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Falls are a major health risk with which the elderly and disabled must contend. Scientific 

research on smartphone-based gait detection systems using the Internet of Things (IoT) has 

recently become an important component in monitoring injuries due to these falls. Analysis 

of human gait for detecting falls is the subject of many research projects. Progress in these 

systems, the capabilities of smartphones, and the IoT are enabling the advancement of 

sophisticated mobile computing applications that detect falls after they have occurred. This 

detection has been the focus of most fall-related research; however, ensuring preventive 

measures that predict a fall is the goal of this health monitoring system. By performing a 

thorough investigation of existing systems and using predictive analytics, we built a novel 

mobile application/system that uses smartphone and smart-shoe sensors to predict and alert 

the user of a fall before it happens. The major focus of this dissertation has been to develop 

and implement this unique system to help predict the risk of falls. We used built-in sensors 

--accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The 

smart-shoe contains four pressure sensors with a Wi-Fi communication module to 

unobtrusively collect data.  The interactions between these sensors and the user resulted in 

distinct challenges for this research while also creating new performance goals based on 

the unique characteristics of this system. In addition to providing an exciting new tool for 

fall prediction, this work makes several contributions to current and future generation 

mobile computing research.
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CHAPTER 1 INTRODUCTION 

Injuries due to gait abnormality are a major health problem all over the world [1].  

These injuries are associated with significant mortality, disability, and a decrease in quality 

of life. Analysis of the human gait for predicting falls is the subject of many current 

research projects. By 2050, it is estimated that more than one in five people worldwide will 

be age 65 or over. Falls in the elderly are very common occurrences as approximately one-

third to one-half of the population repeatedly experience falls on a yearly basis [2]. For 

people 70-75 years old, the estimated incidence of falls is over 30% per year [1].   Accurate 

reliable knowledge of one’s gait characteristics at a given time, and even more importantly, 

monitoring and evaluating them over time, will enable early identification of abnormality 

in gait. This analysis will also help to predict and prevent a fall. The automatic detection 

of falls would help reduce the time of arrival of a medical caregiver and accordingly 

decrease the mortality rate [3] of the elderly.  

The problem of accidental falls among elderly people has substantial social and 

economic impacts as well as health consequences.  In 2009 the elderly population in the 

world reached 737 million, accounting for 10.8% of the total population. In the year 2025, 

it is projected to account for 15% of the total population. Among elderly people who live 

at home, almost half of all falls take place near or inside the house. Nearly half of nursing 

home patients fall each year, with 40% falling more than once [2]. Most falls happen during 

the activities of daily living (ADL) that involve a small loss of balance during an activity 

such as standing or walking.  

Falls not only cause physical injuries, but also have dramatic psychological 

consequences that reduce the independence of elderly people because falls can lead to an 
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avoidance of activity that results in a pattern of increased isolation and health deterioration. 

These incidents can also result in significant economic expenses, including the cost of 

hospitalization and rehabilitation therapy. Acknowledging the need to lower the risk of 

falls, medical teams are often realized for interventions without much empirical evidence. 

Clinicians may see a patient after a long period of time and rely on the patient’s memory 

and subjective descriptions of progress to formulate clinical decisions.  

As indicated above, in our aging society, falls and their consequences cause 

tremendous problems as related to fractures, quality of life and cost of healthcare. Although 

fall detection systems cannot directly predict falls, detection can help reduce the risk of 

patients who would otherwise be left unsupervised for an extended period. Current research 

on automatic fall detection methods can be classified into three main categories in terms of 

the sensors they use: video-based methods [3], acoustic-based methods [4] and wearable 

sensor-based methods [5]. Many systems also rely on significant installation and training 

times. This increases the obtrusiveness of the intervention and contributes to poor 

acceptance of the system. 

With the recent developments in mobile technology, the cost of smartphones has 

decreased as their computational abilities have increased. Smartphone-based fall detection 

systems can function almost everywhere, since mobile phones are highly portable. 

Currently, most smartphones now have sensors to observe acceleration, location, 

orientation, ambient lighting, sound, imagery, etc. [6]. Integrated sensors along with the 

pressure sensor shoe (smart-shoe) can automatically detect falls. Researchers have already 

developed some fall detection systems using smartphones [7]. 
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However, in previous studies, the system can detect a fall only after it has already 

occurred and the system sends an alarm to the caregivers. Even though these fall detection 

systems are helpful, the best way to reduce the number of falls and their consequences is 

to prevent them from happening. We believe that the best way to reduce the number of falls 

is to alert the users to their abnormal gait/walking and the possibility of falling. If abnormal 

walking patterns can be identified using automated processes with good accuracy, an 

elderly person can avoid a potential fall.  

Though there has been substantial research on automated fall detection, the area of 

fall prediction has been understudied. Fall prediction is very challenging since to prevent 

a fall, first we need to identify the patterns that can lead to a fall. Therefore, we focus on 

fall prediction rather than fall detection. To address the issue of fall prevention, in this 

dissertation, we propose a smartphone-based fall prediction system that can alert the user 

to their abnormal walking pattern. Using the IoT systems to securely collect, analyze and 

automate appropriate responses and actions to real-time data collection from sensors and 

other devices within common environments, we developed a fall prediction system. 

Smartphones are integrated with two powerful sensors, accelerometer and gyroscopes. 

These are used in our system with pressure sensor embedded shoes to identify 

abnormalities in walking patterns. Since abnormal walking patterns can lead to a fall, the 

identification of an abnormal gait in our system is used to alert the user regarding a potential 

fall. Using smartphones with a sensor integrated shoe for fall prediction based on abnormal 

walking patterns has not been previously explored. Our system is not only unique, but also 

useful for fall prediction not only among elderly, but also has scope in identifying gait 
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disorders among children, physical rehabilitation patients, and for environmental 

monitoring, human behavior analysis, and social networking research.  

We built solutions using multiple disciplines. For example, we integrated theories 

from advanced embedded systems, applied mathematics, algorithms, electrical and 

electronic engineering, and principles from secure software development. This 

multidisciplinary approach allowed us to develop innovative solutions that otherwise 

would not have been possible. 

1.1 Dissertation Statement  

A trained wireless smartphone- and smart-shoe-based mobile computing system 

can collect and analyze gait patterns in real-time to predict the risk of fall in elderly with a 

high degree of accuracy. 

 

1.2 Dissertation Focus 

In this dissertation, we focus on the development of a smartphone-based fall 

prediction system that can alert the user to his or her abnormal walking pattern. 

Smartphones are integrated with two powerful sensors, accelerometer and gyroscopes. 

These are used in our system with pressure sensor embedded shoes to identify 

abnormalities in walking patterns. Our ongoing research work has made several 

contributions to address the problem of devising smartphone-based health monitoring 

systems, providing solutions to the following research issues:  

1. Mobility and performance issues in motion sensor-based systems for mobile and 

ubiquitous health (mHealth and uHealth).  
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2. Smart-shoe for efficient monitoring and detection of gait abnormality in smartphone-

based systems. 

3. Multi-sensor approach and low energy issues in smart-shoe and smartphone-based 

healthcare and assisted care systems. 

4. Addressing low response time issues to generate an alert message in predicting fall 

related injuries.   

1.3 Major Contributions 

In this section we briefly summarize the contributions of this dissertation.  

1.3.3 Completed Work 

1.3.3.1 Mobility and performance issues in motion sensor-based systems for mobile and 

ubiquitous health (mHealth and uHealth) 

With recent improvements in mobile technology, the cost of smartphones has 

decreased and their computational capabilities have increased. To address the mobility and 

performance of our system, in this approach the accelerometer and gyroscope of the 

smartphone are used to collect the raw acceleration and orientation parameters while the 

user is walking. These data are then processed inside the mobile phone to classify whether 

the user’s gait pattern is normal or abnormal. Though the system continuously monitors 

gait patterns, it only triggers a warning if the gait pattern of the user reaches a certain 

threshold where the user might face a potential fall.  
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1.3.3.2 Smart-shoe for efficient monitoring and detection of gait abnormality in large 

scale smartphone-based systems  

To improve any shortcomings that may occur by only using the smartphone sensors, 

we added a smart-shoe. This smart-shoe gathers pressure values from the foot through 

sensors in order to identify impaired balance. Foot pressure is also an indicator of body 

balance. It is necessary to identify abnormal walking patterns due to gait impairment in 

order to predict the risk of fall. As hardware devices, we used a pair of shoes consisting of 

four sensors each. The devices include Arduino, Wifly shield, amplifier circuit, a power 

supply unit, and a smartphone with the results of the system assessment. 

1.3.3.3 Multi sensor approach in smart-shoe and smartphone-based healthcare and 

assisted care systems  

After assimilating the smart-shoe and smartphone sensor data, we performed an 

extensive set of experiments in the lab environment to evaluate normal and abnormal 

walking patterns. In this contribution, we present analysis using both the smart-shoe and 

smartphone sensor data. We used the same analysis technique as we used in motion sensor 

based gait detection.  

1.3.3.4 Addressing low response time issues to generate alert message in predicting fall 

related injuries 

For our collected data the classification accuracy was very good when considering 

two subjects in the training data but was poor when attempting to classify one subject’s 

gait based on another subject’s gait patterns. To overcome this and to address the low 

response time issue, we analyzed our collected data from the smart-shoe using a signal 
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classification approach that was based on modeling the dynamics. We used a unique signal 

classification approach to recognize the abnormality in a subject’s gait, and modeled the 

dynamics of a system as they are captured in a reconstructed phase space. 

 

1.3.4 Future Research Opportunities  

The remaining work for this dissertation is presented at the end of this dissertation 

with a summary of future research opportunities.  

1.4 Dissertation Organization 

The rest of this dissertation is organized as follows: 

 In Chapter 2, we present a brief description of current technology. We first 

discuss the background of normal walking. Next, we discuss the taxonomy of different 

mechanisms of falls and their constraints. Finally, we discuss the current state of the art in 

fall and related works. 

 In Chapter 3, we present the research challenges for predicting falls due to 

abnormality in gait. This chapter briefly presents the details of each research challenge and 

our approach to address them. 

 In Chapter 4, we discuss the design procedure and development process of a 

wireless smart-shoe. Also, in this chapter we discuss the hardware details of the smart-

shoe.  
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 In Chapter 5, we discuss the design characteristics of the proposed fall prediction 

system. Then we discuss the fall prediction system architecture. The rest of the chapter 

briefly presents the details of the alert generation mechanism of the system. 

 In Chapter 6, we introduce the design procedure of the gait logger system for data 

collection. The rest of the chapter briefly presents the details of features and attributes 

attraction from collected data.  

 In Chapter 7, we introduce the evaluation and predictive analysis of the system. 

We introduce the results of motion sensor based analysis, results from the analysis of smart-

shoe worn sensors and the multi sensor approach for gait detection. The chapter ends with 

a brief discussion of the present model construction for gait biomechanics. 

 In Chapter 8, we conclude the dissertation with some future research directions 

and opportunities. A brief discussion of the impact of our work will be presented in this 

chapter.    

1.4 Publications 

 [J1] A.K.M. Jahangir Alam Majumder, Ishmat Zerin, Dr. Sheikh Iqbal Ahamed, and 
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CHAPTER 2 BACKGROUND AND OVERVIEW OF CURRENT 

TECHNOLOGIES 

 

 

 

2.1 Background  

2.1.1 Theory of Walking  

To determine abnormal gait patterns, we must first establish criteria for normal 

walking. Normal walking is the coordination of balanced muscle contraction, joint 

movement, and sensory perception. Limbs, trunk, and systemic diseases will affect a 

person's gait. Healthy people walk on two legs, generally able to automatically adjust their 

position to achieve balance and stability. The pelvis is affected by the arm swing, resulting 

in periodic rotation and incline. Also ankle, knee and hip angle change in the process of 

motion for coordination. So the normal gait is periodic, with the characteristics of 

coordination and balance [8]. Walking speed decreases as people age. This speed decline 

affects faster walking speeds more than comfortable walking speeds. Quantitative analysis 

of gait stability and gait symmetry has obtained a series of parameter results. On this basis 

and colligated other factors, we have proposed to construct an early warning system, that 

predicts the subject’s risk of fall when walking.  

2.2. Basic Architecture  

Fall detection and fall prevention systems have the same basic architecture as 

shown in figure 1. These systems follow three phases of operation: sense, analysis, and 

communication. The main difference between these systems lies in their analysis phase, 

which varies in their feature extraction and classification algorithms. Fall detection systems 

try to predict the occurrence of falls accurately by extracting the features from the output 



12 
 

 

 

data of the sensors and then identifying falls from other activities of daily living (ADL). 

Fall prevention systems can predict fall events early by analyzing the outputs of the sensors. 

The necessary steps needed for both fall detection and prevention systems are data/signal 

acquisition, feature extraction and classification, and communication for notification. The 

number and type of sensors and notification techniques on the other hand, vary from system 

to system (some examples are shown in figure 1). In conventional systems, discrete 

hardware components are used for the implementation of each unit, whereas in 

smartphone-based systems, all required units may already be in-built within a smartphone. 

 

Figure 1. Basic architecture of smartphone-based systems 

2.2.1. Sensing  

The first phase of any fall detection and prevention system is sensor data collection. 

In this phase gait quantities, like stride length and stride frequency are measured using 

sensors. Smartphones come with built-in sensors and these are one of the reasons for 

choosing smartphones as an alternative for conventional fall detection and prevention 



13 
 

 

 

platform [2]. Moreover, the users of smartphone-based systems are more likely to carry 

smartphones (with built-in sensors) throughout the day since mobile phones are seen as 

important in daily life. This use is in contrast to the users of conventional systems who may 

not always to wear the special micro sensors [9]. There are many types of sensors now 

available for smartphones. These sensors include accelerometers, gyroscopes, temperature 

sensors and magnetic field sensors [10-12]. These are used in various ways in smartphone-

based solutions. Some solutions use only one of the aforementioned smartphone sensors 

for fall detection or prediction [13-14]. The tri-axial accelerometer is the most used sensor 

for smartphone-based fall detection and prevention. Another benefit to smartphone-based 

solutions is they can use combinations of two or more smartphone sensors during this 

sensing phase [15]. Some solutions use both smartphone sensors and external sensors for 

detection and prediction of falls [16]. It is also possible to use smartphones for analysis and 

communication in addition to sensing [17-18]. An uncommon type of solution proposed 

[19], they used a smartphone for sensing only, and external systems to perform the analysis 

and communication tasks of a fall prediction system. 

2.2.2. Analysis  

After measuring the physical quantities by using sensors, obtained data are 

analyzed. In this phase, the features are extracted from the sensor outputs and initial 

decisions about the abnormal gait are made by classifying and analyzing these extracted 

features. Most of the fall related solutions are based on Threshold-Based Algorithm (TBA). 

The reason it is useful to choose TBAs is that these algorithms are less complex and thus 

require the lowest computational power [2], which helps to reduce battery consumption 

[20]. To make preliminary decisions about a potential fall, these algorithms generally 
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compare the sensor’s data with predefined threshold values. TBAs may use more than one 

threshold [14] and threshold values that could be either fixed or adaptive. The users of any 

fall prediction system provide some physiological data and the system obtains the 

corresponding threshold that is not re-calculated during system operation. For example, the 

algorithm proposed in [7] uses an adaptive threshold which changes with user-provided 

parameters such as height, weight and level of activity.  

Most solutions employ the tri-axial accelerometer for sensing which measures 

acceleration simultaneously in three orthogonal directions. TBAs use these acceleration 

values for calculating a Signal Magnitude Vector by using the following relation:  

𝐴𝑆𝑖𝑔𝑛𝑎𝑙 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟= √|𝐴𝑥|2 + |𝐴𝑦|2 + |𝐴𝑧|2                              (1) 

Where Ax, Ay, and Az represent accelerometer signals of the x, y, and z-axis 

respectively. If the value of signal magnitude vector for a particular incident exceeds a 

predetermined threshold value, then the algorithm preliminarily identifies that incident as 

a fall event. To make the final decision about a risk of fall, algorithms usually depend on 

the next communication phase.  

The processing power of smartphone has increased dramatically over the past few 

years. The computational power of the smartphone has become comparable to that of 

former workstations [21] and, thus, even complex machine learning and statistical 

classification algorithms for fall detection and prevention can easily be implemented in 

smartphones [22]. Authors implemented three machine learning algorithms [23], namely 

C4.5, Decision Tree [24], Naïve Bayes Classifier [25] and Support Vector Machine [26], 

on smartphones and compared their recognition accuracy. In [27], the authors employed a 

combined algorithm of Fisher’s Discriminant Ratio (FDR) criterion and J3 criterion [28].  
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2.2.3. Communication  

When a smartphone-based solution detects a fall event, it communicates with the 

user of the system and caregivers. Most fall detection solutions carry out the third phase 

communication, in two steps. First the system attempts to obtain feedback from the user by 

verifying the preliminary decision about the user’s gait patterns and thus improve the 

sensitivity of the system. The second step depends on the user’s response. If the user rejects 

the predicted fall, then the system restarts. Otherwise, a notification is sent to the users and 

caregivers to ask for immediate assistance. Some systems may not wait for user’s feedback 

and will instantly convey an alert message to their caregiver [29-30]. Moreover, instead of 

alerting the users, fall prevention systems can also activate other assistive systems (e.g., 

wearable airbag [31-33], intelligent walker [34-35], intelligent cane [36-37], and intelligent 

shoe [38]) for protecting the user from the adverse effects of fall.  

The user’s feedback can be collected automatically by analyzing the sensors’ data. 

For example, the algorithm proposed by [2] generates the final decision by automatically 

analyzing the difference in position-data before and after the suspected falls. Other systems 

required manual feedback from the user. Combinations of alarm systems and graphical 

user interface of smartphones are also used for collecting user feedback [39]. After 

requesting a response from the user, the system waits for a pre-defined period (typically ≤ 

1 min). If the user does not respond within that time, the system will consider the event a 

fall. However, fall detection systems may fail to detect a real fall event. In such cases, some 

systems provide help (or panic) buttons and thus allow users to seek outside help manually 

[40].  
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Smartphone-based systems generate several types of notifications to seek help from 

caregivers or for forewarning the users about an imminent fall such as audible alarms [41], 

vibrations, Short Message Service (SMS) [42], Multimedia Messaging Service (MMS) [14, 

27], and even automatic voice calls [19, 42]. E-mails and Twitter messaging have also been 

described as a means of notifying users and caregivers about a fall [2]. Notification 

messages may contain information on time [14], Global Positioning System (GPS) location 

(coordinates) [14, 16], and location map [43]. Smartphone-based solutions can also support 

streaming of phone data from microphones and cameras for further analysis of the situation 

[19]. 

2.3 Taxonomy based on Sense, Analysis and Communication 

This section presents a detailed taxonomy of smartphone-based fall detection and 

prediction systems with respect to the three different phases of operation: sense, analysis, 

and communication. Here we focus on the categorization of various attributes of 

smartphone-based solutions for fall detection and prevention. The aim of this taxonomy is 

to provide a complete reflection of the properties of existing as well as possible 

smartphone-based solutions.  

2.3.1. Based on Sensing Mechanism and Sensor Placement  

Figure 2 illustrates the taxonomy of smartphone-based fall detection and prevention 

technologies based on their sensing mechanisms and sensors placement. Existing solutions 

are represented with rectangles, while bold rectangles represent possible solutions that have 

not previously been reported to identify areas for future research. Smartphone-based 

solutions can be categorized into two types: context-aware and body-worn. With context-
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aware systems, the user should not wear any sensor or system. Sensors are placed in the 

user’s surrounding environment and the user can move freely within the range of the 

sensors. Though, the main advantage of context-aware systems is that the person does not 

need to wear any special device, their operation is limited to those places where the sensors 

have been previously placed [44]. No such smartphone-based context-aware solution has 

been found. All the smartphone-based solutions, proposed so far, are body-worn systems 

and users are required to keep their smartphones close to their body. This type of solution 

can be further classified according to the existence of external sensors and the placement 

of the smartphone. 

 

Figure 2. Taxonomy of smartphone-based systems based on sensing mechanism and 

sensor placement 
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2.3.2. Based on Algorithm Used in the Analysis   

Smartphone-based solutions can also be categorized on the basis of algorithms used 

in the analysis phase. Figure 3 presents the taxonomy of these algorithms. Due to the lower 

processing capacity and low-energy storage capacity of batteries in smartphone compared 

to desktop or laptop computers, smartphone-based solutions mostly use TBAs for the 

detection of falls.  

 

Figure 3. Taxonomy of smartphone based fall detection and prevention algorithms 

2.3.3. Based on System Communication for Notification  

Existing and potential smartphone-based fall detection and prevention systems 

communicate with the users, caregivers or assistive systems by sending an alert message. 

The taxonomy of communication patterns in smartphone-based fall detection and 

prevention is shown in figure 4. Detection systems communicate with the users to obtain 

feedback, whereas prediction systems communicate to alert them about their forthcoming 
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falls. Prediction systems are only concerned with pre-fall data, but detection systems deal 

with pre-fall, post-fall and intermediate data. Also, detection systems notify caregivers of 

fall events and ask for help, whereas prediction systems attempt to prevent impending falls 

with the help of other assistive systems. Some smartphone-based solutions require external 

sensing units that may or may not have built-in processors. These external units may 

transmit either raw data or results after primary analysis. No article has been found, that 

uses assistive system or external processing units for implementing a smartphone-based 

fall prevention solution. 

 

Figure 4. Taxonomy of communication patterns in smartphone-based fall detection and 

prevention systems 
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2.4 Mechanisms of fall  

Elderly people rarely have a single cause for falls. A fall is usually caused by a 

complex interaction among the following: 

 Intrinsic factors (age-related decline in function, disorders, and adverse drug 

effects) 

 Extrinsic factors (environmental hazards) 

 Situational factors (related to the activity being done, e.g., rushing to the bathroom) 

Figure 5 represents a taxonomy of most common falls in elderly.  

2.4.1. Intrinsic Factors 

Age-related changes can impair systems involved in maintaining balance and 

stability (e.g., while standing, walking, or sitting). Changes in muscle activation patterns 

and ability to generate sufficient muscle power and velocity may impair the ability to 

maintain or recover balance in response to perturbations (e.g., stepping onto an uneven 

surface, being bumped). In fact, muscle weakness of any type is a major predictor of falls. 

 

Figure 5. Taxonomy of most common falls in elderly  
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Chronic and acute disorders and use of drugs are major risk factors for falls. The 

risk of falls increases with the number of drugs taken. Psychoactive drugs are the most 

commonly reported as increasing the risk of falls and fall-related injuries. 

2.4.2 Extrinsic Factors 

Environmental factors can increase the risk of falls independently or, more 

importantly, by interacting with intrinsic factors. Risk is highest when the environment 

requires greater postural control and mobility (e.g., when walking on a slippery surface) 

and when the environment is unfamiliar (e.g., when relocated to a new home). 

2.4.3 Situational Factors 

Certain activities or decisions may increase the risk of falls and fall-related injuries. 

Examples are walking while talking or being distracted by multitasking and then failing to 

notice an environmental hazard, rushing to the bathroom, and rushing to answer the 

telephone. 

2.5 Related Work 

In past research, many scientists have focused on gait detection techniques, but not 

prevention of the fall.  Most of them discussed mobility and privacy issues [45], but they 

did not discuss wearing a sensor. Moreover, other researchers do not account for the cost 

effectiveness of the system as well. Early machine-based gait recognition research typically 

utilized a combination of visual techniques or radar systems [46-47]. In [48], the author 

designed a type of wearable force sensor based on a photo elastic triaxial force transducer 

to measure ground reaction force (GRF) in gait analysis.  
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Table 1. Comparison of existing work based on different features 

Approach 

Cyber 

Physical 

System 

Interoperable 
Support High 

Sampling Rate 

Minimize 

Integration effort 

Cost 

Effective 

Bamberg 

[65] 
Yes Yes No No 

No 

Zhang 

[64] 
Yes Yes Yes Yes 

No 

Lee [63] Yes Yes No No No 

Erez  [62] Yes Yes No Yes No 

B-

Shoe  [61] 
No No No Yes 

No 

Lane [60] Yes Yes No Yes No 

Mellone 

[59] 
No No No Yes 

No 

Sposaro 

[7] 
No No No Yes 

No 

Jiangpeng 

[58] 
No No No Yes 

No 

Pedro [57] No No No Yes No 

Jiang [56] No No No Yes Yes 

Popescu 

[66] 
No No Yes Yes No 

Bourke 

[67] 
Yes No No Yes No 

Alwan 

[45] 

No No Yes Yes No 

Our 

Approach 
Yes Yes Yes Yes Yes 
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Sensors are placed at toe or heel to recognize movements by thresholds in [49]. In 

[50], authors explained adopting the methodology of information cognition from 

multisensory systems was regarded not only efficient but also reliable.  In [51-52] reviewed 

the use of accelerometer-based systems in human movement, such as monitoring a range 

of different movements, measuring physical activity levels and identifying and classify 

movements. Also, they discussed a real-time human movement classifier using a triaxial 

accelerometer for ambulatory monitoring. 

Researchers introduced three domains in their study to characterize gait 

performance in elderly persons [53]; The “Rhythm” domain is best represented by cadence, 

swing time and stance time. The “Pace” domain is best represented by gait speed and stride 

length. Finally, the “Variability” domain is best represented by stride length variability. 

Additionally, researchers have studied how to support the walking speed as a general 

indicator that reflects functional and physiological changes in the health state and helps to 

predict falls [54-55].   

Furthermore, the author used a pattern recognition algorithm to define the changes 

during the gait cycle using their device comprising of three force-sensitive resistors (FSR) 

located on an insole (one under the heel, and two at the first and fourth metatarsal heads) 

and a gyroscope [68]. The system was tested on two subjects with incomplete spinal 

injuries and was used to trigger functional electrical stimulation (FES), with demonstrated 

benefit for both subjects. In [69], the author proposes a method that uses a network of fixed 

motes to provide location information about the victim after a fall has been detected. 

Similarly, iFall [7] is an Android application that has been developed as a fall 

detection system. Data from the accelerometer and position is assessed using several 
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threshold-based algorithms to detect a fall. The fall detection algorithm requires significant 

threshold adjustment without any guarantee of its performance. It therefore requires extra 

processing.  The PerFallD [41] is also a pervasive fall detection system tailored for mobile 

phones with two different detection algorithms based on the mobile phone platforms. It 

implements a prototype system on the Android G1 only. 

To address the drawbacks of the above-mentioned systems, in this dissertation, we 

propose a smartphone-based gait detection system using shoe-worn sensors. Our system 

has been designed to directly address some of the drawbacks of the existing systems and 

yields good prediction results. It is inexpensive because it requires only a smartphone with 

low cost smart-shoe. Our system also supports high sampling rates during data collection 

and is interoperable with minimum integration complexity.  The most important aspect of 

our system is the warning that allows the user to prevent a fall before it actually happens. 

Again we believe that our system is the first smartphone-based gait detection system, that 

can prevent a fall by automatically detecting abnormal gait patterns. We illustrate the 

difference between our system and the other related works in table 1. Our system is a cyber-

physical system with interoperable capabilities and supports high sampling rate.   
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CHAPTER 3 RESEARCH CHALLENGE IDENTIFICATION 

3.1 Use of Smartphone for Sensing, Analysis and Communication 

The benefits of using a smartphone as a pervasive fall detection and prevention 

system have already been discussed in the literature [15]. Smartphone-based systems 

experience some critical challenges with certain issues remaining open to further research. 

These challenges and open issues in smartphone-based fall management systems have been 

identified; this section presents the most relevant ones. 

3.1.1. Quality of Smartphone Sensors 

It is still an open research question whether the qualities of built-in smartphone 

sensors in existing smartphones are adequate to develop fall detection and prevention 

systems with acceptable performance. When choosing a smartphones for a particular 

application (fall detection or fall prevention) adequate attention should be paid to the 

quality of the sensors. Specifications of the sensors should satisfy the minimum 

requirements of the applications.  

3.1.2. Energy Consumption and Battery Life  

A major weakness of smartphone-based solutions is the limited battery life of 

smartphones. Usually the battery life of a smartphone in normal use is about one day [20], 

but no smartphone battery will last more than a few hours with heavy usage [70]. The 

battery life is also directly proportional to the recording time and activities of user [71].  
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3.1.3. Smartphone Placement and Usability Issues  

Smartphone-based fall detection and prevention systems are mostly designed for 

older people and individuals with neurodegenerative disorders. However, the acceptability 

of these solutions among older individuals has been suggested as a limiting factor [17]. 

Older people may also prefer to have a single phone with self-contained fall detection 

functionality rather than wear a separate fall detection device. Therefore, while designing 

new smartphone-based solution, smartphone placement and usability issues should be 

handled carefully. 

3.2 Gait Abnormality Detection Using Smartphone Sensor Data 

After measuring the physical quantities by using sensors, obtained data should be 

analyzed. In this phase, the significant features are extracted from sensor output and 

preliminary decisions are made by classifying and analyzing the extracted features. Most 

smartphone-based solutions, especially solutions for fall detection, use a Threshold-Based 

Algorithm (TBA). The most vital reason for choosing TBAs is that these algorithms are 

less complex and hence require the lowest computational power [2], which helps to reduce 

battery power consumption [20]. In order to make preliminary decisions about a potential 

fall, these algorithms usually compare the sensor’s outputs with predefined threshold 

values. TBAs may use more than one threshold [14] and these threshold values are either 

fixed or adaptive. It should be noted that the adaptive threshold values are not calculated 

dynamically while using the system. Instead, users provide physiological data and the 

system obtains the corresponding threshold that is not re-calculated during system 
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operation. The algorithm proposed in [7] uses an adaptive threshold which changes with 

user-provided parameters such as height, weight and level of activity.  

As mentioned before, the computational power of the latest smartphones has 

become comparable to that of former workstations and, thus, even complex machine 

learning and statistical classification algorithms for fall detection and prevention can easily 

be implemented in smartphones [22]. Some fall detection and prevention solutions [72] 

include external sensors and processing units, using the smartphone for sensing and 

communicating with the users or their caregivers. 

3.3 Development of a Wi-Fi Communication Network for Smart-Shoe and Integration 

of Different Smart-Shoe Hardware Module  

For data collection from the smart-shoe, the most important challenge is to establish 

a dedicated communication framework. When choosing the device, we considered the 

popular data transmission technologies. The three most popular wireless technologies are 

Bluetooth, ZigBee, and Wi-Fi protocols. They correspond to the IEEE 802.15.1, 802.15.4 

and 802.11a/b/g standards, respectively. Bluetooth communication has covered a relatively 

short range. Considering all the limitations, we developed a custom Wi-Fi communication 

module for the smart-shoe. The Wi-Fi communication module is able to wirelessly send 

smart-shoe sensors data to the smartphone.  

We also had to develop a means of communication between the smartphone and 

smart-shoe which required different hardware modules. Putting these modules together and 

having them function properly was another challenges we encountered in our research.  

 



28 
 

 

 

3.4 Classification of Gait Using Hjorth Parameters  

The short-time Fourier transform (STFT) has been popular for time-frequency 

analysis of non-stationary signals [73]. However, its high computational complexity and 

redundant frequency information prohibit its use in real-time applications. The Hjorth 

parameter is one of the ways of indicating statistical propertries of a signal in time domain. 

The Hjorth parameter proposed in [74] may be a good alternative for the STFT because it 

can extract useful information both in time and frequency domains through simple 

computation [75]. In this dissertation, we introduce the Hjorth parameter and compute its 

Fisher ratio to find the dominant frequency band and the timing in training 

electroencephalogram (EEG) signals. Extracting a high-informative feature in gait data 

analysis is carried out by computing the Hjorth parameter of a test signal at the pre-

determined frequency band and timing instant. Then, the feature is used to classify gait 

patterns. 

It has three parameters: Activity, Mobility, and Complexity. Activity parameter, 

the variance of the time function, can indicate the surface of power spectrum in frequency 

domain. The Activity returns a large/small value if the high frequency components of the 

signal exist many/few. Mobility parameter has a proportion of standard deviation of power 

spectrum. Complexity parameter indicates how the shape of a signal is similar to a pure 

sine wave. The value of Complexity converges to one as the shape of signal gets more 

similar to a pure sine wave. 

3.5 Alert Generation Using Processed Data 

Existing and potential smartphone-based fall detection and prevention systems 

communicate with the users and caregivers by sending alert messages to obtain the user’s 



29 
 

 

 

feedback. Prediction systems are only concerned with pre-fall data, but detection systems 

deal with pre-fall, post-fall and intermediate data. Finally, detection systems notify 

caregivers of fall events and ask for help, whereas prediction systems attempt to prevent 

impending falls with the help of other assistive systems. Some smartphone-based solutions 

require external sensing units that may or may not have built-in processors. These external 

units may transmit either raw data or results after primary analysis. 
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CHAPTER 4 LIMITATIONS OF SMARTPHONE SENSOR-BASED 

SYSTEMS AND DESIGN AND DEVELOPMENT OF A WIRELESS SMART-

SHOE 

 

 

 

4.1 Limitations of Smartphone Sensor-Based Analysis 

The accelerometer of smartphones was used in all the previous solutions, and the 

GPS receiver is the second most commonly used sensor, followed by the gyroscope. Over 

the past few years, the number of studies on smartphone-only solutions for gait detection 

is higher than that of other smartphone-based solutions. However the use of external 

devices in smartphone-based fall detection and prevention systems is increasing gradually. 

The smartphone sensor that is used by all smartphone-only solutions is the 

accelerometer and the usual dynamic ranges of these built-in accelerometers are 

insufficient for accurate fall incident detection [17]. Acceptable dynamic ranges for 

accelerometers from ±4 g to ±16 g have already been researched (where, 1 g = 9.8 m/s2) 

[76]. Smartphones typically contain accelerometers with dynamic ranges of ±2 g or less 

[20], but higher dynamic ranges can be found in high-end smartphones [77].  

The issue of energy consumption should be considered when designing a 

smartphone-based system. The battery life of the smartphone is dependent on the number 

of sensors used, data sampling rate [39], data recording time [78], features of algorithm 

[79] and mode of operation [13]. The battery life of a particular smartphone (Samsung 

Galaxy S II) was reduced to 30 hours when only one sensor was used, to 16 hours if three 

sensors were used simultaneously [39]. 

When developing the right algorithm, care should be taken to incorporate a minimal 

number of features, as fewer features decreases the usage of the processor and saves energy 

[79]. Experimental results of [13] show that the use of the battery per hour for foreground 
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execution mode and background execution mode are 2.5% and 2.25% respectively. 

However, energy saving measures could negatively impact accuracy and usability. 

People with cognitive disabilities face great difficulty using the complicated 

interfaces of modern smartphone-based applications [80-81]. A recent study has revealed 

the myth that older people avoid new technologies as a fallacy [82]. Older people have 

been found to be willing to accept new technologies to support their independence and 

safety [83]. As mentioned earlier, all smartphone-only solutions use the accelerometer as 

a sensor which requires fixed placement of the smartphone. Various fixed positions on the 

body including the shirt pocket, waist and trouser pocket [84]. This placement limits the 

usability of smartphone-based solutions because not everyone carries their smartphone in 

a fixed position and it may be difficult to convince them to do so [85]. In order to overcome 

this obstacle, researchers have proposed the use of external body-worn sensors in 

combination with smartphones. This solution is also not accepted universally because these 

external devices expose the frailty of the user and many users forget to put on such external 

devices [86]. 

4.2 Smart-Shoe Hardware  

In this section, we describe the various components of our prototype system and 

present in detail the hardware design and software algorithms used for fall detection, 

feature extraction, and classification.  

As hardware devices, we used a shoe consisting of four sensors. The shoe include 

arduino, Wifly shield, amplifier circuit, power supply unit, and a smartphone with built-in 

accelerometer, gyroscopes and a display with the results of the system assessment. 
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4.2.1. Sensor Selection and Measurement Position  

The sensors used in the smartshoe were selected with the goal of creating a system 

capable of sensing many parameters that characterize a user gait.  

 

(a) 

 

 

(b) 

Figure 6. (a) Piezoresistive Sensor [15] (b) In-sole sensors distribution (Measurement 

Position) 

For the analysis of the kinematic motion of the foot, four piezoresistive pressure 

sensors were placed at the bottom of the shoe to assess the timing parameter and pressure 

distribution of foot. The human foot is usually divided into three different regions, Fore 

Foot (FF), Mid Foot (MF) and Rear foot (RF). Each insole of the shoe is equipped with 

four pressure sensing elements.  

Table 2. Insole Sensing Position 

Position Number Name 

1 Posterior Metatarsal 

2 Heel (Hind foot ) 

3 Great Ball 

4 Little Ball 
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The pressure sensors we employed in this system are SEN 08685, which are 

flexiforce force-sensitive resistor sensors. SEN 08685 sensor is a flexible printed circuit 

with thickness of 0.203 mm. Clearly the more sensors are placed, the higher precision of 

plantar pressure distribution can be measured. 

Our goal is to adjust the number of pressure measurement points.  Most of body 

pressure is measured from the rear foot and the fore foot. Considering these issues we have 

placed two of our sensors in the fore foot region and two of them are in the rear foot region 

as shown in figure 6. The four sensors are listed in table 2. 

We have used piezoresistive force sensors for measuring the pressure while 

walking. The resistance of this sensor changes with the change in pressure.  The harder the 

users press, the lower the sensor’s resistance. Resistance changes only when pressure is 

applied to the round area at the end of the sensor, but the resistance does not change while 

being flexed. 

4.2.2. Amplifier Circuit 

The amplifier circuit, shown in figure 7, amplifies the output of the pressure sensor. 

Each sensor has its own amplifier circuit.  

 

Figure 7. Amplifier circuit with pressure sensor 
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The circuit is an inverting operational amplifier that produces an analog output 

based on the sensor resistance and a feedback resistance (RF = 10k). The sensor resistance 

(RS) at no load condition is greater than 5M ohm. The application of a force to the active 

sensing area of the sensor results in a change in the resistance of the sensing element 

inversely proportional to the force applied. The amplified output voltage is given by, 𝑉0 =

−𝑉𝑇  × (
𝑅𝐹

𝑅𝑆
). 

4.2.3. Wi-Fi Communication Module  

An Arduino [figure 8(a)] is used as an analog to digital converter (ADC).  Arduino 

is an open-source physical computing platform based on a simple I/O board and a 

development environment that implements the processing/wiring language.  

(a) (b) 

Figure 8. (a) Arduino and (b) WiFly Shield    [16] 

The WiFly Shield [figure 8(b)] equips Arduino with the ability to connect to 

802.11b/g wireless networks.  The shield is a breakout board for roving networks RN- 131c 

WiFi chip. 

4.3 Physical Implementation 

Using all of the electronics (including the sensors located at the bottom of the shoe), 

a Wi-Fi module for the wireless transmission, and the power supply, we were able to 

engineer a smart-shoe as shown in figure 9a. Each shoe module consisted of an 
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instrumented insole placed beneath the foot and an attachment that mounted to the back of 

the shoe. A sample insole of a smart-shoe and enclosed sensors and hardware are detailed 

in figure 9b. 

4.4 Software 

To receive and analyze data from the hardware and smartphone, we have developed a gait 

collector software for receiving accelerometer and gyroscope value of the smartphone 

sensors. Also we developed Wi-Fi communication software that is capable of transmitting 

pressure data from the smart-shoe to the smartphone. After collecting three gyroscope and 

accelerometer signals (in directions of x-, y-, and z-axis) from the smartphone sensors and 

the shoe data we processed it to create a decision tree for identifying gait abnormality.  

 

 
 

Figure 9a. Smartshoe hardware mounted on 

shoe 

Figure 9b. IoT components of a wireless 

shoe with an example of the walking 

event trial in the hallway 
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In order to process smartshoe sensors’ data, the communication module has two different 

software tasks. One is for the Arduino and another is for the smartphone. We programmed 

the Arduino to read an analog signal from the shoe sensors to convert the signal into digital 

form and to create a data packet. Subsequently, Arduino sent those packets to the phone as 

a response to the data sending request from the phone. The Arduino also managed the Wi-

Fi communication coordination with the WiFly shield.  In the smartphone, we developed 

an application that can communicate with the WiFly shield. It collects the sensor data with 

a polling request. Then the data are saved and analyzed after parsing the packet and 

calculates real pressure value from the sensors. From here we identify the threshold value 

of the individual users.  
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CHAPTER 5 DESIGN AND DEVELOPMENT OF A SMART FALL 

PREDICTION SYSTEM 

 

 

 

Based on the findings of the system assessment, we decided to approach the overall 

solution from two different perspectives – motivation and automation. 

5.1. Design Characteristics 

As a result of the outcomes we received several important issues and a guideline 

about the possible desired characteristics of an automated system. 

5.1.1. User friendliness 

The user interface should be designed considering the target population, especially 

elderly. Their familiarity with certain technology, and physical capabilities should be 

considered during the design of the system. 

5.1.2. Cyber physical system 

Our objective is to enable the efficient development of distributed cyber physical 

systems (CPSs) whose nodes operate in a proven and correct manner in terms of 

functionality and timing, leading to predictable behavior of the entire system.  

5.1.3. Mobility 

One key characteristic of the system is to maintain the mobility of the users and 

caregivers. Caregivers are expected to monitor a user’s real time data using their mobile 

phones and receive alert message in case of emergency.  
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5.1.4. Continuous data collection 

Continuous gait longitudinal data collection is one of the problems in monitoring 

the elderly. Data should be continuous and regular to have accurate information of the 

user’s current status. Once the system is deployed, it should be able to collect data for a 

period of time and update the caregiver by sending an alert message in case of emergency.  

5.1.5. Quality over quantity 

Data collected using a smartphone-based system can be biased by different factors. 

For example, when a user went to bed or sat down for a long time, the caregiver or loved 

one might not get accurate data for that period of time. The user’s response is influenced 

by their current status of mobility. So the quality of the gait data varies with the time and 

with daily activities. The way to increase the quality of the data is to record the data when 

it matters most. For example, recording gait parameters when the user is walking or doing 

simple or complex activities increases the quality of data. 

5.2 System Architecture 

The strength of our proposed architecture relies on existing wireless 

communication technology to provide a low price with maximum freedom of movement 

to users. In addition we have used small, light-weight devices that are easy to use by the 

elderly like smartphone and a smart-shoe. The architecture of the system is shown in figure 

10.  
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Figure 10.  System architecture of proposed system 

This overall architecture was developed assessing iterative designs of the 

prototypes with three age ranges (25-35, 35-45, and 50+ years). To integrate the sensors, 

we used output of both the smart-shoe and smartphone and performed a set of experiments 

to analyze and discriminate between normal and abnormal walking patterns. Subjects wore 

the smartshoe like any other regular walking shoe and carried their smartphone in their 

pocket or held it in their hand. (A detailed description of the system assessment follows 

later in this dissertation). In the system, the accelerometer and gyroscope of the smartphone 

provides the raw acceleration and orientation information. In the first phase of data 

collection, the smart-shoe collected the foot pressure values while the subject was asked to 

perform three different types of simulated walking patterns: normal, stiff leg and leg length 

discrepancy. After receiving the pressure data through Wi-Fi communication, the gait 

related pressure data was processed by the smartphone to classify whether the user’s gait 

pattern was normal or abnormal. We implemented the quantative gait analysis in the iOS 

platforms and Android platforms.  
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5.2.1. Design Overview 

In the system, the piezoresistive sensor from the smart-shoe is used to collect the 

raw insole pressure data while the user is walking. This data are then compared with the 

gait parameters of the biomechanical model.  Then the resultant outputs are processed by 

the smartphone to identify the user’s gait patterns. Though the system continuously 

monitors gait, it only triggers a warning if the gait pattern of the user reaches a certain 

threshold where the user might face a potential fall. At that time, the system warns the user 

with a message and vibration to alert him or her about an imminent fall.  

5.2.1.1 Fall Prediction System Alert 

As mentioned earlier, though the system will continuously monitor gait patterns, 

the design will only trigger a warning if the gait pattern of the user reaches a certain 

threshold where the user might face a potential fall. At that moment, the system detects a 

high-risk gait pattern and enables a warning to the subjects through an audio message and 

vibration, to alert him or her about an imminent fall. 

Planning ahead for the design of the interface for user alert generation, we created 

a progress bar based on the threshold value of the gait cycle. In the progress bar, we will 

use three different colors to indicate three different walking patterns. The colors present 

three different predictive interpretations. 

(I) Normal: The individual walks normally. For a normal walking pattern the progress bar 

would show green. 

(II) Vulnerable: The system detects an abnormality in the individual’s walking pattern and 

the system generates a visual alert message to the individual as a warning. The progress 
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bar displays a yellow for possible upcoming fall. Yellow would indicate potential danger 

and that the individual must be careful. A moderate auditory and vibration alert would also 

be activated. 

(III) Dangerous: Red would be shown in the progress bar if the collected pattern value 

crossed a predefined set of threshold values. This would prompt the individual to pay 

particular attention and be extra careful because they have a high fall risk. In this 

circumstance, our system would not only enable an auditory and vibration alert message to 

warn the subject, it would also send a message to the caregiver or loved ones to warn them 

about a possible accident, so that he or she could be proactive for any kind of unexpected 

situation. 

The most important aspect of our system is the warning that allows the individual 

to prevent a fall. We posit that this real time assessment and alert methodology could reduce 

the risk of falls for the elderly.  
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CHAPTER 6 DEVELOPMENT OF A GAIT LOGGER FOR DATA 

COLLLECTION AND FEATURE EXTRACTION 

 

 

 

6.1 Design and Development of a Gait Logger for   Data    Collection 

To evaluate our proposed system, we have developed a prototype application and 

investigated its performance with extensive iterative experiments. In this section, we 

introduce a gait logger system for data collection.  

6.1.1. Experimental Setup 

We have developed a prototype application of the Smart Fall Predictor (SFP) 

system for the iPhone. The screenshots of the SFP prototype application are shown in figure 

11. In figure 11(a), the gait collector interface is shown, the anatomical location of insole 

sensors is shown in figure 11(b), and the real-time graphical representation of insole 

sensors pressure variation is shown in figure 11(c). We have also developed the interface 

for the user alert which is shown in figure 11(d). We have been using our prototype 

application for data collection and for system evaluation with the goal to improve the 

overall accuracy of the smart fall prediction system.  

For the data collection, we initially recruited five test subjects who are graduate 

students of different heights, weights, and ages. For these five test subjects we collected 

different walking data using smartphone sensors-accelerometer and gyroscopes- only. In a 

different experiment, we tested our system by collecting data from smartphone and smart-

shoe sensors for another fifteen test subjects, who are also graduate students of different 

heights, weights, and ages. We collected data for a normal and two different abnormal 

walking patterns (stiff/peg leg and leg length discrepancy). We also collected standing data 
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using the smart-shoe and compared them with the walking pressure data. Data for each 

subject was collected for twelve, eighteen-second trials from a smartphone placed in the 

subject’s pocket and from the smartshoe worn on the right foot. 

   
 

(a) Gait Collector 

interface 

(b) Anatomical 

Location of Insole 

sensors 

(c) Insole pressure 

variation while 

walking 

(d)Alert Generation 

Figure 11.  Screenshots of a Smart Fall Predictor (SFP) prototype 

Then we collected data from twenty test subjects of different age groups, heights, 

and weights. We analyzed the data from this group for gait event detection. We also ran 

experiments and analyzed these data to predict simulated forward falls.   

6.1.2. Data Collection Procedure 

We collected data for a normal walking pattern and two different abnormal walking 

patterns in different environments. We simulated the abnormal walking patterns that are 

caused by two physical abnormalities common in most elderly people, stiff/peg leg and leg 

length discrepancy. These abnormalities lead to a huge number of falls every year. We 
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simulated the “leg length discrepancy” situation by taking one shoe off (on the right leg) 

and wearing an extra heel on top of the regular heel on the left shoe. We simulated the “stiff 

leg or peg leg” situation by walking with a straightened left knee. 

In an another experiment, each subject first walked at his or her own self-selected 

natural pace for two to four trials, termed “free gait.” Then walk with trendelenburg gait 

(reduces the step on the unaffected side in a sort of drag motion and displays a lateral 

deviation of the entire trunk and the affected side during the stance phase of the affected 

lower limb)  and Spastic gait (a stiff, foot-dragging walk caused by a long muscle 

contraction on one side). Additionally, the subject asked to perform three different types 

of movement, stand still, going upstairs, and going downstairs. 

6.1.3. Smart-shoe Data Collection  

The smart-shoe data collection process is shown in figure 12. The pressure data 

from the shoe are transferred to the smartphone through an adhoc Wi-Fi communication 

network. Pressure data were collected for the test subjects over a period of time and each 

time subject was tested with standing and three different walking patterns. 

 

Figure 12. Data collection process from a smartshoe 
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We first used this dataset for the training of our system. The data collected from the 

shoe showed from which sensor we get maximum pressure during the experiments with 

respect to a subject’s sex/age, height and weight. For example, when subject one was 

performing his assigned task we observed that sensor two was getting more pressure than 

the other. We used this maximum pressure value in determining the threshold for each 

subject in their walking patterns. 

 

  

(a) Stationary (b) Walking with no abnormality 

  

(c) Walking with leg length discrepancy (d) Walking with stiff /peg leg discrepancy 

Figure 13. Foot pressure distribution of (a) standing still (b) walking with no abnormality 

(c) walking with leg length discrepancy (d) walking with stiff/peg leg discrepancy 
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Raw data on foot pressure distributions for each moving pattern were acquired with 

the developed foot pressure sensing shoe. The sample variation of foot pressure for each 

kind of movement is displayed in figure 13. Pressure value represents the discretized output 

value of analog information into which voltage is converted. Though there is a spike in 

standing data, it is still easily distinguishable from the walking signal. The measurement 

allows the data to be integrated to a standard clinical assessment of a person's postural 

stability and/or risk of falling. The measurements may include any other test that measures 

pressure using the pressure sensor value.  It is necessary to differentiate if the user is 

walking on a flat surface or on a surface with considerable vertical variation. Using our 

system we can also assess the effects of balance abnormality on human walking patterns 

and the variability of the extracted features. 

6.1.4 Data Collection and Sampling  

The screenshots of the system prototype application are shown in figure 14. In 

figure 14(a), the gait collector interface is shown while walking. We can also monitor 

insole pressure variation with graphical representation on a smartphone which is shown is 

figure 14(b). We used our prototype application for data collection and for evaluating our 

system. 

We collected data for different gait cycle events in different environments for 

twenty samples in each gait event. Each sample was 20-30 second long. The collected 

sample data is shown in figure 15. We choose the three aforementioned walking events of 

a gait cycle that might cause physical abnormalities common in most elderly people. These 

abnormalities also lead to a huge number of falls every year. 
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(a) Gait collector interface (b) Real-time Pressure Monitoring on a Smartphone 

Figure 14.  Screenshots of prototype system 

We first used these datasets for the training of our system. Later we used the trained 

system with other test subjects to verify the gait detection accuracy of the system. Also, we 

compared the features from the gait events’ data with the model parameters to predict 

imbalance of walking.  

 

 

Figure 15. Pressure variations of a single support event in stance phase 

To test the validity and long term feasibility of our system, we are currently testing 

our system at the Mobility Lab at University of Wisconsin-Milwaukee innovation campus. 
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Vicon Plug-in Gait Full Body model was used to dynamically capture the three-

dimensional (3D) movements of the upper extremity and lower extremity joints.  For this 

purpose, one representative participant was instrumented with 39 retro-reflective markers 

on bony anatomical landmarks and key locations of their full body.  Motion data were 

collected at 120 Hz using a 15-camera 3D Vicon T-series motion capture system (Vicon 

Motion Systems, Oxford, UK). Table 3 shows a spatiotemporal Parameters for a sample 

test subject.  

Table 3. Spatiotemporal Parameters for a sample test subject  

 

In a different data collection phase, we recruited a set of participants from both 

genders, a variety of age groups, and a range of heights (see Table 4 for statistics) for data 

collections from both smartphone and smart-shoe. We established a baseline walk period 

for each of the walking traces. This was achieved by manually finding the walk-start (tstart) 

and walk-end (tend) events.   

Parameters 

 

Systems 

Cadence 

(steps/min) 

 

Stride length 

(cm) 

 

Stride time 

(sec) 

 

Speed 

(m/sec) 

 

Using our system 107.5630 112.885353853 1.1.1156.1156 96550.9655 

Using T-series 

Vicon motion 

capture system 

103.35 108 

 

1.161 

 

 

0.93 
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Table 4. Statistics about subjects participating in our different data collection procedure 

 

We optimized the model parameters using the manually-determined ground truth 

walk periods.  

 

Figure 16. Illustration of Walking Intervals 

For 𝑡0−𝑆𝑡𝑎𝑟𝑡 ≤ 𝑡𝑆𝑡𝑎𝑟𝑡  ≤  𝑡0−𝐸𝑛𝑑 and  𝑡𝑛−𝑆𝑡𝑎𝑟𝑡 ≤ 𝑡𝐸𝑛𝑑  ≤  𝑡𝑛−𝐸𝑛𝑑 as shown in 

figure 16. We define the false positive error, false negative error and total error as follows, 

∈𝑃 = (𝑡𝑆𝑡𝑎𝑟𝑡 − 𝑡0−𝑆𝑡𝑎𝑟𝑡) + (𝑡𝑛−𝐸𝑛𝑑 − 𝑡𝐸𝑛𝑑) 
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∈𝑁 =∑(𝑡𝑖:𝑠𝑡𝑎𝑟𝑡 − 𝑡(𝑖−1):𝐸𝑛𝑑)

𝑛

𝑖=1

 

                                                    ∈𝑡𝑜𝑡𝑎𝑙=∈𝑝+∈𝑁                                  (2) 

To minimize the error in the sample data we got rid of 200 initial and end data 

samples in each interval of data collection.  All data collections for this dissertation work 

was approved under the Marquette University IRB approval number HR-2851.  

6.2 Feature Calculations  

There are several important features for identifying normal and pathological 

walking patterns [87]. Some features are general and important for any kind of application, 

such as cadence, stride length, stride height and speed. Some features are applicable for 

specific domains. For example, the pressure balance of locomotion between feet is 

important for predicting fall [88]. Pressure mobility is critical for diabetes, foot protection 

and ulcer prevention [89]. 

6.2.1 Extracting Tilt Invariant Signals 

In table 5, we summarize the notations that we are going to use to describe the 

methodology of our system. In our system, first, we collect three gyroscope and three 

accelerometer signals from the motion sensors of a smartphone (see figure 17). We then 

calculate and remove the gravity vector from the acceleration signals bias and perform a 

set of matrix rotation operations to correct the tilt of these signals. We combine the 

horizontal accelerometer signals as well as the pitch and roll to create four tilt-invariant 

signals. 
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Table 5. Summary of Notations 

Symbol Meaning 

a0x (t), a0y (t), a0z (t) Raw Accelerometer data in x, y and z-axis. 

a1x (t), a1y (t), a1z (t) Tilt Accelerometer data in x, y, z direction. 

a2x (t), a2y (t), a2z (t) Accelerometer data in x, y, z direction with 

further tilts. 

r0p (t), r0r (t), r0y (t) Rotation vector of pitch, roll and yaw 

respectively. 

B (t) Bias of the acceleration Vector 

Ah (t) Horizontal Acceleration 

θ1, θ2 Tilt Angles 

From these signals, we extract three quantitative features to create a feature vector. 

The feature extraction method applied to acceleration signals is applied here to both 

acceleration and gyroscope signals. 

 

Figure 17. Acceleration and Gyroscope readings in directions of x-, y-, and z-axis that are 

associated with and fixed in regards to the body of the smartphone and smartphone 

orientation can be determined by yaw (Ax), pitch (Ay) and roll (Az) [90]. 

At time t, let the following column vectors represent the current raw accelerometer 

and gyroscope readings: 
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𝑎0⃗⃗⃗⃗ (𝑡) = [𝑎0𝑥(𝑡), 𝑎0𝑦(𝑡), 𝑎0𝑧(𝑡)]′                 (3) 

 𝑟0⃗⃗⃗⃗ (𝑡) = [𝑟0𝑝(𝑡), 𝑟0𝑟(𝑡), 𝑟0𝑦(𝑡)]′                 (4) 

Where the elements of the gyroscope vector are pitch, roll, and yaw respectively. 

Now the gravity vector is found by calculating the bias of the acceleration vector. The bias 

is found by taking the average of N acceleration vectors where N is the total number of 

data instances: 

𝑏⃗ (𝑡) =
1

𝑁
∑ 𝑎0⃗⃗⃗⃗ (𝑡)
𝑁
𝑡=1                 (5) 

Two tilt angles can be calculated to describe the tilt of the bias vector as follows: 

θ1 = arctan (
𝑏𝑦

𝑏𝑧
)                              (6) 

θ2 = arctan (
𝑏𝑥

𝑏𝑦 sin(𝜃1)+𝑏𝑧 cos(𝜃1)
)     (7) 

A tilt compensated acceleration and gyroscope vector can then be calculated by 

multiplying the raw vector with a rotation matrix as follows: 

𝑎1⃗⃗⃗⃗ (𝑡) = [
cos θ2 −sin θ1 sin θ2 −cosθ1sinθ2
0 cosθ1 −sinθ1

sinθ2 sinθ1cosθ2 cosθ1cosθ2

] × 𝑎0⃗⃗⃗⃗ (𝑡)  (8) 

𝑟1⃗⃗⃗  (𝑡) = [
cos θ2 −sin θ1 sin θ2 −cosθ1sinθ2
0 cosθ1 −sinθ1

sinθ2 sinθ1cosθ2 cosθ1cosθ2

] × 𝑟0⃗⃗  ⃗(𝑡)    (9) 

Now the gravity vector can be removed from the accelerometer data by calculating 

the bias of the vertical component of the acceleration and removing it: 

𝑎 2(𝑡) =  [𝑎1𝑥(𝑡),  𝑎1𝑦(𝑡), (𝑎1𝑧(𝑡) −
1

𝑁
∑ 𝑎1𝑧(𝑖)
𝑁
𝑖=1 )]

′

                   (10) 

Because there is no other vector bias that can be used to correct another axis, we 

cannot distinguish between lateral and forward acceleration or between pitch and roll. We 

calculate the magnitude of the horizontal acceleration is 𝑎ℎ(𝑡) = √𝑎2𝑥(𝑡)2 + 𝑎2𝑦(𝑡)2 , 
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vertical acceleration is 𝑎𝑣 (𝑡) =  |𝑎2𝑧 (𝑡)|and combine the pitch and roll in the same way 

to create a scalar vector that describes the general tilt: 𝑟𝑡(𝑡) = √𝑟1𝑝(𝑡)2 + 𝑟1𝑟(𝑡)2  ,  and 

vertical rotation is 𝑟𝑣 (𝑡) =  |𝑟1𝑦 (𝑡)|.                                (11)                      

6.2.2 Accelerometer and Gyroscope Energy 

Since we are dealing with human activities, measuring the amount of physical 

activity is important. Time integrals of the absolute values of accelerometer readings were 

summed up to assess physical activity in [91]. For activities like jumping most of the 

energy will be vertical while for many others most of it will be horizontal. So we extracted 

vertical (𝑒𝑣) and horizontal (𝑒ℎ) energy separately. When the window size is T, these are: 

𝑒𝑉𝑎 = ∫ [ 𝑎𝑣]𝑑𝑡
𝑇+𝑡0

𝑡=𝑡0
 ,     and         𝑒ℎ𝑎 = ∫ [ 𝑎ℎ] 𝑑𝑡

𝑡=𝑇+𝑡0

𝑡=𝑡0
.                      (12) 

Similarly the gyroscope is based on another property, which implies that all bodies 

that revolve around an axis develop rotational inertia (they resist changing their rotation 

speed and turn direction). A body’s rotational inertia is determined by its moment of inertia, 

which is a rotating body’s resistance to change in its rotation speed. The gyroscope must 

always face the same direction, being used as a reference to detect changes in direction. 

With the window size T, the rotational vertical energy is, 

𝑒𝑉𝑟 = ∫ [𝑟𝑣]𝑑𝑡
𝑇+𝑡0

𝑡=𝑡0
, and 𝑒ℎ𝑟 = ∫ [𝑟ℎ] 𝑑𝑡

𝑡=𝑇+𝑡0

𝑡=𝑡0
.                                 (13) 

Since the sampling rate is known these integrals can be estimated by taking 

weighted sums. It should be noted that accelerometer energy is dependent on physiological 

factors like body weight. So, for most activities, it will vary from person to person. 
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6.2.3 Hjorth Mobility and Complexity 

Hjorth asserted the need for quantitative methods in the description of EEG traces 

because the physical system generating the signals cannot be associated with the sine 

function concept used for frequency domain analysis. Also, the Hjorth parameters are one 

of the ways of indicating statistical property of a signal in time domain and it has three 

kinds of parameters as in Table 6: Activity, Mobility, and Complexity. 

Activity parameter, the variance of the time function, can indicate the surface of the 

power spectrum in the frequency domain. That is, the value of activity returns a large or 

small value if the high frequency components of the signal exist in large and small. 

Hjorth Mobility parameters are defined as the square root of the ratio of the variance 

of the first derivative of the signal and that of the signal amplitude. This parameter has a 

proportion of standard deviation of the power spectrum. It describes the curve shape by 

measuring the relative average slope of the signal. 

Table 6. Hjorth Parameter 

Parameter Mathematical Notation 

Activity 𝑣𝑎𝑟 (time function, energy) 

Mobility 

√
𝑣𝑎𝑟(the first derivative of the signal)

𝑣𝑎𝑟(𝑡ℎ𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙)
 

Complexity 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑓𝑖𝑟𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙)

𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙. )
 

Hjorth Complexity is the ratio between the mobility of the first derivative of the 

signal and the mobility of the signal itself. It measures the frequency domain irregularity. 

The complexity parameter indicates how the shape of a signal is similar to a pure sine wave. 
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The value of Complexity converges to 1 as the shape of a signal approaches a sine 

wave.Mobility and complexity can be computed in linear time [91] using the first order 

difference sequence of the time series. They give us some frequency domain information 

without incurring a significant computational load. 

The sample accelerometer-based normal, stiff/peg leg, and leglength walking 

features are shown in table 7. 

Table 7. Accelerometer-based features attributes for a random subject 

Accelerometer Attributes 

Walking 

Features 

Normal Stiff/Peg leg Leg length 

Vertical 

Energy 

8.762 4.623 0.835 

Horizontal 

Energy 

4.661 3.842 2.143 

Vertical 

Mobility 

0.741 0.593 0.698 

Horizontal 

Mobility 

0.752 0.503 0.841 

Vertical 

Complexity 

1.054 0.843 0.992 

Horizontal 

Complexity 
1.070 0.715 1.193 
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6.2.4 Smart-shoe-based Gait Features 

Several gait features are proposed in the literature to estimate walking speed in the different 

models: acceleration, step cycle (frequency), and a hybrid method [92]. We examined two 

features for each of the insole sensors of our system: (1) standard deviation (SD), and (2) 

number of peaks in each sampling window. The sample smart-shoe-based walking features 

are shown in table 8. 

Table 8. Shoe-based features attributes for a random subject 

Right Shoe Attributes 

Walking 

Features 

Normal Peg leg Leg length 

SD-Sensor1 0.184 0.195 0.093 

SD-Sensor2 0.157 0.172 0.092 

SD-Sensor3 0.158 0.173 0.092 

SD-Sensor4 0.157 0.175 0.089 

# Peaks-Sensor1 28 28 31 

# Peaks-Sensor2 19 28 30 

# Peaks-Sensor3 20 27 28 

# Peaks-Sensor4 19 27 31 
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CHAPTER 7 EVALUATION AND ANALYSIS OF THE SYSTEM 

In this section, we present how the data are analyzed and performance is measured. 

First, we introduce performance measurements using only smartphone sensor data. Then 

we use only smart-shoe sensor data for detecting gait abnormality. Finally, we analyze the 

smart-shoe sensor data with smartphone sensor data to develop a unique gait abnormality 

detection system that helps to predict a fall.  

7.1 Smartphone Sensor based Gait Detection  

To test the effectiveness of our feature extraction and classification method, we 

collected data using smartphone sensors-accelerometer and gyroscope, which were 

analyzed and classified as previously mentioned. For this analysis, we recruited five 

participants who are graduate students between 20 and 30 years old for data collection. 

Three of them are between 170-180 cm tall and two are between 158-169 cm tall. One 

person is approximately 60 kg, two weigh 61–70 kg, and two weigh 71–80 kg. The feature 

vectors were then classified using a J48 decision tree classification algorithm found in 

WEKA, a powerful data mining toolkit [90]. In the first test, the algorithm attempted to 

distinguish between the simulated abnormal gaits while in the second test, these two classes 

were combined into a single abnormal walking class.  

The tests attempted to classify both single subject data and cross subject data. In 

figure 18, we can see that the WEKA toolkit was able to identify the three different walking 

patterns (i.e. normal gait, stiff/peg leg, and leg length discrepancy). The gait classification 

was clearly represented as clusters marked by three different colors in the WEKA tool.  
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Figure 18. WEKA feature visualization tool and data analysis tool [93] 

It is interesting to note that the observed acceleration for normal walking is 

somewhat similar to that of abnormal walking. They are basically a short period of 

acceleration followed by a small impact.  The ability to distinguish between these events 

is critical to the success of our system. The average measured peak acceleration for normal 

walking is greater than the average peak for acceleration with stiff/peg leg and simulated 

leg discrepancy.  As shown in figure 19, the acceleration profile for normal walking is very 

similar to that of an abnormal walking pattern, with a notable difference in acceleration 

magnitude. We have analyzed multiple cycles to compute a more accurate average peak of 

the acceleration value. 
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(a) Acceleration observed while normal 

walking 

(b) Acceleration observed with stiff/peg 

leg situation 

 

(c) Acceleration observed with simulated leg length discrepancy 

Figure 19. Acceleration observed in different situation 

7.1.1 Result Analysis 

In this section, we first discuss the performance of motion sensors-based application.  

7.1.1.1 Single Subject Data 

We observed near perfect classification accuracy (see table 9) when the data to be 

classified was collected from the same subject as the training data. The classifier could 
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even easily distinguish between the two different kinds of abnormality. The problem with 

single subject data is that it requires the subject to train the system by simulating 

abnormalities. Not only is this inconvenient for the subject, but the simulations will be 

inaccurate by virtue of the fact that they are simply simulations. 

Table 9. Classification Accuracy for Single Subjects 

Accuracy of Classification 

Subject Three Classes Two classes 

Subject 1 Only 99.180% 99.438% 

Subject 2 Only 99.462% 99.592% 

Subject 3 Only 98.324% 99.234% 

Subject 4 Only 99.125% 99.562% 

Subject 5 Only 98.980% 98.658% 

7.1.1.2 Multiple Subject Data 

Classification accuracy was very good when considering both subjects in the 

training data, but was poor when attempting to classify one subject’s gait based on another 

subject (see table 10).  

Table 10. Classification Accuracy for a Multiple Subject 

Accuracy of Classification 

Training Set Three Classes Two classes 

Subject 1 28.571% 70.482% 

Subject 2 29.740% 41.598% 

Multiple Subjects 98.616% 99.021% 
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The classification accuracy was raised considerably when merging the two 

simulated abnormalities into a single class.  

7.1.2 Related Publications  

 AKM Jahangir Alam Majumder, Farzana Rahman, Ishmat Zerin,  Ebel Jr. William, 

Sheikh Iqbal Ahamed, “iPrevention: Towards a Novel Real-time Smartphone-based 

Fall Prevention System” in Proc. of ACM Symposium on Applied Computing (ACM 

SAC 2013) Portugal, March, 2013. 

7.2   Gait Analysis Using Smart-shoe-Worn Sensors  

In the previous section, we only used smartphone sensor data. However, due to 

smartphone limitations, we developed and used a smart-shoe to get more accurate results. 

In this section, we will present our analysis based on only the smart-shoe sensor data.  

 

Figure 20. The Gait Detection system with its IoT components: (1) Smartshoe-worn 

sensors, (2) Rehabilitation module, (3) Abnormality in gait detection, (4) Decision, and 

(5) Feedback 
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For our collected data, the classification accuracy was very good when considering 

two subjects in the training data, but was poor when attempting to classify one subject’s 

gait based on the other subject. To overcome this, we analyzed our collected data from the 

smart-shoe using a signal classification approach that is based upon modeling the dynamics 

of the system [94]. We used a unique signal classification approach that models the 

dynamics of a system as they are captured in a Reconstructed Phase Space (RPS). The 

architecture of the system used for this analysis is shown in figure 20. 

7.2.1 Phase Space Reconstruction 

The basis of this approach is that, given access to the state structure of a system, a 

classification of such systems can be developed. We start by presenting a theoretical 

construct of the problem. Given a finite-dimensional system state space M and the 

dynamics of the system represented by a mapping φ: M→M, a system is described by the 

pair < φ, M>. We then define a set ɸ of all possible dynamics on M with a topology τ. 

Without loss of generality, we assume M to be d-dimensional, because given any𝑀/ ϲ 𝑀, 

M can be replaced by 𝑀/ U M. The system classification then becomes one of partitioning 

ɸ according to the requirements of the classification problem with a particular dynamics φ 

identified with a particular partition Pi such that ɸ = U Pi, where Pi ∩ Pj= θ, i≠ j .The 

problem for real world systems is how to gain access to and represent φ for a particular 

system. The approach used here is phase space reconstruction, also known as phase space 

embedding, and was first proposed in [97].  

The work of Takens [95] and Sauer [96] are used as a theoretical basis for our signal 

classification process. These works state that a time series of observations sampled from a 

single state variable of a system can be used to reconstruct a space topologically equivalent 
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to the original system. Given a time series state variable observations, 𝑥𝑛,     𝑛 = 1,… ,  𝑁,  a 

trajectory matrix X of dimension d and time lag τ is defined as, 

𝑋 = [

𝑥1+(𝑑−1)τ
𝑥2+(𝑑−1)τ

......
𝑥𝑁

] =

[
 
 
 
 
 
 
 
 𝑥1+(𝑑−1)τ, … ,         𝑥1+τ             𝑥 1

𝑥2+(𝑑−1)τ,    … ,   𝑥2+τ           𝑥2

.                   .                      

.                      .                    

.                         .                

𝑥𝑁,    … ,   𝑥𝑁−(𝑑−2)τ   𝑥𝑁−(𝑑−1)τ ]
 
 
 
 
 
 
 
 

                                 (14) 

Where, each row vector in the matrix represents a single point in the embedding space; 

         𝑋n =  xn    xn−τ,  …    ,  xn−(d−1)τ                                                              (15) 

where, 𝑛 = (1 + (𝑑 − 1)τ),  … ,   𝑁.  a row vector 𝑥𝑛 is a point in the RPS. 

The dimension d is greater than twice the box counting dimension of the original 

system which is a sufficient condition for topological equivalence [97]. Most real systems 

do not have a known d, but it may be estimated using the false nearest-neighbor technique 

[98], which calculates the percentage of neighboring points which are near because of 

projection rather than dynamics. In Takens’ original work, τ =1. However, in practice, it 

has been found that the appropriate selection of the time lag can reduce the required RPS 

dimension. A common empirical rule for determining time lag is to use the first minimum 

of the automutual information function [98]. 

The proposed classification algorithm is theoretically capable of differentiating 

between signals generated by topologically different systems because of the 

representational capability of RPSs. It can differentiate between deterministic nonlinear 

signals with identical linear characteristics but different nonlinearities. This theoretical 
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capability is demonstrated empirically across different complex real-world application 

domains. 

7.2.2 Gaussian Mixture Models (GMM) 

The next step is to learn a GMM probability distribution for each gait pattern. This learning 

process is completed by creating an RPS using the time lag and dimension and inserting 

all the signals for a particular class into this space as described by (14) above. 

A GMM is defined as: 

𝑝(𝑥) =   ∑ 𝜔𝑚 𝑃𝑚 (𝑥)

𝑀

𝑚=1

= ∑ 𝜔𝑚 𝒩(𝑥; µ𝑚, ∑𝑚) 

𝑀

𝑚=1

        (16) 

Where, M is the number of mixtures, 𝒩(𝑥; µ𝑚, ∑𝑚) is a normal distribution with mean 

 µ𝑚 and covariance matrix , ∑𝑚, and 𝑤𝑚 is the mixture weight with the constraint 

that ∑𝑤𝑚 = 1. The necessary number of mixtures is related to the underlying distribution 

of the RPS density. The classification accuracy tends toward an asymptote as the number 

of mixtures increases, provided there is sufficient training data. This method yields a 

Maximum Likelihood (ML) estimate, via the estimation formulas for m= 1, 2,… M 

{
 
 

 
 µ𝑚

/
= 

∑ 𝑝𝑚(𝑥𝑡) 𝑥𝑡
𝑇
𝑡=1

∑ 𝑝𝑚(𝑡)
𝑇
𝑡=1

,

                    ∑𝑚
′ = 

∑ 𝑝𝑚(𝑥𝑡)(𝑥𝑡− µ𝑚)
/(𝑥𝑡− µ𝑚)

𝑇
𝑡=1

∑ 𝑝𝑚(𝑥𝑡)
𝑇
𝑡=1

𝑤𝑚
/
= 

∑ 𝑝𝑚(𝑥𝑡) 
𝑇
𝑡=1

∑ ∑ 𝑝𝑚(𝑥𝑡) 
𝑀
𝑚=1

𝑇
𝑡=1

,

,                          (17) 

Which are then substituted into (16). These signal classification approaches are useful for 

our system as they have the ability to distinguish the transition in gait patterns over a short 

period of time and help us to evaluate gait abnormality.  
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7.2.3 Result Analysis  

In this section, we first discuss the performance of the smart-shoe sensors. We built 

the reconstructed phase space model for normal and for two different abnormal walking 

patterns.  Then, we analyzed the patterns to show the differences in normal walking versus 

abnormal patterns to predict a simulated falls. It was observed that the pressure distribution 

was different from one subject to another as the gait pattern varied in each subject. 

As discussed above, our approach to signal classification is to build GMMs of signal 

trajectory densities in an RPS and differentiate between signals. This is done in three steps. 

The first step, data analysis, includes embedding the signals and estimating the time lag 

and dimension of the RPS. The second step is learning the GMMs for each signal class. 

The final step is signal classification, which is done with a maximum likelihood estimator 

(MLE) technique. 

We applied our technique to three data sets just like in the smartphone sensor only 

system in section 7.1. The first data set is generated from normal walking, and the second 

and third data sets are from two simulated abnormal walking patterns. It was observed that 

we were getting maximum pressure with one or two sensors during assessment with respect 

to the subject’s sex, age, height and weight. 

We used this maximum pressure value while determining the threshold for each 

subject in his or her walking pattern. We also saw the variations of different walking 

patterns for different subjects. Figure 21 is the histogram of maximum pressure variation 

count of ten times walking for a test subject. We observed that sensor two Heel (Hind foot) 

has maximum pressure for five times while walking.    
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Figure 21. Histogram of maximum pressure variation for different subjects 

Using the data set from the maximum pressure sensors, we plotted the RPS 3-D 

phase plot for three different walking patterns. We found different patterns for each 

different walking class as shown in figure 22.   

 

Figure 22. Reconstructed 3-D phase space of Normal, and simulated walking with 

Stiff/peg leg and Leg length discrepancy for maximum foot pressure variation when τ =8 
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Then, we modeled the dynamics using Gaussian mixture models (GMM). First, 

learning the GMM for each type of embedded time series and then testing the mix function 

of GMM on embedded time series to get the GMM.  

 
 

(a) Normal walking (b) Leglength discripancy 

 

 

(c) Stiff /Peg leg discripancy 

Figure 23.  GMM-based gait classification modeling for three different walking 

patterns (2 Mixtures): (a) Walking without abnormality, (b) Walking with simulated 

leg length discrepancy, and (c) Walking with simulated stiff/peg leg 
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The particular models used here are statistical distributions that can be learned over 

RPSs and then used to classify unseen signals. Nonparametric distributions based on three 

different walking, and the distributions based on Gaussian mixture model distributions are 

also illustrated. A visualization of a GMM is shown in figure 23, where the principle axes 

of the ellipses indicate one standard deviation of each mixture in the model. 

Our experimental results do not show the desired accuracy with the GMM for 

walking, as our analysis is for simulated data. However, for GMM, there is still room for 

classification accuracy improvement. Also, using the WEKA machine learning toolkit, we 

performed a 10-fold cross-validation in which we folded the data by session in order to 

avoid over-fitting (i.e., training and testing sets would never contain examples from the 

same subject). We ran our 3-class classifier per subject and averaged the results to obtain 

an overall accuracy of 89%. The confusion matrix for this classification is shown in table 

11.  

Table 11. Confusion matrix of walking based classification 

 Normal Stiff/peg leg Leg length 

A
ct

u
al

 C
la

ss
 

Normal 92.1 4.2 3.7 

Stiff/peg leg 6.2 88.3 5.6 

Leg length 3.8 9.6 86.7 

Predicted Class 
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7.2.4 Related Publications  

 AKM Jahangir A. Majumder, Sheikh Iqbal Ahamed, Richard J. Povinelli, Chandana 

P. Tamma, and Roger O. Smith, “A Novel Wireless System to Monitor Gait Using 

Smartshoe-Worn Sensors”, to appear in Proc. of the  IEEE Computer Software and 

Applications Conference (COMPSAC 2015), Taichung, Taiwan, July 2015. 

7.3 A Multi-Sensor Approach for Fall Risk Prediction in Elderly 

In this section, we used both smart-shoe and smartphone sensor data in order to 

improve the accuracy of our predictions. First, we used the same analysis technique as we 

used in motion sensor based gait detection. For better gait classification accuracy towards 

predicting fall, we collected more experimental data and analyzed those data sets to 

improve our accuracy.  

7.3.1 Classification 

After calculating the Energy, Mobility, and Complexity for each of the four signals, 

and features from the shoe sensors, the resulting feature vector is classified as normal or 

abnormal based on training data. We used a decision tree algorithm because it is a fast 

classification algorithm that can be implemented in real time. The abnormal class is trained 

by simulating multiple gaits that are indicative of falling. The pseudo code of the proposed 

classification algorithm on the smartphone is in the listing Algorithm 1.  
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7.3.2 Algorithm 1: Fall Prevention Algorithm on smartphone; Input:  Smartphone and 

smart-shoe Sensors Data; Output: Alert Generation.   

1. T   ← Training set 

2. X1 ← getAccGyroStage() 

3. X2 ← getPressureStage() 

4. C1 ← Acc and Gyro influence coefficient from training set  

5. C2 ← pressure sensor influence coefficient from training set  

6. begin loop start 

7.         Read Acc and Gyro data 

8.         Perform tilt-invariant calculations  

9.         Read pressures values from smart-shoe  

10.         Calculate: ← 𝑃𝑎𝑣𝑔 =
1

𝑛
∑ [𝑃𝑅,𝑖]; 𝑛 = 4
𝑛
𝑖=1  

11.         Integrate accelerometer, gyroscope and pressures values  

12.     Integrated stage value = C1X1 + C2 X2 

13.     Features(t) = Extract features from integrated signal    

14.        if  training = No 

15.           Classify features (t)    

16.               if  Integrated Stage is abnormal  

17.                   alertUser() 

18.              end if 

19.              else  

20.              Update T with features(t) 

21.       end if            

22.  go to loop start  

The fall prediction alert message will be generated using smartphone and smart-

shoe sensors’ data by identifying the threshold value in walking patterns. This is the key 

step for determining normal and abnormal walking in our system. Here getAccGyroStage() 

and getPressureStage() methods are used to calculate the values for individual sensors 
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depending on the defined threshold values. The accuracy obtained for both of the methods 

is used to calculate the reliability weighted coefficient (C1 and C2) for multimodal decision 

fusion. 

7.3.3 Result Analysis  

In this section, we discuss the performance of our multi sensors approach.   

7.3.3.1 Single Subject Data 

To determine the classification accuracy of walking, we evaluate the performance 

of our system using 10-fold cross validation for fifteen different subjects.  We observed 

near perfect classification accuracy (see table 12) when the experimental data were 

collected from the same subject. The classifier can easily distinguish between the two 

different kinds of abnormality. The problem with single subject data is that it requires the 

subject to train the system by simulating abnormalities. 

 

 

 

 

 

 

 

 

 

 



72 
 

 

 

Table 12. Classification accuracy for a single subject 

Accuracy of Classification 

Subject Three Classes Two classes 

Subject 1 Only 98.18% 97.44% 

Subject 2 Only 91.46% 93.59% 

Subject 3 Only 96.32% 92.23% 

Subject 4 Only 92.13% 91.56% 

Subject 5 Only 98.98% 98.66% 

Subject 6 Only 88.98% 86.98% 

Subject 7 Only 96.74% 94.28% 

Subject 8 Only 87.58% 96.98% 

Subject 9 Only 95.88% 97.25% 

Subject 10 Only 98.49% 99.18% 

Subject 11 Only 95.98% 94.84% 

Subject 12 Only 93.22% 91.98% 

Subject 13 Only 98.93% 94.98% 

Subject 14 Only 98.98% 93.84% 

Subject 15 Only 97.79% 95.98% 

 

7.3.3.2 Multiple Subject Data 

Classification accuracy was very good when considering two subjects in the 

training data, but was poor when attempting to classify one subject’s gait based on another 

subject (see table 13). The classification accuracy was raised considerably when merging 
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the two simulated abnormalities into a single class. However, like the smartphone sensor 

only data, for multiple subjects, there is still room for accuracy improvement. 

Table 13. Classification accuracy for multiple subject 

Accuracy of Classification 

Training Set Three Classes Two classes 

Subject 1 41.45% 60.482% 

Subject 2 44.24% 41.571% 

Multiple Subjects 96.46% 94.12% 

 

7.3.4 Related Publications  

 A.K.M. Jahangir Alam Majumder, Ishmat Zerin, Miftah Uddin and Dr. Sheikh Iqbal 

Ahamed, Dr. Roger O Smith, “smartPrediction: A Real-time Smartphone-based Fall 

Risk Prediction and Prevention System”, in Proc. of the ACM International 

Conference on Reliable and Convergent Systems (RACS 2013). Montreal, QC, 

Canada, October, 2013. 

 AKM Jahangir Alam Majumder “A Real-time Smartphone- and Smartshoe-based 

Fall Prevention System” in Proc. of ACM Symposium on Applied Computing (ACM 

SAC 2014) SRC. Korea, March, 2014. 

 A.K.M. Jahangir Alam Majumder, Ishmat Zerin, Dr. Sheikh Iqbal Ahamed, and Dr. 

Roger O Smith, “A Multi-Sensor Approach for Fall Risk Prediction and Prevention 

in Elderly”, In International Journal of the ACM SIGAPP Applied Computing Review, 

Vol. 14, Issue 1. pp. 41-52, March 2014. 
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7.4 Development of Biomechanical Model  

In this section, we discuss the details of our proposed model for gait event detection 

which might lead to a fall.  

 

7.4.1 Analysis Methodology 

The dynamic process of human walking can be modeled using the fundamental 

equation of vibration. The vibration model requires several parameters, including stiffness 

and damping coefficients. It is not possible to compute the stiffness and damping for the 

human body due to its structural complexity. Solving the vibration model requires the finite 

element method, which is computationally intensive and currently not suitable for a real-

time mobile platform. Even if we were able to bridge the technological gap, there is another 

problem that makes it hard to use the vibration model. The right hand side of the equation 

represents a constant, or a time varying external force, which is difficult to model. 

However, it can be model in the case of the human body. The force in this case is primarily 

generated by the contracting and expanding muscle groups that try to maintain force and 

moment equilibrium in the system. Thus, it is not possible to quantify that force, leading 

to crude approximations of the vibration model.  

As a solution to this problem, we propose modelling the gait cycle as a quasi-static 

process. We establish force and moment equilibrium for each event in the gait cycle. It is 

important to recognize the limitations of this approximation. 

We cannot obtain the outputs the vibrational model provides. However, this is not 

significant since we use other parameters such as force distribution to quantify balance and 

predict a fall.  In order for the model to be accurate, the process must be quasi-static, i.e., 
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occur at a certain rate. Thus, the accuracy of the model decreases as we go from normal 

walking to running.  

 

7.4.2 Model Construction  

Consider an object of mass m and given dimensions sitting on the ground. The force 

distribution, as seen in the free body diagram is as follows. 

The reaction to the weight of the object is 

a distributed force of magnitude 
𝑁𝑅

𝐿
 the 

result of which acts at a distance of  
𝐿

 2
  

from point A. The sum of the force in Y, 

∑𝐹𝑦 = 0. 

 

Figure 24. Free Body Diagram 

𝑚𝑔 − 𝑁𝑅 = 0, where 𝑔 is the acceleration due to gravity, Force in X direction,   ∑𝐹𝑥 = 0. 

There are no forces acting along the X direction. 

To explain the principles of solid mechanics used in the biomechanical model, consider the 

following problem. We use the same object as figure 24 but now we add an additional force 

in the X direction. Force balance in Y,   ∑𝐹𝑦 = 0. 

𝑚𝑔 − 𝑁𝑅 = 0, where 𝑔 is the acceleration due to gravity, Force balance in X, ∑𝐹𝑥 = 0 

and 𝐹𝑒𝑥𝑡 − 𝐹𝑓 = 0. 

          The equilibrium conditions have not been satisfied. Since we have an external force 

in X direction, we need to ensure moment balance in the Z direction. This provides us 

critical input about the distribution of the normal force. 

∑𝑀𝑧 (𝐴) = 0 , the sum of moments in the z direction should be zero to maintain 

equilibrium. 𝐹𝑒𝑥𝑡 (ℎ) − 𝑁𝑅 (𝑥) = 0, where 𝑥 is the distance of the resultant normal force 
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from point A. When 𝐹𝑥 = 0 the distribution of the force is linear.  For 𝐹𝑥 = 𝛼, the 

distribution is no longer linear, but trapezoidal as in figure 25 (a). The reason for this is 

that the trapezoidal distribution leads to a higher moment arm (x) and thus a higher 

stabilizing moment 𝑁𝑅 (𝑥). 𝛼  is a constant load (𝛼 <  𝛽), where β is the load that leads to 

a triangular force distribution, 𝛽 =
(𝑚𝑔).(

2

3
 𝐿)

ℎ
 .  

  

(a) for 𝐹𝑒𝑥𝑡 = α (b) for 𝐹𝑒𝑥𝑡 = β 

Figure 25. Distribution while external load is applied 

           As the value of 𝐹𝑥  increases, the force distribution becomes more and more 

triangular untill a value of 𝐹𝑥 = β where the distribution is completely triangular. As 

expected, the triangular distribution provides the highest moment arm of 
2

 3
 (𝐿) as shown 

in figure 25 (b). We can extend the idea to the limiting case, for example, when the 

overturning occurs. Right before overturning occurs, the distribution can be thought of as 

a concentrated load acting at the point farthest from point A, to provide the maximum 

moment arm. Thus, we can quantify the maximum external force that the object of a given 

weight and dimension can withstand before overturning. 

There are different factors, such as, early heel off, inadequate push off, excessive drop of 

hip in different gait events that can cause falls while walking [99-100]. Research showed 

that the most unbalance happened during the single support event, initial contact of a 

loading response or pre-swing event of gait phases. To determine and measure the gait 
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events abnormal behavior, in this analysis we have developed a biomechanical model for 

three of the most vulnerable gait cycle events, initial contact or pre-swing, single support 

and terminal stance or terminal swing. To predict balance and imbalance we analyze the 

force distribution on the feet during any gait cycle.  

 

7.4.3 Initial Contact or Pre-Swing Event 

We have developed a quasi-static biomechanical model that is used to determine 

the imbalance in initial contact of loading response in stance phase and pre-swing event of 

swing phase of a gait cycle.  

It is important to identify the force distribution when the individual is balanced to 

predict an imbalanced state. The weight distribution on the foot is linear and uniform for a 

perfectly balanced individual. In order to maintain equilibrium, the net sum of forces and 

moments in all directions must be zero.  

The orientation of the body provides instability in form of an overturning moment. 

To compensate, the body shifts as much of the weight as possible to the toe. In terms of 

mechanics, the force distribution of foot goes from being linear to triangular. The goal of 

this is to keep the body in equilibrium and specifically to maintain moment equilibrium at 

the heel. The triangular distribution of foot pressure provides a higher moment arm for the 

resultant force, leading to a bigger stabilizing moment. However, this is limited by the size 

of the individual’s foot. 
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R1 and R2 are the pressure distribtion of the foot 

(a + b) is the total stride length. 

Balance Criterion: for the figure 26,  

∑𝑀𝐴𝑖𝑛𝑝𝑙𝑎𝑛𝑒 = 0    , we are considering moments in 

the x-y plane, where, m= mass of individual.  

R is the reaction due to body weight distribution.  

From the following two equations, 1 and 2, we can 

easily solve for 𝑅1and 𝑅2. 

 

Figure 26. Modeling for Initial 

Contact or Pre-Swing Events 

𝑅1 + 𝑅2 = 𝑊, force equilibrium                                       (18)  

𝑅2. 𝑎 − 𝑅1. 𝑏 = 0, moment equilibrium                            (19) 

During a forward fall, the distribution would change from uniform to trapezoidal 

or triangular in pressure (the reading on the toe sensor will have a spike). Height only 

becomes a factor when the individual’s torso is not straight. In that case, the perpendicular 

component of weight creates de-stabilizing moments. The motion of the arms provides 

additional stabilizing moments (elderly people have difficulty doing that).   

We can convert the pressure R1 (lb) to pressure by using the following function, Pgross= (R1/ 

AF) 

                            So, Fsensor = PGross . Asensor                                    (20)                             

Assuming, F1 = F2 = F3 = F4 and sensors reading from the other foot is very close to zero. 

From this model, we can determine the insole pressure ( 𝑅1 and 𝑅2), and stride length (a 

and b).  
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7.4.4 Single Support Event 

Single support is another common gait event of high risk of imbalance. In this 

section we have developed a biomechanical model for predicting imbalance associated 

with this event by observing the foot pressure distribution of the user.  The weight of the 

entire body acts along the foot in contact with the ground. For the figure 27,  ∑𝑀𝑍 = 0 

and ∑𝐹𝑦 = 0 

                  𝑅1 = 𝑚𝑔,  𝑃𝐺𝑟𝑜𝑠𝑠 = (
𝑅1

𝐴𝐹
)                                    (21) 

                 𝐹𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑃𝐺𝑟𝑜𝑠𝑠 . 𝐴𝑆𝑒𝑛𝑠𝑜𝑟                                 (22) 

When the body is imbalanced, the 

distribution is not uniform. It will 

be triangular or trapezoidal. This 

indicates the user is susceptible to 

a fall. Another foot provides the 

stabilizing moment.     

 

Figure 27. Modeling for Single Support Events 

In an unbalanced scenario the distribution transitions from trapezoidal to triangular, 

thus providing a higher moment arm and thus a higher stabilizing moment. The stride 

length also plays an important role in providing stabilizing moment. Thus, in this scenario, 

both the force distribution and the weight of the leg act with variable moment arms to 

compensate for the destabilizing moment and maintain equilibrium    

7.4.5 Terminal Stance/Swing Event 

We also have developed a biomechanical model for terminal stance or swing events 

to predict abnormality in walking.  

For the figure 28,  
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𝑅1 + 𝑅2 = 𝑚.𝑔 

𝐼𝑑𝑒𝑎𝑙𝑙𝑦, 𝑥 = 𝑦 

𝑅1 = 𝑅2, so, 𝑃1 = 
𝑅1
𝐴ℎ𝑒𝑒𝑙

 

𝑠𝑜, 𝐹1 = 𝑃1. 𝐴𝑠𝑒𝑛𝑠𝑜𝑟 

For the Imperfect Balance-  

𝑥 ≠ 𝑦 and  

∑𝑀 = 0 (𝑎𝑡 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡) 

  

Figure 28. Modeling for Terminal 

Stance/Swing Events  

𝑠𝑜, 𝑅1(𝑥 + 𝑦) =  𝑚. 𝑔 

                           𝑅1 = 
𝑚𝑔 (𝑦)

(𝑥+𝑦)
 or 𝑅2 = 𝑚𝑔 − 𝑅1               (23) 

 

7.4.6 Model Parameters Analysis  

The piezoresistive sensors output an equivalent voltage when a force is applied over 

the sensor area. Another important factor is sensor placement. To predict user’s balance 

and imbalance, we analyze the force distribution on the feet during any gait cycle.  Our 

goal is to optimize the number of measurement points. Most of the body pressure is 

measured from the rear foot and the fore foot. 

In order to identify the quasi-static force-to-output voltage curve for each insole 

sensor, we applied a deformation in the range 0–0.9 mm, with a loading speed set to 0.0833 

mm/s (i.e., ~5 mm/min) as shown in figure 29. 
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Figure 29. Quasi-static force-to-deformation characterization of sensor 

Resulting data from each sensor was fitted by the sum of two exponential functions (i.e. 

𝐹 = 𝐴1𝑒
𝑐1 𝑣 + 𝐴2𝑒

𝑐2 𝑣  , where, F is the applied force and v is the output voltage), figure 

30 reports the experimental curves for one representative sensor. 

 

Figure 30. Quasi-static voltage-to-weight curve, experimental data of one selected 

sensor (blue dots) and fitting model (solid red line) 
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7.4.6.1 Pressure Maps 

An example of pressure maps that can be extracted from the developed pressure-

sensitive insoles is described in figure 31: the stated maps represent typical in-sole pressure 

patterns for a test subject during the pre-swing and single support phase. Figure 31 (a) 

represents the pressure distribution for pre-swing or initial contact phase. The push-off or 

single support phase pressure distribution is mostly under the forefoot area (figure 31b). 

An interesting finding of this study is the relation of gait insole variation and model 

parameters. The variation of insole pressure with time varies person to person. Some users 

have the distribution of pressure from forefoot to rear foot and some users have the 

variation from rear foot to forefoot. 

  

Figure 31. Pressure maps under the foot at different gait phases. (a) Pre-swing phase of 

the left foot. The weight is distributed on the heel region. The right foot is swinging; (b) 

Push-off phase of the left foot. The weight is distributed on the left forefoot. The right 

foot is starting to contact the ground 

 

7.4.6.2 Gait Parameters Analysis 

We calculated the average, standard deviation (SD) and coefficient of variation 

(CV) of the participant’s test walking for each parameter used in the model. The correlation 
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of the model parameter and the same parameters measured from the insole pressure 

variation from a smart-shoe was calculated to investigate common information between 

parameters. Weighted co-efficient matrix (on the CV value of gait model and insole 

parameters) was used to investigate which parameters contribute most to gait data 

variability in users. Parameters with a higher coefficient were interpreted as being 

significant contributors to normal or abnormal walking detection. 

We investigate the relative error of our proposed approach with respect to 

parameters from the model and the insole. We detect more peaks (i.e. steps) than there 

actually are, so the error increases. The error might again increase if the significance 

difference between parameters value variation. 

Also, we can easily differentiate between gait event patterns by analyzing the 

collected pressure data. Using the WEKA machine learning toolkit, we performed a 3-fold 

cross-validation in which we folded the data by session in order to avoid over-fitting. We 

ran our 3-class classifier for which user and averaged the results to obtain an overall 

accuracy of 83%. The confusion matrix for this classification is shown in table 14. Also, 

our system can avoid new training by training a universal model with data from all the 

subjects and without new training to test new users’ gait event patterns.  

Table 14. Confusion matrix of gait event based classification 

 Initial Contact  Single Support  Terminal Stance 

A
ct

u
al

 C
la

ss
 

Initial Contact 83.6 3.8 4.1 

Single Support 5.2 78.3 4.7 

Terminal Stance 3.3 9.6 88.2 

Predicted Class 
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7.4.6.3 Signal Classification for Gait Pattern Recognition 

As discussed above, our approach to signal classification is to build GMMs of 

signal trajectory densities in an RPS and differentiate between signals. This is done in three 

steps. The first step, data analysis, includes embedding the signals and estimating the time 

lag and dimension of the RPS. The second step is learning the GMMs for each signal class. 

The final step is signal classification, which is done with a maximum likelihood estimator 

(MLE) technique. 

We applied our technique to three data sets generated from three of the most 

vulnerable gait events.   It was observed that we were getting maximum pressure with one 

or two sensors during assessment. We used the average pressure variation of these 

maximum pressure values while determining the threshold for imbalance walking for each 

subject in his or her gait event pattern. We can also see the variations of different walking 

patterns for different subjects. Using the data set from the maximum pressure sensors, we 

plotted the RPS 3-D phase plot for three different gait event patterns. We obtained different 

patterns for each different event as shown in figure 32.  

 

Figure 32. Reconstructed 3-D phase space of Initial Contact, Single Support and 

Terminal Stance/ Swing Events for maximum foot pressure value when τ = 11 
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Then, we modeled the dynamics using Gaussian mixture models (GMM). First, 

learning the GMM for each type of embedded time series and then testing the mix function 

of the GMM on embedded time series to obtain the GMM. The particular models used here 

are statistical distributions that can be learned over RPSs and then used to classify signals. 

Our experimental results do not show the desired accuracy with the GMM for walking, as 

our analysis is for simulated data. However, for the GMM, there is still room for 

classification accuracy improvement.  

7.4.7 Related Publications  

 AKM Jahangir Alam Majumder, Piyush Saxena, Sheikh Iqbal Ahamed “Your Walk 

is My Command:  Gait Detection on Unconstrained Smartphone Using IoT System”, 

to appear in Proc. of the  IEEE Computer Software and Applications Conference 

(COMPSAC 2016), Atlanta, Georgia, USA, June 2016.  

 

7.5 Analysis of Simulated Forward Fall Prediction  

 We have collected data that simulated the forward fall in a lab environment using our 

smartphone and smart-shoe system. We asked test subjects to walk with our system, then 

suddenly pushed them forward onto a couch. The forward fall is the most common type for 

elderly people. We are currently in the process of analyzing the data gathered from this fall 

simulation.  

7.5.1 Subject-Specific Dynamics Fall Model  

To validate and increase the accuracy of our proposed model of gait events, we 

incorporate a fall model by observing the body gesture while walking. Any moving body 

is subjected by two opposing vertical forces as shown in figure 33, the body's weight (mg) 
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which is downward, and the ground reaction force (N) which is upward. At a stabilizing 

situation, the body weight (mg) and N are always equal.   

A dynamics model was developed and validated in this study to accurately predict 

the future fall in different walking events. The features of the dynamics model include 

consideration of the subject-specific effect of insole pressure, and prediction of the gait 

abnormality.  In this study we have developed a fall model to predict the risk in walking.  

When, Overturning > Stabilizing 

mg . (cos θ).
L

2
 > mg sin θ . sin θ . S 

mg . (cos θ).
L

2
 > mg sin2 θ . S,     or,      

Cosθ

(sinθ)2
>

2 S

L
 

or K >  
2 S

L
                                   (24) 

With the increase of K, the body does not compensate automatically. 

As θ decreases the risk of overturning increases. So at the fall stage we will have, 

mg . cos θ .
L

2
 > N. S,or,

1

S
 . mg. cos θ .

L

2
 > N                             (25) 

 

 

 

 

(a) Fall Model (b)Screenshot of Alert 

Figure 33. Falling scenario for model development 
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N will compare with the smart-shoe sensor data and θ could be determined from the 

rotation orientation of the phone measurement. (Please note all notations mentioned in 

figure 33 carry their standard mathematical meaning).  Figure 33(b) is a screenshot of the 

fall alert in the smartphone in case of high risk of gait abnormality.   
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CHAPTER 8 CONCLUSION 

8.1 Summary of Dissertation  

In this dissertation we present a smartphone and smart-shoe-based mobile gait 

monitoring system that helps to predict a fall through real-time abnormality detection in 

users’ gait patterns. The system is the first smartphone-based application that uses the 

combination of built-in accelerometers and gyroscopes and pressure distribution from shoe 

instrumented with sensors to help predict a potential fall.  

8.1.1 Contributions of Dissertation 

This research work has made several contributions to address the problem of 

smartphone-based low energy health monitoring system for current and next generation 

mobile computing. Since ensuring preventive measures is the common goal in almost any 

smartphone and smart-shoe-based risk management system, our major focus has been to 

develop and implement a cyber-physical system to solve the identified research issues 

using built-in sensors in smartphone and the sensor embedded smart-shoe. Our 

contributions include:  

8.1.1.1 Analyzing Gait using Built-in Smartphone Sensors  

We have designed and developed a smartphone-based gait monitoring system using 

built-in smartphone sensors (e.g. gyroscope, accelerometer, and GPS). In this research, we 

detected abnormal walking patterns using only smartphone sensor data processed by the 

smartphone. The accelerometer and gyroscope of a smartphone were used to determine the 

abnormal gait pattern of the user. The GPS of the smartphone was used for location 

information of the user.  
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8.1.1.2 Designing and Developing a Wireless Smart-shoe 

Large scale smartphone-based health monitoring applications (such as – Elderly 

Care at Nursing Home and People with Gait Abnormality) are used to detect and predict 

risk of fall related injuries. In our initial research, we observed that smartphone built-in 

sensors are not able to accurately predict and detect a gait abnormality. Low dynamic range 

and a low resolution of smartphone sensors increase possibility of large error in signal 

variation. To address this problem, we have added a smart-shoe with smartphone sensors 

to detect and predict a fall by observing foot pressure variation while walking. We designed 

and developed this smart-shoe with four pressure sensors for detecting gait abnormality 

and established a Wi-Fi communication network for the communication between the smart-

shoe and smartphone.  

8.1.1.3 Predicting a Simulated Fall Risk Using an Integrated Embedded System  

After assimilating the smart-shoe and smartphone sensor data, we performed a set 

of experiments in the lab environment to evaluate normal and abnormal gait patterns. 

Currently, we are working on various aspects of this research to improve the accuracy of 

the fall prediction algorithm for alert generation. 

8.1.1.4 Addressing Low Response Time for Alert Generation   

To ensure the high sampling rate for low response time of our system, in this 

research we used a unique signal classification approach which can recognize the 

abnormality in a subject’s gait and model the dynamics of a system as they are captured 

in a Reconstructed Phase Space (RPS).  
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8.1.1.5 Developing a Biomechanical Model for Gait Event Detection 

Scientific gait analysis with smart-shoe embedded sensors is able to improve the 

accuracy of fall prediction in the elderly. A biomechanical model for predicting gait 

abnormality in the elderly generally consider the gait related parameters. Model accuracy 

is limited because injuries due to falls are significantly affected by different gait events in 

the gait cycle. There are different factors, such as early heel off, inadequate push off, and 

excessive drop of hip in different gait events that can cause falls while walking. To 

determine and measure the gait event abnormal behavior, in this work we have developed 

a biomechanical model for three of the most vulnerable gait cycle events: initial contact or 

pre-swing, single support and terminal stance or terminal swing. 

8.2 Intellectual Merit 

The proposed smartphone- and smart-shoe-based gait monitoring approach for fall 

prediction is innovative because it provides a number of beneficial features together that 

current gait analysis approaches do not. It also has the benefits of mobility and direct 

Internet connectivity while being relatively inexpensive and non-invasive. Advances in 

sensor technologies provide a method to accurately monitor the daily activity of people 

with disabilities. This information could be used to determine the usefulness of 

rehabilitation interventions as well as provide behavior enhancing feedback. A combined 

approach that incorporates the smartphone sensor and smart-shoe sensor data may provide 

a more accurate clinical assessment than the current method.  

8.3 Broader Impact  

The proposed design is robust and reliable but, unlike current approaches, it does not 

require the wearing of body sensors and does not require an infrastructure. Because this 
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approach is implemented on a smartphone with low cost sensors integrated shoe, it also 

has the benefits of mobility and direct internet connectivity while being relatively 

inexpensive and non-invasive. The system may also have broad applications in abnormal 

gait behavior detection for people with various disabilities who are at increased risk of 

falls.  

8.4 Future Research Directions  

As we walked through the timeline of the project we got exciting ideas that we decided 

to add in the future. There are many existing ideas for future work, which are outlined in 

this section.  

8.4.1 Use mobile computing platform for smart home automation systems 

Smart-homes are continuously instrumented with sensors like kinects, energy 

meters, cameras, digital televisions, and smart-switches. In this research we anticipate 

using smart-home sensor technology and the smart-shoe to monitor the mobility of older 

adults, which gives the elderly insights into their health status and enables them to share it 

with caretakers. We will use the Lab of Things (LoT) as the platform to interconnect 

smartphone and wearable sensors systems   

8.4.2 Synchronization Challenges for Real-time Analysis  

LoT for IoT systems include devices that communicate not only with the cloud but 

also with each other, often requiring real-time coordination and synchronization. Consider 

a tele-health activity where a 70-year old patient lives at home and a caregiver remotely 

monitors the patient’s health during daily activity. Instead of using body health sensors 

(such as pulse, blood pressure) and room sensors (like camera, microphone), the patient 

can use a smartphone to capture data that together gives the caregiver an understanding of 
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the patient. All the sensory data will be strongly correlated, taking essential data in a 

synchronous manner about the patient that must be aligned exactly in real-time to provide 

the correct insights. This relatively simple scenario illustrates many challenges to existing 

infrastructures (OS, network, etc.) that makes it difficult with current technology. For 

example, Networking Time Protocol (NTP) is being used for wide area network time 

resynchronization but only at the timing precision level of several milliseconds, which is 

not sufficient for IoT devices used in health care. New implementations, protocols, and 

standards are necessary to enable this rich class of applications. 

8.4.3 Build a generic low-power communication platform for longitudinal data 

collection  

Most of the IoT devices including smartphones are small and do not have access to 

a continuous power source. Battery size, lifetime, and cost impose significant constraints 

on how these devices compute and communicate. Novel wireless networking solutions can 

address these challenges. Also, many IoT devices serve a single, limited purpose, 

suggesting that these devices could have customized network interfaces, operating systems, 

and programming models that make the most effective use of limited computation, 

network, and energy resources. Research in these areas involves interdisciplinary 

collaboration in signal processing and wireless communication, as well as computer 

architecture and operating systems. 

8.4.4 Develop the next generation smart-shoe  

Miniaturizing the smart-shoe hardware components is another important research 

challenge. The current smart-shoe hardware is large in size. In this research we would like 

to investigate the use of Arduino and Wi-Fly mini to use for our Wi-Fi communication 
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module. Table 15 shows the comparison of different existing and future hardware module 

that we wanted to use to build a next generation smart-shoe.  

Table 15.  Development of a Next Generation Smart-shoe 

Different 

Smart-Shoe 

Module 

Advantages  Disadvantages Anticipated Next 

Generation 

Smart-shoe 

Components  

Images of 

Anticipated 

Next Generation 

Smart-shoe 

Hardware 

Smart  

IoT 

Devices 

iPhone and 

Android 

platform  

Not generic  

 

Generic platform  

 

Arduino 

 

Open-source 

platform 

Large in size 

 

Arduino Mini 

  

WiFly 

 

The ability to 

connect to 

802.11b/g 

wireless 

networks 

Large in size  

 

Wi-Fly Mini 

 

 

Sensor 

System 

 

-Flexible and 

easy to use 

-In-shoe system 

Number of 

sensor position  

 

Use fabric based 

capacitive 

gesture sensor  
 

Power 

Supply 

Battery 

Easy to use with 

Arduino and Wi 

Fly 

Large in size  

 

Miniature solid 

state battery  

Will use custom 

battery 
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APPENDIX: 

a.  Weight Testing of Insole Feedback 

In order to test the accuracy of the fall prediction, we conducted weight testing to show 

the applicability of this system to a range of subjects and the stable calibration of the 

pressure sensors. Using smartshoe sensors as the testing weights, it was found that the 

output voltage from the in-sole sensor approximate linearly increased with the testing 

weight as shown in figure 34.  However, there was residue output voltage even though 

there was no weight on the sensors. 

 

Figure 34. The relationship between testing weights and output voltages of the in-sole 

sensor 

 

b. Development of a Walking Model 

To validate our study, we incorporate a walking model by observing smartphone 

sensors data as we as the pressure sensors data from smartshoe. 
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Human walking is a cyclical movement, so here we use the similarity of the data between 

two adjacent cycles to assess the walking stability.  

Stability = Similarity (Ci, Ci+1)                          (26) 

Where Ci is the data of the preceding cycle, and Ci+1 is the data of the next cycle. 

The dynamic symmetry of gait is defined as the discrepancy of bilateral data in gait cycle 

on all symmetric attributes. 

Symmetry = Discrepancy (Ri, Li)                       (27) 

Where Ri is the data of the right-side and Li is the data of the left-side on one attribute. 

Considering stability and symmetry of walking data, we propose a walking model for our 

system. The impulse, I, of a step of running and walking is given by, = ∫𝐹  𝑑𝑡 , where F 

is the force.  

Using Newton’s second Law,   𝐹 = 𝑚𝑎       and  𝑎 =
𝐹

𝑚
 .     Where, a = Acceleration and 

m= mass. 

From the foot pressure distribution and accelerations and orientation observed from 

smartphone motion sensors while walking. The first simplest approximation of the signal 

is an impulse function.  We will assume that the acceleration curve for walking is 

approximated by a sinc function, 𝑎 =
𝐹

𝑚
=

𝑆𝑖𝑛𝑡

𝑡
     where, 0 ≤ 𝑡 ≤ 𝑇 

To find the impulse of the acceleration, we need to integrate the signal over time,  

𝐼 = ∫𝐹 𝑑𝑡 𝐼 = ∫𝑚𝑎  𝑑𝑡                                  (28) 

𝐼 = 𝑚∫
𝑆𝑖𝑛(𝑡)

𝑡
 𝑑𝑡 

    𝐼 = 𝑚∫
1

𝑡
[𝑡 −

𝑡3

3!
+
𝑡5

5!
−
𝑡7

7!
+ ⋯… . . ]𝑑𝑡 
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𝐼 = 𝑚∫[1 −
𝑡2

3!
+
𝑡4

5!
−
𝑡6

7!
+ ⋯… . . ]𝑑𝑡 

𝐼 = 𝑚[𝑡 − 𝑎𝑡3 + 𝑏𝑡5 + 𝑐𝑡7 + 𝐷]                  (29) 

Where, a, b, c and D are constant and only D is unknown. We can calculate the D by using 

two boundary condition I (0) =0 and I (T) = 0. Also assume that m is constant.  

By using the boundary condition we can express the impulse function as, 

𝐼 = 𝑚[𝑡 − 𝑎𝑡3 + 𝑏𝑡5 + 𝑐𝑡7]                         (30) 

 

c.  Resource Consumption Comparison 

To test the power consumption of our system, we fully charged the iPhone and then 

monitor the power states continuously for 2 hours for the following two scenarios: (1) the 

iPhone runs without application (2) the iPhone runs with application where the application 

continuously collects accelerometer and gyroscope data for abnormal gait pattern 

identification. Figure 35 presents the two curves of battery level states versus time during 

the time period of 120 minutes. From this resource consumption analysis we can see that 

if our application keeps running normally until the battery power is exhausted, then it will 

last about almost 3 hours. Currently, we are working to reduce the power consumption of 

our system. However, even though the power consumption of our application is little bit 

high, the benefits it may bring to elderly lives are considerable. 
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Figure 35. Blue curve presents the battery levels when the iPhone is running with 

application and red curve presents the battery levels when the iPhone is running without 

application 

In this analysis, first, we have developed an Android based application with 

Bluetooth communication module to collect smart-shoe sensors data. In order to develop 

the application we have used the algorithm shown in figure 36 to establish the Bluetooth 

connection between smartshoe and the smartphone. At first the algorithm searches the 

device that supports our proposed communication features. The application will move 

forward to execute the next operations after accurately detect the correct devices. Enabling 

the Bluetooth device we initiated an action button to discover the available Bluetooth 

devices around our device. Among the available devices, the algorithm looked for our 

target device (smartshoe Bluetooth device) by its name. Subsequently getting the target 

device name and address, we are checking for whether the device is bonded or not. If the 

device is not bonded or paired the application will do that with pair code.  Then we began 

a thread to receive and transmit the sensor data through a class 2 Bluetooth module 

embedded in smartshoe. Here the connections are peer-to-peer communication. We used 

the Bluetooth Socket to plug in the connectivity. We also have created a thread to listen 
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always from the connected device. Thenceforth the socket was fully ready for receiving 

and transmitting the input and output stream.   

On the other part we have programmed the Arduino with four sensors. We read the 

analog input data and sent it serially to the Bluetooth device of smartshoe. Smartphone 

Bluetooth has received these data as string. Then we displayed the data on the Android 

device with corresponding sensors.  

As we have described earlier the application started with saving individual patient 

personal information. We have recorded the sensor data with respect to individual patient. 

We saved the data in order to train out system for individual patient. Later on by analyzing 

these information of individual patient we could identify their walking pattern or classify 

between normal and abnormal gait pattern.  

Raw data on foot pressure distributions were collected with the developed foot pressure 

sensing shoe (smart-shoe). The pressure level represents the output value of analog 

information into which voltage is converted. The experiment was conducted to develop an 

automatic measuring system for revealing the relations between human motions and 

collective foot pressure characteristics. With the power supply unit, foot pressure signal 

was gathered by piezoresistive flexi force sensors in a time span and transmitted to the 

smartphone through a Bluetooth communication network.   
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Figure 36. Algorithm on smartphone (android) for low energy communication 

In our application we were saving each patient’s personal information in the Android 

database SQLite. The patient name would automatically show up in the patient list. Then 

we can select individual patient to collect the smartshoe sensor data.   

As an example, in figure 37, first we were saving Bob’s information in our SQLite database 

and then collecting pressure sensor data from smartshoe with regard to him. Starting of this 

user interface a toast would show up to notify “Bluetooth is on”. Afterward we pressed the 

“Find Device” button to get the target device. If it could find the desire device a text 

message would show up at the above that “target device found and bonded”. If the desire 

device is not bonded we have bond that manually by pairing the code. Now the application 

is ready to receive sensor data from smartshoe. To get those data we need to press “Start” 

button and sensors data would start showing up continuously. The corresponding graph 

would show up below the sensor data. We are still working on displaying the corresponding 
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graph for each walking pattern on smartphone.  We saved those data against each patient 

for further experiments.  

Our target is to save those data for individual patient to train our system to identify 

each patient’s normal and abnormal gait pattern. We also observed the smartphone battery 

usages during our data collection process.  It is noticed that the smartphone battery life 

using our Bluetooth communication algorithm with class 2 Bluetooth device is improved 

than that of general Wi-Fi or other communication system.  The system has a power 

consumption of about less than 26µA at sleep mode, 3mA at connected situation and 30mA 

during data collection.   

  

(a) Patient Activity (b) Sensors Data 

Figure 37. Screenshots of android based data collection 
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d. Hardware Components Information  

d .1 Wi-Fi Module and Battery Holder 

d. 1.1 Flexiforce Pressure Sensor  

Sparkfun Part # SEN-08712 ROHS 

https://www.sparkfun.com/products/8712 

The overall length is about 8.5". Sensor 

comes with 0.1" spaced, reinforced, 

breadboard friendly connector. This sensor 

ranges from 0 to 25lbs of pressure. 
 

d.1.2  WiFly Shield  and WiFly Mini  

Sparkfun Part # WRL-09954 ROHS 

https:/ /www.sparkfun.com/products/9954  

 Qualified 2.4GHz IEEE 802.11b/g 

transceiver 

 High throughput, 1Mbps sustained data 

rate with TCP/IP and WPA2 

 Ultra-low power - 4uA sleep, 40mA Rx, 

210mA Tx (max) 

 Small, compact surface mount module 

 On board ceramic chip antenna and U.FL 

connector for external antenna 

 8 Mbit flash memory and 128 KB RAM 

 UART hardware interface 

WiFly Shield 

 

https://www.sparkfun.com/static/rohs/
https://www.sparkfun.com/static/rohs/
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 10 general purpose digital I/O 

 8 analog sensor interfaces 

Sparkfun Part # WRL-10050 ROHS 

https:/ /www.sparkfun.com/products/  

10050 

This is a revised board by adding some LED 

indicators and also improving the overall 

performance of the board. This is a breakout board 

for the RN-131C WiFly GSX module, an ultra-

low power 802.11b/g transceiver. This board 

breaks out all pins of the RN-131C to two 17-pin 

0.1" pitch headers. Board comes fully assembled 

and tested as pictured. 

Dimensions: 1.2x1.8" (headers are separated by 

1.1") 

WiFly Mini 

 

d.1.3 Arduino Uno and Arduino Mini 

Sparkfun Part # DEV-11224 ROHS 

https:/ /www.sparkfun.com/products/1122

4 

Arduino/Genuino Uno is a microcontroller board 

based on the ATmega328P. It has 14 digital I/O 

pins (of which 6 can be used as PWM outputs), 6 

analog inputs, a 16 MHz quartz crystal, a USB 

Arduino Uno 

 

https://www.sparkfun.com/static/rohs/
https://www.sparkfun.com/static/rohs/
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connection, a power jack, an ICSP header and a 

reset button.  

 

Sparkfun Part # DEV-11303 ROHS 

https:/ /www.sparkfun.com/products/1130

3 

This is the new and smaller, Arduino Mini 05 with 

ATmega328. The latest version of this board is 

built around a smaller ATmega328 package. It 

allows all of the parts to be populated on the top 

side of the board. Of course, it still requires an 

external serial connection for programming. 

The Arduino Mini 05 is a great development 

module for building compact devices that need to 

interact with the world around them. 

Arduino Mini 
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d.1.4 Battery Holder 

Sparkfun Part #: PRT-00552 ROHS 

https://www.sparkfun.com/products/552 

Battery Type, Function: Cylindrical, Holder with 

Switch 

Style: Holder (Covered) 

Battery Cell Size: AA 

Number of Cells: 4 

Mounting Type: Custom 

Termination Style: Wire Leads - 6" (152.4mm) 
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