 3-category classification | 92% accuracy

As expected we achieve higher classification accuracy in a 3-category classification. The
concept of variability in emotion perception discussed in 3.4.2 is evident here, where in

certain instances with significant “Negative” responses being classified as” Neutral”

3.6.3 Feature space for a 3-category classification

As hypothesized we plot the feature space for the three dominant emotional states. The
observations (features representing the dominant emotional states) are represented by points
in the plot using principle component analysis. The feature space validates the hypotheses in

3.4. The cluster centers are significantly far apart for the Negative and Positive states. The
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Neutral cluster center is closer to the Positive cluster. Once again, this plot reiterates the
overlap between the emotional states. Figure 25 is a PCA visualization of the feature spaced
used to train the classifier. It makes sense intuitively since the cluster centers of all negative
emotional states except Disgust are a lot closer and show significant overlap while the

distance of the “Neutral” cluster is closer to Amusement than Disgust.
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Figure 25: Spatial locations for emotions for a 3-category classification

3.6.4 Cubic KNN Classifier

A KNN Classifier is used with the following hyper parameters,

The number of nearest neighbors , 2

Distance measure , Euclidean

Weight measure , equal

Distance weight measure , equal
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These hyper parameters are validated in the Evaluation section. The cubic KNN classifier is one of the

simplest classifiers. It is very effective for our problem given the low dimension feature space

3.7 Predicting the Emotional Spectrum

Emotional spectrum is a 1x (n+1) that defines the activation associated with each of the n
dominant emotions and Anxiety. This is a novel contribution of this work. To create an
emotional spectrum, we must assume that a mapping from the physiological time series data
to the survey data exists (a map between the feature space occupied by the physiological data
and the feature space occupied by the survey values). In the following sections, we will

present results from a 1x7 emotional spectrum and 1x4 emotional spectrum.

3.7.1 Six-Category Classification | 1x7 Spectrum

A 100 Neural network with 100 hidden neurons was used to train on the Input Data (1x3
physiological feature space and the dominant emotion using the Levenberg-Marquardt
algorithm [50]-[52]. The target was set to a 1x7 array that represents activation levels for
“Amusement”, “Anger”, “Neutral”, “Sad”, “Disgust”, “Fear” and “Anxiety. A 70-15-15 split
between the training (375 instances), testing (81 instances) and validation (81 instances) set

was used. The results from the regression are presented in Figure 27 and Figure 26.
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Figure 26: Network Architecture | Prediction 1x7 emotional spectrum
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Figure 27: Regression Output | 1x7 spectrum
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Figure 28| Error Histogram| 1x7 spectrum

3.7.2 Three-Category Classification | 1x4 Spectrum

A 100 Neural network with 100 hidden neurons was used to train on the Input Data (1x3
physiological feature space and the dominant emotion using the Levenberg-Marquardt
algorithm[50]-[52]. The target was set to a 1x7 array that represents activation levels for
“Positive”, “Negative”, “Neutral”, and “Anxiety. The score for the “Negative input was
computed as the mean of the nonzero scores for “Anger”, “Sad”, “Disgust” and “Fear”. A 70-
15-15 split between the training (375 instances), testing (81 instances) and validation (81

instances) set was used. The regression results are presented in Figure 29 and Figure 30.
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3.8 Real Time Application

We have implemented the models generated for detecting the dominant emotional state and
the corresponding emotional spectrum in a real-time application. We are currently running a
beta test with 10 participants. The participants are graduate students in computational math.
The application detects the dominant emotional state and the emotional spectrum using 60
second streams of data. We recognize that the models were trained based on the data
obtained from a small portion of the demographic; moreover, there is variation in emotion
perception within that population. To account this variation and the experiment population,
we implemented an iterative learning framework that allows for the model to be tailored to
an individual’s unique emotion perception. The user data is streamed to a Matlab application
that hosts the classification model developed in Chapter 3. The prediction made by model is
transferred to an iterative learning module where the user input is used to modify the feature
space (from the original dataset) and a new model is learned based on the modified feature
space. The next prediction is made using the retrained model. The process of validation and

retraining creates a model unique to the individual’s emotion perception.
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3.5.2 System Architecture
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3.5.3 Iterative Learning framework

The iterative learning framework (longitudinal feature space augmentation) allows the
application to improve the accuracy of predictions by tailoring the model to an

individual. The dominant state and the emotional spectrum are predicted using the features
extracted from physiological sensor data. User validation allows the application to modify

the feature space for the individual and retrain the individual specific model.

Human Enabled Iterative Learning Framework : Motivation

Traditional Machine Learning Pipeline

Properties Captures
Dataset AVZrage
. Features
Feature Feature Machine
Extraction Space Learning Model
o

Figure 32: Motivation for Iterative Learning

The model will not do well in a highly variable feature space - predicted class problem (The
distribution of feature| Response will have high variance). An example of such a situation
would be prediction of emotional response. There is tremendous variability in physiologic
responses (same heart rates in 2 people could be caused by opposing stimuli) and emotion
perception amongst humans. The amount of data needed to account for such variability and
make the model reliable would be impractical. Moreover, the feature space in the diagram

above is derived from a dataset that assumes that a stimulus would induce the target



emotional response. While this may show promising results within a specific population.

The accuracy will decrease when the properties of the data set change.

Human Enabled Iterative Learning Framework (HEILF

Feature Space Augmented Machine Learning Pipeline

|| Dataset

| Augmented
Subject 1 Subject 2 Subject 1 Feature Space Model 1
- |validation validation validation 1k
\—/_—‘\

Augmented
Feature | Feature Space
Extraction § 2
\__/—\\
| Feature/siaﬂ
Machine = R Augmented
; Feature Space
Learning | i ik
- \_/_\
AUGMENTATION
| ALGORITHM
Best Model .
| Novel Contribution
t=0 | t>0, kihiteration

The iterative learning framework proposed is a novel contribution of this work

Figure 33: Human Enabled Iterative Learning Framework
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3.9 Evaluation

The machine learning classifier to predict dominant emotional state is validated on the test
data using 5-fold cross validation, 10-fold cross validation, 15-fold cross validation, 20-fold
cross validation, 25-percent holdout validation and 50-perent holdout validation. The 50%
holdout validation yields the most conservative estimates. The results from 50-percent
holdout validation are presented in this work. The Levenberg-Marquart [52] algorithm used
in the neural net based regression uses 15% of the data as the test set and 15% as a validation

set. The evaluation parameters for the regression are presented in 3.7 .

3.9.1 Six-Category Classification: kKNN

Table 8: Hyper parameter optimization — minimize 5-fold cross validation loss- 6 categories

i 1
| Iter | Eval | Ghiective | Objective | BescSpFar | HeacS5pFar | Numieighbors | Diztance |
| | resmit | | runcims | (observed) | (estim.) i | |
i I
I 1 | Best I 1 1 °.2218 | 1 z | ssuclidean |
| 2 | Acecsprt | [} [} 9.221i& | a. [} 32 | ssuciidean |
| 3 | Agespt | ] ] 0.22ia | 0. ] 5 | hamming |
I 4 | Bz=cept | a ] ] 0.2218 | Q. ] 415 | hamming |
| 5 | Zececept | 0. 1 1 0.2216 | a. 1 1] spearman |
[} & | Rczept | a. ] | 0.2216 | O. ] 1 minkowski |
| T | Accept | 0. i i 0.2216 | 0. i i | mahalanobis |
I B | Zccept | a. ] ] 0.2236 | a. ] 4 | chebychey |
1 5 | Basc | a: 1 1 0.21e01 | a: 1 T cityblock |
| ig | Acespr | a. [} [} g8.21801 | a [} 4 | correilmstion |
| it | Acecespt | 0. ] ] 0.2i60% | o ] 285 | cagine |
I 12 | Agcept | Q. ] ] 8.2180%1 | Q. ] 1] Jjacgard |
I 13 | Zeeept | a 1 1 0.21601 | Q 1 1 euclidean |
[} i% | Aceoept | a ] 1 g.218ul | a ] 289 | eityblock |
| 15 | Agespt | ) ] ] 0.2160% | 0. ] b | cityblock |
I 16 | Zecept | a. ] ] 9.21801 | a. ] BR | chebychev |
1 17 | Bceeprt | a. | 1 0.21601 | o | 20| minkowski |
[} 18 | Rceept | d. | | g.21601 | | 25 | euclidean |
| 13 | Acespt. | D. i i 0.2160% | i 32 | mahalanobis |
I 29 | Eecept | ] ] 8.2180%1 | a ] i | chebychey |
i 1
| Itexr | Zval | Objectcive | Objective | BeagSgFar | HeagSoFar | NumNsighbora | Bisvance |
| | re=mlit | | runtim= | (obgerved) | (estim.) ] | |
i I
l 21 | Best I Q. 0.19553 | 0.1955% | B | asuclidean |
| Z2 | Accept | a 8.19553 | g.15554 | 2EE | euciidean |
| 23 | Agccspt | 0. 0.15553 | 0.2555% | a | eaclidean |
I 24 | Zecept | a. 8.19553 | 8.15553 | 263 | minkowaki- |
I 25 | Zceeprt | a. 0.158553 | 0.1855% | 5] minkowski |
| 2& | RAceespt | a 8.18553 | 0.15549 | 288 | seuclidean |
| 27 | Accspt | 0.15553 | D.15548 | 3| cityblack |
| 28 | Reespt | a §.18553 | 0.19707 | 1E | 2 I
I 29 | Aceept | . 0.18553 | a 1 2€18: | I
[} 30. | Acespt | ] g.18553 | ] 283 | [}
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Figure 34: Hyperparameter optimization- cross-validation loss, 6-Categories

Objective function model

Estimated objective function value

NurmNeighbors

Distance

Figure 35: Hyperparameter optimization- Objective function model, 6-Categories



3.9.2 Three-Category Classification; kNN

Table 9: Table 8: Hyper parameter optimization — minimize 5-fold cross validation loss- 3
categories

I

| Irer | Eval | ©bjective | Objective | BestSoFar | Beat3oFar | Numdleighbors | Discvance |
| | réanlt | | rumtime | {cbaerved) | (eatim.) ] | |
I 1
| 1 | Bestc | 1 1 11373 | 2] seuckidean |
I 2 | Accept | T L} I 23 | seuclidean |
| 3 | Accept | | 1 1 4| hamming |
1 4 | Beceptn | B.10337 | 1 1 2T | hamming |
| 5 | Bese | 0.0898183 | I I 1] seuclidean |
) & | Accept | $0.15985 | ] ] 1] spearman |
| 7 | Accept | g.posie | ] ] 1 minkowaki |
I & | Eccept | [+ o482 | 1 1 i1zg | minkowski |
I 8 | Acceprt | 910165 | | | 1 | mzbalanchis |
| 1% | Accept | o.058461 | ] ] 113 | mahalancbis |
| 11 | Aecept | 0.1087 | | | B | eityblaek |
I 17 | Bccept | 0,088774 | 1 1 126 | cityblcck |
| 13 | Accept | 1 1 1 1] cityblock |
I 4 | Accept | ] ] 2.18201 | I chebychey |
| 5 | Accept | 1 ] 0.10201 | I chebychev |
I | Becept | 1 1 201 | 2 | ecorrelation |
| | Accept | 1 | 1 2] cosine |
I 18 | Becept | I I I 57 cosine |
] 18 | Accept | ] ] ] 1| eul:_ls.déa':i ]
] 20 | Eccept | 1 1 1 11 | euclidean |
I I
| Iver | Eval | ©bjecrive | ©Objecvive | BeatSoFar | BeatSoFar | NumNeighbors | Diacvance |
| | cesnit | | runtime | (ch=erved) | (e=tim.) 1 | 1
| |
| 21 | Accept | 1 1 1] jaccazd |
I 22 | Accept | I I 127 | correlation |
| 23 | Accept | ] ] 128 | enclidedn |
1 24 | Becept | 1 1 31 euclidean |
| 25 | Accept | 1 1 3| chebychew |
I 28 | Accept | $.10013 | 1 127 | chebychew |
| 27 | Accept | 0.088013 | 1 2| cityblock |
] 28 | Eccept | 3,0085133 | 1 3 | mahalanobis |
I 29 | Accept | g.05844 | 918235 | 128 | seuckidean |
I 3% | Accept | $.095323 | 2.19138 | T acuciidean |




Min objective vs. Number of function evaluations

1016
~— Min observed abjective
[ Estimated min objective
|
| 1015
f |
|
| - 014
‘ 2
| i
A
1013 =2
| o
| =
=
- Ha12
|
[ 011
|
: 0
] b 10 15 20 25 30

Function evaluations

Figure 36: Figure 33: Hyperparameter optimization- cross-validation loss, 3-Categories

Objective function model

Estimated objective function value

NumNeighbors

Distance

Figure 37: Hyperparameter optimization- Objective function model, 3-Categories

64



3.9.3 Comparing our work to other state of the art

Table 10: Comparing results to other significant works
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Evaluation Parameters
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dimensional space
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4.0 PROBLEM 2

Problem Statement: Combining Image features and text features from optical character
recognition (OCR) to create a hybrid classifier for robust image prediction in an iterative
machine learning framework. The goal of this study is to improve the accuracy of existing
image recognition by leveraging text features from the images. As humans, we perceive
objects using colors, dimensions, geometry and any textual information we can gather.
Current image recognition algorithms rely exclusively on the first 3 and do not use the
textual information. This study develops and tests an approach that allows for inclusion on
the text features in the learning algorithm. The study includes an iterative learning layer that
allows for the system to improve over time through human machine interaction.

Data

The data set used for this work is the Asset and Tag images dataset curated from the industry
sponsor for this project. The data set contains about 200,000 images from building assets.
Building assets include industrial equipment such as HVAC units, PTACKS, Microwaves
etc. There are a total of 15 classification categories that make up over 92 percent of the
assets. These 15 categories constitute the image labels. Each asset has 2 images, imagel
being an isometric view of the asset and Image 2 being a close-up of a Tag with
Manufacturer name and other model details. There is a tremendous variability (within the
same class) within the asset images which can be attributed to image quality (illumination,
scale, and perspective), age of equipment, and variations due to multiple manufacturers and

models.
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4.1 Related Works and Taxonomy

Convolutional Neural Nets and Image recognition

Convolutional neural networks can be traced back to Hopfield et al. in 1982[53]. However,
the foundation of all CNN’s can be traced back to the back-propagation algorithm proposed
in 1986 by Rumelhart et al[54]. The first practical application was published in 1998 by
LeCun et al. where the neural net LeNet 5 was used to classify the MINST dataset[55],
[56].The work lead to a 99.2 % accuracy. Hubel et al. proposed the architecture of human
visual perception[57] . The paper defines visual perception mechanism as a layered
architecture of neurons within the human brain. This inspired scientists to reconstruct this

architecture to aid computer vison.

Input Data: CNN’s are used on images in computer vison. A 3-channel image (RGB)
contains 3 matrices representing RGB intensities of nxm pixels. Given we have 8-bit pixels,

each pixel represents a value between 0-255.

Convolution Kernels: A convolution kernel (also called a filter) is a matrix of real valued
entries that operates on the entire image, transforming the information contained in the pixels
to information used for analysis. The convolution of the kernel with the image yields
activation maps. These are the regions where the features specific to the kernel are detected.
The values contained in the convolution kernel iterate over the training set leading to a kernel

that best identifies regions of the image suitable for feature extraction.
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Kernel Operations

1. The kernel of size mxn is convolved with image patches of the same dimension.

2. The convolved entry (real number) becomes an entry in the activation matrix. The
value is normalized by dividing by the dimension of the convolution kernel. (the
convolution value is obtained by the dot product of the image patch and the kernel)

3. The kernel is then convolved with another mxn patch by sliding it over the patch by a
stride value (number of columns), till the activation matrix for the entire image is

complete.

Convolution Layer: The act of convolving an image with many filters and creating a stack of
featured images is called a convolution layer. It’s called a “layer” since it’s an operation, that

can be stacked with other layers.

Pooling (shrinking the image stack): Pooling involves picking a window size and a stride
length. The window is walked across the filtered image and the maximum value is recorded

for each window.

Rectified Linear Unit: RELU is a normalization operation. Every negative value is changed

to zero.

Deep stacking: The convolution, ReLU and Pooling layers are stacked man times, leading to

a filtered (significant dimension reduction) of the original image.

Fully Connected Layer: the stacked filtered images are converted to a list (1 dimensional)

with each vector having a target label. Fully connected layers may also be stacked.
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Backpropagation and Gradient descent: Each feature pixel (convolution layer) and voting
weight (fully connected layer) are adjusted based on the error. The lowest point on the error

gradient curve is used to assign the weights.

Hyperparameters (user defined parameters): User inputs, these include,

e Number of features (kernels)

e Size of features

e Pooling window size

e Pooling window stride

e Number of neurons in the fully connected layer

e Number and order of layers
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Figure 38 : Basic CNN Architecture [58]

There has been tremendous research in the field of CNN’s. ImagNet is one of the largest
opensource image database[59]. The database currently contains over 14 million images from

1000 categories. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an
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yearly competition that features object localization for thousand categories, object detection
for two hundred categories and object localization for 30 fully labelled categories[59].
MatConvNet is a Matlab toolbox for implementing the state of the art CNN’s in Matlab[60].
The results from the most popular models are presented in the table below. The prediction is
made using a CNN that leads to a multinomial distribution of the predicted classes. The top-1

score checks if the target class is the same as the class with the highest probability. The top-

5 score checks if the target class is the same as the top 5 predicted classes.

Table 11: Model Performance on ILSVRC 2012 validation data[60]

model introduced top-1 err. top-5 err. images/s
matconvnet-vgg- 2014 28.3 9.5 200.9
verydeep-16

vgg-verydeep-19 2014 28.7 9.9 166.2
vgg-verydeep-16 2014 28.5 9.9 200.2
googlenet-dag 2014 34.2 12.9 770.6

matconvnet-alex 2012 41.8 19.2 2133.3
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Transfer Learning: Transfer learning is the process of taking a pretrained CNN and
finetuning it for another dataset. In this context, the pretrained CNN can be thought of as a
feature extractor. The layer preceding the fully connected layer is used as the feature for any
given image (image decomposed into an array). Thus, a set of labelled images can be
encoded into the CNN feature space and machine learning algorithms can be used to train
classifiers on this feature space. Training a CNN from scratch is an extremely compute
intensive process. This can be attributed to the iterative nature of training that employs back
propagation and gradient descent to generate the convolution kernel. Feature extraction using
transfer learning takes advantage of the well-developed CNN architecture and is significantly
less compute intensive. In [61], [62] the authors show that the features extracted from the
activation of a deep convolutional network can be trained in a fully supervised learning

environment and can be repurposed for novel tasks.

AlexNet: In [63] the authors trained a deep convolutional neural net to classify 1.2
million high-resolution images from the ImageNet LSVRC 2010[59] into 1000 categories.
The neural net contains 60 million parameters and 650,000 neurons is composed of five
convolutional layers with intermediate pooling layers and three fully connected layers. The
network won under the top-5 test error rate category at the ILSVRC 2012 [59]. This was one

of the foundations of GPU trained CNN’s.
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Figure 39:AlexNet Transfer Learning Framework[64]

VGG-VD-19: In [65] the authors investigate the effect of the depth of a CNN on the

accuracy in large scale image recognition problems. The authors show that significant increase

in the prediction accuracy can be achieved using weight layers with a depth of 16-19 layers.

The mode placed first in the ILSVRC 2014 in the localization and classification

challenges[59]. The network configuration is presented in the table below.



Table 12: CovNet Configuration VGG-VD [65]

ConvNet Configuration
A A-LRN B C D E
Il weight | 11 weight | 13 weight | 16 weight 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convi-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

The fc7 layer from AlexNet[63] and the FC-1000 layer from VGG-VD-19[65] are used as
feature extraction layers. fc7 encodes an image into a 1x4096 feature vector and FC-1000

encodes an image as a 1x1000 vector.
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Image Classification using Visual Bag of words

In [66] the authors describe a method of encoding images into features using a visual bag of

words model. The algorithm generates a histogram of visual word occurrences that the image

is composed of. The steps outlined in the workshop[66] are,

1. Separate the images into a test and training set

Create a Bag of Features: The bag of features is creating a vocabulary of visual words
using k-means clustering. The vocabulary is generated by using feature descriptors
extracted from the training set. The k-means algorithm groups the descriptors into
user defined clusters. The feature detectors used are SIFT(scale invariant feature

transform)[67], [68] and SURF(speeded up robust features)[69].

3. Each image is encoded into a feature vector (1xnumber of clusters) based on the
occurrence (frequency) of visual words within the image.

4. A machine learning classifier is used to train on the encoded image space.

5.

The classifier is validated using the model with the test set.

image  approximate nearest neighbor feature histogram feature vector
o 5 o
_ B v i T e
L
g -

345

3
visual word index

Figure 40: Encoding Images into bag of visual words[70]
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4.2 Research Objectives

Encode an image based on a text based feature space and train a classifier on re-encoded images
and finally compare its performance (accuracy and computational efficiency) to the state of

the art classification algorithms,

1. Convolutional Neural Nets (transfer learning and feature extraction)

1. Alexnet

ii. VGG-VDI19

2. Key point Detection

1il. SIFT

iv.  SURF

3. Create a hybrid feature space combining image and text features and evaluate its
performance relative to CNN’s and key point detection based methods. This is
accomplished by,

1. Creating a vocabulary for the problem space
1.  Converting the vocabulary to a document term matrix
iii.  Re-encoding images into a lower dimension (15) space
e C(Creating a boosting algorithm
iv.  Training a classifier on the new space and a combination of the new

space and the image features from CNN.
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4.3 Methodology

In this section, we talk about the hardware used, the general process of encoding images to a
text based feature space and the MSER (Maximally stable extermal images) for text

extraction from natural scenes.

4.3.1 Hardware Used

For this work a 2 PC’s with dual hex core Xeon processors (48 cores with hyper threading),
512 gigabytes of ram and an NVidia GeForce 1080Ti (3500 CUDA cores) were used. The

machines were a part of a Matlab Distributed Computing Server.

The preprocessing and natural image OCR and the machine learning algorithms were
completed using the CPU cores while the Convolutional Deep Learning Nets were run on the

Nvidia GPU using existing Matlab compatible CUDA libraries.

4.3.2 Encoding an Image onto a text based feature space

Encoding an image into a text based feature has many implications for the classification

problem,

1. It allows for significant dimension reduction compared to other algorithms. The
image of a specific size is encoded into a 1x1000 vector in state of the art Convolutional
Neural Nets such as VGG-VG19 and Alex Net at the final fully connected layer. The layers
before that have much higher dimensions (e.g. fc7 in AlexNet encodes an image into a vector
with over 4000 dimensions). Text based encoding encodes an image of any size to a 1xm

vector (m is the number of classification categories)
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2. In this specific problem (15 classification categories) the machine learning algorithm
is trained on a 15-dimensional feature space. This allows significantly faster training and re-

training times (discussed in the Results section) framework.

4.3.3 MSER Algorithm (maximally stable extermal regions)

MSER is a blob detection algorithm proposed by Matas et al[71]. The algorithm extracts co-
variant regions from an image. The motivation behind MSER is based on identifying regions
that show minimal variation across a wide range of thresholds. All pixels below a threshold
are white and the ones above are black. The set of connected components across the

threshold are the sets of extermal regions detected.

Extermal region implies that all pixels within the boundary have a lower or higher intensity

compared to the pixels outside the region boundary. The steps outlined in [72] are,

1. Simple luminance thresholding of the image sweeping the threshold intensity from
back to white.

2. Extraction of Extermal Regions

3. [Iteratively find the threshold at which the region is maximally stable.

4. Keep the region descriptors as features

The hyperparameters (user defined) include maximum area, minimum area and maximum

variation of pixel intensity within the region.
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Figure 41: Algorithm Description[71]

4.4 Algorithm Pipeline
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Figure 42: Algorithm pipeline for hybrid feature space

78



79

4.4.1 Text extraction using MSER and Natural Image OCR -Illustrated Example

MSER algorithm is extremely effective in detecting text in unstructured images. An
unstructured image contains random scenarios[73]. Bill boards are a common example of
unstructured images since they have a combination of images and text. Traditional OCR
performs well with text documents but poorly with unstructured images. The tag images from

the industrial equipment image database is a good candidate for MSER application.

Figure 43: Sample Asset Image
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Detecting extermal regions: The MSER feature detector is used to identify extermal
regions. The image is converted to grayscale and a threshold for image sweeping is defined.

This step detects the possible candidates for extermal regions.

Y !;!!}

et soe o oliiE

Figure 44: Detected MSER regions

Removing Non-Text Regions: Since the image might contain non-text MSER regions

geometric properties can be used to remove non-text regions. This is accomplished by a rule
based approach combined with a machine learning classifier that distinguished between text
and non-text regions based on region properties[74]. Authors in [75], [76] present geometric

properties that can distinguish between next and non-text regions detected by MSER
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algorithm. These region properties as defined in [77] include, aspect ratio, eccentricity
(Returns a scalar that specifies the eccentricity of the ellipse that has the same second-
moments as the region. The eccentricity is the ratio of the distance between the foci of the
ellipse and its major axis length. The value is between 0 and 1. (0 and 1 are degenerate cases.
An ellipse whose eccentricity is 0 is a circle, while an ellipse whose eccentricity is 1 is a line
segment.), Euler number (Returns a scalar that specifies the number of objects in the region
minus the number of holes in those objects.), Extent (Returns a scalar that specifies the ratio
of pixels in the region to pixels in the total bounding box. Computed as the Area divided by
the area of the bounding box) and Solidity (Returns a scalar specifying the proportion of the
pixels in the convex hull that are also in the region. Computed as Area/Convex Area). Stroke
width variation is also used as a metric to identify text regions based on the approach
proposed in [76]. We also added a rule based approach that removes regions with number of
pixels less than the median pixels per regions. This filter significantly improved the detected

text for the tag image dataset.
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Figure 45: Filtered text based regions

Merging text regions : The MSER regions detected contain individual characters. The goal of
OCR is to detect complete words and sentences that can be used to gather context about the

text. This is accomplished by creating and iteratiely expanding boingboxes to detect overlap.



(CGMMER C(ALABR o kA ton
wnbeLne, (ARAEE
BATGHING SEMAg kg

afanl

REFRIGERANES |

1 fuuiisi s

Figure 46: Creating bounding box around detected regions

The bounding boxes are expanded by a small amount in the x direction (since the words/
sentences go left to right). The bounding boxes are then collapsed based on a user defined
overlap ratio. The detailed code can be found in the Appendix. The OCR (pretrained
classifier) is run on individual bounding boxes to predict words and the probability of

prediction.
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Figure 47: Expanded Bounding Box
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Figure 48: Detected text
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4.4.2 Data Cleaning and Preprocessing

The text extracted from each image is saved as a table with terms, bounding box coordinates
and prediction confidence as columns. The preprocessing steps include lemmatization,
removal of stop words, punctuations and special characters. The tables from each category
are then concatenated creating 15 tables, 1 for each classification category. As an added
preprocessing measure, the terms with frequency less than the mean term frequency for each
classification category are removed. The primary reason for this step is to create a
vocabulary (representing each category) of manageable size. This decreases the number of
terms by 60 percent which decreases the sparsity of the document term matrix significantly.
The document term matrix is read into the memory as a broadcast variable in an SPMD
(single program multiple data) framework, i.e. it cannot be dumped until the batch process is
completed. The size of the document term matrix has memory implications, especially in

GPU computing where the GPU memory is a performance bottle neck.

4.4.3 Document Term Matrix

The concatenated term tables for each category are converted to a corpus of 15 documents,
each representative of a classification category. A document term matrix is a numeric matrix
the categories as rows and terms as columns. For this study, we generate a 15 x 150000
matrix. An element i, j represents the frequency of term j for the i document (classification
category). Despite the preprocessing measures, the DTM is a sparse matrix. The document
term matrix is used to encode images (matrices of any size) into a text based feature space.
The columns of the DTM are marginalized (column sum equals 1). Each column (term) now

represents the probability of a term occurring in a specific corpus. While most of, much of
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terms in the DTM are do not have dictionary accuracy, the goal is to capture word
permutations that might be representative of a category. For instance, a natural image with
the word “refrigeration” might yield incomplete terms such as “referi”, “ref”, “referige” etc.
where each term represents a column in the DTM, with a large enough data set (such as
TELS) it is possible to create a granular feature space, i.e. each permutation appears with

high frequency in the DTM that makes the re encoding effective. Moreover, it is possible to

boost the results by combining the contributions of each permutation to the feature space.

4.4.4 Encoding Images onto a text based feature space

Feature encoding is a form of dimension reduction technique. In this work, we encode an mxn
matrix into a 1x15 vector using the document term matrix. Each element of this vector
represents the volume of text in the image that comes from a certain classification category (15
categories). The encoded images create a 15-dimension feature space that is used to train

machine learning classifiers.

Table 13: Document-term matrix

Tl T2 T3 T4 T5 Tm
Catl S 3 1 T T
Cat2 2 i 2 e e
Cat3 3 0 T s e

Cat 15 | oo L oviiiiis v e s
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The rows of Table 1.0 represent the 15 classification categories while the columns represent
the all terms (from the vocabulary of extracted text). A new image undergoes the Natural
Image OCR aided by the MSER algorithm. The text from the image is converted to a term

frequency matrix.

Table 14: Term frequency table for sample image

Term Frequency of the m™ term
T, fi
T f
Tm fin

The sample image has m terms T1to Tm with frequencies f1to fm . Let V define a

n dimensional feature space on to which the image is encoded.

Vo= Vi Va Vi, '

Each element of this vector corresponds to, the volume of the image text that
belongs to a specific category. E.g. the second term of V would represent the
volume of image text that from Category 2. Hence, if n is the number of categories

and m is the total terms in the DTM, A. Then,

Vi = fi A + HAp (A + frnAim.
More generally,
Fori=1....... n

V = length (n)




4.4.5 NIOCR-Function

The MESR text detection and the image classification algorithm described in 4.4.4 were

implemented in a single function for implementation in an SPMD framework.

function [ vec ] = NIocr( img,dtm,vocabulary)?% imgloc - image location
try

vec =[];
colorImage = imread(img);
I = rgb2gray(colorImage);

%% Detect MSER regions.
[mserRegions, mserConnComp] = detectMSERFeatures(I,
'RegionAreaRange',[30 14000], 'ThresholdDelta', .8, 'MaxAreaVariation',0.1);

%% Use regionprops to measure MSER properties

mserStats = regionprops(mserConnComp, 'BoundingBox', 'Eccentricity’,
'Solidity', 'Extent', 'Euler', 'Image');

if isempty(mserStats)~=1

%% Compute the aspect ratio using bounding box data.
bbox = vertcat(mserStats.BoundingBox);

w = bbox(:,3);

h = bbox(:,4);

aspectRatio = w./h;

%% Threshold the data to determine which regions to remove. These thresholds
% may need to be tuned for other images.

filterIdx = aspectRatio' > 2;

filterIdx = filterIdx | [mserStats.Eccentricity] > .99 ;

filterIdx = filterIdx | [mserStats.Solidity] < .1;

%% Remove regions
mserStats(filterIdx) =
mserRegions(filterIdx)
%% Bounding Boxes

%Get bounding boxes for all the regions
bboxes = vertcat(mserStats.BoundingBox);

[1;
=[1;

%% Added by PRS : Remove non-informative blocks
%non-informative blocks-the blocks with pixels less than the median pixels.

for j = 1:numel(mserStats)
[mserStats(j).pixels]= numel(mserStats(j).Image);

end

if isempty(mserStats) ~= 1

med = median((cat(1l.,mserStats.pixels)));

k = find(cat(l.,mserStats.pixels)<1l*med);

mserStats([k])=[1;
bboxes = vertcat(mserStats.BoundingBox);




%% Bounding Box: Convert from the [x y width height] bounding box format to
the [xmin ymin]

%xmax ymax] format for convenience.

xmin = bboxes(:,1);

ymin = bboxes(:,2);

xmax = xmin + bboxes(:,3) - 1;

ymax = ymin + bboxes(:,4) - 1;

bboxes= [xmin ymin xmax-xmin+1l ymax-ymin+1];

%% Bounding Box: Expand the bounding boxes by a small amount.
expansionAmount = 0.04;

xmin = (1l-expansionAmount) * xmin;

%ymin = (1-expansionAmount) * ymin;

xmax = (l+expansionAmount) * xmax;

%ymax = (1l+expansionAmount) * ymax;

% Clip the bounding boxes to be within the image bounds

xmin = max(xmin, 1);

ymin = max(ymin, 1);

xmax = min(xmax, size(I,2));

ymax = min(ymax, size(I,1));

%Show the expanded bounding boxes

expandedBBoxes = [xmin ymin xmax-xmin+1l ymax-ymin+1];
%I1ExpandedBBoxes =

insertShape(colorImage, 'Rectangle’,expandedBBoxes, 'LineWidth',3);
%figure

%imshow(IExpandedBBoxes)

%title('Expanded Bounding Boxes Text')

%% Bounding Box: Compute the overlap ratio | Merge boxes
overlapRatio = bboxOverlapRatio(expandedBBoxes, expandedBBoxes);

% Set the overlap ratio between a bounding box and itself to zero to
% simplify the graph representation.

n = size(overlapRatio,1);

overlapRatio(1l:n+1:n”2) = 0;

%% Create the graph

g = graph(overlapRatio);

%plot(g);

%% Find the connected text regions within the graph
componentIndices = conncomp(g);

% Merge the boxes based on the minimum and maximum dimensions.
xmin = accumarray(componentIndices', xmin, [], @min);

ymin = accumarray(componentIndices', ymin, [], @min);

xmax = accumarray(componentIndices', xmax, [], @max);

ymax = accumarray(componentIndices', ymax, [], @max);

%% Compose the merged bounding boxes using the [x y width height] format.
textBBoxes = [xmin ymin xmax-xmin+1l ymax-ymin+1];

%% Bounding Box: Remove bounding boxes that only contain one text region
numRegionsInGroup = histcounts(componentIndices);
textBBoxes (numRegionsInGroup == 1, :) = [];
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%% Preprocess the image to fine-tune results
ocrtxt = ocr(I, textBBoxes, 'TextLayout', 'Block');

if isempty(ocrtxt)~= 1

%% Create a Table
coordinates = vertcat(ocrtxt.WordBoundingBoxes); %box coordinates
words = (vertcat(ocrtxt.Words));
confidence = num2cell(vertcat(ocrtxt.WordConfidences));
xmin = num2cell(coordinates(:,1));
ymin = num2cell(coordinates(:,2));
xmax = num2cell(coordinates(:,3));
ymax = num2cell(coordinates(:,4));
table = horzcat(words,confidence,xmin,ymin,xmax,ymax);

tmp =table(:,1);

tl = tabulate(tmp); % COMMENT| NOTE : The 3rd column - percent can also be used
for re-encoding purposes

tl = cell2table(tl);

tl.colind = zeros(height(t1),1); %colind will be the column index

for q = 1:height(t1)
loc = find(ismember(vocabulary,lower(char(tl.t11(q)))));
if isempty(loc)==
tl.colind(q)=0;
else
tl.colind(q) = loc ;

end
end

rowtl = tl.colind >0;

t1 = ti(rowtl,:);

if isempty(tl)==1

vec = zeros(1,15);

else
t1.Properties.VariableNames{1}
tl.Properties.VariableNames{2} '"Frequency’;
tl.Properties.VariableNames{3} 'Percentage’;
tl.Properties.VariableNames{4} = 'ColumnIndex’;

'"Term';

for w =1:15
for e = 1:height(t1)
t2(e,w) = tl.Frequency(e)*dtm((w),tl.ColumnIndex(e)) ;

end
end

vec = sum (t2,1);
end
else

vec = zeros(1,15);
end
else

vec = zeros(1,15);

end
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4.4.6 Boosting results using Levenshtein Distances

The document term matrix contains over 15 thousand text objects. These text objects include
sequences of text and numbers. There is variation with the text object. Certain text objects
are words that can be found in a dictionary, such as “pressure”, while certain text objects,
like manufacturer name, serial number and model number cannot be found in an English
dictionary but can be referenced from an industrial equipment lexicon which makes the
metadata associated with each image (part of the image database). However, there is a third
class of text objects which makes up the major proportion of the class. These include
permutations of the first two classes. The MSER, OCR combination does a poor job when it
comes to exact matches[71]. This can be attributed to the image quality attributes discussed
in the subheading “Data” under the Problem Statement section. For instance, the word
“pressure” has multiple permutations such as “pressur”, “presuresss” etc. The document term
matrix was created with terms that occurred multiple times. Thus, we can be confident that
each of these permutations does occur multiple times throughout the tag image database and
is not an 1solated occurrence. The encoding algorithm defined under “Encoding an image
onto a text based feature space” encodes the image based only on the occurrence of exact

matches. Thus, the weight of the permutations is completely ignored in the encoding process.
For instance, let the term predicted by the NI-OCR function be “pressure”. Probability
(Categoryi| pressure) is used to encode the image while Probability (Categoryi|
permute[pressure]) is ignored. While we (humans) can make the decision that “pressur” and
“pressure” are the same and the missing leading “e” can be attributed to the output of the
MSER [ ] text detection algorithm, a machine lacks the context to make that connection. To

overcome this and generate context so that the algorithm might use the weights from the
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permutations of the detected text we use a boosting algorithm that employs Levenshtein

Distance [78].

Levenshtein distance is a string distance measure[78]. For single words, it can be defined as
the number of operations (insertions, deletions and substitutions) that transform one string
into another. For the example described, the distance between “pressure” and “pressur”
would be 1. This gives the machine a measure to generate connections between the detected
string and the terms in the document term matrix to identify reasonable permutations of the
original string. However, the cut off distance (beyond what Levenshtein distance are the
terms unrelated) needs to be either user defined or machine learned. We use the distribution

of Levenshtein distances for a subset of terms to define the cutoff.

Distribution of LVD{term-vocabulary}

6000

Frequency
4000

2000

Sitring distance

Figure 49 Distribution of String distances for sample term-[Vocabulary]
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We need to determine the percentile for which the string distance is less than the cutoff. To
determine this, a simulation was run for a subset with 3 percentiles, .05 %, 2.5% and 5%. The
highest classification accuracy was achieved for .05% 1i.e. terms with string distances over

.05 percentile are dropped. The weights of the remaining terms are used to encode the image.

Table 15: Document term matrix

T1 T2 T3 T4 T5 Tm
Catl 5 3 d 0
Cat2 2 7 20 s e,
Cat3 3 0 T s e,
Cat 15 | ooiiiie i s e i

Table 16: Terms detected by NI-OCR

Term Frequency of the m™ term
T, fi
T f
Tm fm

The document term matrix and the sample terms detected for an image are used as inputs for

the mathematical formulation described below.



Mathematical Formulation

As defined previously, let the text based feature be defined by a vector V
V=[Vi+Vy+V;3+V,

Where, Vi defines the contribution of all terms detected to category i
(classification category)

Vy = [ £,C(Ty) + £,C(T,) + £5(T5) +£,C(Ty)

where, f,C(T;) represents the contibution of T; to V;

In the original encoding C(T,) was equal to A(1,1) which equals the
probablity of T, appearing in an image representing category 1.

We use a new way to define C(Ty)

C(Ty) =fi[ wi A(Lt) + wy A(Lt) *wi A (L) ]

Where, t =[t;,tincnnne ty] are terms in the vocabulary such that

stringdist (T;,ty) < quantile ( stringdist( T;,[ vocabulary]),0.0005) ie. terms

with stringdist less than .05%

weights wi oc 1/stringdist ( Ty,t)
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4.4.7 Results

Table 17: Comparison to AlexNet

Hybrid Feature Text feature CNN Features
(Machine Learning Algorithm . Prediction Training Prediction Training Pradiction Training
Accuracy Accuracy Accuracy
Speed|obs/sec) Time{sec) Speed(obs/sec) Time{sec) Speediobs/sec) | Timelobs/sec)
Complex Tree 3 1400 104 631 280000 154 447 30 16442
Medium Tree 405 2400 B4 335 150000 13 345 2060 7
Simple Tree h7 1800 T4 52 it ilc| 852 il 100 ik}
Linear Discriminant 66 240 2518 133 83000 1 B75 470 1770
Quadratic Discriminant NA N NA A 73000 | B4 NA NA HA
Linear SVM 843 35 28736 B2 4300 2 a3l &0 3558
Quidratic SVM 87 55 4368 a4 6800 B B34 14 4801
Culiic SVM 874 55 5005 80.7 12000 148 858 48 5689
SVM-Fine Guassian 173 51 B374 B2 5400 75 1m 42 BO3S
SVM-Medlum Gaussian BEI 58 5147 733 3600 174 849 8 4571
SVM:Coarse Gaussian 787 LY 5191 7 3800 182 T8 33 B4l
Fine KNN B3I 250 130 783 50000 0805 825 170 16144
Medinm KNN B3l 150 1788 208 13000 4635 B4 250 205.85
(Coarse KNN 745 bl i 4 6200 43766 738 7 il
Cosine KNN 848 i} 68 Bi1 5300 408 B49 140 JE
Cubic KNN B3l 2 157 804 2600 308 B24 18 1614
Weighted KNN H38 128 382 8 38000 48 B36 170 38748
. : BSE 170 076 545 100 1125 595 ki) 16387
808 250 1572 837 14000 1872 758 180 1881
827 14 5301 728 1300 128 B5B L] 7550
832 1 2286 i 5100 03 828 18 2481
s @ @ 385 13000 17.35 348 bHi] 3145
verage Measures 71.80 383.26 233107 70,83 47109.08 1828 68.08 37.23 2612.08
Table 18: Comparison with VGG-VD19
Hybrid Feature Text feature CNN Features
Machine Learning Algorithm Nectitaty Prediction Training Adeliracy, Prediction Training Ay Prediction Training
Speed(obs/sec) Time{sec) Spead(obs/sec) Time{sec) Speed(obs/sec) | Time{obs/sec)
Complex Tree B35 5000 i} B9) 280000 1 B4 543 8200 a8
Medium Tree 383 liogo 8.2 385 130000 23 418 1ogo 2338
Simple Tree 752 13000 788 %2 200000 0562 748 12000 2643
Lincar Discriminant 826 BI0 538 733 B3o0D 1 856 980 4143
(Quadratic Discriminant A Ni NA 715 78000 184 Ha 11} NA
Linear SVM 51 280 il B 4300 bl B24 [t} [t}
Quidratic SVM B73 Il 880 84 500 BLT 847 56 am
(Cubic SVM B4 3 82415 807 12000 146 853 48 1155
SUM-Fine Guassian ] g 1270 £ 5400 778 128 5 1368
SVM-Medium Gaussin 858 ki 12 783 3600 174 837 40 1251
SVM-Coarse Gaussian 2 7 1182 mr Jaon 182 T8 B0 1086
Fine KNN 8IS 1400 1548 783 50000 (805 805 980 384
Medium KNN LA il 3354 08 13000 4835 ik 1000 148
Coarse KNN T3 jutth] 452 B4 B200 43786 745 580 B35
Cosine KNN 822 300 T35 ail 5800 408 BL7 270 B2 345
Cubic KNN 83 4 19884 804 2800 505 a2 35 37
Weighted KNN 831 480 T 8 38000 49 822 i 74
: E 582 1200 47881 B&S /loen 17.26 b33 1200 814
84 2800 32423 838 13000 1M T3 2800 145
815 ¥4 RG34 128 2500 126 B 7 87
B2§ 97 460 T 5100 103 80 g 445
. 1 393 700 635.05 385 13000 1735 48 2300 830
verage Measures g Iﬂmli.“ | 45187 7088 47108.08 1828 7078 221150 48016




Table 19: Comparison to SURF

Hybrid Feature Text feature CNN Features

Machine Learning Algorithm Aeeiracy Prediction Training S Prediction Training o Prediction Training

Speed(obs/sec) Time(sec) Speed(obs/sec) Time(sec) Speed(obs/sec) | Time(ohs/sec)
Complex Tree 70 l000 15.37 Bal 280000 |64 754 1i00o 164
Medium Tree 44 1000 10.773 335 130000 23 203 14000 1.3
Simple Tree 758 12000 5a 251 200000 0.62 158 5800 8471
Linear Discriminant 829 200 85181 733 83000 2 561 320 B4.135
Quadratic Discriminant NA NA NA 715 73000 1.84 FAILED NA NA
Linear SVM 704 300 696.3 82 4300 i 582 320 iz
Quadratic SVM 4 0 1184 Bl4 £300 617 ED.B 18 1203.7
Cubic SVM 701 33 BB3.3! 807 12000 4B B0.4 36 892
SVM-Fine Guassian 128 7 1307 62 3400 2175 13 7 1318
SVM-Medium Gaussian B6.7 26 (2852 733 3600 174 77 25 1308
SVM-Coarse Gaussian 582 33 30512 07 3300 18.2 434 31 508
Fine KNN 4 870 728 783 50000 0.805 353 80 7783
Medium KNN 343 70 30423 80.8 13000 4635 305 inoo 30,615
Coarse KNN 711 1300 364 814 5200 43768 204 1200 34234
Cosine KNN 3. 70 50854 8l 3500 408 525 750 51157
Cubic KNN 4072 68 181.95 804 2600 5.05 328 76 130.68
Weighted KNN 366 870 73.208 8l 38000 48 322 BBD 75.85
Ensemble Boosted Trees 628 2400 358.65 645 flooo [7.26 138 2200 2654
Ensemble Bagged Trees N2 1300 10557 838 14000 18.72 iy 1500 163.37
Ensemble Subspace Discriminant 838 85 5748 728 2300 126 L Bl 551.38
Ensemble Subspace KNN 8348 78 35561 77 5i00 103 435 83 4413
Ensenble RU Boosted Trees 44 2000 45438 385 13000 7.5 208 1800 47383
Average Measures 5487 2140.67 7032.93 70.88 47108.08 18.29 38.80 104480 48.7

Table 20: Cluster Size vs. Test Accuracy: SIFT based bag of features

Testing Accuracy based on a 50 % holdout validation
Test | Images | Cluster | Strongest | Training Testing Accuracy | Time (min)

ID per size Features | Accuracy
category

1 500 10000 0.99 0.96 0.6 44

2 500 20000 0.99 0.98 0.6 70

3 750 10000 0.99 0.95 0.58 73

4 750 20000 0.99 0.98 0.63 111
5 750 40000 0.99 Fail Fail Fail
6 750 30000 0.99 0.98 0.63 144
7 900 10000 0.99 0.95 0.62 94

8 970 30000 0.99 0.98 0.66 190
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Negative|Accuracy 83.7 %

99



Beds - Electric

Cadlars - Reach-ln

Dishwasham

FWAC - Air HandlersF. .

HVAC - Condonsing Units

HVAL = Fan Coil Units

HVAC - Heat Pymps

HVAGC - PTACS

| HVAC - RTUs PKG Unils

Trug tlass

Laundry - Drysrs

Laundry - Washers

Microwaves

Ranges

RairigeralorF reszer

‘Water Heatern

Positive Prediciiva Value

False Discovery Rase

Figure 53: Ensemble Bagged Tree trained on Text features | Positive Prediction-False
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Figure 54: Ensemble Subspace Discriminant trained on Combined Features (Alexnet) | True
Positive-False Negative|Accuracy 92.7 %



Beds - Electrle

Coualers - Reacl-in
Dishwashers

HVAGC - Air HandiersF-.
HVAC - Candansing Linils
HYALC - Fan Coil Unils
HVAC - Heat Pumps
HVAC - FTACS

HVAC - RTUs PKG Uinkts

True class

Laundry - Dryers

L,agmdry = Washears:

Microwsves

Rangss

RafrigermtorFreezer

Water Heaters

. o v R —

Folse Olscovary Rals |

Figure 55: Ensemble Subspace Discriminant trained on Combined Features (Alexnet) |
Positive Prediction-False Discovery Rate |Accuracy 92.7 %
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Figure 56: Linear Discriminant trained on Image features-VGG-VD19 | True Positive-False

Negative|Accuracy 85.6 %
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Figure 58: Linear Discriminant trained on Combined Features (VGG-VD) | True positive-

False Negative|Accuracy 92.6 %
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Figure 59: Linear Discriminant trained on Combined Features (VGG-VD) | Positive
prediction-False Discovery Rate |Accuracy 92.6 %



True class

HUAC - Canderaing Uniis

HAG - RTUS PHG Ut

107

“Bioch - Ebocttic

Coojers - Reaapn

Pistanshan

HYAC - Alr Harduess

HVAL « Fun Coll Units

HVAG - Hot Purmos.

VAL - PTACS.

Liundry « Oryors

Microusives:

Retqaniorf sy -

Watr Haturs

Figure 60: Quadratic SVM trained on Image features-SURF | True Positive-False
Negative|Accuracy 60.8 %



Beds - Electrc e Bl e 2% 1% B 266 B e 2 2% A% A% 2%

Caclers - Reachin [ 1% B [ 3w | < [ tw | e | <t | 2% | oawm | ot [ 3w | 5w | a% | 4

Dishiwshers | 8% A% 1 2% 2% 1% 4% | A 4% an 4% T 4%

HVAC - Air HendlersF.. | 2% % 2% 8% 6% <1%: % <1% <15 2% 190 4% T

HVAC - Condansing Urilts | 2% | <1% | <1% | 1% me | dam | s | s | <am | 1w | 1% 2% | 1%

HVAC-FanCaliUnls [ 3% | 4% | 3% | 9% | 2% Aw | B | 2w | 2% | 2w | o | awm | 4%

HVAC - Heal Pumps | 4% 2% 2 T 20%¢ A% A% (B =% 1% 2 1% 2%

HyAC-FTACS | 2% | 1w | B% | 1 | 2% | 2% | 3w 2% | <t LC Y T B LA B

True class

| HVAC-RTUs PKG Unis | 5% 2% % 2% B I 5% 1% <1 1% 1% 5% % 20

Laundry - Dryers | 2% i ‘Bl 1% 1% A% 15 =1% R 0% A% £ 5% 1%

Loupdry - Washare | 2% | 3% | 4% | 2% o% | m | e | 3% | s 1% | oW | oam | 3w

Merowaves | St | e [ w2 2 | o | e | ow | oam | o2 o[ s | %

Ranges | 2% A Tha 1% 1% Fa A 2%k 1% T I <%

RofrgemtorFreezer . | 4% | 5% | 6% | 3 | 1% | 4% | A% | 1% [ o | e | o | o2 | 2w 6

Water Heatcs | W | 4w | 3% | o £ S I TS L N BT S B T (S

Pasilive Prediclie Valus &

Faise Discovery Rats

Hg o, B, T T, e, e, e M, Oy Uy S, B, B, e

Figure 61: Quadratic SVM trained on Image features-SURF | Positive prediction-False
Discovery Rate |Accuracy 60.8 %

108



Coochess - Heachin
O wruhers

HVAC - e Handssf
HVAL - Ceirrdatising Uilbs
HVAG = Fay Coll Linia
HYAC + Hent Pimgs
MVAG - PTACS

2
HVAL -RTUN BHG Unis
Lamundry « Bryura

Luudry - Witnhers

Rnfrigenmtort reszer

Wiztar Heatsry

I F |3

e - B

e

"
oo

M

_‘%q e

S

frredlicted cnss

Model 1,21
‘ % "
B {EE w 2 1% % " i L3 % 1o "= ™
T. an ™ % | = ™ | s 1%
" q: T <% <% _r.u L ‘ " » LS
| 4l |-
1 13 s ‘ ™ <i% 8L 1% F-3 1% i» = » 1%
<% % o 1% ml {1 Fo5
=% <%
1 1% in [ " 2% A% 1% < LS LS =% .S
El 0 3 " = % " & £ 4% ™ £
b i it it i »~ i %
1 s 1% <% 1% i e
Ak S T = “n % 1% % ™ %
‘ 1% 1% 1% ™ T
s 1% <% | <% 1% B ﬂ_'ﬁ 1% _m % <%
S N N ", T, %, Y R N
SN > LN
b “ap ~

y s E |

=S

¥

109

Figure 62: Ensemble Subspace KNN trained on Combined Features (SURF) | True positive-

False Negative|Accuracy 83.8 %
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Figure 63: Ensemble Subspace KNN trained on Combined Features (SURF) | Positive
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4.5 Evaluation
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The algorithms are compared by comparing the prediction accuracy of the of the classifiers

trained in the respective feature space’s. These are provided in 4.4.7, Results.



4.5.1 Comparing our feature space to state of the art
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The dataset used to create this table includes over 20000 images evenly spread across 15

classification categories. The accuracy was obtained using a 50 percent holdout validation

(25 percent holdout validation, 5-fold cross validation, 10-fold cross validation and 20-fold

cross validation were also conducted.) since it was the most conservative estimate. It must

also be noted that the accuracy presented in the table below is the highest accuracy obtained

using 22 separate machine learning classifiers. For more information please refer to 7Table

17,Table 18,Table 19 . For more background on the machine learning classifiers please refer

to the appendix.

Table 21: Comparison table
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5.0 CONCLUSION

5.1 Contributions

1. In this research, we present and test the feature space augmentation techniques to
imitate the human behavior associated with inductive and deductive reasoning. The
human enables iterative learning framework ( a subset of longitudinal feature space
augmentation) is a novel concept.

2. In the emotion recognition (longitudinal FSA) problem we present 3 models,

1. 6 category dominant state model: The accuracy we achieve is the highest
amongst related works (87.4%).

ii. 3 category classification model: We achieve the highest accuracy amongst
the related works. Moreover, we establish for the first time that there is no
information gain from introducing PPG in a 3 category classification (92%).

iii.  Emotional Spectrum is a novel concept introduced and validated in this work.

Moreover, the dataset curated is the largest “stimuli-emotion induction” database in the

scientific field.

3. The image recognition problem (latitudinal FSA) introduces a novel robust feature
that matches the accuracy of the state of the art CNN’s and is significantly less
compute intensive. The compact feature provides statistically significant information

gain when added to CNN based image features.
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5.2 Broader Impact

This work is aligned with the Marquette sprit of “Magis” and Service. It is our privilege at
this fine institution to advance the body of science that has an impact on the world. Our work
in Autism and Image recognition were both inspired by the goal of improving lives of
members in our community. It is our responsibility to embrace “Cura Personalis”. I have
faith that the work presented in this dissertation will have a meaningful impact on the

community.

5.2.1 Short Term

The system (emotion recognition) designed will be implemented at the PEERS intervention
at Marquette University. In the past we have struggled to scale the computational aspect to
the entire class due to the cost of the sensors. However, PPG sensors are 1/25 the cost of the
E4 sensors currently being used. This would allow is to equip the entire class with wearable
sensors. The human enabled iterative learning framework (longitudinal FSA) will allow us to
tailor the model to specific individuals. An emotional state dashboard will significantly
reduce the trained personnel required to run such interventions and allow for larger class
sizes. It will make intervention cheaper and accessible to more individuals. The image

classifier (problem 2) will be implemented in a network independent mobile application.

5.2.2 Long Term

Over a longer period, we expect the (emotion detection) system (human enabled iterative

learning, the data collection system, dominant state model and the emotional spectrum
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model) will be expanded to other mental disorders such as post-traumatic stress disorder

(PTSD), Schizophrenia and Hypertension.

5.3 Future Work

This work will be expanded by the new graduate students at the ubicomp lab to implement
real time systems for emotion modelling and recognition in ASD populations and veterans,
both of which are current lab collaborations. The image classification algorithm will be

implemented as a part of a larger asset management program at Direct Supply.
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