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ABSTRACT
REAL TIME CONTROL FRAMEWORK USING ANDROID

Aaron Pittenger

Marquette University, 2012

One potential application for a smartphone-type device is a flight management 
and control computer for an unmanned aerial vehicle (UAV). The hardware employed in 
most smartphones and tablets has the capabilities necessary to fly an air vehicle without 
user interaction. The user can pre-program in a flight plan and the smartphone will do the 
rest. In the past, this real time control application has been done using many separate 
sensor packages and processors, but never on a single, stand-alone device. Also, 
capabilities such as the high definition camera present on most smartphones can take 
photographs and store them on the phone for retrieval later. This opens many potential 
markets for a device of this nature. Farmers that have large properties could use this to 
see if their fences are broken. The general public could use the application to take aerial 
views of their properties. Law enforcement could be an application for this project; to 
map out house fires or other potentially harmful situations before lives are put at stake.

The real challenge with using a smartphone as a flight management and control 
computer is the real time control of the aircraft. In order to accomplish real time control, 
the computer must have the sensors necessary for real-time control, a fast processor, 
capable of running a periodic process at frequencies greater than 10Hz (the faster the 
better) and the ability to read the sensor input and act on it during the time slice given for 
that process. With a multi-threaded, embedded, real-time operating system, this typically 
is not a problem (given a fast enough processor and enough inputs for all the sensor data). 
Doing the same type of calculations and control on a consumer product made to run 
many applications at the same time is difficult. This thesis will demonstrate how a real 
time control process was implemented on an Android phone.
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 1 Introduction

 1.1 The Problem

The solution to the on-board autonomy problem should be a low-cost, robust, 

easily accessible and easily configurable solution for the general public. This allows 

applications in both civil and military markets. It should be fully autonomous (navigation, 

guidance, and control) and not exceed the size, weight and power requirements of the 

vehicle selected. 

With these requirements in mind, and with the realization that the smartphone 

market is increasing rapidly, a smartphone application presents itself as a viable solution 

to the problem. It is readily accessible (most people already have one). Most new 

smartphones contain all of the necessary sensors for flight navigation, guidance, and 

control. It is a low cost solution. Also, the cell phone has a number of other features that 

would be useful in a number of applications. Some examples of this are recording video, 

streaming video back to a server via 3G/4G or receiving commands from a ground station 

for mid-flight flight plan changes. One problem with using a cell phone for this purpose 

is the phone's inability to control flight surfaces through servos. This can be overcome by 

making the phone communicate with a separate servo-controller board and send that 

board the servo commands via a wireless protocol, for example, Wifi, Bluetooth or Wifi-

Direct. The separate board can be “dumb” and only control the servos based off the 

commands of the phone.
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 1.2 Project Structure

A smartphone based autopilot system for a UAV consists of 3 main components; 

the smartphone, which contains software that performs flight navigation, guidance, and 

control, an aircraft to be turned into a UAV and a servo controller, used to control the 

flight surfaces of the aircraft, as directed by the smartphone. This is displayed pictorially 

in Figure 1.1.

Figure 1.1: Project Architecture

From a software perspective, the development of the entire autopilot suite 

(including navigation, guidance, and control) is a large task usually completed after years 

of hard work with large teams. In order to modularize this application, the control 

framework will be the task of this project and thesis. The benefit of creating a control 
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framework is that other control applications could re-use the framework easily.

In order to reduce development risk and to keep project costs to a minimum, a 

simulation of the actual aircraft will be used in order to test the control framework. This 

will allow development of the servo controller and actual aircraft to be completed 

externally. A colleague, David VanKampen, is developing the servo controller as well as 

the interface to the aircraft using a paradigm called “Simulation Centered Design” where 

using a well designed simulation interface as the real-world interface allows for easy 

project integration after testing is completed. After both projects are completed, the goal 

is to integrate the projects together and test the application running in the real world.

Real time software control requires very fast, periodic processing of sensor input 

in order to dynamically control the aircraft. With a multi-threaded, embedded, real-time 

operating system, this typically is not a problem (given a fast enough processor and 

enough inputs for all the sensor data). Doing the same type of calculations and control on 

a consumer product made to run many applications at the same time is the purpose of this 

thesis. An Android (created by Google) phone was selected to be used because of the ease 

of application development and popularity. Android is an open-source platform used by 

over sixty-five percent (and growing, as of Q2 2012) of the world population [1]. 

 1.3 Criterion for Success

In order to properly evaluate the performance of the framework, criterion for 

success were established. One of the most critical elements for control loops is the timing 

of the control loop period. At a 25ms period (40hz frequency) a tolerance of ±2% would 

keep the period between 24.5ms and 25.5ms. The control framework designed should 
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also be portable and easily configurable for other control theory applications (outside of 

aviation). This is the design idea behind a framework. In order to test out the control 

framework, an aircraft control algorithm will be used. The control algorithm used is 

tested and proven on other applications and is therefore assumed to be correct. In order to 

prove that the proper control frequency is established, the aircraft in the simulation must 

stay aloft and respond to control changes as expected (for example, when directed to 

change altitude, the aircraft changes altitude accordingly).
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 2 Current State

Before discussing how an Android device could be used as a flight management 

and control computer, let's look at the background behind such a computer.

 2.1 Background

Typically, a conventional autopilot system is broken up into subsystems. The three 

main subsystems to control where an airplane is going are navigation (where is the 

airplane and where is the airplane headed), guidance (using navigation as input, how does 

the airplane get where it wants to go) and control (what does the airplane need to do in 

order to accomplish guidance). 

In order to better understand the difference between navigation, guidance, and 

control, take the example of a ground vehicle navigation system (such as a Garmin, 

TomTom or Google Navigation). If the navigation system were to be running without a 

destination specified, it would be giving a navigation solution (the current location). After 

entering in a destination, the navigation system displays the path to get from you current 

location to the destination. This is considered the guidance aspect of the system. Then, 

the human driving the vehicle is the control aspect of the system. The user does not 

necessarily have to follow the guidance solution in order to remain in control, but 

following the guidance solution will get the user to their destination. Also, the guidance 

solution cannot perform without knowing the navigation solution. 

All three of these systems are closely related and usually distributed around an 

aircraft. Typically, one company may make a navigation and guidance computer, and 
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another will make the control computer. This adds another level of complexity to the 

problem because the data that must be shared between these computers must be done 

using a highly reliable data bus and is usually accompanied by multiple redundant 

computers or channels. 

 2.2 Moving into the UAV Market

As the name implies, an unmanned aerial vehicle (UAV) is an air vehicle that 

operates without a human on board. The UAV is controlled either by a pilot/operator at a 

remote ground control station via a communication link, or autonomously through on-

board computers. The trend of the UAV market is nothing but upwards. Both the military 

and civil markets want to move more towards UAVs. The main benefit of a UAV is that 

no lives need to be put at stake to perform functions that can be automated. This benefits 

the military because pilots' and flight crews' lives do not need to be put at risk while 

performing missions in hostile areas. This would also benefit the civil market by limiting 

pilot's and flight crew's exposure to risk and hazardous situations. Also, using an 

autonomous UAV would allow people to fly who do not have a license to perform tasks 

they would normally need to hire a pilot to complete. 

As an example, farmers that have large areas of land typically have fences around 

that area (especially if they have something they want to keep in). King Ranch in South 

Texas is approximately 825,000 acres, about the same size as the state of Rhode Island. In 

order to keep their profits high, they should check the fences daily to ensure they are not 

broken and nothing has gotten out. They could drive around their entire property to 

ensure the fence is not broken, or they could hire someone who has a plane to fly around 
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the property and observe the fence. This task his highly repetitive and could easily be 

automated. If the farmer were to have access to a UAV, they could automate this process 

daily.

 2.3 Challenges Associated with the UAV Market

The biggest challenge associated with the UAV market is typically referred to as  

size, weight and power (SWaP). UAVs can be much smaller than manned aircraft and 

therefore size, weight and power become significant factors in UAV design. A typical 

project management triangle has three points that must be in balance for a project to 

succeed. These are usually listed as cost, scope and time (or schedule). See Figure 2.1. If 

one edge of the triangle increases, so do the other two. You cannot increase the time or 

scope of a project without also increasing the cost.

Figure 2.1: Project  
Management Triangle

 The same rule applies for the SWaP problem in UAV design. See Figure 2.2. You 

cannot increase the size of the aircraft without increasing the weight of the aircraft. If you 

Cost

ScopeTime
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increase the weight of the aircraft, you have to increase the amount of power needed to 

propel the aircraft through the air. If you need to increase propulsion, you have to 

increase the size of the engine. 

Figure 2.2: SWaP Triangle

Balancing the SwaP triangle is one of the main barriers to more UAV usage. 

Typically, a UAV doesn't have the size or power on board to take advantage of a 

conventional autopilot system. Consequently companies are trying to scale down their 

full size autopilot systems by splitting up the degree of autonomy.

 2.4 Degree of Autonomy

UAVs can have different levels of autonomy. Typically, they fall into two 

categories; ground station control and autonomous control. A UAV that performs with 

ground station control typically has a host of communication equipment on board and all 

processing for flight navigation, guidance, and control is done on the ground. This allows 

for the large processing computers to be kept on the ground and all the weight and power 

restrictions are fulfilled by the communication equipment on board. Commands are sent 

Size

WeightPower
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over the communication link to turn and move the plane through the air. This requires a 

ground based operator or ground based autopilot to be available all times. Currently, most 

UAV systems employ this strategy.

The other level of autonomy is fully autonomous control. This includes having a 

flight navigation, guidance, and control computer on board and pre-programming a flight 

plan into the computer. This option is challenging to deploy because of the SWaP 

problem coupled with the complexity involved with these systems. Common sensors 

utilized on and aircraft include Global Positioning Systems (GPS) (for navigation), 

Inertial Navigation System (typically an accelerometer and gyroscope, for increased 

navigation performance), Pitot/Static System (for air pressure, altitude and airspeed 

indicators), thermometer (for air temperature), gyroscope (for attitude indication), 

compass (for navigation), and motor controllers (for control of flight surfaces). As 

mentioned earlier, most, if not all, of these capabilities can now be found in a hand held 

device such as a smartphone.
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 3 Related Works

Currently, there are several projects focused at solving many of the sub-problems 

of flight navigation, guidance, and control. Most of them are incomplete, or overly 

complicated.

 3.1 Parrot AR.Drone 2.0

Parrot AR.Drone 2.0 is “a groundbreaking device combining the best of many 

worlds, including modeling, video gaming and augmented reality.” [20] The idea behind 

the Parrot AR.Drone 2.0 is a video camera attached to a self-stabilizing quad-copter, 

controlled by a cell phone's orientation. It then transmits video back to the cell phone so 

the user can see a drones-eye view. The operator then uses the phone as a joystick to 

direct the Parrot AR.Drone 2.0. Tilting the phone to the right makes the drone fly to the 

right. Tilting to the left makes the drone fly left. 

This is similar to the proposed solution in the sense that there is a phone 

communicating with an aircraft, but the practical applications of this are strictly limited to 

line of sight and aimed predominately at recreational/entertainment purposes. The phone 

and drone need to be within sight of each other in order to be able to communicate. There 

is no notion of pre-programming a flight plan and having the drone fly a flight plan. Also, 

all the entire flight is dynamically controlled by an operator, which is exactly what the 

proposed solution removes.
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 3.2 Ardupilot Mega

The Ardupilot Mega is probably the closest in similarity to the proposed solution. 

It is a “pro-quality IMU autopilot based on the Arduino Mega platform, which can turn 

any RC vehicle into a fully autonomous Unmanned Aerial (or Ground) Vehicle.” [8] This 

product is new and completely based on open source hardware and software. It uses the 

popular Arduino Mega platform as the brains of the flight navigation, guidance, and 

control for the airplane. At a cost of $200, the package includes a processor board 

interfaced with the following on-board sensors: 3-axis gyroscope and accelerometer, a 

barometer, magnetometer, and GPS unit. The systems juggles these sensors between three 

separate processors and can store up to 4MB of data on board. The only item the user 

would have to purchase is a battery pack and any other additional sensors they would like 

to integrate. 
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Figure 3.1: Ardupilot Mega 2.0

After the user receives this package, they download the predefined code for their 

specific application (fixed wing aircraft, helicopter, or land rover) and load the board with 

the executable application. Then, in order to do mission planning, the user downloads 

another PC application. After planning the mission, the user then loads the mission onto 

the APM and the vehicle is ready to be deployed. APM also only offers solutions to a few 

specific vehicles. This is because different vehicles will perform differently based of the 

dynamics of the aircraft and the motors involved. In many ways, this is a similar 

approach to the proposed solution, but lacks the ease of use and fully integrated solution 

the proposed solution offers. Also, the control aspects of flight are done with a dedicated 

processor on board and sensors that are made for flight applications, not for commercial 

use. The proposed solution would remove the necessity for separate processing for the 
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control of the aircraft and do it in conjunction with all other processing the phone is 

currently doing. Table 3.1 shows a comparison between APM and the proposed solution. 

Table 3.1: Capabilities of APM vs. Proposed Solution

Capability APM Proposed Solution

GPS On-board On-board

3-axis Accelerometer On-board On-board

3-axis Gyroscope On-board On-board

3-axis Magnetometer On-board On-board

Pressure Sensor (for 
altitude)

On-board On-board

Battery Extra On-board

Camera Optional Extra On-board

Power Run off existing RC 
Airplane power source

On-board

Ground Communication Through Radio (Line-of-
sight only)

Through Cellular Network 
(world capable)

Flight Software Extra (download + install) Extra (install from App 
Store)

Mission Planning Software Extra (download + install) Included with Flight 
Software
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 4 Solution Prototype

 4.1 High Level Design

In order to prove that real time control using an Android phone is feasible, the 

aircraft simulation program X-Plane will be used to simulate actual flight. “X-Plane 10 

Global is the world’s most comprehensive and powerful flight simulator for personal 

computers, and it offers the most realistic flight model available.” [17] Using an actual 

aircraft for testing purposes is cost prohibitive for this project. X-Plane is considered a 

high accuracy flight model capable of providing flight characteristics suitable for this 

project. It should be noted that using a flight simulator means that instead of using the 

sensors provided by the smartphone, the simulated sensors X-Plane provides must be 

used. In order to keep the simulation as realistic as possible, sensors that are not available 

on a regular smartphone will not be used.

X-Plane can be manipulated by external programs through its UDP interface. A 

UDP interface allows X-Plane to communicate with another application by sending 

datagram packets back and forth over ethernet. This is slightly less reliable than TCP/IP 

because there is no confirmation of message reception, but X-Plane is sending out data 

periodically so dropping a single message does not create a significant impact to the data 

integrity. UDP messages are specified to have a receiver and a port to send to. In order to 

communicate, both X-Plane and the application must know the IP addresses of each 

other. The UDP interface allows users to get sensor data and current aircraft variables, 

(such as elevator position, current airspeed and GPS position), as well as set variables 
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(such as current throttle position and elevator position). 

Figure 4.1 shows a high level drawing of how the autopilot program will interface 

with the X-Plane simulation.

 4.2 Development Environment

The application will be developed on an Ubuntu 12.04 LTS machine with Linux 

Kernal v3.2.0-29. This environment was chosen because of its compatibility with both the 

flight simulation (X-Plane) and the Android Development Environment as well as 

personal familiarity. The Android application will be developed using the Android 

Developer Tools (ADT) plug-in (provided by Google at https://dl-

ssl.google.com/android/eclipse/) for Eclipse 3.7.2 Integrated Development Environment 

Figure 4.1: High Level Architecture
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(IDE). Eclipse comes with the Ubuntu 12.04 LTS installation. The project will use 

version 20.0.3 of the Android Software Development Kit (SDK). The project will also 

use the Android Native Development Kit (NDK) version R8b. X-Plane version 10.10r3 

will be used as the flight simulator. The test platform for the application will be a 

Samsung Galaxy Nexus, the specifications of which are show in Table 4.1. The project 

will not use any input from the simulation that the Samsung Galaxy Nexus does not 

support. 

Table 4.1: Samsung Galaxy Nexus Specifications [16]

Sensor Manufacturer/Part Number

Geomagnetic Yamaha YAS530

Proximity GP2A

Barometric Pressure BOSCH BMP180

Accelerometer BOSCH BMA250

Gyroscope InvenSense MPU3050

GPS SiRF SiRFstarIV GSD4t
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 5 Detailed Design

The following section details the process of designing the real-time control 

framework for Android. 

 5.1 Control Theory

The first step in designing a real-time control framework is to understand a 

feedback control mechanism. Figure 5.1 shows a generic implementation of a feedback 

controller. 

Figure 5.1: Feedback Controller

A feedback controller typically consists of the control output, the system being 

controlled, and the sensor input which feeds back into the controller. One complete pass 

through the feedback controller is considered a control loop. A control loop can easily be 

described through an example. Most common thermostats employ a feedback controller. 

The temperature of the house is sensed (commonly called the “process value”) and fed 

into the controller. The controller then calculates the error between the current 

temperature and the desired temperature of the house (commonly called the “set point”). 

This difference is referred to as the error of the system. The thermostat then controls the 
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system (the house) by turning on and off the heater (or air conditioner) for the house 

inorder to increase or decrease the temperature. 

Typical problems seen in control loops include over-damping, under-damping and 

oscillation. Over-damping happens when the process value returns to the set point too 

slowly or never reaches the set point. Under-damping happens when the process value 

surpasses the set point before returning to the set point. Oscillation happens when the 

process value oscillates above and below the set point. These problems can be remedied 

by changing tunable gain values built into the controller. 

In the thermostat example, the control loop can have a fairly long delay (seconds 

or even minutes) because the process value changes slowly. The faster the process value 

changes, the faster the control loop must run in order to keep the variable in control. 

 5.2 Flight Controller

In order to control flight, three separate process values must be controlled;  

airspeed, heading, and altitude. Airspeed is controlled by controlling the use of throttle. 

Increasing the throttle causes the propeller to turn faster, thus increasing the thrust on the 

aircraft (in propeller based planes). The user sets a speed at which they would like to fly 

and the computer automatically controls the throttle to keep a constant speed. This is 

similar to the cruise control in a car. As the vehicle goes up and down hills, the throttle 

must adjust to maintain a constant speed. Similarly, in an airplane, if a gust of wind 

blows, the throttle must adjust to maintain a constant airspeed. Also, just like a car, when 

the plane increases or decreases altitude, the airspeed is impacted and the throttle must be 

adjusted to maintain airspeed.
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Heading can be controlled many ways. In an airplane, the heading of the airplane 

can be manipulated by both rudder and ailerons. Figure 5.2 shows an aircraft and the 

resulting motion when the rudder is deflected. Deflection of the rudder causes the 

airplane to rotate about its center of gravity (called yaw) and change heading.

Figure 5.2: Aircraft Rudder Control [6]

Turing using ailerons causes a different motion of the aircraft but a similar 

resulting location displacement. Figure 5.3 shows the an aircraft with aileron deflection 

and the resulting motion. Deflection of the ailerons in opposite directions causes the 

plane to bank (called roll). Using ailerons to turn is typically referred to as a “banking 

turn”.
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Figure 5.3: Aircraft Aileron Control [3]

As the airplane is banking, the lift force of the aircraft remains perpendicular to 

the aircraft. This creates a small side force moving the plane in that direction. This is 

displayed in Figure 5.4.Typically, a banked turn is preferred to a turn using rudder.
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Figure 5.4: Banked Turn Dynamics [4]

The last of the process value that must be controlled is altitude. This is controlled 

by controlling the elevators on an aircraft. An upward deflection of the elevators creates a 

downward force on the tail of the aircraft, therefore increasing the pitch of the aircraft. An 

increase of the pitch of the aircraft, while maintaining a constant airspeed will increase 

the altitude. A decrease in pitch will result in a decrease in altitude. 
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Figure 5.5: Aircraft Elevator Control [5]

Maintaining altitude can be difficult because changing any of these three process 

values may adversely effect the others. All values are coupled to one another. For 

example, increasing airspeed without compensating with elevator will also increase 

altitude. An increase in airspeed causes a greater lifting force on the wings and therefore 

increases in altitude. Conversely, rolling the aircraft without compensating with elevator 

will decrease the altitude of the aircraft. Banking the aircraft causes the lifting force on 

the aircraft to decrease, therefore causing the airplane to pitch down and lose altitude. 

There are many other relationships between all three of these control surfaces.

In order to keep all three of these flight variables in control, the loops must be run 

at an extremely fast frequency (compared to the thermostat example given earlier). The 
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process values can change quickly and the control loops must account for that by running 

at faster frequencies. The frequency selected for this application is 40Hz. The faster the 

frequency, the tighter the control.

 5.3 High Level Software Architecture

From a high level, the software architecture closely mimics that of the generic 

feedback controller show in Figure 5.1. Inputs are read in from the sensors (in this case, 

simulated sensors distributed from X-Plane over UDP), the control loops are stepped, and 

the flight control surfaces are set to correspond to the commanded process values. This 

process is repeated at a 40Hz rate.

Figure 5.6: High Level Software Architecture



24

Each of the respective control loops are stepped based off the corresponding 

sensor input. For airspeed, the throttle output is set based off the current airspeed input. 

For altitude, the elevator deflection as well as throttle are set based off the current 

indicated altitude. For heading, the aileron deflection as well as throttle and elevator 

deflection are set based off current heading. As shown in Figure 5.1, every control step 

compares the current process value against the set point and performs control surface 

deflection based off the error.

 5.4 Android Architecture

In order to fit these control loops into Android, the architecture of the Android OS 

must first be understood. Figure 5.7 shows the architecture as presented by Google [9]. It 

displays the Android Runtime Environment that typical Android applications run in. This 

includes the Dalvik Virtual Machine. This is similar to how Java applications run in the 

Java Virtual Machine (JVM). 
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Underneath the Android runtime is the Linux Kernel. The Android Native 

Development Kit (NDK) allows the Linux Kernel applications to run and interact with 

applications running on top of the Dalvik Virtual Machine. It uses the Java Native 

Interface (JNI) to communicate between Java and lower level code. It does so by creating 

a shared static library that the Java application can make calls to. Also, the lower level 

code can make calls to Java functions [19]. Oracle (the makers of Java) list a few 

purposes for JNI including “You want to implement a small portion of time-critical code 

in a lower-level language such as assembly.” [18] The Android documentation claims:

 Typical good candidates for the NDK are self-contained, CPU-intensive 

operations that don't allocate much memory, such as signal processing, physics 

simulation, and so on....Before downloading the NDK, you should understand that  

Figure 5.7: Android Architecture [9]
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the NDK will not benefit most apps. As a developer, you need to balance its 

benefits against its drawbacks. Notably, using native code on Android generally 

does not result in a noticeable performance improvement, but it always increases 

your app complexity.[10]

 5.5 Low Level Software Architecture

In order to implement this control loop properly, a 40Hz periodic process must be 

scheduled. Android provides an API for scheduling a process to run at a later time. This is 

done though the Handler class. A Handler is described as have two main uses “(1) to 

schedule messages and runnables to be executed as some point in the future; and (2) to 

enqueue an action to be performed on a different thread than your own” [11]. In order to 

register a function to be run at a point in the future, the function postDelayed() must 

be called. The amount of wait time in milliseconds is passed in as a parameter to the 

postDelayed() function. Using the postDelayed() function “Causes the 

Runnable to be added to the message queue, to be run after the specified amount of time 

elapses. The runnable will be run on the thread to which this handler is attached” [11]. 

The description provided by the Google API shows that the Handler simply places the 

task on a queue and will run the task sometime “after the specified amount of time 

elapses” [11]. After experimenting with the tolerance provided by the postDelayed() 

function, it was found to be unacceptable for something that needs precise timing. 

Another option for scheduling tasks to happen in Android is through the Timer 

API. Timer is a class from the core Java elements that are embedded in the Dalvik VM. 
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The documentation for the Timer API claims “Timers schedule one-shot or recurring 

tasks for execution” [14]. This is what is needed except shortly after that description, the 

API reads, “This class does not offer guarantees about the real-time nature of task 

scheduling” [14]. This is also not acceptable for the real-time scheduling that is needed 

for a control loop.

On a multi-threaded device that the programmer has no control over task priority, 

there will always be timing issues when precise timing is needed. Other tasks take over at 

inopportune times and processes are blocked that are time critical. The way Android 

provides timer-related classes in Java is unreliable. This is mainly because the Android 

OS runs on top of the Dalvik VM and the Dalvik VM is where Android gets its timing 

from. The NDK provides a way to create a precise and reliable timer since it has access to 

the timing mechanism provided by the Linux Kernel.

The Android NDK has access to the Linux Kernel. The Linux Kernel contains the 

standard C real time library which contains the POSIX Timers API [15].  The 

timer_create() function “creates a new per-process interval timer” [15] and is 

contained in the POSIX Timers API. This allows the process running (the Android 

Activity) to have an interval timer which will generate a signal at an interval the user can 

specify. When the timer expires, the signal SIGEV_SIGNAL is generated for the process. 

The user can register a listener for that signal as a parameter to the timer_create() 

function. 

After creating the timer, the user can then start the timer with the function 

timer_settime(). This function is also included in the POSIX Timer API. Passed 
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into the timer_settime() function is the timer (as a timer_t type) and the interval 

at which to produce the signal (in nanoseconds). 

Incorporating this functionality into an Android project is simple. Starting a new 

Android Activity will create a process in the Linux Kernel for the timer to run. After 

starting the process, the Android Activity will make a call using the JNI to a function that 

creates and starts the interval timer. This function also registers the signal handler 

function with the timer_create() function. After the process is complete, the 

function timer_settime() is called with a value of zero for the interval time and the 

timer is stopped.

Making this general framework application specific is just a matter of filling out 

the signal handler. In the scenario of a real-time controller for a UAV, the first step is to 

read the sensor inputs and store their values for use later. The controller implemented 

needs the following values: pitch and roll of the aircraft (from an accelerometer), heading 

of the aircraft (from a magnetometer), angular velocities of the aircraft (from a 

gyroscope), acceleration of the aircraft (from an accelerometer), indicated airspeed of the 

aircraft (from an airspeed sensor), altitude of the aircraft (from a barometric pressure 

sensor), and the attack angle of the aircraft (from an accelerometer). One thing to note is 

that GPS is not required to control an aircraft. This is only necessary for navigation and 

guidance. In this scenario, all the sensor inputs are received from the simulator and then 

acted upon by the control loop. 

After receiving the sensor input, the control loop must be stepped in order to get 

the new output values for the control surfaces of the aircraft. For the sake of this project, 
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a software switch is implemented so that the control loops only run when the switch is 

turned on. This switch was activated through a switch in the simulator. When you set a 

switch in the simulator, it triggers the switch in the control software. As soon as that 

switch is activated, the control loop is stepped. Once that software switch is triggered 

back to the “off” state, the timer is stopped and the application exits. This architecture can 

be seen in Figure 5.8.

Figure 5.8: Low Level Software Architecture

The software switch allows the plane to take off under user control, fly under 

autopilot control, then land under user control. This is necessary for testing purposes 

because takeoff and landing cannot be automated without proper navigation and 
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guidance.  

 5.6 Moving to Real-world Flight

Taking this solution for simulated flight and moving it to a solution for a real-

world application is relatively straight forward. The framework remains intact, but 

instead of reading the sensor values via UDP from the simulator, these values need to be 

read from the sensors on-board the cell phone. The control loops can still be stepped in 

the same manner, the inputs to the control loops are now just changed from simulated 

sensor inputs to actual sensor inputs. 

The challenge lies with transforming sensor outputs into something useful. For 

example, the altitude of the phone (and therefore, aircraft) can be calculated from the 

barometric pressure the phone is currently at. The equation for this can be found in Figure

5.9 [22]. In this equation, y is the altitude; T is standard temperature; P is standard 

pressure; x is the current barometric pressure; K is a constant calculated from gravity, the 

Universal Gas Constant, the Molar mass of air, and the standard temperature lapse rate; 

and L is the standard temperature lapse rate. Once the altitude has been calculated, it can 

be used in the control loops.  

Figure 5.9: Barometric Equation
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Some transformations that must take place are more complex. The pitch, roll, and 

magnetic heading of the aircraft must be calculated from the accelerometer outputs and 

the magnetic field sensor. The first item that must be attended to is the fact that the 

accelerometer outputs the acceleration along all three axis of the phone. These axes are 

labeled x, y and z and are oriented according to Figure 5.10.

Figure 5.10: Device Axes  
Orientation

These acceleration readings include the force due to gravity as well as the force 

due to the true acceleration of the phone. Both the force due to gravity and the true 

acceleration of the phone are useful. The Android APIs state “It should be apparent that in 

order to measure the real acceleration of the device, the contribution of the force of 

gravity must be eliminated. This can be achieved by applying a high-pass filter. 

Conversely, a low-pass filter can be used to isolate the force of gravity.” [12]. In order to 
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get the pitch and roll of the aircraft, the force of gravity is all that is needed. By knowing 

the direction of gravity, you can tell the pitch and roll of the phone (and therefore, 

aircraft). The gravity vector was isolated using the following low pass filter function [24]:

float lowPassFilter( float input, float output) {
        const float ALPHA = 0.15f;
        output += ALPHA * (input - output);
        return output;

}

The true acceleration of the phone is also necessary and therefore needs to be calculated 

with a high-pass filter to filter out the acceleration due to gravity. This high pass filter 

function was used [23]:

float highPassFilter( float input, float output) {
        const float ALPHA = 0.8f;
        float out;
        output = ALPHA * output + ((1 - ALPHA) * input);
        out = input - output;
        return out;

}

After isolating both the gravity vector and the acceleration vector, the pitch, roll, 

and magnetic heading of the aircraft can be calculated. In order to do so, the Android API 

has provided a few functions to do all the calculations for us. The function 

getRotationMatrix() and getOrientation() are used in conjunction to get 

the pitch, roll, and magnetic heading of the aircraft. The getRotationMatrix() 

function takes the gravity vector and magnetic field vector as inputs and returns the 

rotation matrix necessary to be passed into the getOrientation() function. After the 

rotation matrix is passed into the getOrientation() function, the pitch, roll, and 
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magnetic heading are returned in a three-value float array. 

The last item to take into account while calculating the necessary inputs for the 

control loops is the coordinates of the aircraft. Typically, aircraft refer to the y-axis as the 

axis whose positive portion points out of the nose of the aircraft, they x-axis's positive 

portion points over the right wing of the aircraft and the z-axis's positive portion points 

directly towards the center of the earth. All three of these axis originate at the center of 

gravity of the aircraft. How the phone is mounted to the aircraft will determine if the 

coordinates need to be transformed. For this application, the phone will be mounted 

underneath the aircraft so that the screen is facing the bottom of the aircraft and the top of 

the phone will be pointed towards the nose of the aircraft. This means the only axis that 

will need to be transformed is the z-axis. Luckily, the Android API provides a way to 

transform these axis simply. There is a function called remapCoordinateSystem() 

which allows the user to take the matrices used to calculate the pitch and roll of the 

aircraft and remap them to a different coordinate system [13].

As stated previously, the sensors are read during the signal handler. Because this 

is done in the native C library, it is easiest (and quickest) to read the sensors from within 

that library instead of calling a Java function to read the sensors. The documentation to 

do this is not well known but can be done. First, it is necessary to include the files 

android/sensor.h and android/looper.h when accessing the sensors. The 

following code shows how to setup a set up a callback for the accelerometer. The same 

can be done for all the other sensors that need to be monitored.
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void* accelData;
// Grab the looper. Only needs to be done once.
ALooper* looper = ALooper_forThread();

      if(looper == NULL)
        looper = ALooper_prepare(ALOOPER_PREPARE_ALLOW_NON_CALLBACKS);

      // Prepare to monitor sensors
      sensorManager = ASensorManager_getInstance();

      /** Accelerometer **/
      accelerometerSensor = ASensorManager_getDefaultSensor(sensorManager,
                        ASENSOR_TYPE_ACCELEROMETER);
      if(accelerometerSensor == NULL){
        LOGI("Accel sensor doesn't exist");
      }

// Create an event queue for the accelerometer
      accelSensorEventQueue = ASensorManager_createEventQueue(sensorManager,
                        looper, LOOPER_ID_USER, &accelerometer_callback, 

accelData);
// Set the rate at which you would like to receive updates (in microsec)

 ASensorEventQueue_setEventRate(accelSensorEventQueue,accelerometerSensor,
                        (1000L/40)*1000);

// enable the sensor (start it)
AsensorEventQueue_enableSensor(accelSensorEventQueue, accelerometerSensor);

After using the sensors to try and map all the data necessary to run the control 

loops, it was found that there were two pieces of data that were missing that could not be 

sensed using the available sensors on the phone. The first is the angle of attack of the 

aircraft and the second is the indicated airspeed (IAS) of the aircraft. Both of these pieces 

of data are important to autonomous control of the aircraft. Both play a part in knowing 

how much lift the plane is producing. The angle of attack is best described by Figure 

5.11. This figure shows that the angle of attack is the pitch of the aircraft minus the flight 

path angle of the aircraft. These two angles will be different when the wind is blowing the 

aircraft so the flight path angle is less than the pitch of the aircraft.
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Figure 5.11: Angle Of Attack [7]

There are two ways to calculate the angle of attack without knowing the flight 

path angle of the aircraft. The first is to calculate the flight path angle of the aircraft using 

a previous location and altitude of the aircraft and the current location and altitude of the 

aircraft and calculating the angle change between the two. This is subject to many 

parameters. The location of the aircraft must be known and precise as well as the altitude 

of the aircraft. Typical GPS altitude will not be precise enough, as it is only accurate to 

about 20m. Barometric altitude, on the other hand, is precise enough as it is accurate to 

about 1m. The other approach to getting the angle of attack is to assume the wind is 

negligible and therefore, the pitch of the aircraft is equal to the angle of attack. The latter 

solution was selected for this application because of its simplicity in a proof of concept 

application. Also, it was selected because the maximum update rate of the GPS module in 

the cell phone is 1Hz. Although this may be good enough for navigation, it is not good 

enough to calculate the distance traveled at a 40hz rate. This distance could be calculated 

using an extrapolation but the error in this type of calculation would be too great to use 
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reliably.  

The other data point missing is the indicated airspeed. Measuring speed of an 

aircraft is done using two main airspeed readings; ground speed and indicated airspeed. 

There are also other variants that are used such as true airspeed and calibrated airspeed, 

but ground speed and indicated airspeed are the most commonly used values. The ground 

speed of the aircraft is the speed of the aircraft along the ground. This is different than the 

indicated airspeed of the aircraft because the indicated airspeed measures the speed of the 

aircraft in relation to the body of air the aircraft is flying in. For example, if the aircraft is 

flying at 50kts ground speed, but has a 20kts tail wind, it has an airspeed of 70kts. 

Conversely, if the aircraft is flying at 50kts ground speed but has a 20kts head wind, it has 

an airspeed of 30kts. The indicated airspeed is more important than ground speed for 

control because the indicated airspeed plays a factor in calculating the lift of the aircraft. 

There are a few ways to get the indicated airspeed of the aircraft. The first is to use an 

airspeed sensor. Although this is not incorporated into the phone, it could be included on 

the aircraft and its information could be relayed to the phone through the same 

communication network as the control surface deflection values.  Another way to get the 

indicated airspeed would be to somehow get instantaneous wind values and use vector 

math to calculate it based off ground speed.  This is not feasible for this project so an 

airspeed sensor was purchased and used. 

The airspeed sensor interfaces with the external servo controller board and the 

airspeed value is passed to the smartphone through the same interface used send servo 

control commands. All other required data can be calculated from the sensors available 
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on the phone. 
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 6 Evaluation

In order to properly evaluate the performance of the framework, the following 

criterion were established to indicate success.

1. Loop timing should be very close to desired frequency (±2%).

2. Framework must be portable and easily useful in other control scenarios.

3. Testing using the simulated aircraft keeps the plane stable under nominal 

conditions. (Note: The control algorithms used are assumed to be tested and 

proven stable and therefore, any anomalies in aircraft control are assumed to be 

problems with the control framework.)

 6.1 Performance

All performance calculations were completed using simulated sensor inputs and 

output to the simulator. In order to record the performance, the time was recorded at the 

beginning of the signal handler function. That time was then recorded onto a log file, 

saved to the SD card of the phone. After the test was over, the results were tabulated and 

graphed. 

 6.1.1 40Hz

The first test was completed using a 40Hz timer (25ms period). This is the 

frequency at which the project was designed to run. Table 6.1 Summarizes the data 

recorded every time the signal handler function was called.
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Table 6.1: Statistical Results for 40Hz Frequency

Runtime 67.90s

Average 25.0001ms

Median 24.994ms

Min Time 16.785ms

Max Time 32.593ms

Range 15.808ms

Number of Missed Interrupts 0

This table shows that the total runtime of the application was 67.9 seconds. The 

signal handler function was called, on average, every 25.0001ms and it never missed an 

interrupt. One fact to note is that the minimum time between signal handler calls was 

16.785ms and the maximum time between calls was 32.593ms. This range of 15.808ms 

may or may not be acceptable depending on the implementation of the control 

algorithms. This range may be explained by either a blocking process that does not allow 

the signal handler to run until it is complete and/or by inaccuracies in the timing 

mechanism. 

Shown in Figure 6.1 is the statistical representation of the time between the signal 

handlers being called. This shows that 50% of the time between signal handlers being 

called is within about 24.75ms and 25.25ms. It also shows the average being right at 

25.0ms. This makes sense because the timer created is considered an interval timer, 

calling a signal handler at specific intervals. This is opposed to a regular timer which 

times a specific amount of time after something occurs (like the signal handler exiting). 
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Figure 6.1: Box Plot of Control Loop Period (40Hz)

 6.1.2 50Hz

In order to show the preciseness of this timer, faster frequencies were tested. At 

50Hz (20ms period), Table 6.2 shows the results. 

Table 6.2: Statistical Results for 50Hz Frequency

Runtime 68.84s

Average 20.0000ms

Median 19.989ms

Min Time 10.559ms

Max Time 28.565ms

Range 18.006ms

Number of Missed Interrupts 0
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The total runtime of the test is shown as 68.64 seconds. Just as before, the average 

time between interrupts is almost exactly 20.00ms. Also, just as before, that time between 

interrupts ranges over 18ms. Also shown in those statistics is the fact that an interrupt was 

never missed.

Figure 6.2 Shows that statistically, there were a few major outliers and the rest of 

the times were closer together than when run at 40Hz. This plot shows that over 50% of 

the times between interrupts were between 19.75ms and 20.25ms. Almost all of the times 

between interrupts are between 17ms and 23ms.

Figure 6.2: Box Plot of Control Loop Period (50Hz)

 6.1.3 100Hz
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Again, in order to see how far this timer could go, the frequency was increased to 

100Hz (10ms period). The results can be seen in Table 6.3. They show that, just like the 

other two tests, the average runtime is almost exactly the desired period. 

Table 6.3: Statistical Results for 100Hz Frequency

Runtime 55.60s

Average 10.0002ms

Median 10.009ms

Min Time 3.662ms

Max Time 17.121ms

Range 13.459ms

Number of Missed Interrrupts 0

This table also shows a range of over 13ms. This is the point where the increasing 

frequency must stop. Having a range greater than the average means an interrupt could 

potentially be missed. In this scenario, this was not the case, but the potential is there.

Figure 6.3 shows a similar statistical representation to the other. A wide spread 

array of outliers, but a tight grouping of values close to the desired period. Again, over 

50% of all the time between interrupts is between 9.5ms and 10.5ms. 
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Figure 6.3: Box Plot of Control Loop Period (100Hz)

 6.1.4 Dependencies

It is important to keep in mind that these results are dependent on the smartphone 

running the application. The smartphone used in this situation (Samsung Galaxy Nexus) 

is a high end phone (1.2GHz Dual Core Processor, 1GB RAM). Running the same 

application on an older smartphone will not reproduce the same results. Also important to 

note is that smartphones are only going to get faster and include more memory, therefore, 

the framework should run with higher accuracy in the future. 

 6.2 Portability

The package created is easily portable to other applications. As stated previously, 

it uses the POSIX Timers API (included in the Linux Kernel as well as other systems) so 

any system that has access to that API will be able to use this package. That means this 
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package does not necessarily need to be implemented on an Android device. It could be 

used on an embedded device that contains the Linux Kernel, like a Raspberry Pi [21] or 

BeagleBoard-xM [2]. 

 6.3 Simulated Aircraft Testing

In order to properly test out the control loop, a timed flight pattern was created. 

Using a timed flight pattern instead of a location-based flight pattern removes the need 

for any navigation and guidance to be implemented. After manually taking off from the 

runway and getting into a stable flight condition, the control code was engaged. After 

engaging, it sets the desired airspeed to the current airspeed, the desired heading to the 

current heading, and the desired altitude to the current altitude. It holds this stable flight 

condition for 20 seconds, then turns 90 degrees to the right. It also increases altitude by 

150 ft. After 20 seconds, it then turns another 90 degrees and returns to the initial altitude. 

It continues this cycle until the autopilot command is removed. 

During flight, the aircraft seemed to have no trouble holding a heading, but 

struggled to hold a stable altitude. Figure 6.4 shows that when commanded, the aircraft 

turns to the desired heading and holds that heading well. 
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Figure 6.4: Heading Tracking (Desired vs. Actual)

Figure 6.5 shows the altitude tracking during the same flight. It seems to have a 

hard time holding a constant altitude. It also shows remarkable recovery after over-

shooting the target altitude. Aircraft pitch was also included on this graph to show how 

often the pitch of the aircraft was changing in order to produce the altitude differences.
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Figure 6.5: Altitude Tracking (Desired vs. Actual) and Aircraft Pitch
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 7 Future Work

As stated previously, this is one of the more challenging aspects of the on-board 

autonomy problem. In order to have a complete solution, a flight planning phase would 

need to be added to the application, as well as flight navigation and guidance. Post 

processing could also be added which would allow the user to view flight data after the 

flight is complete. Also, the current parameters implemented in the altitude and speed 

control loops present some oscillation. Tuning of these parameters would provide better 

performance of the aircraft. 

 7.1 Pre-flight: Flight Planning

The pre-flight phase is where the application will get the initial inputs from X-

Plane via UDP. This is to establish an initial position using GPS, determine initial 

heading/orientation and verify that all sensors are working properly. As soon as those 

items are validated, the user will have the ability to enter a flight plan using an on-screen 

map. After completing the flight plan, the user can transition to the flight phase by 

selecting an on-screen button.

User interface mock-ups for the pre-flight phase can be seen in Figure 7.1 through 

Figure 7.3. The user should initially see a screen that only has a blue dot on it, 

representing the user's current location (in this case, the simulator's current location). The 

user could then single tap on the screen to place a waypoint. The waypoints added should 

automatically be connected in the order they are added. Also, the user's current location 

should be listed as the starting waypoint and the ending waypoint (depending on how 
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takeoff/landing is handled).

Figure 7.1: Main Screen

After adding waypoints to the flight plan, the user should be able to modify its 

properties (latitude, longitude and altitude). 
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Figure 7.2: Modify Screen

The user should also be able to delete waypoints in the flight plan. A confirmation 

dialog box should show, asking if the waypoint designated would like to be deleted. 
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Figure 7.3: Delete Screen

After completing a flight plan, the user should be able to select an on-screen 

button (labeled “Go!” in the diagrams) which transitions the application into the flight 

state. 

There are many other design decisions that would need to be made for the pre-

flight phase. A takeoff and landing strategy would need to be decided on. This would 

most likely be hardware dependent. The device would need a sensor capable of reporting 

an extremely accurate altitude reading. In order to land, geographic terrain data would 
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need to be as precise as typical airport runway information. One potential alternative 

would be to land in the same location and direction as takeoff. This would create a 

scenario in which the application could record the flight characteristics of the takeoff 

phase and use that information for landing.

A design decision would also need to be made for obstacle avoidance. Since the 

plane would be fully autonomous, the plane would need the ability to avoid obstacles 

either through human intervention or through an extra on-board sensor. There also may 

be a terrain database on the internet that data could be pulled from in order to avoid 

obstacles.

 7.2 Flight Navigation and Guidance

After detailing a flight plan, the flight navigation and guidance portion of the 

application would need to guide the plane in the direction of the waypoints. This includes 

accounting for generic guidance capabilities such as cross track error correction (when 

the plane gets blown off course) and dead reckoning (when the primary navigation 

solution fails). The navigation and guidance solutions could be thesis projects in 

themselves.

During flight, the current user location on the flight path could be shown, as well 

as showing a preview of a video recording. This may not be useful to display during 

flight because the phone will be carried on the aircraft, however, having a video could tell 

the user an abundance of information. A preview of the video record is required by 

Android OS in order to prevent people from writing applications that record video 

without user knowledge. Figure 7.4 shows a potential mock-up of the phone during flight.
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Figure 7.4: During Flight Screen

When originally testing this design, it was found that displaying the flight plan 

with a map overlay is somewhat infeasible. The map that is displayed is a large bitmap 

image which is saved in the phones heap space (in memory). The heap space available is 

limited and the image tends to take up much of that heap space. When other programs 

and processes need heap space, the garbage collector runs and cleans up the unused items 
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in the heap. Garbage collection runs frequently and takes too much time for a real-time 

control application, therefore it is infeasible. 

 7.3 Control Loop Tuning

As discussed in the results section, the altitude control loop is not tuned properly. 

Pinpoint control was not a goal of this project and therefore it could use some tuning. 

There is some oscillation that is currently occurring in the altitude control loop that can 

be removed through refinement of the control parameters. Currently, the altitude control 

loop has two stages, altitude capture and altitude hold. Altitude capture performs when 

the altitude error is less than 50ft. After the airplane is within 50ft of the desired altitude, 

it goes into an altitude hold mode. From Figure 6.5, the plane looks to have the most 

trouble during altitude hold. This is a good place to start tweaking the control parameters 

in order to fine tune the altitude hold.

 7.4 Post Processing

Once the flight plan has been fulfilled, the user would want to access the flight 

data. In order to do this, a post processing screen should be shown. A mock-up has been 

created and is shown in Figure 7.5. It shows the two files that could be saved during flight 

(a Flight Data Recorder file and a video of the flight) and allows the user to share those 

files via whatever methods they see fit.
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Figure 7.5: Post Processing Screen

 7.5 Real-world Flight

A few things could be done in order to improve real-world flight. Currently, the 

only sensor needed that is not contained within the cell phone is the airspeed sensor. It 

would be beneficial to this project if there was a way to calculate the airspeed based off 

some of the other sensors. The airspeed sensor could even be placed on board to 

condition the plane and then removed after the plane “learned” how to calculate the 
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airspeed. 

Another way of doing this would be to use real-time weather data. Calculating in 

the weather would change the given ground speed into an airspeed. This weather data 

would need to be almost instantaneous, possibly from a ground station nearby. This will 

get closer, but the best way would be to integrate an airspeed sensor directly into the cell 

phone. 

 7.6 Conclusion

The control framework developed is a viable solution for the Samsung Galaxy 

Nexus. The control frequencies necessary to control an aircraft are attainable using the 

hardware in the Samsung Galaxy Nexus. It seems the control frequency breaking point 

for this is around 100Hz. The POSIX Timers API allows the framework to be portable 

between different platforms. As smartphones increase in speed and capability, the 

framework will get more defined and more accurate.  
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