
Marquette University
e-Publications@Marquette

Dissertations (2009 -) Dissertations, Theses, and Professional Projects

BEst (Biomarker Estimation): Health Biomarker
Estimation Non-invasively and Ubiquitously
Md Kamrul Hasan
Marquette University

Recommended Citation
Hasan, Md Kamrul, "BEst (Biomarker Estimation): Health Biomarker Estimation Non-invasively and Ubiquitously" (2019).
Dissertations (2009 -). 863.
https://epublications.marquette.edu/dissertations_mu/863

https://epublications.marquette.edu
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses


BEst (Biomarker Estimation):

Health Biomarker Estimation Non-invasively and Ubiquitously

by

Md Kamrul Hasan

A Dissertation Submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Milwaukee, Wisconsin

May, 2019



ABSTRACT

BEst (Biomarker Estimation):

Health Biomarker Estimation Non-invasively and Ubiquitously

Md Kamrul Hasan, B.S., M.S.

Marquette University, 2019

This dissertation focuses on the non-invasive assessment of blood-hemoglobin

levels. The primary goal of this research is to investigate a reliable, affordable, and

user-friendly point-of-care solution for hemoglobin-level determination using fingertip

videos captured by a smartphone. I evaluated videos obtained from five patient groups,

three from the United States and two from Bangladesh, under two sets of lighting con-

ditions. In the last group, based on human tissue optical transmission modeling data, I

used near-infrared light-emitting diode sources of three wavelengths. I developed novel

image processing techniques for fingertip video analysis to estimate hemoglobin lev-

els. I studied video images creating image histogram and subdividing each image into

multiple blocks. I determined the region of interest in a video and created photoplethys-

mogram signals. I created features from image histograms and PPG signals. I used the

Partial Least Squares Regression and Support Vector Machine Regression tools to ana-

lyze input features and to build hemoglobin prediction models. Using data from the last

and largest group of patients studied, I was able to develop a model with a strong linear

correlation between estimated and clinically-measured hemoglobin levels. With further

data and methodological refinements, the approach I have developed may be able to

define a clinically accurate public health applicable tool for hemoglobin level and other

blood constituent assessment.
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Chapter 1

Introduction

Hemoglobin (Hb) related diseases are a major global public health problem [1]. Hb

is the principal constituent in red blood cells that carry oxygen to body tissues. The

commonest hemoglobin diseases are anemia consequent to blood loss and inadequate

red cell production. Approximately 25% of the global population [2] and 5.6% of the

US population are anemic [3]. Anemia enhances the risk of cognitive development im-

pairment in children and increases the mortality rate in pregnant women. Most people

suffering from anemia live in developing countries where clinical Hb diagnosis capaci-

ties are limited. Another common hemoglobin disorder is sickle cell disease (SCD). In-

dividuals with SCD have abnormal sickle-shaped red blood cells, the fraction of which

increases under stress and causes acute and severe musculoskeletal pain. In the United

States, SCD disproportionately affects the minority populations. According to the Cen-

ters for Disease Control and Prevention (CDC), about 100,000 African Americans and

Latinos have SCD in the US [4].

1.1 Hemoglobin Assessment Tools

The need for hemoglobin level assessment in about 2 billion anemic people world-

wide puts significant pressure on blood diagnostic processes. The current clinical diag-

nostic method for hemoglobin measurement is a clinical laboratory analysis of a blood

sample, which is subject to affordability and reliability constraints in many settings. The

most common way to assess hematologic disease is a laboratory plasma hemoglobin

test, which measures the concentration of hemoglobin in the blood. In these tests, the

patients provide venous or capillary blood specimens. Drawing blood from a vein in-

volves insertion of a needle associated with which patients may feel discomfort, pain,

numbness, or a shocking sensation, and afterwards itching or burning at the collection
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site. These procedures are often traumatic for children and mentally disabled persons.

Additionally, patients require travel to a medical facility which can be time-consuming

and involve some expense. A non-invasive, easy-to-use measure of hemoglobin level

could facilitate the safe management of patients with anemia and SCD at home and

revolutionize their care.

There are some commercial non-invasive point-of-care (POC) tools for hemoglobin

assessment. In Figure 1.1, we present a number of recent non-invasive solutions for

estimating hemoglobin levels where different data collection (add-on) devices are used.

In addition, several commercial non-invasive POC tools are available for hemoglobin

(Hb) measurement (Figure 1.2). Most of these solutions suffer from one or more of

the following limitations: 1) challenging data collection processes; 2) complex data

analysis and feature extraction processes; 3) affordability and portability; and 4) lack

of user-friendliness and costly external modules [5]. In sum, commonly used technolo-

gies for hemoglobin measurement are costly, uncomfortable, and inconvenient. Since

current smartphones have high-resolution cameras, light-emitting diode (LED) white

lights, infrared sensors, and computing abilities, smartphones might be used for such

vital health parameter monitoring. By 2020, the number of smartphone users in the

world is expected to be 2.9 billion. Considering the urgent clinical needs in low and

middle-income countries, a smartphone-based solution would be a beneficial technol-

ogy for non-invasive Hb assessment.

1.2 Dissertation Focus

Recently, smartphone-based non-invasive solutions have been considered for Hb

level assessment. Some of these technologies use images of the lower eyelid because

of the visibility of conjunctival mucosa and underlying micro-vessels. Eyelid-based

images, as well as a color chart, are used together to calculate the hemoglobin level.

Estimation of hemoglobin levels with these systems is presently unreliable. A nonin-
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Figure 1.1: Smartphone-based POC tools for non-invasive hemoglobin measurement.

a) HemaApp [6], b) Ember [7], c) TouchHB [8], and d) Eyenaemia [9]. The images are

from respective references.

⇤
denotes the system’s approximte price.

Figure 1.2: Commercial POC tools for non-invasive hemoglobin measurement. a)

Smart-Hb [10], b) Masimo SpHb [11], c) NBM 200 [12], and d) Astrim-Fit [13]. The

images are from respective references.

⇤
denotes the system’s approximte price.

vasive, easy-to-use, inexpensive measure of hemoglobin levels is desirable to enhance

access to hemoglobin measurement and to manage patients with hematologic diseases

efficiently. A smartphone-based hemoglobin estimation tool may also measure critical

physiologic data to provide a “snapshot” of the condition of a patient with a hemoglobin

disorder at home.

The data in this dissertation suggest that smartphone-based fingertip videos cap-

tured under near-infrared light, together with image processing techniques and machine

learning algorithms, can estimate blood hemoglobin levels non-invasively with near
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clinically acceptable accuracy. We employ video-image processing towards the gener-

ation of time-series information, high-quality photoplethysmogram (PPG) signals with

features that can be trained and optimized on large scale fingertip videos. This approach

has several advantages. A smartphone-camera can capture a fingertip video under low-

cost near-infrared (NIR) LED lights which eleminates need for additional POC tools

enhances affordability. We have developed a POC solution to estimate hemoglobin

levels non-invasively using widely-available devices.

In the first clinical study (Chapter 3 of this dissertation), we investigated the varia-

tion of image pixel intensities. We showed that the histogram shape and values of red,

green, and blue (RGB) color pixel intensities correlate highly with hemoglobin levels.

To create an adequately accurate clinical hemoglobin level estimation model, we ex-

plored the biologically motivated foundations for a non-invasive hemoglobin measure-

ment system, improved the data collection protocol, introduced novel image processing

techniques, generated PPG features of fingertip videos, and then employed Support

Vector Machine Regression (SVR) to the feature vectors of selected subjects to build

a non-invasive hemoglobin level estimation model. Blood hemoglobin and plasma re-

sponses are implicitly captured in PPG features, which allow us to build the estimation

model. Regression algorithms open opportunities for the development of prediction

models, that can adapt to a new user’s fingertip videos and, update the model from their

PPG features. Finally, the fingertip video recording and the feedback process can be

optimized by uploading the video to a cloud server automatically. Prediction model

significantly outperforms previously reported work using smartphones to measure Hb.

We believe our smartphone-based solution will lead to the development of a useful

non-invasive hemoglobin estimation process as well as to new opportunities for remote

health monitoring.
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1.3 Fingertip Anatomy

A smartphone camera can capture data from different body sites. As a body site of

investigation, fingertip [6], nailbed [14], eye conjunctiva (i.e., eyelid) [15], tongue [16],

and palm [17] have been studied in seeking to build an affordable non-invasive solution

for hemoglobin assessment. Among body sites, the fingertip has several advantages.

Fingertips are is easily accessible, less sensitive to minor manipulations, and generally

easy to control. In Figure 1.3, the different parts of a finger are considered. The ap-

proximate thickness of a fingernail of the average adult male is 1 millimeter (mm); the

epidermis is 1.5 mm; the dermis is 3 mm; the finger bone is 6 mm; and the total thick-

ness from the dorsal to the ventral pad side of a finger is about 14 mm. The fingernail

is comprised of a hard protein called keratin, which is translucent [18]. Based on these

characteristics and light responses from the fingertip, we surmised that it would be pos-

sible to use fingertip-videos in developing a non-invasive solution for hemoglobin level

assessment.

Figure 1.3: Different parts of the finger and their thickness.
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1.4 Light Response in Living Tissues

The smartphone flashlight (camera light) or an external light source can be used to

illuminate tissue and the smartphone camera can be used as a photodetector. Whether

illuminated via reflective or transmissive modes, light does not propagate directly in

living tissues. In tissues, light is scattered and absorbed by cells or different molecules.

The absorption occurs with hemoglobin and other chromophores. Scattering is found

in tissues with a refractive index of the aqueous-lipid membrane interfaces of cells [19].

Light photons transmit in three different ways through living tissue media and generate

three paths. The first path is called ballistic, where photons traverse directly over a short

time. The second one is snake, where photons move indirectly in forward scattering.

The last one is called diffuse, where each photon travels a long path since it experi-

ences many scattering processes (Figure 1.4(a)). In the near-infrared (NIR) range, the

scattering cross-section of biological tissue is small. Thus, the diffused scattered light

can penetrate from 10mm to 20mm or more. Since NIR light has a penetration depth

of 5-6 cm in living tissues, we can receive the response of a NIR light (sent through the

dorsal side of a finger) from the pad or ventral side of the finger (Figure 1.3) [20, 21].

In the reflective mode, photons are coming from a light source, and a photodetector

captures the reflected light (Figure 1.4(b)). Smartphone-captured video of illuminated

tissue, such as a fingertip, result in photoplethysmography (PPG) signals which can be

examined for clinically relevant physiological parameter.

1.5 Photoplethysmography (PPG)

Photoplethysmography is an optical technique which can be used to determine blood

volume changes non-invasively. This optical technique is cost-effective and straightfor-

ward in observing blood volume changes in the microvascular beds of tissues [22]. A

PPG system requires a light source and a photodetector where the light source illumi-
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Figure 1.4: Light transmission processes in living tissues. a) There are three types of

transmissive light paths: ballistic, snake, and diffused scattered light. b) Reflective light

transmission in living tissues.

nates the tissue area (e.g., finger), and the photodetector captures the variations of light

intensity. The intensity variations are seen because of the pulsatile action of the heart.

So, the PPG signal represents the difference of light intensity that changes with the pe-

ripheral pulse (synchronized to heartbeat). PPG signals are typically acquired using one

of two illumination modes: transmission or reflection. In the transmission mode, PPG

sensors are attached on the body site where the body part is thin (e.g., fingertip, earlobe,

etc.). On the other hand, reflection PPG can be used on any location of a body site [23].

1.6 AC and DC Component

The principles of photoplethysmography have been described in several studies [24,

25, 26]. Light penetration (absorbance) through living tissues depends on their various

components-skin pigments, bone, and arterial and venous blood. Changes in PPG sig-

nals due to blood flow are seen in arteries and arterioles. Since the systolic phase of

the cardiac cycle creates blood volume changes in the arteries, PPG sensors can detect

these changes. This signal is captured by calculating the blood flow volume changes

from the detected light intensities which are reflected or transmitted from the tissues.
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A photoplethysmogram (PPG) waveform has two main components. First, the di-

rect current (DC) which is generated by the transmitted or reflected signal from the

tissues and the average blood volume of both arterial and venous blood, as presented

in Figure 1.5. These components are stable since the DC component does not change

significantly with respiration. The second part is the alternating current (AC), which

changes with blood volume changes associated with cardiac systole and diastole [26].

A finger has arterial and venous blood as the light absorbing components. As an exam-

ple of a PPG-based system, a pulse oximeter isolates the signals coming from arterial

and venous blood and takes the absorption ratio of different lighting sources to calculate

the oxygen saturation in the blood.

In arterial blood, the dynamic time changing component of the fingertip video of the

signal will be denoted as an AC signal and the static part will be denoted as a DC signal,

as shown in Figure 1.5. The DC component of a PPG signal relates to the average blood

content in the tissue between two heartbeats.

Figure 1.5: A PPG signal is generated from a finger (living tissue). “Arterial blood”

denotes the portion of the PPG that is due to the average arterial blood volume. “Venous

blood” denotes a portion of the PPG that is due to the average venous blood volume.



9

In tissue, absorbed light is modulated by the change in arterial blood volume due to

the contraction of the heart. Figure 1.5 is a plot of the PPG intensity calculated for one

light source over time or across video frames. When the heart pumps, and more blood is

present in the body tissue during systolic phase and more light will be absorbed, which

means that less light will be received by a smartphone camera. Likewise in the diastolic

phase, less blood present in the tissue, less light is absorbed and a smartphone camera

captures a higher level of light intensity. The relative magnitude of the fluctuating

signal, which is presented as the AC signal in Figure 1.5 of the PPG waveform, is

formed by the increased amount of blood in systolic phase and the decreased amount

of blood in the diastolic phase of the cardiac cycle. In Figure 1.5, the AC and DC

magnitudes are inverted to present as a standard PPG signal. Based on the light source

used to illuminate a finger, the magnitude of AC and DC is changed.

1.7 Critical Physiology and Biology of Hemoglobin

The blood volume, blood vessel wall movement and the orientation of red blood

cells (RBC) can influence light absorbance captured by a photodetector [27]. Since

blood absorbs more light than tissue, a change in the blood volume can be calculated

using the intensity of the increased (absorbed) light. Green light is commonly used for

blood flow measurement in the skin and green-yellow region (500-600nm) of the visible

spectrum can capture the more in-depth response from the pulsatile blood [26]. If we

use IR or near-IR wavelengths, then we can estimate the blood flow in deep-tissues,

such as fingers and muscles

A pulse oximeter measures the relative concentration of oxyhemoglobin level, but it

cannot measure the absolute hemoglobin concentration due to the effective path length

of light (the distance occupied by arterial blood). Studies have shown that the response

from tissue and venous blood are quite stable (no pulsation), also known as the DC

component of a PPG. Only arterial blood causes pulsation, the AC component, of a
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PPG signal. If we record the pulsatile changes (arterial) by illuminating a finger under

two different wavelengths of NIR lights and find the ratio between two PPGs’ features

(responses), then we can build a non-invasive POC tool.

A pulse oximeter uses a photodetector for photoplethysmogram (PPG) generation,

but the charge-coupled device (CCD) camera sensors can capture signals in a NIR range

where the light wavelength is around 1000nm [28]. Modern smartphone cameras have

strong sensing capabilities for PPG imaging [29]. In our smartphone-based PPG sys-

tem, a finger covers the smartphone camera lens without additional pressure and the

volumetric changes in arterial blood can be captured calculating the light absorption.

Since the video captures frames continuously, a continuous PPG signal can be cal-

culated from the video frame. PPG signal can be created in visible to near infrared

region because water in tissue absorbs ultraviolet (UV) light as well as the longer in-

frared wavelengths (close to 1000 nm). Skin melanin and fat have significant responses

with the shorter wavelengths of light [30]. Light with a wavelength less than 650 nm is

absorbed by hemoglobin, whereas the light absorption by oxyhemoglobin and deoxyhe-

moglobin has an isosbestic wavelength in this region [31]. Since water has a significant

response around 1000 nm wavelength of light, plasma response can be detected in this

NIR light range because the amount of water in plasma is 93% (Figure 1.6).

1.8 Research Questions

This dissertation presents smartphone-video-based non-invasive blood hemoglobin

assessment techniques. The approach involves smartphone-based measurement of blood

hemoglobin content using two optical absorption signals captured under infrared lights

during blood volume changes. The blood volume changes are obtained with the PPG

signal generated using the infrared lights. This research includes fingertip video recording-

protocol design and the development of a hemoglobin prediction model. The main re-

search question in this dissertation is: Is it possible to build a reliable and affordable
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Figure 1.6: NIR response of blood oxygenated, deoxygenated hemoglobin, and plasma

in living tissue. The image is redrawn from [32].

non-invasive POC tool for blood hemoglobin levels estimation? To answer this ques-

tion, we considered the following:

1. How can we obtain a hemoglobin response from a smartphone-captured video of

a body site?

2. What is the relationship between image pixel intensities and clinically measured

hemoglobin levels?

3. How can we process a fingertip video to extract features and to build a prediction

model?

Considering these initial research questions, we investigated the following:

• Design of a data collection protocol to record a fingertip video using a smartphone

• Exploration of the relationship between pixel intensities of a fingertip video im-

age and gold standard laboratory hemoglobin levels

• Development of image processing techniques to analyze fingertip videos and

build a prediction model for hemoglobin assessment
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1.9 Dissertation Organization

We first present a review of currently published literature on smartphone-based diag-

nostic tools, image-based hemoglobin level estimation processes, photoplethysmogram-

based hemoglobin measurement solutions, spectra-based applications, sensors, signal

processing techniques, machine learning algorithms, and a brief summary of error mea-

surement methods in Chapter 2. In Chapter 3, we give a detailed description of the

protocol for first clinical study in four populations and the details of these populations.

In Chapter 4, we show the analysis of data from the first clinical study for red, green,

and blue pixel intensities, and histograms. We present further analyses of data from

the first clinical study seeking to identify an optimal region of interest in the video im-

ages in Chapter 5. We describe the protocol for a second clinical study and details of

this study population in Chapter 6. Photoplethysmogram analysis of data from the sec-

ond clinical study to build a non-invasive hemoglobin prediction model is illustrated

in Chapter 7. In Chapter 8, we describe our principal findings, the limitations of our

methods, next steps with this work, and our concept of a framework for assessments of

blood constituents generally.
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Chapter 2

Review of Current Published Literature

In this chapter, we provide an overview of current published literature relevant to

noninvasive hemoglobin level assessment. Literature about non-invasive hemoglobin

measurement processes, mathematical tools, sensors, and machine learning algorithms

are also considered here. Similar reported work related to specific contributions is dis-

cussed in each chapter.

2.1 Smartphone-based Techniques

The smartphone is a portable, affordable, and convenient platform for developing

POC tools. More than 50% of cellular phones sold today are smartphones. At least one-

third of the world’s population (about 2.6 billion) owns a smartphone. Smartphones are

ubiquitous devices and are increasingly being employed in research as tools in many

areas including physiological parameter estimation [33, 34], medical diagnosis [35, 36,

37], and other research fields [38].

Table 2.1 presents a number of biomedical applications where a smartphone and

camera plays a key role in the assessments of blood oxygenation, and hemoglobin,

glucose, cholesterol, and antibody levels. In these applications, the most frequently

used smartphones are from Apple, Samsung, Motorola, Google, HTC, Sony, and Asus

where the camera sensor is used to capture videos or images. The accuracy level is

presented as reliable in most of these studies, as shown in Table 2.1. We chose a Google

Nexus 4 smartphone for our data collection processes in the first clinical study in 2014

based on the portability, camera sensor, computing power, battery hours, display size,

and availability.

Optical responses captured by smartphones under multiple wavelengths of light
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Table 2.1: Tabular summary of published literature on smartphone-based diagnostic

tools.

Reference Purpose Smartphone Data Result
Peng et al. [34] HTC S510e R>0.7

Wang et al. [37] Nexus 6p R2
=0.62

Soni et al. [39] Samsung Galaxy R=0.94

Scully et al. [40] Motorola Droid R=92.2±5.3

Anggraeni et al.[41] Asus Zenfone 2 R2
=0.81

Singhal et al. [42] Sony Xperia R2
=0.98

Dantu et al. [43] HTC One X P-value=0.005

Wu et al. [44] iPhone 4 R2
=0.99

Devadhasan et

al. [45]

Samsung R2
=0.97

Oncescu et al. [46] iPhone E<5.5%

Zhu et al. [47] Samsung Galaxy R2
=0.92, E<5%

R=Correlation coefficients, E=Relative Error

=Heart rate, =Video, =Glucose, =Hemoglobin

=Respiratory rate, =SpO2, =Cholesterol, =Red/white blood cells

have been used to build non-invasive hemoglobin prediction models. Wang et al. de-

veloped HemaApp, a smartphone-based mobile application, to non-invasively measure

hemoglobin levels [6]. Users put their finger on the camera lens, where the fingertip

was illuminated by three different wavelengths of light. HemaApp was run on a Nexus

5 smartphone and each light source remained active for 15 seconds continuously. The

investigators extracted pixel values of each video frame and calculated the peak and

valley heights of signals for each light source. They used a high pass filter to remove

fluctuations due to breathing, applied a Fast Fourier Transform (FFT) on the filtered

waveform to get the dominant peak, and applied Support Vector Machine Regression

(SVR) to train a prediction model. Their prediction model showed 0.82 rank order

correlation with gold standard hemoglobin levels and had sensitivity and precision of

85.7% and 76.5% respectively. The system was tested on a small population, and the

linear correlation between estimated and gold standard hemoglobin must be judged low.
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Edwards et al. developed a spectrometer that attaches to a smartphone [48]. The

spectrometer operates in the wavelength ranges from visible to near-infrared using G-

Fresnel.

For their smartphone-based spectrometer resolution was approximately 5 nm, where

the wavelength range was selected from 400 nm to 1000 nm. These investigators studied

tissue phantoms to measure the performance of the mobile spectrometer. They used

16 different Hb levels and took data in the wavelength range from 430 nm to 630nm.

The absorption error was 9.2%, and the error for reduced scattering coefficients was

8.1%. The limitation of this study is that they did not apply their method to estimate

hemoglobin levels.

Bui et al. developed a smartphone-based application called PhO2 for blood oxy-

genation level measurement [5]. These investigators evaluated the performance of PhO2

by collecting data from six subjects using a customized filter as an add-on. The add-on

produced two light beams from a single light source (a flashlight) where the first beam’s

wavelength was selected from the range 670 nm to 690nm. The second beam’s wave-

length was chosen between 700nm and 779nm. Under these light sources, they captured

fingertip videos using multiple smartphone cameras and high-quality PPG signals. They

calculated the ratio (Rred) of AC and DC signal captured under red light and the ratio

(Rnir) of AC and DC signal captured under NIR light. Calculating the ratio of Rred and

Rnir, they generated features that were fed into a regression-based optimization model

to estimate the SpO2 (peripheral capillary oxygen saturation) level. They evaluated the

performance of PhO2: PhO2 estimated the oxygen saturation within 3.5% error rate,

with 80% of confidence compared to FDA-approved pulse oximetry standards. The

PhO2 system has limitations including long initialization time, region of interest (ROI)

approximation, pressure measurement, and SpO2 measurement accuracy. In this small

study, they did not include a wide range of smartphone devices.
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2.2 Histogram-based Image Processing

Image-based blood-research is the focus of many blood constituent assessment ef-

forts, but most processing techniques remain complex to implement and unable to man-

age large size images. To accelerate image processing, histogram-based image process-

ing has become popular since it is straightforward, and easy to implement and under-

stand.

Previous studies present histogram-based solutions to assess hemoglobin levels. For

instance, Kim et al. introduced the LED and CMOS image sensor-based hemoglobin

level assessment technique where a commercial RGB LED light was used to illuminate

a cuvette which contained a blood specimen [49]. A CMOS image sensor captured

images of specimens containing different hemoglobin levels. The region of interest

(ROI) of each image was studied, generating a histogram of the ROI area. Their research

used color pixel information with changes in color intensity captured by a CMOS image

sensor. In their study, they measured hemoglobin concentration from an invasively

obtained liquid blood samples. We believe, however, that a non-invasive solution for

hemoglobin assessment from a living tissue is needed where light does not follow the

Beer-Lambert law.

Ishihara et al. considered a region containing a blood vessel present in a living body.

They used an external light source and captured the reflected light from the detection

region using a CCD image sensor [50]. A histogram of frequency of pixel intensities

of a predetermined region was calculated, where the lower and the higher intensity

values were used as the light intensity of blood and tissue respectively for developing an

apparatus to measure the concentration of hemoglobin. In their study, light intensity of

body tissue and light intensity of blood were detected by analyzing the captured image,

and a ratio of the light intensity of the body tissue with respect to the light intensity of

blood was calculated for hemoglobin concentration estimation.
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Rice et al. used a retinal image to estimate hemoglobin concentration. They applied

histogram values to identify the rate of change in local intensity and applied these val-

ues as inputs to an artificial neural network [51]. Histogram-based approaches have also

sought to facilitate the implementation of blood flow monitoring [52, 53] and to demon-

strate heterogeneous morphologic features of tumor vascularity [54]. Our first image

analysis process builds upon this idea by calculating a histogram value and extracting

image frames from a video captured using a smartphone.

2.3 Spectra-based Non-invasive Systems

Spectroscopy techniques with near-infrared spectroscopy (NIRS) have received con-

siderable attention for the non-invasive measurement of blood hemoglobin, oxygena-

tion, pH, hematocrit, and glucose levels. Here, we discuss several spectra-based hemoglobin

measurement techniques to investigate wavelength values and the response at those

wavelengths from blood constituents, including hemoglobin and plasma.

Features extracted from multiple wavelengths of light have been employed to esti-

mate blood hemoglobin levels. For example, Edwards et al. developed a non-invasive

method of measuring hemoglobin flow through an organ by NIRS [20]. They monitored

variations in the absorption of near-infrared light in the organ and calculated the changes

in deoxyhemoglobin and oxyhemoglobin concentrations. They used laser diodes at six

wavelengths 797.5, 802.5, 831.2, 848.7, 866.5, and 907.8 nm in their data collection.

They applied NIR lights to capture the spectral response to estimate hemoglobin flow

in the forearms of six healthy young adults. Finally, they calculated forearm blood flow

by venous occlusion plethysmography using least-squares linear regression. The linear

correlation between the calculated by NIRS and plethysmography was excellent with

R2
=0.95. However, the number of observations in their study was only six.

Xiaoqing et al. also applied spectroscopy methods for non-invasive hemoglobin

(Hb) measurement using eight laser diodes (wavelength range from 600 nm to 1100
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nm) to record photoplethysmogram signals in 220 subjects [55]. They extracted dy-

namic spectrum from the pulsatile arterial blood using photoplethysmography (PPG)

to enhance the signal-to-noise ratio (SNR) of measuring instruments and to remove the

influences of individual differences. Using a machine calibration model, they observed

R=0.86 and RMSE=8.48 g/L. However, their instrument set up was not portable or

affordable for the noninvasive measurement of hemoglobin.

Hennig et al. developed a non-invasive fluorescence-based method that can deter-

mine iron status in the microcirculation of the lower lip [56]. In this study, they did

the tissue fluorescence measurements using dual-wavelength excitation. They superim-

posed light from two laser diodes emitting at 407 nm and 425 nm, respectively, into

a single optical fiber for fluorophore excitation to quantitatively extract the zinc pro-

toporphyrin fluorescence. An optical fiber probe was placed on the lower lip for data

collection and the generated fluorescence was measured by a spectrometer. The 425

nm wavelength was selected to measure fluorescence from red blood cell zinc protopor-

phyrin and a second wavelength, 407 nm, was selected to get additional fluorescence

spectra to quantitatively extract the zinc protoporphyrin. They collected data from 56

women who recently delivered babies, where 35 women out of 56 were known to be

iron-deficient. The result showed that the sensitivity and specificity of optical non-

invasive detection of iron deficiency were 97% and 90%, respectively.

Table 2.2 presents other spectra-based hemoglobin level measurement processes

where a different range of wavelength, input signal, and acquisition devices are listed.

In most cases, investigators used an expensive spectrometer during the data collec-

tion processes. Analyzing the spectra-based studies (Table 2.2), we observe that the

most commonly used spectral wavelengths were 850nm, 940nm, and 1070nm for non-

invasive hemoglobin level assessment. Investigators also employed specialized devices

to captured PPG signals from the data collection site (e.g., finger, hand, and earlobe).

In the work reported here, we used regular smartphone devices for the fingertip video
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recording to generate PPG signals.

Table 2.2: Summary of spectra-based techniques proposed for non-invasive hemoglobin

measurement

Reference WL (nm) Compared with Signal #Sub
Nirupa [57] 624, 850 Prototype IR PPG 69

Ding et al. [58] 600-1050 LED & Photodiode Spectra 119

Bremmer et al. [59] 350-1050 Ocean Optics DH-2000 Spectra 8

Timm et al. [60] 600-1000 LED PPG 48

Fuksis et al. [61] 760-940 IR LEDS Spectra -

Pothisarn et al. [62] 660, 940 Analyzer oximetry Light -

Nguyen et al. [63] 940 Radical 7, XE-2100 Pulse 41

Timm et al. [64] 600-1400 OxyTrue Hb Spectra 1008

Wang et al. [65] 500-700,

1300

Masimo Pronto 7, RGB

CMOS camera

PPG 32

Rochmanto et al.

[66]

670, 940 Sysmex-KN21 PPG 78

Desai et al. [67] 530 Pronto-7, HemoCue

Hematology analyzer

PPG 10

WL=Wavelength, #Sub=Number of subject, -=Not given

2.4 Sensors

Optical sensors are photometric devices that capture the optical signal from an ex-

ternal source where the source can be an LED, laser, or lights of different spectra [68].

Photodiodes are primarily used as optical sensors and are made of InGaAs and Indium-

phosphor. Sometimes optical sensors contain an embedded amplifier that can select

different wavelengths (500nm-1600nm) of the signal. We discuss several sensors that

are commonly used for PPG signal generation including CMOS, CCD, InGaAs sensor,

and a specialized PPG sensor.

CMOS sensor

Complementary Metal Oxide Semiconductor (CMOS) converts photons to electrons for

digital processing. In general, CMOS sensors are used in smartphone, digital video, and
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digital CCTV cameras. CMOS-based sensors also found in astronomical telescopes,

scanners and barcode readers, robots, and optical character recognition (OCR) systems.

CMOS chips have photolithography-light-capturing cells that pick up the photons at

different wavelengths and translate them into electrons. A digital-to-analog converter

changes the electrons into pixels of various colors. High-end digital cameras are the

result of advances in CMOS technology [69].

The RGB imaging device can be used for mapping and monitoring hemoglobin

distribution in the skin. Dainis et al. designed an RGB imaging sensing device using

a commercial RGB CMOS sensor, RGB LED ring-light illuminator, and orthogonally

orientated polarizers [70]. Here, an RGB camera captured three spectral images at

a time in three different spectral ranges (600-700 nm, 500-600 nm, and 400-500 nm).

They converted the pixel intensity of red, green, and blue (IR, IG, IB) values into optical

density (absorption) changes and used these to map skin hemoglobin distribution. A

CMOS image sensor (MP9P031, Micron Technology) was used near the back side of a

cuvette to measure blood hemoglobin.

CCD sensor

A CCD is a light-sensitive integrated circuit (IC) where each pixel is converted into an

electrical charge that is related to color. CCDs are commonly used in digital still and

video cameras, astronomical telescopes, scanners, and barcode readers. CCD cameras

have a high degree of sensitivity and can generate an image in low-light conditions. The

image quality is not significantly hampered, even if the illumination level is low [71].

InGaAs photodetector

Indium Gallium Arsenide (InGaAs) is an alloy of indium arsenide and gallium arsenide.

InGaAs is used in photodiodes as an infrared light detector. The spectral response of

an InGaAs photodiode is preferred since these photodiodes have faster response, higher

quantum efficiency, and lower dark current [72]. Jeon et al. used an InGaAs photode-
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tector for non-invasively monitoring hemoglobin concentration and oxygen saturation

from a predetermined site of the body [73]. The sensor received a signal on the other

side of the body and converted the received light beams into electrical signals. They cal-

culated the light attenuation variation for a respective wavelength and obtained a ratio

of the light attenuation variation between two wavelengths. Finally, they estimated the

hemoglobin concentration in blood using the proportion of the light attenuation vari-

ation and reported that the hemoglobin concentration measured by this system nearly

approximated the reference hemoglobin values.

PPG Sensor

Most commonly, a photoplethysmogram (PPG) signal is captured using an optical re-

sponse from the microvascular bed of a fingertip. Uguz et al. developed a SmartPPG

that works on more than one wavelength and included a motion sensor [23]. The

SmartPPG system has two independent LEDs at different wavelengths and two pho-

todetector units. The authors built the SmartPPG prototype and tested to validate its ap-

plicability for arterial, venous and respiratory measurements. They used the SmartPPG

prototype to collect pulse rate (PR) from 170 subjects and compared with the heart rate

(HR) values derived from ECG. They obtained a goodness of fit R2
= 0.93 between

SmartPPG measurements and HR derived from ECG.

2.5 Signal Processing

PPG signals are widely used for physiologic and blood constituent assessment in

wearable devices. The device generated PPG signal from has motion artifacts, which is

a critical problem. In this section, we discuss several signal processing strategies that

are frequently used for PPG signal analysis to identify finger movement, signal noise,

and motion artifact and statistical tools used for the data analysis.
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Fourier analysis

The PPG signal is non-stationary and quasi-periodic. We can apply Fourier series to

periodic signals and analyze them cycle-by-cycle. To remove high-frequency noise of a

PPG signal, we can filter the data using a Savitzky-Golay (SG) smoothing filter. Later,

the cycle-by-cycle Fourier series (CFS) analysis can be carried out. Studies showed that

this method reduced the measurement error of the PPG signal from 37% to 3% [74].

Savitzky-Golay smoothing filter

Savitzky-Golay developed a data smoothing filter using a least-squares polynomial ap-

proximation. They fitted a polynomial to a set of input data and evaluated the resulting

polynomial at a single point maintaining the shape and magnitude of the waveform

peaks while smoothing the waveform. Building a low pass filter using this approach is

known as Savitzky-Golay smoothing filter [75].

2.6 Machine Learning Algorithms

A machine learning algorithm trains a machine to learn and apply acquired knowl-

edge in predictions. Most of the current hemoglobin prediction models use machine

learning algorithms. Here, we present a list of machine learning algorithms that we

have used in the work reported here to assess hemoglobin levels non-invasively. In our

first study, we used ordinary least squares (OLS) and multiple linear regression (MLR)

to build a prediction model, estimated hemoglobin level, and compared with invasively

measured Hb level. Later, we generated features of a video using the histogram and ap-

plied the Partial Least Squares Regression (PLSR) because there were more variables

than the number of observations and the independent variables are highly correlated.

For ROI investigation, we obtained 100 time-series data (from 100 blocks) for each

video, which was applied as individual observations to a machine learning algorithm.

Then, we reduced the number of observations to identify the important block location.
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Later, we developed image processing techniques for a second data set obtained under

a revised protocol and applied a Support Vector Machine Regression (SVR), where we

chose “Gaussian” kernel in our hemoglobin prediction model development.

Ordinary least squares (OLS)

Ordinary least squares (OLS) is a method for determining the coefficients of a linear

model. OLS takes features as input matrix X and predicts an output Y. In order to predict

Ŷ , we must first determine weights �i. OLS is used in many general applications. A

linear model is given here.

Yi = �0 + �Xi + ✏i ) ✏i = Yi � �0 � �Xi, (2.1)

Ŷi = �̂0 + �̂Xi + ✏̂i, (2.2)

where Yi is a target value of Y matrix (dependent variable), Xi is an observation of

X matrix (independent variable), � and �̂ are the coefficients and ✏ and ✏̂ are the error,

and Ŷi denotes the estimated value of Yi. The error for each estimation will be Yi � Ŷi.

A training set of n observations are fed into OLS and OLS tries to minimize this error

by calculating the coefficient values. The cost function is calculated using the Residual

Sum Squares (RSS) method. The RSS is given by:

RSS (�) =
nX

i

⇣
Yi � �̂0 � �̂Xi

⌘2

, (2.3)

Multiple linear regression

Multiple linear regression (MLR) aims to model the relationship between two or more

explanatory variables and a target variable. In simple linear regression (SLR), the model

estimates the relationship between a dependent variable, Y, and an explanatory variable,

X.

Yi = �0 + �1Xi + ✏i, (2.4)
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Here, �0 is the intercept and �1 is the slope of the line and the error ✏i is considered to

have a mean value of 0.

In MLR, there are p explanatory variables. In this case, the relationship between Y

and X is represented by the following equation.

Yi = �0 + �1X1i + �2X2i + �3X3i + · · ·+ �pXpi + ei, (2.5)

where �1 to �p are the coefficients. In this way, multiple linear regression can be written

as an extension of simple linear regression, and Y is considered as directly related to a

linear combination of the explanatory variables.

Partial least squares regression (PLSR)

The Partial Least Squares Regression (PLSR) has been used in our work to design pre-

dictive models during the calculation of correlation and region of interest identification.

PLS is used when the number of factors are more than the number of observations.

PLS is useful when we have no limit for the number of measured factors. With a large

number of factors, a few underlying or latent factors may be responsible for most of

the variation in the response. PLS can extract these potential factors during data mod-

eling. To use the elements in the prediction process, PLS extracts latent variables T

from the sampled factors and U from the responses. The extracted factors T are known

as X-scores, which are used to predict the Y-scores U. The predicted Y-scores are used

to estimate the expected value. The X-scores explains the factor variation in the PLS

algorithm. In addition, X-scores also provide informative directions in the factor space,

though the information may not be related to the estimated value. The Y-scores illus-

trate the predicted Y variation and provide data regarding change in the responses. PLS

uses both X and Y-scores to determine a reliable relationship between successive pairs

of scores [76].
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Support vector machine regression (SVR)

The Support Vector Regression (SVR) algorithm overcomes the dimensionality prob-

lem in regression. In support vector classification, the model finds the best hyperplane

that separates the class/group with maximum distance. It finds the maximum margin

in the case of classification using support vectors (called critical points of the dataset).

The optimization function is given as follows [77]:

1

2
||w||2 (2.6)

Subject to,

yi � (w, xi)� b  ✏ (2.7)

(w, xi) + b� yi  ✏ (2.8)

Different kernels are used in Support Vector Machines. One example is the linear

kernel, and the other is the radial basis function (RBF) which is a popular kernel func-

tion. SVM uses kernels to create a hyperplane that preserves maximum margin among

the data.

klinear (xi, xj) = xT
i xj, (2.9)

kGaussian (xi, xj) = exp��kxi�xjk2 , (2.10)

where xi is the normalized feature, xj is the support vector and � is the degree of

non-linearity.

Error measurement techniques

To present our result and the performance of a model, we calculated the goodness of

fit (R2
), mean absolute percentage error (MAPE), correlation coefficient (R), and the

Bland-Altman plot, mean squared error (MSE) in this dissertation.
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Mean absolute percentage error (MAPE)

The Mean Absolute Percent Error (MAPE) is a commonly used metric to describe the

error level in the data. MAPE is calculated as the following equation.

M =
100%

n

nX

t=1

|At � Et|
|At|

, (2.11)

where At=Actual value or gold standard measurement, Et=estimated value, and n=number

of measurements or observations. MAPE is used because it is easy to explain and un-

derstand and MAPE does not depend on scale.

Mean squared error (MSE)

Mean squared error measures the performance of an estimator. An attractive property

of MSE is that it is easy to compute its gradient. For the more significant errors, MSE

is very useful. Let, Yi denotes the i-th target value and Ŷi denotes the estimated value

of Yi. If we consider that the depenedant variable Y has n elements, then the formula

for the mean squared error is:

MSE =
1

n

nX

i=1

⇣
Ŷi � Yi

⌘2

, (2.12)

Correlation coefficient (R)

The correlation coefficient (R) shows how strongly two measurement methods are lin-

early related. R is computed as the ratio of covariance between the variables to the

product of their standard deviations. The value of R is between -1.0 and +1.0. If the

value of R is +1.0 or -1.0, then we found a strong linear relationship. The formula for

Pearson’s correlation is given by [78],

R =

Pn
i=1 (xi � x̄) (yi � ȳ)q⇥Pn

i=1 (xi � x̄)2
⇤ ⇥Pn

i=1 (yi � ȳ)2
⇤ , (2.13)
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where n is the sample size, xi, yi are the individual sample points indexed with i, x̄ =

1
n

Pn
i=1 xi is the sample mean, and ȳ = 1

n

Pn
i=1 yi is the target mean value.

Although a correlation coefficient gives us an indication of the strength of linear

relationship between the two estimation methods, we need to assess the agreement be-

tween two measurement processes [79].So, we used the Bland-Altman plot to assess

the agreement between two measurements.

Bland-Altman plot

The Bland-Altman plot is used to estimate a limit of agreement (LOA) between two

quantitative measurements. In general, it is common to compute 95% LOA between

two measurement processes. The Bland-Altman graph plot represents the difference

between the two measurement methods against the mean value of the two measure-

ments.
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Chapter 3

Protocol for First Clinical Study in Four Populations

3.1 Protocol

We collected initial data under a protocol used with patients at the Froedtert Hos-

pital, Blood Center of Wisconsin, and Amader Gram, Bangladesh. The use of this

protocol in each specific population was pursued after appropriate institutional ap-

provals and with individual written informed consent. Specifically, in three Ameri-

can populations, the data collection protocol was approved by the Medical College

of Wisconsin/Froedtert Hospital Institutional Review Board under the project number:

PRO00020317 entitled “Monitoring of Physiological Parameters using the Camera of

a Smartphone”. To collect data from one population in Bangladesh, the same protocol

was approved by the Institutional Review Board (IRB) at Marquette University and by

the Bangladesh Medical Research Council.

Objective

The primary goal of this study was to investigate the relationship between pixel inten-

sities of fingertip video images and gold standard laboratory determined hemoglobin

levels.

Eligibility criteria

The following eligibility criteria were followed to recruit the subjects.

1. Subject’s age should be at least 18 years

2. Subject is able to sign the informed consent

3. There is no skin infection on the data collection site (ventral bed of the fingertip)
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4. Patient has no history of Raynaud’s phenomenon

The following protocols were followed during the data collection.

1. The fingertip videos were obtained using a Google Nexus 4 smartphone

2. Normal finger-tip pressure was sought while recording the video

3. Fingertip videos were recorded before blood sample collection

4. Patients’ fingers should cover both smartphone camera and light so that no ambi-

ent light could penetrate

5. Subjects’ index finger of the right hand will be preferred; otherwise, if the condi-

tion of this finger does not meet the eligibility criteria, the middle finger will be

used for the video data collection

6. After the informed consent, fingertip videos and blood samples by venipuncture

should be collected from patients

Methods

A research coordinator (RC) captured a single 10-15 seconds fingertip video using a

Galaxy Nexus 4 phone with Android 4.1 Jelly Bean operating system. The primary

camera of the cell phone was used with camera light on. The patients were instructed

to press gently on the camera using the ventral bed of the index finger of the right hand

(Figure 3.1). The Nexus smartphone captured each video using 1280⇥720 pixels reso-

lution at a frame rate of 30 frames per second (FPS). The smartphone’s built-in camera

light was turned on for the full duration of video recording. The RC used an identi-

fication (ID) number with the video file name to save the fingertip video in the local

memory of the smartphone. The laboratory determined hemoglobin level information

was provided to the research coordinator later. This clinically-measured hemoglobin

(CHb) levels were treated as the gold standard hemoglobin levels in this study.
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Figure 3.1: Fingertip video recording process: a) get the finger and smartphone camera

ready. b) turn the built-in camera light on. c) record a video.

3.2 Demography

We collected datasets from four populations.

Froedtert Hospital

Data were collected from 17 sickle cell patients presenting to the Emergency room of

the Froedtert Hospital of Medical College of Wisconsin. These data are referred to as

the FDT-17. These data consists of fingertip video data from 11 males and six females

with hemoglobin levels between 4.8 g dL�1
and 15.9 g dL�1

and age range was between

21 and 73.

Blood Center of Wisconsin

We collected data under this same protocol at the Blood Center of Wisconsin (BCW)

from five sickle cell patients who received a blood transfusion. During these data col-

lections, two individuals had significant hand and finger tremulousness while capturing

the fingertip videos. Because of this, we recorded three fingertip videos for each blood

transfused subject (BTS). Since each subject provided three videos, we stored 15 finger-
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tip videos recorded before they received their blood transfusions. Two weeks following

the blood transfusions, all five patients returned to provide additional subsequent fin-

gertip videos and blood samples for a complete blood count (CBC). This final dataset

included 30 videos. Each fingertip video was treated as an individual observation, so

we had a total of thirty observations from this patient-group. We refer this dataset as the

BTS-30 dataset in the following sections. The hemoglobin levels before and after the

blood transfusion process are presented in Table 3.1. We did not gather age or gender

information for this BTS-30 dataset.

Table 3.1: Hemoglobin level of blood transfused subjects at the BCW

Sub ID Before (g
dL�1)

After (g
dL�1)

BTS-01 7.5 10.0

BTS-02 7.2 10.3

BTS-03 8.7 11.6

BTS-04 7.2 10.6

BTS-05 10.1 10.4

Following this, at the BCW, we collected a second data set from a group of 30 sickle

cell patients where the group was comprised of 19 females and 11 male participants.

The age range of this patient group was from 19 years to 60 years, where the average

age was 33 years. Only four patients were older than 50 years. This dataset is named

SCD-30.

Amader Gram, Bangladesh (AGB)

Finally, under this same protocol we collected fingertip videos and CHb levels through a

collaboration with Amader Gram, a Non-Governmental Organization (NGO) operating

a Breast Care Clinic in Khulna, Bangladesh. There women patients and male accom-

panying visitors were recruited. We collected subjects’ age and gender. The subjects

were all believed to have normal blood oxygenation (SpO2) levels. The skin tones of

all subjects were similar. Overall, we collected data from 75 healthy volunteer subjects
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with an age range from 20 years to 56 years. In this patient group, there are fifty-five

women and twenty men. The laboratory hemoglobin levels ranged between 7.6 g dL�1

and 13.5 g dL�1
. We named this dataset as AGB-75 in our data analysis.

Figure 3.2: Summary of four populations from whom data were acquired under our

first clinical protocol. The summary consists of dataset name, capture location, number

of subjects, and number of observations. Sub=X means X subjects at the particular

location. At most one observation per subject except for six observations per subject in

the BTS-30 dataset.
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Chapter 4

Pixel Intensities Analyses of Fingertip Videos Collected

Under First Clinical Protocol

In this chapter, we examined the red pixel intensities from fingertip videos and stud-

ies linear correlation with Hb levels of patients’ (FDT-17) dataset. For each video, we

converted the sequence of video frames to three time series: average of the red, green

and blue pixels for each frame. We calculated mean pixel intensities for all frames and

conducted the regression analyses. We compared the average of the red pixel intensities

over all the frames and the corresponding hemoglobin levels. We found significant cor-

relation between the red pixel intensity from the videos and the hemoglobin levels by

gold standard venipuncture laboratory testing. Applying linear least squared regression,

we found a correlation coefficient (R) of 0.68 [80].

Subsequently, we analyzed each of the four datasets (captured in the first clinical

study) to study the pixel intensity variations with different CHb levels. In this work, we

selected fingertip video that satisfied these selection criteria:

1. Each 10-15 second-video is X megabytes (MB) where X might be around 30 to

35 MB.

2. The video file is not corrupted.

3. The dataset has a CHb levels for each video.

4. Each video plays without any flickering or issues.

After selecting fingertip videos, we processed each video using these following steps

as shown in Figure 4.1.

1. Extract each frame of a video (Figure 4.1(b)).
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2. Separate red, green, and blue pixel intensities from each frame (Figure 4.1(b)).

3. Generate histogram values for each pixel’s frame (Figure 4.1(c)).

Figure 4.1: Flowchart of RGB image analysis process a) Fingertip video recording with

a smartphone having camera light on (10-second video) b) Frame extraction from a

video c) Histogram generation for each frame’s red, green, and blue pixel intensities.

4.1 RGB Pixel Intensity Analysis

We extracted frames from a video and analyzed each frame for different color pixel

intensities. Here, we illustrate the pixel intensities of images for red, green, and blue

pixels.

An image pixel has three dimensions: height, width, and channels. Channel value

tells us how many different color pixels are used to show the image. For example, if

the channel value is 3, then the image frame is presented as RGB, HSV or any other

three channel pixel values. If the channel value is one, then the image is a grayscale

image. In general, the pixel intensity value for each color ranged from 0 to 255. If we

extract the individual red color pixel of a frame and plot the pixel intensities using a

color map, then Figure 4.2 (a) is an example of that frame. The color map of green and

blue pixel intensities of the same frame is presented in Figure 4.2 (b) and Figure 4.2
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(c). In Figure 4.2, we observe that the red pixel intensity values are between 184 and

248, the green pixel intensity values are between 10 and 45, and the blue pixel intensity

values are between 0 and 20. To understand an image pixel intensity distribution, we

create a histogram for each color of a frame.

Figure 4.2: A colormap presentation of a) red, b) green and c) blue pixel intensities of

a single frame separately.

4.2 RGB Histogram

A color histogram is a bar-graph-illustration of each pixel intensity of an image that

shows the complete color description of a particular image [81]. Statistically, a color

histogram gives the distribution of different colors, regardless of their spatial descrip-

tion. We know that pixel intensity values for each red, green, and blue color pixel vary

from 0 to 255. For each individual color (red, green, and blue) we make a histogram

with 256 bins (bin number values denoting intensity values from 0 to 255), then the his-

togram shows each pixel’s frequency in an image. Although the color-pixel histogram

of an image has some limitations, a color histogram was used because it is an indicator

of a picture in the domain of computer vision and image processing. The histogram-

based approach is used in the feature space identification since the frequency of each

color pixel represents different pixel contributions in a picture. For example, the peak

of a histogram can change based on the intensity and brightness of an image. Figure 4.3

(a) shows histograms for two different images of a subject having hemoglobin levels

of 7.2 g dL�1
and 10.6 g dL�1

. The histogram using red color pixel intensities of the
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Figure 4.3: The histogram of red, green, and blue pixels of an image frame. Horizon-

tal axis are the intensities of each color, the vertical axis is the relative frequency of

the intensity occured in the frame. a) In this case, an image frame is extracted from

a fingertip video of an individual before he received a blood transfusion, blood drawn

determind Hb level was 7.2 g dL�1
. b) Another image frame is extracted from a finger-

tip video of the same individual two weeks later following a blood transfusion, blood

drawn determind Hb level was 10.6 g dL�1
.

image (7.2 g dL�1
) shows that the red pixel intensities are between 120 and 220.

The red-intensities of a histogram of the 10.6 g dL�1
images are are between 170

and 245 compared to the range 120 to 220 where Hb was 7.2 g dL�1
. (b)). The

histogram values for green pixel intensities also change from low and high levels of

hemoglobin. For these two Hb levels, we observe very minimal changes in the his-

togram values for blue color pixel intensities.

To understand the pixel variations with hemoglobin levels, we analyzed the finger-

tip videos using an image mask based on a threshold value. In Figure 4.4, the regular

fingertip image, and respective masked images are shown. Here, we observe that the

masked image pixels vary for the lower and higher-level of Hb. Figure 4.3 and Fig-

ure 4.4 present a significant change in the histograms and masked images, which are
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Figure 4.4: RGB image versus masked image. a) The RGB image was extracted from

two different videos of a person who received a blood transfusion. The top image was

taken from a video which was captured when a person had higher-level of hemoglobin

two weeks following a blood transfusion. The bottom image was taken from a video

which was recorded from the same subject before they received the blood transfusion.

b) The masked images are presented on the right side (the original RGB images are on

the left side).

created using the pixel intensities of images captured under lower and higher-levels of

Hb.

Histogram value analysis

While checking the fingertip videos, we observed random and wide intensity fluctua-

tions in the early frames of most of videos. These fluctuations may have come from sev-

eral sources. For example, photobleaching can affect the recorded video signals for the

first few seconds. In addition, the auto-fluorescence intensity is reduced over time [82].

Movement while putting the finger on the smartphone camera and releasing the finger

might also cause variable pixel intensities. Since the fingertip videos were often a little

longer than 10 seconds taken at 30 fps, we had more than 300 frames in most videos.

Because of these observations, we chose to use the frame numbers from 201 to 300 to

create our histogram values and input feature matrices. After histogram generation, we

averaged 100 histogram values generated by 100 frames of a video and selected a single

observation of a video for one color pixel. We calculated three histogram values based
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on the selected frames for red, green, and blue color pixel intensities, which provided

three feature vectors from one video. We used Python OpenCV, Matlab, and R for video

and image processing.

We calculated three histogram values for each frame: first histogram values were

calculated for red pixels, the second one was created using green pixels, and third val-

ues were obtained from blue pixels (Figure 4.3). If we consider 100 frames per video,

then we will obtain 100 histogram values for each red, green, and blue pixel intensities.

For the red color, averaging the 100 histogram values, we calculated a feature vector

for the red pixel intensities in a video. We defined this feature vector as Red Aver-

aged Histogram (RAH). Similarly, we obtained Green Averaged Histogram (GAH) for

green pixel intensities and Blue Averaged Histogram (BAH) for blue pixel intensities.

A combined feature vector (observation) was generated concatenating the RAH, GAH,

and BAH values of a video where the RAH is followed by the GAH and BAH values

sequentially. The total length an observation is (256+256+256)=768, since each aver-

aged histogram had 256 values. A feature matrix can be generated using a dataset with

several fingertip videos. In the FDT-17 dataset, we obtained 17 fingertip videos which

produced a feature matrix with a dimension of 17⇥768. Applying similar techniques,

we calculated feature matrices for the other datasets. The SCD-30 dataset has a dimen-

sion size 30⇥768, the BTS-30 dataset has a dimension size 30⇥768, and the AGB-75

dataset has input feature matrix size 75⇥768. From the dimensions of each dataset, we

observed that each input feature matrix was high-dimensional since it contained more

variables than observations.

Traditional multivariate techniques are not applicable to high-dimensional data anal-

ysis, e.g., predicting a hemoglobin response of a subject from the spectral (high-dimensional)

data of a fingertip is a difficult and challenging task which requires various methods

(variable selection or dimension reduction). Partial Least Squares Regression (PLSR),

however, is a powerful approach for analyzing high-dimensional data. PLSR can work
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well for a dataset comprised of small sample sizes where the dataset has more param-

eters than the number of observations. In PLSR, both dimension reduction and re-

gression are performed simultaneously. In the PLSR method, the response matrix Y is

considered for the construction of the PLS components where the PLS components have

high covariance with the response [83]. The PLSR has been used to build prediction

models for many regression problems including gene expression [84], missing values

imputation [85], and prediction of the protein structure [86]. Because of these reports,

we select PLSR in our prediction model work. The correlations between estimated

hemoglobin levels using fingertip videos and the clinically measured (gold standard)

hemoglobin levels are calculated to present the association level (R) of pixel intensities.

The percentage of errors are shown using the mean absolute percentage error (MAPE)

where a lower MAPE indicates a better model.

To build a prediction model, PLSR generates orthogonal PLS components that are

calculated by maximizing the covariance between linear combinations of the columns

of the input feature matrix (X) and the response (output) matrix (Y) [87]. In PLSR, the

optimal number of PLS components selection is critical. Choosing a less-than-optimal

number of PLS components leads to a loss of relevant information. On the other hand,

selecting a more-than-optimal number of PLS components provides poor predictive

performance because the model over-fits the input data [88]. In our study, we used

four values for PLS components based on the sizes of input feature matrices. Before

applying PLSR, we standardized to have mean 0 and standard deviation 1. Then, we

applied 2, 5, 7, and 10 as a value of PLS components to the standardized datasets. We

chose 2 PLS components for the FDT-17 dataset, 5 PLS components for the SCD-30

and BTS-30 datasets, and 10 PLS components for the AGB-75 dataset and compared

the results. The MAPE and linear correlation coefficient (R) show the performance from

each dataset. In addition, we created combined datasets, and PLSR was applied on each

of these. We used 10-fold cross-validation (CV) in all of the hemoglobin prediction
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model development processes.

4.3 Results and Discussion

Applying the PLSR with 2 PLS component to the FDT-17 datasets, we observed

that the MAPE was 17.12% and the correlation coefficient, R=0.74. Using five PLS

components in the analysis of BTS-30 dataset, a 3.73% MAPE was observed where

the value of R was 0.96 (Figure 4.5a and Figure 4.5b). We acquired a MAPE=6.26% and

R=0.92 analyzing the SCD-30 dataset (Figure 4.6a) and a MAPE=4.84% and R=0.80

for the AGB-75 dataset (Figure 4.6b).
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(a) FDT-17 dataset.
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(b) BTS-30 dataset.

Figure 4.5: Applying the PLSR, a regression line is generated for each dataset a) the

FDT-17 dataset using 2 PLS components b) the BTS-30 dataset using 5 PLS compo-

nents.

We then combined four standardized datasets (FDT-17, BTS-30, SCD-30,

and AGB-75) where the number of observations was 152. Then, we used the PLSR

to build a hemoglobin prediction model using 10 PLS components, since the number

of individuals was greater than the individual sample size. The prediction model pro-
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(a) SCD-30 dataset.
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(b) AGB-75 dataset.

Figure 4.6: Applying the PLSR, the regression line is generated for the SCD-30 dataset

using 5 PLS components and AGB-75 dataset using 10 PLS components.

duced MAPE=8.99% and R=0.79 for this sample size (Figure 4.7). We also checked the

MAPE and R for a combination of two or more datasets where we changed the number

of PLS components (e.g., 2, 5, 7, and 10). We present the calculated MAPE and R in

Table 4.1.

In this analysis, we observed significant changes in red and green pixel histograms

(Figure 4.3). Since each histogram has 256 values for each color, a concatanation of

three histograms leads to a high-dimensional feature vector of size of 768. To analyze

this high-dimensional dataset, we chose the PLSR algorithm where variable numbers

of PLS components (2, 5, 7, and 10) were applied and the calculated results are pre-

sented in the Table 4.1. In our approach, we see that a prediction model built applying

PLSR on the FDT-17 dataset shows a higher correlation (R=0.74) using only 2 PLS

components. The correlation coefficient is higher for each dataset when we increase the

number of PLS components. However, an increased number of PLS components builds

a prediction model that may over-fit the input data.

As described in Chapter 3, the demographics of the four studied population groups
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Figure 4.7: Applying the PLSR on the combined FDT-17, BTS-30, SCD-30, and

AGB-75 datasets, a regression line is presented, where the prediction model is built

using 10 PLS components for 152 observations.

differed. To investigate the changes in the correlation coefficient (R) analyzing the

datasets collected by country locations, we combined three datasets that were collected

in the USA. Combining these three datasets, we obtained 77 observations where we ap-

plied PLSR using 10 PLS components (Table 4.1). The prediction model built using 77

subjects’ fingertip video data gave MAPE=8.18% and R=0.88. Applying PLSR on the

AGB-75 dataset using 10 PLS components, we observed MAPE=4.84% and R=0.81

for 75 individuals. Since locations, demography, physiological parameters, and pa-

tient conditions were different, the variations in the correlations (R) are not unexpected,

though the sample sizes are very close to each other (the USA sample size=77 and

Bangladeshi sample size=75). To investigate the performance of a model on the mixed

datasets captured from both locations, we combined those four datasets: FDT-17,

BTS-30, SCD-30, & AGB-75 totaling 152 observations. We employed the PLSR

on this combined dataset using 2, 5, 7, and 10 PLS components where the value of R
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Table 4.1: Summary of the MAPE and the correlation coeffecient (R) for the prediction

model created using various PLS components and datasets.

Dataset

Apply PLSR using various PLS Components

2 5 7 10

MAPE R MAPE R MAPE R MAPE R
FDT-17 17.12% 0.74 10.99% 0.86 7.97% 0.92 3.08% 0.98

BTS-30 9.64% 0.69 3.73% 0.96 2.19% 0.99 0.88% 0.99

SCD-30 11.69% 0.68 6.26% 0.92 4.12% 0.97 2.04% 0.99

AGB-75 8.33% 0.51 6.44% 0.68 6.07% 0.72 4.84% 0.81

FDT-17 &

BTS-30

15.16% 0.67 10.73% 0.83 7.92% 0.89 6.46% 0.90

FDT-17,

BTS-30,

& SCD-30

16.38% 0.59 11.34% 0.80 9.62% 0.84 8.18% 0.88

FDT-17,

BTS-30,

SCD-30,

& AGB-75

13.39% 0.50 10.68% 0.71 10.12% 0.74 8.99% 0.79

was calculated as 0.5, 0.71, 0.74, and 0.79 respectively.

Here, the correlation coefficient (R) was decreased from 0.81 to 0.79 where the

prediction model on combined datasets of the USA (FDT-17, BTS-30, SCD-30)

showed R=0.88 and the prediction model of AGB-75 gave R=0.81 individually. This

decreased correlation coefficient (R) was likely seen for several reasons, including dif-

ferent patient physiological parameters and demographic variables. For example, the

individuals in the USA were sickle cell patients, but the participants in the AGB-75

were healthy. The distribution of male and female subjects was not equal in the two

locations. Skin color, the range of hemoglobin levels, perhaps the clinical methods to

measure the hemoglobin levels from a blood sample, and weather/temperature variables

also different in the two populations.

The linear correlation between the estimated and laboratory-measured hemoglobin

levels for the combination of all datasets (152 observations) was not much different

from the R-value for the datasets collected in the USA and the R-value for AGB-75
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dataset individually. The reason is that we used 10-fold cross-validation (CV) in all

of the hemoglobin prediction model development processes. We also standardized the

input feature matrices before applying the PLSR on the dataset. Using this strategy,

we calculated R=0.79 for 152 observations considering only 10 PLS components. This

low number of PLS components imply the time-series data can be well modeled with a

small number of principal components [89].

4.4 Conclusions

In this chapter, we have reported on investigations of the correlations between image

pixel intensities-based hemoglobin levels and clinically measured hemoglobin values.

We illustrated the histogram-based feature generation from each fingertip video, which

was used in prediction model development. The estimated hemoglobin levels based

on this model were compared with the subjects’ clinical hemoglobin levels where we

observed a strong linear correlation with lower (MAPE) errors. We also apply this

approach on the combined datasets captured from the USA and Bangladeshi patients,

where we found decreased linear correlation coefficients (R) likely consequent to pa-

tients’ variable physiological parameters.

In this study, RGB histogram values provide strong correlations, but histogram-

based features have some limitations. For example, multiple histogram values can be

obtained from the same image with different exposure, white balance, and contrast lev-

els. Also the creation of a RGB histogram is complex when compared to the creation of

gray-scale image histograms. Further, RGB histogram may increase the computational

time for image processing [90].

Since smartphones are equipped with high-resolution cameras which can generate

large video files, we desire a solution to use these devices to reduce the data transmission

load between a smartphone and a cloud computer. In the next chapter, we present a

technique that we used to identify the region of interest (ROI) of an image for PPG

signal processing. We reasoned that if we could find a location that provides a higher
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PPG signal-to-noise ratio (SNR), this might help in reducing the data transmission by

sending cropped data of the ROI data from a fingertip video rather than the full video.
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Chapter 5

Identifying the Region of Interest in Videos

In our first clinical study (Chapter 3), we captured fingertip video data using a

Google Nexus 4 smartphone, but several smartphone companies have recently unveiled

smartphone camera sensors with the higher resolution (e.g., 48 megapixels). With

higher smartphone camera resolution, a fingertip video becomes larger in memory-size,

which would be challenging for image processing. To overcome this challenge, we

investigated a method to minimize the data analysis area of an image frame to save

computing resources and to reduce the size of video transmission process from a smart-

phone to a cloud server. In this chapter, we subdivided an image frame into an N⇥N

block matrix. Then, we calculated the mean pixel intensities in each block of a video,

generated time-series data for each block across the video frames, applied a machine

learning algorithm on a group of blocks’ averaged time-series data to build a predic-

tion model, and compared the estimated hemoglobin levels with CHb levels to identify

the important feature location. We analyzed the four datasets (FDT-17, BTS-30,

SCD-30, and AGB-75) for ROI identification.

5.1 Related Work

In image-based research, identifying a region of interest (ROI) is essential to find

a strong signal-to-noise ratio (SNR) signal from an image to reduce the computing

and data transmission time. Different image locations have been studied seeking to

capture the strongest PPG signal from video. For example, Jonathan et al. used 10⇥10

pixels from a central region of an image frame and averaged intensity values for PPG

generation [91, 92]. Scully et al. computed a PPG signal by cropping a 50⇥50-pixel

area from the green channel data and averaged the pixel intensities [40]. To estimate

hemoglobin values, Edward et al. cropped half of the width and half the height from
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the center of an image and averaged the intensity for each channel [6].

Other studies have shown that a PPG signal could be created in various ways: con-

sidering the entire image captured by a smartphone for pulse rate [93] and heart rate [94]

measurement, circular area for contour analysis [95], and 50⇥50-pixel resolution im-

age for heart rate and respiratory rate [96]. But cropping a specific ROI of an image

increases the chance of losing important information. Optimal ROI is studied to seek

clean PPG signals. A recent study explored the signal quality by the largest amplitude

values for multiple smartphones to generate reliable and clean signals where multiple

blocks were used to show the pixel intensity variations [96].

In our study, we investigated the whole image subdividing it into N⇥N block sizes

of a video to identify the optimal ROI. Any number can be chosen for the value of

N (e.g., 5, 10, 20, and 25) to subdivide an image into multiple blocks. To present

our approach, we consider N=10 to create 100 blocks where each block has a specific

number of red, green, and blue (RGB) pixels. The video processing methodology is

presented below.

5.2 Methodology

For ROI area identification, we processed each video following these steps (Figure

5.1).

1. Extract image frames from each fingertip video (Figure 5.1 (a-c)).

2. Separate the red, green, and blue pixel intensities (Figure 5.1 (d-f)) for each

frame.

3. Subdivide an image frame into a 10⇥10 block matrix (Figure 5.1 (g-h)) where

each rectangular-shaped area of this (Figure 5.1 (h)) image is defined as a block.

4. Average red, green and blue pixel intensities of each block where each frame

gives us 100 average (mean) values for red pixels, 100 averaged values for green
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Figure 5.1: Fingertip video capture, video frame extraction, and subdivision of image

frame to generate the input feature matrix systems. a) An index finger is put on the

smartphone camera with the camera recording a 10-second video with a camera light

on. b) The index finger covers both the camera lens and camera light. c) Three hundred

frames are generated from each video. d-f) Each frame has red, green and blue (RGB)

color pixels. The color maps of red, green, and blue color pixels of an image are pre-

sented in d, e, and f respectively. g) A frame is divided into a 10⇥10 block matrix. h)

A group of blocks are considered to generate time-series signals and averaged to use as

an input feature vector.

pixels, and 100 averaged values for blue pixels.

5. Generate time series data as input feature (Section 5.2.1).

6. Group multiple blocks together to identify ROI area (Section 5.2.2)

5.2.1 Time series data generation

For each color pixel, each block across 100 frames of a video would have 100 mean

values (Figure 5.2). Plotting of these 100 mean values generates a time-series signal for

one block across 100 frames of a fingertip video. For example, Figure 5.2 represents

the average pixel intensity variation for block number 10 and 96 where each black dot

presents a mean value of the respective block. By plotting 100 mean values of a single

block of a video, we generated a time-series signal for that block. By calculating the

mean values of 100 blocks across 100 frames, we generated 100 time-series signals for

a fingertip video. These 100 time-series data were separated into five groups, and each

group in this study was used as a feature vector where Partial Least Squares Regression
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(PLSR) was applied to build a prediction model.

Figure 5.2: Time-series data is generated in each block averaging the the pixel intensi-

ties of the same block across 100 frames.

5.2.2 Grouping of multiple blocks

After subdividing an image into a 10⇥10 block matrix (Figure 5.3(a)), we defined

each of the five groups using a unique name. The top three rows of blocks were grouped,

which was named as top row area (TRA) (Figure 5.3(b)). We identified the bottom three

rows of blocks as the bottom row area (BRA) (Figure 5.3(b)). Similarly, the left three

columns and right three columns of the 10⇥10 block matrix were named as left column

area (LCA) and right column area (RCA) in the following sections (Figure 5.3(c)). A

4⇥4 block area from the middle of the 10⇥10 block matrix was named as a central

image area (CIA). Each group of blocks was used to generate the time-series signal

as shown in Figure 5.2. Then, we averaged the values of those grouped time-series

signals to create a single observation. Thus, we calculated five input feature matrices

(TRA, BRA, LCA, RCA, and CIA) for each video. We employed the PLSR on each

the five input feature matrices for different datasets. We compared the MAPE and the
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correlation coefficient (R) among these five input feature matrices for each dataset. In

exploring all of these five input feature matrices for different datasets, we investigated

the location of the region of interest (ROI).

Figure 5.3: A single image is subdivided into a 10⇥10 block matrix. Again, a group of

blocks are defined with different name based on their location a) A subdivided 10⇥10

block image b) Top (three) row area (TRA) and bottom (three) row area (BRA) is taken

from the top and bottom of an image. c) Left (three) column area (LCA) and right

(three) column area (RCA) are chosen from left and right side of an image. d) Central

(4⇥4 blocks) image area (CIA) is selected from the middle of an image.

5.2.3 Dataset preparation

As previously remarked, we used frame numbers 201 to 300 (total 100) for our input

features. The mean pixel value (red, green or blue pixel) of each block was considered

to generate a time-series signal for red, green, and blue pixels separately.

For each fingertip video, we calculated five input feature vectors (observations)

called TRA, BRA, LCA, RCA, and CIA based on five groups of blocks. For the

AGB � 75 dataset, we created five subsets of input feature matrices for that dataset.

As illustrated in Figure 5.3, we observed that each of TRA, BRA, LCA, and RCA were
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comprised of 30 time-series signals and the CIA had 16 signals. To generate a sin-

gle observation, we averaged 30 signals into a single time-series signal for the TRA,

BRA, LCA, and RCA and we averaged 16 time-series signals for the CIA. Then, we

applied the PLSR on each averaged subset where the dimension of the TRA, BRA,

LCA, RCA, and CIA was 75⇥100. Afterward, we calculated the MAPE and R values

for five subsets (TRA, BRA, LCA, RCA, and CIA). Later, we compared which subset

provided comparatively better performance based on MAPE and R values. In Table 5.1,

we present the ROI area name with R values (in parentheses) of five subsets of input

feature matrices for each dataset.

Figure 5.4: The time-series data are generated from the selected frames, which are from

frame number 201 to 300.

5.3 Results and Analysis

We used 10-fold cross-validation in the PLSR algorithm to each dataset. In the

FDT-17 dataset, we generated TRA, BRA, LCA, RCA, and CIA feature vectors for
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each video. For the FDT-17, we applied the PLSR with 2 PLS components to the

TRA feature vector and calculated the correlation (R) value between the estimated

hemoglobin and CHb levels. We also applied the PLSR with 2 PLS components in

other BRA, LCA, RCA, and CIA subsets individually. Finally, we found five corre-

lation coefficients (R) value where we found the highest R=0.54 for LCA using red

pixel intensities. Thus, we can say that analyzing the red pixel intensities of 17 videos

we found the LCA as an ROI since the calculated R from this LCA group provided the

highest R-value. Considering green and blue pixel intensities of 17 videos, we observed

that LCA and TRA were selected as the ROI area.

We also checked other datasets where each dataset was subdivided into five subre-

gions (TRA, BRA, LCA, RCA, and CIA) as shown in Figure 5.3. For each dataset, we

calculated the linear correlation (R) and selected the largest R among five groups. The

group which was associated with the largest R is presented in Table 5.1 as the best ROI.

We also combine all four datasets (Combined), which is comprised of 152 observa-

tions. In this case, the LCA is the ROI area for red pixel intensities, BRA is the ROI

area for green pixel information, and RCA is the ROI area when we analyzed the blue

pixels of 152 fingertip videos.

Investigating ROI area for each dataset, we saw that the LCA was found as the most

frequently (six times) selected ROI area when we considered red, green, and blue pixel

intensity-based ROI identification. Other ROI areas were also selected several times,

which did not allow us to identify a single optimal ROI area. With these challenges,

we checked the fingertip videos manually once again, where we observed that several

videos were captured vertically, and the remaining videos were recorded horizontally.

These two types of videos were recorded due to the auto orientation of the smartphone

camera. Since the user did not turn off the auto orientation, the videos orientations

were also changed. This may explain why we observed different ROI areas in different

datasets.
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Table 5.1: Region of interest (ROI) area identification analyzing five locations of an

image (the largest R is given in the parentheses) for single as well as combined datasets

captured under the first clinical study.

Dataset Comp. Red Green Blue
FDT-17 2 LCA (R=0.54) LCA (R=0.74) TRA (R=0.46)

SCD-30 5 LCA (R=0.77) RCA (R=0.84) RCA (R=0.76)

BTS-30 5 TRA (R=0.85) TRA (R=0.95) LCA (R=0.82)

AGB-75 10 TRA (R=0.81) BRA (R=0.80) RCA (R=0.79)

Combined 10 LCA (R=0.63) BRA (R=0.62) RCA (R=0.44)

Comp.=Number of PLS Components

5.4 Conclusion

We investigated five ROI areas of each video for multiple datasets. We used the

PLSR on each dataset, which was created based on different ROI areas. In most cases,

we identified LCA as the best ROI area when compared to the linear correlation coeffi-

cient (R) values of other ROI areas. Since LCA included fewer blocks of information,

a faster computing and data transmission process is possible for hemoglobin level esti-

mation. Since the auto-rotation option of Nexus 4 was not turned off, some videos were

recorded with vertical shape. We surmised that a fingertip area closer to the camera

light might have more pixel variations in the video than the other area locations. That

is why, camera light on a fingertip location influence the investigation process of ROI

area. In our second clinical study, we turned off this (auto orientation) option during

the fingertip video recording.



54

Chapter 6

Theoretical Foundations and Protocol Design for Our Second

Clinical Study

In the previous two chapters, we reported on the linear correlation coefficients be-

tween the estimated and CHb levels and investigated the region of interest (ROI) that

might allow for processing and/or transmitting less video data. In preliminary analyses,

we observed strong correlations, but not adequately close relationships for clinical use.

For this reason, we investigated additional imaging under near-infrared light, which

we reasoned might provide more information for the construction of more clinically

accurate image-based hemoglobin determinations. In this process, we estimated the

hemoglobin levels by using a chromatic analysis of the fingertip’s blood where the ab-

sorption properties of blood were captured under different wavelengths of light. There-

fore, it is possible to determine the level of hemoglobin in tissue using near-infrared

transmittance [97].

Hemoglobin content measurement means the quantity of hemoglobin in a given

volume of blood. For non-invasive measurement, optical properties of living tissue

have been used for the calculation of the difference in absorbance properties of blood

constituents. The absorbance properties can be measured in transmissive and reflective

mode where various wavelengths of light can travel through living tissues. We can

measure the optical absorbance changes in the transmitted and reflected light. The

variation of this transmitted or reflected light depends on the shape, volume, refractive

index of hemoglobin, and angular distribution of scattered light, which characterizes

the absorption properties of blood and tissue [98]. Analyzing these changes in optical

scattering properties in tissues, we can build a non-invasive solution for hemoglobin

estimation.
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To investigate blood volumetric changes non-invasively, we generated photoplethys-

mogram (PPG) signals from fingertip videos. In this chapter, we describe the study of

pixel intensity changes for different hemoglobin levels, dual wavelength technique for

hemoglobin assessment, a novel approach based on dual wavelength’s PPG signal, de-

vices, PPG issues, our data collection protocol and the characteristics of the patient

population we recruited.

6.1 Study of blood coloration

According to the Beer-Lambert law, the absorption of light is proportional to the

concentration of a medium and the path length, given by:

Io = Ie�↵CD, (6.1)

where Io is the output light intensity, I is the incident light intensity, ↵ is the light

absorption coefficient, C is the concentration of a blood component, and D is the light

path. In our case, the finger has three different absorptions for a wavelength of light (�)

due to hemoglobin (Hb), plasma (P), and tissue (T). So, the light absorption (under the

light wavelength �) by a finger is

Io,� = Ie(↵Hb[Hb]+↵P [P ]+↵T [T ])(�D)
(6.2)

Since our goal is to measure the concentration of blood hemoglobin as compared to that

of blood plasma, we need to remove the response of the tissue. In this study, we aim to

generate PPG signal using fingertip video where the AC and DC values of a PPG signal

are created in every heartbeat. The light response for AC and DC value of a PPG can

be given as:

AC� = Ie(↵Hb[Hb]+↵P [P ])(�d1)+(↵T [T ])�(DT ), (6.3)

DC� = Ie(↵Hb[Hb]+↵P [P ])(�d2)+(↵T [T ])(�DT ), (6.4)
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where d1 is the path length for Hb and plasma during AC signal, d2 is the path length for

Hb and plasma during DC signal, d = d1 � d2, and DT is the path length for tissue. We

assume the tissue has a stable response (Section 1.6), a ratio of AC and DC magnitude

removes the effect of tissue. Then, we can express the ratio between the AC and DC

values:

AC�

DC�

= e(↵Hb[Hb]+↵P [P ])(�d), (6.5)

where d is the path length that affects only the hemoglobin and plasma for � wavelength

of light. Taking the log of both sides of the equation, we can write:

ln
AC�

DC�

= ↵Hb[Hb]d+ ↵P [P ])(�d), (6.6)

The empirically measured absorption coefficient for each wavelength of light could

help us to solve the Equation 6.6. However, the system setup for fingertip video record-

ing, lighting conditions, PPG generation from fingertip videos, and complex reflection

properties of tissue compel us to use machine learned regression techniques to calculate

the ratio of hemoglobin and plasma. For a reliable prediction model, we have used a

dual wavelength strategy where one wavelength of light is hemoglobin sensitive, and

the other one is plasma sensitive.

Our second clinical study is based on photoplethysmography where the relative

magnitude of a PPG signal is measured for different wavelengths of light [99]. Since

we generate a PPG signal from a fingertip video, we could extract several PPG features

to capture nonlinear interactions [6].

6.2 Dual wavelength technique

Dual wavelength selection techniques are used in several studies to estimate blood

constituents. The ratio of the responses captured by two different wavelengths of NIR
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lights were applied in different reviews where the PPG signal was obtained using com-

mercial PPG capturing devices [100]. Several PPG features have also been utilized for

blood hemoglobin [101], skin blood supply assessment [102], oxygenation level [103],

and glucose level [104] estimation. For example, Wang et al. built a mobile applica-

tion called HemaApp where they used multiple NIR lights and recorded fingertip video

from a finger pad area [6, 37]. In the HemaApp, the NIR LED and the smartphone

camera were on the same side since they used reflection oximetry. In the first version

of HemaApp, the authors used the ratio of AC and DC components under different

wavelengths of light. Later, they changed the data analysis approaches and used the

ratio of AC and DC components calculated from red, green, and blue pixel intensities.

In the third version of HemaApp, the authors recommended that NIR-based response

from tissue might provide potential information to better estimate hemoglobin level

non-invasively.

In living tissues, hemoglobin and melanin absorb in the 400nm-650nm spectrum,

and other proteins absorb light in the violet and ultraviolet regions. A dominant tissue

chromophore is water, which absorbs photons strongly around the 1000nm wavelength

of light. The spectrum range from 650nm to 1100nm is known as the tissue optical

window or NIR region. In the NIR region, light absorption is lower than the other

spectral areas for oxy-hemoglobin and deoxy-hemoglobin. That is why the light sources

including 850nm, 940nm, and camera light are considered as hemoglobin responsive.

On the other hand, 1070nm wavelength NIR LED light is selected as plasma sensitive.

The calculation of hemoglobin concentration depends on the quantity of hemoglobin

as well as plasma volume, in which it is suspended. A change in the relationship be-

tween plasma and total hemoglobin volume might strongly influence the hemoglobin

concentration in disease states. For example, anemia is common in diseases such as

cancer [105] and chronic liver disease [106]. In general, reduced hemoglobin concen-

tration has been considered for those causes, albeit a low hemoglobin level also be
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found during hemoglobin synthesis where total hemoglobin is normal if blood plasma

is disproportionately expanded. This can happen because of disease-related changes are

managed by the global water balance in our body [107].

Plasma and serum are part of blood where plasma contains serum and clotting fac-

tors. About 55% of total blood volume is plasma where 91% of the plasma is water.

The red blood cells are 42% of blood volume. We aim to measure the concentration of

hemoglobin as compared to the concentration of plasma in the blood. Hemoglobin mea-

surement in the clinical setting is currently restricted to blood tests where blood is drawn

for a complete blood count (CBC). Information about red blood cells (RBC), white

blood cells (WBC), and platelets are calculated electronically in the CBC test [107].

After the blood draws in the clinic, the blood sample is diluted using potassium ferri-

cyanide and potassium cyanide to oxidizes the iron to form methemoglobin, which is

finally converted to hemiglobincyanide (HiCN). Since HiCN has a solid color and an

absorbance maximum at 540 nm, the absorbance of the diluted sample at 540 nm is

compared with absorbance at the same wavelength of a standard HiCN solution. Then

the equivalent hemoglobin concentration is calculated. Using this method, the measured

hemoglobin level is referred to as the gold standard or clinically-measured hemoglobin

level (CHb) [108].

The non-invasive hemoglobin estimation system, unlike invasive CHb test, is a

chemical-free process. To understand the ratio of blood hemoglobin and plasma non-

invasively, we must use the specialized light sources that allow us to receive their

response non-invasively. Since PPG signals can contain the biological properties of

hemoglobin and plasma as an optical characteristic, analyzing the ratio of two PPG

(one PPG is from hemoglobin response light , and another PPG is from plasma respon-

sive light source) signals’ features would allow us to estimate the blood hemoglobin

levels non-invasively.

For the PPG generation, we can apply transmission oximetry on a finger where
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infrared light is sent from the dorsal to ventral pad area, and we can capture the trans-

mitted light in a video using a smartphone from the ventral pad side. The changes in

a video are the pulsation of arterial blood. We can thus extract the Hb aspects in the

PPG signal extracted from that videos. In addition, PPG signals can be created using

reflectance oximetry where both light source and smartphone camera are on the same

side. A fingertip video can capture the optical variation where the light response is

changed based on the pulsation of arterial blood. We can extract these responses in the

PPG signal calculated from the fingertip videos. Based on this idea, we employed six

NIR LED lights and two white LED lights in each NIR LED board. These light sources

transmit from the dorsal to the ventral pad area of a finger. The lighting surface area

has a vital role in light penetration into the living tissue. A small lighting surface can

penetrate a small part of the living tissue, whereas the planar lighting surface allows us

to comprehend the light at a deeper level [109, 110]. Besides, we also captured the re-

sponse of a built-in camera light of a Google Pixel 2 smartphone (reflectance oximetry)

capturing the fingertip video without any external light source (NIR LED-board).

6.3 Novel Approach

We used transmission and reflectance oximetry to capture the responses from blood

volume changes using a set of NIR LED lights. We built LED-boards with differ-

ent wavelengths of NIR LED lights. The first LED-board incorporated six NIR light

sources with a wavelength of �H and two white LED lights. We selected 850nm,

940nm, and built-in camera light as hemoglobin responsive (�H) and insensitive to any

other blood components. We chose the 1070nm wavelength of light as blood plasma re-

sponsive (�P ) where other blood constituents have no response or negligible response.

Figure 6.1 (a) illustrates the use of a LED-board built with 850nm NIR LEDs and two

white LEDs lights. and fingertip video and this video is used to generate hemoglobin

responsive PPG signal. In Figure 6.1 (b), the PPG signal captures plasma response from
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a fingertip video using a LED-board built with 1070nm NIR LED and two white LED

lights.

We designed and developed three unique light sources in this study. First, we put six

850nm NIR and two white LED lights as shown in Figure 6.1a where this light source

is defined as L850 in the following section. Second and third embodiments were built

using similar technique which are defined here as L940 and L1070. The NIR and white

light of the LED-board were always turned on while recording the fingertip video. The

light beam of a LED-board crossed from the dorsal to the ventral pad area of a finger

experiencing transmission, scattering, and absorption in the intervening tissue and bone.

The light beam exiting from the ventral pad side of a finger was captured in a video by a

smartphone. A similar approach was used for the light source L940 and L1070 to record

the data from a finger. In addition, we recorded fingertip videos using the Google Pixel

2’s built-in camera light, defined as LPixel2, where no LED-board was attached with the

finger (reflectance oximetry). The PPG generated from this video is also considered as

hemoglobin responsive PPG signal.

The value of each PPG signal captured under different light sources (L850, L940,

LPixel2 and L1070) are normalized by using the PPG features. For example, the AC

component is divided by the DC component to get a normalized feature. The PPG

signal generated using the light source L850 is defined as PPG850 and the normalized

PPG feature values calculated from PPG850 is defined as R850. Similarly, we can

generate the normalized PPG features of PPG940, PPGPixel2, and PPG1070. The

normalized value of a PPG signal cancels out the effect of tissue that we discussed

in Equation 6.6. By calculating the ratio of hemoglobin-responsive PPG features and

plasma-responsive PPG features (e.g., ratio of R850 and R1070), a relationship can be

generated which provides the information on the light absorbed by both hemoglobin

and plasma. The ratio of R850 and R1070 for each subjects’ PPG signal correlates against

the known clinically measured hemoglobin values (Equation 6.7 and Figure 6.2). From
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(a) Fingertip video is captured using

850nm NIR LED light board.

(b) Fingertip video is captured using

1070nm NIR LED light board.

Figure 6.1: A plot of captured light intensity recorded by a smartphone versus time

(frame) where the graph is defined here as a PPG signal which is describing the mod-

ulation of light intensity by the changes in arterial blood volume with each heartbeat.

a) Six 850nm near-infrared (NIR) LED lights are used to capture blood hemoglobin

response. b) Six 1070nm near-infrared (NIR) LED lights are used to assess the blood

plasma response.

this correlation, we can generate a mathematical model to estimate hemoglobin levels

for future fingertip videos. As part of the PPG features, we consider systolic, diastolic,

dicrotic notch peak values, relative augmentation of those peaks, area under the systolic

peak and diastolic peak, a slope of each peak, and a relative timestamp value of the

peak, etc. The calibration equation for a model can be given as,

HCb = K1
H1

P1
+K2

H2

P2
+K3

H3

P3
+ ....+Kn

Hn

Pn

(6.7)

where CHb is the clinically measured hemoglobin levels, K1, K2, ...Kn are the con-

stant that should be calculated using machine learning algorithm, H1, H2, ....Hn are the

hemoglobin responsive PPG features, and P1, P2, ....Pn are the plasma sensitive PPG

features. We will analyze these ratios considering for other hemoglobin responsive

PPG signals and compare the outcomes to identify the best hemoglobin responsive NIR

light.
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Figure 6.2: The ratio of two PPG signals captured under two different wavelengths of

NIR.

6.4 Data Collection Processes Under Our Second Clinical Protocol and the Char-

acteristics of This Second Study Population

The major goal of our second clinical protocol was to collect fingertip video data

under multiple different lighting conditions. Other refinements from our first clinical

study protocol included near-infrared LED light sources for fingertip video recording

because the response of hemoglobin and plasma can be captured non-invasively using

near-infrared light. This study was conducted on only a Bangladeshi patient population

at the Amader Gram Breast Care Clinic in Khulna, Bangladesh. This research was

approved by the Institutional Review Board (IRB) at Marquette University and by the

Bangladesh Medical Research Council in Bangladesh.

Eligibility: Adults over age 18 and able to provide informed consent.

Inclusion Criteria: Volunteers must be in good health without any major life-

threatening illness or acute illness and have clean and soft fingertips and have no nail

polish or scrapes or damage to the skin on the fingertip.

Exclusion Criteria: Subjects who received a blood transfusion in the last three

months were ineligible for this study.
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6.4.1 Study design and procedures

• Step 1: A health assistant (HA) took the information about the subject. Then,

the HA matched the inclusion criteria for the subject. If the person was eligible

for the study and provided written informed consent, then the HA enrolled the

subject for the data collection process. The listed subject was identified using a

4-digit ID number starting from 1001.

• Step 2: The HA stored the subject’s ID, age, gender, and timestamps.

• Step 3: (a) The HA checked the NIR LED lights (whether it was on or off) before

the data collection. (b) The HA used the primary camera of the smartphone for

video recording where the patients were instructed to press gently and completely

cover the camera using the ventral bed of the finger. In Figure 6.3, the orientation

of a finger with a smartphone is presented where the smartphone is positioned

vertically and the finger is put horizontally covering the camera and IR-sensor

(Figure 6.3 (a)). The tip of the finger should cover the built-in IR sensor on the

camera. The LED-board should put in such a way that the dorsal area of the

fingertip faces NIR LED lights of the board (Figure 6.3 (b)). The subjects were

instructed not to talk, move, or change finger position during the video recordings.

(c) The HA then recorded a 10-second fingertip video using the smartphone under

four lighting conditions:

– The first video was captured using a Google Pixel 2 without any LED-

board. The built-in infrared sensor of the smartphone was on for auto-

focusing purpose since Android OS controlled the built-in IR sensor, and

the smartphone camera light (known as flashlight) was turned on to illumi-

nate the finger. This group of fingertip videos is named as V ideosPixel2.

This video was captured using reflective-mode pulse oximetry to compare
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the hemoglobin prediction model’s performance with the prediction model

built using transmissive-mode pulse oximetery (two videos captured under

850nm and 940nm).

– The second video was captured using a Google Pixel 2 and an 850nm LED-

board where the LED-board IR and white light are on, but the smartphone

camera light turned off. This group of these fingertip videos was named

V ideos850.

– The third video was captured using a Google Pixel 2 and a 940nm LED-

board where the LED-board IR and white light was on, but the smartphone

camera light turned off. This group of these fingertip videos was named

V ideos940.

– The fourth video was captured using a Google Pixel 2 and a 1070nm LED-

board where the LED-board IR and white light are on, but the smartphone

camera light turned off. This group of these fingertip videos was named

V ideos1070.

• Step 4: After capturing fingertip videos, on the same visit, the subject provided a

blood sample adequate for the determination of blood hemoglobin levels. These

determinations were all made at a large volume diagnostic laboratory with stan-

dardized procedures.

• Step 5: The HA maintained the naming convention of each video captured by the

smartphone and stored the blood test results in tabular format and the data were

transmitted to Marquette University.

6.4.2 Data collection kit

The data collection kit included three LED-boards and a Google Pixel 2 smartphone

as shown in Figure 6.3. The purpose of each item is illustrated in the following section.
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1. LED-board: We built three LED-boards where each board had six similar in-

frared (IR) LED lights as shown in Figure 6.3 (b). One LED-board was built

with six 850 nm NIR LED lights. The second and third LED-boards were de-

veloped with six NIR 940 nm and six NIR 1070 nm LED lights separately. Each

LED-board had two extra white LED lights. A rechargeable battery powered each

board and was put underneath the LED-board. The health assistant checked the

LED-boards and the charge level of the battery before the data collection process.

The rechargeable battery ran 2-3 days after one full charge.

2. Google Pixel 2: The Google Pixel 2 smartphone has multiple options to cap-

ture video. We use 60 frames per second (FPS) in the fingertip video recording

process. We turned off the camera’s auto rotate option so that all videos were

recorded with a similar dimension. The Google Pixel 2 has a built-in 950nm

infrared (IR) sensor which is always on by the Android operating system (OS).

6.4.3 PPG signal issues

In general, clean PPG signals are interrupted during the data collection process by

finger movements, motion artifact, coughing, and gasp (Figure 6.4) [27].

We collected fingertip videos data from 212 subjects. Some patients’ fingertip

videos were not recorded properly or corrupted. Therefore, we could use only 167

subjects’ data because of unclean PPG signal issues (Figure 6.4). The selected 167

persons’ fingertip videos were chosen using the following criteria:

• The video had no issues such as random flickering and black shadow in the video.

• The video file was not corrupted, and had approximately the same memory size

(a video produces about 50 MB (megabyte) file for 10-12 seconds of recording).

• A standard PPG signal has a systolic and a diastolic peak. The generated PPG

signal from a video should follow a standard PPG signal (the video generated
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Figure 6.3: The fingertip video capturing modules. a) A fingertip video was recorded

using a Google Pixel 2 where the video was captured without any LED-board. b) The

rest of the (three) videos were recorded using the same Google Pixel 2 smartphone with

an additional LED-board sequentially where three LED-boards were built with 850 nm,

940 nm, 1070 nm infrared (IR) LED lights.

PPG had both systolic and diastolic peak).

• Four videos of an individual satisfied the above mentioned criteria.

• The CHb level of the subject was available.

6.5 Patient Characteristics

We recruited 167 participants with usable data: 82 males and 85 females with an

age range from 14 to 68 years and median age of 39 years. The maximum hemoglobin

level was 13.0 g dL�1
, and the minimum hemoglobin level was 9.0 g dL�1

with median

hemoglobin level 11.2 g dL�1
. In this group, 22 individuals had high blood pressure,

35 subjects were diabetic, and 68 women were premenopausal.
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Figure 6.4: PPG signal issues due to the (i) body movement, (ii) finger quake, (iii)

coughing and (iv) gasp (image is edited from [27]).

In Figure 6.5, the left-side of the figure shows a bar-chart for male subjects and

the right-side presents similar information for female participants. Among 82 male

individuals, only 16 subjects had a hemoglobin level higher than 12.5 g dL�1
. On the

other hand, we had no female participants who had levels of hemoglobin above 12.5 g

dL�1
. In general, the number of female subjects who had a lower level of hemoglobin

is greater than that of male subjects.

6.6 Limitations

The current version of this study has a few limitations.

1. The user needs to change the LED-board to capture each fingertip video under a

single wavelength of NIR LED light.

2. We should make a single LED-board with two sets of NIR LED-lights: hemoglobin

responsive and plasma responsive NIR LED lights. Then, the end users do not

need to change the LED-board for each video recording.

3. The LED-board should be easy-to-use.

4. A mobile application is necessary to indicate of finger movement and placement
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Figure 6.5: Hemoglobin level, age and gender information of 167 participants in the

second clinical study at the AGB.

with data transmission functionalities to a cloud, receive the response from the

cloud, and user-friendly interface.
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Chapter 7

Prediction Model Development for Hemoglobin Assessment

In our second clinical study, described in chapter 6, we captured four fingertip

videos (V ideosPixel2, V ideos850, V ideos940, and V ideos1070) per person and secured

usable data from 167 individuals. The Google Pixel 2 smartphone’s primary camera

captured each video with 1080⇥1920-pixel resolution. We used the following steps to

process these fingertip videos.

7.1 Fingertip Video Processing

We extracted all frames from each fingertip video. Due to the potential for photo-

bleaching, finger movement, and placement issues, we selected frames 201 to 400 for

the data analysis. We subdivided each selected frame into a 10⇥10 block matrix where

a single block contained 108⇥192 pixels of information (Figure 7.1). Each frame of

the video had three two-dimensional pixel intensities arrays for each color: red, green,

and blue (RGB). Since each frame had 100 blocks, a mean value was computed from

each color pixel for each (108⇥192) block, which gives 100 mean values (Figure 7.1).

During the pixel analysis, we observed that the red channel showed a stronger response

under the NIR and white LED lights (LED-bard) a finding also reported in other stud-

ies [6]. Consequently, we considered only the red pixel intensity data to analyze our

videos. In Figure 7.1, we represent 200 frames extracted from a fingertip video, which

were subdivided into the 10⇥10 block matrix. Then, we generated a time-series signal

(putting frame number on X-axis and averaged value of a block on Y-axis) from each

of the blocks across 200 frames of a video (Figure 7.1).
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Figure 7.1: Subdivision of an image frame to generate multiple time-series signals.

7.1.1 PPG signal generation

In Figure 7.1, we represent three different time-series signals between the frame

number 201 and 400 where the top signal was generated by block number 50, 91, and

97. We applied these following techniques on each time series signal for PPG signal

generation:

• Apply a 2nd-order Butterworth bandpass filter (0.66 Hz 8.33Hz) where a mini-

mum cut off value was selected to discard the signal fluctuations due to breathing

range from 0.2 to 0.3 Hz [6].

• Use the Nyquist frequency as half of the frame per second (FPS) (FPS/2), which

is equivalent to 60/2=30.

• Select the filtered signal from the stable (with regular shape and cycle) part of the

time-series and crop the signal as a PPG.

• Identify three PPG cycles which meet the inclusion criteria (e.g., each PPG cycle
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has a systolic peak and a diastolic peak discussed in Section 6.4.3).

• If three continuous PPG cycles are not found, then select at least one cycle which

has a systolic peak and a diastolic peak, replicate this selected cycle three times,

and combine them to make a three-cycle PPG signal (Figure 7.2).

• Transfer this PPG signal (with three cycles) for the feature extraction process.

Figure 7.2: Photoplethysmogram (PPG) signal generation from a time-series signal.

To obtain the required PPG cycles without unwanted peaks and irregular cycles, we

chose a specific area of a PPG signal using a semi-automated process where a Matlab

code was used to represent several PPG signals of several (random) blocks. The Matlab

code asked for a starting and an ending index number of a cycle that included a sys-

tolic and a diastolic peak in the time-series. We provided the index numbers of three

PPG cycles if they were found consecutively; otherwise, we gave the input for one pe-

riod. Three consecutive PPG cycles were stored together where a single PPG cycle was

replicated three times to make an equal number of cycles for each block of a video. If a

single cycle existed in multiple locations of a PPG signal, the cycle with a highest sys-
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tolic peak was selected. If any block had no single PPG cycle that satisfied the selection

criteria, we discarded that PPG signal without calculating its features (Figure 7.3).

Figure 7.3: Feature generation from the Photoplethysmogram (PPG) signal generated

in all blocks.

7.1.2 Regression technique

In our correlation development work (Chapter 4), we applied the Partial Least Squares

Regression (PLSR), and we observed the PLSR worked better on a smaller sample

size. However, it did not give us a global fit statistic for the generation of a prediction

model [111]. In the PLSR, higher order PLS factors contained more detailed features

for the regressors, which are correlated with the response vector (Y). Thus, a higher

order of PLS components leads to a complicated prediction model. Again, a large num-

ber of PLS components cannot generalize a model well. Another critical problem with

approximating latent variables is that the prediction model becomes inconsistent and

biased since the predictive power changes with increasing sample size [112].

For dimensionality reduction, PLSR transfers data into latent variables to reduce



73

dimensionality, and then implement multiple linear regression on latent variables. This

method does not perform well when predictions are required over an extensive range,

where nonlinearity occurs. In that situation, a nonlinear regression model is highly

relevant. Support Vector Machine Regression (SVR) is one of the popular nonlinear

regression techniques [113]. SVR has several advantages over other regression algo-

rithms. For example, SVR has a regularization parameter that helps to avoid the over-

fitting issue, which was one of the challenging parts of the PLSR. In addition, SVR

uses the kernel where we can do the engineering of the kernel to characterize the prob-

lem. Since the computational complexity of SVR does not depend on the size of the

input data, SVR provides excellent generalization features with higher prediction accu-

racy [114]. We trained our model using the SVR where Gaussian kernel was selected.

7.2 PPG Feature Generation

After generating the PPG signal from the smartphone-based fingertip videos, we

calculated features from each PPG signal. In our case, we used three PPG cycles to

evaluate the characteristics of each PPG signal derived from each block of a video (Fig-

ure 7.2). Previously, several studies used PPG features for determination of hemoglobin,

glucose, blood oxygen saturation, heart rate, blood pressure [115], cardiac output [116],

respiration, arterial disease, vascular aging (for assessing hypertension) [117], vis-

coelastic properties of blood vessels [118], the degree and length of vasodilatation,

lower limb chronic venous insufficiency (CVI) [119], vasospastic (cold sensitivity con-

dition), and autonomic function (migraine patients) [120].

Since a PPG signal reflects the blood movement from the heart to the fingertips

through the blood vessels, the study of the characteristics parameter of a PPG signal may

provide information on blood constituent levels. So, we investigated multiple features

from the PPG signal (Figure 7.4) including the systolic and diastolic peak, PPG rise

time, pulse transit time (PTT), pulse shape, and amplitude, etc. (Figure 7.4) [120].
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Figure 7.4: Multiple features collection from a Photoplethysmogram (PPG) signal.

Combining one or multiple PPG features, we produced different feature sets (datasets)

where we employed SVR to create prediction models. Based on the predictive capacity

of different models, we obtained ten features that provided the highest level of linear

correlation. These ten features are presented (Figure 7.4 and Figure 7.5) in Table 7.1.

A number of PPG features have been presented in the previous studies.

• Systolic peak (X): The systolic peak (X) is an indicator of the pulsatile changes in

blood volume caused by arterial blood flow. The systolic peak is generated by the

direct pressure wave coming from the left ventricle to the periphery of the body.

• Systolic peak (Y): The diastolic peak is found as a result of reflections of the

pressure wave by arteries of the lower body [121]

• Dicrotic notch (Z): Dicrotic notch is a small downward deflection between sys-

tolic and diastolic point of a PPG cycle [122].

• Pulse Interval: The distance between the beginning and the end of the PPG wave-

form.

• Augmentation Index: The relationship between the contribution that the wave
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reflection makes to the systolic arterial pressure, and the reflected wave coming

from the periphery to the centre [120].

• First derivative of a PPG signal: PPG shows blood movement in the vessels.

The first derivative of PPG gives the velocity of blood in the finger [123]. In

Figure 7.5, a PPG sisgnal (top) and the respective first derivative of the signal are

presented.

• Peak time: The ratio of a peak value and the sample rate is denoted as peak time.

Table 7.1: Ten selected features captured from a PPG signal to analyze the AGB-167

dataset (Figure 7.4).

SL Feature name
1 Systolic peak (X)

2 Diastolic peak (Y)

3 Dicrotic notch (Z)

4 Relative augmentation index 1:

X�Y
X

5 Relative augmentation index 2:

Y�Z
X

6 Time between systolic and diastolic peaks (T1)

7 Ratio of two inflection point areas (R1 =
A1
A2 )

8 Ratio of systolic peak time and pulse interval (R2)

9 Ratio of dicrotic notch time and pulse interval (R3)

10 First derivative of systolic peak (D1) (Figure 7.5)

The systolic amplitude (X) indicates the pulsatile changes in blood volume resulted

in arterial blood flow. If we measure the pulsatile changes, then a machine learning

algorithm can correlate the pulsatile changes with blood constituent levels [124]. Delle

et al. confirmed the inverse relationship between the middle cerebral artery peak systolic

velocity and hemoglobin levels [125]. Aldrich presented a monitoring device for blood

component concentrations that simultaneously measured light path and the absorbance

of visible and/or infrared light under multiple wavelengths across the patient’s different

body site systolic and diastolic peaks. Analyzing different absorbance and light path

lengths, the concentration of a particular blood component was inferred [126].
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Diastolic peak information is important in the hemoglobin measurement process

since the volume of venous and arterial blood in tissues remains constant during the

diastolic phase. Thus, the light absorbance from both tissue and blood is stable. With

the incoming arterial pulse in the systolic phase, the total light absorbance rises with the

increase in arterial blood volume. We can measure the systolic increase by subtracting

the diastolic baseline absorbance from the systolic peak absorbance [127]. The relative

augmentation also allows us to capture these variations [6]. Inflection points can de-

termine the minimum and maximum values of the PPG waveform [128]. To identify

the location of a strong PPG signal of an image, the number of inflection points in the

signal can be calculated [129]. According to current research on subjects’ peripheral

blood vessels, stress level on the vessel wall and elastic properties of the artery exponen-

tially go down with an inflection point, and diameter exponentially goes up [130, 131].

Calculating the first and second derivatives of the PPG signals, we can study the infor-

mative inflection points more accurately. The change in blood volume can be tracked

calculating the pulse interval, and the ratio of different peak arrival time [132]. For

example, a ratio of pulse interval to its systolic amplitude can provide a measure of a

property of a person’s cardiovascular system.

Averaging the features

While we calculated the PPG features from 100 blocks of a video, we averaged these

features to make one observation from one video. To build a model, we created 167

hemoglobin-responsive observations and a similar number of plasma-responsive obser-

vations. Figure 7.6 shows the concept of how each observation set was created.

Ratio of PPG features

We computed the ratio of features captured from two PPG signals under two different

wavelengths of light (�H and �P ). The ratio of two PPG signals’ feature values can be
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Figure 7.5: PPG signal a) Original b) first derivative of the original. The image is

redrawn from [120].

presented as follows:

R1070(850) =
PPG850

PPG1070
(7.1)

The ratio of two PPG feature values means the individual ratio between each feature

values. For example, we calculated the ratio of the systolic peak value under a 850nm

NIR light and the systolic peak value under a 1070nm NIR. Similarly, we also measured

the ratio of all other features that were applied to the SVR machine learning algorithm.

The ratio of PPG signals’ features are named as R1070(940), R1070(Pixel2) where

R1070(940) =
PPG940

PPG1070
(7.2)

R1070(Pixel2) =
PPGPixel2

PPG1070
(7.3)

where PPGPixel2, PPG850 and PPG940 are hemoglobin responsive and PPG1070 is

considered as plasma responsive PPG signal.
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Figure 7.6: Features captured from 100 blocks are averaged for each video.

7.3 Results

In this data analysis, we employed the Support Vector Machine Regression (SVR) to

build the hemoglobin prediction model using 10 PPG features. In this work, we applied

SVR to three feature sets created from the R1070(850), R1070(940), and R1070(Pixel2).

7.3.1 Prediction models

Applying the SVR on the features generated from the ratio R1070(850) (Equation

7.1), R1070(940) (Equation 7.2), and R1070(Pixel2) (Equation 7.3) separately, we trained

prediction models which are named as Model1, Model2, and Model3 respectively. We

tested those 167 subjects’ features on the prediction model Model1. Without separation

of cases, the same total dataset was applied for testing purposes also. The regression line

based on CHb levels and the estimated hemoglobin values using Model1 are presented

in Figure 7.7. In Figure Figure 7.7a, we observed that the Mean Absolute Percent-
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Figure 7.7: Data analysis on the AGB-167 dataset using R1070(850) to estimate

hemoglobin levels. a) The regression line based on the clinically measured hemoglobin

levels and the estimated hemoglobin values using Model1 b) The Bland-Altman plot is

presented for 167 subjects’ estimated hemoglobin levels using Model1.

age Error (MAPE) was only 2.08% where the linear correlation coefficient (R) between

clinically measured hemoglobin (CHb) levels and model predicted hemoglobin levels is

0.97. In Figure 7.7b, we present the Bland-Altman plot for those estimated hemoglobin

levels where the bias and precision obtained were -0.047 and 0.225 respectively.

Using Model2, we tested the features generated from the ratio R1070(940) on the

prediction model. Figure 7.8 presents the regression line based on CHb levels and

the estimated hemoglobin levels (Model2). In Figure 7.8a, we observed that a Mean

Absolute Percentage Error (MAPE) of 2.31% and the linear correlation coefficient (R)

between CHb levels and model predicted hemoglobin levels was 0.96. We present the

Bland-Altman plot in Figure 7.8b where the bias and precision were -0.034 and 0.251

respectively.

For Model3, Figure 7.9a shows that the Mean Absolute Percentage Error (MAPE)

is 2.26% and the linear correlation coefficient (R) between gold standard (clinically

measured) hemoglobin levels and model predicted hemoglobin levels is 0.93. Figure

7.8b presents the Bland-Altman plot. Here, we the values of bias and precision were

-0.039 and 0.246 respectively.
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Figure 7.8: Data analysis on the AGB-167 dataset using R1070(940) to estimate

hemoglobin levels. a) The regression line based on the clinically measured hemoglobin

levels and the estimated hemoglobin values using Model2 b) The Bland-Altman plot is

presented for 167 subjects’ estimated hemoglobin levels using Model2.
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Figure 7.9: Data analysis on the AGB-167 dataset using R1070(Pixel2) to estimate

hemoglobin levels. a) The regression line based on the clinically measured hemoglobin

levels and the estimated hemoglobin values using Model3 b) The Bland-Altman plot is

presented for 167 subjects’ estimated hemoglobin levels using Model3.
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7.3.2 Training and testing sets

Analyzing three different datasets of 167 subjects, we observed that the features

from the ratio R1070(850) showed a higher level of accuracy. Thus, we further inves-

tigated this dataset where we cross-validated the SVM regression model using 10-fold

cross-validation. Here, we obtained the mean square error (MSE)=0.88. Afterwards,

we investigated the PPG features (R1070(850)) by subdividing the dataset into two sets:

training and testing. We created these two datasets where the subjects were chosen with

different levels of hemoglobin in each set. The training set was manually selected to

include the full range of CHb. The training set included data from 133 individuals’

data which comprised 80% of the 167 records. The testing set used the remaining data

from 34 subjects. We applied SVR to train the prediction model using the training

set, not taking into account the testing set. The created model was named ModelT ,

which was used to predict the estimated value for the training and testing dataset later.

Using ModelT , the estimated hemoglobin values for the training set is presented in Fig-

ure 7.10a. For the training set, we found that the MAPE was 0.74% and R was 0.98.

The bias and precision were -0.045 and 0.221 respectively (Figure 7.10b).

We also used the prediction model, ModelT to predict the estimated value for the

testing dataset. The estimated hemoglobin values for those 34 subjects is presented in

Figure 7.11a. For the testing dataset, we found that the MAPE was 5.45% and R was

0.84. The bias and precision were -0.114 and 0.475 respectively (Figure 7.11b).

7.3.3 Region of interest (ROI)

In Chapter 5, we investigated five different locations (LCA, RCA, TRA, BRA, and

CIA) of an image where a group of blocks generated each location’s time-series signal.

Similarly, we produced a PPG signal averaging the PPG signals from each block-group

to build a hemoglobin prediction model in the second clinical study. For example,
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Figure 7.10: Data analysis on the features of the training set generated from R1070(850)
to estimate hemoglobin levels. a) The regression line of the training dataset based on

the clinically measured hemoglobin levels and the estimated hemoglobin values using

ModelT b) The Bland-Altman plot is presented for the training set subjects’ estimated

hemoglobin levels using ModelT .
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Figure 7.11: Data analysis on the features of the testing set generated from R1070(850)
to estimate hemoglobin levels. a) The regression line of the testing dataset based on

the clinically measured hemoglobin levels and the estimated hemoglobin values using

ModelT b) The Bland-Altman plot is presented for the testing set subjects’ estimated

hemoglobin levels using ModelT .
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LCA has 30 blocks including the block numbers 1, 2, 3, 11, 12, 13, 21, 22, 23, 31,

32, 33, 41, 42, 43, 51, 52, 53, 61, 62, 63, 71, 72, 73, 81, 82, 83, 91, 92, and 93.

We averaged the PPG signal information for each group. Since the ratio of two PPG

features generated from 850nm and 1070nm provided a strong linear correlation (R),

we considered these two videos per person to investigate an ROI. Analyzing the ratio

of two PPG features (under 850nm and 1070nm) from five locations, we observed that

the PPG signals generated from the LCA provided the greatest R-value with minimum

MAPE. However, the PPG signals generated from the RCA also showed better linear

correlation. In Table 7.2, we present the performance of the PPG signals generated

from other locations. Note that, we considered the red pixel intensities to generate a

PPG signal since the PPG signals generated from green and blue pixel intensities have

an irregular cycle and random peaks.

Table 7.2: Region of interest (ROI) identification analyzing five locations of an image

considering the datasets captured under 850nm and 1070nm.

Location MAPE R
LCA 2.06% 0.96

RCA 2.18% 0.96

TRA 2.20% 0.95

BRA 2.20% 0.95

CIA 2.19% 0.95

7.4 Discussion

The photoplethysmogram (PPG) signal has been extensively studied over the past

15 years where multiple PPG features have been applied to build non-invasive solutions

for hemoglobin assessment [6, 37, 99, 40]. However, these solutions have shown mod-

erate performance with unreliable results due to complex data collection and analysis

processes, with small sample sizes, and expensive additional devices. In this study, we

used a regular smartphone and low-cost LED-boards (add-on) for the data collection,
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applied image processing techniques for PPG signal generation and feature extraction,

and analyzed 167 subjects’ data for hemoglobin level assessment. We found that our

prediction model outperforms the existing solutions: HemaApp (R=0.82) and Masimo

Pronto 7 (R=0.81) [6].

7.4.1 PPG signal

PPG signals have been obtained by using PPG devices where the users are required

to pay for this external device. In addition, they have to carry this item to use it remotely.

For example, Ahmet et al. used an STM32F103xC ARM-based PPG data-acquisition

card where the PPG signal was captured by a reflection sensor to estimate hemoglobin

level non-invasively [101]. In this study, we developed the image processing techniques

to generate PPG signal from a fingertip video captured by a smartphone. This solution

provides a solution with twofold benefits: no additional cost or transport inconvenience.

In smartphone-based PPG signal generation, most of the solutions considered either

the central region or a specific area of an image, which was averaged based on red,

green, or blue channel pixel intensities. For example, HemaApp used the center section

of an image where they cropped half the width and half the height of the image and

averaged the intensity for each channel in the hemoglobin level estimation process [6].

For further examples, Scully et al. used 50⇥50 size image pixel intensities on green

channel [40] and Jonathan took a central region with 10⇥10 pixels’ mean intensity

value for smartphone-based PPG generation [91]. We proposed to subdivide an image

into a 10⇥10 image block and identify the best location for a strong PPG signal. We

did not use any fixed location of an image since the best ROI might be changed from

its original location based on finger position. Based on the ROI, we processed and

transferred the minimum block area of an image, which reduces computing time and

resources.

We generated PPG signals from green and blue pixel intensities, however we ob-
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served several sharp spikes or zero values in these generated PPG signals that made

them unreliable for feature extraction and prediction model development. Several stud-

ies have reported that the red pixel intensities have shown strong responses in the PPG

signal generation process [6, 5].

Motion artifact, finger pressure on the smartphone camera and finger position are

common challenges in smartphone-based PPG generation from fingertip videos. In our

second clinical study, one health assistant recorded all fingertip videos considering stan-

dard finger pressure and position on the smartphone. To remove the finger movement,

position, and pressure artifacts, we processed each time series signal using band-pass

Butterworth filter. We used the Savitzky–Golay filter to PPG signal for the purpose of

smoothing the data. In our second clinical study, the hemoglobin tests were performed

in a single diagnostic center.

7.4.2 Hemoglobin level estimation

The PPG signal acquired by a fingertip video allowed us to build a model for pre-

dicting actual blood Hb levels. Here, we constructed a prediction model of Hb levels

using the training dataset where we included 167 subjects’ R1070(850) dataset. The lin-

ear correlation between the computed Hb content and the CHb levels shows an excellent

R-value. From the Bland-Altman analysis, we compare the two Hb measurement meth-

ods where the 95% limits of agreement (LOA) exclude 12 out of 167 (7.18% outside

the limits of agreement) with a bias of 0.04 g dL-1.

We applied the SVR on the remaining datasets. Figure 7.8a shows that the LOA

includes 152 estimated Hb values with bias of 0.034 g dL-1, while the R value is equal

to 0.96. For the R1070(Pixel2) dataset, Figure 7.9a shows that the LOA includes 154

estimated Hb values with bias of 0.039 g dL-1, while the R value is slightly reduced

to 0.93. Even though the R1070(Pixel2) dataset results in a poorer performance, the

correlation coefficient (R) is not much different from the other two cases, which sup-
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ports the novel idea that we can estimate close to a clinically accepted hemoglobin level

under two wavelengths of NIR LED light. The V ideosPixel2 were captured without any

LED-board. However, the Google Pixel 2 smartphone has a built-in infrared-red sensor

(Figure 6.3), which may affect the captured fingertip video to enhance the correlation

(R).

The PPG features of R1070(850) dataset shows the highest level of correlation with

minimum MAPE and bias, which corroborate a reliable hemoglobin prediction model.

For developing the hemoglobin quantification algorithm, we selected 133 individuals

(80%) to use as a training dataset. To create a new testing dataset, we employed the

rest of the individuals from the data group of 167. Since the sample size is relatively

small, the testing dataset of only 34 individuals (20%) strengthens the validation of

the non-invasive hemoglobin prediction model. The performance of (ModelT ) on the

training dataset is significantly better than other models where MAPE=0.74%, R=0.98,

and LOA exclude 5 out of 134 (7.52% outside the limits of agreement) with a bias of

0.04 g dL-1. Even though the testing dataset with 34 observations results in a relatively

poorer result (MAPE=5.49%, R=0.84, and bias=0.11 g dL-1.), testing results still sup-

ports the underlying idea that the fingertip-video-based PPG features can be used for

accurately and precisely estimating Hb levels.

To make a comparison with PLSR, we computed prediction models applying PLSR

on the dataset created by the R1070(850) where we use 10, 15, 20, and 25 PLS com-

ponents and we obtained MAPE=5.75%, 5.70%, 5.65% and 5.50% and R=0.50, 0.51,

0.52, and 0.53 respectively. Since PLSR worked better on smaller sample sizes, we

observed this effect on this new dataset of 167 subjects (AGB-167). In SVR, kernel

function provides important support that has motivated its use in many studies. The

Gaussian kernel (RBF) is known as the best kernel for its superior performance in sev-

eral practical applications [133]. In this study, Gaussian kernel outperformed PLSR-

based hemoglobin prediction models on the AGB-167 dataset. In our second clinical
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study, many women participating had high blood pressure, and or diabetes. Our predic-

tion model may behave with less accuracy in these physiological situations.

For the prediction model to perform accurately on patients over a wide range of

smartphone devices, demographic and physiological characteristics, the data training

model should cover as wide a range of hemoglobin levels as possible [99]. It is essen-

tial for the prediction model that the data should be collected under different patient

situations that might change the PPG signals and their features. Additional conditions

such as temperature, physical fitness, interfering chemical agents–medicines may affect

the hemoglobin prediction model.

In the first clinical study, we used Google Nexus 4 smartphone for the data collection

process where the built-in camera light was turned on continuously during fingertip

video recording. No additional lights were used for a fingertip video recording. In

contrast, we used Google Pixel 2 smartphone for fingertip video recording and three

different near-infrared LED light boards were used separately. We did not combine

these two different protocols’ datasets for the analysis purpose since these data sets

have other differences.

7.4.3 Region of interest (ROI)

In the results section, we presented the ROIs where the PPG provided strong linear

correlation coefficient (R) with minimum MAPE. We investigated the reason for better

performance by the PPG signals generated in the LCA and RCA area. To understand

the pixel intensities variations, we present 15 consecutive frames of a fingertip video

using a colormap where the fingertip videos were captured under 850nm LED-board. In

Figure 7.12, we show the colormap of 15 continuous frames where each frame contains

the frame number in the middle of the colormap. The dotted area on the left side of

each image in Figure 7.12 represents the LCA. Here, each frame has 10⇥10 block

matrix where each block has averaged (red) pixel intensities. The color bar is presented
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using blue color for the lowest value of a block and dark red color for the highest

value of a block. Comparing these 15 colormaps, we observe that the highest color

pixel variations were captured in the LCA where the PPG signals captured most of the

PPG features. We also noticed that the blocks in RCA changed more than the remaining

three locations for 15 frames. Later, we combined the PPG signals generated from LCA

and RCA and analyzed the PPG features using the SVR algorithm where we observed

the similar linear correlation (R=0.97) value that we calculated using all blocks PPG

signals. Using this approach, we reduce the feature area of an image which might be

helpful for the data transmission process between a smartphone and a cloud computer

under low bandwidth internet.

Figure 7.12: Features captured from 100 blocks are averaged for each video.

Although our novel image processing techniques provide a significantly better pre-

diction model, we faced several challenges during the device development, data collec-

tion, and video processing. In the future, we recommend pursuing ideas in the following

areas. First, we should explore using an LED-board with a different wavelength range

of NIR LED lights. This may be important not only for stable fingertip video recording
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but also for user protocol compliance. Second, a mobile application should be very

user-friendly to ensure optimal end transmission capability, on-screen feedback with

visual interpretation, cloud-based solution, and smartphone-based prediction model to

support the users without internet access. Third, we need data collection from much

larger and variable populations to build an optimally robust and clinically acceptable

prediction model.

7.5 Conclusion

In this chapter, we have presented a non-invasive hemoglobin level assessment pro-

cess using the PPG signal generated from a fingertip video, which was captured using

a smartphone under near-infrared LED light. Analyzing the fingertip videos, we found

a model using data from 850nm and 1070nm wavelength of NIR LED lights showed a

significant correlation between the estimated and clinically measured hemoglobin level.

In this study, we investigate the region of interest area which will help us to reduce the

computing and data transmission time. This kind of smartphone-based non-invasive

solution can improve health care services using existing infrastructure.
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Chapter 8

Conclusions

In clinical settings, blood hemoglobin (Hb) assessment is a common and very clini-

cally useful procedure. However, it is often challenging for many patients to have such

testing. That is why the demand for noninvasive, real-time, and continual Hb measure-

ments are increasing. To overcome the challenges, we did a first study to investigate

the correlation between the computed hemoglobin using fingertip video pixel intensi-

ties and CHb level. To reduce the computing task, we studied the regions of interest

in the fingertip video. In a second clinical study, we have collected more videos un-

der different near infrared lighting conditions to capture blood volume changes using

PPG features. We generated the PPG signal from fingertip videos captured by a smart-

phone, which provide the basic building blocks for prediction model development. This

smartphone-based POC solution is a novel approach due to its key features including

mobility, low-complexity, and affordability particularly in resource-limited or remote

health care settings.

8.1 Principal Contributions and Findings

The principal contributions of the reported work are:

1. Development of a low-cost, reliable, portable, and user-friendly POC solution for

hemoglobin assessment.

2. Design and implementation of a data collection protocol where a smartphone and

NIR LED-boards are used.

3. Generation of block-wise PPG signal generation from a fingertip video captured

by a smartphone.
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4. Reduction of feature space using a ROI of a video data.

5. Identification of image processing techniques for PPG signal generation, which

include video processing, image segmentation, filtering, and feature engineering.

6. Invention of a novel feature set generation from PPG signals to build a prediction

model for hemoglobin assessment.

7. Provision of a hemoglobin assessment solution for a widely available device–a

smartphone—without significant additional costs.

8. Development of a near clinically usable solution for noninvasive hemoglobin

measurement.

The principal findings of the dissertation are:

1. It is possible to build a smartphone-based POC tool for hemoglobin assessment.

2. PPG generation is possible from a fingertip video applying image processing

techniques.

3. Our proposed theoretical foundation for non-invasive hemoglobin estimation is

able to generate feature matrices using the ratio of two different PPG signals’

features.

4. Ourd prediction model outperform the existing non-invasive solutions for hemoglobin

assessment: HemaApp and Masimo Pronto 7.

5. The model using the transmissive, illuminate at 850nm and 1070nm, appear to

provide the best non-invasive measurement of Hb.

These contributions provide the basis for the development of a clinically accurate and

widely applicable noninvasive tool, which achievement seems now possible as will be

considered below.
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8.2 Limitations of the Work Reported Here

Our approach relies on fingertip videos to create PPG features. The limitations of

this approach are:

• We used two different near-infrared wavelengths of LED light in two different

LED-boards and installed two white LED lights for the illumination of a fingertip.

Such a data collection LED board is not perhaps an optimal design. Since two

types of NIR LED lights were set up on two LED-boards, users need to change

boards for each video. A better design will have the required NIR LED lights

installed on a single board so that the user can record a video with a time lag

between two videos (first one video –hemoglobin responsive and second one –

plasma responsive).

• The investigated LED-board is a prototype. If the LED-board is not set up prop-

erly under the finger, the smartphone camera cannot be aligned with the LED-

board. The captured video will have issues with lighting conditions. An opera-

tionally logical hardware package needs to be developed considering these and

other issues.

• The mobile application is not developed for fingertip video recording with crit-

ical capabilities such as the identification of fingertip pressure level, and body

movement.

• We collected data from 212 subjects in our second clinical study. These sub-

jects did not provide laboratory hemoglobin levels covering the full range of such

levels seen in patients—approximately 6 to 18 g dL�1
.

• A cloud computer-based solution is important for future validation purposes using

crowedsourced fingertip video.
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• We need image processing techniques to consider the video captured by any

smartphone device.

8.3 Future Works

Near-infrared (NIR) spectroscopy is a promising technique for noninvasive Hb level

estimation. We believe that a clinically accurate and acceptable model can be developed

based on the work reported here if we can create acceptable signal-to-noise ratios and

rigorous signal processing techniques, and analyze larger data sets from patients with

the full range of hemoglobin levels seen in clinical practice. We suggest that pursu-

ing the following strategies is likely to lead to definition of a more accurate and very

acceptable clinical prediction model.

Low signal-to-noise ratios (SNR) of generated PPG signals influence the accuracy

of prediction models [55]. PPG with reliable SNRs extracted from pulsatile arterial

blood may reduce the relative error in PPG selection and feature extraction. Further,

spectral properties of the NIR LED and the selective absorbance of some wavelengths

in living tissue (fingertip) may lead to low transmitted intensities and decreased SNRs

of PPG data. We can utilize laser diodes (LDs) as a light source in future work to

improve the SNR. In addition, we can improve the PPG generation techniques. High-

quality PPG signals are the key prerequisite for an improved hemoglobin prediction

model [134]. We should explore building a PPG generation algorithm using the ra-

tio of superimposition averaging template and pulse wave [135], optimized differential

extraction method [134], dynamic spectrum method [136], and spectral difference co-

efficient and dynamic spectrum [137].

Because the pressure of the fingertip-pad on the smartphone camera and finger

movement can alter the waveform of the PPG signal, a well-designed hardware sys-

tem for securing the imaged finger needs to be developed [138, 139].

Noise and artifacts can be further reduced by using filters. For example, we can use
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the moving average filter [140] and adaptive filters that work with a reference signal.

The reference signals can be obtained from an additional transducer to identify fin-

ger movement [141]. Most of the physiological signals are non-stationary and change

their properties over time. In this case, a wavelet transformation and the smoothed

pseudo-Wigner–Ville distribution can be applied to improve the PPG signals [140].

The Wavelet transform has been used as a method of movement artifact reduction for

PPG signals [142].

We have demonstrated a non-invasive solution for hemoglobin assessment where the

dataset included hemoglobin levels from 9.0 to 13.0 g dL�1
with most frequent (mode)

Hb level 11.2 g dL�1
. The prediction model based on this dataset may be affected

by algorithmic bias which made contribute to increased MAPE=2.08% (lowest MAPE)

for the R1070(850) dataset. One way to remedy considered biases may be to train the

prediction model using specific data from clinical populations with lowest and highest

possible levels of hemoglobin. Taati et al. observed improved performance using this

approach for their models adding various new faces from the older adults and dementia

group [143]. Retraining their models with new images of older adults’ faces improved

their performance significantly (NRMSE  5% and the accuracy moved from 72.0% to

90.2%).

We designed and implemented three NIR LED-light sources. In our clinical study,

the researcher assistant changed each LED-board per fingertip video. A compact LED-

board with multiple wavelengths of NIR LED can be built which may better standardize

data from each separate light source.

Hemoglobin level estimations from capillary and venous blood, as done in our work,

may differ. Conflicting results have been reported. Leppanen et al. found equiv-

alent hemoglobin counts in fingertip compared to venous blood [144]. Two studies

have reported no significant differences between finger-stick and venous samples [143].

Several studies have reported an overestimation of Hb levels by capillary, compared
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with venous blood samples [145]. In contrast, Yang et al. found a significantly higher

hemoglobin count (2.7%) in venous than in arterial blood [146]. These authors sug-

gested that 2–3% of plasma in the arterial blood may come from supplemental tissue

fluid. Since capillary blood has an arterial source, Hb levels may be higher than in

venous blood [147]. Hemoconcentration in capillaries may cause this higher level of

Hb [148]. Loop capillaries are the main source of blood from finger-pricks. With

this technique, the Hb blood concentration changes with skin temperature, depth of

skin penetration by the pick and dilution by extracellular tissue fluid due to skin pres-

sure [149]. In summary, it is possible that in our work we are essentially assessing

hemoglobin levels from the same individuals, at the same time, but in physiologically

different samples-arteriolar/capillary and venous, but whether in usual clinical circum-

stances, these samples have different hemoglobin levels is unclear.

Based on the proposed solution, we propose a general conceptual framework which

can be used for the assessment of other blood constituent levels. We describe the archi-

tecture of the framework here.

8.4 Concept: A General Framework for Non-invasive Smartphone-based As-

sessments of Blood Constituent Levels

The Hb system processing and analytic framework may be the basis for develop-

ment of noninvasive POC tools for the assessment of multiple other blood constituents.

The framework performs the hemoglobin level prediction in the cloud while relying on

widely available consumer device (smartphone) to capture and transmit the data. In a

broader concept framework, the user first inputs his or her credentials to record his or

her fingertip video and submit a request to estimate the hemoglobin level. The full pro-

cess is a non-invasive diagnosis process where the mobile application records the data

collection device name, brand, version of the operating system (OS) along with other

credentials. When the user submits a request, the system uses a prediction model algo-
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rithm based on the particular smartphone. The calculated hemoglobin level is sent back

to the user’s display with some interpretation of the value using visualization tools such

as cartoons, plots, and scores. The users can use this application on both mobile and

desktop-based system using their credentials. The framework provides the user with

this diagnosis (smartphone or desktop computer) device as a personalized POC tool.

Summarizing this concept: In our framework design process, the smartphone’s cam-

era sensor and a NIR LED-board act as a POC diagnostic tool. The key features of this

framework include the following:

• The smartphone application is used to capture a 10-second fingertip video with

the support of a built-in camera and an infrared (IR) LED-board.

• User authentication, video processing, feature extraction from each video is done

in the cloud.

• The prediction model based on the user’s credentials and mobile phone’s techni-

cal specifications is deployed on the cloud.

• A parallel computing paradigm is activated if multiple requests arrive from sev-

eral users to save the computation time.

• Security and privacy are maintained in data storage, transmission, and distribu-

tion.

• External software developers are allowed to participate in prediction model de-

velopment, interface design and implementation, and run the code on any dataset

without hampering the regular processing if user requests.

A traditional blood component estimation system receives the input sample from the

user’s data, preprocesses the data, extracts features, applies machine learning algorithm

on the features, predicts the biomarker level, and returns the calculated result to the
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users mobile or desktop application with a meaningful interpretation using numerical

and graphical representation.

8.4.1 User interface:

A mobile application (app) with an appropriate acronym app name, can be available

on the web to download and install. Multiple brands of smartphones can be supported.

The specification of the mobile phone will be automatically stored in the local memory

while installing the app. A user-friendly interface can be developed where the applica-

tion will run on mobile and desktop systems. The user interface will allow the user to

complete the registration process with minimum input and without cognitive demands.

When the user completes the registration process, the user’s credentials and the speci-

fication will be transferred to the cloud. A unique identification (ID) number (which is

not human readable) will be created based on the user’s information and the personal

information which are encrypted before storing in the database. The ID number will be

used to keep track of all the transmitted and distributed data for the verification purpose.

The ID will be based on the user’s registration time, age, gender, and smartphone’s spec-

ification where a secure hash algorithm 1 (SHA-1) will be applied to generate a unique

ID.

After the installation process, the user can capture a 10-second fingertip video using

a smartphone and a NIR LED-board. The NIR LED-board should be made simple so

that it is easy to attach to the finger. The index finger is preferable for capturing the

video. If the index finger does not fulfill the criteria, then other fingers that are easy to

put on the smartphone camera will be chosen for video recording. The mobile app can

guide the user to put their fingers correctly on the camera using a green light indication.

If the user places the finger on the smartphone camera with normal pressure, without

any movement, and with correct position, then the green indicator light on the app will

tell the user that the app is ready to start the video recording. We can also automate the
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recording process when the green indicator light is on so that users do not need to put

their finger on the video recording button. The app will turn off the recording after a

10-second duration and ask the user whether they are ready or not to send the data to

the cloud. Based on the internet connection, the user can save the data or send the data

immediately to the cloud for further processing and wait for the feedback. If the user’s

internet bandwidth is high, then the video will be transferred to the cloud. Otherwise, a

selected number of frames will be transferred for slow internet connection.

The feedback of cloud computing will be presented numerically as well as with

visuals. The interpretation of the result will be easy to understand for a minimally

literate person. The result can be saved in or deleted from the local memory of the

phone, but the result will be stored in the cloud permanently. The interface will allow

the user to see the previous hemoglobin levels, and statistics based on the selected

duration. The same smartphone can be used for different users where each user should

log in with their credentials.

8.4.2 Cloud computing

In the cloud computing system, we can transfer the high computation processes

from smartphones to the cloud [150]. Dedicated resources such as distributed file stor-

age, multiple core computing system, and higher memory can be applied for the video

and image processing task if needed in the cloud. Parallel computing allows us to use

faster computing facilitates to handle millions of users’ fingertip video [151]. The cloud

computing architecture is shown in Figure 8.1 and is illustrated here step by step.

1. The user authentication process will confirm the validation of a user’s credentials.

If the authentication process fails, the user will get feedback from the cloud.

2. After the validation process is completed, the fingertip video is stored in tempo-

rary memory in the cloud and waits for the subsequent processing. The cloud
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will preprocess the video first where the frames will be extracted and checked for

further processing.

3. If the generated frames are not appropriate with the selection criteria, a negative

acknowledgment will be sent to the user to send the video again. Otherwise,

the user will receive a message regarding successful video recording and data

transmission.

4. Based on the number of user requests, additional servers will be added in the

cloud, the execution of each prediction algorithm will be tracked, and the predic-

tion model will be updated.

5. When a user uses this application for the first time, the cloud system will request

for a clinically measured hemoglobin value of that user. So, the user should

provide several clinically measured hemoglobin values (3-5 times per month) to

the cloud for calibration purpose.

6. After the preprocessing, the video will be transferred to a Job Manager where the

manager assigns a video as a new job to a scheduler.

7. After receiving a job from a Job Manager, a Task Manager assigns the neces-

sary resources to complete the job. In the cloud, the task manager can assign

distributed file system and parallel computing facilities to accomplish the job ef-

ficiently.

8. The prediction models in the cloud are classified according to the user’s race, age,

gender, and other factors such as diseases, physiological features, etc. To build

an area-based prediction model, we may keep the location information with the

user’s permission.

9. Feature engineering process will be performed by the research scientist imple-

menting new ideas, editing existing data analysis policies, testing the developed
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Figure 8.1: Framework blood constituent level estimation using a smartphone and in-

frared LED lights.

processes and uploading those facilities in the cloud.

10. In the cloud, a virtual machine will be installed to run the advanced algorithm and

prediction model.

8.4.3 Software development interface

In the virtual machine of the cloud, the implemented algorithms will be deployed by

the software developer. The updated mobile application and desktop-based applications

can be made available on the app storage and web server. The development team will

build a job manager that will manage the upcoming fingertip videos, put in the job

queue, select the algorithm, and send to a task manager [152]. The task manager will be

developed with several properties including scheduling task, task execution, managing

task input-output queue management, and parallel resource allocation if needed.

Initially, the development interface can be built as a virtual machine on a desktop

computer and run a similar type of virtual machine on the cloud which will make it eas-

ier for the programmer to deploy the code without any technical challenge. The freely
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available Virtual Box can be used here, and the image processing tools and API can

be made available [152]. A web interface will be developed to manage the algorithms,

programming code, database, prediction model, a large number of users, software de-

velopers, crowdsourced fingertip videos, and accessibility. Several administrative and

user levels will be created to keep control over the whole software system.

The developer team can download any model to test and edit the prediction model

algorithms. Then the algorithm and software applications will be tested by other teams.

The new or updated model can be uploaded to the cloud after the testing and validation

processes as shown in Figure 8.1.

8.5 Published work

The published peer-reviewed journal, patent application, and articles based on this

dissertation are listed here.

8.5.1 Peer Reviewed Articles

1. Hasan, M. K., Haque, M. M., Adib, R., Tumpa, J. F., Love, R. R., & Sheikh, I.

A. (2018). Smarthelp: Smartphone-based hemoglobin level prediction using an

artificial neural network. In AMIA Annual Symposium Proceedings (Vol. 2018,

p. 535). American Medical Informatics Association.

2. Hasan, M. K., Love, R. R., & Sheikh, I. A. (2019). “Method and Apparatus for

Non-invasive Hemoglobin Level Prediction”, Provisional Patent Application No.

62/638,630 Patent Pending.

3. Hasan, M. K., Haque, M., Sakib, N., Love, R., & Ahamed, S. I. (2018). Smartphone-

based human hemoglobin level measurement analyzing pixel intensity of a finger-

tip video on different color spaces. Smart Health, 5, 26-39.

4. Hasan, M. K., Sakib, N., Love, R. R., & Ahamed, S. I. (2017, October). RGB

pixel analysis of fingertip video image captured from sickle cell patient with low
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and high level of hemoglobin. In 2017 IEEE 8th Annual Ubiquitous Computing,

Electronics and Mobile Communication Conference (UEMCON) (pp. 499-505).

IEEE.

5. Hasan, M. K., Sakib, N., Field, J., Love, R. R., & Ahamed, S. I. (2017, July). A

novel technique of noninvasive hemoglobin level measurement using hsv value of

fingertip image. In 2017 IEEE 41st Annual Computer Software and Applications

Conference (COMPSAC) (pp. 221-229). IEEE.

6. Ahsan, G. M., Gani, M. O., Hasan, M. K., Ahamed, S. I., Chu, W., Adibuzza-

man, M., & Field, J. (2017, July). A novel real-time non-invasive hemoglobin

level detection using video images from smartphone camera. In 2017 IEEE 41st

Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1,

pp. 967-972). IEEE.

7. Hasan, M. K., Sakib, N., Love, R. R., & Ahamed, S. I. (2017, October). An-

alyzing the existing noninvasive hemoglobin measurement techniques. In 2017

IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication

Conference (UEMCON) (pp. 442-448). IEEE.

8.5.2 Poster Presentation

The presented posters based on this dissertation are listed here.

1. Md Kamrul Hasan, Md Hasanul Aziz, Richard R. Love, Sheikh I. Ahamed.

Smartphone-based Bioimaging for (Hemoglobin) Biomarker Estimation. Poster

presented at the Forward Thinking Poster Session and Colloquy; 2018 Nov 27;

Marquette University, Milwaukee, WI.

2. Md Kamrul Hasan, Richard R. Love, Sheikh I. Ahamed. NICE HELP: Non-

Invasive Computational Evolution (NICE) for Hemoglobin Level Prediction (HELP).
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Poster presented at the IEEE Conference on Biomedical and Health Informatics

(BHI) 2018; 2018 March 4-7; Las Vegas, NV.

3. Md Kamrul Hasan, Anmol Paudel, Richard R. Love, Sheikh I. Ahamed. ProPar

HELP: Programming in Parallel (ProPar) for Hemoglobin Level Prediction (HELP).

Poster presented at the IEEE Conference on Biomedical and Health Informatics

(BHI) 2018; 2018 March 4-7; Las Vegas, NV.

4. Md Kamrul Hasan, Jordan Trinka, Michelle A. Visbal Onufrak, Md Munirul

Haque, Young L. Kim, Sheikh Iqbal Ahamed. Develop a Conversion Matrix Us-

ing Hyperspectral and RGB Data for Noninvasive Hemoglobin Level Measure-

ment. Poster presented at the Forward Thinking Poster Session and Colloquy;

2017 Nov 28; Marquette University, Milwaukee, WI.

5. Md Kamrul Hasan, Nazmus Sakib, Joshua Field, Richard R. Love and Sheikh

I. Ahamed: BILD (Big Image in Less Dimension): A Novel Technique for Image

Feature Selection to Apply Partial Least Squares Algorithm. Poster presented at

the 2017 IEEE Great Lakes Biomedical Conference (GLBC); 2017 April 06 - 07;

Milwaukee, WI.

6. Md Kamrul Hasann, Nazmus Sakib, Joshua Field, Richard R. Love and Sheikh

I. Ahamed: A Novel Process To Extract Important Information From Invisible

Video Captured by Smartphone. Poster presented at the 2017 IEEE Great Lakes

Biomedical Conference (GLBC); 2017 April 06 - 07; Milwaukee, WI.

7. Md Kamrul Hasan, GM Tanimul Ahsan, Amit Kumar Saha, Sheikh I. Ahamed,

Richard R. Love: Noninvasive Hemoglobin Level Measurement Using Spec-

troscopy. Poster presented at the 40th IEEE Computer Society International Con-

ference on Computers, Software & Applications (COMPSAC); 2016 June 10-14;

Atlanta, GA.
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Hemoglobin Level Measurement Using a Smartphone. Poster presented at the

Forward Thinking Poster Session and Colloquy; 2015 Dec 1; Marquette Univer-

sity, Milwaukee, WI.

9. GM Tanimul Ahsan, Md Kamrul Hasan, Duc Do, Mohammad Adibuzzaman,

Sheikh I. Ahamed. Analysis of Mini Video Images from Cellphone Camera
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