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ABSTRACT 
3D VISUALIZATION ARCHITECTURE FOR BUILDING UBIQUITOUS APPLICATIONS 

LEVERAGING AN EXISTING VALIDATED TOOLKIT 
 
 

David A. Polyak 
 

Marquette University, 2014 
 
 

The diagnostic radiology space and healthcare in general is a slow adopter of new 
software technologies and patterns.  Despite the widespread embrace of mobile technology 
in recent years, altering the manner in which societies in developed countries live and 
communicate, diagnostic radiology has not unanimously adopted mobile technology for 
remote diagnostic review.  Desktop applications in the diagnostic radiology space commonly 
leverage a validated toolkit.  Such toolkits not only simplify desktop application development 
but minimize the scope of application validation.  For these reasons, such a toolkit is an 
important piece of a company’s software portfolio.  This thesis investigated an approach for 
leveraging a Java validated toolkit for the purpose of creating numerous ubiquitous 
applications for 3D diagnostic radiology.  Just as in the desktop application space, leveraging 
such a toolkit minimizes the scope of ubiquitous application validation.  Today, the most 
standard execution environment in an electronic device is an Internet browser; therefore, a 
ubiquitous application is web application. 
 

This thesis examines an approach where ubiquitous applications can be built using a 
viewport construct provided by a client-side ubiquitous toolkit that hides the client-server 
communication between the ubiquitous toolkit and the validated visualization toolkit.  
Supporting this communication is a Java RESTful web service wrapper around the validated 
visualization toolkit that essentially “webifies” the validated toolkit.  Overall, this ubiquitous 
viewport is easily included in a ubiquitous application and supports remote visualization and 
manipulation of volumes on the widest range of electronic devices. 
 

Overall, this thesis provided a flexible and scalable approach to developing ubiquitous 
applications that leverage an existing validated toolkit that utilizes industry standard 
technologies, patterns, and best practices.  This approach is significant because it supports 
easy ubiquitous application development and minimizes the scope of application validation, 
and allows medical professionals easy anytime and anywhere access to diagnostic images. 
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CHAPTER 1: INTRODUCTION 

Healthcare professionals are inherently mobile individuals.  Clinicians and nurses 

frequently move from one room to another, and each room change generally signifies a 

change in context.  Therefore, access to pertinent information needs to be effortless, and 

presented in a user-friendly form. 

Significant advancement of mobile technology in recent years has altered the 

manner in which societies in developed countries live.  The computational power and 

contextual awareness of mobile devices, in addition to the wide availability of wireless 

connectivity, has untethered people from the traditional static desktop.  Mobile devices 

enable individuals to readily access and share information from virtually any location 

ubiquitously.  In the context of this thesis, something that is ubiquitous is something that is 

accessible to the largest number of electronic devices.  These advancements in technology 

have the capability to transform healthcare through ubiquitous applications and paradigms 

such as the Internet of Everything (Cisco) and Industrial Internet (GE).  However, the medical 

world is a slow adopter of new technologies and best practices due to technical complexities 

and regulation. 

Medical imaging is a huge component of healthcare.  This domain continues to be 

transformed with advancements in software.  Software allows these devices to safely acquire 

medical images and procure information previously unattainable.  As in the past, 

advancements continue to push the envelope of what is possible.  Today, imaging scanners 

and workstations are capable of advanced 3D image visualization, a process that visualizes a 

3D volume out of a stack of acquired 2D images.  Development of such applications is 

tedious, and technically difficult, and according to regulatory entities, each application needs 
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to be validated for diagnostic use (Food and Drug Administration, 2002).  The inherent 

complexity and need for application validation limit the progress of technology in the 

visualization space. 

Traditionally, desktop applications are built using a top down approach where 

algorithms are developed specifically to serve the application.  This top down approach to 

application development leads to tightly coupled architectures.  Instead of each application 

implementing the same core capabilities of 3D medical image visualization, these 

applications should leverage a central codebase (PC Magazine01), or a visualization toolkit 

(PC Magazine02).  This bottom up approach focuses on the development of fundamental 

services needed for a wide range of applications.  This architectural approach not only 

supports the rapid development of unique applications but results in a decoupled 

architecture. 

In the medical imaging domain, the key to application development is a time-tested 

validated visualization toolkit.  Time-tested validated visualization toolkits are invaluable in 

the medical software industry because they have already gone through the growing pains 

inherent in all software development, and they simplify application validation efforts.  

Specifically, these toolkits simplify application development, and minimize time to market 

through streamlined application development and regulatory validation.  Although this 

approach is capable of supporting an infinite number of applications for diagnostic radiology, 

these are static desktop applications.  These existing validated toolkits are not in themselves 

sufficient to support a multitude of ubiquitous applications.  Figure 1.1 visualizes the two 

architectural approaches to static desktop applications, tightly coupled versus decoupled. 
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Figure 1.1: This figure depicts two architectures for desktop applications.  A tightly coupled architecture 
includes application code and supporting services.  A decoupled architecture includes application code that 
leverages a validated toolkit that provides generic services to a wide range of applications.  Overall, 
applications leveraging an existing validated toolkit are much easier to develop and validate. 

Today’s connected world leverages the Internet and its technology stack to develop 

applications that allow users to view the same application on a multitude of devices.  Such an 

application is commonly referred to as web application.  Web applications commonly follow 

the client-server architecture i.e. lightweight client-side markup, scripts, styles, and 

supporting web services.  This pattern coupled with core web technologies is perfect for 

developing applications capable of running on virtually any electronic device or platform.  

Unfortunately, with the web application technology stack, the development of web 

applications for diagnostic radiology is a difficult proposition.  Just as it is prudent to leverage 

a toolkit for desktop diagnostic radiology applications, web applications for diagnostic 

radiology should leverage a robust supporting validated visualization toolkit.  Without a tried 

and true supporting codebase, the web application technology stack is not sufficient for 

rapid validated diagnostic radiology application development.  Figure 1.2 visualizes the two 

architectural approaches to web applications, tightly coupled versus decoupled. 
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Figure 1.2: This figure depicts two architectures for web applications.  A tightly coupled architecture includes 
client-side application code and supporting server-side web services.  A decoupled architecture includes 
client-side application code that leverages a validated toolkit that provides generic server-side web services 
to a wide range of web applications.  Overall, web applications leveraging an existing validated toolkit are 
much easier to develop and validate. 

By reusing existing validated visualization toolkits and providing a client-server layer 

that interfaces with such toolkits (W3C, 2004), it is possible to enable the development of 

portable, web-based medical visualization applications for a wide range of computing 

platforms.  Although web applications inherently run on a wide range of electronic devices, 

web applications may leverage Internet browser plugins that are not supported on all 

electronic devices.  To reach the widest audience, a web application must be Zero-Footprint 

(Park, et al., 2010), meaning the web application does not require the installation of any 

custom software.  Henceforth, web applications that are Zero-Footprint will be referred to as 

ubiquitous applications because they support the largest number of electronic devices. 

This thesis shows how it is possible to leverage an existing validated 3D visualization 

toolkit, and add a client-server layer to connect the toolkit to any number of rich ubiquitous 

3D visualization applications from multiple computing platforms.  As seen in Figure 1.3, this 

approach provides an abstraction that supports the development of ubiquitous applications 
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that may run on virtually any electronic device or platform having many-to-one associations 

to common server-side services. 

 

Figure 1.3: This figure depicts the architectural approach of this thesis.  Using a verified visualization toolkit 
built for desktop applications, creating a web service layer and supporting client-side ubiquitous application 
development toolkit the existing verified toolkit supports an infinite number of ubiquitous applications. 

In lieu of developing a platform capable of supporting the development of rich 

ubiquitous 3D visualization applications, this thesis provides an in-depth discussion of 

the benefits and capabilities of such an architecture for developing ubiquitous 

applications.  The following chapters are organized in a way that mirrors the 

architecture presented in Figure 1.3, and follows a bottom-up discussion.  Specifically, 

chapter 2 discusses the motivation of this thesis.  Chapter 3 discusses the related works, 

current technologies, and best practices available.  Chapter 4 discusses the necessary 

characteristics of this platform, specifically identifying the requirements of each layer.  

Chapter 5 is a detailed discussion of this platform, and an examination of each of the four 
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layers’ architecture.  Chapter 6 evaluates the platform based on the creation of two 

ubiquitous applications, from the platform fundamentals to the foundations of rich 

ubiquitous application.  Continuing the evaluation of the platform, chapter 6 also includes a 

discussion of platform performance and capabilities.  Lastly, the thesis ends with a discussion 

of future platform enhancements. 
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CHAPTER 2: MOTIVATION 

Modern mobile technology is capable of providing continuous connectivity and the 

ability to work from anywhere, at any time.  Today’s technology lives in the Internet of 

Everything (IoE) which is defined by Cisco as “bringing together people, process, data, and 

things to make networked connections more relevant and valuable than ever before-turning 

information into actions that create new capabilities, richer experiences, and unprecedented 

economic opportunity for businesses, individuals, and countries” (Cisco).  In the IoE, devices 

integrate seamlessly with infrastructure and supply users with data on-demand.  However, 

not all individuals are able to reap the benefits of the IoE, particularly professionals in the 

healthcare space.  It is common for a medical practitioner to be restricted to sitting in front of 

a static workstation to view image data acquired from a medical scanner.  Ideally, they 

should be able to carry a device that is capable of delivering data independent of their 

location. 

However, creating an environment for clinicians that utilizes the IoE is not trivial.  In 

general, developing software in the medical domain is a complex endeavor because the 

healthcare space is slow to adopt the latest industry standard software practices, patterns, 

and technologies.  The slow adoption can be largely attributed to the stringent regulations 

enforced on medical products.  The Food and Drug Administration (FDA), which regulates 

medical products in the USA, requires that software running in a medical context be 

validated before it is sold.  The FDA defines software validation to be the “confirmation by 

examination and provision of objective evidence that software specifications conform to user 

needs and intended uses, and that the particular requirements implemented through 

software can be consistently fulfilled’” (Food and Drug Administration, 2002). 
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The burden of validating new medical software can be lessened by leveraging 

existing components which have already been validated.   For medical software companies, 

having to validate multiple visualization applications individually is expensive in terms of time 

and resources.  Rather, it is sensible to invest resources in the development of a core 

visualization toolkit.  Once validated, this visualization toolkit can support an endless number 

of desktop applications, thereby minimizing the application validation effort.  Additionally, 

these toolkits are dynamic as they adapt to new visualization standards to support the needs 

of applications. 

Understanding the regulatory constraints in medical software, the complexities of 

medical visualization, and the importance of a validated toolkit for rapid application 

development and validation are key to understanding the problem facing the future of 

medical visualization applications.  These factors make the transition of medical visualization 

applications from a static desktop environment to a distributed environment very complex.  

The ultimate goal is to support the development of medical applications that run on the 

largest possible number of electronic devices. 

The widest commonly supported environment across electronic devices and 

platforms is the Internet browser.  As mobile computing advances, electronic devices are 

increasingly interconnected.  Depending on the connected network, devices are capable of 

local network or wide area network intercommunication.  An Internet browser is a key 

standard application execution environment; standard Internet browsers without additional 

plugins, require minimal computational power.  Developing applications for execution in 

Internet browsers allows these applications to be reached by the widest range of devices.  

Applications executing in Internet browsers are typically referred to as web applications. 
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Although the web space is a relatively new domain for diagnostic radiology, and 

contains its own unique complexities, the overall application architectures between the 

desktop and web space are analogous.  As discussed, standalone medical visualization 

desktop application development is complicated.  The addition of a general validated 

visualization toolkit simplifies application time to market by simplifying application 

development and validation efforts.  Just as it is complex to develop static desktop 

visualization applications from scratch, it is equally, if not more, complex to develop 

standalone medical visualization web applications.  The logical conclusion is to leverage the 

same validated toolkit for web applications and desktop applications.  These are the 

motivating factors surrounding this thesis. 

To support remote diagnostic radiology review, and make healthcare relevant in the 

IoE and Industrial Internet, existing validated visualization toolkits and supporting 

technologies can become the core building blocks for remote diagnostic radiology in the 

mobile computing domain.  Leveraging these existing toolkits, technologies, and best 

practices has huge impacts in the field of medical software development and diagnostic 

radiology.  The crux of the matter is regulation and the difficulties inherent in migrating 

toolkits from one technology stack to another are complex.  However, the transition from a 

world of supporting static desktop applications, to a world of supporting lightweight 

applications running on the widest range of possible devices is important to the future of 

diagnostic radiology and healthcare. 

This thesis explores several technologies that enable mobile applications to interface 

with server-side applications, thus removing the burden of implementing computationally 

intense operations.  Specifically, this thesis proposes an architecture that “webifies” an 

existing validated Java 3D visualization toolkit, adding to the IoE paradigm.  In this thesis, 
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“webification” is an architectural approach that wraps some code as web accessible 

resources.  This is a client-server approach based on lightweight clients and fully featured 

servers that can be used to distribute server-side visualization technologies to a multitude of 

mobile clients.  As a result, the existing validated toolkit is revived to support ubiquitous 3D 

visualization applications. 

To summarize the motivation of this thesis, the overarching trend in computing today 

is mobile computing and the IoE.  Unlike traditional static desktop applications, mobile 

computing provides anytime and anywhere access to data.  However, due to regulatory 

concerns, professionals in the healthcare space are not able to reap the benefits of the IoE.  

The burden of validating new medical software in the healthcare space is very complex and 

expensive.  Medical device and medical software manufacturers have figured out the key to 

lessening desktop application validation in the medical space is building and validating 

toolkits.  In the world of diagnostic radiology ubiquitous applications are not the norm, and 

technically complex.  In the same way a validated toolkit simplifies static desktop application 

development and validation, it can be used to simplify the development and validation of 

ubiquitous visualization applications.  Although the problems mentioned are relevant to 

healthcare in general, this thesis is focused on adding ubiquitous 3D visualization to the IoE 

paradigm.  For brevity, ubiquitous 3D visualization applications will be henceforth referred to 

as ubiquitous applications. 
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CHAPTER 3: RELATED WORKS 

There are many examples of industry transformation and adoption of the Internet 

technology stack.  Both Cisco and General Electric are defining and influencing the Internet of 

Everything (IoE), and Industrial Internet, respectfully (Cisco), (GE).  Collectively, the IoE, and 

Industrial Internet are at work for a smarter world.  Today, our world is data driven.  Devices 

and machines create data, and push it to the cloud.  From there, the data is analyzed and 

used by other devices.  As we increase the amount of data collected, and introduce more 

machines in this world we realize the true value of interoperability, and smart machines living 

in a connected infrastructure. 

Any successful software is built with an architecture that leverages common design 

patterns and best practices.  The web technology stack is full of best practices and 

architectural philosophies for designing and creating web applications.  These web 

applications rely on services to provide data, and allow for the creation of rich applications 

and user interfaces and single page applications. 

This chapter examines the approaches available for a platform that supports the 

creation of ubiquitous applications that leverage an existing Java validated visualization 

toolkit.  The layout of this chapter logically follows the platform starting from the existing 

validated toolkit all the way to the ubiquitous applications. 

3.1 Existing Java Validated Visualization Toolkit 

The foundation of this platform is a validated visualization toolkit.  In the medical 

space, the creation of applications for diagnostic radiology requires each application to be 

validated.  The United States Food and Drug Administration defines software validation to be 
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the “confirmation by examination and provision of objective evidence that software 

specifications conform to user needs and intended uses, and that the particular 

requirements implemented through software can be consistently fulfilled’” (Food and Drug 

Administration, 2002).  Overall, validation is a complex and tedious process all medical device 

software is required to perform prior to sale.  For rapid application development in the 

medical space, it is advantageous to group common visualization code into a software 

component.  Once validated, this software component allows applications to reuse common 

visualization routines or modules for the purposes of developing validated visualization 

applications (PC Magazine01).  Leveraging these validated components simplifies the 

application validation process. 

Although software components are a common architectural approach for code 

reusability in software development, they do not support rapid application development.  

Rather than visualization applications leveraging a validated visualization component, they 

should be built using a validated visualization toolkit.  A software toolkit is “a set of software 

routines or a complete integrated set of software utilities that are used to develop and 

maintain applications” (PC Magazine02).  In the space of diagnostic radiology, given a 

validated visualization toolkit, an infinite number of visualization applications can be 

designed, developed, and validated.  The fundamental difference between a software 

component and a toolkit lies in its intent.  Whereas a component is simply a modular building 

block of functionality for a larger system, a toolkit exposes an easy to use wrapper around 

these core blocks.  For example, in the space of 3D diagnostic radiology, a component would 

bundle core 3D visualization application capabilities such as rendering a volume, and 

changing the orientation of the volume in 3D space.  A toolkit however, would take these core 

capabilities and bundle them as a viewport.  This viewport is a high level reusable construct 

that is built to support 3D visualization application development, like a widget.  Like widgets, 
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viewports are simply “elements in a graphical user interface” that interact with user, see 

Figure 3.1 (PC Magazine03). 

 

Figure 3.1: Like a widget, a toolkit provides the building blocks for application development.  This figure shows 
two viewports included in an application.  Although these two viewports look different they are instances of 
the same object provided by a validated 3D visualization toolkit. 

To summarize, a validated toolkit is capable of streamlining application development 

and minimizing the scope of validation.  A toolkit, unlike a component exposes a high level 

application construct that facilitates application development.  In diagnostic radiology, 

applications commonly contain viewports that act as graphical user interface elements that 

interact with the user and serve as the foundation of an application.  This thesis uses an 

existing proven validated Java 3D visualization toolkit as its foundation.  The next sections 

will investigate web service technologies that can layer this validated toolkit for the purposes 

of creating ubiquitous applications. 

3.2 Web Services Layer 

Given an existing validated Java 3D visualization toolkit, and the goal of using this 

toolkit for the purpose of supporting ubiquitous applications, it is necessary to “webify” the 

high level 3D visualization application constructs.  This process requires Java web services 
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that logically layer the toolkit, and expose the toolkit’s API to local machine and external 

machine programs. 

3.2.1 Client-Server Communication Protocols 

This section surveys available client-server communication architectures that can be 

leveraged to expose the constructs of an existing validated Java 3D visualization toolkit for 

the purpose of creating ubiquitous applications.  In general, client-server communication 

architectures can be used to distribute server-side visualization capabilities to a multitude of 

ubiquitous applications.  The Simple Object Access Protocol, Representational State Transfer, 

and WebSockets are the three main client-server application protocols; each will be 

discussed in this section. 

Both the Simple Object Access Protocol and Representational State Transfer are 

communication protocols that layer the Hypertext Transfer Protocol (Oracle01), while 

WebSockets supports machine to machine communication by layering the Transmission 

Control Protocol (Oracle, 2013a). 

The Simple Object Access Protocol, or SOAP, is an application protocol that provides 

machine to machine communication across a local network or the Internet through the 

Hypertext Transport Protocol.  Fundamental to SOAP communication is the transportation of 

Objects serialized and encoded in the Extensible Markup Language (Oracle01).  This XML 

based web service communication protocol uses the standard XML schema of the World 

Wide Consortium to provide one-way messaging (W3C, 2007).  The SOAP standard “provides 

the definition of the XML-based information which can be used for exchanging structured 

and typed information between peers in a decentralized, distributed environment” (W3C, 

2007). 
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The Representational State Transfer protocol, or REST, is an application protocol that 

provides machine to machine communication across a local network or the Internet through 

the Hypertext Transport Protocol using a series of stateless operations.  Specifically these 

stateless operations request the “transfer of representations of resources” through Uniform 

Resource Identifier parameters sent in the Uniform Resource Locator (Oracle, 2013b).  The URI 

parameters in the URL specify a machine to machine communication contract for resource 

transfer.  These URI parameters, known as query parameters, specify the necessary 

parameters for the operation the client machine is requesting.  In general, a URL is broken 

into many components.  Of note to this discussion are the web service URL, and the query 

portion of a URL.  Given the following sample URL: 

http://myserver:80/location/to/myservice?param=value 

 
In the above URL, the full path to the web service is 

http://myserver:80/location/to/myservice, and the query is param=value.  

This query portion of a URL contains the mapping of REST query parameters to values.  In this 

example the query parameter param has a value of value. 

WebSockets provide bidirectional machine-to-machine communication through the 

Transmission Control Protocol, known as full-duplex communication.  This full-duplex 

communication is the primary difference between WebSockets and Hypertext Transport 

Protocol communication protocols that follow the traditional request-response 

communication model, such as SOAP and REST (Oracle, 2013a).  With the request-response 

workflow the exchange of data is always initiated by the client request, this does not allow 

the server to send data without the client first issuing a requesting (Oracle, 2013a).  “This 

model worked well for the World Wide Web when clients made occasional requests for 

documents that changed infrequently, but the limitations of this approach are increasingly 

http://myserver/location/to/myservice
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relevant as content changes quickly and users expect a more interactive experience on the 

web” (Oracle, 2013a). 

3.2.2 Java Web Services 

Given the range of available client-server communication protocols, and the fact that 

the existing validated 3D visualization toolkit is implemented in Java, the next step is to 

investigate the available web service capabilities supported in Java. 

Web services in Java are not new.  Java 2 Platform Enterprise Edition, v 7 supports 

SOAP, REST, and WebSockets in the javax.xml.soap, javax.ws.rs, and 

javax.websocket packages respectfully (Oracle02).  Historically, these web services 

supported only half-duplex communication between two machines via HTTP but have 

expanded to full-duplex communication over TCP with the advent of WebSockets.  Although 

Java supports client-server communication through SOAP, REST, and WebSockets, the ease 

of RESTful communication makes it the top contender for new web services.  Therefore, the 

following discussion will focus on RESTful web services in Java. 

Half-duplex RESTful communication is a client-server architecture where a client 

requests or posts information to the server, and receives a response.  These simple 

transactions are known as HTTP GET and POST respectfully.  The HTTP GET method is 

“designed for getting information (a document, a chart, or the result from a database query), 

while the POST method is designed for posting information (a credit card number, some new 

chart data, or information that is to be stored in a database).  To use a bulletin board analogy, 

GET is for reading and POST is for tacking up new material” (Hunter & Crawford, Java Servlet 

Programming, 2001a).  Java has supported the creation of clients and servers that 

communicate via HTTP since the inception of Java 2 Platform Enterprise Edition.  Today, in 
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Java 2 Platform Enterprise Edition, v 7 there are more options available for creating Java 

servers that communicate via HTTP.  The two common frameworks for Java web services are 

Java Servlets and the Java API for RESTful Web Services. 

Java has supported the creation of clients and servers since the inception of the 

javax.servlet package in Java 2 Platform Enterprise Edition, v 1.4 (Oracle, 2011a).  

Servlets communicate via the stateless HTTP, where “A client, such as a web browser, makes 

a request, the web server responds, and the transaction is done” (Hunter & Crawford, Java 

Servlet Programming, 2001b).  In practice, a Java Class that provides HTTP methods as 

services will sub-class the HttpServlet Java Class using the extends keyword, thereby 

overriding the Java methods that correspond to the HTTP GET, POST, HEAD, DELETE, and 

OPTIONS, see Table 3.1. 

 

HTTP Method Java HttpServlet Method 

GET doGet(HttpServletRequest req, HttpServletResponse resp) 

POST doPost(HttpServletRequest req, HttpServletResponse resp) 

HEAD doHead(HttpServletRequest req, HttpServletResponse resp) 

DELETE doDelete(HttpServletRequest req, HttpServletResponse resp) 

OPTIONS doOptions(HttpServletRequest req, HttpServletResponse resp) 

Table 3.1: Table of HTTP method to Java methods in the Java HttpServlet class. 

In Java 2 Platform Enterprise Edition, v 6 the Java Specification Request number 311 

was implemented as the Java API for RESTful Web Services provided in javax.ws.rs 

package (Oracle, 2011b).  In 2008 the JAX-RS specification was defined to provide a core 

framework for writing RESTful web services that applies Java annotations to plain Java 

objects, this enhances the overall readability of service classes and methods, and aids in the 

overall development of RESTful web services (Burke, 2010). 
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The Java Enterprise Edition javax.ws.rs package defines the “high-level 

interfaces and annotations used to create RESTful service resources” (Oracle, 2011b).  Table 

3.2 illustrates core annotations for developing RESTful web services, and defines the 

annotation based on the published Java documentation. 

 

JAX-RS Annotation Summary 

ApplicationPath “Identifies the application path that serves as the base URI for all resource 

URIs provided by Path” (Oracle, 2011b).    

Path “Identifies the URI path that a resource class or class method will serve 

requests for” (Oracle, 2011b).    

Consumes “Defines the media types that the methods of a resource class or 

MessageBodyReader can accept” (Oracle, 2011b).    

Produces “Defines the media type(s) that the methods of a resource class or 

MessageBodyWriter can produce” (Oracle, 2011b).    

GET “Indicates that the annotated method responds to HTTP GET requests” 

(Oracle, 2011b).    

POST “Indicates that the annotated method responds to HTTP POST requests” 

(Oracle, 2011b).    

PathParam “Binds the value of a URI template parameter or a path segment containing 

the template parameter to a resource method parameter, resource class 

field, or resource class bean property” (Oracle, 2011b).    

QueryParam “Binds the value(s) of a HTTP query parameter to a resource method 

parameter, resource class field, or resource class bean property” (Oracle, 

2011b).    

FormParam “Binds the value(s) of a form parameter contained within a request entity 

body to a resource method parameter” (Oracle, 2011b).    

Table 3.2: Table that summarizes the core JAX-RS annotations provided in the Java package javax.ws.rs 
annotations. 

Servlets and JAX-RS are the two Java frameworks provided in the latest Java 2 

Platform Enterprise Edition, version 7, for web services.  These approaches will be further 

evaluated in Section 5.2.2. 

To summarize, Java supports three approaches for client-server communication in 

Java: WebSockets, Java Servlets, and JAX-RS.  Due to the inherent complexities of 

WebSockets, and the non-standard support of the communication, only RESTful 
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communication technologies in Java will be further investigated.  In general, web services 

can be viewed as providing software application remote procedure calls that communicate 

over a network and listen on the HTTP application layer, perform some operation, and send 

back a response.  Due to the widespread adoption of HTTP communication, web services 

provide interoperability through a standard means of communication capable of 

communication between applications running on different platforms and machines 

connected by a network (W3C, 2004). 

3.3 Ubiquitous Toolkit 

Just as a Java desktop 3D visualization toolkit facilitates the development of 

validated 3D desktop applications in the desktop space, a toolkit for ubiquitous applications 

will facilitate the development of ubiquitous applications.  Henceforth, a toolkit for ubiquitous 

applications is known as a ubiquitous toolkit.  Specifically given the client-server architecture 

of this thesis, a ubiquitous toolkit will expose easy to use constructs for ubiquitous 

applications.  Specifically, this toolkit needs to obfuscate the client-server communication, 

and expose a viewport construct, similar to the underlying validated toolkit.  This viewport is 

essentially a web widget that can be placed in the graphical user interface of a ubiquitous 

application.  Just as a desktop viewport provided by the existing validated 3D visualization 

toolkit, this ubiquitous toolkit supports the core features and capabilities needed by 

ubiquitous applications.  This section will further explore the approaches surrounding 

ubiquitous applications in the healthcare space. 

As ubiquitous applications are designed to reach the widest range of electronic 

devices they execute in the electronic device’s Internet browser.  Supporting the largest 

number of Internet browsers means the toolkit must leverage standard technologies.  

Fundamentally, applications that execute in an Internet browser are built using markups, 
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scripts and styles.  Specifically, these are the HyperText Markup Language, JavaScript and 

Cascading Style Sheets.  There are many versions of these standard markups, scripts and 

styles, and not all Internet browsers support the same versions or even contain the same 

Application Programmers Interface.  For instance, the latest markup standard is HTML 5.  

Version 5 of this markup language is not supported by all Internet browsers, and interacting 

with the standard elements defined in the HTML 5 standard may differ between Internet 

browsers. 

To obfuscate these subtle differences JavaScript libraries have been designed.  

Libraries like jQuery exist to provide an Internet browser agnostic solution to web 

development that supply an “easy-to-use API that works across a multitude of browsers” 

including Internet Explorer, Safari, Opera, and Chrome (The jQuery Foundation01). 

Rich ubiquitous applications are single page applications where the elements in the 

HTML page, elements in the Document Object Model are modified through JavaScript.  UI 

events in a rich application typically involve multiple DOM updates.  Because DOM updates 

through JavaScript or even jQuery can get very complex other JavaScript libraries exist that 

simplify data binding between HTML and JavaScript.  The Knockout JavaScript library 

“associates DOM elements with model data using a concise readable syntax” that includes 

automatic UI updates to the DOM when the state of the underlying data model changes 

(Knockout). 

To summarize, a ubiquitous toolkit is designed to facilitate ubiquitous application 

development and to obfuscate client-server communication.  Because an Internet browser is 

a standard execution environment for an application ubiquitous applications are built using 

markups, scripts, and styles including HTML, JavaScript, and CSS.  Due to the differences in 

HTML support and the API differences among Internet browsers, libraries such as jQuery exit 
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to provide an API that supports all common browsers.  In addition, because rich ubiquitous 

application UI interaction is complex and requires multiple updates to the DOM libraries such 

as Knockout exist.  Such libraries support DOM to JavaScript data binding and automatic UI 

updates when the state of the underlying JavaScript data changes. 

3.4 Ubiquitous Applications 

The motivation of this thesis is the creation of ubiquitous applications that are easily 

developed and validated.  The development of such applications is simplified by the 

ubiquitous toolkit, and the scope of application validation is lessened by the ubiquitous toolkit 

leveraging an existing validated visualization toolkit. 

To support ubiquitous application execution on the largest range of electronic 

devices, execution must not require any non-standard plugins to a device’s Internet browser.  

This means the application must not leverage browser plugins such as Adobe Flash and Java.  

This means ubiquitous applications are Zero-Footprint, requiring a minimal execution 

environment.  Also, because these ubiquitous applications will be leveraging a ubiquitous 

toolkit that communicates with web services for 3D visualization, these applications are thin-

Client. 

Ubiquitous applications are built using markup, scripts and styles that run in a 

device’s Internet browser.  Due to the complexities surrounding rich, single page web 

application development JavaScript libraries exist that provide an application framework.  

Such frameworks include AngularJS (Google) by Google, and Durandal (DURANDAL).  These 

frameworks encourage separation of concerns between web application UI logic and data 

through patterns like the Model-View-Controller.  
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In the software domain, thin-Client and Zero-Footprint are related but not mutually 

exclusive software architectural concepts.  The term thin-Client is an architectural approach 

where the software application contains little to know business logic, and is focused on the 

application User Interface.  On the other hand, Zero-Footprint is an architectural approach 

where applications require no special software to execute (Park, et al., 2010).  Therefore, the 

thin-Client architecture specifies a distinct separation of concerns between application and 

UI logic, and a Zero-Footprint architecture limits the execution environment of an application.  

Because a thin-Client architecture does not restrict the execution environment of an 

application, a thin -Client architecture is a type of a Zero-Footprint architecture.  In fact, a 

Zero-Footprint architecture can be categorized as thin or thick. 

Zero-Footprint applications are not rare; we interact with them many times a day.  

Since the Zero-Footprint architecture means the application requires no special software to 

execute, a Zero-Footprint application must execute on a technology stack common to all 

devices.  The only consistent environment across devices is an Internet browser.  All Internet 

browsers support the execution of standard applications written as web pages.  These web 

pages, often referred to as web applications, are all written on the same technology stack, 

and minimally include technologies such as: HyperText Markup Language, Cascading 

Stylesheets, and JavaScript that execute through a web browser application (Landgrave).  

These standard client-side markups, styles, and scripts allow for the creation of platform and 

device agnostic applications. 

Many of today’s web applications are by definition Zero-Footprint because they run 

on an Internet browser and do not require the installation of any extra software.  However, 

not all web applications fall into the Zero-Footprint category.  Just because an application 

executes in an Internet browser does not mean it is Zero-Footprint.  A Zero-Footprint 
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application must not require the existence of any non-standard Internet browser plugins.  

Any web application that requires Adobe Flash or a Java Runtime Environment is not Zero-

Footprint. 

There are two subcategories of Zero-Footprint application architectures.  Zero-

Footprint application architectures can be categorized as either thin-Client, or Thick-Client.  

Although thin-Client and Thick-Client are generic architectures methodologies for any 

technology stack, this discussion will tied to the domain of Zero-Footprint web applications.  

The categorization of a Zero-Footprint web application depends only on the amount of 

application business logic contained in the application code. 

In the thin-Client architecture, the client-side code is only responsible for User 

Interface controls, and the application business logic Application Programmer Interface is 

offloaded to another software program, typically executing on a server.  This server-side 

application business logic API is usually exposed as web services that are available to the 

thin-Client application, typically through the HTTP protocol.  Conversely, in the Thick-Client 

architecture the client-side code is responsible for UI and application business logic.  The 

application business logic API is local to the Thick-Client application itself.  Therefore, as 

shown in Table 3.3, the categorization of a Zero-Footprint application as thin-Client or Thick-

Client can be made solely based on the location of the application business logic API relative 

to the UI-application logic. 

 

Zero-Footprint Application Type Application Business Logic API 

thin-Client External 

Thick-Client Internal 
Table 3.3: Zero-Footprint Application Architecture Types and categorization based on business logic location. 
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As stated, a Zero-Footprint application is a web application that is built using only 

standard markup, styles and scripts executing in an Internet browser.  This limits the 

technology stack and language choices to languages supported universally by Internet 

browsers, and must not require Internet browser plugins.  For web applications written in 

HTML and JavaScript, the business logic of Thick-Client web applications are JavaScript 

functions whereas the business logic of thin-Client web applications are typically web 

services invoked via a specially formatted Hypertext Transfer Protocol request messages that 

often originate from the JavaScript XMLHttpRequest Object.  The XMLHttpRequest 

Object is used to exchange data synchronously (SJAX) or asynchronously (AJAX) between the 

web application and a server.  The significance of the XMLHttpRequest Object is that it is 

used to dynamically update the content of a web page with web service data without 

reloading the web page, supporting single page web applications (W3Schools01).  It is 

common for both thin-Client and Thick-Client web applications to leverage web services; 

however, thick-Client applications are more reliant on web services and usually require 

constant client-server communication. 

As with all software architectural approaches, thin-Client and Thick-Client 

architectures have their benefits and drawbacks.  Table 3.4 lists some of the major pros and 

cons of thin-Client and Thick-Client architectures.  To distinguish thin-Client and Thick-Client 

architectures for Zero-Footprint web applications each characteristic may not be a pro or 

con for both. 
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Architecture Characteristics thin-Client Thick-Client 

Web Application Complexity Pro Con 

Server-Side Complexity Con Pro 

Code/Algorithm reusability Pro Con 

Intellectual Properties Protection Pro Con 

Network Connection Con Pro 

Network Bandwidth Con Pro 

Web Application Startup Pro Con 

Web Application Responsiveness Con Pro 

Security (Server-Side) Con Pro 
Table 3.4: Benefits/Drawbacks of thin-Client versus Thick-Client architectures for web applications 

One of the most compelling benefits of a thin-Client, Zero-Footprint architecture is 

implementation hiding.  Proprietary algorithms are hidden from view because they can exist 

in the server-side API, and do not execute locally in the Internet browser.  This provides 

ultimate algorithms protection in a way not possible with JavaScript obfuscation. 

Another noteworthy benefit of thin-Client architecture not captured in Table 3.4 is 

multi-application language support.  For a Zero-Footprint application restricted to standard 

web technologies this is not a primary concern; however, it is an additional benefit of a thin-

Client approach.  Since a thin-Client approach leverages a central software application, like a 

server, for application business logic, the overall language choices for the thin-Client 

applications are limitless.  Specifically, for servers that expose web services, any language 

capable of communicating by the Hypertext Transfer Protocol is a candidate language for 

developing a thin-Client application.  This fact makes the overall application business logic 

reusable across the software language space. 

Park et al. (2010) expressed one of the major benefits of a Zero-Footprint viewer for 

medical imaging lies in the fact that such a technology provides remote image view while 

adhering to the Health Insurance Portability and Accountability Act Security Guidance for 
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Remote Use of and Access to Electronic Protected Health Information (Park, et al., 2010), 

(HHS, 2006).  Specifically, any device that displays any patient information, text or images 

must protect said information.  This is difficult in a medical imaging viewer because the 

images being displayed are sensitive.  The approach of Park et al. is the creation of a Zero-

Footprint mobile image display.  This approach sends rendered images encoded as jpeg from 

the server to the client, and displays them.  The authors’ Zero-Footprint approach has the 

following characteristics: 

a. “It is less restricted to the browser vendor used.  Some browser incompatibilities 

issues might need to be resolved but it has the benefit of working in a variety of 

Operating Systems (OS) and browsers. 

b. Quality of the images is not enough for Radiological readings; however it is 

suitable for review and training. 

c. Standard web protocols are used, no extra knowledge is required for handling the 

communication between the server and the client. 

d. The cache mechanisms are inherent from the browsers and the settings by the 

user.  This could be an issue if a high number of images are needed to be 

downloaded. 

e. The bandwidth usage can be considered low because there is no need to send 

the native DICOM images to the client, only the jpeg images. 

f. Minimal requirements are set for the hardware of the client PC.  Because the 

processing is done at the server side, the clients do not require having high-end 

components in order to display the images” (Park, et al., 2010). 

Of the six characteristics: a, c, and f define a Zero-Footprint system.  Characteristics b 

and e deal with Zero-Footprint medical image display, and require further examination. 

A Zero-Footprint system cannot simply be considered a low-bandwidth because 

Zero-Footprint applications come in two flavors: Thick-Client, and thin-Client.  A Thick-Client 
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over a thin-Client approach is less reliant on an external application, such as one running on 

another machine, and does not require constant communication to perform operations.  On 

the other hand, a thin-Client Zero-Footprint architecture has a heavily dependency to an 

external application to perform operations, and requires almost constant communication.  

Thus, with a thin-Client Zero-Footprint architecture it is difficult to agree with characteristic e. 

The claims for why such a Zero-Footprint for timely evaluation of stroke patients 

should send images as jpeg is an understandable design characteristic (approach 

characteristics b); however the rational is incomplete.  A Zero-Footprint medical imaging 

viewer should not be limited to image review and training.  An alternative Zero-Footprint 

medical imaging viewer framework will be explored in Section Chapter 5: APPROACH, where 

image quality does support radiological readings and large image traffic is not an issue (Park, 

et al., 2010). 

For Park et al. the main purpose of a Zero-Footprint medical image viewer is securing 

patient privacy, and a Zero-Footprint approach is perfect because images are not stored on 

the viewing device, only currently relevant information is displayed on the viewing device via 

an Internet browser (Park, et al., 2010).  This is a great solution for the issue of protecting 

patient information; however, the advantages of a Zero-Footprint viewer framework go much 

further, and do not have the limitations voiced by Park et al. 

The major benefit of a thin-Client architectural approach is the reusability of business 

logic.  However, this benefit is also a drawback.  With all business handled by web services 

running in a remote application the architecture requires a stable and reliable connection to 

the machine hosting the web services when making HTTP requests.  This often makes a thin-

Client approach appear as “chatty”, and may require a high bandwidth connection to make 

the application usable. 
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Overall, ubiquitous applications are web applications that execute in an Internet 

browser.  Because the Internet browser is a common execution environment across devices 

it is the sensible environment for applications to reach the widest range of devices. The 

overall application technology stack includes HTML markup, JavaScript scripts, and CSS 

styles.  Although this stack is a standard execution environment, rich, single page application 

development is not simple.  To simplify development of these applications there exist many 

application frameworks libraries, including: AngularJS, and Durandal.  In general, ubiquitous 

applications are known as Zero-Footprint because they are built using the standard browser 

technology and do not require the installation of any browser plugins.  Ubiquitous 

applications can be categorized as thin-Client, or Thick-Client based on the location of the 

underlying application business logic.  For 3D visualization, a thin-Client ubiquitous 

application leverages a server for 3D visualization services; rather a Thick-Client ubiquitous 

application leverages a client-side library for 3D visualization services.  Zero-Footprint 

applications have many advantages in the diagnostic radiology space; Park et al. chose a 

Zero-Footprint architecture for the timely evaluation of stroke patients for many reasons.  To 

summarize, their Zero-Footprint approach is less sensitive to Internet browser 

inconsistencies, it limits bandwidth usage by minimizing the number of images needed to 

download, and this approach does not save patient information on the device (Park, et al., 

2010). 
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CHAPTER 4: SYSTEM CHARACTERISTICS 

The primary goal of this thesis is the creation of an architecture that leverages an 

existing validated visualization toolkit for the purpose of supporting the creation of ubiquitous 

applications for diagnostic radiology.  Therefore, rather than developing such ubiquitous 

applications, the goal is to support their development by streamlining development and 

minimizing the validation processes via a ubiquitous toolkit.  Only with the mindset of toolkit 

development in place can one truly develop the set of software routines and utilities that are 

the foundations of ubiquitous applications capable of supporting the greatest number of 

ubiquitous applications executing on the widest range of devices. 

Proper software development must start with requirements.  Only after collecting 

software requirements is the intent of the software understood.  Using a Behavioral Driven 

Development approach “I focus on the goals of my users and the steps they take to achieve 

those goals” (Satrom, 2010).  This ensures the software requirements are based on real 

customer uses cases.  When developing the supporting architecture for ubiquitous 

applications for 3D diagnostic radiology, all system characteristics are focused on the 

ubiquitous toolkit. 

This chapter examines the system characteristics for this supporting architecture.  

Specifically, this is a bottom-up requirements discussion that traverses the architecture 

layout from the existing validated Java toolkit to the ubiquitous applications.  Each section 

discusses the requirements necessary for supporting ubiquitous application development. 
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4.1 Existing Java Validated Visualization Toolkit  

This section is a discussion of the core platform features a validated 3D visualization 

toolkit must provide for the support of rich 3D visualization applications.  As described in the 

overall layout of this ubiquitous application supporting architecture, this toolkit will be 

“webified”; therefore, it must provide the necessary features.  Following is a discussion of 

eight core 3D visualization features needed by diagnostic radiology applications. 

4.1.1 Dynamic Viewport Resizing 

Dynamic viewport resizing allows the viewport to be resized to any positive, non-zero 

width and height, see Figure 4.1.  This feature sets the size of the server-side viewport that 

map to one or more application viewports.  Changing the size of the application viewport 

without notifying the server-side viewport will modify the image aspect ratio, thereby 

stretching the application viewport image. 

 

Figure 4.1: Dynamic viewport resizing feature allows an application viewport to be resized to any positive, 
non-zero width and height. 
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4.1.2 Rendering Modes 

The platform supports different viewport rendering modes.  These render modes are 

applied to the server-side render engine, and affect the style of the image rendered.  The 

default render style is Multi-Planar Reformat; however the render style can be set to 

Maximum Intensity Projection and Volume Rendering before or after a dataset is loaded in 

the viewport, see Figure 4.2.  The middle image is a MIP view that supports dynamically 

changing the view thickness in millimeters. 

 

Figure 4.2: The platform supports from left to right: MPR, MIP, and Volume Rendering render styles. 

4.1.3 Preset Camera Views 

The platform supports the setting of the render engine’s camera eye point, look point, 

and up vector components to predefined anatomical directions and views, including: 

anterior, posterior, superior, inferior, right, and left. 

4.1.4 Coordinate Transforms and Volume Geometry for Graphics 

Custom Visualization Components are client-side JavaScript graphics that are 

painted over the application viewport.  These graphics need to update during application 

viewport interaction so that they appear to stick to their location.  These graphics can be 
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integrated into the viewport paint cycle and require coordinate system transforms.  

Specifically, 3D Visualization Components require transforms that convert coordinates 

between display and world coordinates, between 2D and 3D.  This allows Visualization 

Component to dynamically update their position in the application viewport during viewport 

interaction through the world to display and display to world coordinate transforms.  

A visualization component’s world coordinate does not change during viewport 

interaction.  It only changes when it is interacted with.  For example, a 3D reference cursor 

Visualization Component is used to show the same world point in all application viewports.  

Figure 4.3 shows a 3D reference cursor across four viewports.  This 3D reference cursor is set 

to the anterior side of the right eye. 

 

Figure 4.3: The 3D reference cursor Visualization Component shares the same world coordinate across the 
four application viewports.  When a user interacts with any of the cursors, their association cause the 
position of the cursor in the other viewports to update. 

In addition to coordinate transforms, rich 3D visualization applications require the 

volume geometry context.  This enables smart Visualization Components that have an 

understanding of the boundaries of the volume loaded in the viewport.  Specific to the 3D 

reference cursor, the cursor should only update its world position if it exists within the 
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confines of the volume.  Figure 4.4 shows the 3D cursor Visualization Component’s world 

coordinate outside the volume geometry, shown by the bounding box Visualization 

Component. 

 

Figure 4.4: The color of the 3D reference cursor Visualization Component changes when the cursor’s world 
coordinate does not exist within the confines of the volume (defined by the white bounding box).  This 
bounding box is another Visualization Component that updates during viewport interaction. 

4.1.5 Camera Manipulation 

The platform supports receiving and setting the render engine’s camera eye point, 

look point, and up vector together, or independently.  This concept is further discussed in 

beginning of Section 5.2.1. 

4.1.6 Mouse Based Application Viewport Interaction 

Mouse based application viewport interaction supports viewport pan, zoom, window 

width and window level, trackball for changing the camera orientation, and paging through 

slices orthogonal to the cut-plane.  The platform allows the mouse interaction to be set to the 

aforementioned.  Pan, zoom, trackball, and paging involve manipulation of the render 

engine’s camera eye point, look point and up vector components. 
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4.1.7 Render the Current Viewport Render Engine 

Ensuring the quality of the image displayed on the application viewport is possible 

through a render image web service that renders a snapshot image of the current render 

engine state.  This web service allows the application toolkit to request the appropriate full 

size rendering compressed using a lossy or lossless algorithm. 

This feature allows the client-side thin-Client and Zero-Footprint application toolkit to 

display high quality images in the application viewport during periods of stationary mouse 

interaction. 

4.1.8 Save and Restore Viewport State 

The platform supports the saving of the current state of the application viewport by 

returning the state of the server-side viewport as XML.  This state can be set on the server-

side viewport to restore the state of the application viewport. 

4.2 Web Services Layer 

To support ubiquitous applications that leverage an existing validated Java 

visualization toolkit for the core 3D features described in Section 4.1, the existing validated 

toolkit must be “webified”.  This architectural approach adds a service layer that logically sits 

on top of an existing codebase.  In this thesis, this is a web service layer that wraps the 

features of the existing validated toolkit, and exposes its features as web accessible 

resources. 

Since ubiquitous applications are intended to execute on the largest range of devices 

possible the web service layer must not make any choices that limit the use of the validated 



35 
 

Java visualization toolkit.  Specifically, this layer must use standard protocols and best 

practices to support ubiquitous applications. 

Appendix A lists the core 3D features described in Section 4.1 along with categorizing 

the HTTP operation.  The appendix also lists the web services that support each core feature, 

including the web service return type. 

4.3 Ubiquitous Toolkit 

3D visualization algorithms are complex, require adequate hardware resources, and 

medical datasets are not small.  Therefore, in regards to Java 3D visualization algorithms, it is 

not simple to port these algorithms to a client-side web application language like JavaScript.  

Not only would this exercise be very complex this would limit the number of devices capable 

of preforming 3D visualization because of hardware requirements.  Plus, because the image 

datasets being visualized are large, the transfer of images to the client device is inefficient.  

Therefore, due to the overall hardware resource limitations of these client side devices, and 

the complexities of the 3D visualization algorithms it is best to leverage an existing 3D 

validated toolkit for these web applications. 

However, simply providing a set of web services for ubiquitous applications is only 

half the story.  Just as porting a Java visualization toolkit to JavaScript is complex, building a 

ubiquitous application from web services is also complex.  Therefore, to facilitate ubiquitous 

applications it makes logical sense to provide a ubiquitous toolkit. 

The most fundamental 3D visualization construct is a viewport.  A viewport is a 

graphical element placed in a user interface that simulates physical interaction with a 

volume.  This construct can be thought of as a widget that is self-contained, and exposes an 

API for association with other user interface elements. 
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Therefore, this ubiquitous toolkit must expose a viewport construct for easy inclusion 

in ubiquitous applications.  To be truly successful, a viewport construct must obfuscate its 

reliance on the web services, essentially by being a web service wrapper.  Just as viewport 

constructs are the building blocks of any diagnostic radiology application, the exposed 3D 

viewports are the building blocks of ubiquitous applications for diagnostic radiology. 

Because the ubiquitous toolkit provides core 3D visualization services by leveraging 

the existing validated visualization toolkit’s features through web services, one of its unique 

traits lies in viewport interaction performance.  Following is a discussion of the unique the 

viewport interaction performance feature the ubiquitous toolkit must provide. 

4.3.1 Viewport Interaction Performance (Image Return Size and Mime Type) 

Ubiquitous application viewport interaction performance is a balance between 

frames per second and image quality.  In regards to viewport interaction performance, frame 

rate and image quality are inversely related.  Therefore, to improve interaction performance, 

image quality must decrease.  The ubiquitous toolkit must supports changing the interaction 

quality by decreasing the size of the image rendered, and changing the compression type of 

the image between image/jpeg and image/png.  Both these performance features 

influence the image transportation time from the server to the client by decreasing the image 

render time, and the return image file size.  Changing the size of the image rendered 

improves performance by also decreasing the render time.  Figure 4.5 shows how the render 

size changes viewport quality.  For the viewport on the right, the return image width and 

height are a forth the application viewport size.  Because the image is stretched to fit the 

application viewport, the viewport appear pixelated. 
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Figure 4.5: The viewport on the left contains an image of equal width and height.  The viewport on the right 
contains an image one forth the width and height. 

These two performance features mean that web services will not limit the range of 

applications based on software safety classification, and will be designed to support 

diagnostic review through ubiquitous applications 

4.4 Ubiquitous Application 

Ubiquitous applications are 3D applications capable of executing on the widest range 

of devices for the purpose of diagnostic radiology.  Therefore, these applications must allow 

users to visualize and interact with volumes in a way that supports diagnostic review 

ubiquitously. 

From the standpoint of end users, the expectation is these ubiquitous applications 

support diagnostic review from workstations, to their mobile devices.  Therefore, ubiquitous 

applications must be validated applications that display a high quality representation of the 

current state of the volume being viewed and modified.  These applications must be capable 

of advanced visualization and interaction, and include core features necessary for diagnostic 

radiology.  Therefore, the core features necessary for ubiquitous applications mirror those 

described in Section 4.1. 
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CHAPTER 5: APPROACH 

This chapter examines the details of this client-server architectural approach for 

supporting ubiquitous applications.  Specifically, this is a bottom-up architecture discussion 

that traverses the architecture layout from the existing validated Java toolkit to the 

ubiquitous applications.  Each section discusses the details surrounding the layer in the 

architecture necessary for supporting ubiquitous application development.  As the discussion 

progresses through the architecture, the details of high-level architecture client-server 

diagram supporting an infinite number of unique ubiquitous applications shown in Figure 5.1 

will be filled in. 

 

Figure 5.1: This figure depicts the high-level architectural approach of this thesis.  Using a verified 
visualization toolkit built for desktop applications, creating a web service layer and supporting client-side 
ubiquitous application development toolkit the existing verified toolkit supports an infinite number of 
ubiquitous applications. 
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5.1 Existing Java Validated Toolkit 

The foundation of this client-server architecture supporting ubiquitous application is 

an existing validated Java visualization toolkit.  Importantly, this toolkit is not designed for 

supporting web applications, ubiquitous applications.  This validated toolkit is designed to 

support rich Java desktop applications for diagnostic radiology.  Being a validated toolkit, it 

provides the foundation for rapid creation of rich Java desktop applications that require less 

validation then traditional desktop applications not leveraging a validated toolkit. 

In the context of this architecture, the existing Java validated visualization toolkit is 

simply considered a third party library providing 3D visualization features.  Bundled as Java 

ARchive files, this toolkit can be leveraged by adding the JAR files to the server-side web 

services code, see architecture in Figure 5.2.  This is the foundation of this thesis as it is a time 

tested validated toolkit proven to support many applications running on many platforms.  

Importantly, it provides all the necessary features. 

 

Figure 5.2: This figure highlights the existing validated toolkit used in this architecture.  In the high level 
architecture, this toolkit will be layered by a web service layer for the purpose of “webifying” the existing 
validated toolkit. 
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5.2 Web Service Layer 

The overall goal is to develop an architecture capable of supporting ubiquitous 

applications that support an existing Java validated visualization toolkit by exposing the 

features of the toolkit via a standard web communication protocol.  Specifically, these web 

services are generic meaning they can be consumed by applications written in any language 

able to communicate via the chosen protocol.  In this architecture, the collection of similar 

web services provides necessary application functionality in one place.  In an enterprise 

setting, this allows all applications running on any device in the network to share the same 

core services ensuring consistent 3D volume visualization and interaction behavior. 

For this client-server architecture the thin-Client Zero-Footprint pattern is the 

preferred choice over the Thick-Client for 3D Zero-Footprint applications for several reasons.  

The thin-Client architectural pattern minimizes re-implementation of existing algorithms.  In a 

thin-Client architecture, existing algorithms can be wrapped by a service layer that exposes 

functionality as web services.  Figure 5.3 shows the thin-Client pattern for the client-server 

architecture where the existing implementation is viewed as a black-box from the 

perspective of the client-side code.  Another advantage is implementation hiding.  A thin-

Client pattern hides proprietary algorithms in the server-side black-box living under the 

service layer, shielding them from view.  Contrary, the Thick-Client pattern does not hide 

algorithms from view because algorithms exist and execute locally on the client machine as 

JavaScript.  Therefore, the algorithms are viewable by viewing the web page’s source code 

through an Internet browser, even if the JavaScript is obfuscated.  In this architecture for 

ubiquitous applications, the web-services are designed to be leveraged by a ubiquitous 

toolkit.  As seen in Figure 5.3 the ubiquitous toolkit has direct access to the service layer but 

does not have access to the web validated Java visualization toolkit. 
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Figure 5.3: This figure highlights the web service layer architecturally wrapping an existing validated Java 3D 
visualization toolkit (viewed as a black box). 

After choosing the thin-Client client-server architecture pattern, the next design 

choice is the web service client-server communication protocol.  As noted in Section 3.2.2, 

there are three common client-server communication architectures: WebSockets, SOAP, and 

REST.  These three communication standards for client-server communication have their 

advantages and disadvantages.  In general, WebSockets provide higher throughput than 

REST and SOAP due to decreased overhead.  Additionally, unlike REST and SOAP, Web Sockets 

provides full-duplex communication, allowing the server to push data to the client.  However, 

WebSockets should not be thought of as the first and only solution for client-server 

communication; rather, WebSockets should be used when a use case exists that can be best 

solved through WebSockets.  For these reasons, the use of WebSocket for this architecture is 

not a primary consideration until it is proven that REST or SOAP will not support ubiquitous 

applications. 
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Representational State Transfer and Simple Object Access Protocol both provide an 

interoperable means for client-server communication using the Hypertext Transfer Protocol.  

REST provides machine-to-machine communication that provides remote access to server-

side resources through a set of stateless operations, often HTTP GET and POST (Laine).  SOAP 

leverages the Extensible Markup Language for object communication between machines.  

Transport of objects serialized and transported as XML produces readability but increases the 

amount of data transported, and requires additional XML and object conversion overhead. 

RESTful web services have several advantages over SOAP for client-server 

communication.  RESTful communication does not require XML for data transfer.  Marshaling 

and unmarshaling objects to and from XML requires client-side and server-side parsing of the 

XML document and therefore has added computation and data transportation overhead 

(Laine).  RESTful web services support the transportation of objects using the JavaScript 

Object Notation.  JSON provides a “lightweight, text-based, language-independent data 

exchange format that is easy for humans and machines to read and write” (Kotamraju, 2013).  

Another advantage of RESTful communication is inherent in Internet browsers.  Internet 

browsers are well apt at image retrieval, and when the src attribute of an image HTML 

element is changed, the browser automatically issues a HTTP GET operation.  Therefore, 

retrieving an image from a RESTful web service requires little client-side code. 

As mentioned, RESTful web services are intended to be stateless.  This means each 

web service call should be independent from prior web service calls.  This is great in theory, 

but in practice this pattern is not ideal for a 3D imaging toolkit.  The next section will 

investigate why a “stateful” RESTful web service approach is appropriate for ubiquitous 

applications by illustrating the advantages of 3D visualization web services that store the 

state of a ubiquitous application viewport during a mouse drag operation. 
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5.2.1 “Stateful” Versus Stateless RESTful Web Services  

Given a working ubiquitous application, a clinician is viewing a volume rendering of a 

CT head study, and wants to change the view from an anterior view to a right view using the 

mouse on the computer, see Figure 5.4. 

 

Figure 5.4: The image on the left shows an anterior view volume rendering.  The image on the right shows a 
right view volume rendering. 

Before discussing the underlying RESTful web service design several volume 

rendering terms must be defined. 

 Render engine 

 Render style 

 Camera 

A render engine is responsible for producing 3D views.  In this context, a render 

engine is able to produce an output image based on its state.  A render engine state is 

minimally defined by a loaded DICOM dataset(s), a render style, dimensions, and camera 

attributes. 
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A render style is an important component of any render engine.  A render engine 

render style defines the type of volume being rendering.  In this context, the output is an 

image that is a rendered with a render style such as multi-planar reformat, volume rendering, 

or maximum intensity projection. 

In the context of volume rendering the camera defines specific attributes, including: 

eye point, look point, and up vector.  Together these define the orientation of the volume, and 

simulate what the viewer would see.  Eye point and look point are points defined as a 3D 

world point, and define the point that simulates the location of an eye that is looking at a 

specific point.  The up vector defines the orientation of the camera in 3D world coordinates.  

These three camera attributes define the views of the render engine in a three dimensional 

world, see Figure 5.5.  The camera attributes allow the render engine to render views that are 

zoomed, translated, rotated, or any combination of the aforementioned operations.  For 

example, if in Figure 5.5 the look point and eye point both are moved 7 millimeters in the 

positive superior direction, the result is a translated or pan image.  Figure 5.6 visualizes the 7 

millimeter translation in the positive superior direction. 
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Figure 5.5: This figure visualizes the three components of a 3D medical render engine’s camera: Eye Point, 
Look Point and Up Vector. 

 

Figure 5.6: This figure visualizes a render engine camera translation by 7 millimeters in the superior direction 
by updating the camera Eye Point and Look Point. 
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Given the definitions of render engine, render style, and camera, the following is a 

discussion of “stateful” versus stateless RESTful web services.  If the underlying web service 

layer utilizes RESTful web services that are stateless, each mouse event during the mouse 

drag would issue requests to the mousemove web service in the following URI form: 

GET /mousemove?datasetID={ID}&renderStyle=VOLUME&x={mouse x}&y={mouse y} 

 
This stateless RESTful mousemove web services requires URI query parameters for 

each property that specify the volume to be loaded and manipulated.  Specifically, each call 

to the mousemove web service requires four URI query parameters: 

1. datasetID- the DICOM data identifier 

2. renderStyle- the volume render style 

3. x- the x component of the mouse event relative to the HTML canvas upper left 

hand corner 

4. y- the y component of the mouse event relative to the HTML canvas upper left 

hand corner 

To be completely stateless the underlying RESTful web service needs to perform five 

operations in order to service each mousemove call: 

1. Load the specified dataset, 

2. Set the render style, 

3. Apply the mouse move through render engine camera properties (eye point, look 

point, and up vector) 

4. Perform a rendering, and send the response image 

5. Cleanup all objects created during this process. 
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Because each JavaScript mouse move event on the HTML canvas element will 

result in these five server-side operations, this is a very inefficient design.  A stateless 

mousemove web service invocation will likely spend most of the service time in the dataset 

load, especially if the data is not cached in memory and/or has to be retrieved over a 

network.  Overall, the more operations that the web service performs, the longer time the 

HTTP issuing browser thread waits for the response. 

This truly stateless mousemove RESTful web service design has a lot of room for 

improvement.  A more efficient design is for the mousemove service requires stateful RESTful 

web services that cache and operate on the stored state of the ubiquitous application 

viewport.  The viewport in this context is a one-to-one mapping between each HTML canvas 

element and a viewport representation in the web service.  The major difference is that this 

architecture requires the client to request operations to be performed on a specific volume 

object, meaning the web services need to hold a collection of volume objects in data 

structure.  In this pattern, this mousemove web service decomposes into four web services: 

1. create- create a viewport object 

2. load- perform the loading of a specific data set 

3. setRenderStyle- set the volume render style 

4. mousemove- perform a mouse move by updating the render engine camera 

attributes 

This RESTful web service design requires the return of a unique identifier when the 

object is created through the create web service.  Each additional web service requires the 

unique identifier to be passed as a URI query parameter that identifies the viewport object 

that will be modified.  This requires a series of web service calls before the call to 
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mousemove, and eliminates the need for datasetID and renderStyle query 

parameters when invoking the mousemove web service: 

GET /mousemove?id={object ID &x={mouse x}&y={mouse y} 

 
A “stateful” RESTful web service that stores the state of the viewport does not require 

the loading of a dataset, and the setting the render style for every mousemove, and only 

needs to change the camera and return the resultant rendered image.  The overall web 

services URI query is more concise.  It also breaks the web services into separate logical 

operations.  This approach is not perfect, storing the state requires synchronization between 

the client and server; however, since this is a thin-Client approach, the client leverages the 

server for all viewport updates.  The only major drawback with a “stateful” web service 

approach is need for resource management.  Web service resource management will be 

explored in Section 5.2.4. 

5.2.2 Java Servlets Versus JAX-RS RESTful Web Services 

Having chosen a “stateful” RESTful web service client-server communication 

architecture, the last design decision surrounds the creation of Java RESTful web services.  

Section 3.2.2, introduced the Java Servlet and JAX-RS APIs for creating RESTful web services 

in Java.  Overall, the Java Servlet approach to RESTful web services has many disadvantages.  

Java Servlets require a large amount of standard code to implement and dispatch HTTP 

requests appropriately from the doGet and doPost methods.  Specifically, one of the 

greatest shortcomings of Java Servlets is the need to manually parse and cast URI query 

parameters from the URL.  This URI query parameter decomposition and casting shortcoming 

is handled automatically with JAX-RS. 
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JAX-RS automatically performs the parsing and casting of the URL to extract the URI 

query parameters.  This is accomplished through the use of Java annotations.  These 

annotations specify the URI query parameters for each web service method, which improves 

Java code readability.  Another advantage to JAX-RS is the declaration of web services in 

Java Interfaces, this provides modular separation between definition and implementation, 

and increases the readability and documentation of Java RESTful web services.  Below is a 

code snippet of a JAX-RS load RESTful web service defined in a Java Interface.  From the 

method annotations it is clear that this web service maps to a HTTP GET at the URL path 

/load, and requires three URI query parameters: id, dataset, and mimeType that map to 

Java parameters with the same name. 

/** 

 * Loads the data specified by the provided data ID into the viewport specified 

 * by the provided web viewport ID  

 * @param id The universally unique ID of the viewport in which the 

 * data specified by {@code datasetID} will be loaded. 

 * @param datasetID The ID of the data set to be loaded into the 

 * viewport specified by {@code id}. 

 * @param mimeType The MIME type of the image to be returned. 

 * @return An HTTP 200 response containing graphical data in PNG format 

 * if the load was successful; otherwise, a HTTP 500 response. 

 */ 

@GET 

@Path ( "/load" ) 

Response load( @QueryParam ( "id" ) String id, 

    @QueryParam ( "datasetID" ) String datasetID, 

    @QueryParam ( "mimeType" ) String mimeType ); 

 
Overall, JAX-RS is a very nice Java framework for mapping URI patterns and HTTP 

operations to Java methods based on annotating Java classes and methods (Burke, 2010).  

These annotations effectively inject URI parameters to Java methods.  The JAX-RS framework 

aids in code readability, and facilitates RESTful web service development in Java.  For these 

reasons JAX-RS is the application choice for RESTful web services. 
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5.2.3 JAX-RS RESTful Web Service Layer Architecture 

The web service layer is fundamentally a service wrapper around an existing 

validated Java visualization toolkit.  This service wrapper exposes the toolkit’s API through 

“stateful” JAX-RS RESTful web services.  Collectively these web services abstract and act as a 

proxy to the toolkit’s features, and constitutes a virtual web 3D viewport object that is tightly 

coupled to a ubiquitous application viewport.  Henceforth, a server-side web 3D viewport will 

be referred to as a web viewport.  Fundamentally, this client-server architecture creates a 

one-to-one mapping between ubiquitous application viewports and web viewports where 

the web viewports expose the 3D visualization features of the leveraged validated toolkit as 

“stateful” JAX-RS RESTful web services. 

Architecturally, when creating JAX-RS REST web services it is best to specify the JAX-

RS RESTful annotations in a Java interface.  A RESTful web service interface “is responsible for 

identifying how our service is to be exposed as a REST service” (IBM).  A “REST interface is 

where we place our JAX-RS annotations that describe how our service is deployed and how 

the HTTP requests are mapped to our interface” (IBM).  This REST interface ensures a clean 

separation between RESTful service definition and implementation.  The interface not only 

ensures the existence of the web services, it clearly documents the capabilities of each web 

service through normal Java API documentation. 

Following the practice of RESTful web service definition through a REST interface, the 

server-side toolkit defines three REST interfaces to define the full RESTful web service 

contract for 3D viewports.  The core service contract is defined in the 

Web3dViewportService Java Interface.  This REST service contract defines what it 

means to be a 3D web viewport resource through a collection of web services.  This interface 

guarantees, and documents a set of HTTP accessible services that rely on two other RESTful 
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service contracts, see Figure 5.7.  The Web3dViewportService REST interface extends 

WebViewportService.  WebViewportService defines general viewport capabilities 

and RESTful services that are standard across all types of viewports, such as 2D and 3D.  

Finally, the WebResourceService REST interface defines the REST contract necessary for 

any web resource.  This interface defines the necessary RESTful services that all persisting 

Java Object resources bound to a specific client-side application must follow.  The key 

feature of a web resource is that it ensures proper memory management, and server 

stability.  Without a resource management strategy the stability is in question.  The web 

resource concept is further discussed in Section 5.2.4. 

 

Figure 5.7: This figure describes the hierarchy of the web service layer REST interface through an interface 
class diagram. 

The toolkit platform architecture is designed to be highly extendable in terms of 

future features.  As the existing validated toolkit feature set is expanded with new features, or 

if they are replaced, this modular platform can easily adapt.  This REST interface structure 

ensures platform extensibility, as changes are made the web service contract is updated by 

adding and implementing new methods in the REST interfaces. 
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With the concept of a 3D visualization viewport defined, and the full RESTful web 

service contract logically broken into three interfaces, the capabilities of the existing 

validated visualization toolkit can be extended to external programs through the web 

services.  The implementation of the REST interfaces uses the proxy pattern to leverage the 

validation visualization toolkit’s features.  In this way, the true logic provided by the existing 

visualization toolkit is accessible to external programs via HTTP.  By leveraging the JAX-RS 

framework and Java REST annotations, HTTP messages are routed to the appropriate service 

layer methods that proxy to the necessary methods in the existing toolkit.  As an example, 

the load web service is defined in the WebViewportService REST interface.  Through 

annotations, the interface indicates that the load web service responds to HTTP GET requests, 

and expects three query parameters. 

@GET 

@Path ( "/load" ) 

Response load( @QueryParam ( "id" ) 

String id, @QueryParam ( "datasetID" ) 

String datasetID, @QueryParam ( "mimeType" ) 

String mimeType ); 

 
The load method REST interface indicates that this REST method requires the 

identifier of the web viewport to use for loading the specified dataset, the identifier of the 

dataset to load, and the mime type of the return image.  Because the return type of the 

image produced by this service is not static, this REST interface method does not identify a 

specific image mime type return using the Produces annotation.  Lastly, the Path and 

QueryParam annotations together specify the URI to which this load web service maps.  

With a dataset identifier of dataset1, and a mime type of png, dataset1 can be loaded 

on a viewport defined by viewport1 given a HTTP GET message with the URI: 

/load?id=viewport1&datasetID=dataset1&mimeType=png 
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By implementing the REST contract the JAX-RX framework invokes the implementing 

methods with the necessary parameters for every HTTP message that matches the defined 

Java REST annotations.  Because any web architecture needs to be designed to support 

simultaneous users the architecture needs to define a resource management strategy.  As a 

“stateful” REST architecture, persistent Java Objects used by specific clients are considered a 

web resource. 

In the context of this web service layer, there exists a one-to-many relationship 

between a server-side web viewport, a web resource, and client-side ubiquitous application 

viewport.  This relationship is defined as one-to-many because some 3D visualization 

applications may allow the sharing of a server-side viewport context between multiple 

application instances; for example, to support volume sharing between users for consultation 

purposes.  To accomplish this, web viewports need to be managed by a management layer.  

This manager interfaces the REST web service implementation and the specific web viewport 

specified by the id query parameter in the HTTP URI.  In this context, the resource manager 

manages a collection of web viewport objects.  Each web viewport Object proxies the existing 

validated visualization toolkit.  Figure 5.8 describes the communication flow from a HTTP 

request to the existing codebase via the JAX-RS RESTful service layer.  The following server-

side web service layer architecture discussion discusses the concept of resource 

management, and the use of web resources and shard resources in the server-side 

architecture. 
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Figure 5.8: This figure highlights the server-side web service layer architecture. 

5.2.4 Resource Management 

Proper resource management is a vital design component of any application that 

allocates and stores resources.  While “webifying” an existing implementation, it is not 

enough to simply create a one-to-one mapping between methods existing in an existing 

Java validated visualization toolkit and web services.  Because the implementation is not 

designed for remote web application usage, the environment surrounding the 

implementation, expectations, and use cases are different.  It is not sufficient for the web 

services to simply proxy the toolkit, a fundamental layer must be defined and added, a 

resource manager.  In this discussion a resource is any Java object that is created and 

managed by an instance of a management class, a web viewport is a resource.  This implies 

a one-to-many relationship between a resource manager and the resources it manages.  

Architecturally, a resource manager is tasked with managing a certain category of resources 

defined either by a Java Interface or a class. 

For modularity and separation of concerns, it is advantageous to parameterize the 

resources that are managed by the resource manager.  Parameterization allows instances of 
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a resource management class to constrain its managed resources to a particular resource 

type.  Management through an interface guarantees the managed resource abide by a 

specific API contract. 

In its true form, a resource manager is a wrapper around a map data structure.  

Construction of a resource manager instance requires the type of resource to be managed.  

Specifically, each manager contains a map that is a String to resource type, key value pair.  

This allows a resource manager user to specify a universally unique identifier that maps to a 

specific resource.  Since the contents of the map needed to be guarded against inappropriate 

updates, the map is marked as private, and the resource manager provides a set of methods 

for access.  The snippet below illustrates a basic resource manager with a parameterized 

resource type defined by T, where T is a class or interface. 

public class ResourceManager<T> { 

    private Map<String, T> resources; 

 

    public ResourceManager( String managerName ) { 

        resources = new ConcurrentHashMap<String, T>(); 

    } 

    public void add( String key, T resource ) { 

        resources.put( key, resource ); 

    } 

    public int getNumberOfResources() { 

        return resources.size(); 

    } 

    public T get( String key ) { 

        T resource = resources.get( key ); 

        return resource; 

    } 

    public T remove( String key ) { 

        T resource = resources.remove( key ); 

        return resource; 

    } 

    public Map<String, T> getResources() { 

        return new ConcurrentHashMap<String, T>( resources ); 
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    } 

} 

 
Because this ResourceManager is parameterized, it requires the type of resource it 

manages during construction.  The following snippet illustrates proper ResourceManager 

instantiation for a ResourceManager that manages Viewport3D resources 

ResourceManager<Viewport3D> manager =  

    new ResourceManager<Viewport3D>( “Viewport3D Manager”); 

 
The server-side web service layer requires two types of resource management: timed 

resource management, and shared resource management. 

5.2.5 Managing Web Resources 

In the web domain, client-side web applications often leverage a server that provides 

resources, like web viewports.  Such resources are defined to be web resources.  These web 

resources are managed by a resource manager, and are usually identified by some type of 

key.  This key is used by the client-side application to identify the specific resource to use 

while performing the requested operation.  Because there can be many client-side 

applications using server-side web resources, and only finite server hardware resources, 

there can be issues with memory management.  As the number of applications and web 

resources increase, the overall memory usage on the sever increases.  In this way it is too 

easy for memory usage to increase during the life of the server application.  Without proper 

web resource management the server memory usage can continue to grow to the point 

where the server application runs out of memory.  At this point there are two scenarios.  

Either the application can no longer provide web resources, or the Java Virtual Machine 

running the server application crashes and no longer communicates. 
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One of the largest draws on JVM memory is inappropriate web resource cleaning, 

specifically when a resource is no longer used.  This situation occurs if a client application 

ends or permanently severs the connection to server.  This lost association means the only 

reference to the web resource is the managing resource manager.  Without proper 

notification to the server, these web resources will continue to exist in memory due to the 

resource manager containing a reference to the web resource object.  This situation 

constitutes a memory leak.  The JVM Garbage Collector cannot remove these web resources 

because they are referenced by the resource manager.  Therefore, a resource manager in 

itself is not a complete solution to the problem of managing web resources. 

To mitigate memory leaks, when applications are done using web resources they 

must notify the server.  The resource manager can then remove the web resource from its 

collection.  However, it is too easy for memory leaks to occur when the server still thinks a 

resource is being used.  Forgetting, or purposefully not notifying the server produces a 

memory leak that cannot be mitigated until the server application is restarted and the OS 

reclaims this memory. 

For this reason, the honor system is not a good pattern for web resource 

management; it relies on application developers following the rules.  It is prudent for the 

server-side web service layer to be smarter.  One approach is a special type of resource 

manager that defines a maximum time each web resource can remain unused before it is 

deemed “stale”, meaning it has been marked for removal.  Such a resource manager is 

henceforth known as a web resource manager. 

The server-side toolkit architecture utilizes a web resource manager for server-side 

web viewport management.  What makes the web resource manager unique is that it only 

stores web resources.  A web resource differs from a traditional resource in that it has a 
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property that stores the last time it was used.  To work properly, each time a web resource is 

used in a web service the time stamp is updated with the current time.  As with a normal 

resource manager, a web resource should only be managed by a single web resource 

manager.  Because web resources are used by web services, and each web resource is held 

by a web resource manager, the web resource manager logically exists between web service 

and the web resource, Figure 5.9. 

 

Figure 5.9: A web resource manager manages a collection of web resources.  The web resource manager 
logically exists between the web services and a web resource. 

Storing the last time a web resource has been used is not sufficient for minimizing 

memory leaks; the second step involves a proactive approach for removing “stale” web 

resources.  The web resource manager requires a cleaner task that periodically scans all the 

web resources managed by the web resource manager and proactively removes any web 

resource that has been deemed “stale”.  A web resource is considered “stale” when the last 

time since the resource has been used exceeds a defined duration.  Specifically, a specific 

web resource instance, webResource, is considered “stale” when: 

System.currentTimeMillis() - webResource.getLastTimeUsed() > RESOURCETIMEOUT  

 
When web resources are marked as “stale” they are removed from the web resource 

manager and their memory is freed.  In this design, even if the client-side application does 

not tell the server about the web resource no longer being used it will eventually be freed.  A 

web resource manager does not guarantee the JVM will not crash from a lack of available 

memory, it just helps.  The web resource timeout needs to be chosen that maximizes server 

stability and minimizes removal of resources that are still in use. 
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The platform contains a many-to-one association between client-side application 

viewports and a web viewport, as shown in Figure 5.9.  In this context, a client-side viewport 

is an application viewport, and a web viewport is a server-side viewport resource.  This 

association between application viewports and viewport web resources is bound by a 

universally unique identifier.  Since most RESTful web service operate on a specific viewport 

web resource, the service requires the universally unique identifier of the viewport web 

resource bound to the application viewport as a URI parameter.  This allows web services to 

get a handle on the specific viewport web resource through the web resource manager. 

All viewport web resources in the system are managed by a web resource manager.  

To ensure 3D viewports are not marked as “stale” and removed prematurely, each service 

call on a specific viewport web resource needs to update the resource’s last time used.  

Ideally, the process of updating a web resource’s last time used should happen 

automatically.  The web resource manager is the perfect location to automatically update the 

web resource’s last time used, since all services that operate on a specific web resource must 

attain the web resource from the web resource manager.  By automatically managing the 

update of a web resource’s last time used, and blocking restricting access to resources 

through the get method, the likelihood of a web resource’s last time used not getting updated 

is eliminated. 

5.2.6 Managing Shared Resources 

The second type of resource manager is one that manages shared resources.  In a 

shared resource manager, the same resource is used by multiple objects.  The manager 

keeps a count of the number of users for each shared resource, and continues to manage 

the resource while its count is greater than zero.  A shared resource is typically a 

heavyweight resource that takes up a lot of hardware resources, and maybe a resource that 
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is considered slow to instantiate.  In some cases, resources are designed to persist; these 

types of resources should not be instantiated and destroyed for every web service request.  

One solution is to create a pool of shared resources that wait until they are needed.  When a 

web service request requires such a resource the web service grabs an available resource, 

performs the requested operation, and then returns the resource to the pool for reuse.  If a 

web service requires the use of a shared resource but the pool is empty, the service must 

block until a resource is returned to the pool.  More complex shared resource managers can 

extend this pattern, and may dynamically instantiate more resources depending on the load. 

In the web services layer the server manages volumes instances with a shard 

resource manager.  Each volume is a sharable resource that is used by at least one viewport 

web resource.  When an application calls the load RESTful web service it provides a unique 

dataset ID that identifies the volume to be loaded.  The loading of the dataset in a volume 

may take seconds, especially if the data describing this volume is stored remotely.  Once a 

volume is created, it is stored in the resource manager, and loaded into the specified 

viewport web resource.  Subsequent calls to load the same dataset are faster because the 

volume defined by the dataset ID already exists in the shared resource manager. 

To adequately manage memory, these volumes must be removed from the shared 

resource manager when all viewport web resources referencing a volume cease to exist, or if 

another volume is loaded in the viewport.  This requires a counter for each volume that 

increases as more viewport web resources load the volume, and decrease as web resources 

goes away or a change to the underlying volume is made.  In this way, only when the 

reference count of a volume reaches zero is the volume removed from the containing data 

structure and memory.  Specifically, this shared resource manager contains a mapping of 

volume dataset identifier to VolumeRecord.  A VolumeRecord is a wrapper around a 
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Volume object that stores the number of resources using a specific Volume.  The below 

VolumeManager singleton class snippet illustrates the concept of resource manager that 

manages shared Volume objects.  All updates to the shared resource map are controlled 

through addToCahce and removeFromCache. 

public class VolumeManager { 

    private static class VolumeRecord { 

        private Volume volume = null; 

        private int count = 0; 

 

        public VolumeRecord( Volume volume, int count ) { 

            this.volume = volume; 

            this.count = count; 

        } 

 

        public Volume getVolume() { 

            return volume; 

        } 

 

        public void setCount( int count ) { 

            this.count = count; 

        } 

 

        public int getCount() { 

            return count; 

        } 

    } 

 

    /** 

     * The singleton instance of {@code VolumeManager}. 

     */ 

    private static VolumeManager volumeManager = null; 

 

    /** 

     * Cache that stores a {@link VolumeRecord} to a {@link String} 

     */ 

    private static final Map<String, VolumeRecord> cache =  

        new HashMap<String, VolumeManager.VolumeRecord>(); 

 

    private VolumeManager() {} 
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    /** 

     * Returns a singleton instance of {@code VolumeManager}. This method is 

     * thread safe. 

     *  

     * @return A singleton instance of {@code VolumeManager}. 

     */ 

    public synchronized static VolumeManager getVolumeManager() { 

        if (volumeManager == null ) { 

            volumeManager = new VolumeManager(); 

        } 

        return volumeManager; 

    } 

 

    /** 

     * Adds a new Volume to the cache. Increments the number of users. 

     *  

     * @param id The unique identifier for the Volume to add to the cache. 

     * @param volume The Volume object to add to the cache. 

     */ 

    public void addToCache( String id, Volume volume ) { 

        if ( cache.containsKey( id ) ) { 

            VolumeRecord vr = cache.get( id ); 

            int newVolumeCount = vr.getCount() + 1; 

            vr.setCount( newVolumeCount ); 

            cache.put( id, vr ); 

        } else { 

            if ( null != volume ) { 

                VolumeRecord vr = new VolumeRecord( volume, 1 ); 

                cache.put( id, vr ); 

            } else { 

            } 

        } 

    } 

 

    /** 

     * Decrements the number of objects using the Volume. When the number is 

     * less than or equal to 0 the Volume is removed from the cache. 

     *  

     * @param id The unique identifier for the Volume to remove for the cache. 

     */ 

    public void removeFromCache( String id ) { 
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        synchronized ( this ) { 

            if ( cache.containsKey( id ) ) { 

                VolumeRecord vr = cache.get( id ); 

                int newVolumeCount = vr.getCount() - 1; 

                if ( newVolumeCount <= 0 ) { 

                    cache.remove( id ); 

                } else { 

                    vr.setCount( newVolumeCount ); 

                    cache.put( id, vr ); 

                } 

            } 

        } 

    } 

} 

 
The overall result of the server-side web service layer architecture is shown in Figure 

5.10.  The figure identifies the web service layer as JAX-RS RESTful Java web services that 

communicating via HTTP.  This toolkit exposes the existing validated Java visualization toolkit 

as web services that can be utilized by ubiquitous applications. 

 

Figure 5.10: This figure highlights the web service layer wrapping of the existing validated visualization toolkit 
by JAX-RS RESTful web services for the purposes of “webifying” the existing validated toolkit. 
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5.3 Ubiquitous Toolkit 

The exposed RESTful web services provided by the web service layer are sufficient for 

developing rich ubiquitous 3D visualization web applications; however, using JavaScript to 

consume them is not trivial.  The common web service invocation pattern involves calling the 

web service via an HTTP operation, and then processing the response.  In most cases, the 

response needs to update the DOM of the application HTML.  Instead of each application 

having to develop the base constructs for interaction with the RESTful web services, a client-

side JavaScript ubiquitous application toolkit provides a viewport construct.  This viewport 

construct abstracts the client-server RESTful communication through a rich API for inclusion 

in ubiquitous applications.  Henceforth, this toolkit will be referred to as a ubiquitous toolkit. 

The ubiquitous toolkit simplifies ubiquitous application development.  It exposes an 

API that surrounds a HTML 5 canvas object.  Specifically, this toolkit takes ownership of the 

canvas object for the creation of an application viewport.  The ubiquitous toolkit viewport 

handles all interaction and updates to the canvas object.  Henceforth, the client-side toolkit 

wrapping of a HTML 5 canvas object constitutes a ubiquitous viewport.  This ubiquitous 

viewport simplifies the creation of rich ubiquitous applications, and ensures standard 

ubiquitous viewport behavior and look-and-feel. 

Since the application toolkit abstracts the RESTful web services, and because the web 

services are “stateful”, each ubiquitous viewport is tightly bound to a server-side web 

viewport via a universally unique identifier.  The specifics of this association are hidden from 

the ubiquitous application developer by the ubiquitous toolkit.  However, the ubiquitous 

toolkit does provide functionality to a get and set the web viewport identifier for certain 

ubiquitous application workflows.  This, among other things, allows the sharing of a viewport 

web resource context across ubiquitous viewports in the same or separate applications. 
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Despite the architecture supporting any software language capable of consuming 

RESTful web services, the idea is to create ubiquitous applications written in HTML and 

JavaScript.  There are two goals of the JavaScript ubiquitous viewport: hide the client-server 

communication, and expose a ubiquitous viewport construct that simplifies the development 

of JavaScript.  Essentially the ubiquitous viewport is a convenience API that removes some of 

the complexities inherent with JavaScript development.  Collectively, the features of the 

ubiquitous viewport ensure standard behavior, standard ubiquitous viewport and look and 

feel, and obfuscate any changes to the web service layer. 

In general, a toolkit should not force certain behaviors, and should carefully make 

decisions related to the usage of third party libraries.  The JavaScript ubiquitous viewport 

exposes a viewport object, called Ubiquitous3dViewport that is continually referred to 

as ubiquitous viewport.  This object is designed to be leveraged by ubiquitous applications, 

and provides core capabilities that each application would need to implement manually.  The 

ubiquitous viewport does not rely on third party JavaScript libraries such as jQuery (The 

jQuery Foundation01) or Knockout (Knockout) as JavaScript convenience libraries.  Although 

these libraries provide core capabilities to standard JavaScript that simplify JavaScript 

development, using only “plain vanilla” JavaScript controls the overall footprint of the toolkit, 

and eliminates the possibility of third party library version conflict.  These ubiquitous toolkit 

design choice allows the ubiquitous application developer the flexibility to utilize these third 

party application libraries for the web application. 

For 3D volume visualization and interaction the JavaScript ubiquitous viewport relies 

on the HTML 5 canvas element, specifically its 2D context JavaScript object 

(W3Schools02).  The 2D context object supports drawing images and graphics, and text 

drawing useful for drawing medical image annotation on the HTML 5 canvas element.  This 
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is standard across HTML 5 compliant Internet browsers such as Microsoft Internet Explorer 

9+, Mozilla Firefox, Opera, Google Chrome, and Apple Safari (W3Schools02).  Being a toolkit, 

the intent is to make the architectural design of the ubiquitous toolkit simple and easily to 

use, allowing for rapid ubiquitous application development. 

A simple application requires a HTML page containing only a HTML 5 canvas 

element, a reference to the ubiquitous toolkit JavaScript file, and the creation of a JavaScript 

Ubiquitous3dViewport object.  Upon construction of a ubiquitous viewport, the 

wrapped Canvas element has registered mouse and touch events, used for volume 

manipulation.  In addition, during construction the application toolkit initializes a 

corresponding server-side web viewport object that will be leveraged by the ubiquitous 

viewport throughout its life.  The ubiquitous viewport object exposes a local JavaScript API 

that leverages the web viewport through the server-side web services when necessary. 

The ubiquitous toolkit architecture is intended to expedite rich ubiquitous application 

development by obfuscating interaction with the server-side RESTful web services by 

providing convenience APIs that performs the necessary HTTP client-server communication.  

The below HTML and JavaScript code segment shows how to instantiate the application 

toolkit Ubiquitous3dViewport ubiquitous viewport object with a HTML canvas object.  

The resultant viewport JavaScript variable has is a Ubiquitous3dViewport ubiquitous 

viewport object with a height and width of 512 pixels. 

<canvas id=”viewportCanvas” width=”512” height=”512”></canvas> 

 
var canvas = document.getElementById(‘viewportCanvas’); 

var viewport = Ubiquitous3dViewport(canvas); 

 
To convey the advantage of the ubiquitous viewport, following is a discussion using 

the RESTful web services by hand and through the ubiquitous viewport. 
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Without using the Ubiquitous3dViewport object, loading a volume onto the 

viewport requires invoking the load web service, and painting the returned image on the 

HTML canvas. 

var image = new Image(); 

image.src = 

http://localhost:8181/load?id=vp.id&datasetID=C:\path\to\dataset&mimeType=png; 

var context = canvas.getContext('2d'); 

context.drawImage(image, 0, 0, canvas.width, canvas.height); 

 
Although the code footprint for loading a dataset onto a HTML canvas using the 

web services is small, with the ubiquitous viewport the same operation is one line.  The 

ubiquitous viewport load function takes care of performing the HTTP GET and handles 

painting the resultant image from the load web service to the HTML 5 canvas’s context. 

viewport.load(“C:\path\to\dataset”, “png”); 

 
While consuming web services that produce an image requires only setting the 

JavaScript image object source to the RESTful web service URL, consuming RESTful web 

services that return any other type of data requires the use of the JavaScript 

XMLHttpRequest object.  Additionally, synchronous and asynchronous consumption of a 

web service that returns a non-image use the XMLHttpRequest object differently.  The 

following snippets represent consumption of the getViewHeight web service 

synchronously and asynchronously. 

var xmlhttp = new XMLHttpRequest(); 

// Perform synchronous web service consumption. 

var performSynch = true; 

// The web service URL including query parameters. Assume the server-side 

// viewport web resource id is stored in id 

var query = http://localhost:8181/getViewHeight?id=” + id; 

 

xmlhttp.open("GET", query, performSynch); 
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var response = xmlhttp.onreadystatechange = responseHandler; 

xmlhttp.send(null); 

 

// Because the HTTP GET occurred synchronously the execution thread blocks 

// until we have a response. 

alert(response); 

 
var xmlhttp = new XMLHttpRequest(); 

// Perform synchronous web service consumption. 

var performSynch = false; 

// The web service URL including query parameters. Assume the server-side 

// viewport web resource id is stored in id 

var query = http://localhost:8181/getViewHeight?id=” + id; 

 

xmlhttp.open("GET", query, performSynch); 

 

var response = null; 

function responseHandler() { 

 if (xmlhttp.readyState == 4) { 

  if (xmlhttp.status == 200) { 

   response = xmlhttp.responseText; 

   // we performed consumption asynchronously 

   alert(response); 

  } 

  // Request ERROR 

  else { 

   // handle the error  

  } 

 } 

} 

 
The JavaScript ubiquitous viewport uses both the synchronous and asynchronous 

code segments together, wrapped in a web utility function to support blocking and non-

blocking HTTP web service consumption.  The result is a one line call to the 

Ubiquitous3dViewport getViewHeight function. 

var xmlState = viewport.getViewHeight(); 
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The JavaScript ubiquitous viewport’s functions all except a callback function as the 

last argument.  The presence of a callback function results in asynchronous communication 

with the necessary server-side web service, while the lack of a callback function results in 

synchronous communication.  For example, the following two JavaScript code segments 

exercise the getViewHeight function of the ubiquitous viewport with and without a 

callback function.  The lack of a callback function forces synchronous communication, 

causing the code execution to block until the HTTP GET operation returns.  Contrary, the 

presence of a callback function forces asynchronous communication, causing the code 

execution to continue.  For asynchronous communication, when the HTTP GET operation 

returns the callback function is called.  The below segments invoke the getViewHeight 

function, and display the response view height to the Internet browser console.  Figure 5.11 

shows the synchronous and asynchronous execution of the getViewHeight ubiquitous 

viewport function through the Google Chrome developer console. 

console.log(“Synchronous HTTP GET:\n\n“ + viewport.getViewHeight()); 

 
viewport.getViewHeight(function(viewHeight) { 

 console.log(“Asynchronous HTTP GET:\n\n“ + viewHeight); 

}); 
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Figure 5.11: Screenshot of the Google Chrome developer console invoking the getViewHeight web service 
through the ubiquitous viewport’s getViewHeight function.  The function is called with and without a callback 
function to invoke the web service synchronously and asynchronously. 

 
All ubiquitous viewport functions that proxy a web service that does not return an 

image support execution synchronously or asynchronously through the lack or presence of a 

callback function.  For each of these functions, providing a callback function means the 

function will not return with the response.  Rather the response will be passed as the 

argument to the callback function.  Being a toolkit, the ubiquitous viewport does not restrict 

asynchronous or synchronous Hypertext Transport Protocol client-server communication 

between the ubiquitous toolkit and the supporting RESTful web services.  Although the 

preferred and standard practice is to perform HTTP operations asynchronous, so that the 

HTML web application User Interface is responsive rather than blocked, the toolkit supports 

blocking and non-blocking communication.  This flexibility is provided to allow the toolkit to 

provide its functionality to a larger collection of applications. 

The common format for returning non-primitive and non-image data from web 

services is the JavaScript Object Notation.  JavaScript provides a simple operation for 

converting JSON into its representative JavaScript object using the JSON.parse() 
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function.  Each ubiquitous viewport function uses the JSON.parse() core JavaScript 

function to appropriately convert the response into its representative JavaScript object 

before returning, if synchronous, or calling the callback function, if asynchronous.  This 

simplifies the use of the ubiquitous toolkit’s API, and does not require a ubiquitous application 

developer to parse the HTTP response manually for each function call.  To simplify the 

ubiquitous toolkit architecture, all web service calls are performed using a common web 

utilities library leveraged by each ubiquitous viewport function communicating with a web 

service.  Specifically, the web utilities library provides a singleton object that exposes 

functions for retrieving and posting data of different types.  These functions include the 

retrieval of text, JSON, and images, and posting of text, as seen in Figure 5.12.  This singleton 

web utility object ensures consistent client-server communication and allows the 

communication protocol to be updated in one location, instead of requiring an update each 

ubiquitous viewport function. 

 

Figure 5.12: This figure shows the available communication utility function provided by the WebUtils 
singleton JavaScript library.  This library handles asynchronous and synchronous HTTP communication with 
a web service. 

The next two sections further discuss the ubiquitous toolkit.  The next section 

discusses the ubiquitous viewport mouse interaction architecture, and the later discusses the 

error handling architecture of the RESTful web services and the ubiquitous toolkit. 
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5.3.1 Mouse Interaction Architecture 

Mouse interactions over HTTP and ubiquitous toolkit allow the user to perform a 

mouse or touch drag, or use the mouse scroll wheel to interact with the volume displayed in 

the ubiquitous viewport.  In this discussion a mouse drag is defined as a sequence of three 

steps: 

1. A left mouse click on the HTML Canvas object, application viewport, 

2. A series of mouse moves with the left mouse button remaining pressed, 

3. Left mouse button release. 

Users interacting with the volume in the ubiquitous viewport, specifically the Canvas 

object, may see this interaction as a complex series of operations; however, the pattern for 

volume interaction is handled by the RESTful web services. 

When the ubiquitous viewport object in a ubiquitous application takes ownership of 

the HTML 5 Canvas object it installs on it mouse and touch events, specifically: 

mousedown/touchstart, mousemove/touchmove, and mouseup/touchend.  Each of 

these events accepts a JavaScript Event object that contains specific information about the 

event.  For mouse events, this object includes the screen coordinates (x, y) of the mouse 

event, and the index of mouse button pressed, assuming a mouse button was pressed.  For 

touch events the Event object contains screen coordinates for each touch position, allowing 

for multi-touch gestures. 

Using the Event object the mousedown/touchdown event starts the mouse drag 

process.  The mousemove/touchmove and mouseup/touchend events are where the 

volume interactions occur.  Each of these HTML Canvas object mouse events sends the (x, y) 

coordinate of the mouse event to their respective RESTful web service.  For simplicity, touch 
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events leverage the mouse event web services.  Unlike the web service for the 

mousedown/touchdown event that returns the (x, y) coordinates as an array, the web 

services supporting mousemove/touchmove and mouseup/touchup RESTful web 

services return images encoded as either image/png or image/jpeg.  To complete the 

viewport mouse or touch interaction, the application toolkit paints the return image on the 

HTML Canvas object. 

To improve user application viewport interaction, the ubiquitous toolkit supports an 

interaction timeout that is used to display a high quality image during stagnant mouse 

movement during ubiquitous viewport interaction.  By default, during mouse interaction, if 

there are no mousemove/touchmove or mouseup/touchend HTML canvas events fired 

after 200 milliseconds, the ubiquitous toolkit requests a full sized PNG image from the server.  

This behavior does not require a mouseup/touchend HTML canvas event to display a high 

quality image on the application viewport. 

Together the client and server work to efficiently support volume interaction through 

the ubiquitous viewport.  Although the client-server communication is abundant during 

mouse interaction, the platform minimizes network bandwidth by minimizing the size of the 

images returned.  The platform supports the return of images that are dimensionally smaller 

than the viewport, and are compressed using JPEG or PNG image compression algorithms. 

5.3.2 Toolkit Error Handling Architecture 

When designing a toolkit, it is necessary to notify the application of any errors.  In the 

web domain this is a more complex problem than in the desktop application toolkit space.  In 

the web domain a successful HTTP operation is denoted by a 200 response code that means 

the operation performed without error.  RESTful web service consuming may result in any 
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number of errors defined by the HTTP response code standards; however for web service 

layer errors are denoted by an error code of 500 Internal Server Error. 

Simply returning a 500 response code to the ubiquitous toolkit is not very specific so 

the server-side web services incorporate unique error codes that are returned as the payload 

of any 500 response packet.  The specific error codes have a publicly documented definition 

allowing the ubiquitous application to easily decipher and determine what error occurred.  In 

this way the toolkit has no responsibility other than telling the application that an error has 

occurred.  In ubiquitous application architecture it is up to the application to handle the error 

appropriately based on the onerrorCallback function provided to every ubiquitous 

toolkit API. 

One added complication arises in the ability to extract the error payload of HTTP 

requests that are made expecting an image to be returned.  Because these RESTful web 

services are invoked by setting the image.src equal to a URL there is no easy way to 

extract the error payload to determine the cause of the error.  To mitigate this issue the 

platform contains a getLastError RESTful web service that will return the last error code 

to the client.  As seen below in the JavaScript ubiquitous toolkit code snippet, a function is 

bound to the image object’s onerror property.  If an error occurs while requesting an 

image from a RESTful web service, the error code will be automatically requested and 

returned through the supplied onerrorCallback function.  The onerrorCallback 

function is provided by the application, and is responsible for properly handling the error. 

image.onerror = function() { 

// if errorcallback is provided get error status code from the server 

if (onerrorCallback && null != onerrorCallback) { 

    // using XMLHttpRequest object get last error code by calling 

    // getLastError web service  

    onerrorCallback(errorCode); 
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} 

image.src = query; 

 
The overall result of the ubiquitous toolkit is an exposed ubiquitous viewport that, like 

a widget, is intended to be integrated into the graphical user interface of a ubiquitous 

application.  Not only does this toolkit expose a ubiquitous viewport but it provides an error 

handling architecture as well as providing a full API for interacting with the ubiquitous 

viewport.  As seen in Figure 5.13, this ubiquitous toolkit exposes a ubiquitous viewport that 

provides a rich JavaScript API leveraging the RESTful server-side web services for the purpose 

of supporting ubiquitous applications.  This toolkit expedites and simplifies ubiquitous 

application development and also minimizes the scope of application validation because it 

leverages an existing validated visualization toolkit.. 

 

Figure 5.13: This figure highlights the ubiquitous JavaScript toolkit that exposes a “plain vanilla” JavaScript 
ubiquitous viewport object and provides a web utilities library for client-server communication. 
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5.4 Ubiquitous Application 

The motivation of this thesis is the development of ubiquitous applications that 

leverage an existing validated Java visualization toolkit.  Ubiquitous applications are thin-

Client and Zero-Footprint web applications that are lightweight clients leveraging the 

ubiquitous toolkit, and indirectly a fully featured validated visualization toolkit for 3D volume 

rendering and manipulation. 

Prior to today’s web application technologies it was possible to build a ubiquitous 

application using markups, scripts, and styles.  Given a similar set of web services leveraging 

a validated visualization toolkit a ubiquitous viewport like construct could be constructed 

using the HTML image element.  With this foundation, ubiquitous applications can be built 

that simulate volume interaction by registering mouse events on the image element and 

leveraging the web services for changing the image displayed in the application simply by 

updating the source of the image element to the URL of the corresponding web service.  

Although this approach is capable of volume visualization and manipulation, it is not easy to 

display medical annotation and other graphic overlays that a true ubiquitous viewport needs.  

Due to this limitation, this approach is not ideal for ubiquitous applications, and is not 

appropriate for a ubiquitous toolkit. 

With the arrival of version 5 of the HyperText Markup Language standard, and 

supporting updates to the JavaScript standard, it is now possible to use the HTML 5 canvas 

element and JavaScript technologies to build rich production level ubiquitous applications 

suitable for diagnostic image review.  Unlike the HTML image element that is built to display 

images, the canvas element is an object that defines an area in the HTML that supports 

drawing images and graphics.  Not only does the canvas element support drawing 
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graphics, it is capable of supporting interactive graphics that can interact with a user.  This 

HTML element is the perfect construct for a ubiquitous viewport. 

Using the HTML canvas element a similar approach to using the image element 

can be used to create a ubiquitous viewport.  Unlike the image element that will update the 

displayed image whenever the source attribute of the element is changed, drawing an image 

on the canvas element is a little more complex.  Specifically, drawing an image on a 

canvas element requires a JavaScript image object to draw on the2D context of the 

canvas.  The code snippet below shows the necessary JavaScript code for drawing an 

image returned from a server HTTP request on a HTML canvas with an identifier attribute of 

“viewport”. 

var canvas = document.getElementById('viewport'); 

var image = new Image(); 

image.src = ‘http://localhost/image.png’; 

var context = canvas.getContext('2d'); 

context.drawImage(image, 0, 0, canvas.width, canvas.height); 

 
The 2D context of an HTML canvas element contains a rich API that supports the 

display of a JavaScript image, and contains a set of complex display of graphics functions 

that can be used to draw graphics on a HTML canvas element.  Therefore, the foundation of 

ubiquitous applications is the HTML 5 canvas element. 

Just as it is advantageous to leverage an existing validated visualization toolkit for 

Java desktop applications for diagnostic radiology, it is advantageous to leverage a client-

side ubiquitous toolkit for ubiquitous applications.  Such a toolkit expedites and simplifies 

ubiquitous application development and also minimizes the scope of application validation.  

As this thesis has defined such a ubiquitous toolkit that leverages an existing Java validated 
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visualization toolkit, this discussion will commence with the architecture discussion of 

ubiquitous applications that leverage this ubiquitous toolkit. 

Leveraging the ubiquitous toolkit requires creating an association between HTML 5 

canvas objects and the ubiquitous toolkit.  As seen in Figure 5.14 the association between a 

HTML 5 canvas element and the ubiquitous toolkit makes it easy to add ubiquitous viewports 

to a ubiquitous application. 

 

Figure 5.14: This figure shows the association between a HTML 5 canvas element and the ubiquitous toolkit 
yields a ubiquitous viewport that can be placed in a ubiquitous application. 

The most basic of ubiquitous applications is written with HTML 5, JavaScript, and CSS, 

and contains several ubiquitous viewports.  As JavaScript development is foundational, not 

many applications are built using “plain vanilla” JavaScript.  Rather, to simplify application 

development, many choose to use a JavaScript library such as jQuery (The jQuery 

Foundation01).  In addition, rich ubiquitous applications may leverage application 

frameworks such as AngularJS (Google) or Durandal (DURANDAL) for the creation of single 

page ubiquitous applications.  

Creating ubiquitous applications is the end goal of this thesis.  These applications are 

built leveraging the ubiquitous toolkit that exposes ubiquitous viewports that can be easily 
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incorporated into applications.  Because these applications leverage the ubiquitous toolkit 

they therefore leverage the existing Java validated visualization toolkit.  This means 

leveraging the ubiquitous toolkit not only simplifies application development, but it minimizes 

the scope of application validation for diagnostic radiology.  The ubiquitous application layer 

architecture is shown in Figure 5.15.  The next section goes builds two ubiquitous 

applications leveraging the ubiquitous toolkit. 

 

Figure 5.15: This figure highlights the ubiquitous applications that leverage the ubiquitous toolkit for rapid 
application development.  These ubiquitous applications incorporate ubiquitous viewport object(s) that are 
provided by the ubiquitous toolkit.  By leveraging the ubiquitous toolkit ubiquitous applications require less 
validation than applications that do not leverage such a toolkit. 
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CHAPTER 6: EVALUATION 

This chapter evaluates the platform as a whole, from ubiquitous application 

development to platform performance.  As a proof of characteristic of this platform, the 

platform, specifically the ubiquitous toolkit, is used to develop two sample ubiquitous 

applications that together showcase the platform.  The two ubiquitous applications evaluate 

the overall platform fundamentals to the foundations of rich 3D visualization application. 

6.1 Proof of Characteristics 

The ubiquitous application platform for developing ubiquitous applications requires 

an execution environment that exposes the RESTful web services.  This platform provides 

ubiquitous applications the necessary web services and ubiquitous toolkit constructs for 

building rich ubiquitous applications for diagnostic radiology. 

For proof of characteristics of this platform, the RESTful web services will be 

packaged as OSGi bundles.  OSGi bundles are Open Services Gateway initiative Java ARchive, 

JAR, files.  What makes OSGi bundles special is a manifest file that specifies the packages the 

bundle requires, and the packages it exposes for other bundles.  The special manifest file 

allows the OSGi container, the Java execution environment, to manage all the dependencies.  

Providing the necessary Java execution environment for the RESTful web services is Apache 

karaf (The Apache Software Foundation). 

Once the web services are active, applications can be developed.  The most basic of 

ubiquitous applications is simply a 3D viewport.  The basic HTML skeleton code below serves 

as the foundation for any application. 
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<!DOCTYPE HTML> 

<html> 

    <head> 

        <!-- Include the ubiquitous application toolkit --> 

        <script src=" UbiquitousAppToolkit.js" type="text/javascript"></script> 

            <!-- Use the application viewport --> 

            <script type="text/javascript"> 

                function initialize() { 

                    // Bind the application viewport to the canvas 

                    var canvas = document.getElementById('viewportCanvas'); 

                    var viewport = new Ubiquitous3dViewport(canvas); 

                    // Load a dataset 

                    var datasetId = "C:/path/to/dataset"; 

                    viewport.loadVolume(datasetId); 

                } 

            </script> 

        </head> 

    <body onload="initialize()"> 

        <canvas id="viewportCanvas" width="512" height="512"></canvas> 

    </body> 

</html> 

 
This web application contains only one active ubiquitous viewport, see Figure 6.1.  All 

ubiquitous viewports by default register mouse events.  By default the active mouse 

interaction is the trackball tool which rotates the volume in three dimensional space. 
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Figure 6.1: A simple, single application viewport thin-Client and Zero-Footprint 3D visualization web 
application.  The figure on the left shows the application viewport as the volume is loaded.  The figure on the 
right shows the same application viewport after mouse interaction. 

The last example of using the ubiquitous toolkit and platform was the most basic web 

application.  Following will be a more thorough examination of the platform capabilities for 

building a typical four-port application.  A four-port application consists of four viewports in a 

2x2 viewport layout with the following viewport configuration: 

 Upper-left: anterior volume rendering 

 Upper-right: anterior reformat 

 Lower-left: right reformat 

 Lower-right: superior reformat 

The described four-port application will only require updates to the body and script 

tags of the previous application, and will display a bounding box and 3D reference cursor 

graphics on each viewport.  First, the body of the HTML application must be updated to 

include four canvases. 
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<canvas id="viewportCanvas1" width="256" height="256"></canvas> 

<canvas id="viewportCanvas2" width="256" height="256"></canvas> 

<br> 

<canvas id="viewportCanvas3" width="256" height="256"></canvas> 

<canvas id="viewportCanvas4" width="256" height="256"></canvas> 

 
Next, an array of JavaScript objects describes each of the four ubiquitous viewports is 

used to simplify the ubiquitous application JavaScript.  Specifically, each JavaScript object is 

a key-value pair defining the ubiquitous viewport canvas id, the ubiquitous viewport object, 

and the necessary viewport configuration properties. 

var viewports = [ 

    { 

        canvasId   : 'viewportCanvas1', 

        viewport   : null, 

        properties : { 

            renderStyle : 'VOLUME', 

            view        : 'ANTERIOR', 

            viewHeight  : 300 

        } 

    }, 

    { 

        canvasId   : 'viewportCanvas2', 

        viewport   : null, 

        properties : { 

            renderStyle : 'REFORMAT', 

            view        : 'ANTERIOR', 

            viewHeight  : 300 

        } 

    }, 

    { 

        canvasId   : 'viewportCanvas3', 

        viewport   : null, 

        properties : { 

            renderStyle : 'REFORMAT', 

            view        : 'RIGHT', 

            viewHeight  : 300 

        } 

    }, 
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    { 

        canvasId   : 'viewportCanvas4', 

        viewport   : null, 

        properties : { 

            renderStyle : 'REFORMAT', 

            view        : 'SUPERIOR', 

            viewHeight  : 300 

        } 

    } 

]; 

 
The last step involves using this array to instantiate ubiquitous viewport objects, 

configure them, and add the 3D reference cursor and bounding box visualization component 

graphics.  The following code replaces the initialize function in the basic application. 

function initialize() { 

    var numberOfViewportsComplete = 0; 

    // Setup each viewport relative to its properties in the viewports array. 

    viewports.forEach(function(object) { 

        var canvas = document.getElementById(object.canvasId); 

        var viewport = new Ubiquitous3dViewport(canvas); 

        object.viewport = viewport; 

        var renderStyle = object.properties.renderStyle; 

        var view = object.properties.view; 

        var viewHeight = object.properties.viewHeight; 

        function load() { 

            viewport.loadVolume(datasetId, function() { 

                viewport.setViewHeight(viewHeight, "png"); 

                registerViewportComplete(); 

            });  

        } 

        // Chain the configuration calls before loading the volume. 

        viewport.setInitialRenderStyle(renderStyle, function() { 

            viewport.setInitialView(view, load); 

        }); 

    }); 

 

    // Calls createOverlays once all the viewports are complete. 

    function registerViewportComplete() { 

        if (++numberOfViewportsComplete == viewports.length) { 

            createOverlays(); 
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        } 

    } 

 

    // Create the overlay objects: BoundingBox and 3D Cursor. 

    function createOverlays() { 

        var cm = new Cursor3DModel(); 

        viewports.forEach(function(object) { 

            var viewport = object.viewport; 

            var canvas = viewport.getCanvas(); 

            var boundingBox = new BoundingBox(viewport, canvas, function() { 

                viewport.addOverlayObject(boundingBox); 

            }); 

            viewport.createAndAddOverlay(Cursor, [viewport, cm]); 

        }); 

        // Define the location of the 3D cursor relative to the VR viewport. 

        var disp = [128,64]; 

        var vrViewport = viewports[0].viewport; 

        cm.updateRAS(vrViewport.getRASCoords(disp, null), null); 

    } 

} 

 
The initialize function leverages the JavaScript forEach function to iterate through 

each JavaScript object in the application viewports configuration array.  Each loop iteration 

uses the JavaScript object to instantiate and then configure a ubiquitous viewport, 

Ubiquitous3dViewport.  After ubiquitous viewport instantiation, the viewport is 

configured through a series of chained ubiquitous viewport function calls to configure the 

render style, and view before loading the dataset, and setting the view height.  Function 

chaining in JavaScript is a very common pattern for sequentially performing asynchronous 

operations.  Since these four functions invoke their respective web service asynchronously, 

chaining ensures the functions are executed in the appropriate order.  Once the same 

volume has been loaded to each of the viewports, the ubiquitous viewports are ready for the 

bounding box and 3D reference cursor graphics.  The instantiation and addition of these 

graphics to each ubiquitous viewport is for demonstration of a typical four-port ubiquitous 

application.  The result, as seen in Figure 6.2, is a four-port ubiquitous application with 
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graphics leveraging the ubiquitous toolkit, and indirectly the existing validated Java 

visualization toolkit.  Such applications for diagnostic radiology require less validation than 

similar applications that do not leverage such a toolkit. 

 

Figure 6.2: A four-port thin-Client and Zero-Footprint 3D visualization web application.  The figure on the left 
shows the ubiquitous viewports configured with different render styles and views.  Each viewport shows a 
bound box graphic and 3D reference cursor used to show the same coordinate in each view.  The figure on 
the right shows the same application after 3D reference cursor is moved to highlight the right eye. 

6.2 Performance 

Performance is a key requirement with any platform, especially a web platform.  

Using QUnit, by jQuery, (The jQuery Foundation02) a test suite was developed to test the 

performance, in frames per second, of ubiquitous viewports rendering reformat and volume 

rendering views.  The specific goal of this test suite is to show the impact image quality has 

on ubiquitous viewport mouse interaction performance.  What is important is the overall 

effect certain configurations have on volume interaction performance, the trend is important, 

not the raw frames per second.  This test suite examines reformat and volume rendering 
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ubiquitous viewports interaction performance during 1000 mouse interactions over localhost, 

and varies the size of the image being rendered, and the return type of the image.  The size of 

the ubiquitous viewports remains fixed throughout these tests, at 512 pixels by 512 pixels; 

however, the return image sizes tested are: 

1. 512 pixels by 512 pixels (application viewport size) 

2. 256 pixels by 256 pixels (one quarter application viewport size) 

3. 128 pixels by 128 pixels (one sixteenth application viewport size) 

Figure 6.3, charts mouse interaction performance versus image render size and 

compression algorithm on a 512 pixel by 512 pixel reformat application viewport.  Figure 6.4, 

charts mouse interaction performance versus image render size and compression algorithm 

on a 512 pixel by 512 pixel volume rendering application viewport.  In these tests, the 

independent variables are the size of the render image, and the compression algorithm used, 

JPEG or PNG.  The dependent variable is average frames per second across three executions 

of the test given each independent variable combination.  Each test execution involved 

performing a mouse down, and then 1000 sequential mouse movements. 
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Figure 6.3: Chart of mouse interaction performance versus return image size and compression type for a 512 
by 512 pixel viewport with a render style of multiplanar reformat. 

 

Figure 6.4: Chart of mouse interaction performance versus return image size and compression type for a 512 
by 512 pixel viewport with a render style of volume rendering. 

From Figure 6.3 and Figure 6.4 it is clear that the render style of a volume in a 

ubiquitous viewport has the largest effect on mouse interaction performance.  This is to be 

expected, because the computational requirements between rendering a reformat image 

versus a volume rendering image are very different.  Figure 6.5 echoes this finding.  The 
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mouse interaction performance difference between reformat and volume rendering 

ubiquitous viewports is at least 62%, and performance degrades to 91% as the rendered 

image size increases and using JPEG for image compression.  What is clear from Figure 6.5 is 

that the render style of the ubiquitous viewport has a much greater impact on performance 

than the compression algorithm with local web services. 

 

Figure 6.5: Shows performance degradation as a function of render style, with varying image render sizes and 
image compression algorithms.  The render style of the viewport has a much greater impact on performance 
than the compression algorithm with local web services.  The performance degradation is similar between 
compression algorithms. 

Figure 6.6 shows how the image compression algorithm used to transport the 

rendered image from the client to the server impacts the mouse interaction performance of 

reformat and volume rendering render styles on ubiquitous viewports.  As seen in the chart, 

PNG compression over JPEG compression has a relatively small impact on overall 

performance of a volume rendering application viewport, at around 15% for each image size.  

However, PNG compression over JPEG compression has a greater overall impact on 

performance for a reformat application viewport, anywhere from to 19% to 55%, based on 

image size.   
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Figure 6.6: Shows performance degradation as a function of image compression algorithm, with varying 
render styles, and image render size.  Image compression algorithm has a relatively small impact on 
interaction performance with a volume rendering render style, but has a very large impact on interaction 
performance with a reformat render style. 

Based on these results and trends from localhost volume interaction performance, 

reformat ubiquitous viewports should request JPEG compression during mouse interaction, 

and should decrease the image size to further increase mouse interaction performance.  On 

the other hand, volume rendering application viewport will see the largest mouse interaction 

performance gains by requesting image renderings that are a fraction of the size of the 

application viewport.  Although the jpeg over png image compression has a relatively small 

impact on interaction performance, volume rendering images should also be transmitted as 

jpeg. 
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CHAPTER 7: CONCLUSION 

This chapter concludes this thesis by summarizing the ubiquitous application 

supporting platform, discusses the broader impact of this work, and future directions. 

7.1 Summary 

In today’s software world, new applications should be designed using a mobile first 

approach because of society’s adoption of mobile connectivity.  As the IoE expands to 

incorporate new devices, technologies, and applications, this paradigm will become even 

more relevant.  The diagnostic radiology space and healthcare in general is a slow adopter of 

new software technologies and patterns.  Desktop applications in the diagnostic radiology 

space commonly leverage a validated toolkit.  Such toolkits not only simplify desktop 

application development but minimize the scope of application validation.  For these reasons, 

such a toolkit is an important piece of a company’s software portfolio.  This thesis 

investigated an approach for the leveraging of such a Java validated toolkit for the purpose 

of creating numerous ubiquitous applications for diagnostic radiology.  Just as in the desktop 

application space, leveraging such a toolkit minimizes the scope of application validation. 

In this thesis, a ubiquitous application is an application that can be executed by the 

widest range of electronic devices, providing true anytime and anywhere access to for 

volume view and manipulation in the space of diagnostic radiology.  Specifically, this pattern 

leverages the Internet browser of electronic devices for ubiquitous application development, 

adds these applications to the IoE. 

This thesis provided a solution to simplify ubiquitous application development 

focused on 3D volume visualization and manipulation using a ubiquitous toolkit.  Specifically, 
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the ubiquitous toolkit exposes a ubiquitous viewport that can be added to an application’s 

graphical user interface.  This ubiquitous viewport is a self-contained entity that can be 

thought of as a widget,.  In this architecture, each ubiquitous viewport leverages an existing 

validated Java visualization toolkit for rendering and manipulation of volumes through a 

client-server communication layer.  This ubiquitous toolkit and ubiquitous viewport exposes 

an easy-to-use local JavaScript API for the purpose of supporting the development of rich 

single page ubiquitous applications.  The ubiquitous toolkit’s client-server communication 

layer hides all the necessary communication with the server-side web services.  Specifically, 

the server-side web service layer is a Java JAX-RS RESTful web service wrapper around the 

validated visualization toolkit.  This wrapper fundamentally acts as a proxy between the 

ubiquitous toolkit and the validated visualization toolkit. 

With the end goal of supporting the development of ubiquitous applications 

leveraging an existing validated toolkit discussed in depth, this thesis ended with an 

evaluation of the overall architecture in terms of application development and performance. 

The evaluation began with building the most basic of ubiquitous applications, 

containing only a single ubiquitous viewport which was expanded to a four port application.  

The four port application showed how to build a ubiquitous application containing four 

ubiquitous viewports.  This example showed how to include graphic overlays to the 

viewports, including the bounding box graphic and the 3D cross-reference cursor.  The 

bounding box graphic is used to visually identify the boundary of the volume, and a 3D cross-

reference graphic is used to identify the same 3D point in each ubiquitous viewport. 

The evaluation section ended with a discussion of ubiquitous viewport mouse 

interaction performance in terms of viewport render style, and rendered image size and 

compression algorithm.  To summarize the results, reformat ubiquitous viewports should 
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request jpeg compression during mouse interaction, and should decrease the image size to 

further increase mouse interaction performance.  On the other hand, volume rendering 

application viewport will see the largest mouse interaction performance gains by requesting 

image renderings that are a fraction of the size of the application viewport. 

Overall, this thesis provided a flexible and scalable approach to developing ubiquitous 

applications that leverage an existing validated toolkit through industry standard 

technologies, patterns, and best practices.  The overall body of work includes a client-server 

architecture based on lightweight clients and fully featured servers used to distribute server-

side 3D visualization algorithms and components to a multitude of mobile clients.  The 

resultant work supports easy to build ubiquitous applications that minimize the scope of 

validation for diagnostic radiology. 

7.2 Broader Impact 

The overall platform presented in this thesis is generic.  This non-healthcare specific 

design pattern can be used to revive any existing toolkit or modular implementation to 

support ubiquitous applications in IoE and Industrial Internet domain.  This approach can be 

used to wrap a toolkit or implementation in a web service wrapper that “webifies” the API 

through web services that can be consumed by toolkits or web applications.  In this case, if 

the underlying toolkit or implementation exists in a regulated space and is validated, this 

approach can be used to create a ubiquitous toolkit that supports easy ubiquitous 

applications development that require minimal validation.  Importantly, this layered 

architecture can be used to add any toolkit or implementation into the IoE and Industrial 

Internet paradigm, see Figure 7.1. 
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Figure 7.1: This figure shows the generic architecture presented in this thesis.  Although this thesis focuses on 
diagnostic radiology and the ubiquitous applications, this approach is generic.  This architecture can be used 
to “webify” an implementation. 

7.3 Future Work 

Given the decisions made for the creation of a ubiquitous application supporting 

platform leveraging an existing validated Java visualization toolkit, there are numerous 

future improvements that can enhance ubiquitous applications through changes to the 

ubiquitous toolkit. 

The most obvious future enhancement for the platform is the support for bidirectional 

client-server communication through WebSockets.  Although WebSocket communication 

was out of scope of this thesis, for several reasons ranging from the standard still evolving, 

and overall complexity, performance improvements transporting images through 

WebSockets is a point of interest.  Of specific interest is a comparison of volume integration 

frame rate through HTTP and WebSocket communication.  Despite the inherent 

implementation complexities surrounding bidirectional client-server communication through 
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WebSockets, ubiquitous applications are impervious to any such updates because of the 

ubiquitous toolkit’s transparent and modular client-server communication layer. 

Another future enhancement for this ubiquitous application supporting platform 

involves modularizing the server web services.  Architecturally, the entire collection of web 

service can be broken into groups of common services that accomplish a common goal.  

Each of these collections can be built in isolation and can execute in isolation, and 

concurrently in different processes running in the same or different machines.  In regards to 

the ubiquitous toolkit, this means the toolkit is built as a “mashup” of service existing at 

different URL bases.  In this architecture, the server-side web services would still leverage the 

same existing validated Java visualization toolkit but instead of one web service layer 

existing in one program, many web service programs can be created, each exposing related 

web services.  The key to this approach is this way the backend web services can be 

parallelized to increase ubiquitous viewport responsiveness. 

Lastly, the overall platform presented in this thesis is generic; staying in the space of 

diagnostic radiology, the next logical expansion of this ubiquitous supporting platform is 

supporting 2D visualization for diagnostic radiology.  Again, if the underlying 2D visualization 

toolkit is validated, this architecture can be mirrored to support 2D ubiquitous applications 

that can be easily developed and validated. 

To summarize, although this platform supports the necessary constructs for easily 

building ubiquitous applications that are easily validated, there are some enhancements.  The 

first is implementing WebSocket bidirectional client-server communication in the web service 

layer and the ubiquitous toolkit.  This update will likely improve the observed mouse 

interaction performance on ubiquitous viewports, and will allow for bidirectional 

communication between the client and server.  Because this approach is generic, it can be 
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used to support 2D ubiquitous applications in the diagnostic radiology space, and this 

approach can be used to “webify” an existing implementation in any space. 
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APPENDIX A 

Core RESTful Web Services 

Feature Web API HTTP 

Operation 

Return Type 

Viewport resizing setSize GET image/jpeg or 

image/png 

Set render style setRenderStyle GET image/jpeg or 

image/png 

Set view to preset setView GET image/jpeg or 

image/png 

Coordinate 

transforms 

getRasCoords GET application/json 

getDisplayCoords 

Volume geometry getVolumeGeometry GET application/json 

Render engine 

camera 

setEye GET image/jpeg or 

image/png setLook 

Setup 

setCamera 

getEye application/json 

getLook 

getUp 

getCamera 

Setting mouse tool setMouseTool GET text/plain 

Mouse drag mouseDown 

mousemove 

mouseUp 

GET image/jpeg or 

image/png 

Mouse drag image 

size 

setDownsampleFactor GET text/plain 

Mouse drag 

lossy/lossless 

Each web API that returns an image allows requires the mime type of 

the return image. 
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Save state saveState GET application/xml 

Restore state loadState POST text/plain 

renderImage GET image/jpeg or 

image/png 

 


