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ABSTRACT 

IMPROVING FMRI ANALYSIS AND MR RECONSTRUCTION WITH THE 

INCORPORATION OF MR RELAXIVITIES AND  

CORRELATION EFFECT EXAMINATION  

 

 

 

M. Muge Karaman 

 

Marquette University 
 

 

Functional magnetic resonance imaging (fMRI) and functional connectivity MRI 

(fcMRI) use the physical principles of nuclear MR to provide high resolution 

representations of brain activity and connectivity. As the fMRI and fcMRI signals are 

detected from the excited hydrogen atoms in a magnetic field, the acquired data is 

determined by the underlying physical processes, such as the MR relaxivities. In fMRI 

and fcMRI, the Fourier encoded frequency space measurements are reconstructed into 

brain images, then spatiotemporal processing operations are applied before computing the 

brain activation and connectivity statistics. This dissertation seeks to utilize the magnetic 

resonance (MR) relaxivities at different stages of the fMRI pipeline, and aims to observe 

the statistical implications of the spatiotemporal processing operators on the fMRI and 

fcMRI data. We first develop a new statistical complex-valued nonlinear fMRI activation 

model that incorporates the MR relaxivities of gray matter into the brain activation 

statistics by utilizing the physical MR magnetization equation and the first scans of the 

fMRI data. We provide both theoretical and experimental comparison between the 

proposed model with the conventional linear magnitude-only and complex-valued fMRI 

activation models. Our statistical analysis results show that the new model provides better 

accuracy in computing brain activation statistics while theoretically eliminating false 

positives in non-gray matter areas. We then develop a linear Fourier reconstruction 

operator that incorporates the MR relaxivities into the image reconstruction process to 

account for their effects. The utilization of a linear system makes it achievable to 

theoretically compute the statistical implications of the use of the proposed operator. By 

focusing on longitudinal relaxation time, T1, to include into the image reconstruction, we 

show that the application of the proposed Fourier reconstruction operator provides better 

image contrast in the reconstructed images by recovering the information of the tissue 

characteristics that exist prior to T1 equilibrium. We finally examine the effects of time 

series preprocessing on computed functional correlations through the use of linear 

operators and provide ways of accounting for such effects in computing functional 

activity and connectivity statistics. Using both theoretical and experimentally acquired 

functional connectivity data, we examine the correlations induced by commonly used 

spatial and temporal processing operations. Furthermore, we provide the expansion of the 

statistical fcMRI and fMRI models to incorporate the quantified processing induced 

correlations in computing brain activity and connectivity statistics. 
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Chapter 1: Introduction 

1.1 Motivation 

Over the past two decades, functional magnetic resonance imaging (fMRI) and 

functional connectivity magnetic resonance imaging (fcMRI) have become two of the 

most dominant noninvasive means for neuroscientists and biomedical engineers to study 

brain activity and connectivity. Both fMRI and fcMRI use the blood’s magnetic 

properties to identify the regions of the brain that are active in response to a specific task, 

and to determine the connectivity between brain regions that are linked across time. 

FMRI and fcMRI has been used to assess brain damage from head injury or degenerative 

disorders, identify and monitor neurological disorders; therefore provide important 

clinical information for treatment of such diseases and neurosurgical planning.  

The scope of fMRI and fcMRI research covers data acquisition, image 

reconstruction, data processing, and data analysis. MRI data is acquired in the spatial 

frequency domain (k-space) and reconstructed into brain images using image 

reconstruction techniques. The measured magnetic resonance (MR) signal is affected by 

noise from various sources, such as physiological, thermal, system noise, and noise from 

random neuronal activity during the task performance. Therefore, it has been a common 

practice to use spatial and temporal data processing operations to attenuate noise in 

reconstructed images. After processing, statistical models are used for the fMRI and 

fcMRI data to determine cognitive brain activity and functional connectivity statistics. 

Despite promising research efforts, there is still a big gap between the real dynamics of 

the brain, and what the current analysis methods can provide from the images. An effort 
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to develop unified models that link the different stages of the fMRI and fcMRI pipeline, 

starting from the frequency space with the acquisition of the data and ending at the image 

space with the final activity and connectivity analyses, can lead to efficient and effective 

solutions to the significant questions in basic and clinical neuroscience. Additionally, an 

exact quantification of the statistical impact of data processing through a theoretical 

approach can effectively prevent possible incorrect conclusions drawn from the fMRI and 

fcMRI data. Development of quantitative models from these perspectives can have 

significant impact on investigating intractable and inexplicable problems in 

neuroimaging. Therefore, the overall goal of this research is directed towards developing 

statistical models to improve the accuracy of MR reconstruction and cognitive brain 

activation through the utilization of the fundamental physics of the nuclear MR signal, 

and improve the accuracy of the fMRI and fcMRI analyses by quantifying and 

accounting for the implications of spatiotemporal data processing. 

This dissertation is organized in six chapters. This opening chapter provides a 

description of the theory and the background on which this dissertation is based. Chapter 

2 develops a new statistical fMRI activation model that incorporates gray matter 

relaxation parameters into brain activation statistics by modeling the fMRI data from the 

correct MR magnetization, and utilizing the first scans for estimation of the MR 

relaxivities. The third chapter provides a mathematical model to incorporate the MR 

relaxivities into the image reconstruction process in a single step with an effort to 

improve the reconstructed images that are used as inputs in the fMRI and fcMRI models. 

In Chapter 4, this model is extended to a linear framework that precisely quantifies the 

statistical effects of spatiotemporal processing operations applied to the fMRI and fcMRI 
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data in such a way that the true statistical properties of the processed data can be utilized 

in the final brain activation and connectivity analysis. Chapter 5 provides future 

application methods to account for the quantified exact noise properties of the fMRI and 

fcMRI data in computing functional activity and functional connectivity statistics. 

Finally, Chapter 6 summarizes the contributions of the work presented in this dissertation 

and gives ideas for areas of future work.    

1.2 Functional MRI and Functional Connectivity MRI 

Functional MRI and fcMRI are specialized magnetic resonance imaging (MRI) 

procedures that measure activity and connectivity in the human brain.  Blood oxygen 

level-dependent (BOLD) contrast-based fMRI/fcMRI visualizes brain functions by 

measuring the changes in the inhomogeneity of the magnetic field that results from 

changes in blood oxygenation (Ogawa et al., 1993, Biswal et al., 1995). While there are 

other methods to observe the changes in the metabolic activity that follow mental work, 

such as arterial spin labeling, BOLD contrast has become the most widely used image 

contrast in fMRI and fcMRI. The field inhomogeneities that are induced by blood vessels 

containing deoxyhemoglobin provides the main source of BOLD contrast. When there is 

neural activity in nerve cells, a steady supply of oxygen is required to metabolize glucose 

that is provided from the hemoglobin component of the blood cells that are bound to 

oxygen. Therefore, the neural activity results in an increased flow of oxygenated blood 

with a relative decrease in deoxyhemoglobin and an increase in oxyhemoglobin. The 

magnetic field inhomogeneities that are caused by the paramagnetic deoxygenated 

hemoglobin and the diamagnetic oxygenated hemoglobin during neural activity can be 

detected by an MRI scanner (Huettel and Song, 2008). The positive peak in the BOLD 
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signal reflects a regional decrease in the concentration of deoxyhemoglobin, and thereby 

an indicator of an increase in neural activity. By using the BOLD contrast mechanism, 

fMRI and fcMRI have become highly useful techniques that provide remarkable clinical 

advantages that further our understanding of brain function in health and disease without 

the need for surgery. 

In fMRI experiments, the subject generally alternates between performing a task 

and resting while a time series of brain images are rapidly acquired. The increase in MR 

signal reflects the positive BOLD effect and is directly related to the underlying neural 

activity. When the stimulus is maintained for a sufficient time, the signal reaches a 

plateau (Buxton et al., 2004), eventually returns to the baseline after the stimulus is 

removed. The basic concept of fMRI is that the BOLD time series images can be used to 

indirectly detect a change in the neural activity associated with a subject performing a 

task. By using statistical models, the MR signal time course of each voxel in an image is 

compared to the task paradigm, and statistically tested for significance. The cortical and 

sub-cortical regions that have a signal correlated with the task are then identified and 

considered as functionally activated.  

Functional connectivity MRI provides a means of noninvasively measuring the 

interdependency of brain regions with the use of cross correlation methodology even 

when there is no task, referred to as the resting state condition. In fcMRI, the correlations 

in the spontaneous fluctuations in the voxels’ BOLD time courses are examined. The 

synchronized low-frequency blood flow fluctuations in distinct brain regions are detected 

and the regions that show statistically significant correlation are identified as functionally 

connected.  
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1.3 MR Physics and Modeling fMRI Data  

The MR machine creates a strong magnetic field around the body parts to be 

scanned, and this magnetic field aligns most of the hydrogen protons in molecules along 

the axis of the MR scanner. When additional energy, a brief radio frequency (RF) wave, 

is applied into the magnetic field, the hydrogen atoms absorb energy (excitation), and 

their equilibrium state is perturbed. These hydrogen atoms emit energy which is called 

the relaxation process, and then they return from the tipped state to their original lower 

energy state of being aligned in the direction of the magnetic field. The characteristic 

times involved in the relaxation of the nuclear spin magnetization vector, M, are known 

as relaxation times. Longitudinal, or spin-lattice, relaxation time, T1, is the decay constant 

for the recovery of the z component of the magnetization, Mz, towards its thermal 

equilibrium value, Mz,eq. The transverse, or spin-spin, relaxation time, T2, is the decay 

constant for the component of M perpendicular to external magnetic field, B0, 

designated Mxy. While all hydrogen nuclei in a magnetic field precess with the same 

frequency in an ideal system, there is an additional dephasing of the magnetization 

introduced by external field inhomogeneities. This reduction in the initial value of Mxy 

can be characterized by a separate decay time, T2
*
, which is the decay parameter for the 

magnetization including both T2 from completely random interaction between spins and 

magnetic field inhomogeneities (Haacke et al., 1999). The relationship between T2 and 

T2
*
can be expressed by 1/T2

*
 = 1/T2 + 1/T2′, where T2′= γΔB, γ is the gyromagnetic ratio 

of the nuclei being imaged, and ΔB is the magnetic field inhomogeneity across a voxel. 

For fMRI and fcMRI protons (hydrogen nuclei) are imaged, therefore γ=42.576 MHz/T.  

The changes in blood oxygenation cause changes in magnetic field inhomogeneity and 
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thus in decay parameter T2
*
, as the T2

* 
signal is relatively sensitive to the inhomogeneities 

in the magnetic field. This leads to changes in image intensity in T2
*
-weighted images, 

which are thus used to study brain activity in brain functional imaging studies (Ogawa et 

al., 1992).  

The measured signal intensity in an MR image is the combination of the principal 

relaxation processes, T1 and T2
*
, along with the proton spin density, M0, and blood flow. 

Proton spin density is the concentration of the protons in water and other macromolecules 

in tissues. As the MR relaxation times, T1 and T2
*
, define the rate that the protons in 

molecules relapse back to their equilibrium state after the first RF pulse, nuclear spin 

magnetization in fMRI follows an exponential decay. This physical mechanism in MRI 

leads to tissue-dependent signal intensity as the contrast of different tissues is determined 

by tissue-specific relaxation times.  

One of the main challenges in detecting brain activation, as in many other fields 

in which the main aim is to draw medical conclusions from the data, is correctly and 

realistically modeling the acquired data. The process of fMRI data modeling can be 

considered to consist of two main components: realistically modeling MR magnetization, 

which is the main source of the acquired measurements, and effectively representing the 

activation information in the models that are used for fMRI activation analysis. Despite 

the known physical mechanisms behind MRI, and biological knowledge about brain 

functionality, a linear model has been used to describe fMRI data and the differential 

signal change resulting from activation (Bandettini et al., 1993; Rowe and Logan, 2004; 

Rowe and Logan 2005a,b). While such models have provided powerful tools for 

cognitive neuroscience researchers for years, a better representation of the acquired signal 
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that utilizes both physical and biological information can provide additional measurable 

benefits. The practical use of such models in the final analysis may ultimately contribute 

to advancing the clinical application of fMRI. As such, there is an apparent need for more 

physically and biologically driven models for fMRI analysis that aim to further improve 

the current models with the incorporation of physics that generates data.  

1.4 Reconstructing MRI Data 

In MRI, the spatial information of the real-valued object is Fourier encoded by 

magnetic field gradients and represented as complex-valued spatial frequencies. 

Therefore, the acquired complex-valued k-space measurements are generally expected to 

be the Fourier transformation of the physical image. These measurements are then 

transformed into the image measurements by performing image reconstruction via 

inverse Fourier transformation. Using (kx,ky) and (x,y) as the two dimensional k-space and 

image space variables respectively, the frequency space signal, s(kx,ky), is given by 

   2

0
( , ) , x yi k x k y

x y
s k k M x y e dxdy


 

 

 

   , [1.1] 

which represents the Fourier image encoding process. In the above equation, M0(x,y) 

represents the proton (spin) density. The Fourier transform relationship in Eq. [1.1] can 

be inverted in order to obtain the Fourier image reconstruction process as 

   2

0
ˆ , ( , ) x yi k x k y

x y x y
M x y s k k e dk dk


 



 

   , [1.2] 

where  0
ˆ ,M x y  is the estimate of the proton spin density. 
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Although the original object’s, proton spin density, M0, is real-valued, a complex-

valued image, 
0

M̂ , is obtained by Fourier reconstruction due to the magnetic field 

inhomogeneities resulting from motion and respiratory effects, and chemical shifts (Hahn 

et al., 2009; Hahn and Rowe, 2012; Hahn et al., 2012; Jezzard and  Balaban, 1995). 

Furthermore, the physical mechanisms presented in section 1.3, specifically the MR 

relaxivities, along with the phenomena of non-instantaneous sampling of k-space lines 

alter the expected Hermitian symmetry and the signal strength of the frequency 

observations during Fourier encoding process. Such alteration results in image artifacts 

such as image warping, image blurring, and loss in image intensity in the reconstructed 

images.  

Despite the known mechanisms that affect the measured MR signal during the 

Fourier encoding process, the commonly used Fourier reconstruction algorithms 

generally do not directly account for their effects when obtaining images from k-space 

measurements. While there has been a field of study to investigate and remove the effects 

of T2
*
 and ∆B, these methods have been developed as a correction step rather than being 

incorporated into the Fourier image reconstruction process. Although the longitudinal 

relaxation time, T1, provides a quantitative parameter to identify tissue characteristics, no 

effort has been made to maintain the contrast information that it offers in the 

reconstructed images. In fMRI and fcMRI models, the time series of the reconstructed 

images are used as inputs, and therefore the reliability of the final analyses significantly 

depends on the correctness of the reconstructed image measurements. Moreover, the 

accuracy of the fMRI and fcMRI models directly affects the precision of the corrections 

performed after image reconstruction such as motion correction and image registration. 
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As such, utilizing direct methods that account for the effects of the MR relaxivities that 

the fMRI signal is subject to could provide better accuracy in the further analysis of the 

data in a more efficient way.  

1.5 Processing of fMRI and fcMRI Data 

In fMRI and fcMRI, time series data can be considered as a combination of signal 

and “noise.” Signal corresponds to hemodynamic changes that can be modeled as the 

convolution of the underlying neuronal process responding to experimental changes. 

Noise in fMRI and fcMRI has many components that give rise to the data having a 

complicated spatiotemporal correlation structure. Noise in the data consists of neuronal 

sources such as unmodeled neuronal effects in the frequency spectrum of hemodynamic 

signal, and non-neuronal sources that have physiological or non-physiological origin such 

as subject movement, respiration, cardiac, scanner artifacts, and uncontrollable system 

effects. Such noise corrupts the measured BOLD signal, decreases the signal-to-noise 

ratio (SNR), and reduces the accuracy of the experimental design and analysis. As such, 

it has been a common practice in fMRI and fcMRI studies to perform spatial and 

temporal processing operations, such as slice timing correction, motion correction, 

registration, normalization, spatial smoothing, global signal regression, and temporal 

filtering, before statistically analyzing the data. The processing of the data increases the 

ratio of BOLD contrast and noise, helps to meet the assumptions that are made in the 

given statistical models, and therefore plays a vital role in obtaining relevant results that 

can be interpreted by neuroscientists. 

The statistical models that are used to analyze the fMRI and fcMRI data require 

numerous steps starting with raw data and ending with an activation image of statistics 



10 
 

values for evaluating hypotheses. Due to the complexity of this pipeline, the analysis of 

the fMRI and fcMRI data has commonly been performed through the use of various 

software packages, such as SPM, AFNI, FSL, FreeSurfer, and BrainVoyager, which are 

available to neuroscientists and biomedical engineers. While these sources allow users to 

input their data, apply numerous pre- and post-processing operations, and choose certain 

modeling options to conduct data analyses,  the pitfall of such analysis is a “black box” 

that users are often not aware the reason and consequences of the use of certain 

processing and modeling options. One of the obstacles of using a black box system of this 

kind is the alteration of the signal and noise properties of the acquired data, specifically 

inducing correlations of no biological origin, which could be misinterpreted in the final 

connectivity and activity analyses. The considerations that need to be taken into account 

are to quantify the statistical implications of such processing of the time series, and 

accounting for the possible effects in the final analyses of the data.  

Despite current efforts for investigating effects of the processing operations, such 

as temporal smoothing (Friston et al., 1999) and global signal regression (Chai et al., 

2012; Saad et al., 2012; Murphy et al., 2009), on the analysis of fMRI and resting state 

fMRI data, the methodologies to account for such effects have not been well-integrated 

into the statistical models that produce the final results. Moreover, the traditional fMRI 

and fcMRI models generally assume independence between voxels and therefore do not 

account for the spatial correlation between voxels or temporal correlation within each 

voxel’s time series. As such, a means by which the statistical implications of processing 

can be quantified and accounted for is necessary for neuroscientists to reap the benefits of 

processing operations without suffering from the statistical implications that they incur.   
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Chapter 2: Incorporating MR Relaxivities for More Accurate fMRI Activation 

In MRI and fMRI, two of the main areas of study are the estimation of the 

relaxation parameters and the detection of brain activations through changes in blood 

oxygenation.  The quantification of the longitudinal and transverse relaxation times has 

become a common means of characterizing the tissue properties. In brain activation 

detection studies, the aim is to determine voxels in which there is a signal increase 

associated with specific neural activity when the subject performs a task. Traditionally, 

relaxation parameter estimation and brain activation detection are performed as separate 

studies, the results of which are not generally used together. It is the incentive of this 

chapter to introduce a new statistical fMRI model that can both estimate the relaxation 

parameters and determine brain activation by incorporating the simultaneously estimated 

MR relaxivities of gray matter, and modeling fMRI data from the correct MR 

magnetization equation rather than using a conventionally used linear model. The 

developed model serves to quantify the activation statistics in a more accurate and 

informed way while estimating the relaxation parameters at the same time.  

2.1 Introduction 

The spin density, M0, longitudinal relaxation time, T1, and transverse relaxation 

time, T2
*
, provide the three most intrinsic and basic contrast mechanisms in MRI/fMRI. It 

is thus of interest to measure and exploit differences in these parameters in order to 

develop image contrast between different brain tissue since the resulting measured values 

could be used for tissue characterization and provide useful information on local 
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environment interaction.  The quantization of the relaxation parameters makes it possible 

to better understand the contrast mechanism and the tissue characterization.  

The Bloch equations describe the behavior of a magnetization vector in the 

presence of an externally applied magnetic field subject to the relaxation process (Haacke 

et al., 1999). According to the solution of the Bloch equations, magnetization can be 

characterized by the tissue parameters (T1, T2 or T2
*
, M0) and imaging parameters (TR, 

TE,  ) where TR is the repetition time, TE is the echo time, and   is the RF flip angle. 

Thus, the signal change can be induced by a change in spin density, T1, and/or T2
*
. In a 

T2
*
-weighted gradient echo fMRI experiment, for a given voxel, the magnetization after 

the t
th
 RF excitation, Mt, for a series of excitations is given by: 

 1 1 2*
1 0 .cos( ) 1 sin

tTETR TR

T T T
t tM M e M e e 

  



  
  

    

    [2.1] 

Accurate relaxation parameter estimation is essential in quantitative MR 

applications as being a fundamental way of determining image segmentation and tissue 

characterization as well as quantifying absolute metabolites in nuclear MR spectroscopy. 

It has been found that a significant variation is observed in the relaxation time parameters  

with many pathologies, such as cancer (Roebuck et al., 2009; Mariappan et al., 1988; ) 

Alzheimer’s disease (Haley et al., 2004), and Parkinson’s disease (Antonini et al., 1993).  

 In addition to serving as a useful tool for improving clinical diagnosis, tissue 

characterization may serve as a very important source of information in detecting brain 

activation since it is generally believed that gray matter tissue includes the neurons that 

are to be active during the performance of a task. Considering the fact that fMRI is based 

on the hemodynamic changes related to neuronal activity, and not neuronal electrical 
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activity itself, the accuracy of the brain activation statistics calculated from the 

considered statistical fMRI activation model plays a major role for the medical statements 

that could be drawn. The incorporation of the information of the tissue characteristics into 

the brain activation detection process can restrict the search volume for activation 

detection within the gray matter and thereby theoretically eliminate the false positives in 

non-gray matter areas. A model of this kind can provide more accurate activation 

statistics by decreasing the number of the voxels that are mistakenly detected as active. 

In traditional fMRI studies, the first few scans are generally discarded from the 

data set before brain activation is computed in an effort to avoid the effects of magnetic 

saturation. These first images, however, obtain important information on the relaxation 

decay parameters for the type of tissue contained in each voxel, which can ultimately be 

utilized to estimate the MR relaxivities and therefore quantify contrast mechanisms. 

The estimation of MR relaxivities has been an interest of study as it is widely 

known that the knowledge of relaxation times can provide important information on the 

tissues. Although voxel time courses in fMRI are complex-valued (Bonny et al., 1996; 

Haldar et al., 2007; Liu et al., 1998; Mazaheri et al., 2006; Sijbers et al., 1999), using 

only the magnitude of complex-valued magnetic resonance images has become the gold 

standard for the estimation of the relaxation parameters. However, Baselice et al. (2012) 

presented a statistical technique to estimate relaxation times exploiting complex-valued 

MR images. Wheaton et al. (2003) reconstructed T1ρ maps from partial k-space image 

data using linear regression, and error was measured in relation to T1ρ maps created from 

the full k-space images. Haldar et al. (2007) used the variable projection algorithm for 

maximum likelihood estimation of T1 relaxation parameters by reducing the four-
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dimensional minimization problem to a two dimensional maximization problem, rather 

than iteratively solving the four-parameter curve fitting problem. 

In fMRI, voxel time courses are complex-valued after Fourier, or non-Fourier 

image reconstruction due to the phase imperfections as a result of magnetic field 

inhomogeneities. Although biological information regarding the brain vasculature can be 

extracted from the phase (Lai and Glover, 1997; Nan and Nowak, 1999; Reichenbach, 

2012; Rowe and Logan, 2004; Rowe and Logan 2005a,b; Menon 2002; Nencka et al., 

2007), it has been a common practice in fMRI to determine functional brain activation 

from the magnitude-only data model which discards the phase information (Bandettini et 

al., 1993; Cox et al., 1995). The phase portion of the complex-valued MR images 

provides information about the magnetic field changes, which may be caused by tumor, 

velocity of blood flow in MR angiography, or the motion of cerebrospinal fluid through 

the central nervous system (Poncelet et al., 1992). Another application area of phase in 

MRI is BOLD MR venography, which uses phase images to achieve the optimal contrast 

between the veins and the surrounding tissue, and offers valuable knowledge about the 

hemodynamic processes involved in BOLD fMRI (Rauscher et al., 2003; Hall et al., 

2002). A complex-valued fMRI activation model was presented by Rowe and Logan 

(2004) to determine functional brain activation and it was shown that the use of complex-

valued data provides an improved power of detection at low SNRs and low CNRs. The 

statistical fMRI model for detecting activation introduced in this chapter is based upon 

the complex-valued activation model of Rowe and Logan. 

In this chapter, we develop a statistical fMRI model for Differential T2
* 
ConTrast 

Incorporating T1 and T2
*
 of Gray Matter (GM), so-called DeTeCT-ING Model, to 
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determine brain activation by incorporating T1 and T2
*
 of GM (Karaman et al., 2013a; 

Karaman et al., 2014a). The model considers the physical nonlinear signal equation to 

model the MR magnetization rather than using a linear model; utilizes the first scans of 

the complex-valued fMRI data to estimate each voxel’s T1 and T2
*
; and incorporates GM 

T1 and T2
*
 values into the activation statistics. A single pulse sequence is used with three 

parts, where in the first two parts the subject does not perform the task while in the third 

part the subject performs the task as in a standard fMRI experiment. In the first part, 

several images are acquired at a constant TE; in the second part, TE is varied; and in the 

third part TE is constant. This pulse sequence allows one to have the three parts for: a) T1 

estimation, b) T2
*
 estimation and c) detecting activation, while all of the model 

parameters are estimated simultaneously using data from the entire scan. The parameter 

setting in the first part allows the utilization of signal change between data acquired 

during the transient state prior to T1 equilibrium and the steady state images since the 

volumes at the beginning of fMRI block contains a transition signal and the signal of the 

first volume is 2/ *

1 0 .tTE T
M M e


 The second and third parts of the pulse sequence 

differentiates the signal with TE and differential task changes respectively since T2
*
 is 

influenced by TE, and activation is modeled by differential signal change. Furthermore, a 

slightly modified version of the DeTeCT-ING Model, the DeTeCT Model, is developed 

by modeling the complex-valued observations according to the physical magnetization 

equation, utilizing the first scans to estimate the MR relaxivities, but not incorporating 

GM T2
*
 and T1 values into the activation statistics in order to observe the benefits of the 

GM MR relaxivities incorporation on the computed activation statistics. The Cramer-Rao 

Lower Bounds (CRLBs), which provide a lower bound for the variance of unbiased 



16 
 

parameter estimators, are also numerically calculated for the DeTeCT-ING and DeTeCT 

Models.  

In order to observe the performance of the DeTeCT-ING model, theoretical 

illustrations are implemented on 96×96 phantom data through simulation, and the model 

is compared with the conventionally used magnitude-only (MO) and newer complex-

valued (CV) fMRI activation models by comparing the means and variances of the model 

parameters and activation statistics with the true parameter values and CRLBs of the 

models. The DeTeCT-ING model is then evaluated by deploying all four models, 

DeTeCT-ING, DeTeCT, MO, and CV, in the acquired bilateral finger tapping fMRI data. 

2.2 Theory 

2.2.1 Complex-valued and Magnitude-only fMRI Activation Models 

After the inverse Fourier transformation, images or voxel measurements are 

complex-valued and still corrupted by noise in both real and imaginary parts (Rowe and 

Logan, 2004). The complex-valued image measured over time in a given voxel is 

described as: 

   cos sin
t t t t tCV CV R CV I

y M i M       , [2.2] 

where t = 1,…,n. The noise vector is generally assumed to be    2

2
0, ,

R It t
N I  

  . 

The data gathered during the course of an fMRI experiment is comprised of a 

sequence of individual MR images that are acquired while the subject performs a set of 

tasks. Throughout the experiment, the subject generally alternates between performing no 

task and performing a task allowing the task-related activations to be detected by 
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qualifying the relative changes in the measured signal between individual images. Using 

periods of non-task scans is a common means of establishing a baseline on which the 

assumption is made that the brain activity scales in a linear fashion. The linear model that 

is generally used to describe the temporally varying magnitude, 
tCV

M , is 

0 1 1CV t q qt t t
M x x x        , [2.3] 

where q is the number of non-baseline regressors, tx  is the t
th
 row of an n×(q+1) design 

matrix X,  β is a (q+1)×1 vector of magnitude regression coefficients, and the operator “Ꞌ”  

denotes the transpose of a vector or matrix. Thus, the observed complex-valued data at 

time t can be represented by a 2×1 real-valued vector, 

cos

sin

Rt

It

Rt

It

t

t

y x

xy

 

  

    
             

, [2.4] 

where yRt is the real part, and yIt is the imaginary part of the observed image-space data at 

time point, t. This model can also be written more generally as 

   

0 cos

0 sin

2 1 2 2 1 2 1 1 2 1

CV

X
y

X

n n q q n

 


 
 

     

   
   
    ,  [2.5]                

where the observed vector of data  ,R ICVy y y    is the vector of n observed real values 

stacked on the observed n imaginary values, and the vector of errors  ,
R I

      is 

represented with the same order. The noise vector is assumed to be  ~ 0 vN ,   where 

the temporal covariance matrix of the considered voxel, Σv, is generally assumed to be 

2

2v nI I   . 
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Functional brain activation is detected by testing the significance of the task-

related parameters on a voxel by voxel basis. In order to determine whether a voxel is 

active or not, the null hypothesis, H0:Cβ=0 (there is no activation), is tested against the 

alternative hypothesis, H1:Cβ≠0 (there is activation).  In this hypothesis testing set up, the 

full row rank contrast matrix C is set to (0,0,1) in order to test whether coefficient for the 

reference function is 0. 

Unrestricted maximum likelihood estimates (MLEs) of the parameters, phase, ̂ , 

regression coefficients, ̂ , and variance, 2
̂ , under the alternative hypothesis, H1:Cβ≠0, 

can be derived by maximizing the logarithm of the likelihood function, and yields 

 
 

   

2

ˆ ˆ2ˆtan 2
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆcos sin

ˆ ˆ ˆ ˆcos cos1
ˆ ,

ˆ ˆ ˆ ˆ2 sin sin

R I

R R I I

R I

R R

I I

X X

X X X X

y yX X

y yn X X

 


   

    

   


   

  
  

     

 


         
                          

 [2.6]                                   

under the alternative hypothesis. The estimates of the regression coefficients are 

 
1ˆ

R RX X X y


   from the real part of the time series, and  
1ˆ

I IX X X y


   from the 

imaginary part of the time series. (Rowe and Logan, 2004; Rowe and Logan, 2005a,b). 

The MLEs of the parameters, phase, , regression coefficients,  , and variance,

2 , under the constrained null hypothesis, H0:Cβ=0, can also be derived by maximizing 

the logarithm of the likelihood function with the Lagrange multiplier term ( 0)C 

and yields 
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where Ψ is  

1 1 1

1 ( ) [ ( ) ] .qI X X C C X X C C  


       [2.8] 

Denoting the maximum likelihood estimators under the alternative hypothesis 

using hats, and those under the null hypothesis using tildes, the generalized likelihood 

ratio statistics for the CV Model, -2logλC, can be derived as,  

2

2
2log 2 log .

ˆ
C n






 
   

 


 [2.9] 

This statistic has an asymptotic
2

r distribution for large samples, where r is the 

difference in the number of constraints between the alternative and the null hypotheses or 

the full row rank of C. Note that, when r = 1, two-sided testing can be performed using 

the signed likelihood ratio test that is given by 

  2logˆ
C C

Z sign C   ,  [2.10]     
 

which has an approximate standard normal distribution under the null hypothesis (Rowe 

and Logan, 2004; Severini, 2001). With the given distributional specifications, the 
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CRLBs of the CV Model can be computed from the likelihood of the complex-valued 

data (Rowe, 2005a). 

In fMRI, complex-valued time courses are almost exclusively converted to 

magnitude and phase time courses, then the magnitude-only activation is determined 

while phase voxel time courses are discarded (Bandettini et al., 1993; Cox et al., 1995). 

This typical method to compute the activation using only the magnitude at time t is 

denoted by 
MOt

y , and is written as 

   
1

2 2 2
cos sin ,

t t t t tMO MO R MO Iy M M       
  

 [2.11] 

where the population magnitude, MO t
M , is the same as CV t

M , that is given by Eq. [2.3]. 

The magnitude of a complex-valued observation at time t is not normally distributed but 

is Ricean distributed (Gudbjartsson and Patz, 2005; Rice, 1944; Rowe and Logan, 2004; 

Adrian et al., 2013). The Ricean distribution of the magnitude, MO t
y , at time t becomes 

normal with mean a mean of tx   and a variance of σ
2
 at high SNRs. This model can also 

be written as 

   1 1 1 1 1

MOy X

n n q q n

  

     
  [2.12] 

where  2
~ 0

n
N , I  after suitable preprocessing of the data. 

Assuming a normal distribution for the errors in Eq. [2.12], the unconstrained 

maximum likelihood estimates of the parameters (β, σ
2
) can be derived as 

 
1ˆ

MO
X X X y


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   2ˆ /
MO MO

y X y X n     . [2.13] 

In order to construct a generalized likelihood ratio test of the hypothesis H0:Cβ=0 versus 

H1:Cβ≠0  where C is a full row rank matrix, the likelihood under the constrained 

hypothesis is maximized. The constrained MLEs can be derived as 

ˆ    

   2
/

MO MO
y X y X n     ,  [2.14] 

where Ψ is defined as in Eq. [2.8]. Similarly with the CV Model, the likelihood ratio 

statistics for the MO Model is given by, 

2

2
2log log

ˆ
M

n





 
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 


.  [2.15] 

The likelihood ratio test has an asymptotic 
2

1  distribution and is asymptotically 

equivalent to the usual t tests for activation given by 

 
2

2

ˆ

ˆ
t

SE




 . [2.16] 

In the above equation, SE( 2
̂ ) denotes the standard error of 2

̂ , and it is computed by 

SE( 2
̂ ) = 

2

22
W̂ , where  W22 is the (2,2)

th
 element of  

1
W X X


 . With the given 

distributional specifications, the CRLBs can also be computed from the likelihood of the 

MO data (Rowe, 2005a). 

The constant-phase CV Model, given by Eqs. [2.4] or [2.5], can be extended into 

a more general model that considers temporally varying phase (Rowe, 2005b). It was 
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shown that (Rowe, 2004; Rowe, 2005a,b; Logan and Rowe, 2004) for a bilateral finger 

tapping fMRI experiment, the CV Model has a greater statistical power than the MO 

Model, as it can detect activations in voxels where changes in the BOLD signal are noted 

in the magnitude and/or phase. 

It is of note here that the modeling of the magnetization of the fMRI data relies on 

the assumption of linearity in both CV and MO Models as defined in Eq. [2.3] although 

the MR magnetization follows an exponential decay depending on the MR relaxivities. 

Additionally, the hypothesis testing settings of both models do not include any tissue 

characteristics information to be used for decreasing the number of voxels that are not in 

GM, which can be mistakenly declared active. Furthermore, the first images which could 

provide important biological information regarding the tissue type of each voxel have 

been discarded in both CV and MO Models before computing activation statistics given 

by Eqs. [2.10] and [2.16]. The new fMRI activation model presented section 2.2.2 utilizes 

such information that has been neglected in conventional studies in an effort to produce 

more accurate fMRI activation statistics.  

2.2.2 A New Statistical fMRI Model for Differential T2
*
 Contrast Incorporating T1 

and T2
*
 of Gray Matter 

The temporally varying magnitude of the signal can be represented by 

incorporating the effect of the task execution to the magnetization. In the DeTeCT-ING 

and DeTeCT Models, the temporally varying magnitude, Mt, for an individual voxel, is 

defined as 
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where 1 1 .t tx x    

In this model, zt is a column vector containing the reference function related a 

block experimental design, δ is a coefficient for a reference function, zt, and represents 

the task related differential signal change. As noted before, brain activation causes 

changes in blood oxygenation leading to changes in decay parameter, T2
*
. Therefore, the 

parameter δzt is included with T2
*
 in the exponential function. The design matrix, X, 

consists of a single column of counting numbers representing the linear trend, and β1 is 

the coefficient for a time trend t. The complex-valued observations at time t can then be 

described as 

      
*
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 [2.18] 

where    2

2
0, ,

R It t
N I  

   as in Eq. [2.2]. 

Least squares estimation is a method of estimating parameters by minimizing the 

squared discrepancies on the observed data and their expected values. Working in the 

complex domain with the data having normally distributed noise and dealing with an over 

determined system allows for the use of a least squares estimator, which is a 

computationally convenient measure of fit. As the unknown parameters of this model, 

 *

0 1 2 1, , , , ,M T T     are nonlinear in the representation of the magnetization given by Eq. 
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[2.18], a nonlinear least squares estimation can be implemented. The nonlinear least 

squares estimator, 
*

0 1 2 1
ˆ ( , , , , , ) M T T    can be obtained by minimizing the function, 
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with respect to the unknown parameters, 
*

0 1 2 1, , , , ,M T T    ; where Mt is given by Eq. 

[2.17]. In this objective function, 
tRy and 

It
y are the real and imaginary parts of the 

observed signal, yt , of an individual voxel at time t; and Mtcosθ and Mtsinθ are the 

expected real and imaginary parts of the signal. 

It is well known that the least squares procedure corresponds to the MLE when 

appropriate probabilistic assumptions about underlying error distributions can be made, 

as in the proposed model. Since the nonlinear least squares problem has no closed 

solution and is usually solved by iterative refinement, the parameters of the model will be 

determined numerically. 

The main issue in fMRI is comparing images in a statistically meaningful way. In 

the model presented in this chapter, the simple matter of detecting ‘activation’, the local 

increase in the effect of the task, with most of the brain unaffected by the task, is the 

primary focus of study. The model parameters are estimated under appropriately 

constrained null and alternative hypotheses, after which activation is determined, which 

is characterized by differential T2
*
 contrast, δ, with a generalized likelihood ratio statistic.  

According to the parameterization in the setting of the DeTeCT-ING Model, 

“active” or “on” regions in the brain contain voxels with values 1 1GM
T T , 2 2

* *

GM
T T , 
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and 0   while “inactive” or “off” regions contain voxels with 1 1GM
T T , 2 2

* *

GM
T T , 

and 0  , where 1GM
T  and 2

*

GM
T  are GM T1 and T2

*
 values. Maximum likelihood 

estimates of the parameters,  *

0 1 2 1, , , , ,M T T    , can therefore be determined for both 

restricted alternative and null hypotheses. The hypotheses pair,  

* *

0 1 1 2 2: ,  ,  0
GM GM

H T T T T    vs. 

 
* *

1 1 1 2 2: ,  ,  0
GM GM

H T T T T     [2.20] 

detects task related voxel activation in GM.  

According to the parameterization in the setting of the DeTeCT Model, in which 

the GM relaxivities are not incorporated into activation statistics, “active” or “on” regions 

in the brain contain voxels with values 0   while “inactive” or “off” regions contain 

voxels with 0   as in the MO and CV Models. Maximum likelihood estimates of the 

parameters  *

0 1 2 1, , , , ,M T T     can be determined for both alternative and null 

hypotheses. The hypotheses pair, 

0 : 0 vs. H    

1 : 0H    [2.21] 

detects task related voxel activation without consideration of the tissue type.  

Parameter estimates under the null hypothesis,  *

0 1 2 1, , , , ,M T T        , and the 

alternative hypothesis,  *

0 1 2 1
ˆ ˆ ˆˆ ˆ ˆ, , , , ,M T T    , for the DeTeCT and DeTeCT-ING Models 

can be determined by numerical minimization of Eq. [2.19] with respect to the 
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parameters. The generalized likelihood ratio statistics, λC, the ratio of restricted null over 

alternative hypotheses leads to the large sample 
2

1 distributed statistic, -2logλC, that is 

given in Eq. [2.9]. Two-sided testing can then be performed using the signed likelihood 

ratio test given by Eq. [2.10]. 

2.3 Methods and Materials 

2.3.1 Simulated Data 

Part I: Simulated Phantom Data with the Fixed Parameter Setting 

The first part of the simulation study theoretically illustrates the properties of the 

parameter estimates for the introduced models. For this part, a 96×96 slice of the human 

brain with two 7×7 region of interests (ROIs) was realistically simulated according to the 

Shepp-Logan phantom standards (Gach et al., 2008). Data for all models was generated 

to simulate voxel activation from a bilateral finger tapping fMRI block design experiment 

by using the magnitude of the magnetization, Mt, of the DeTeCT and DeTeCT-ING 

Models, given in Eq. [2.17]. The block design consisted of 20 s off followed by sixteen 

epochs of 15 s on and 15 s off with TR = 1 s. The simulation consisted of n = 510 time 

points where the true activation structure is known to be within ROIs so that the model 

can be evaluated. The considered ROIs that were designated to have activation are shown 

in Fig. 2.1. The presented results for this part of our simulation study were calculated 

over 500 simulations. 
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Figure 2.1: Anatomical mask with ROIs 

 

The spin density and the relaxation parameter values of the simulated tissues 

measured at 3.0 Tesla (T) are given in Table 2.1 (Atlas, 2008). The parameter values of 

the voxels that consist of different kinds of tissue were obtained by averaging their 

values. For all voxels inside the phantom in this simulation, the phase angle, the linear 

trend coefficient, and the variance were generically selected to be o45  ,
1 0.01  , and 

σ
2
=0.0001 which are values close to the those that are taken from a voxel in the 

activation region of a real data set. The differential T2
*
 contrast, δ, was given a constant 

value of 1 for the voxels in ROIs while it was set to zero for the inactive regions. The 

value of δ was chosen based on the desired contrast-to-noise ratio (CNR = δ / σ) of 100. 

In generating the data, the RF flip angle is assumed to be o90   as it is commonly used 

in many MRI experiments. With this selection, the computational complexity of the 

numerical optimization problem is relatively reduced since the temporally varying 

magnitude of the magnetization, Mt, is simplified. The true maps of the spin density, M0; 

longitudinal relaxation time, T1; transverse relaxation time, T2
*
; differential T2

*
contrast, δ; 

linear trend, β1, and phase angle, θ,  are illustrated in Figs. 2.2a, 2.2b, 2.2c, 2.2d, 2.2e, 

and 2.2f, respectively. 
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Table 2.1: Spin density and the relaxation times for the Shepp-Logan Phantom. 

Tissue M0 T1 (in ms) T2
*
 (in ms) 

Cerebrospinal Fluid (CSF) 1 4000 2200 

Gray Matter (GM) 0.83 1331 42 

White Matter (WM) 0.71 832 49 

 

 

Figure 2.2: True parameter maps for the DeTeCT and DeTeCT-ING Models generated according to the 

Shepp-Logan phantom standards for a 96×96 slice. a) True M0 map, b) true T1 map (in s), c) true T2
* map 

(in s), d) true δ map, e) true β1 map, f) true θ map. 

 

 

Simulated fMRI data was generated according to the proposed model given by 

Eqs. [2.17] and [2.18]. An fMRI block design experiment with an acquisition of 510 

repetitions was used to estimate the model parameters. For each voxel, time depending 

echo time, TEt, was assumed to consist of three parts. In the first part, it was fixed as 

having a value of 42.7 ms at the first 10 time points. In the second part, first 5 TE values 

were equispaced in the interval of [42.7 ms, 52.7 ms] that consists of the following TE 

a) True M0 

 

b) True T1 

 

c) True T2
* 

 

d) True δ 
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Figure 2.3: Imaging parameters. a) Echo time, TEt; b) reference function, zt. 

 

values: 42.7, 45.2, 47.7, 50.2, 52.7; and this procedure was repeated again for the next 5 

time points. Finally, the last 490 TE values were fixed as 42.7 ms as illustrated in Fig. 

2.3a. The time trend X is a column of counting numbers, where the reference function, zt, 

which is illustrated in Fig. 2.3b, consists of blocks of 0’s and 1’s, as being related to the 

block experimental design. 

Part II: Simulated Data of Two Voxels with the Varying Parameter Setting 

In this simulation study, we evaluate the performance of the considered models 

for detecting activation with the use of the data generated from one active GM voxel in 

an ROI area and one inactive GM voxel from outside of the ROIs at varying parameter 

settings. For an effective evaluation of the models’ performances, we created two sets of 

scenarios that we vary a specific parameter, and analyze the models’ detection 

performance under these settings. These scenarios were created with the following 

parameter settings: a) to analyze the models at different levels of the effect of the neural 

activity in the signal: δ values of the active voxel varying from 0 to 1 with increments of 

TE zt 

a) Echo time, TEt 

 

b) Reference function, zt 

 

n n 
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0.01, σ
2
 = 0.25, and a commonly used threshold significance level,  = 0.05; b) to 

analyze the sensitivity of the models to the pre-specified threshold significance level, , 

level:  varying from 0.01 to 0.1 with steps of 0.0009, σ
2
 = 0.25, and δ = 0.1 for the 

active voxel. The values of the fixed σ
2
 and δ were selected as 0.25 and 0.1, respectively 

to better observe the efficacy of the models in the presence of high standard deviation 

noise level and low neural activity effect in the signal. All the other imaging parameters 

were selected as the same as the ones in Part I.  The number of simulations that were 

performed for both voxels in each scenario was 1000. This simulation was used to 

measure the accuracy of each model in recognizing the presence of the activation and 

inactivation in order to compare the accuracy of the models’ outcomes with the known 

activation schemes. 

Furthermore, in order to better analyze the overall performances of the models by 

presenting the connection between the CRLBs and computed sample variances, we 

created scenario “c” in which the data of the single active voxel was generated similarly 

to scenario “a”, with δ values varying from 0 to 1 with increments of 0.1, and threshold 

significance level,  = 0.05. For this scenario, we selected σ
2
 to be 0.0001 in order to get 

the same signal properties in our phantom simulation in Part I. The number of 

simulations that were performed in scenario “c” was 1000. 

2.3.2 Human Subject Data 

To observe the performance of the proposed model in experimental data, an fMRI 

experiment was performed on a single subject on a 3.0 T General Electric Signa LX 

magnetic resonance imager. A bilateral finger-tapping task was performed with a visual 
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cue indicating whether to tap or rest.  The paradigm followed a block design with an 

initial 20 s rest followed by 16 epochs of 15 s on and 15 s off. The data sets was 

composed of seven 2.5-mm-thick axial slices that are 96×96 in dimension for a 24-cm 

field of view (FOV), with the phase encoding direction oriented as posterior to anterior 

(bottom to top in images). A single slice was selected for the analysis. Acquired for a 

series of 510 TRs (repetitions), the data sets had a TR of 1 s, a flip angle of 90° and an 

acquisition bandwidth of 125 kHz. A time varying echo time, that is described in section 

2.3.1 and presented in Fig. 2.3a, was used when acquiring the data. 

As a common practice in fMRI studies, the first 3-5 observations are normally 

discarded and the reference function is usually chosen to be related to a block design 

consisting of epochs of on and offs starting at the 10
th
 time point with a constant TE. As 

such, the signal that is acquired for the DeTeCT and DeTeCT-ING Models at the 11
th
 – 

20
th
 time points is not acquired for the MO and CV Models. In order to imitate this 

common practice, the first 20 observations were excluded before applying the CV and 

MO Models to both simulated and acquired human brain data. Unlike traditional studies, 

these first observations were not discarded in the DeTeCT and DeTeCT-ING Models as 

they contain information on different tissue characterization. The “lsqnonlin” (least 

squares nonlinear solver) gradient based algorithm, available in the Matlab Optimization 

Toolbox (Matlab 2012) was used for the numerical minimization of Eq. [2.19] to estimate 

the parameters of the DeTeCT and DeTeCT-ING Models. The iterative Levenberg-

Marquardt Method was chosen as the optimization method. The termination tolerances on 

the objective function and the parameter value were both set to 10
-6

, while the maximum 

number of iterations allowed was 400 as the default values in Matlab’s algorithm options. 
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The iteration process of Levenberg-Marquardt algorithm was terminated only when the 

convergence criterion, reaching the tolerance on either the objective function or the 

parameter value, was met. Activation from -2logλ likelihood ratio statistics which are 

given in Eq. [2.15] for the MO Model and Eq. [2.9] for the CV, DeTeCT and DeTeCT-

ING Models, were thresholded at a 5% Bonferroni family-wise error rate (Logan and 

Rowe, 2004).  

2.4 Results 

2.4.1 Analysis 

To observe the performance of the proposed models, the true parameter values 

and the theoretical minimum standard deviations are compared to the sample means and 

sample standard deviations of the model parameters computed from the simulation study 

presented in Part I of section 2.3.1.The parameter values that are assumed when 

generating the data for our simulation study are used as the true values of the parameters 

for the DeTeCT and DeTeCT-ING Models. For the parameters that only the CV and MO 

Models have, the analytically driven MLEs are used to compute true parameter values 

from the data with no added noise. Furthermore, the analytically driven CRLBs are used 

to calculate the theoretical minimum standard deviations for the CV and MO Models 

(Rowe, 2005a,b; Rowe, 2009) whereas the CRLBs of the DeTeCT and DeTeCT-ING 

Models are numerically calculated. The derivations of the analytical expressions for the 

partial derivatives of the likelihood function of the DeTeCT and DeTeCT-ING Models, 

which are used to numerically compute the CRLBs of the model parameters, are given in 

Appendix A. The CLRBs provide a quantitative measure of the attainable minimum 
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variance of the parameter estimates from a given set of observations. They give insight 

into the potential performance of the estimators, the performance of the implementation 

and the computation of the estimation models, and the efficiency of the estimators. 

In order to better compare the estimated results and the theoretical values, first the 

sample mean and standard deviation of the parameter estimates under the alternative and 

null hypotheses for each model are computed. Then, the computed descriptive statistics 

are averaged across each tissue segment to obtain the “average voxel values” for each 

tissue type (GM: gray matter, WM: white matter, CSF: cerebrospinal fluid, Out: outside 

brain, and ROI). The computed average voxels values are presented in Tables 2.2-2.9. 

The first columns that correspond to each parameter represent the true value/theoretical 

minimum standard deviation values, the second and third columns represent the sample 

mean/standard deviation values computed from the null (Null) and the alternative (Alt) 

hypothesis, respectively. In the tables, the power of the estimation is given with a 

qualitative color code in which green represents a “good”, orange represents a “fair”, and 

red represents a “poor” estimate. 

For the quantitative analysis of the activation detection performance of the 

models, the simulation results presented in Part II of section 2.3.1 were evaluated by 

utilizing three criteria. The first two are the true positive rate (TPR), proportion of the 

times that an active is correctly detected as active, and false positive rate (FPR), 

proportion of the times that an inactive voxel is incorrectly detected as active. The third 

criterion is the receiver operator characteristic (ROC), which is a qualitative plot of FPR 

(one minus the specificity) on the x-axis versus TPR (sensitivity) on the y-axis, that gives 

the tradeoff between the cost of failing to detect the activity against the cost of raising 
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false positives. First, we generate the TPR and FPR versus the parameters varied, δ and 

, curves for scenarios “a” and “b”, respectively, introduced in Part II of section 2.3.1. 

For the ROC curves, each varying parameter value (δ or ) determines a (x,y) point on 

the curve. To generate the ROC curves for scenarios “a” and “b”, TPR and FPR for each 

δ or  value are computed from the data of the selected active and inactive voxels, 

respectively. The TPRs and FPRs are then averaged across 1000 simulated images to 

generate the (x,y) point. ROC curves range from (0,0) to (1,1), and a good model is 

expected to have a curve that is as close to the upper left quadrant (0,1) as possible. 

The “efficiency” of a model’s estimator can be considered as the closeness of the 

computed variance to the theoretical minimal variance of the estimator. In order to 

evaluate the efficiency of the models’ estimators, the single voxel simulation that is 

performed under scenario “a” is used for the analysis of the properties of the parameter 

estimates. In the first part of this analysis, we compare the theoretical minimum standard 

deviations computed from CRLBs and the sample standard deviations of the parameters. 

Then, we perform a comparison between the mean squared errors (MSEs) of the 

estimators, which incorporate both the variance and the bias of the estimators.  

All computations were performed on an HP Z600 with dual-quad core Xeon 

X5570 2.93 GHz processors, 24 GB of DDR3 RAM, 1 TB SATA-300 hard drive, 64 bit, 

Windows 7 in Matlab 2012. The computation times of the DeTeCT and DeTeCT-ING 

Models for the estimation of the model parameters and the activation statistics of a 96×96 

human subject data that was acquired with the setting given in section 3.2 were found to 

be 77.36 minutes and 9.23 minutes, respectively. The reason of having higher 
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computation time for the DeTeCT Model can be explained by the computational 

complexity of this model resulting from simultaneous estimation of seven parameters. 

2.4.2 Simulated Data Results 

Part I: Simulated Phantom Data with the Fixed Parameter Setting 

The true value and the theoretical minimum standard deviation maps of the 

parameters of the CV and MO Models were produced according to the MLEs and CLRBs 

of the models by using the noiseless complex fMRI data (Rowe, 2005a,b). The average 

voxel values of the true values as well as the calculated sample mean maps of the 

estimated parameters under the null and alternative hypothesis for each tissue type are 

given in Table 2.2 for the CV Model, and in Table 2.4 for the MO Model. Similar tables 

for the theoretical minimum and computed sample standard deviation maps of the CV 

and MO Models are also given in Table 2.3 and Table 2.5, respectively. It can be 

observed that the CV and MO Models mostly yield “good” results. However, it should be 

noted here that the results of these two models are compared with the true value and 

theoretical minimum standard deviation maps calculated from the considered models 

themselves. Furthermore, the CV and MO Models do not provide the proton spin density 

and relaxation parameter estimates unlike the DeTeCT and DeTeCT-ING Models. 

The true parameter maps of the DeTeCT and DeTeCT-ING Models were given in 

Figs. 2.2a-2.2f. The calculated sample mean of the estimated parameters, M0, T1, T2
*
, δ, 

β1, θ, σ
2
, from the DeTeCT Model are given in Figs. 2.4a-2.4g (left: alternative, right: 

null hypothesis), respectively. It can be observed that the estimated parameters under the 

alternative hypothesis appear to be similar to the true parameter values given in Fig. 2.1   
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Table 2.2: The average voxel values of the sample mean maps computed by using the CV Model from 

the data generated by the DeTeCT-ING Model. The results are presented for the true values (True), and 

the estimates under the alternative (Alt) and null (Null) hypothesis. 

M
E

A
N

 β0 β1 β2 

β0 

True 

β0 

Alt 

β0 

Null 

β1 

True 

β1 

Alt 

β1 

Null 

β2 

True 

β2 

Alt 

β2 

Null 

GM 2.7080 2.7080 2.7080 0.01 0.01 0.01 3.80E-16 -4.41E-08 0 

WM 2.7580 2.7580 2.7580 0.01 0.01 0.01 1.64E-16 2.95E-07 0 

CSF 2.7570 2.7570 2.7570 0.01 0.01 0.01 2.09E-16 -2.06E-06 0 

Out 1.00E-14 -1.00E-06 -4.00E-07 1.00E-17 -2.00E-09 -2.00E-09 6.00E-31 1.00E-06 0 

ROI 2.7076 2.7076 2.8322 0.01 0.01 0.01 0.2542 0.2542 0 

   

M
E

A
N

 
 

θ σ
2
 

   

θ 

True 

θ 

Alt 

θ 

Null 

σ
2
 

True 

σ
2
 

Alt 

σ
2
 

Null 

   

   

GM 0.7854 0.7854 0.7854 0.0001 9.9E-05 0.0001 

   

WM 0.7854 0.7854 0.7854 0.0001 9.9E-05 0.0001 

   

CSF 0.7854 0.7854 0.7854 0.0001 9.9E-05 0.0001 

   

Out 0 0.0002 -0.0005 0.0001 9.9E-05 0.0001 

   

ROI 0.7854 0.7854 0.7854 0.0001 9.9E-05 0.0008 

 

Table 2.3: The average voxel values of the sample standard deviation maps computed by using the CV 

Model from the data generated by the DeTeCT-ING Model. The results are presented for the minimum 

theoretical values (Min. Theo.), and the estimates under the alternative (Alt) and null (Null) hypothesis. 

SD 

β0 β1 β2 

β0 Min. 

Theo. 

β0 

Alt 

β0 

Null 

β1 Min. 

Theo. 

β1 

Alt 

β1 

Null 

β2 Min. 

Theo. 

β2 

Alt 

β2 

Null 

GM 0.0006 0.0006 0.0005 3.00E-06 3.20E-06 3.20E-06 0.0009 0.0009 0 

WM 0.0006 0.0006 0.0005 3.00E-06 3.20E-06 3.20E-06 0.0009 0.0009 0 

CSF 0.0006 0.0006 0.0005 3.00E-06 3.20E-06 3.20E-06 0.0009 0.0009 0 

Out 0.0006 0.0008 0.0005 3.00E-06 4.10E-06 4.10E-06 0.0009 0.0002 0 

ROI 0.0006 0.0006 0.0005 3.00E-06 3.20E-06 3.20E-06 0.0009 0.0009 0 

   SD 
 

θ σ
2
 

   

θ Min. 

Theo. 

θ 

Alt 

θ 

Null 

σ
2
 Min. 

Theo. 

σ
2
 

Alt 

σ
2
 

Null 

   

   

GM 0.0001 0.0001 0.0002 5.00E-06 4.50E-06 4.50E-06 

   

WM 0.0001 0.0001 0.0002 5.00E-06 4.50E-06 4.50E-06 

   

CSF 0.0001 0.0001 0.0002 5.00E-06 4.50E-06 4.50E-06 

   

Out 0.0001 0.9070 0.9015 5.00E-06 4.50E-06 4.50E-06 

   

ROI 0.0001 0.0001 0.0002 5.00E-06 4.50E-06 5.70E-06 
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Table 2.4: The average voxel values of the sample mean maps computed by using the MO 
Model from the data generated by the DeTeCT-ING Model. The results are presented for the 

true values (True), and the estimates under the alternative (Alt) and null (Null) hypothesis. 

M
E

A
N

 β0 β1 β2 

β0 

True 

β0 

Alt 

β0 

Null 

β1 

True 

β1 

Alt 

β1 

Null 

β2 

True 

β2 

Alt 

β2 

Null 

GM 2.7080 2.7080 2.7080 0.01 0.01 0.01 2.00E-16 -1.60E-06 0 

WM 2.7580 2.7580 2.7580 0.01 0.01 0.01 2.10E-16 -1.00E-06 0 

CSF 2.7570 2.7570 2.7570 0.01 0.01 0.01 3.30E-16 -3.40E-06 0 

Out 0 0.0130 0.0130 1.00E-17 0 0 6.10E-31 2.90E-07 0 

ROI 2.7080 2.7080 2.8320 0.01 0.01 0.01 0.2542 0.2542 0 

      

M
E

A
N

 σ
2
 

      

σ
2
 

True 

σ
2
 

Alt 

σ
2
 

Null 

      

GM 0.0001 9.90E-05 9.90E-05 

      
WM 0.0001 9.90E-05 9.90E-05 

      

CSF 0.0001 9.90E-05 9.90E-05 

      

Out 0.0001 4.20E-05 4.20E-05 

      

ROI 0.0001 9.90E-05 0.0162 
Ayri  

Table 2.5: The average voxel values of the sample standard deviation maps computed by using the MO 
Model from the data generated by the DeTeCT-ING Model. The results are presented for the minimum 

theoretical values (Min. Theo.), and the estimates under the alternative (Alt) and null (Null) hypothesis. 

SD 

 

β0 β1 β2 

β0 

Min. 

Theo. 

β0 

Alt 

β0 

Null 

β1 

Min. 

Theo. 

β1 

Alt 

β1 

Null 

β2 

Min. 

Theo. 

β2 

Alt 

β2 

Null 

GM 0.0006 0.0006 0.0005 3.00E-06 3.00E-06 3.00E-06 0.0009 0.0009 0 

WM 0.0006 0.0006 0.0005 3.00E-06 3.00E-06 3.00E-06 0.0009 0.0009 0 

CSF 0.0006 0.0006 0.0005 3.00E-06 3.00E-06 3.00E-06 0.0009 0.0009 0 

Out 0.0006 0.0004 0.0003 3.00E-06 2.00E-06 2.00E-06 0.0009 0.0006 0 

ROI 0.0006 0.0006 0.0005 3.00E-06 3.00E-06 3.00E-06 0.0009 0.0009 0 

      SD 

 

σ
2
 

      

σ
2
 

Min. 

Theo. 

σ
2
 

Alt 

σ
2
 

Null 

      

GM 6.00E-06 6.30E-06 6.30E-06 

      

WM 6.00E-06 6.30E-06 6.30E-06 

      

CSF 6.00E-06 6.30E-06 6.30E-06 

      

Out 6.00E-06 2.80E-06 2.90E-06 

      

ROI 6.00E-06 6.30E-06 6.30E-06 
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 Figure 2.4: Calculated sample mean maps of the DeTeCT Model parameters.  a)
0
ˆ( )M and

0
( )M  , b) 

1
ˆ( )T and 

1
( )T  in s, c) 

2

*ˆ( )T and 
2

*
( )T  in s, d) ˆ( )  and ( )  , e) 1

ˆ( )  and 1( )  , (f) ˆ( )  and

( )  , g)
2ˆ( )  and 

2
( )  . 

b) Left: 1
ˆ( )T , right: 

1
( )T   

 

a) Left: 
0
ˆ( )M , right: 

0
( )M   

 

g) Left: 
2ˆ( )  , right: 

2
( )   

 

f) Left: ˆ( )  , right: ( )   

 

e) Left: 1
ˆ( )  , right: 1( )   

 

d) Left: ˆ( )  , right: ( )   

 

c) Left: 
2

*ˆ( )T , right: 
2

*
( )T   

 

0 10.5 0 52.5

0 31.5 0 10.5

0 0.010.005 -π/2 π/20

0 3
1 10


3

0.5 10



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except the blurring that is the result of the noise in the signal as well as the systematic 

error of the numerical optimization procedure. It can also be seen that the most apparent 

difference between the null and alternative hypotheses estimation results occurs in ROIs 

Table 2.6 provides a detailed comparison between the true value and the sample 

mean estimated parameter values of the DeTeCT Model. One can observe that the 

difference between the calculated sample means and the true values of T2
*
 and δ is higher 

in CSF, Out, and ROI areas compared to the difference for the other parameters in other 

areas. The poor estimation that appears in such tissues could be considered as the result 

of having a nonlinear objective function given in Eq. [2.19] and six different parameters 

to be optimized in this system. 

Table 2.7 illustrates a comparison between the theoretical minimum standard 

deviations and the computed sample standard deviations of the estimated parameters of 

the DeTeCT Model. Although the sample standard deviations of  T1, T2
*
 and δ are higher 

compared to the related CRLBs, mostly in CSF, Out, and ROI areas, the DeTeCT Model 

mainly produces “good” results in terms of the variances of the estimated parameters.  

The sample mean of the estimated parameters, M0, δ, β1, θ, and σ
2
, of the 

DeTeCT-ING Model under the null and alternative hypotheses are shown in Figs. 2.5a-

2.5e (left: alternative, right: null hypothesis), respectively. The average voxel values of 

the true parameter values and the calculated sample mean maps are given in Table 2.8 

whereas the CRLBs and the calculated sample standard deviations are shown in Table 

2.9. Fig. 2.5 as well as Tables 2.8 and 2.9 show that the DeTeCT-ING Model has a high 

statistical power in estimating the parameters. One can observe the only “fair” and “poor” 

estimates appear to be in M0 in WM and δ outside the phantom. However, better δ 
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estimates can be seen in Fig. 2.5b compared to Fig. 2.4d. It should be noted here that no 

signal areas, such as outside of the brain, have not been masked after estimation. It is thus 

expected that the parameters for the voxels outside the phantom may not have been 

estimated precisely as we expect. 

Table 2.6: The average voxel values of the sample mean maps computed by using the DeTeCT 

Model from the data generated by the model itself. The results are presented for the true values 

(True), and the estimates under the alternative (Alt) and null (Null) hypothesis. 

M
E

A
N

 M0 T1 T2
*
 

M0 

True 

M0 

Alt 

M0 

Null 

T1 

True 

T1 

Alt 

T1 

Null 

T2
*
 

True 

T2
* 

Alt 

T2
*
 

Null 

GM 0.8300 0.8340 0.8330 1.3310 1.3270 1.3270 0.0420 0.0426 0.0425 

WM 0.7100 0.7110 0.7110 0.8320 0.8300 0.8300 0.0490 0.0495 0.0495 

CSF 1.0000 1.0300 1.0250 4.0000 4.0250 4.0210 2.2000 9.6711 14.0790 

Out 0 0.0004 0.0006 1000.0 1001.7 1001.8 1000.0 773.3 921.5 

ROI 0.8300 0.8563 9.4460 1.3310 1.3205 0.0783 0.0420 0.0407 0.0120 

   

M
E

A
N

 

 

δ β1 

   

δ 

True 

δ 

Alt 

δ 

Null 

β1 

True 

β1 

Alt 

β1 

Null 

   

GM 0 7.30E-06 0 0.0100 0.0100 0.0100 

   

WM 0 6.70E-06 0 0.0100 0.0099 0.0099 

   

CSF 0 1.3170 0 0.0100 0.0099 0.0099 

   

Out 1.00E-07 -57.1 0 1.00E-07 -3.00E-09 -3.00E-09 

   

ROI 1 3.8050 0 0.0100 0.0099 0.0100 

   

M
E

A
N

 

 

θ σ
2
 

   

θ 

True 

θ 

Alt 

θ 

Null 

σ
2
 

True 

σ
2
 

Alt 

σ
2
 

Null 

   

GM 0.7853 0.7853 0.7853 0.0001 9.90E-05 9.90E-05 

   

WM 0.7853 0.7853 0.7853 0.0001 9.90E-05 9.90E-05 

   
CSF 0.7853 0.7853 0.7853 0.0001 9.90E-05 9.90E-05 

   

Out 0 0.0004 0.0004 0.0001 9.90E-05 9.90E-05 

   

ROI 0.7853 0.7853 0.7853 0.0001 9.90E-05 0.0080 
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Table 2.7: The average voxel values of the sample standard deviation maps computed by using the 

DeTeCT Model from the data generated by the model itself. The results are presented for the 

minimum theoretical values (Min. Theo.), and the estimates under the alternative (Alt) and null (Null) 

hypothesis. 

SD 

 

M0 T1 T2
*
 

M0 

Min. 

Theo. 

M0 

Alt 

M0 

Null 

T1 

Min. 

Theo. 

T1 

Alt 
T1 Null 

T2
*
 

Min. 

Theo. 

T2
* 

Alt 

T2
*
 

Null 

GM 0.0857 0.0856 0.0851 0.0358 0.0367 0.0365 0.0052 0.0055 0.0054 

WM 0.0537 0.0537 0.0534 0.0237 0.0240 0.0238 0.0053 0.0055 0.0054 

CSF 0.0718 0.8674 0.1191 0.0158 3.9971 0.5101 8.8591 20.285 25.833 

Out 0.2807 1.1572 4.3318 3.14E-13 74.2 75.8 1.1E-19 7140.6 1203.4 

ROI 0.0857 0.0586 3.0724 0.0358 0.0370 0.0271 0.0052 0.0029 0.0020 

   
SD 

 

δ β1 

  

δ 

Min. 

Theo. 

δ 

Alt 

δ 

Null 

β1 

Min. 

Theo. 

β1 

Alt 

β1 

Null 

  
GM 0.0002 0.0002 0 3.00E-06 3.00E-06 3.00E-06 

  
WM 0.0002 0.0002 0 3.00E-06 3.00E-06 3.00E-06 

  
CSF 0.4659 24.7 0 3.00E-08 3.00E-08 3.00E-08 

  
Out 5.00E-20 5053.6 0 9.00E-07 3.00E-08 3.00E-08 

   
ROI 3.2462 6.8134 0 3.00E-06 3.00E-08 3.00E-08 

   
SD 

 

θ σ
2
 

   

θ 

Min. 

Theo. 

θ 

Alt 

θ 

Null 

σ
2
 

Min. 

Theo. 

σ
2
 

Alt 

σ
2
 

Null 

   
GM 0.0014 0.0014 0.0014 4.4E-06 4.4E-06 4.4E-06 

   
WM 0.0014 0.0014 0.0014 4.4E-06 4.4E-06 4.4E-06 

   
CSF 0.0014 0.0014 0.0014 4.4E-06 4.4E-06 4.4E-06 

   
Out 6.70E-12 0.0830 0.0830 4.4E-06 4.4E-06 4.4E-06 

   
ROI 0.0013 0.0013 0.0013 4.4E-06 4.4E-06 5.6E-06 
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Table 2.8: The average voxel values of the sample mean maps computed by using the DeTeCT-

ING Model from the data generated by the model itself. The results are presented for the true 

values (True), and the estimates under the alternative (Alt) and null (Null) hypothesis. 
M

E
A

N
 M0 δ β1 

M0 

True 

M0 

Alt 

M0 

Null 

δ 

True 

δ 

Alt 

δ 

Null 

β1 

True 

β1 

Alt 

β1 

Null 

GM 0.8300 0.8299 0.8290 0 1.00E-06 0 0.0100 0.0100 0.0100 

WM 0.7100 1.0801 1.0799 0 -2.00E-05 0 0.0100 0.0099 0.0099 

CSF 1.0000 1.0881 1.0860 0 -2.00E-04 0 0.0100 0.0099 0.0099 

Out 1.00E-11 1.9E-06 3.E-06 1E-17 45.1 0 1E-17 -2.80E-09 -3.20E-09 

ROI 0.8300 0.8300 1.3820 1 1.0160 0 0.0100 0.0099 0.0100 

   

M
E

A
N

 

 

θ σ
2
 

   
θ 

True 

θ 

Alt 

θ 

Null 

σ
2
 

True 

σ
2
 

Alt 

σ
2
 

Null 

   
GM 0.7853 0.7853 0.7853 0.0001 9.96E-05 9.97E-05 

   
WM 0.7853 0.7853 0.7853 0.0001 9.98E-05 9.99E-05 

   
CSF 0.7853 0.7853 0.7853 0.0001 0.0001 0.0001 

   
Out 0 0.0001 0.0002 0.0001 9.95E-05 9.96E-05 

   
ROI 0.7853 0.785 0.7853 0.0001 9.96E-05 0.0080 

As previously noted, activations are calculated from the likelihood ratio statistics,  

-2logλM, for the MO Model, and -2logλC for the CV, DeTeCT, and DeTeCT-ING Models 

given in Eqs. [2.9] and [2.15], respectively. The sample mean and the standard deviation 

of the activation statistics maps, Z-statistics for the CV, DeTeCT and DeTeCT-ING 

Models and t-statistics for the MO Model, that were thresholded at a 5% Bonferroni 

family-wise error rate are given in Figs. 2.6a-2.6d and Figs. 2.6e-2.6h, respectively. None 

of the models appears to produce false positives due to the low uncertainty in the 

simulated data. However, Figs. 2.6e-2.6h show that DeTeCT-ING Model produces lower 

variance in all tissue types in the phantom compared to the other models.  
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 Figure 2.5: Calculated sample mean maps of the DeTeCT-ING Model parameters.  a)
0
ˆ( )M and 

0
( )M  , b) ˆ( )  and ( )  , c) 1

ˆ( )  and 1( )  ,(d) ˆ( )  and ( )  , e) 
2ˆ( )  and 

2
( )  . 

 

 

a) Left: 
0
ˆ( )M , right: 

0
( )M   

 

b) Left: ˆ( )  , right: ( )   

 

c) Left: 1
ˆ( )  , right: 1( )   

 

d) Left: ˆ( )  , right: ˆ( )   

 

e) Left: 
2
ˆ( )  , right: 

2
( )   

 

0 10.5

0 0.010.005

0 10.5

-π/2 0 π/2

0
3

1 10


3
0.5 10



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Figure 2.6: First row: Calculated sample means of the activation statistics (Z or t) of the models. a) μ(Z) 

(CV Model), b) μ(t) (MO Model), c) μ(Z) (DeTeCT Model), d) μ(Z) (DeTeCT-ING Model) Second row: 

Calculated sample standard deviations of the activation statistics (Z or t) of the models, e) σ(Z) (CV 

Model), f) σ(t) (MO Model), g) σ(Z) (DeTeCT Model), h) σ(Z) (DeTeCT-ING Model). 

 

Table 2.9: The average voxel values of the sample standard deviation maps computed by using the 

DeTeCT-ING Model from the data generated by the model itself. The results are presented for the 

minimum theoretical values (Min. Theo.), and the estimates under the alternative (Alt) and null 

(Null) hypothesis. 

SD 

 

M0 δ β1 

M0 

Min. 

Theo. 

M0 

Alt 

M0 

Null 

δ 

Min. 

Theo. 

δ 

Alt 

δ 

Null 

β1 

Min. 

Theo. 

β1 

Alt 

β1 

Null 

GM 0.0857 0.0048 0.0044 2.30E-06 2.30E-06 0 3.00E-06 3.00E-06 3.00E-06 

WM 0.0537 0.0048 0.0044 2.30E-06 1.70E-06 0 3.00E-06 3.00E-06 3.00E-06 

CSF 0.0718 0.0048 0.0044 0.4926 1.70E-06 0 3.00E-06 3.00E-06 3.00E-06 

Out 0.2807 0.0063 0.0058 0 709.2 0 1.00E-06 4.00E-06 4.00E-06 

ROI 0.0857 0.0048 0.0044 3.2462 0.1364 0 3.00E-06 3.00E-06 3.00E-06 

   SD 

θ σ
2
 

   

θ 

Min. 

Theo. 

θ 

Alt 

θ 

Null 

σ
2
 

Min. 

Theo. 

σ
2
 

Alt 

σ
2
 

Null 

   

GM 1.40E-06 1.40E-06 1.40E-06 4.00E-06 4.00E-06 4.00E-06 

   

WM 1.40E-06 1.40E-06 1.40E-06 4.00E-06 4.00E-06 4.00E-06 

   
CSF 1.40E-06 1.40E-06 1.40E-06 4.00E-06 5.00E-06 5.00E-06 

   

Out 0 0.8375 0.8579 4.00E-06 4.00E-06 4.00E-06 

   

ROI 1.30E-06 1.30E-06 1.30E-06 4.00E-06 4.00E-06 5.60E-06 

a) μ(Z) (CV) 

 

b) μ(t) (MO) 

 

c) μ(Z) (DeTeCT) 

 

d) μ(Z)  (DeTeCT-ING) 

 

e) σ(Z) (CV) 

 

f) σ(t) (MO) 

 

g) σ(Z)(DeTeCT) 

 

h) σ(Z) (DeTeCT-ING) 

 

0

60

0

250

0

60

0
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0
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0
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0
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0

1.8
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We give a comparison between the CRLBs, which provide a quantitative measure 

of the attainable variance of parameter estimates, of the considered models in Tables 2.10 

and 2.11. It can be observed from Table 2.10 and the results of a previous study (Rowe, 

2005a) that the CRLB for the variance of the estimate of the observation variance is two 

times larger in the MO Model than in the CV Model. Table 2.11 shows that the CRLBs 

of the estimates of the common parameters of the DeTeCT and DeTeCT-ING Models are 

the same since these models have the same likelihood functions. It can also be seen from 

Tables 2.10 and 2.11 that the common parameters of all four models such as β1 and θ 

appear to have the same CRLBs. The minimal theoretical standard deviations of the 

estimates of M0, T1 and T2
*
 are higher compared to those of the other parameters. The 

DeTeCT and DeTeCT-ING Models appear to have higher CRLBs of the estimate of δ in 

CSF and ROI areas compared to the other areas. It should be noted here that the CRLBs 

of the MO and CV Models and the DeTeCT and DeTeCT-ING Models are not based on 

the same number of TRs since the first 20 observations are excluded for the MO and CV 

Models. 

Table 2.10.  The average voxel values of minimal theoretical standard deviation maps computed 

by using the MO and CV Models from the data generated by the DeTeCT-ING Model. 

SD 

 

MO CV 

β0 β1 β2 σ
2
 β0 β1 β2 θ σ

2
 

GM 0.0006 3.00E-06 0.0009 6.00E-06 0.0006 3.00E-06 0.0009 0.0001 5.00E-06 

WM 0.0006 3.00E-06 0.0009 6.00E-06 0.0006 3.00E-06 0.0009 0.0001 5.00E-06 

CSF 0.0006 3.00E-06 0.0009 6.00E-06 0.0006 3.00E-06 0.0009 0.0001 5.00E-06 

Out 0.0006 3.00E-06 0.0009 6.00E-06 0.0006 3.00E-06 0.0009 0.0001 5.00E-06 

ROI 0.0006 3.00E-06 0.0009 6.00E-06 0.0006 3.00E-06 0.0009 0.0001 5.00E-06 
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Table 2.11. The average voxel values of minimal theoretical standard deviation maps computed 

by using the DeTeCT and DeTeCT-ING Models from the data generated by the models 

themselves. 

SD 

 

DeTeCT 

M0 T1 T2
*
 δ β1 θ σ

2
 

GM 0.0857 0.0358 0.0052 0.00023 3.08E-06 1.44E-04 4.43E-06 

WM 0.0537 0.0237 0.0053 0.00024 3.08E-06 1.42E-04 4.43E-06 

CSF 0.0718 0.0158 8.8591 0.46598 3.08E-06 1.41E-04 4.43E-06 

Out 0.2807 3.00E-13 1.14E-19 5.65E-20 9.54E-07 6.72E-12 4.43E-06 

ROI 0.0857 0.0358 0.0052 3.2462 3.08E-06 1.38E-04 4.43E-06 

  
SD 

 

DeTeCT-ING 

  

M0 δ β1 θ σ
2
 

  

GM 0.0857 0.000233 3.08E-06 1.44E-04 4.43E-06 

  

WM 0.0537 0.000244 3.08E-06 1.42E-04 4.43E-06 

  

CSF 0.0718 0.492673 3.08E-06 1.41E-04 4.43E-06 

  

Out 0.2807 0 9.54E-07 6.72E-12 4.43E-06 

  

ROI 0.0857 3.246212 3.08E-06 1.38E-04 4.43E-06 

 

Part II: Simulated Data of Two Voxels with the Varying Parameter Setting 

Figs. 2.7a, 2.7b and 2.8a, 2.8b illustrate the TPR and FPR plots against the varied 

parameter δ and  under scenarios “a” and “b”, respectively. Furthermore, Fig. 2.8c 

shows the ROC curves plotted while  is varied under scenario “b”. ROC curve at 

varying δ is not presented because the FPR computed from the inactive voxel is not 

affected by the varying parameter, δ, as it is zero for the inactive voxel. In the plots 

presented in Figs. 2.7 and 2.8, the colors red, green, blue and black represents the CV, 

MO, DeTeCT and DeTeCT-ING Models, respectively. 

Figs. 2.7a and 2.7b show the plots of TPR and FPRs for each model against δ for 

an  = 0.05 significance level, which are based on 1000 simulated time series with 

σ
2
=0.25. As seen in Fig. 2.7a, even though TPRs of the models seem to coincide with 
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each other, the MO and CV Models have slightly higher TPRs especially at low δ values. 

However, there seems to be a trade-off between the TPRs and FPRs of the CV and MO 

Models, as Fig. 2.7b shows that FPRs of the CV and MO models are also higher than the 

DeTeCT and DeTeCT-ING Models’ FPRs. This may be explained by the fact that our 

simulations are based on fitting the models to the data generated from the magnetization 

modeled by the DeTeCT and DeTeCT-ING Models. One can observe that the FPR of the 

DeTeCT and DeTeCT-ING Models do not converge to the significance level of =0.05 

in Fig. 2.7b, possibly due to some kind of bias that might have been created during the 

nonlinear numerical optimization process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.7: a) TPR and b) FPR plots against the varied parameter, δ, under scenario “a” in which σ2=0.25, 

and =0.05. 

Figs. 2.8a-2.8c show the plots of TPR and FPRs for each model against the 

significance level, , as well as the ROC scatter plot generated at varying  for δ = 0.1 

for the active voxel, which are based on 1000 simulated time series with σ
2
 = 0.25. The 

TPR plots of the CV, DeTeCT and DeTeCT-ING Models seem to slightly differ from 

each other whereas the MO Model has insignificantly higher TPRs at almost all  values. 

a) TPR against δ   

 

b) FPR against δ   

 

TPR 

 

δ   

 

δ   

 

FPR 
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As expected, it can be observed in Fig. 2.8b that the FPRs of the models increase with the 

significance level, . Moreover, the DeTeCT and DeTeCT-ING Models show lower 

FPRs than the MO and CV Models at all  levels. ROC scatter plots in Fig. 2.8c show the 

full picture of trade-off between the TPR and FPR across a series of  values. Since more 

accurate activation detection model is expected to have a closer ROC curve to the upper-

left border of the ROC space, the DeTeCT and DeTeCT-ING Models can be observed to 

be more accurate as producing less trade-off between FPR and TPRs. It can also be seen 

in Fig. 2.8c that the FPRs of the DeTeCT and DeTeCT-ING Models are not as high as the 

ones of the MO and CV Models at any significance level, . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.8: a) TPR, b) FPR plots against the varied parameter, , and (c) ROC curve under scenario “b” in 
which σ2 = 0.25, and δ = 0.1. 
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Fig. 2.9 shows the plots of CRLBs and the sample variances of the models’ 

parameters against δ for the single active voxel data generated based on scenario “c” in 

which  = 0.05, σ
2
 = 0.0001 and δ varying from 0 to 1 with increments of 0.1. Since the 

CV and MO Models do not include M0, T1, T2
*
 and δ; the MO Model does not include θ; 

and the DeTeCT and DeTeCT-ING Models do not include β0 and β2, the corresponding 

panels of Fig. 2.9 do not include such parameters. Further, Fig. 2.10 shows the plots of 

sample means and MSEs of the estimated σ
2
’s under each model against δ that are 

computed from the same single voxel data generated under scenario “c”. We prefer to 

present the MSE plots of σ
2
 since the MSEs of the other parameters are significantly 

close to the variance plots presented in Fig. 2.9 as a result of low bias of the estimators. 

In the plots presented in Figs. 2.9 and 2.10, the colors red, green, blue and black 

represents the sample variances, MSEs or sample means of the CV, MO, DeTeCT and 

DeTeCT-ING Models, whereas in Fig. 2.9, pink, cyan, and yellow represents the CRLBs 

of the CV, MO, and DeTeCT/DeTeCT-ING Models, respectively. As noted before, the 

DeTeCT and DeTeCT-ING Models have the same CRLBs since these models have the 

same likelihood functions.  

It can be seen in Figs. 2.9a, 2.9c and 2.9d that the sample variances of the 

estimated M0, T2
*
 and δ for the DeTeCT model (in blue) appear to be close but not 

coincident to the CRLB values (in yellow) whereas the sample variances of the estimated 

M0 and δ for the DeTeCT-ING model (in black) can be observed to be lower than CLRBs 

(in yellow) at all δ values. The sample variance plot of the estimated T1 that is given in 

Fig. 2.9b appears to coincide with its CRLB at  values higher than 0.4. It can be seen in 

Fig. 2.9e that the variances of β1 for all models achieve their CRLBs. It should be noted 
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Figure 2.9: CRLB and sample variance plots of the parameters against δ for the single active voxel data 

generated based on scenario “c” in which  = 0.05, σ2 = 0.0001. a) M0, b)T1, c) T2
*, d) δ, e) β1, f) θ, g) β0, h) 

β2, and i) σ
2. 

a) CRLB and sample var. of M0  

 

b) CRLB and sample var. of T1  

 

c) CRLB and sample var. of T2
*  

 

d) CRLB and sample var. of δ  

 

e) CRLB and sample var. of β1  

 

f) CRLB and sample var. of θ  

 

g) CRLB and sample var. of β0 

 

h) CRLB and sample var. of β2 

 

i) CRLB and sample var. of σ2 
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here that the DeTeCT and DeTeCT-ING Models’ CRLBs (yellow) are lower than the CV 

and MO Models’ CRLBs (pink) for the coefficient β1. In Figs. 2.9f and 2.9g, the variance 

of θ appears to achieve its CRLBs for all models considered. Further, the variances of the 

coefficients β0 and β2 for the CV and MO Models (in red and yellow), presented in Figs. 

2.9h and 2.9i, appear to achieve their CRLBs (in pink). Error variance estimate, given in 

Fig. 2.9i, are approximately twice as large for the MO Model than for the CV, DeTeCT 

and DeTeCT-ING Models. This observation was verified by the fact that the CRLB for 

the variance of the observation variance is two times larger in the MO Model than the CV 

Model (Rowe, 2005a). As such, the CRLBs for the variance of σ
2
 in the DeTeCT and 

DeTeCT-ING Models are also found to be very close to the CRLBs for the variance of σ
2 

in the CV Model. Furthermore, the estimated variances of all models appear to be very 

close to their corresponding CRLBs. 

In Fig. 2.10a, we present the computed sample means of σ
2
 for all models as well 

as the true σ
2
 value that we used when generating the data. Furthermore, we present the 

MSEs of σ
2
 for the models at varying δ in Fig. 2.10b. It can observed in Fig 2.10a that the 

sample means of σ
2  

computed from the CV, DeTeCT and DeTeCT-ING Models appear 

to be very close to each other and also to the true σ
2
 value. The MO Model seems to 

produce a lower error compared to the other models mostly at higher δ points. However, 

as a result of the MO Model’s higher minimal theoretical error variance, the MSE of σ
2
 

for the MO Model appears to be higher than the other models, as it can be seen in Fig. 

2.10b. Furthermore, the DeTeCT and DeTeCT-ING Models seem to have slightly lower 

MSEs for σ
2
 than the CV Model. Since the MSE decomposes into a sum of the bias and 
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variance of the estimator, MSE of the estimators need to be as small as possible in order 

to achieve a good estimation performance.  

 

Figure 2.10: a) Sample mean, and b) MSE plots of σ2 against δ for the single active voxel data generated 

based on scenario “c” in which  = 0.05, σ2 = 0.0001. 

In general, the parameter estimates for the CV, DeTeCT and DeTeCT-ING 

Models appear to be more efficient than the MO Model at the considered δ levels. It 

should also be noted here that the CV and MO Models provide only activation detection 

whereas the DeTeCT and DeTeCT-ING Models extracts more information from fMRI 

data by also providing M0, T1 and T2
*
 estimates as illustrated in Fig. 2.5. Lower variance 

and bias of the variance estimator, σ
2
 implies a more stable variance of the model. 

Furthermore, lower mean of the variance estimator σ
2
 provides better stability of the 

other parameter estimates since the CRLBs of all estimators depend on σ
2
. As such, a 

better accuracy and stability in the parameter estimates of the DeTeCT and DeTeCT-ING 

Models can lead to better activation detection by providing lower FPRs and higher TPRs, 

especially at extreme situations such as at low δ and very low or high  levels. 
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2.4.3 Human Subject Data Results 

The “noise” in the acquired human subject data is often plagued by the 

physiological effects and possible motion. Nonlinearity and the number of the parameters 

to be estimated in the system as well as the noise in the acquired data may pose 

computational difficulty when performing the nonlinear least squares estimation. A good 

selection of initial values of the parameters can be helpful to overcome such problems. In 

order to develop a hybrid approach to the nonlinear estimation, the MLEs of M0, β1, and θ 

were analytically driven under the restricted null hypothesis of the DeTeCT-ING Model 

to be used as initial values. The derivations of the MLEs of the null hypothesis of the 

DeTeCT-ING Model are given in Appendix B.  

The tissue parameter maps, M0, T1, and T2
*
, estimated from the alternative 

hypothesis of the DeTeCT Model given in Eq. [2.21] by using the numerical nonlinear 

estimation are shown in Figs. 2.11a-2.11c. It can be observed that M0 and T1 values are 

highly indicative of GM bordered in Figs. 2.11a and 2.11b. As it is given in Table 2.1, the 

GM T1 values appear to be higher than WM T1 values. Although the tissue segmentation 

in T2
*
 map, presented in Fig. 2.11c, does not appear to be as good as the one in T1 map, 

presented in Fig. 2.11b, corresponding tissues can still be distinguished.  

Figs. 2.12a-2.12c show the computed activation maps using the likelihood ratio 

test from the CV, MO and DeTeCT-ING Models, respectively. Fig. 2.12 shows a high 

correspondence between decay coefficients deemed to be GM and bordered active areas 

that should be in GM. It can be observed that the CV and DeTeCT-ING Models 

demonstrate superior power of detection over the MO Model in left motor cortex and 

supplementary motor area in which the activation occurs. A higher power of detection 
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can be seen in the bordered left motor cortex in Fig. 2.12c compared to the corresponding 

areas in Figs. 2.12a and 2.12b. This observation is consistent with the outcomes of our 

simulation study presented in Fig. 2.8 in Part II of section 2.4.2 which shows that the 

DeTeCT-ING Model has a better activation detection power than the CV and MO 

Models after applying a 5% Bonferroni family-wise error rate thresholding. Fig. 2.12c 

also shows that the DeTeCT-ING Model produces no false positives outside brain unlike 

the CV Model. Even though the false positive detections of this kind, which are distant 

from the tissues, can be easily masked, this outcome can be considered as the evidence of 

the DeTeCT-ING Model’s benefit of theoretically eliminating false positive rates without 

the need of researchers’ decision for manual masking after the statistical analysis of the 

observed fMRI data. A few false positives that are not present in the activation maps of 

the CV or MO Models, in Figs. 2.12a and 2.12b, can be observed in the upper left side of 

the brain which is very close to no signal area in Fig. 12c. Such false positives can be 

caused by the signal changes due to the non-uniform sources of noise and artifact that are 

hard to be described and modeled. Furthermore, the assumption of independence of the 

observations in time or space may not be true in the human subject data. Such 

assumptions that are difficult to be satisfied can cause poor estimates and thus false 

positive rates especially in the areas near the edges of the brain. As such, these voxels 

that are incorrectly detected as active most possibly have task related signal changes that 

are of no biological origin.  
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Figure 2.11: Estimated M0, T1, and T2
* maps from the alternative hypothesis of the DeTeCT Model. a) M0, 

b) T1 (in s), c) T2
* (in s). 

 

 

 

Figure 2.12: Human subject data activation statistic maps computed by using the CV, MO, DeTeCT-ING 

Models. a) Z-statistics map from the CV Model, b) t-statistics map from the MO Model, and c) Z-statistics 

map from the DeTeCT-ING Model. The presented maps are thresholded at a 5% Bonferroni family-wise 

error rate. 
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models, the first scans of the fMRI data are not discarded since they have biological 

information about the brain, including the tissue parameters such as relaxation parameter 

and spin density of the tissues.  

The selection of the imaging parameters, TR, TE and flip angle, plays an 

important role for determining accurate measure of tissue parameters. The acquisition 

parameters for this study are selected to be appropriate for both T1 and T2
*
 estimation and 

brain activation detection since we perform them from a single pulse sequence. The 

selection of 90° flip angle is made in order to simplify the temporarily varying magnitude 

Mt, given in Eq. [2.17] so that the magnetization at time for the DeTeCT and DeTeCT-

ING Models does not depend on the magnetization at previous time points. As such, the 

computational complexity of the numerical optimization of the log likelihood function is 

relatively reduced. It should be noted here that it is possible to reduce TR and TE to 

increase T1 and T2
*
 contrast since T1 and T2

*
 are influenced by TR and TE, respectively.  

There are three main contributions of the developed model to the current studies 

in the field by utilizing the aforementioned neglected information. First, the proposed 

method provides a significant step to modeling the fMRI data closer to that actually seen 

in the real experiments with the use of physical magnetization equation. Second, 

utilization of the gray matter tissue relaxation parameters in the statistical fMRI 

activation model provide a theoretical elimination of the possible false positives in the 

process of hypothesis testing while computing activation statistics. Third, the model 

allows one to simultaneously estimate the relaxation parameters which could be used for 

tissue characterization, by utilizing the information in the first few images.  
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Chapter 3: Incorporating MR Relaxivities to More Accurately Reconstruct 

MR Images 

The mathematical models that have been used for detecting brain activity, that are 

introduced in the previous chapter, and the models that determine brain connectivity use 

the reconstructed image measurements rather than directly using the acquired frequency 

space measurements. These models do not take into account the artifacts that are based 

upon the physical mechanisms that occur in the signal encoding and data acquisition 

processes. As such, the accuracy of the final analyses performed by the fMRI and fcMRI 

models significantly depends on the accuracy of the reconstructed image measurements.  

In MRI, the complex-valued measurements of the acquired signal at each point in the 

frequency space are expressed as a Fourier transformation of the proton spin density 

weighted by Fourier encoding anomalies: T2
*
 and T1 relaxation times, and a phase 

determined by the magnetic field inhomogeneity, ∆B, according to the MR signal 

equation. Such anomalies alter the expected symmetry and the signal strength of the k-

space observations, resulting in images distorted by image warping, blurring, and loss in 

image intensity. Although T2
*
 and ∆B corrections have been a focus of research, the T1 

recovery term is typically neglected by assuming a long repetition time. As T1 relaxation 

time provides valuable quantitative information on tissue characteristics, the model 

presented in this chapter aims to account for the effects of T2
*
, ∆B and T1 during the 

image reconstruction. Accounting for T1 effects in image reconstruction is shown to 

recover image contrast that exists prior to T1 equilibrium. The use of the proposed model 

in future studies could provide better precision in image registration by improving tissue 
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segmentation. Such correction is also shown to induce negligible correlation in the 

reconstructed images and preserve functional activations. 

3.1 Introduction 

In fMRI, data is acquired in the spatial frequency domain and reconstructed 

through an inverse Fourier transform, into images of the object in the image domain. Thus, 

the measured k-space data, encoded in time, is ideally assumed to be the Fourier transform 

of the proton spin density. However, in the process of Fourier encoding, the detected MRI 

signal is subject to the MR relaxivities, T2
*
 and T1, as well as magnetic field 

inhomogeneity, ΔB, commonly referred to as Fourier anomalies. The nature of the Fourier 

encoding process causes image artifacts or image distortions. One such effect is the one 

caused by acquiring measurements of k-space at different times after the RF excitation 

pulse. Due to the non-instantaneous acquisition of each k-space line, the first points 

sampled have a lower T2
*
 weighting than the subsequent points. Considering that the 

“ideal” image would be reconstructed from the “ideal” k-space measurements, in which 

every point is sampled with the exact same weighting, the “actual” acquired k-space 

measurements in practice are scaled according to the time by a factor determined by T2
* 

(Stroman, 2011; Haacke et al., 1999). As such, the “actual” reconstructed image, which is 

obtained by an inverse Fourier transformation of the “actual” k-space measurements, has a 

blurring effect in the phase encoding direction as a result of the inverse Fourier 

transformation of this weighting pattern. Moreover, the differences in magnetic 

susceptibility between tissues or magnetic materials lead to incorrect sampling of k-space 

by introducing errors in the gradients. Thus, the point in k-space that is believed to be 

sampled is not the actual location. As such, magnetic field inhomogeneities incur spatial 
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distortions including image warping and phase generation. Although the weighting 

through T1 is not affected by the non-instantaneous sampling of k-space, it can modulate 

the MR signal resulting in signal loss and image weighting that depend on the tissue 

characteristics. The artifacts resulting from T2
*
 relaxation during sampling, the 

inhomogeneities in the magnetic field, and the alteration in the signal arising from the 

longitudinal relaxation can be considered as T2
*
, ΔB and T1 effects, respectively, 

Correcting the image warping effects of both the static and dynamic magnetic field 

inhomogeneities (Jezzard and Balaban, 1995; Reber et al., 1998; Kannengiesser et al, 

1999; Hahn and Rowe, 2012; Hahn et al., 2012), and the T2
*
 blurring effect (Maclaren et 

al., 2008; Bernstein et al., 2004, Zhou et al., 1993; Robitaille and Berliner, 2007) in echo 

planar imaging sequences have been active areas of research in brain imaging. Despite 

such efforts for correcting T2
*
 and ΔB effects, conventional studies do not account for a 

recovery of the longitudinal relaxation time; instead they use the standard assumption of a 

long repetition time. However, this assumption is not always valid, and the signal 

amplitude becomes dependent on T1 when performing fast repetitive image excitations 

with incomplete recovery of the longitudinal magnetization. Moreover, T1 relaxation time 

provides a robust contrast mechanism for distinguishing tissue type (Mazaheri et al., 

2006).  As such, this quantitative knowledge of tissue characteristics, which can be 

extracted from data acquired during the transient state prior to T1 equilibrium, can be 

incorporated into the reconstructed time series image-space. As noted before, the Fourier 

anomalies appear as exponential terms in the traditional signal equation, the observed k-

space measurements can be considered as the Fourier transform of the proton spin density, 

weighted by the Fourier anomalies. Since the k-space measurements are subject to the 
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effects of such weighting during data acquisition, these effects can be accounted for 

separately or simultaneously in the process of Fourier reconstruction. 

In order to relate the signal and noise characteristics of k-space measurements to 

reconstructed voxel measurements, the complex-valued matrix application of the inverse 

Fourier transformation was described through a real-valued isomorphism by Rowe et al. 

(2007). Representing the Fourier reconstruction as a single matrix operator formed the 

basis for the study in (Nencka et al., 2009a) where a mathematical framework, AMMUST-

k (A Mathematical Model for Understanding the STatistical effects of k-space 

preprocessing), was developed to represent various spatial processing operations 

performed on acquired spatial frequencies in terms of real-valued linear isomorphisms. 

Representing the reconstruction and image processing operations in this way made it 

possible to directly compute the exact covariance structure, and ultimately correlation 

induced into the image-space data, which can result in misleading conclusions in fcMRI 

and fMRI studies (Nencka et al., 2009; Bruce et al., 2011). 

In this chapter, we expand upon the AMMUST-k framework by modifying the 

real-valued Fourier reconstruction (FR) operator in such a way that it can account for the 

effects of T2
*
, ΔB, and T1 on the image-space data. As noted before, the measured 

“actual” k-space data is scaled according to time that has elapsed since the RF excitation 

pulse and the factor determined by the terms include T2
*
, ΔB, and T1. As such, we first 

develop a real-valued Fourier encoding (FE) operator that considers such weighting, then, 

we create the modified FR operator by simply inverting the modified FE operator to 

account for the encoding effects in image space.  The use of a modified FR operator 

within this framework makes it possible to more accurately reconstruct the image space 
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voxel values from measured spatial frequencies, and also precisely quantify the statistical 

effects of such correction on the reconstructed data.  

The linear Fourier reconstruction operators are first developed by considering 

different combinations of the Fourier anomalies and examples of each anomaly are 

shown on a small 8×8 data set. The Fourier operators are then used to theoretically 

examine the image space data associated with the effects of the Fourier anomalies on a 

96×96 noiseless digital phantom. The exact mean and induced correlations modified by 

the adjusted FR operators on both complex-valued and magnitude-squared data are also 

illustrated by using the proposed model. The results of the proposed FE anomaly 

correction framework is also illustrated on acquired experimental human subject fMRI 

data by focusing on the incorporation of the longitudinal relaxation time, T1. Finally, a 

comparison is made between the activation statistics computed from the reconstructed 

data with and without the incorporation of T1 effects with the use of both conventional 

magnitude-only (Bandettini et al., 1993) and newer complex-valued fMRI activation 

models (Rowe and Logan, 2004; Rowe, 2005a,b). 

3.2 Theory 

3.2.1 Complex-valued Image Reconstruction in MRI 

In fMRI, complex-valued measurements are acquired discretely in time 

corresponding to two-dimensional spatial frequency measurements. The measurements are 

then reconstructed into a complex-valued image by applying the complex-valued inverse 

Fourier transformation. Although the original object, proton spin density, is real-valued, 

imperfections in the imaging process lead to a complex-valued image. 
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When the complex-valued Fourier reconstruction is described through a real-

valued isomorphism (Rowe et al., 2007), a vector of the reconstructed image, y, can be 

written as the product of a FR operator,  , with a vector of the observed k-space 

observation, s, by  

y s . [3.1] 

Similarly, the vector of the k-space observation, s, can be written as the product of a FE 

operator,       , with a vector of the reconstructed image, y, as  

s y . [3.2] 

In Eqs. [3.1] and [3.2], y=(yR
Ꞌ
,yI
Ꞌ
)
Ꞌ
 is a 2p×1 vector with the real parts of p image values, 

yR=(yR1,…,yRp)
Ꞌ
, stacked above the imaginary parts of p image values,  yI=(yI1,…,yIp)

Ꞌ
, for 

an u×v image of p = uv voxels. Similarly, s=(sR
Ꞌ
,sI
Ꞌ
)
Ꞌ
 is a 2p×1 vector with p real parts, 

sR=(sR1,…,sRp)
Ꞌ
, stacked above p imaginary parts, sI=(sI1,…,sIp)

Ꞌ
, for a Cartesian 

acquisition of k-space. Thus, the FR and FE operators,   and   , have dimensions of 

2p×2p. The Cartesian FR operator can be represented as 

   

   

Re Im
,

Im Re

C C

C C

  
 

 

 
 
 

 [3.3] 

where Re(∙) and Im(∙) denote the real and imaginary parts of their respective arguments. 

The matrix  C is defined as the Kronecker product of the matrices,  x and  y, as 

 C= x⊗ y, where the matrices  x and  y Fourier transform the columns and the rows 

of the acquired k-space measurements, respectively. The jk
th
 element of the FR operator 

 x can be written as        /2 ( 1) /2 ( 1)n j n k

x jk
w

     
  , where j and k are the indices from 1 

to n and w=(1/n)exp(i2π/n). The Fourier encoding operator,   , has a similar skew 
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symmetric form to   where w=exp(-i2π/n).  The operators,   and   , will be considered 

as the standard FR and FE operators as they do not account for any Fourier anomalies. 

As the real-valued spatial frequency vector, s, contains complex-values, the 

application of the FR operator in Eq. [3.1] produces a covariance between the real 

measurements, between the imaginary measurements, and between the real and 

imaginary measurements. If the k-space vector, s, has a covariance matrix,  , then the 

covariance matrix of the reconstructed image, y, becomes 

cov( )y   ,  [3.4] 

where the operator “Ꞌ” denotes the transpose of a matrix. 

To produce the required k-space vector, s, the acquired k-space array, which is 

observed as a pairing of real and imaginary component of each frequency can be 

reordered by reversing the alternating rows of measurements and segregating real and 

imaginary observations through permutation matrices, PA and PS. Since the k-space data 

includes extra points acquired during the phase encoding blips in echo planar imaging, 

the acquired measurements also needs to be censored by the censoring matrix, PE. 

Additionally, Nyquist ghosting can be corrected through a series of linear operators that 

reorders to group the real and imaginary observations from each line together (PR), 

Fourier transform each row ( R), shift the phase of the each transformed row (ΦN), and 

finally apply the inverses of  R and PR. These k-space operators together with additional 

operators that can include Fourier homodyne interpolation, H, zero-filling, F, 

apodization, A, and explicit image space smoothing operator, S, can be combined into a 

single operator, O, that signifies the series of all linear operators applied to s (Nencka et 

al., 2009). Therefore, the reconstruction in Eq. [3.1] simplifies to 
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y Os , [3.5]  

where O represents a multiplication of operators applied throughout the image 

reconstruction process, 

1 1

R R N R R S A E
O S AFHP P P P P      . [3.6] 

If E(s) = s0 and  =cov(s), then mean and covariance of the reconstructed image vector, y, 

are altered by the final operator, O, to become 

0
( )E y Os   

and  

cov( )y O O  .  [3.7] 

The correlation structure between voxels in y can be calculated from cov(y) by 

1 2 1 2/ /
( )corr y D O O D   , [3.8] 

where D is a diagonal matrix of the variances drawn from the diagonal of the covariance 

matrix, O O , and the −1/2 superscript denotes that the diagonal elements are inverted 

after taking the square root. The covariance matrices of both the spatial frequencies and 

the reconstructed image-space values include the following covariance pairs: real by real, 

imaginary by imaginary, and real by imaginary components of s and y, respectively. 

An assumption of normality allows the derivation of the covariance of the square 

of the magnitude data from the covariance matrix, cov(y)=O O  (Rowe and Nencka, 

2009; Nencka et al., 2009). Both magnitude-squared and complex-valued data can be 

used to analyze changes made to the acquired correlation structures as the correlation of 
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magnitude-squared data is asymptotically equivalent to the magnitude-only correlation 

and linear in nature. 

3.2.2 Acquired k-space Signal and Fourier Anomalies 

Under the assumption that the complex-valued matrix of two dimensional spatial 

frequencies is measured instantaneously at the echo time, TE, the acquired k-space signal 

can be expressed through the MR signal equation, 

 1 2
2

0
1

* ( )/ ( , ) / ( , ) ( , )
( , ) ( , ) x yi k x k yTR T x y TE T x y i B x y TE

x y
s k k M x y e e e e dxdy



 
   

 

   , [3.9] 

where TR is the repetition time and M0(x,y) is the proton spin density. The gyromagnetic 

ratio, γ, of the hydrogen nuclei is equal to 42.58 MHz/T in Eq. [3.9]. 

Since the signal for different points in k-space is measured at different times, the 

k-space observation process occurs over a finite duration of time and the signal equation 

in Eq. [3.9] can be more accurately expressed as 

 1 2
2

0
1

* ( )/ ( , ) / ( , ) ( , )
( , ) ( , ) x yi k x k yTR T x y t T x y i B x y t

x y
s k k M x y e e e e dxdy



 
   

 

   ,  [3.10] 

where the k-space point (kx,ky) is sampled at time t=t(kx,ky). As the variable t=t(kx,ky) 

varies for each k-space measurement, both T2
*
 and ΔB break the Hermitian symmetry of 

the k-space observations, and could therefore cause artifacts and distortions in the 

reconstructed images. Moreover, the longitudinal relaxation time, T1, causes changes in 

signal intensity depending on the tissue characteristics. 
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In conventional studies, the term (1-exp(-TR/T1)) in Eq. [3.10] is assumed to be 

approximately 1, by choosing TR to be much greater than T1. This reduces Eq. [3.10] to 

depend only on T2
*
 by 

2
2

0

* ( )/ ( , ) ( , )
( , ) ( , ) x yi k x k yt T x y i B x y t

x y
s k k M x y e e e dxdy



 
  

 

   ,  [3.11] 

and thus leads to T2
*
-weighted images.

 
The assumption of an infinite TR however can never be reached directly since the 

goal is to image the brain as quickly as possible, thus fast acquisitions are needed. The 

neglected term, (1-exp(-TR/T1)), therefore takes non-negligible values with the parameter 

settings that are commonly used in fMRI experiments. Presented in Table 3.1 are the 

values that (1-exp(-TR/T1)) outputs when the relaxation parameter values of GM and 

WM tissues measured at 3.0 T (Atlas, 2008) and two commonly used TR values, 1000 ms 

and 2000 ms, are used. It is of note here that the value of (1-exp(-TR/T1)) is expected to 

be slightly lower at 7.0 T which has been widely used in high-field fMRI for study of the 

human brain. Furthermore, the variations in the value of TR have an essential effect on 

the control of image contrast characteristics. As such, accounting for T1 effects has the 

potential of retaining the image contrast over the time series that exists prior to T1 

equilibrium. The regular FR operator,  , is thus modified with the aim of analyzing and 

accounting for the effects of Fourier anomalies: T2
*
, ΔB and T1. 

Table 3.1: T1 exponential term values at 3.0 T. 

1-exp(-TR/T1(x,y)) TR = 1000 ms TR = 2000 ms 

GM (T1 = 1331 ms.) 0.5283 0.7750 

WM (T1 = 832 ms.) 0.6994 0.9096 
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3.2.3 Incorporating MR Relaxivities in the Fourier Reconstruction Process 

In this section, we develop a modified Fourier image reconstruction operator that 

produces the “ideal” image space vector, yId, from the “actual” measured k-space vector, 

sAct, that is affected by the exponential terms for T2
*
, ΔB, and T1 during the Fourier 

encoding process. Consider that the “ideal” image space vector, yId, would be constructed 

from the “ideal” k-space vector, sId, that is not affected by FE anomalies and the “actual” 

measured signal, sAct, that we acquire in practice is scaled according to a weighting 

determined by FE anomalies. 

As each k-space measurement is approximately expressed as the forward Fourier 

transform of the spin density, weighted by the MR relaxivities and the magnetic field 

inhomogeneities at a single point in k-space, we can first incorporate the exponential 

terms for T2
*
, T1, and ΔB into the FE operator,   . Then, we construct the modified FR 

operator by simply taking the inverse of the modified FE operator matrix. 

As with the Cartesian Fourier reconstruction operator given in Eq. [3.3], the 

Cartesian FE operator is expressed as 

   

   
,

Im

Im

Re

Re

C C

C C

  
 

 

 
 
 

 [3.12] 

where     is defined as    =  x⊗  y, and the jk
th
 element of   x can be written as 

 
     /2 /2

x jk

n j n k
w

   
   when w=exp(-i2π/n). 

Regardless of the relaxation times or ΔB that cause the weighting difference, in 

the general case, we can describe the weighting of the MR signal at each point with a 

two-dimensional array, W, as  
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     211
*, / ( , ) ( , ) ,/ ( , )

( , , , ) x y x yt k k T x y i B x y t k kTR T x y

x y
W k k x y e e e

 
  .  [3.13]  

Two dimensional FE anomaly weighting function, W, can be constructed as  

 

   

   

1 1 1 1 1 1

1 1

, , , , , ,

( , , , ) ,

, , , , , ,

x y

W W u v

W k k x y

W u v W u v u v

 
 

  
 
 



  



 

for an u×v image. 

In order to achieve the ideal image space vector, yId, after reconstruction, we first 

modify    in Eq. [3.12], by including W into the real-valued isomorphism. The modified 

FE operator,    , can be created by first performing an element-wise multiplication of the 

Kronecker product,    , by the FE anomaly weighting function as 

   , , , ,C a x y x yW k k x y     , [3.14] 

where   represents an element-wise Hadamard product.  

Finally, the modified FE operator,    , can be expressed as 

   
   

, ,

, ,

Re Im

Im Re

C a C a

a

C a C a

   
  
   

. [3.15] 

The modified FR operator,  a, can then be calculated by  a =    
-1

. 

With the modified Fourier FR operator that accounts for the effects of the FE 

anomalies, the operator, O, in Eq. [3.6] can be updated to 

1 1

a a R R N R R S A E
O S AFHP P P P P      . [3.16] 
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The complete process given in Eq. [3.5] can be written in such a way that the operator, 

Oa, reconstructs the “actual” measured k-space vector, sAct, into the “ideal” corrected 

image space vector, yId, as 

Id a Act
y O s .  [3.17] 

The inclusion of T2
*
, ΔB, and T1 finely alters the structure of the standard FE and 

FR operators,    and   to arrive at     and   . The alterations caused by the FE 

anomalies in the FE operator, and in the FR operator that accounts for such alterations 

can be better seen in a low-dimensional example than a real size data set. Presented for an 

8×8 example, the 128×128 arrays in Figs. 3.1a and 3.1b are the FE and FR operators that 

either do not account for any terms (standard operators), or separately accounts for the 

T2
*
 decay, ΔB in the frequency encoding direction, and the T1 recovery term. T2

*
 and T1 

maps were considered in the example map which were scaled to values from 80 to 100 

ms and 800 to 1000 ms inside the phantom, respectively. The ΔB term was modeled as a 

linear gradient ranging from 0 to 2.5×10
-6

 T. It can be seen in the second panel of Fig. 

3.1a that the modified FE operator that includes T2
*
 is visually different from the standard 

FE operator. Since exp(-t/T2
*
) in Eq. [3.13] converges to 0 for the voxels that have small  

T2
*
 values, the element values of the modified FE operator tend toward zero in the 

portions that correspond to these voxels with low T2
*
 value. Moreover, it can be seen in 

the third panels of Figs. 3.1a and 3.1.b that the incorporation of T1 recovery causes a 

significant amplitude change in the modified FE and FR operators for the considered TR 

of 1 s. The operators that incorporate ΔB effects that are given in the fourth panel of Fig. 

3.1a and 3.1b appear to be clearly different than the standard arrays as a result of the 

linear gradient change in magnetic field. 
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Figure 3.1: a) FE operators: standard FE operator,  , in the first panel; modified FE operator, a , that 

separately includes the effects of T2
*, T1, or ∆B in the second, third, and fourth panels, respectively. b) FR 

operators: standard FR operator,  , in the first panel; modified FR operator,   , that separately accounts 

for the effects of T2
*, T1, or ∆B in the second, third and fourth panels, respectively. 

3.3 Methods 

3.3.1 Theoretical Illustration 

To theoretically illustrate the performances of the developed Fourier 

reconstruction operators, a single-slice of data was generated from a noiseless digital 

brain phantom. Simulated at 3 T, the proton spin density, M0, in a 96×96 phantom in Fig. 

3.2a was used with model T2
*
 and T1 values that vary from 42 to 2200 ms for T2

*
 and 

from 832 to 4000 ms for T1, as given in Figs. 3.2b and 3.2c (Atlas, 2008). The ΔB was 

considered as a left to right gradient from 0 to 2.5×10
-6

 T, as shown in Fig. 3.2d. The 

timing of the k-space sampling scheme is as in a standard EPI pulse sequence for a 96×96 

acquisition matrix, with a bandwidth of 250 kHz, an effective echo spacing of 0.72 ms, 

an echo time of 50 ms, and a TR of 1 s. 
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Figure 3.2: Parameters considered in theoretical calculations. (a) Proton spin density, M0, (b) intra-

acquisition decay, T2
*, (in s), (c) longitudinal relaxation time, T1, (in s), (d) B-field inhomogeneity, ΔB, (T). 

 

In our calculations for the theoretical illustration, we consider the k-space 

operators: PE, PA, PS, PR,  R, ΦN,  R
-1

, PR
-1

 and the FR operator,   or   , depending on 

our analysis. Thus, the altered mean and the induced covariance matrix by the applied 

operators can be calculated according to Eq. [3.7] by 

1 1( )Id a R R N R R S A E ActE y P P P P P s      

and 

   1 1 1 1cov( ) ( ) ( )Id a R R N R R S A E E A S R R N R R ay P P P P P P P P P P                    . [3.18]  (18) 

It should be noted that if    = I, then Eq. [3.18] reduces to  

cov( )Id a ay    ,  [3.19]  

since when each of the operators, except   , in Eq. [3.18] are multiplied by their 

transposes, the products yield identity matrices. Therefore, the altered covariance and 

correlations will only result from the use of the modified FR operator,   . 

In order to examine the effects of FE anomalies on the reconstructed image space 

data, we use the data that is generated by considering the individual and sequential effects 

of T2
*
, ΔB, and T1 in the frequency space. Then, we perform the Fourier reconstruction 

a) M0 

 

b) T2
* (in s) c) T1 (in s) d) ΔB (in T) 
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with the use of the standard FR operator,  , to visually illustrate the alterations that are 

caused by the FE anomalies if they are not accounted for. Finally, we perform the Fourier 

reconstruction with the use of the proposed modified FR operator,   , on the same data 

set in order to present the performance of    in accounting for such effects. Presented in 

Fig. 3.3 are the magnitude, phase, real, and imaginary images that are reconstructed from 

the data sets generated with the effects of T2
*
 in Figs. 3.3a1, and 3.3a2, the effects of ΔB in 

Figs. 3.3b1, and 3.3b2, the effects of T1 in Figs. 3.3c1, and 3.3c2, and finally the combined 

effects of T2
*
, ΔB, and T1 in Figs. 3.3d1, and 3.3d2. Figs. 3.3a1, 3.3b1, 3.3c1, and 3.3d1 

show the images that are reconstructed with the use of the standard FR operator,  , 

whereas Figs. 3.3a2, 3.3b2, 3.3c2, and 3.3d2 illustrate the images that are reconstructed 

with the use of the modified FR operator,   . In this chapter, we denote the images as 

“standard-reconstructed” when the standard FR operator is used for reconstruction while 

we denote images as “modified-reconstructed” when the FR operator, modified to correct 

the effects of the respective FE anomaly, is used. When generating data for the results 

presented in Fig. 3.3, the “true” magnitude of each image is assumed to be the proton 

spin density as given in Fig. 3.2a, and the phase is originally assumed to be zero 

throughout the image. 

The reconstructed image results that are presented in Figs. 3.3a1 and 3.3a2 are 

obtained from the frequency space data that is generated by incorporating only the 

exponential term, exp(-t(kx,ky)/T2
*
(x,y)), in such a way that the FE anomaly weighting 

function, introduced in Eq. [3.13], is assumed to be W(kx,ky,x,y)=exp(-t(kx,ky)/T2
*
(x,y)). It 

can be seen in Fig. 3.3a1 that the magnitude and real images show blurring and loss of 

image intensity effect that T2
*
 causes on the edges of the phantom when the considered 
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T2
*
 effect is not corrected. One can also observe that the standard-reconstructed phase 

image is not uniform in CSF or in space. The standard-reconstructed imaginary image 

shows some artificial imaginary data mostly at the edges of the phantom. The modified-

reconstructed magnitude, phase, real and imaginary images, that are given in Fig. 3.3a2, 

appear to be exactly the same as the true magnitude, phase, real and imaginary images. 

This outcome illustrates that    successfully corrects the T2
*
 effect on the reconstructed 

images. 

Fig. 3.3b1 illustrates the standard-reconstructed images whereas Fig. 3.3b2 

presents the modified-reconstructed images from the data generated with only B-field 

inhomogeneity effects. The frequency space data is generated by considering only the 

exponential term, exp(-iγΔB(x,y)t(kx,ky)), in such a way that the FE anomaly weighting 

function in Eq. [3.13] is assumed to be W(kx,ky,x,y)=exp(-iγΔB(x,y)t(kx,ky)). The B-field 

inhomogeneity, ∆B, is known to produce image warping and bulk shift in the phase 

encoding direction in magnitude and real images, as it can be seen in Fig. 3.3b1. Slight 

warping can also be observed in the vertical frequency encoding direction because of the 

higher sampling width. Fig. 3.3b1 shows some non-ideal imaginary data that is more 

significant at the right portion of the phantom. It can also be observed that the phase 

image is not uniform in CSF and in space. As seen in the case that we examine T2
*
 

effects, the modified-reconstructed images, that are given in Fig. 3.3b1 have been 

successfully corrected through   . 

Presented in Fig. 3.3c1 and Fig. 3.3c2 the standard- and modified-reconstructed 

images from the data generated with only T1 recovery term effects. As explained in 

previous cases, the frequency data generation is performed by assuming that the FE 
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anomaly weighting function in Eq. [3.13] is W(kx,ky,x,y)=(1-exp(-TR/T1(x,y)). The 

standard-reconstructed magnitude and real images in Fig. 3.3c1 exhibit decreased image 

intensity throughout the phantom. The expected increase in tissue contrast, when the 

images are modified- reconstructed by the operator,   , are not observable in this 

simulation since the assumed proton spin density already has significant contrast 

information. Similarly with the previous results, the modified-reconstructed images have 

successfully been corrected compared to a standard reconstruction as it is apparent in Fig. 

3.3c1. 

Figs. 3.3d1 and 3.3d2 illustrate the standard- and modified-reconstructed images 

from frequency space data that is generated with a combination of T2
*
, ΔB, and T1. The 

effects of all three terms (blurring, image warping and loss of image intensity) can be 

observed in the standard-reconstructed images in Fig. 3.3d1 while the modified-

reconstructed images in Fig. 3.3d2 are same as the true maps.  

The correction of FE anomalies can be considered as a means of data processing, 

and thus could potentially induce artificial correlations. Our proposed model allows one 

not only to account for their effects but also to compute the exact image-space statistics 

(mean, variance and correlation). As explained in section 3.2.1, the correlation matrix 

produced by Eq. [3.7] is partitioned into the quadrants that include the correlation 

between the real components (real/real), between the imaginary components 

(imaginary/imaginary), and between the real and imaginary components (real/imaginary) 

of the reconstructed image. Furthermore, the correlations of the magnitude-squared data 

(square of the magnitude-only data) can be derived from the computed complex-valued 

correlation matrix and can be considered in the analysis of the correlation structure  
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Figure 3.3: Reconstructed magnitude, phase, real, and imaginary images from the frequency space data 

that is generated with the effects of the following FE anomalies: T2
* in a1) and a2), ΔB in b1 and b2, T1 in c1 

and c2, and T2
*, ΔB, and T1 in d1 and d2. The images on the rows of a1, b1, c1, and d1 are standard-

reconstructed whereas the images on the rows of a2, b2, c2, and d2 are modified-reconstructed from the data. 
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induced by FE anomaly correction during image registration. In order to present the 

computed correlation structure, we choose the voxel located in the center of the image as 

the seed voxel and show the correlation between the measurements of the center voxel, 

and those from all other voxels. The center voxel’s induced magnitude-squared, real/real, 

imaginary/imaginary, and real/imaginary correlations by the modified FR operator, that 

are illustrated in Figs. 3.4a and 3.4b, are produced by superimposing the computed 

correlation structure of the center voxel on a gray-scale anatomical phantom image. 

Presented in Fig. 3.4a are the induced correlation maps for the center voxel when T2
*
 is 

incorporated. Since we have found that separately accounting for ΔB and T1 effects yield 

the same results, the maps presented in Fig. 3.4b represents the correlation structure 

induced by ΔB or T1 incorporation. It can be seen that the process of accounting for FE 

anomalies induces a very small amount of correlation in the maps in Fig. 3.4a and no 

 

 

Figure 3.4: Presented on a magnitude brain phantom underlay are theoretical image-space magnitude-

squared, real/real, imaginary/imaginary, and real/imaginary correlations about the center voxel induced by 

the modified Fourier reconstruction operator,   , that accounts for a) T2
* effects, b) ΔB or T1 effects. The 

correlation maps are computed by the linear model, corr(y)=D-1/2     
Ꞌ
D-1/2, with the assumption of an 

identity initial spatial covariance,     , between voxels.  
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visible correlation in Fig. 3.4b. Since little to no correlation is induced, this FE anomaly 

correction method is ideal for use in experimental human experiments. 

3.3.2 Experimental Illustration 

A set of human data from a bilateral finger tapping fMRI block design experiment 

was acquired for a series of 510 TRs with a 3.0 T General Electric Signa LX magnetic 

resonance imager to further illustrate the performance of the proposed modified FR 

operator. The data set was comprised of seven 2.5 mm thick axial slices that are 96×96 in 

dimension for a 24.0 cm FOV, with the phase encoding direction oriented as posterior to 

anterior (bottom to top in images). The data set had an effective echo spacing of 0.72 ms, 

a flip angle of 90°, and an acquisition bandwidth of 250 kHz. A time varying TE array 

was constructed to utilize the resulting signal change that allows for the estimation of the 

relaxation parameters, T1 and T2
*
. The echo time was fixed at 42.7 ms for the first 10 and 

the last 490 time points, i.e. 1≤t≤10 and 21≤ t ≤510. TE values were then equispaced in 

the interval of [42.7 ms, 52.7 ms] for 11≤ t ≤15 and 16≤ t ≤20.  

The application of the proposed linear framework on the acquired data sets is a 

two-step process, involving the estimation of T2
*
, T1, and/or ΔB followed by the 

incorporation of the estimates during the image reconstruction with the use of the 

modified FR operator. The framework works well when the estimated T2
*
, ∆B and T1 

maps are close to the actual maps. The use of underestimated or overestimated parameter 

maps in the proposed framework can potentially cause undesired artifacts in the 

reconstructed images. Since the estimation of T2
*
 and ∆B is not the focus of this thesis, 

we perform the incorporation of only T1 into the FR process for the experimental 

illustration of the proposed framework. However, with accurate estimates of T2
*
 and 
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static ∆B maps, the proposed framework can be utilized to incorporate the other Fourier 

encoding anomalies.  

MRI pulse sequences consist of repeated excitation pulses and the magnetization 

changes in the same way during each repetition. After a number of excitation pulses, the 

magnetization reaches a steady-state, where the amount of the magnetization at some 

point in the sequence is the same from one repetition to the next. After reaching the 

steady-state, the magnetization begins at equilibrium on each repetition. With an 

assumption of a 90° flip angle, the estimation of T1 map can be performed from the ratio 

of the first echo planar imaging time course image and the average steady state image by 

using a fast T1 mapping technique introduced in (Bodurka et al., 2007). The steady-state 

signal for a 90° flip angle is  

 1 2

0
1

*/ /TR T TE T

ss
M M e e

 
  ,  [3.20] 

whereas the signal for the first echo planar imaging volume is 

2

1 0

*/TE T
M M e


 . [3.21] 

By using the ratio of M1 in Eq. [3.21] over Mss in Eq. [3.20], R = M1/Mss, the value of T1 

for one voxel can be calculated by 

1

ln
1

TR
T

R

R


 
 

 

. [3.22] 

For the estimation of T1 map from the acquired data set that we use in our 

experimental illustration, the steady state signal, Mss, is computed as the average 

magnitude images at 6≤t≤10 over five time points for each voxel. The estimated T1 map 



79 
 

that is computed by Eq. [3.22] is shown in Fig. 3.5. In order to reduce the errors in the 

final modified-reconstructed images that could result from the T1 estimation process, the 

region outside of the brain is masked out in the presented T1 map. First, the magnitude 

images at 21≤t≤510 are averaged over the last 490 points of the time series since the data 

was acquired with a time varying TE in the first 20 time points. In order to generate the 

binary two-dimensional brain mask that identifies the outside of the brain, the average 

magnitude image is used as reference. The voxels whose average magnitude values are 

larger than the threshold value, which is set as the 26 % of the maximum value in the 

average magnitude image, are given a value of 1 (denoting being in the brain) while the 

voxels whose values are smaller than or equal to this threshold are set to 10
-6

 (denoting 

being outside the brain) in the binary mask. The estimated T1 map is then multiplied by 

the binary mask image on a voxel-by-voxel basis to mask out the voxels in the region 

outside the brain. 

 

Figure 3.5: Estimated T1 map (s) from the ratio of the first 

time course image and the average steady state image. The 

voxel values outside of the brain region is set to 10-6 s. 

 

In order to illustrate the benefits of the incorporation of T1 into the FR process, we 

show the magnitude, phase, real and imaginary images that are acquired at the 21
st
 time 
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point, and reconstructed both with the standard FR operator,  , and the modified FR 

operator,   . Fig. 3.6a shows the standard-reconstructed magnitude, phase, real and 

imaginary images whereas Fig. 3.6b shows the modified-reconstructed images. It can be 

observed from Fig. 3.6 that the incorporation of T1 leads to an increase in image intensity 

as well as significantly improved tissue contrast in the magnitude images. Such 

correction does not alter the phase image while increasing the intensity of the magnitude, 

real, and imaginary images. 

 

 

Figure 3.6: Reconstructed magnitude, phase, real, and imaginary images at time point n=21. a) Images that 

are reconstructed with the standard FR operator,  , b) Images that are reconstructed with the modified FR 

operator,   . 

In order to analyze the possible effects of such correction on the functional 

activations computed from T1 incorporated reconstructed images, we show the activation 

statistics of both standard-reconstructed and modified-reconstructed images in Figs. 3.7a, 

3.7c and 3.7b, 3.7d, respectively. Figs. 3.7a and 3.7b show the activation t-statistics 

computed by using the likelihood ratio tests from the MO Model (Bandettini et al., 1993). 

Illustrated in Figs. 3.7c and 3.7d are the activation Z-statistics computed by using the CV 
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Model (Rowe and Logan, 2004; Rowe, 2005a,b). The activation maps shown in Fig. 3.7 

were thresholded at a 5% per comparison error rate (Logan and Rowe, 2004) and 

presented with a color bar that ranges between -6.5 and 6.5. It can be observed that the 

activation statistics that are computed from the standard-reconstructed and the modified-

reconstructed image space measurements are identical for both the CV and MO Models. 

It can be concluded that T1 incorporation into the Fourier image reconstruction process 

preserves the functional activations. This result is expected since the estimated T1 map 

that is incorporated during the image reconstruction is constant over the time series and 

therefore the activation information is preserved with the proposed framework. 

 

 

Figure 3.7: Activation statistics that are computed from a) standard-reconstructed images with the use of 
the MO Model, b) modified-reconstructed with the use of the MO Model, c) standard-reconstructed images 

with the use of the CV Model, d) modified-reconstructed with the use of the CV Model. The activation 

maps are thresholded at a 5% per comparison error rate. 

 

3.4 Discussion 

The model developed in this chapter expands upon the AMMUST-k framework 

that examines the statistical implications of frequency space and image space processing 

operations (Nencka et al., 2009). We further expand this framework to account for the 

effects of relaxation parameters, T2
*
 and T1, and magnetic field inhomogeneities, ∆B, that 

alters the observed MR signal in the process of Fourier encoding. We develop a modified 

a)  -reconstr. (MO) 

 

b)   -recons. (MO) 

 

c)  -recons. (CV) 

 

d)   -recons. (CV) 

 



82 
 

FR operator that accounts for such effects in image space by first generating the modified 

FE operator that considers the terms of these anomalies as they appear in the signal 

equation, and then inverting.  Although the correction of T2
*
 and ∆B effects prior to the 

final analysis of fMRI data have been the focus of research in previous studies, the T1 

recovery term has been ignored with the assumption of long repetition time, which is not 

always met, especially when performing fast repetitive image excitations. Furthermore, 

the T1 estimates have the potential to detect tissue characteristics of the acquired MRI 

data. In this chapter, we present theoretical results for accounting for the effects of T2
*
, 

∆B, and T1 during the Fourier reconstruction process, and focus on T1 incorporation in 

acquired human subject echo planar data. The experimental results presented in this 

chapter have shown that the images reconstructed through the use of the reconstruction 

operator adjusted for estimated static T1 appear to be brighter and have increased tissue 

contrast. This increased gray/white matter contrast can improve the precision of image 

reconstruction, motion correction, image registration, and tissue segmentation over a time 

series. Furthermore, our experimental results show that such correction does not alter the 

activation results. Even though we incorporate only T1 into the reconstruction process in 

our experimental analysis, the model can be utilized to account for T2
*
 and ∆B effects 

once their estimated maps are obtained. 

The proposed framework makes it possible to precisely quantify any potential 

induced correlations by the process of accounting for FE anomalies. It has been shown 

that the FR operator that is modified by the incorporation of ∆B or T1 does not induce any 

image space correlations whereas the one that accounts for T2
*
 blurring effect induces 

negligible correlation in the phase encoding direction. The Fourier anomaly correction 
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method introduced in this chapter can be used on a regular basis in every fMRI and 

fcMRI experiment. 
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Chapter 4: Quantification of the Statistical Effects of Spatial and Temporal 

Processing of fcMRI and fMRI Data 

In this chapter, the linear model introduced in Chapter 3 is further expanded to a 

more general framework that represents the spatiotemporal processing and reconstruction 

operations as linear operators. The linear representation provides precise quantification of 

the correlations induced or modified by such processing rather than performing lengthy 

Monte Carlo simulations. A framework of this kind allows one to appropriately model the 

statistical properties of the processed data, optimize the data processing pipeline, 

characterize excessive processing, and ultimately draw more accurate functional 

connectivity conclusions. 

4.1 Introduction 

Spatiotemporal processing is a common practice in fMRI and fcMRI studies as a 

way to “improve” the resulting images. Such processing makes the image data more 

“appealing” by alleviating it of “noise”. However, fMRI/fcMRI data processing could 

unknowingly lead to misguided conclusions as the signal (mean) and noise (variance and 

correlation) properties of the data are altered with the application of these processes. In 

recent studies, it has been shown that spatial processing operations, such as spatial 

filtering in both the spatial frequency space and image space domains (Nencka et al., 

2009; Karaman et al., 2013b; Karaman et al., 2014b), induce artificial correlations. 

Moreover, parallel MRI models, such as SENSitivity Encoding (SENSE) (Pruessmann et 

al., 1999) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) 

(Griswold et al., 2005), have been shown to induce artificial correlations between 
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previously aliased voxels in the reconstructed images (Bruce et al., 2011; Bruce et al., 

2012; Bruce and Rowe 2013; Bruce and Rowe, 2014). Functional MRI and fcMRI 

studies typically employ both spatial and temporal filtering, together with additional 

signal regression operations (Glover et al., 2000; Hahn and Rowe, 2012). While these 

spatial and temporal processing operations could induce artificial correlations in the 

acquired data, the traditional fMRI and fcMRI models assume independence between 

voxels, and therefore do not account for the spatial correlation between voxels or 

temporal correlation within each voxel’s time series. As these correlations are of no 

biological origin, they can result in increased Type I/Type II errors in both fMRI and 

fcMRI. Even though the structure of the induced correlations can be estimated through 

time consuming simulations, there is an apparent need for the development of tools that 

can precisely quantify the implications of spatial and temporal processing operations and 

means of accounting for these implications in the final analysis. If the effects that such 

operations have on the statistical properties of the acquired data are unaccounted for, 

neuroscientists could draw inferences from the processed data that are inconsistent with 

those of the original data.  

Many studies have aimed to rid the data of “noise” through both spatial and 

temporal processing. However, little attention is ever paid to the degree to which 

processing operations change the true statistical properties of the acquired data. Previous 

studies have considered means of evaluating preprocessing by either using time 

consuming Monte Carlo simulations (Della-Maggiore et al., 2002) or empirically 

optimizing the processing procedures (LaConte et al., 2003; Shaw et al., 2003). Such 

work aims to determine the best results through the evaluation of the effect of 
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preprocessing on the computed time series statistics, while the true statistical properties 

of the data are not typically included into the given fMRI and fcMRI models. Bowman 

(2005) presented a spatiotemporal model that partitions voxels into functionally related 

networks and captures correlations between voxels through a simultaneous spatial 

autoregression. Other promising work has shown that accounting for background spatial 

correlation inherent in neuroimaging data, that is caused by non-neurophysiologic 

associations and image processing, can improve functional connectivity measurements. 

(Patel et al., 2006). A study by Deshpande et al. (2009) introduced the measure of 

integrated local correlation for assessing local coherence and corrected the inherent 

correlation in the fMRI data due to the image acquisition and reconstruction processes. 

Derado et al. (2010) proposed a two-stage model that accounts for both spatial and 

temporal correlations in the fMRI data. However, these approaches either do not account 

for temporal correlations or do not provide a theoretical estimation of spatiotemporal 

correlations of the voxel measurements to be accounted for in the fMRI and fcMRI 

models. 

Previous studies have incrementally developed the necessary tools to evaluate and 

incorporate the statistical impact of spatial and temporal processing operators into the 

final analysis of the fcMRI and fMRI data. A real-valued isomorphism of the complex-

valued inverse Fourier transformation matrix operator was described by Rowe et al. 

(2007) in order to relate the signal and noise characteristics of k-space measurements and 

reconstructed voxel measurements. As explained in Chapter 3, representing Fourier 

reconstruction as a single matrix operator formed the basis for another study by Nencka 

et al. (2009) in which the AMMUST-k framework was developed to represent various 
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spatial processing operations performed on the acquired spatial frequencies in terms of 

real-valued linear isomorphisms. The AMMUST-k framework was further expanded to 

incorporate parallel MR reconstruction models, SENSE and GRAPPA, by representing 

each model as a series of real-valued matrix operators (Bruce et al., 2011; Bruce et al., 

2012; Bruce and Rowe, 2013; Bruce and Rowe, 2014). Representing the reconstruction 

and spatial processing in this way makes it possible to precisely compute the covariance 

(and ultimately correlation) induced by such operations into the image-space data. 

In this chapter, “A Mathematical Model for Understanding the STatistical effects 

of time series preprocessing” (AMMUST-t) is developed by advancing the AMMUST-k 

framework to include temporal processing of the data together with spatial processing 

and parallel MRI reconstruction operations. With a framework of this kind, one can 

precisely quantify the degree to which the mean and covariance between both voxels and 

time points are modified by each processing operation individually or by all processes 

collectively, without the need for lengthy simulations that can only approximate these 

changes. Such a framework can be used by neuroscientists to assess their processing 

pipelines by characterizing excessive processing, and ultimately aid in producing more 

accurate functional connectivity statistics. In this chapter, we first develop time series 

operators for common processing operations such as image registration (Jenkinson et al., 

2002), dynamic magnetic field correction (Hahn et al., 2009), slice timing correction 

(Huettel et al., 2004), and temporal filtering (Huettel et al., 2004), and illustrate the 

effects of these operators with a low dimensional example. We then demonstrate the 

effects of commonly used operations such as spatial smoothing, temporal filtering, and a 
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SENSE image reconstruction with higher dimension theoretical data as well as on 

experimental phantom and resting state human subject data.  

4.2 Theory 

4.2.1 AMMUST-t Framework 

A real-valued isomorphism for the complex-valued Fourier reconstruction, that was 

presented in section 3.1.2, allowed the image reconstruction to be performed by 

y s ,  [4.1] 

where s=(sR
Ꞌ
,sI
Ꞌ
)
Ꞌ
 is a 2p×1 column vector of the frequency space measurements for an u×v 

image of p = uv voxels. In this representation, sR=(sR1,…,sRp)
Ꞌ 
and sI=(sI1,…,sIp)

Ꞌ
 are p×1 

real-valued vectors representing the real and imaginary parts of the observed frequency 

space measurements, respectively. This formalism produces a vector, y, with all real 

reconstructed voxel values stacked by row on top of all imaginary reconstructed voxel 

values. As explained in detail in Chapter 3, this formalism in Eq. [4.1] can be generalized 

to 

y Os , [4.2] 

where the operator O signifies an arbitrary series of linear processing operations (Nencka 

et al., 2009) expressed in matrix form. 

In order to improve the temporal resolution, spatial frequencies of fMRI and 

fcMRI data is often sub-sampled with multiple coils by an acceleration factor of a, where 

only every a
th

 line of the frequency space is acquired. As skipping k-space lines results in 

aliasing in images, parallel MRI models are used to synthesize the missing k-space lines 
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and form full FOV data. SENSE model performs complex-valued least squares to unfold 

the aliased coil images (Pruessmann et al., 1999). In recent studies, SENSE model was 

represented by the multiplication of a series of matrices (Bruce et al., 2011; Bruce et al., 

2012) to perform the reconstruction of an image at an individual time point by using a 

linear operator that allows one to precisely quantify the artificial correlations induced 

between the previously aliased voxels. The operator, O, in Eq. [4.2] was adopted to 

include a linear operator that reconstructs all aliased coil images at once with the 

assumption that the frequency space vector, s, includes the spatial frequencies from each 

NC coils.  

In the AMMUST-t framework, the model in Eq. [4.2] is extended to combine 

temporal processing operations with the previously developed spatial processing and 

reconstruction operations. In such a framework, the vector of the observed k-space 

observation can be represented as a concatenation of n k-space signal vectors, with each 

of these vectors representing one 2p×1 time point image vector. The time series 

frequency measurements can therefore be represented by a 2pn×1 column vector, 

sT=(s1R
Ꞌ
,s1I

Ꞌ
,…,snR

Ꞌ
,snI

Ꞌ
)
Ꞌ
 where stR and stI are the real and imaginary frequency space column 

vectors at time point t. The reconstructed and processed time series, yT, can then be 

obtained from the acquired signal vector, sT, by  

T T Ty O s . [4.3]                                               

The operator matrix, OT, is formed through the multiplication of a k-space processing 

operator, K, a reconstruction operator, R, an image-space processing operator, I, and 

finally a temporal processing operator, T, as  

TO TIRK . [4.4] 
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4.2.2 Time Series Operators 

As most of the existing spatial and temporal processes are linear in nature, or their 

application to the data can often be represented in a linear way, many commonly used 

processing operations can be integrated into the OT operator of the AMMUST-t 

framework. In this section, we demonstrate the construction of matrix operators for a 

collection of common processing operations that might be considered in this framework. 

These operators include the generalization of individual time point k-space, image space, 

and reconstruction operators, the performance of temporally dynamic B-field corrections, 

the shifting and rotating of images for registration, temporal filtering, and slice timing 

correction. 

Generalized k-space, Image-space and SENSE Reconstruction Operators 

In the AMMUST-k framework, k-space and image space processing operations, 

OK and OI, are temporally unvarying, and equivalently applied to each image in a time 

series. These operations include the incorporation of intra-acquisition decay and static B-

field, the performance of zero filling, apodization, smoothing and partial Fourier 

reconstruction. In AMMUST-t, applying such operators to the newly parametrized time 

series data requires an operator of higher dimensionality. Consider that the same image 

processing steps are performed on all time points of an acquired k-space time series. The 

time series k-space and image space processing operators, K and I, can then be formed 

with a Kronecker product between the previously described individual time point 

operators and an identity matrix with dimension matching the number of time series 

points, In, as 
n KK I O  , and 

n II I O  , respectively. The resulting operators are 
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therefore block diagonal where each block corresponds to an instance of the processing 

operators. As previously described, a generalization of the SENSE reconstruction 

operator can be performed in a similar fashion to the k-space and image space processing 

operations by
n RR I O  , where OR can be considered as the SENSE parallel image 

reconstruction operator for an individual time point. 

Dynamic B-field Correction 

In echo planar imaging, magnetic field inhomogeneities can result in severe 

artifacts such as image warping and signal loss. Since the characteristics of the B-field 

inhomogeneity are affected by respiration and motion, in a time-dependent manner, 

dynamic B-field correction may need to be performed before the analysis of the fMRI and 

fcMRI data. Such correction can be included into the AMMUST-t framework by altering 

the FR operator in Eq. [4.1]. The magnetic field inhomogeneity to be corrected can be 

estimated through relative field measurements (Hahn et al., 2009) or intra-acquisition 

measurements (Roopchansingh et al., 2003). With an estimated offset, ∆B, for each k-

space vector, the FR operator can then be multiplied by exp(−iγ∆B(x, y)t(kx,ky)), where 

t(kx,ky) represents the time at which the k-space point corresponding to the row of the 

Fourier encoding matrix was acquired. As such, the individual blocks along the diagonal 

of the time series reconstruction operator, R, can be adjusted to correct the B-field 

inhomogeneity effects at the corresponding time point.  

Image Registration 

Head motion can be a severe problem for the statistical analysis of the fMRI data 

since the time course of one single voxel would represent a signal derived from different 
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parts of the brain when the subject moves. Image registration is used for motion 

correction in fMRI and performed by shifting each image according to independently 

determined motion parameters. In-plane motion correction can be performed by 

integrating the registration into the time-series reconstruction operator, R, as in the case 

of dynamic B-field correction. As both image-space translation and in-plane rotation can 

be considered as shifts on x and y axes, multiplying the k-space data with an appropriate 

phase before the Fourier reconstruction yields a correctional shift in image-space after 

reconstruction as a result of the Fourier shift theorem. For a voxel that is originally 

located at (x,y) in image space, the horizontal and vertical displacements resulting from 

motion can be calculated by ∆x=δx+x(cosψ-1)-ysinψ, and ∆y=δy+y(cosψ-1)-xsinψ, 

respectively, where δx and δy represent horizontal and vertical image space translation and 

ψ represents in-plane rotation. For a single image with the aforementioned motion 

parameters, the row of the inverse Fourier transformation operator that represents the 

image-space point (x,y) must have each element multiplied by the exponential term,  

exp(-i2π(∆xkx/px+∆yyx/py)), where kx and ky are integers representing the k-space indices of 

the column of  the inverse Fourier transformation operator, and px and py are the number 

of k-space points in the x and y directions, respectively. The complex-valued inverse 

Fourier transformation operators for each time point can be formed by modifying the real 

valued isomorphism in Eq. [4.1] and then appropriately positioned along the diagonal of 

the time series reconstruction operator, R. The motion parameters of image-space 

translation, (δx,δy), and in-plane rotation, ψ, can be determined through available software 

(Jenkinson et al., 2002; Cox, 1996), or through external means, such as a tracking device 
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that measures head motion (Tremblay et al., 2005). A three-dimensional registration 

operator can be also constructed by utilizing a three-dimensional Fourier transforms. 

Temporal Filtering 

The process of temporal filtering can be performed through an application of the 

Fourier shift theorem. The temporal filtering process is mathematically identical to the 

line shifting process used to correct Nyquist ghosts in EPI. First, the vector of 

reconstructed images can be reordered to a vector of reconstructed voxel time series 

through a permutation matrix, PT. Then, each time series can be Fourier transformed into 

the temporal frequency domain by a block diagonal matrix,  T, where each block is a 

real-valued isomorphism of a one-dimensional time series Fourier transform matrix. Each 

transformed time series can then be multiplied by a diagonal matrix, ΦT, with diagonal 

elements comprised of frequency space weighting for temporal filtering. The temporally 

filtered image time series vector then can be obtained through the inverse Fourier 

transformation and inverse permutation, T=PT
-1
 T

-1
ΦT  TPT. 

Slice Timing Correction 

In fMRI, the MR scanner acquires different slices of the brain sequentially 

throughout the repetition time period, resulting in a temporal offset between slices. As 

knowledge of the exact acquisition timing is essential for fMRI, differential slice 

acquisition times should be accounted for, especially for acquisitions with long TRs. 

Slice timing correction is performed in image-space after k-space processing, 

reconstruction and registration in order to align all slices with the same reference time 

point. The slice timing process can be performed similar to the process of temporal 

filtering. After transforming the vector of the reconstructed images into a temporal 



94 
 

frequency vector, multiplication with a matrix that consists of sines and cosines to create 

the additional phase shift for the time series is performed. The vectors of temporal 

frequencies can then be inverse Fourier transformed to obtain temporally shifted time 

series, and then the inverse of the original permutation matrix is performed to obtain 

temporally shifted images. It has been shown that the shifting of k-space lines does not 

induce correlations in the acquired data if the acquired k-space data is assumed to be 

uncorrelated (Nencka et al., 2009).  

4.2.3 Functional Correlations 

In fcMRI, the null hypothesis assumes no correlation between voxels, and thus 

any statistically significant correlation observed in the data denotes a functional 

connection between voxels. With the amount of processing performed in fcMRI studies 

through operations such as spatial filtering, temporal filtering, nuisance signal regression, 

global signal regression, the statistical properties of the processed voxels are far removed 

from those of the acquired data. When time series processing operations, OT, are applied 

to a data vector in Eq. [4.3], 
0 TT T s

s s   , which is comprised of a mean vector of 

complex-valued spatial frequencies, in a real-valued form, 
0T

s , added to a noise vector, 

Ts
 , with a mean of zero and a covariance of  T, then the time series image vector, 

yT=OTsT has a mean and covariance of  

 
0T T T

E y O s   [4.5] 

and  
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cov( )
T T T T

y O O     . [4.6] 

As the vector of images, yT, is comprised of a stack of n image space vectors, each 

length 2p×1, the spatiotemporal covariance matrix, Σ, in Eq. [4.6] is of dimension 

2pn×2pn. The 2p×2p blocks along the diagonal of Σ contain the spatial covariance 

matrices for the individual images, and are partitioned into quadrants that contain the real 

by real, real by imaginary, and imaginary by imaginary covariances. The spatiotemporal 

correlation matrix is obtained from the covariance matrix by 

1/2 1/2corr( )R T T T T T Ty D O O D     , [4.7] 

where 
TD  is a diagonal matrix of the variances drawn from the diagonal of the covariance 

matrix, Σ. To deduce the covariance induced solely by the operation OT, one merely 

assumes an inherent identity covariance in the data,  T = I. 

It is a common practice in fcMRI to use the 2p×2p spatial covariance matrix, Σρ, 

which is estimated from time series observations. It is shown in Appendix C that the 

average of the diagonal blocks of the large spatiotemporal covariance matrix, Σ, is the 

expected value of the spatial covariance matrix, Σρ. For functional connectivity analysis, 

the spatial covariance matrix, Σρ, is converted into a spatial correlation matrix, ΣRρ, 

similar to Eq. [4.7].  

Another practice in fcMRI is to analyze the temporal covariance matrix, Σv, which 

represents a single voxel’s time series covariance matrix. Although the large covariance 

matrix Σ contains the components necessary to compute Σv, Σ must be permuted by a 

matrix, PT, which reorders the reconstructed data from a vector of n vectors of p 
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observations stacked above each other to the reconstructed time series vector of p vectors 

of n observations stacked above each other. The reordered covariance matrix is thus 

11 1

1

T T

T T T

T T

p

ppp

P P

  
 

     
 
 
  



 



, [4.8] 

where each Tij
 block is a 2n×2n temporal covariance matrix between spatial elements i 

and j. The diagonal blocks of ΣT are the temporal covariance matrices for the p individual 

voxels. The v
th

 voxel covariance matrix, Σv, is of the form 

vRR vRI

v

vRI vII

  
     

. [4.9] 

4.3 Implementation of the AMMUST-t Framework 

The matrix representations of spatial and temporal processing operations can be 

very computationally intensive, requiring large amounts of memory. The final single 

operator for an acquisition matrix of 96×96, single slice, and 490 repetitions would be of 

dimension 9,031,680×9,031,680. With the assumption that the operators are in double 

precision, the memory size of an individual time series operator is approximately 81.5 

TB. Moreover, the two matrices to be multiplied and the resulting matrix are required to 

be held in the memory during matrix multiplication. 

As it has been explained in section 4.2.1, the k-space processing operator, K, 

reconstruction operator, R, and image-space operator, I, are created by generalizing the 

individual processing operators, OK, OR, and OI, respectively with the use of Kronecker 

product operator. As such, the final time series operators K, R, and I are block diagonal 
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sparse matrices of size 2pn×2pn with n diagonal blocks of size 2p×2p. The block 

diagonal structure of the operators along with the sparse representation drops the memory 

size of the time series operator (for a 96×96 acquisition array in 490 repetitions) to 2.1 

TB. Moreover, the temporal processing operator, T, consists of multiplication of matrix 

operators and is represented as T=PT
-1
 T

-1
ΦT  TPT. As a result of using permutation 

matrix in this process, the time series operator T is not of block diagonal form, but still 

can be stored as a sparse matrix.  

As the problem of requiring large amounts of memory is faced in all aspects of 

the framework, we develop an efficient implementation with the use of matrix 

partitioning, sparse matrix multiplication techniques, and utilization of the block diagonal 

form of the matrices in matrix multiplication when possible. For the implementation of 

the proposed spatial and temporal processing framework, we deploy an algorithm that 

uses the following: 

 Sparse representation of the operators. 

 Utilizing the block diagonal structure of the matrices in performing matrix 

multiplications, when possible.  

 Two stage matrix partitioning: 

o Performing matrix multiplications in four partitions, i.e. using T11, T12, T21, 

and T22 for the time series operator, T. 

o Using n/2 square partitions that are located on the block diagonals of R11, R22, 

K11, K22, I11, and I22 for matrix multiplication, i.e. using R11,dd , which is the 

square matrix on the d
th
 block diagonal of R11. The matrix R11,dd corresponds 

to the reconstruction operator that will be applied to the k-space vector 
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acquired at image time point d, whereas R22,dd corresponds to the 

reconstruction operator that will be applied to the k-space vector acquired at 

image time point n/2+d. 

o Using n/2 row wise partitions of each quadrant of the time series operator, T, 

for matrix multiplication, i.e. using Tij,d, which is the d
th

 row-wise partition of 

ij
th
 quadrant of T, where i,j = 1,2 and d = 1,2,…,n/2. 

 Storing the resulting partitions of matrix multiplications as square partitions. 

 Reducing the number of the arrays kept in the memory when performing a 

multiplication. 

 Reducing the number of the times that the arrays are loaded and saved. 

In the case that an identity k-space covariance structure is assumed,  T = I, the 

covariance matrix of the time series images, given in Eq. [4.6], is calculated by

.T TO O    Rather than first creating the final time series operator, OT, and multiplying it 

with its transpose, the covariance matrix, Σ, can be computed directly by utilizing the 

block diagonal structure of I, R and K operators as follows: 

( )( ) ( )T IRK IRK T T MM T TLT        , [4.10] 

where L has the multiplication of individual k-space processing, reconstruction, and 

image space operators, OK, OR, and OI, on its block diagonals.  

In the case that a non-identity k-space covariance structure is assumed,  T ≠ I, the 

covariance matrix of the time series images, given in Eq. [4.5] is calculated by

T T TO O    , with an estimated  T matrix. With the assumption of only spatially 
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correlated data, the implementation of the framework can be performed similar to the 

case of identity k-space covariance matrix. In this case, Eq. [4.10] can be written as 

( ) ( ) ( )
T T

T IRK IRK T T M M T TUT          . [4.11] 

As  T is a block diagonal matrix, this case requires only one more block diagonal matrix 

multiplication to create U from the individual reconstruction, k-space, and image space 

operators,  OR, OK, OI, and the block diagonals of  T, that are of size 2p×2p. The 

computation of the reordered covariance matrix, T T TP P    , and the correlation matrix, 

ΣR = corr(yT) = 
1/2 1/2

T TD D  , can also be performed with this proposed implementation 

approach. 

4.4 Theoretical Illustration 

To illustrate the linear representations of the aforementioned time series 

processing operations, and to quantify the correlations induced by such operations, a time 

series of 490 images was generated with a single 96×96 slice of true noiseless brain 

phantom with a maximum magnitude of 10. Within this illustration, the operations that 

we chose were spatial smoothing, SENSE reconstruction, and temporal filtering. To 

integrate the SENSE reconstruction into the framework, k-space data was sub-sampled by 

an acceleration factor of a=3 with NC=4 coils (Bruce et al., 2011). After reconstruction, 

spatial filtering was performed with a Gaussian smoothing kernel with an image-space 

full width at half maximum (fwhm) of three pixels. A temporal filtering operator was 

generated to band pass filter the voxel time series to observe frequencies below 0.1 Hz as 

it is a common practice in fcMRI studies to eliminate BOLD signal changes correlated 

with physiological effects (Biswal et al., 1995).  
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To closely illustrate the time series processing operators, a 6×6 ROI was selected 

within the brain phantom in the first 8 time points of the generated data. As the data was 

sub-sampled by the acceleration factor of a=3 with NC=4 coils, the SENSE reconstruction 

operator is of dimension 576×768, and the spatial smoothing and temporal operators are 

of dimension 576×576. Figs. 4.1a-4.1c show the time series operators for SENSE 

reconstruction, spatial smoothing, and temporal filtering that were used to compute the 

operator induced spatiotemporal correlation matrices, assuming an underlying k-space 

identity covariance structure,  T = I.  

 

 

Figure 4.1: Time series operators for an acquisition of N = 8 repetitions of a 6×6 ROI. a) SENSE 

reconstruction operator from NC=4 coils with an acceleration factor of a=3, b) smoothing operator, I, c) 
temporal filtering operator, T=PT

-1 T
-1ΦT TPT. 

 

Illustrated in Figs. 4.2a-4.2c are the theoretical correlation matrices that are 

induced by the SENSE reconstruction, spatial smoothing, and temporal filtering, 

respectively. The first, second, and third columns of Fig. 4.2 illustrate the correlation 

matrices calculated from the large covariance matrix, Σ, spatial covariance matrix, Σρ, 

and temporal covariance matrix, Σv, about the center voxel, respectively. Figs. 4.2d1-4.2d3 

show the overall correlation matrices when SENSE reconstruction, spatial smoothing, 

and temporal filtering are considered together. Figs. 4.2a2 and 4.2b2 show that the SENSE 

reconstruction induces spatial correlations between voxels that are previously aliased 

a) Reconstruction operator, R   

 

b) Smoothing operator, I   

 

c) Temporal filtering operator, T   
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with each other, while smoothing induces correlations in the neighborhood of the voxels, 

as expected. Temporal filtering does not alter spatial correlations, as shown in Fig. 4.2c2, 

as the process is purely temporal. Temporal correlations are only altered by temporal 

filtering, as seen in Figs. 4.2a3, 4.2b3 and 4.2c3. The correlation maps in the case that the 

processes are considered together may appear to be dominated by individual processes, as 

seen in Fig. 4.2d1-4.2d3. However, the correlation map is not a simple superimposition of 

the individual processes, which highlights the advantage of the proposed AMMUST-t 

framework that provides an exact quantification of the final correlation structure. 

In order to observe the effects of the processing operations on the spatiotemporal 

correlation structure of the data, we computed both theoretical and Monte Carlo 

simulated spatial and temporal correlations between the real components (real/real), 

between the imaginary components (imaginary/imaginary), and between the real and 

imaginary (real/imaginary) components of the reconstructed voxel values. For Monte 

Carlo simulation, a single 96×96 slice was generated for a time series of 490 images by 

yt=mt+εt, where mt is a 2NC×p matrix whose first NC rows are the real noiseless images 

and the second NC rows are the imaginary noiseless images. The noise matrix εt=zt was 

assumed to be a 2NC×p random matrix drawn from the standard normal distribution when 

the initial identity voxel covariance was assumed. When the initial voxel covariance was 

assumed to be non-identity, εt was generated by εt=ztQ  where Q  is the second unitary 

matrix in the singular value decomposition of the non-identity voxel covariance structure 

T
P Q
  

   . The covariance matrix, Σ , can be constructed according to the intrinsic 

spatial covariance between voxels.  The theoretical operator induced correlations were 
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computed by Eq. [4.7] whereas Monte Carlo simulated correlations were estimated from 

100 simulations.  

 

Figure 4.2: Theoretical spatiotemporal correlation matrices that are induced by the consideration of a) 

SENSE reconstruction from NC=4 coils with a=3, b) spatial smoothing, c) temporal filtering, d) SENSE 

reconstruction, spatial smoothing, and temporal filtering. First column: large correlation matrix, ΣR. Second 

column: spatial correlation matrix, ΣRρ. Third column: center voxel’s temporal correlation matrix, ΣRv. 

 

Correlations in the theoretical and Monte Carlo simulated illustrations are 

analyzed for the spatially smoothed SENSE reconstructed images with and without the 

application of band pass filtering under the assumption of identity or non-identity 

intrinsic k-space covariance structure. In the case of the non-identity spatial covariance, 
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the intrinsic k-space covariance structure is designed in such a way that three ROIs are 

assumed to be inherently correlated with each other. These regions are selected in the 

areas that are similar to the motor cortices and supplementary motor area, as presented in 

Figs. 4.3b5 and 4.3d5. Our Monte Carlo simulation results have shown that the spatial and 

temporal correlation maps, with and without an inherent correlation assumption, are 

visually the same as the theoretical operator induced correlations after applying a 

threshold of ±0.15, and thus only operator induced correlations are shown in Fig. 4.3. For 

all considered cases, the center voxel has been picked as the seed voxel to present the 

theoretical operator induced spatial and temporal correlations although a similar 

correlation structure can be observed around any voxel. 

The first three vertical panels of Fig. 4.3 denote the operator induced real/real, 

imaginary/imaginary, and real/imaginary spatial correlations for the various cases. Figs. 

4.3a and 4.3c show the correlation results for the smoothed SENSE reconstructed data 

with and without band pass filtering under the assumption of an identity inherent spatial 

correlation, respectively. It is apparent in Figs. 4.3a and 4.3c that the induced spatial 

correlations appear as a cluster of voxels instead of individual voxels, as a result of the 

smoothing operation. It is of note that the center voxel shows negative real/real and 

imaginary/imaginary correlations with a cluster of voxels in the center of the upper and 

lower folds due to the choice of a=3. The increased spatial correlation between the center 

voxel with its neighbors can also be observed in real/real and imaginary/imaginary 

correlations. It can be seen in Figs. 4.3a3 and 4.3c3 that there is no correlation induced 

between the center voxel’s real and imaginary measurements. As expected, temporal 
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filtering does not alter the spatial correlation structure since Figs. 4.3a1-4.3a3 are identical 

to Figs. 4.3c1-4.3c3. 

Figs. 4.3b and 4.3d show the correlation results for the smoothed SENSE 

reconstructed data with and without band pass filtering under the assumption of a non-

identity inherent spatial correlation, respectively. As in Figs. 4.3a3 and 4.3c3, there is no 

correlation induced between the center voxel’s real and imaginary measurements either 

with or without band pass filtering. One can see in Figs. 4.3b1, 4.3b2, 4.3d1 and 4.3d2 that 

the real/real and imaginary/imaginary spatial correlations between the voxels that are in 

the originally correlated ROIs are spread to the adjacent voxels by the smoothing 

operator. Additionally, there is a negative real/real and a negative imaginary/imaginary 

correlation between the three clusters of correlated voxels and the respective regions from 

the top and bottom folds. This structure underlines that the inherent true correlation can 

be observed both in its original location and in the regions that were previously aliased 

with this original region. This artificially amplified and induced correlation structure 

could be misinterpreted as a network of functional connectivity in the brain if no steps are 

taken to identify processing induced correlations. 

The fourth panel of Fig. 4.3 denotes the operator induced temporal correlations 

for the various cases. Figs. 4.3a4 and 4.3b4 show the temporal correlation matrix of the 

center voxel when only SENSE reconstruction and smoothing are considered under the 

assumption of identity and nonidentity initial spatial correlation, respectively. As 

expected, the temporal correlation structure is not altered by SENSE reconstruction or 

smoothing as it is shown to be identity for the center voxel. It can be observed in Figs. 

4.3c4 and 4.3d4 that the temporal correlation structure within the real and imaginary 
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components of the data is altered by temporal filtering with and without presence of 

initial spatial correlation. Such altered correlations arise from the convolution of the 

temporal filtering kernel with the voxel time series.  

 

Figure 4.3: Presented on a magnitude brain phantom underlay are theoretical operator induced real/real, 

imaginary/imaginary, real/imaginary spatial correlations, and temporal correlations of the center voxel 

under the assumption of SENSE reconstruction and smoothing with a1)-a4) identity intrinsic k-space 

covariance, b1)-b4) non-identity intrinsic k-space covariance, c1)-c4) band pass filtering and identity intrinsic 

k-space covariance, d1)- d4) band pass filtering and non-identity intrinsic k-space covariance. The intrinsic 

spatial correlation masks for the considered cases are illustrated in a5)-d5). 
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4.5 Experimental Illustration 

In order to analyze the statistical implications of time series processing, two sets 

of data were acquired for a series of 510 TRs from an array of eight receiver coils in a 3 T 

General Electric Signa LX MR imager. The first set of data imaged a spherical agar 

phantom, while the second set was of a non-task human subject. Both data sets were 

comprised of seven 2.5 mm thick axial slices that are 96×96 in dimension for a 24.0 cm 

FOV, with the phase encoding direction oriented as posterior to anterior (bottom to top in 

images). The data set had a TR of 1 s, an echo time of 45.4 ms, an effective echo spacing 

of 0.816 ms, a flip angle of 45°, and an acquisition bandwidth of 125 kHz. The data was 

acquired with a time varying TE in the first 20 time points, the remaining 490 images 

from NC=4 equally spaced coils were used in the SENSE reconstruction. Data was 

acquired with an EPI pulse sequence and reconstructed using locally developed software. 

Subsampling was simulated for a=3 by deleting lines of k-space in each of the acquired 

data sets. In order to estimate the error in the center frequency and group delay offsets 

between odd and even k-space lines, three navigator echoes of the center line of k-space 

were acquired (Nencka et al., 2008).  

We present the experimentally computed spatial and temporal correlations about 

the seed voxel for three different cases. The correlation maps that are presented in Figs. 

4.4a and 4.5a are computed from SENSE reconstructed images without spatial smoothing 

or temporal filtering. The SENSE reconstructed images that were used to compute the 

correlations presented in Figs. 4.4b and 4.5b have been spatially filtered by a Gaussian 

smoothing kernel operator whereas the ones that were used to compute the correlations 

given in Figs. 4.4c and 4.5c have been both spatially filtered and band pass filtered with 
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cut-off frequencies at 0.009 Hz and 0.08 Hz (Biswal et al., 1995). Presented spatial 

correlations between the real/real, imaginary/imaginary and real/imaginary as well as the 

spatial correlations for magnitude-squared data were estimated over the time series. The 

magnitude-squared correlation structure is observed here because it is asymptotically 

equivalent to the correlations of magnitude data and linear in nature when magnitude 

correlations are not. To estimate the temporal correlation maps, both the spherical agar 

phantom and non-task human subject time series data were divided into 10 sequential 49 

time point experiments after removing the first 20 time points. The resulting data was 

then used to calculate the sample temporal correlation matrix of the center voxel for the 

various cases.  

4.5.1 Phantom Data 

The spherical phantom data was considered for an experimental analysis in order 

to bridge the gap between the theoretical illustration and the application to human subject 

data, as the phantom is not prone to physiological effects and subject movement. The 

center voxel was selected as the seed voxel to experimentally analyze the induced 

correlation structure by spatiotemporal processing in order to be consistent with the 

presented theoretical induced correlation analysis.  

Presented in Figs. 4.4a1-4.4a4, 4.4b1-4.4b4 and Figs. 4.4c1-4.4c4 are the real/real, 

imaginary/imaginary, real/imaginary, and magnitude-squared spatial correlations between 

the center voxel and all the other voxels that were computed from SENSE reconstructed 

data with and without the application of spatial smoothing and low-pass temporal 

filtering. The correlations presented in Fig. 4.4 were thresholded at ±0.35 (p-value~0.05) 

(Greicius et al., 2003). As the center voxel was selected as the seed voxel, two fold 
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regions are expected to exhibit correlations with the center voxel due to the choice of 

a=3. Two pink circles are placed around the corresponding previously aliased voxels, 

upper and lower folds, in Fig. 4.4 where the seed voxel is indicated by a small green 

circle.  It can be observed in Figs. 4.4a1, 4.4a2 and 4.4a4 that there is a negative real/real, 

a negative imaginary/imaginary, and a positive magnitude-squared correlation between 

the voxels in the lower and upper folds and the seed voxel. The correlations in the circles 

appear to be at individual voxels although additional imaginary and magnitude-squared 

spatial correlations can be observed around the center voxel as well. This may be due to 

B-field inhomogeneities that have not been completely corrected.  

The correlations between the previously aliased voxels and the seed voxel are 

spread to clusters of voxels with the application of smoothing, as presented in Figs. 4.4b1, 

4.4b2, 4.4b4, 4.4c1, 4.4c2, and 4.4c4. While the correlation structure in the folds and in the 

center exhibits an oval shape due to the overlap in the reduced FOV image and Nyquist 

ghosting that has not been completely removed, it can be seen that the neighborhoods of 

the seed voxel and the upper and lower folds still exhibit the strongest correlation. It is 

important to note that while there is no real/imaginary correlation between the center 

voxel and the other voxels as seen in Fig. 4.4a3, real/imaginary correlations can be 

observed in the center, upper and lower folds with the application of smoothing. By 

comparing Figs. 4.4b1-4.4b4 with Figs. 4.4c1-4.4c4, it can be seen that temporal filtering 

slightly alters the spatial correlation structure. 

The temporal correlation matrix of the center voxel after SENSE reconstruction 

without smoothing is given in Fig. 4.4a5. Presented in 4.4b5 and 4.4c5 are the temporal 

correlation matrices for the center voxel computed from SENSE reconstructed and 
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spatially smoothed time series data with and without band pass filtering. It is apparent 

when comparing Figs. 4.4b5 and 4.4c5 that band pass filtering induces local temporal 

correlations as the main diagonal is widened and the correlations before filtering are 

smoothed. When comparing Fig. 4.4a5 to 4.4b5, it can be seen that there is no apparent 

difference between the temporal correlation structures of the smoothed and smoothed 

data. As expected, spatial smoothing does not alter the temporal correlations. It is of note 

that, while such a correlation structure in the processed time series data can be expected, 

a precise theoretical quantification, as proposed in this chapter, can allow one to account 

for processing induced correlations in the final analysis of their data. 

 

Figure 4.4: Presented on a magnitude spherical agar phantom underlay are estimated real/real, 

imaginary/imaginary, real/imaginary, magnitude-squared spatial correlations, and temporal correlations of 
the center voxel throughout the time series of 490 images with a1)-a5) SENSE reconstruction; b1)-b5) 

SENSE reconstruction and smoothing; c1)-c5) SENSE reconstruction, smoothing, and band pass filtering. 

Correlations are presented with a threshold of ±0.35. 
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4.5.2 Human Subject Data 

As with the theoretically generated brain phantom data and experimental spherical 

phantom data, the center voxel was selected as the seed voxel for the correlation analysis 

in the human subject data. Figs. 4.5a1-4.5a4 show the real/real, imaginary/imaginary, 

real/imaginary, and magnitude-squared spatial correlations for the seed voxel that were 

computed from SENSE reconstructed time series. Presented in Figs. 4.5b1-4.5b4, and 

Figs. 4.5c1-4.5c4 are the spatial correlations about the seed voxel computed from SENSE 

reconstructed and spatially smoothed data with and without the application of temporal 

band pass filtering. Similarly with the spherical phantom data results, two small pink 

circles are placed around the previously aliased voxels in Fig. 4.5 while the seed voxel is 

indicated by a small green circle.  

The experimental spatial correlations show a negative real/real and 

imaginary/imaginary correlation and a positive magnitude-squared correlation between 

the seed voxel and the upper and lower folds, as shown in Figs. 4.5a1, 4.5a2 and 4.5a4. A 

threshold value of ±0.25 (lower than the threshold value of ±0.35 that is used in 

theoretical illustration) is applied to the estimated correlations from the human subject 

data in order to display the general structure of the experimental correlations. While there 

are no correlated voxels in the real/imaginary theoretical correlation structure in Fig. 

4.3a3, as well as the experimental spatial correlations computed from spherical phantom 

in Fig. 4.4a3, there appears to be a nonzero real/imaginary correlation structure in Fig. 

4.5a3. It can be seen in Figs. 4.5b1-4.5b4 and 4.5c1-4.5c4 that spatial smoothing further 

spreads the SENSE-induced correlations in the folds and induces positive correlation in 

the neighborhood of the seed voxel. While it is primarily the amplified SENSE-induced 
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spatial correlations, real/real spatial correlation maps given in Figs. 4.5b1 and 4.5c1 

exhibit an oval shape of clusters in the fold regions and seed voxel region. This may be 

due to the noise amplification in the un-aliased images. Similarly with the experimental 

real/imaginary correlation results of the spherical phantom data, both positive and 

negative real/imaginary correlations can be observed throughout the images in Figs. 4.5b3 

and 4.5b3. This may be a result of Nyquist ghosting that has not been completely 

removed and that the brain occupies a small portion of the full FOV which results in 

aliasing between the center voxel and the voxels in space. By comparing Figs. 4.5b1-

4.5b4 with Figs. 4.5c1-4.5c4, it is interesting to note that the spatial correlation structure is 

significantly scattered throughout the image after band pass filtering. 

Illustrated in Figs. 4.5a5, 4.5b5 and 4.5c5 are the temporal correlation maps about 

the center voxel computed from the SENSE reconstructed data without spatial smoothing 

or temporal filtering, with only spatial smoothing, and with both spatial smoothing and 

temporal filtering, respectively. Similarly with the theoretical induced correlation results 

and experimental agar phantom results, the temporal filtering process alters the time 

series correlation structure by widening the main diagonal, which implies local temporal 

correlations. It is of note here that the theoretical operator induced correlations in Fig. 4.3 

were calculated under the assumption of independence between time points. As such, it is 

evident that the temporal correlation structure in Fig. 4.5c5 is the smoothed version of the 

existing temporal correlations in the data in Fig. 4.5b5 rather than exhibiting only a 

widened main diagonal as in Fig. 4.3d4. 
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Figure 4.5: Estimated real/real, imaginary/imaginary, real/imaginary, magnitude-squared spatial 

correlations, and temporal correlations of the center voxel throughout the time series of 490 non-task 

human subject images with a1)-a5) SENSE reconstruction; b1)-b5) SENSE reconstruction and smoothing; 

c1)-c5) SENSE reconstruction, smoothing, and band pass filtering. Correlations are presented with a 

threshold of ±0.25. 

 

The experimental spatial and temporal correlation results of both the agar 

phantom and human subject align with the theoretical illustration in Fig. 4.3, and 

illustrate that SENSE reconstruction and smoothing induce spatial correlations that could 

result in false positive and negatives in a functional connectivity analysis and 

misinterpreted if they are not precisely quantified or accounted for. Furthermore, the 

temporal correlations induced by temporal operators, such as low-pass and high-pass 

filtering, as well as artificially induced spatial correlations could result in false positive 

and negatives in fMRI activation statistics as they would make the assumption of 

independency between voxels invalid. As it becomes increasingly more difficult to derive 
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the true correlation structure with the use of lengthy Monte Carlo simulations or the 

parametric covariance functions once the data has been processed, the accuracy of the 

final analysis of the processed data can be significantly improved with the use of the 

proposed theoretical linear framework. 

4.6 Discussion 

In this chapter, we develop a mathematical framework that allows one to 

analytically observe the effects of commonly used spatial and temporal preprocessing on 

observed voxel measurements in fcMRI. This framework represents the processing 

pipeline as a linear isomorphic matrix operator by breaking up each process into a 

sequence of steps that can be carried out through a collection of matrix operators. With 

the processes represented in this way, the exact correlation structure induced by each 

operation both spatially between voxels and temporally within each voxel’s time series 

can be precisely quantified. As the goal of fcMRI studies is to determine, utilize and 

analyze the true covariance structure of the acquired data, an accurate quantification of 

the correlation structure is necessary for reliable functional connectivity statistics. This 

quantification becomes far more challenging once the data has been processed. Even 

though the spatiotemporal correlation structure of the processed data can be estimated 

through lengthy Monte Carlo simulations, the proposed AMMUST-t framework provides 

precise quantification of the implications of such processes and an opportunity to account 

for them in the final functional connectivity and activation analysis. 

We also present the techniques for representing common processing operations 

such as dynamic B-field correction, image registration, temporal filtering, slice timing 

correction, and generalizing individual k-space and image space processing as well as 
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image reconstruction as linear operators. Although the statistical impact of spatial 

smoothing, SENSE parallel MRI reconstruction, and temporal filtering on the processed 

data has been presented in detail, additional processing operations can be represented as 

linear operators and adopted into the AMMUST-t framework. While most existing 

processes are linear in nature, there are select image registration (Poldrack et al., 2011; 

Klein et al., 2009), spatial normalization (Ashburner and Friston, 1999), spatial 

smoothing (Smith and Brady, 1997), and high-pass filtering (Marchini and Riley, 2000) 

operations that can be nonlinear. Although such operations typically use nonlinear 

calculations to determine various parameters, their application to data is (in most 

instances) linear. As such, the nonlinear processes that are widely used in biomedical 

image processing software can also be included into the AMMUST-t framework. 

The implementation of the AMMUST-t framework provides neuroscientists with 

a means of determining whether or not their selection of reconstruction and processing 

operations is excessive by observing the artificial correlations that they have induced into 

their data. With an estimate of the inherent covariance in the acquired data, these changes 

can be incorporated into an fcMRI model to more accurately analyze processed data. In 

order to provide a benchmark analysis of the operator induced correlation structure, we 

use the AMMUST-t framework to compute spatial covariance matrix and an individual 

voxel’s temporal covariance matrix, both commonly used fcMRI analysis studies, from 

an analytically derived spatiotemporal covariance matrix. As the proposed method can 

easily be applied to data sets in which the implications of processing have been noted, it 

provides a novel informative tool for preventing possible false positive rates that can 

result from processing and reconstruction operators. The application of the framework 
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could enable neuroscientists to reap the benefits of spatial and temporal processing while 

simultaneously determining the optimal data processing pipeline and identifying the true 

statistical interpretation of their data.  
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Chapter 5: Future Applications 

The previous chapter has provided an original approach to quantitatively observe 

the implications of spatiotemporal processing of fMRI and fcMRI data. As the 

conventionally used fMRI and fcMRI models compute the brain activity and connectivity 

of each voxel individually by assuming independence, they do not account for processing 

induced spatiotemporal covariance structure.  In this chapter, we provide ways of 

accounting for theoretically computed exact noise properties of the fMRI and fcMRI data 

during the estimation of functional activations and functional correlations.  The methods 

that are proposed in this chapter will incorporate the effects of processing into the 

analysis, providing a true interpretation of the acquired data and in turn produce more 

accurate functional activation and connectivity statistics to be used in fMRI and fcMRI 

application areas such as neurosurgical planning and the diagnosis of degenerative 

diseases. 

5.1 Functional Activity 

In fMRI, activations are detected using a hypothesis test in which voxels are 

assumed inactive under the null hypothesis. As fMRI models make assumptions 

regarding the statistical properties of noise in the processed data, if the statistical 

implications of processing are not accounted for, it can result in errors where voxels are 

either assumed to be active when they are not, or assumed inactive when they actually 

are. With the linear model presented in section 4.2.1, and the known ideal covariance 

matrix,  T, the analytically computed entire spatiotemporal covariance matrix, Σ, can be 
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incorporated into the complex-valued fMRI activation model in order to more accurately 

calculate the functional activation of all voxels simultaneously. 

It has been explained section 2.2.1 that in the CV Model, the observed time series 

for an individual voxel is represented in a real-valued form by 
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with the assumption of a constant phase, θ. Recall that yR and yI are real-valued n×1 

vectors, consisting of the real and imaginary components of the processed voxel time 

series, q is the number of non-baseline regressors, X is an n×(q+1) design matrix, and β is 

a (q+1)×1 vector of magnitude regression coefficients. This model can be extended to a 

more general case, where the observations contain task related phase changes in addition 

to task related magnitude changes (Rowe and Logan, 2005b). In this general model, the 

observed time series vector for an individual voxel is represented by  
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where, C and S are matrices with the cosine and sine of the voxels modeled phase along 

the diagonal.  

Both the CV Model and the traditional MO Model typically assume independence 

between voxels and observe brain activity on a voxel-by-voxel basis. As such, the noise 
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vector in Eq. [5.2] is assumed to be 
2

2(0, )nN I I   . However, this assumption does 

not account for any spatial correlation between voxels, whether inherent of artificially 

induced. Thus, a generalization of the CV Model that incorporates the analytically 

derived spatiotemporal covariance matrix is introduced in this section. 

The noise vector, η, in Eq. [5.2] assumes a 2n×2n covariance between the n time 

points of a single voxel. With temporal processing inducing correlations between time 

points for each voxel and spatial processing inducing a correlation between the p voxels 

in each image, the noise of data is better described by the entire 2pn×2pn reordered 

spatiotemporal covariance matrix, ΣT. Each (j,k)
th
 block of ΣT is the 2n×2n temporal 

covariance matrix between spatial elements j and k. To integrate ΣT into a CV fMRI 

model, the linear regression model in Eq. [5.2] can be expanded to derive coefficients for 

all p voxels at once by 
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In Eq. [5.3], yRj and yIj, and ηRj and ηIj are n×1vectors consisting of the real and 

imaginary components of the image space observations and error measurements of the j
th
 

voxel, respectively. The design matrix, Xj, is n×(q+1), βj is a (q+1)×1 vector of magnitude 

regression coefficients for the j
th
 voxel, and finally Cj and Sj are matrices with the cosine 

and sine of the j
th
 voxel modeled phase along their diagonals. Eq. [5.3] can alternatively 

be written by matrix representations as follows  
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As described in Chapter 4, the vector of vectorized images, yT, is created through 

yT=OTsT, as a vector of n vectors of p time series observations stacked above themselves. 

This vector is in the form of 
1 1( , , , , )T R I nR nIy y y y y      , where ytR and ytI are p×1 real 

and imaginary column vectors of p voxels at image time point t, respectively. As such, 

the reconstructed image space vector yT should be permuted by P T Ty P y before 

computing activation statistics. The equation given in Eq. [5.4] can then be represented in 

matrix form, 

P
y JX   , [5.5] 

where yP and η are 2np×1 vectors, J is a 2np×2np matrix, X is a 2np×2p(q+1) matrix, and 

β is a 2p(q+1)×1 vector. Note, q is the number of non-baseline regressors. In Eq. [5.5], 

the noise vector, η, has a zero mean and a 2np×2np spatiotemporal covariance, ΣT; J is a 

diagonal matrix that has the cosine and sine of the j
th

 voxel’s temporal phase, Cj and Sj, as 

the diagonal elements. The block diagonal design matrix, X, is formed by placing the 

design matrix of the j
th
 voxel, Xj, along the diagonal. A simple version of the design 

matrix, Xj that corresponds to the j
th
 voxel, has a first column of ones, a second column of 

counting numbers from 1 to n, and then a column of zeros and ones representing the task 

wave form. 

With the assumption of temporarily constant phase for each voxel, the generalized 

CV Model parameters, β, θ, and ΣT can be derived from Eq. [5.5] through a weighted 
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least squares estimation, and functional activations can be computed by a likelihood ratio 

test statistic. In the model given by Eq. [5.4], the (q+1)
th
 element of each βj denotes the j

th
 

voxel’s regression coefficient that is related to task activity. Using the contrast vector, V, 

to observe the (q+1)
th
 coefficient of each βj, this statistic considers an estimated variances 

under the null hypothesis, H0:V  , in which no task related to cortical activity is 

assumed, and under the alternative hypothesis, H1:V  , that assumes cortical signal 

that is modeled as task related. In this hypothesis testing setting, the contrast vector, V, 

can be created as a p×2p(q+1) matrix whose j
th
 row is a 1×2p(q+1) vector that consists of 

all zeros with 1’s in the (2j-1)(q+1)
th
 and (2j)(q+1)

th
 entries, while   is a p×1 column 

vector consisting of zeros.  

5.2 Functional Connectivity 

In fcMRI, the null hypothesis assumes no correlation between voxels, and thus 

any statistically significant correlation observed in the data implies voxels are connected. 

With the amount of processing performed in fcMRI studies through reconstruction, 

spatial and temporal filtering, nuisance signal and global signal regression, the statistical 

properties of processed data are removed from those of the acquired data as presented in 

Chapter 4. The spatiotemporal covariance matrix, Σ, along with the voxel time series 

covariance matrix, Σρ, and one voxel’s time series covariance matrix, Σv, that are 

commonly utilized in fcMRI studies have been analytically computed in Chapter 4.  

In a processing-induced spatiotemporal correlation matrix that is computed with 

the linear framework presented in Chapter 4, the nonzero off diagonal entries will denote 

any correlations that are artificially induced by the process. To quantitatively determine 
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the degree to which voxels in processed images are correlated, a generalized likelihood 

ratio test statistic for dependence between voxels, that can be derived from the 

determinant of the correlation matrix, can be used as a metric (Rowe, 2003). Upon 

converting to a log-likelihood test statistic, any off-diagonal elements in the induced 

correlation structure are weighted exponentially, which is appropriate given that 

correlation strength increases quadratically. As the test statistic for dependence between 

voxels approaches zero when an identity correlation is induced, it can provide a simple 

means for neuroscientists to characterize their choice of processing as excessive. 

While the precise quantification of the correlations induced by spatiotemporal 

processing provides a useful tool to assess the implications of such processing, the 

artificially induced correlations can be incorporated into a generalized fcMRI model 

similarly with the generalized fMRI model given in section 5.1. The regression 

coefficient β, given in Eq. [5.5], can be utilized with an adjustment to the design matrix, 

X, in order to detect the functional brain connectivity. In the generalized fcMRI model, 

the data vector, yP, represents the vectorized form of the processed resting state time 

series data. The design matrix, X, therefore can be designed as a block diagonal matrix in 

which the j
th
 block has a column of ones in the first column and the time series of the j

th
 

voxel in the second column. Using a likelihood ratio test, the regression coefficients can 

be used to determine the correlation between voxels in a hypothesis test in which the null 

hypothesis assumes no correlation between voxels. The incorporation of the processing 

induced covariance matrix, ΣT, into a statistical fcMRI model of this kind provides a 

novel approach to deduce connectivity in complex-valued data while simultaneously 
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incorporating the effects of signal processing into the final analysis, thereby improving 

the accuracy and reliability of fcMRI studies.  
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Chapter 6: Conclusion 

6.1 Summary of Presented Work 

The new statistical fMRI activation model, DeTeCT-ING, that is presented in the 

second chapter of this dissertation was developed with an aim to utilize the 

conventionally neglected physical and biological information in brain activation 

detection. This model provides an original idea to the current state of fMRI activation 

research by utilizing the first few scans to estimate the relaxation parameters, more 

appropriately representing the magnetization in each voxel, and incorporating the tissue 

contrast information into the calculation of brain activation statistics. The statistical 

analysis of the proposed DeTeCT-ING Model was performed through Monte Carlo 

simulations that were carried out with the activation data generated under the assumption 

of various cases as well as experimentally acquired human subject data. With the use of 

powerful statistical tools such as ROC analysis, comparison of CRLBs and MSEs, it was 

shown that the DeTeCT-ING Model provides slightly better accuracy in computing brain 

activation statistics than more conventional fMRI activation models. It was also shown 

through an experimental analysis that the possible false positives in computed activation 

statistics can be theoretically eliminated with the use of the DeTeCT-ING Model. The 

proposed model in Chapter 2 can be applied to improve the sensitivity to detect brain 

activation in fMRI by theoretically restricting the search volume of the statistical analysis 

to the gray matter only. This fMRI analysis method can be used to diagnose gray matter 

diseases, including degenerative diseases, by automatically segmenting gray matter.  This 

application can also be useful in the analysis of the fMRI data prone to producing false 
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positive rates, as a result of thermal noise, physiological noise, or correlated noise in the 

data.  

In the third chapter, a novel method that incorporates Fourier encoding anomalies, 

T1, T2
*
, and ∆B, into the Fourier image reconstruction process is presented. This method 

was developed through the expansion of the real-valued linear isomorphism of the 

complex-valued image registration that was also used in the  AMMUST-k framework that 

represents common temporally unvarying image space and k-space processing operations 

as linear operators. Specifically, we developed a Fourier reconstruction operator that 

accounts for the physical processes resulting from the MR relaxivities and magnetic field 

inhomogeneities that occur in the Fourier encoding process. As such, the utilization of the 

modified Fourier reconstruction operator that accounts for these effects allows one to 

perform image reconstruction and the correction of such effects in one step via a matrix-

vector multiplication. Furthermore, the use of a linear formalization makes it possible to 

quantify the statistical effects of such correction. The developed modified Fourier 

reconstruction operator was first illustrated on a theoretical noiseless data set that was 

generated with the consideration of physical processes resulting from the MR relaxivities, 

and magnetic field inhomogeneity both separately and simultaneously. The results 

showed that the developed Fourier reconstruction operator effectively corrects the image 

blurring, blurring, and loss in image intensity effects of such physical processes.  Such 

correction was also shown to induce negligible correlation in reconstructed images. As 

the longitudinal relaxation time, T1, has commonly been neglected with the assumption of 

a long TR, the focus was placed on an incorporation of T1 for the experimental 

illustration of the developed image reconstruction operator. It was shown that such 
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incorporation provides better image contrast in the reconstructed images by recovering 

the information of the tissue characteristics that exist prior to T1 equilibrium. The results 

also show that such incorporation preserves functional activations and does not induce 

artificial correlations. The utilization of the developed operator provides better accuracy 

in reconstructed images and can ultimately lead to more precise image registration with 

the recovery of the contrast information.  

In Chapter 4, the linear AMMUST-k framework is extended to include 

spatiotemporal processing operations that are commonly applied to fMRI and fcMRI time 

series data before computing functional activity and connectivity statistics. First, the 

linear isomorphic representations of time series processing operations, such as slice 

timing correction, image registration, temporal filtering, and generalization of temporally 

constant image space and k-space processing operations, as well as parallel SENSE 

reconstruction operator were presented. In order to theoretically illustrate the developed 

framework, AMMUST-t, we created cases that consider different combinations of certain 

operations, parallel SENSE reconstruction, spatial smoothing, and temporal filtering to 

maintain frequencies between 0.009 and 0.08 Hz. We computed the theoretical induced 

large spatiotemporal covariance matrix of the processed data by utilizing the AMMUST-t 

framework with the assumption of both identity and non-identity intrinsic frequency 

space covariance structure. We then presented the real/real, imaginary/imaginary, and 

real/imaginary spatial correlations as well as the temporal correlations of the center voxel 

computed from precisely quantified spatiotemporal covariance matrix. Our theoretical 

results showed that SENSE reconstruction, spatial smoothing and temporal band pass 

filtering induce artificial spatial and/or temporal correlations that are of no biological 
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origin. The theoretical correlation structures induced by the considered operations were 

validated through experimentally acquired spherical agar phantom and resting state 

human subject data. In fcMRI, the correlations computed from the processed data through 

the use of parametric covariance functions are used to create connectivity maps that 

exhibit true biological correlations. Therefore, the non-biological artificially induced 

correlation by spatial and temporal processing operations could alter these connectivity 

maps, resulting in false positives or false negatives in an fcMRI study. 

Functional MRI and fcMRI studies employ both spatial and temporal filtering, 

together with additional signal regression operations. As such, when inferences are drawn 

from processed data, failure to account for changes in the covariance structure of the data 

induced by processing can result in Type I or Type II errors. In Chapter 5, we propose to 

expand models for detecting functional activation and functional connectivity to 

incorporate an analytically derived spatiotemporal covariance structure of a reconstructed 

and processed time series. In the fMRI model, the design matrix used in the complex-

valued linear regression was designed to detect voxels whose time series correlate with 

the task performed, while the fcMRI model used a design matrix with blocks down the 

diagonal that are specific to each voxel in order to determine which voxels correlate with 

one another. The future application methods proposed in the fifth chapter would 

incorporate the effects of processing into the analysis, providing a true interpretation of 

the acquired data and in turn produce more accurate and reliable functional activation and 

connectivity statistics to be used in fMRI and fcMRI application areas such as 

neurosurgical planning and the diagnosis of degenerative diseases. 
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6.2 Future Work 

The DeTeCT-ING fMRI activation model, presented in Chapter 2, aims to exploit 

the structure of the underlying nonlinear dynamic system of the MR magnetization 

process in modeling fMRI data. In this model, task related neural activity was modeled 

by means of a differential T2
* 
contrast. While the DeTeCT-ING model takes a significant 

step to provide a more biologically and physically driven model to compute activation 

statistics, it does not take the hemodynamic response function, which has been used as a 

measure of response to task based challenge, into account. There are previous models in 

literature that focus on modeling the BOLD response and the underlying hemodynamic 

response function, such as the Balloon Model (Buxton et al., 1998; Friston et al., 2000) 

that describes the dynamics of blood volume and deoxygenation and their effects on the 

resulting BOLD signal. As such, the DeTeCT-ING Model could be also further expanded 

to include a more detailed modeling of the physiological processes for the representation 

of fMRI activation data.  In the expanded model, the hemodynamic responses at brain 

voxels could be re-coded at fMRI image voxels by incorporating the convolution of a 

stimulus function and the hemodynamic response. Furthermore, as previously stated, the 

delivery of the blood to the active region is the source of the response to a local increase 

in metabolic rate. While it is a fact that the oxygenation state of the blood strongly 

influence the MR signal on T2 or T2
*
 weighted images, change in hemodynamics can 

produce small alterations in T1 and effective proton spin density as well. As such, this 

phenomenon of possible task-related changes in T1 and spin density could be 

incorporated into the DeTeCT-ING Model. 
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The AMMUST-t framework developed in Chapter 4 provides a precise 

quantification of the spatiotemporal correlations induced by processing and parallel 

reconstruction operations without the need for lengthy simulations. While this framework 

provides a tool for neuroscientists to visualize the degree to which processing will 

artificially correlate ones data, it needs an efficient implementation to be integrated into a 

research study. In order to make this framework more beneficial for the neuroscientists, a 

software package could be developed to enable them to easily investigate the correlations 

they have induced in their data through the image reconstruction and spatiotemporal 

processing operations they have chosen. The program could enable one to enter different 

scanner and sampling parameters as well as desired processing operations and present the 

user with an assessment of the configuration specified in terms of the expected 

correlations induced by the operations to be performed. With the inclusion of a program 

like this, the current margin of error in the conclusions drawn in functional connectivity 

studies could be reduced. Furthermore, while a collection of spatial and temporal 

processing operations have already been represented as linear operations in Chapter 4, 

several other operations could also be applied to the acquired fMRI and fcMRI data. 

Additional processing operations, such as respiration and motion correction, global 

intensity normalization, and global signal regression, can therefore be represented as 

matrix operators to fit into the AMMUST-t framework. The process of incorporation of 

the relaxation times, T2
*
 and T1, into the image reconstruction process, as explained in 

Chapter 3, can also be included into the AMMUST-t framework by appropriately 

modifying the reconstruction operators along the diagonal of the time series FR operator.  
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As mentioned in Chapter 4, it has been noticed in recent studies that changes in 

the spatiotemporal covariance structure of the fMRI data may result from the 

acquisition/reconstruction process (Deshpande et al., 2009) and repeated sessions with 

multiple experimental stimuli (Derado et al., 2010;Bowman, 2005) which need to be 

compensated for a better analysis of measured brain activity. Recent resting state studies 

have also raised questions about the effects of preprocessing, specifically global signal 

correction, on correlation maps including improved specificity of positive correlations 

and the emergence of negative correlations. As such, a comparative study could be 

carried out to assess the effect of processing on the final brain activity and connectivity 

statistics. With the use of open-access data sharing and analysis pipelines, such as the 

ones that the Human Connectome Project’s connectomeDB provides (Marcus et al., 

2011), the comparative study could be performed by applying the generalized fcMRI and 

fMRI models, proposed in Chapter 5, to data sets in which the implications of processing 

have been noted.  
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Appendix A: Cramer Rao Lower Bounds of the DeTeCT and      

DeTeCT-ING Models  

With the assumption of a 90° flip angle in the DeTeCT and DeTeCT-ING 

Models, the temporarily varying magnitude of the magnetization,  
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This assumption reduces the complex valued image, yt, measured over time t, that is 

described in Eq. [2.18], to 

   
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 [A.3] 

which can be written as 

   cos sin 
t tt t R I

y M i i       . [A.4] 

The complex-valued observation yt can then be represented at time point t as a 2×1 vector 

instead of a complex number as  

cos 

sin 

t t

t t

R Rt

tI I

y M

My
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 

    
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, [A.5] 

where t=1,…,n. Upon converting from rectangular coordinates  ,
t tR I

y y  in Eq. [A.5] to 

magnitude and phase polar coordinates  ,
t

r  , the observed data at time t can be 
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alternatively represented as 
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t
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where rt and   are the observed magnitude and phase at time t. It is of note here that the 

DeTeCT and DeTeCT-ING Models assume a temporally unvarying constant phase. 

The joint distribution of the bivariate observation  ,
t tR I

y y  at time t is 
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By making the transformation    cos , sin,
t tR I t t

y y r r   from rectangular coordinates to 

polar coordinates with Jacobian of the transformation

     cos cos sin sin-
t t t

J r r r       , and using trigonometric identities, the above 

equation can be written as 
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The CRLB for the variance of an unbiased estimate of a model parameter requires 

the second derivatives of the logarithm of the likelihood function, LL, with respect to the 

model parameters. With n temporal observations, the logarithm of the likelihood function 

of the DeTeCT and DeTeCT-ING Models can be written as 

2 2 2
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where the temporarily varying magnitude, Mt, is given in Eq. [A.2] for a 90° flip angle. 

 



132 
 

By substituting Eq. [A.2] into Eq. [A.9], the logarithm of the likelihood is 
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Eq. [A.10] can be alternatively represented by the vector multiplications as follows 
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where *r  has the t
th
  element of   costr     , and *s  has the t

th
  element of 
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. It is of note here that the design matrix, X, consists of a single column of 

counting numbers in the DeTeCT and DeTeCT-ING Models since β1 is the coefficient for 

a time trend t. 

Maximizing the likelihood function in Eq. [A.11] with respect to the parameters is 

the same as maximizing the logarithm of the likelihood, LL, with respect to the 

parameters and yields 
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The CRLB for the variance of an unbiased estimate of a model parameter requires 

the symmetric Hessian matrix, generally denoted by H and is formed from the second 

derivatives of the log likelihoods, LL, with respect to the model parameters. The second 

derivatives of LL can be computed from the first derivatives of LL given in Eqs. [A.12]-

[A.18] as follows: 
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The negative definite second order partial derivative of the log likelihood 

function, LL, can be used to create the symmetric Hessian matrix, H. The matrix of the 

CRLBs can be found by taking the inverse of the Fisher information matrix 

* 2

0 1 2 1, , , , ,FI E H M T T        , which is the expectation of the Hessian matrix, H, with 

respect to yR and yI for the given
* 2

0 1 2 1, , , , ,M T T    .  
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Appendix B: Maximum Likelihood Estimations of the DeTeCT-ING 

Model under Null Hypothesis  

As described in Appendix A, with the assumption of a 90° flip angle, the 

logarithm of the log likelihood function, LL, in the DeTeCT-ING Model is 
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where *r  has the t
th
  element of   costr     , and *s  has the t

th
  element of 
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The MLEs of the DeTeCT-ING Model under the restricted null hypothesis, 

0 1 1 2 2: , , 0
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H T T T T    , are computed by maximizing the likelihood with respect to 

parameters, 
2

0 1, ,  and M    . By setting the first derivatives of the log likelihood 

function, LL, that are given in Eqs. [A.12], [A.16], [A.17] and [A.18], equal to zero and 

solving, the MLEs under the null hypothesis can be found as follows 
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where 
*̂r  has the t

th
 element of   ˆcostr   

 
, and 

*̂s  has the t
th
 element of 

*

2

exp t

GM

TE

T

 
 
 

with the consideration of the constraints defined by the null hypothesis, 1 1 ,
GM

T T  

2 2GM
T T , and δ=0. 
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Appendix C: Derivation of the Spatial Covariance Matrix from the 

Spatiotemporal Covariance Matrix 

Consider that the reconstructed and processed image space vector, y, has all real 

voxel values stacked on top of all imaginary voxel values, as given in Eq. [4.1]. The 

processed spatiotemporal covariance matrix, Σ, can be calculated as 

,
(( )( ))

j l k m j l j l k m k ms t s t s t s t s t s t
E y y y y    , [C.1] 

where (sj,tl) are the spatial and temporal indices for the j
th
 element of y at time point l, 

(sk,tm) are the spatial and temporal indices for the vector’s k
th
 element at time point m, and 

j ls t
y is the mean measurement of the j

th
 voxel at time point l in repeated acquisitions. By 

expanding the product, Eq. [C.1] can be written as 

,
( )

j l k m j l k m j l k m k m j l j l k ms t s t s t s t s t s t s t s t s t s t
E y y y y y y y y     . [C.2] 

Similarly, the spatial covariance matrix, Σρ, which is estimated from time series 

observations, can be considered on an element by element basis 

 
,

(( )( ))
j j k k

j k
s s s ss s

E y y y y    , [C.3] 

where 
jsy is the temporal mean measurement of the j

th
 voxel over the course of the time 

series. The spatial covariance matrix, Σρ, can then be calculated as 

 
1

1

1

1

1

1

,
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j t j k t k
j k
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n
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y y y y

n
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
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




 [C.4] 

in a time series with n points.  
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The average of the diagonal blocks of the large, processed covariance matrix, Σ, 

can be written as  

 
1

1

1

1

1

1

,
( ).

.

j t k t j t k t k t j t j t k tj k

j t k t j t k t k t j t j t k t

n

A s t s t s t s t s t s t s t s ts s
t

n

s t s t s t s t s t s t s t s t

t

E y y y y y y y y
n

E y y y y y y y y
n





    


 
    

 




 [C.5] 

Under the assumption that the voxel mean does not change over time in a resting state 

study, 
j ts t

y  is equal to
js

y . As such, it can be concluded that the average of the diagonal 

blocks of the large processed covariance matrix, Σ, is the expected value of the spatial 

covariance matrix, Σρ 
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

  [C.6] 

Thus, the spatial covariance matrix can be computed as the average of the diagonal 

blocks of the spatiotemporal covariance matrix, Σ. 
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