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ABSTRACT 

 

Mehra, Vatsal 

 

Marquette University, 2016  

 

SNPredict: A machine learning approach for detecting low frequency variants in 
cancer 
 
Cancer is a genetic disease caused by the accumulation of DNA variants such as 
single nucleotide changes or insertions/deletions in DNA. DNA variants can cause 
silencing of tumor suppressor genes or increase the activity of oncogenes. In order to 
come up with successful therapies for cancer patients, these DNA variants need to be 
identified accurately. DNA variants can be identified by comparing DNA sequence of 
tumor tissue to a non-tumor tissue by using Next Generation Sequencing (NGS) 
technology. Detecting variants in cancer is a challenging problem because many of 
these variant occurs only in a small subpopulation of the tumor tissue. It becomes a 
challenge to distinguish these low frequency variants from sequencing errors, which 
are common in today's NGS methods. Several algorithms have been designed and 
implemented as a tool to identify such variants in cancer. However, it has been 
previously shown that there is low concordance in the results produced by these tools. 
Moreover, the number of false positives tend to significantly increase when these 
tools are faced with low frequency variants. 

This study presents SNPredict, a single nucleotide polymorphism (SNP) detection 
pipeline that aims to utilize the results of multiple variant callers to produce a 
consensus output with higher accuracy than any of the individual tool with the help of 
machine learning techniques. By extracting features from the consensus output that 
describe traits associated with an individual variant call, it creates binary classifiers 
that predict a SNP’s true state and therefore help in distinguishing a  sequencing  error 
from a true variant.
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I. Introduction 

Next Generation Sequencing (NGS) has immensely enhanced our knowledge of 

processes involved in cancer. Malignant tumors have complex architecture and detecting 

somatic mutations resulting from such tumor growths is of utmost importance from a 

therapeutic point of view. In recent years, there has been a significant effort towards 

discovering such mutations (Meyerson et al. 2010), however mining these mutations 

using traditional variant calling tools has not been straightforward for multiple reasons. 

First, cancer cells constantly introduce new variations in their sub populations and hence 

any single variation usually exists in low frequency (Ding et al. 2010; Stephens et al. 

2012). This subclonal variation is offset to some extent by increasing sequencing depth in 

NGS technologies however this can be cumbersome given the increase in costs associated 

with deep sequencing. Second, widely reported sequencing errors with NGS technologies 

further complicate mining of such mutations (Dohm et al. 2008). Sequencing methods are 

by nature imperfect and prone to errors that lead to incorrect base calling which can 

affect proper alignment of short reads but more importantly this may also prevent correct 

identification of variants that are present in low frequency. These sequencing errors are 

highly variable and can differ between different NGS platforms such as whole genome 

sequencing and targeted exome sequencing, different lanes within a panel, as well 

different genomic locations or sequence motifs across the chromosomes (Allhoff et al. 

2013). Even sample isolation, formalin fixation and other library preparation methods can 

introduce nucleotide changes that may contribute to sequencing errors (Williams et al. 

1999; Robasky et al. 2014). Such errors can obfuscate the results of the existing variant 

callers, thereby increasing the risk of flagging such false positives as mutations of clinical 
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value. Third, tumor impurity can also skew detection of mutations. For instance, 

infiltration of non-cancerous cells may conceal low frequency mutations inherent to 

cancerous cells. This is especially relevant in liquid tumors such as blood tumors, which 

are the focus of this study. 

 

Several variant callers have been introduced in the past few years (Koboldt et al. 2012; 

Saunders et al. 2012) in an effort to address aforementioned issues. Broadly, all these 

variant callers share a high degree of similarity. They require a reference genome, a pair 

of matched tumor and normal sample as inputs, followed by execution of statistical 

Term Description
True Positive 
(TP)

Variant calls that were correctly predicted as somatic 
mutations

False 
Positive (FP)

Variant calls that were predicted as somatic mutation 
but were not present in the variants validated by Blood 
Centre of Wisconsin

True 
Negatives

Variant calls that were correctly predicted as non-
somatic variants as they were also not captured by 
Blood Centre of Wisconsin

False 
Negatives

Variant calls that are clinically relevant but not predicted 
as such by the pipeline

Sensitivity 
(S) TP / (TP + FP)

Precision (P) TP/ (TP + FN)

Training set Pseudo tumor dataset used to build classifiers

Test set Pseudo tumor dataset used to test the performance of 
classifiers

Target set Real tumor dataset used to evaluate the performance of 
trained classifiers

Table1: Terminology used for building and evaluating performance of 
classifiers
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approaches like Bayes theorem or logistic regression to find the posterior likelihood of a 

particular variant being somatic or not based on some priors and then finally among those 

selected, they apply various filters based on the characteristics or “features” associated 

with that variant (surrounding genomic motif, strand bias, distance to 3` end etc.) in order 

to remove the false positives. These approaches work considerably well provided the 

variant frequency is not very low (for e.g. less than 10%) and the short reads associated 

with a particular variation are high in the tumor sample. However, for tumors with low 

frequency variations, false positives begin to significantly outnumber the clinically 

relevant variations as will be highlighted in this study. Moreover, a previous study that 

compared five Illumina SNP detection pipelines showed that the existing variant callers 

have only about 57% concordance in calling variations (O’Rawe et al. 2013). Similarly, a 

comparative analysis for detecting single nucleotide variants found substantial 

differences in the number and characteristics of the calls produced by different variant 

callers (Roberts et al. 2013). It has also been noted that the performance variation among 

these variant callers can be a function of allelic fraction of the mutation in the tumor 

samples specific to an investigation (Xu et al. 2014) which further increases complexity 

in choosing a consistent tool across different types of tumors. 

Another drawback with existing somatic variant callers is that their performances are 

usually evaluated with a pair of matched normal and tumor samples i.e. the assumption 

that both samples come from the same patient. This requirement is hard to achieve 

especially in a clinical setting where often investigators have no alternative but to use 

unmatched samples. This problem can potentially increase the number of false positives 
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because of the higher number of ambiguous non-somatic variants that just reflect 

differences between two individuals. 

Given these challenges, there is a dire requirement for a tool or a pipeline that potentially 

alleviates such issues and reliably predicts clinically relevant variants. This study presents 

a novel somatic variant detection pipeline that overcomes the shortcomings of individual 

variant callers using a multistep process (Figure 1). The pipeline is initiated by 

considering paired end reads from an unmatched pair of normal & tumor samples as 

inputs to a pre-processing step that filters potential Illumina sequencing errors. This 

filtering of potential errors is followed by alignment of reads to a reference genome and 

processing of these aligned reads including assignment of each read to a read group (for 

downstream tools) and re-evaluation of the base quality. Processed reads are then 

subjected to variant calling using a combination of variant callers namely VarScan2 

(Koboldt et al. 2012), SomaticSniper (Larson et al. 2012), Strelka (Saunders et al. 2012) 

and Lofreq (Wilm et al. 2012) in order to determine somatic single nucleotide 

polymorphisms (SNPs). These variant calling outputs are then combined together in a 

merging step to increase sensitivity, thereby resulting in a super set of all possible 

somatic variants present in the tumor. Since this super set consists of many false positives 

especially in cases where frequency of actual variants is low, it is essential to have a 

module that can aid the investigators in highlighting these false positives. 

The merging step is followed by a learning step in which a training set is used to identify 

“features” associated with a particular call in the super set. In total, eleven features are 

used from four somatic callers. These models are then used over a target set of real blood 



5 

 

tumors to predict somatic mutations. The accuracy of the models used was calculated 

using F1 score, which is the harmonic mean of the Sensitivity (S) and Precision (P): 

 

The terminology used in this study for these and other associated terms are described in 

Table 1. 

 

The usage of machine learning techniques to predict variants is not novel. Previously, 

Fang et al. created SomaticSeq that used an Adaptive Boosting model to construct a 

classifier based on decision trees (Fang et al. 2015). Similarly, Kim et al. also proposed a 

method that combines results from multiple variant callers and then implements a logistic 

regression with feature-weighted linear stacking (FWLS) to improve accuracy of that 

combined set. (Kim et al. 2014). However, both these studies failed to test their 

algorithms on unmatched samples. In addition to testing the algorithm on unmatched 

samples, the present study also uses multiple learning algorithms like K-nearest 
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neighbors, Logistic Regression and Linear SVC in order to assign higher confidence to 

the predictions that are consistent across multiple algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

 

II. Materials & Methods 

Generation of Next-Gen Sequencing data 

Collection of tumor samples, extraction of genomic DNA and sequencing of samples 

were all performed at The Blood Center of Wisconsin (BCW). Previously de-identified 

patient samples were sequenced at BCW for the purposes of diagnostic test 

validation. Briefly, BCW extracted genomic DNA from blood tumor samples, which 

were then sequenced on the Illumina Mi-Seq platform. Paired-end sequencing was 

performed, with an average read length of 150 base pairs. Sequencing was restricted to 

genomic loci strongly associated with cancer mutations in leukemia patients, based on 

previous literature (Chang & Li 2013). Targeted sequencing was performed to enrich for 

these genomic loci with maximum depth of coverage of up to 10,000X. This pre-existing 

sequencing data was analyzed for this project. 

 To aid the development of machine learning classifiers and extraction of standard 

features, training datasets were generated which contained known genetic mutations 

associated with Acute Myeloid Leukemia (AML). Twenty seven such training datasets 

were generated by spiking in multiple SNPs into normal samples. Once the machine 

learning classifiers were established based on training datasets, the efficiency of 

classifiers was validated by running the classifiers against test datasets. Target datasets 

were generated from 22 true tumor samples, on which Sanger sequencing was performed 

to reveal identity of true SNPs, thereby enabling validation of machine classifiers. 

Five non-cancerous samples were sequenced similarly as described above and were used 

for both identification of SNPs with unmatched samples and also for creating spiked-in 
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training datasets. The training datasets were created at BCW using an R script that spiked 

in reads generated from real tumor samples into normal samples with the normal-tumors 

ratios of 80:20 and 90:10. 

 

Preprocessing, alignment & post-processing of short reads 

Reads generated from NGS were pre-processed with bfc (Li 2015) , a software that 

corrects multiple errors inherent with Illumina reads by eliminating singleton k-mers that 

generally imply sequencing errors. Reads were aligned to the human genome build 37 

(GRCh37) using bwa mem (Li & Durbin 2010) algorithm. Following alignment, aligned 

reads were compressed, sorted and indexed using Samtools (Li 2011). To allow 

compatibility with downstream software tools, aligned reads were assigned read groups 

using Picard Tools (Van der Auwera et al. 2013). Read groups help GATK tools to 

identify whether a set of reads were sequenced together on a specific lane and therefore 

aid in compensating for differences across subsequent sequencing runs. 

Variant calling algorithms generally rely on quality scores of individual bases produced 

by the sequencing platform. Hence it is important to correct for possible over/under 

estimations of as a result of technical errors. For this purpose, aligned reads were passed 

through GATK's Base Recalibrator (Van der Auwera et al. 2013), which applies machine 

learning to model technical errors and then recalculates the quality score of individual 

bases. 
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Variant Calling Tools 

All existing variant callers evaluate their own performance using matched normal-tumor 

sample which is not always accessible in a clinical setting. Hence, its essential to evaluate 

the performance of existing somatic callers on unmatched samples. For this purpose, 

seven variant callers were tested against datasets generated from three unmatched 

normal-tumor datasets. The specific variant callers tested were VarScan2 (Koboldt et al. 

2012), Strelka (Saunders et al. 2012), CaVEMan (Gerstung et al. 2014), Scalpel (H. Fang 

et al. 2015), SomaticSniper (Larson et al. 2012), MuTect (Cibulskis et al. 2013) and 

LoFreq (Wilm et al. 2012). The accuracy was evaluated based on the ability of each 

caller to detect SNPs and indels (variants introduced by insertion or deletion of multiple 

bases). Selected callers are designed based on different strategies to detect somatic 

variants and collectively have their own strengths and weaknesses. Out of these seven 

somatic callers, only VarScan2, Strelka, SomaticSniper and Lofreq were used for the 

machine learning analysis in this This selection was made because Scalpel focuses only 

on indels (not part of this study) while CaVEMan’s output directory structure makes it 

difficult to use for merging variant results from a large set of samples. Although MuTect 

primarily focuses on SNPs, its filtered variant results are in txt format which makes it 

incompatible with the downstream tool PyVCF (explained below). Following are brief 

descriptions for each of the tools and their usage in the context of this study:  

Varscan2 

VarScan2 (Koboldt et al. 2012) is a mutation caller for targeted exome and whole 

genome sequencing data. The software assigns a particular genotype as a heterozygous or 
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homozygous variant depending on if the variant base has at least a minimum variant 

frequency of 0.20 for all reads (This default was modified to 0.05 for this study in order 

to capture low frequency variants). Following this, the software performs a Fisher exact 

test between the reference and variant supporting reads for both normal & tumor samples 

and calls each variation as either somatic or germline. This categorization is done based 

on whether the normal sample was a homozygous/heterozygous reference. Lastly, several 

filters like variant position in supporting read relative to read length, distance to 3’ end, 

fraction of variant reads from forward strand (to avoid strand bias), mapping quality 

difference between reference and variant are applied to correct for location and mapping 

quality of reads to eliminate false positives. As input, the software requires pileup files 

that consist of base pair information at each chromosomal location. Pileup files for both 

the normal and tumor samples were generated using samtools mpileup program, which 

were then passed along with a reference genome to generate variant calling results 

containing both SNPs and indels (only SNP output used in this study). To filter non-

somatic calls, processSomatic command was used.  

SomaticSniper 

SomaticSniper (Larson et al. 2012) provides SNP detection by doing a Bayesian 

comparison of genotype likelihoods in the tumor and normal sample. It further uses 

somatic detection filters like location of site from a predicted indel, mapping quality, read 

coverage and consensus quality. It provides numerous options (e.g. changing prior 

probabilities of finding somatic mutation) that can be used along with the main program 

bam-somaticsniper to make the algorithm more or less sensitive. Each of the called 

variant is given a 'somatic score' which is phred-scale posterior probability that the 
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variant is somatic or not. Using SomaticSniper’s parameters, calls with somatic score less 

than 20 and reads with mapping quality less than 1 were filtered. 

LoFreq 

LoFreq is a SNP & indel detector that utilizes base call quality by modeling sequencing 

errors in order to distinguish them from true variants. Using viral, bacterial and human 

datasets, it was shown to predict variants below the sequencing error rate (Wilm et al. 

2012). LoFreq can also utlize a user-provided dbSNP variant file to remove known 

germline variants. It’s sensitivity can be adjusted by changing the parameter tumor-mtc-

alpha, which signifies the value of alpha for the bonferroni test for the tumor. To increase 

the sensitivity, this value was increased from 1.0 (default) to 1.5.  

Strelka 

Strelka (Saunders et al. 2012) can predict both somatic SNPs and small indels. It uses a 

Bayesian probability model in which normal sample is considered mixture of germline 

variant with noise, while tumor sample is considered a mixture of normal sample with 

somatic variation. This assumption towards nature of normal and tumor samples, allows 

for better accuracy in highly impure tumor samples. It requires that reads are aligned 

using the bwa aligner and also uses a config file that can be used to vary various filters 

like min. allele fraction, mapping quality, prior probability of any site being a somatic 

mutation and the expected rate of heterozygosity in normal sample etc. All these 

parameters were kept to default values except isSkipDepthFilters, which was changed 

from 0 to 1 as required for data generated from targeted sequencing.  
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Scalpel 

Scalpel (H. Fang et al. 2015) only provides indel detection. It uses a de-Bruijn graph 

based strategy to find insertions and deletions for any kind of sample. For the purpose of 

this study, the somatic mode of operation was chosen. It also requires a reference genome 

and a bed file along with tumor-normal sample set. Once the indels are provided, an 

"export" option is used to filter the relevant indels depending on the criteria required. All 

parameter values were kept to default.  

CaVEMan 

CaVEMan (cancer variants through expectation maximization) (Stephens et al. 2012) 

only detects SNPs. The algorithm uses a Bayesian classifier to estimate posterior 

probability for a genotype at each base and then applies post processing filters. The 

workflow involves implementation of multiple scripts for creating a config file, which 

consists of location of the normal, tumor BAM files and reference fasta file. This is 

followed by creation of separate segments using caveman split command, which breaks 

up the analysis for each of the sequence chromosome. After merging of segments using 

caveman merge, caveman estep is the command to finally call variants. For this study, the 

parameter —min-base-qual was adjusted to 30 to filter all bases with lesser quality. All 

other parameters were kept to default values.  

MuTect 

MuTect (Cibulskis et al. 2013) detects somatic point mutations by first preprocessing the 

reads to filter the reads with low quality and mismatches which is then followed by usage 

of a Bayesian classifier that checks whether tumor is non-reference at a site. These sites 
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are then checked for their non-existence in normal sample. Post processing is the final 

step in which artifacts of NGS are eliminated. Since it requires aligned reads to have read 

groups associated with them, picardtools was used to fulfill that requirement. Default 

values were used for all available parameters.   

Merging variant calling results 

For creation of training data, machine learning and prediction, four somatic variant 

callers were selected: VarScan2, SomaticSniper, Lofreq and Strelka. The training data 

consisted only of SNP calls and the indel calls produced by VarScan2, Lofreq and Strelka 

were ignored for this study. After running the variant calling pipeline over 27 pseudo 

tumor datasets, the VCF (Variant Calling Format) results for each of these pseudo tumor 

dataset from each tool were first concatenated and sorted using Unix command line tools, 

which was followed by merging of these concatenated results using Pandas (McKinney 

2011) which is a Python data analysis library. To use consensus among somatic callers 

for a particular variant as one of the features to aid in prediction results, each variant call 

was assigned a weight which was calculated by simply adding the number of tools that 

reached consensus for that particular call with values ranging from 4 (maximum 

consensus) to 1 (minimum consensus). Merging was performed by using position of the 

variant as the common feature among all variant callers. Many variant call positions did 

not overlap after the merge as the consensus among callers was less than four. Therefore, 

Pandas introduced missing value NaN in the merged table for such calls. For example, if 

Varscan and SomaticSniper called a position 128202677 but Strelka and LoFreq did not, 

for this particular location, features associated with Strelka and LoFreq would have NaN 

entries. These missing values were converted into the mean value for that feature which 
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is a standard practice used when creating learning models with data that has absent 

entries. 

PyVCF 

In order to extract features that would help the learning algorithms to make better 

predictions, it was essential to find out whether the true positives (TPs) and false 

positives (FPs) had any characteristic traits that would vary significantly. For this 

purpose, PyVCF (Kelleher et al. 2013) which is a variant call format (VCF) parser built 

in Python was used. It parses the VCF file and stores each variant call and its 

characteristics in a record object. This record object consists of multiple functions that 

allow access to features associated with a variant call like position, quality, reference and 

alternate base, tumor information like depth, variant quality etc. PyVCF was used for 

parsing the VCF output from each of the variant callers and the resulting data frames 

were finally merged as described above. All plots in this study were created using 

Python's visualization library Matplotlib (Hunter et al. 2014). 

Scikit-learn 

To create classifiers and perform other machine learning analysis, scikit-learn library 

(Pedregosa et al. 2011) for Python was used to get access to numerous functions 

appropriate for data mining and data analysis. Since this study treats the problem of 

identifying TPs and FPs as a classification problem, three supervised learning algorithms 

were used for the analysis: logistic regression, linear support vector machine (SVM) and 

k-nearest Neighbor (kNN). 
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Logistic Regression (LR) 

Logistic regression (LR) is a linear model of classification in which a logistic function is 

used to model probabilities for a particular outcome of a single trial. The type of LR used 

for this study was binary LR since the outcome for dependent variables only has two 

possible outcomes. The LR method simply calculates the log of the ratio of the odds of 

possible outcomes.  

Linear Support Vector Machine (SVM) 

Linear SVM algorithm simply builds a binary linear classifier that consists of categories 

that are clearly divided in the feature space. These categories are formed using training 

dataset in such a way so as to have a clear distinction between them. The predicted data 

points are then mapped onto one of these categories based on whichever side they fall on. 

k Nearest Neighbors (kNN) Classification 

kNN is an instance based learning model where instances of training data are simply 

stored instead of constructing an internal model. These instances form a feature space 

with different classes built for each possible output. A particular object in question is 

assigned a class based on the class of its k nearest neighbors. In this study, the classifiers 

were built with k=7. 

Privacy of patient data 

The MCW/FH IRB committee, which serves both BCW and Medical College of 

Wisconsin (MCW), reviewed the project and determined that it does not meet criteria for 

human subject research at 45 CFR 26.102 and therefore does not require further review 
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by the MCW/FH IRB. The Marquette University (MU) office of research compliance 

confirmed that based on the MCW/FH IRB decision, an MU IRB would not be needed, 

as the activity would not constitute research involving “human subjects”. 
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III. Results and Discussion 

Performance of Variant Callers on unmatched normal-tumor samples 

In order to evaluate the performance of existing variant calling algorithms on pairs of 

unmatched normal-tumor datasets, seven somatic variant callers were tested on 3 Acute 

Myeloid Leukemia (AML) samples S19, S31 and S41 that consist of variants with 

varying frequency. Other than evaluating performance on unmatched pairs of normal-

tumor data, another essential component of this comparison was to replicate the already 

reported discrepancy between the variant calling results from different callers. BCW used 

Sanger sequencing to validate 6 somatic mutations in S19 and 3 mutations both in S31 

and S41 which were used as true positives for this comparison analysis.  

 

To measure the performance of each variant caller, the TP to FP ratio was compared 

across six variant callers. As can be noted from Table 2, performances of these callers 

across all tumors were considerably low. VarScan2 performed best in capturing most 

SNPs (5 out of 6) in S19 but the variant frequency of all mutations present in this tumor 

Samples
MuTect Somatic	

Sniper Strelka VarScan2 Caveman Scalpel Lofreq

S19 0.2 0.14 0.06 0.27 0.25 0.01 0.12

S31 N/A N/A 0.25 0.01 N/A 0.02 0.04

S41 0.33 0.09 0.09 0.05 0.1 0.01 0.4

Table 2: Performance evaluation of variant callers on unmatched normal-tumor sample
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was greater than 30% which is not always the case with AML. S31 provided a better test 

since the variant frequency was as low as 8%. With this tumor, Strelka outperformed the 

other callers by identifying maximum number of true positives with relatively less 

number of false positives. As Mutect, SomaticSniper and CaVEMan capture only SNPs, 

their performance on S31 was not evaluated since BCW only validated indel locations for 

this tumor sample. S41 also consisted of mutations with frequency as low as 8% and 

although Caveman captured maximum TPs, Lofreq had the highest TP to FP ratio as it 

was able to filter a large number of FPs. 

 

Admittedly, these three real tumor datasets do not consist of enough mutations to 

highlight the low frequency that is characteristic of blood tumors. However, it was 

essential to evaluate the discrepancy between the results from existing variant callers 

especially when they are dealt with an unmatched normal-tumor dataset. This small scale 

Feature Description
Read Depth (all 4 
callers) Read depth of variant supporting base

VAF (Varscan2 & 
LoFreq) Variant allele frequency for the base in tumor sample

Somatic Score 
(SomaticSniper)

Phred scale score signifying the likelihood of a particular 
call being somatic. Higher value means high probability of 
call being somatic

Somatic Score 
(VarScan2) Score in Phred scale derived from somatic p-value

Quality Score 
(Strelka)

Quality score reflecting the joint probability of a somatic 
variant and NT

Quality Score 
(Lofreq)

Phred-scaled quality score for the assertion made in ATL 
field. High number reflects high confidence call.

Weight Consensus among variant callers for a particular call

Table 3: Features from variant callers used for building classifiers
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comparison analysis corroborates previous work (Roberts et al. 2013) and highlights that 

there is a strong need to combine the results of these variant callers as their individual 

usage will likely lead to incomplete and misleading results. 

 

Feature variation among true positives and false positives 

To identify the features or characteristics of a particular variant call that may be useful in 

predicting the final state (TP or FP) of that variant, traits associated with each variant 

were extracted from the VCF files produced by each of the variant callers. These traits 

and their corresponding descriptions are presented in Table 3. This information was then 

plotted as box plots to visualize the feature distinction among TPs and FPs (Figure 2). 

Figure 2: Feature variation among true positives and false positives for different variant callers
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Each caller's TPs and FPs showed similar patterns for some traits but some traits' 

variation across TP and FP differed across tools. VarScan2 showed significant correlation 

with higher values of read depth and somatic score corresponding with TPs but no such 

correlation was observed with Variant Allele Frequency (VAF). SomaticSniper showed 

clear differences among TPs and FPs with higher values of somatic score and Variant 

Quality correlating with TPs but the average variant read depth values for the two sets 

were almost equal. For LoFreq, higher read depth and Phred quality score was correlated 

with TPs but higher VAF was associated with FPs which could be due to its primary 

focus on catching low frequency variants. 

Strelka also showed positive correlation for high Read Depth and Quality Score with 

TPs.These results indicate that the VCF files do contain useful information associated 

with a particular variant call that can aid the learning algorithms to train classifiers for 

predicting a true variation and distinguishing it from a sequencing error. 

Classifier creation and prediction using spiked-in datasets 

In total, there were 308 

mutation calls that were 

collectively identified by the 

somatic callers for the 27 

pseudo tumor datasets. To build 

the classifiers, a total of 11 

features (Table 3) from the four 

Figure 3: Performance variation of k-Nearest Neighbor 
(kNN) with varying values of k
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aforementioned variant callers were used.  

Hence, the merged dataset's dimensions were 308 x 11. It was divided into a training set 

and a test set with a ratio of 3:2 using scikit learn's function train_test_split.  

All three classifiers were then trained by fitting the training set. The state of the variant 

calls in the test set were predicted as either a 0 (true mutation) or 1 (sequencing error) 

using the trained classifiers. Finally, to evaluate the performance of these classifiers, their 

F-1 scores were plotted. Performance of the kNN classifier was observed over odd values 

of k (Figure 3) and F1-score was highest with k=7 and this is the value that was chosen 

for cross validation purposes with kNN. This value of k also averages out any bias that 

would arise from only the very close neighbors (k = 3). 

Stratified k-fold cross validation analysis was used for all classifiers’ performance 

evaluation as it has been previously noted that rearranging the dataset such that each pair 

of training and test set is a good representative of the whole, helps in reducing bias when 

compared to regular cross validation (Kohavi 1995). The results are plotted in Figure 4. 

kNN with k=7 performed the best on the training set with average F1-scores of 74% 

(74% sensitivity & 75% precision) with 10-fold cross validation and 75% (77% 

sensitivity & 75% precision) with 15-fold cross validation. 
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Next, the performance of Logistic Regression classifier was tested and cross validated. 

The results are plotted in Figure 5. This classifier achieved average F1-scores of 65% 

(77% sensitivity and 58% precision) with 10-fold and 63% (79% sensitivity and 56% 

precision) with 15-fold cross validations. 

 

 

Figure 5: Cross validation with Logistic Regression on spiked-in tumors

Figure 4: Cross validation with kNN on spiked-in tumors
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Finally, the training dataset was used to evaluate the performance of Linear SVC 

classifier which is plotted in Figure 6. This classifier's performance was worse compared 

to the other two with F1-scores of only 43 (58% sensitivity & 40% precision) with 10-

fold and 45 (57% sensitivity & 46% precision) with 15-fold cross validations. 

Figure 6: Cross validation with Linear SVC on spiked-in tumors
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The performance of these classifiers was also compared with each of the individual 

variant calling tools and SNPredict clearly outperformed each of these individual tools 

(Table 4). SNPredict’s performance with kNN and LR outperformed every other 

algorithm with Strelka performing slightly better compared to SNPredict with Linear 

SVC. Linear SVC’s weak performance highlights the fact that the variation of values for 

features among true positives and false positives is not clearly distinct for all features.  

 

Classifier creation and prediction using real tumor datasets 

After training and building the classifiers using the pseudo tumor dataset, the pipeline 

was then tested on the real tumor datasets. Before using the classifiers, SNPs in the 

merged dataset underwent a filtering process which was performed by running the variant 

calling pipeline over a pair of normal-normal sample. The SNP dataset collected from all 

variant callers using this normal-normal pair were checked against the merged SNP 

dataset from real tumors for potential overlapping SNPs. There were 61 such SNPs that 

were common in these two sets which were filtered from the classifier prediction analysis 

as they were clearly false positives. 
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The F1-scores achieved by SNPredict on real tumors with kNN, Logistic Regression and 

Linear SVC are plotted in Figure 7,8 and 9 respectively. kNN again did well with F1-

scores of 77 (84% sensitivity and 76% precision) with 15-fold CV and 76 (83% 

sensitivity and 76% precision) with 25-fold CV. Logistic Regression also showed good 

prediction performance with F1-scores of 73 (76% sensitivity and 71% precision) with 

15-fold CV and 71 (78% sensitivity and 70% precision) with 25-fold CV. Linear SVC 

again showed weak performance with F1-scores of 29 (31% sensitivity and  40% 

precision) with 15-fold CV and 20 (21% sensitivity and 27% precision) with 25-fold CV. 

 

 

Figure 7: Cross validation with kNN on real tumors 

Figure 8: Cross validation with Logistic Regression on real tumors 
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In order to evaluate the similarity in features associated with TPs and FPs in spiked-in 

tumor datasets and features associated with TPs and FPs in real tumor datasets, classifiers 

built using spiked-in tumor datasets were used for predicting true SNPs and sequencing 

errors in real tumor datasets. The performance results of all three algorithms used by 

SNPredict are plotted in Table 5. Poor F1-scores highlight the fact that the values of 

features associated with TPs and FPs in spiked-in tumors may not reflect the true 

Figure 9: Cross validation with Linear SVC on real tumors 

Algorithm Sensitivity Precision F1-score
SNPredict (kNN) 13 93 23

SNPredict (Log Reg) 14 100 24
SNPredict (Linear 

SVC) 13 99 23

Table 5: Performance of SNPredict’s classifiers built using spiked-in data on real tumor datasets 
(in %)
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complexity involved in real tumors and hence one should be careful before building 

machine learning classifiers using pseudo-tumors in order to make predictions on real 

tumors. 

Since a mutation is called a False Positive if its predicted as true mutation by SNPredict 

but not identified by Sanger sequencing at BCW, for validation of SNPredict’s results, it 

was essential to use a secondary source that documents known cancerous mutation. One 

such source is Database of Curated Mutations (DoCM) (Krogan et al. 2015) which 

maintains lists of known, disease-

causing mutations including SNPs 

associated with various cancers. Real 

tumors in this study were from the 

patients suffering from AML and hence 

SNPs associated with this cancer were 

downloaded and compared against. As 

expected, all mutations reported by 

BCW were also documented at DoCM. 

However, SNPredict was also able to 

identify eight additional SNPs that were 

not reported by BCW (and hence 

incorrectly identified as false positives in this analysis) but were present in the DoCM. 

The location and the corresponding frequency of these eight SNPs is highlighted in Table 

6. In order to further verify that these SNPs were indeed actual variation in the tumor, 

BAM files associated with tumors were visualized and compared against the normal 

Chr: Position Variant Allele 
Frequency (%)

2: 25457242 44

2: 198267359 31

12: 25398284 37

13: 28602340 35

13: 28608281 16

13: 28602381 1.09

17: 7578394 10.4

17: 7574113 1.6

Table 6: SNPs captured by SNPredict
that were missed by BCW pipeline
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samples using Integrated Genome Viewer (IGV) (Thorvaldsdóttir et al. 2013). As can be 

noticed from Figures 10, 11 and 12, there is indeed base change for samples S19, S33 and 

S43.  

Interestingly, there were six more SNPs collected by the union of variant callers and 

present in DoCM (but not BCW), which were incorrectly called as sequencing errors by 

the classifiers. It is important to note that some of the calls predicted by SNPredict as 

“false positives” is likely a consequence of BCW’s Sanger validation only for AML 

specific genomic locations. Further validation across more genomic locations and 

especially for the regions where SNPredict incorrectly predicts SNPs, will provide a 

better set of ground truth to evaluate SNPredict’s performance.  
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Figure 10: IGV visualization of low frequency SNPat chr17:7574113.
SNPredict’s prediction of a low frequency variant (2% VAF) in sample S19 at position
7574113 of chromosome 17. This chromosomal location corresponds to genomic locus of
TP53.
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Figure	11:	IGV visualization of low frequency SNP at chr17: 7578394.
IGV	visualization	of	SNPredict’s prediction	of	a	low	frequency	variant	(10%	VAF)	 in	sample	
S43	at	position	 7578394	of	chromosome	17.	This	chromosomal	 location	also	corresponds	
to	genomic	 locus		of	TP53.	



31 

 

 

 

 

 

 

 

 

 

 

Figure 12: IGV visualization of low frequency SNP at chr13: 28602381.
SNPredict’s prediction of a low frequency variant (1% VAF) in sample S33 at position
28602381 of chromosome 13. This chromosomal location corresponds to genomic locus of
FLT3. For comparison, sample S43 was also visualized at the same location but no such
variant was found.
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IV. Conclusions 

Different variant callers use different algorithms to discriminate between true variant and 

sequencing errors. As was highlighted in this study, the performance of these callers vary 

depending on the variant frequency of the mutations present in the tumor and their usage 

for unmatched normal-tumor samples leads to incomplete results. Therefore, none of 

these existing callers should be used without the aid of other callers for calling somatic 

SNPs. The pipeline presented in this study takes advantage of some of these somatic 

callers by not only combining their results but by also extracting features from their 

individual outputs to model classifiers that can predict somatic mutations with better 

accuracy than each of the individual tools. 

With spiked-in datasets, two out of three SNPredict’s classifiers significantly outperform 

existing somatic callers. Even with real tumor samples, kNN and Logistic Regression 

both achieve high F1-scores. It is essential to note that the classifiers built using spiked-in 

tumor samples do not provide an accurate picture of the real tumor samples and hence it 

is recommended that SNPredict be used to predict mutations for tumors that are similar to 

the ones used as training data for building the classifiers. One major finding of this study 

is the accurate prediction of eight true SNPs - including 3 SNPs with variant frequency as 

low as 1% -  not captured by BCW.  

In summary, this pipeline can be a valuable source for clinical centers that currently 

execute only a single variant caller for the purpose of somatic variant detection. 

SNPredict’s high performance over existing variant callers on unmatched samples 

highlights its usefulness for clinical institutes like BCW that lack the matched normal-
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tumor sample set. Going forward, its strength should be further increased by not only 

adding more somatic SNP callers to the analysis but also include indel and copy number 

variations to predict broader kinds of somatic variations present in cancer.  
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