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ABSTRACT 

SOCIAL-CONTEXT MIDDLEWARE FOR AT-RISK VETERANS 

Nadiyah Johnson 

Marquette University, 2016 

Many veterans undergo challenges when reintegrating into civilian society.  These 

challenges include readapting to their communities and families. During the reintegration 

process veterans have difficulties finding employment, education or resources that aid 

veteran health.  Research suggests that these challenges often result in veterans 

encountering serious mental illness. Post-Traumatic Stress Disorder (PTSD) is a common 

mental disease that veterans often develop. This disease impacts between 15-20% of 

veterans. 

 

PTSD increases the likelihood of veterans engaging in high risk behaviors which 

may consist of impulsivity, substance abuse, and angry outbursts. These behaviors raise 

the veterans’ risk of becoming violent and lashing out at others around them. In more 

recent studies the VA has started to define PTSD by its association to specific high risk 

behaviors rather than defining PTSD based on a combination of psychiatric 

symptoms.  Some researchers have suggested that high risk behaviors -- extreme anger 

(i.e., rage or angry outbursts) is particularly problematic within the context of military 

PTSD. Comparatively little research has been done linking sensor based systems to 

identify these angry episodes in the daily lives of military veterans or others with similar 

issues.  

 

This thesis presents a middleware solution for systems that work to detect, and 

with additional work possibly prevent, angry outbursts (also described in psychological 

literature as “rage”) using physiological sensor data and context-aware technology. This 

paper will cover a range of topics from methods for collecting system requirements for a 

subject group to the development of a social-context aware middleware. In doing such, 

the goal is to present a  system that can be constructed and used in an in lab environment 

to further the research of building real-world systems that predict crisis events, setting the 

state for early intervention methods based on this approach. 
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CHAPTER 1: INTRODUCTION 

Civilian reintegration is a difficult process for many veterans. Military culture is 

much different from civilian life. Prior to transitioning into civilian status veterans are 

accustomed to a structured and militant lifestyle. According to a poll from the 

Washington Post approximately 50% of veterans suffer from readjustment issues[1]. 

Over time if these issues are not properly dealt with, veterans may become more 

susceptible to mental illness [2]. 

Post-traumatic stress disorder (PTSD) is one of the main problems associated with 

civilian reintegration. It is a condition of consistent emotional and mental stress resulting 

from trauma.  Recent studies from the United States Veteran Affairs (VA) have started to 

define PTSD based on high risk behaviors rather than a cluster of psychiatric symptoms. 

This diagnosis increases the likelihood of veterans engaging in at risk behavior.   At-risk 

behavior is a lifestyle or activity that places a person at increased risk of violent, 

dangerous, or unhealthy outcomes.  This type of behavior involves heavy consumption of 

alcohol, substance abuse, impulsive activities, angry outburst (AOB) etc. AOB is 

particularly problematic in the context of military based PTSD.  Continuous engagement 

in these at-risk behaviors such as AOB can result in homelessness, social isolation, and 

even suicidal thoughts [1]. Veteran’s likelihood of engaging in these activities is heavily 

correlated with their social environment [2]. 

In this thesis, guidelines are presented for developing a middleware used to detect 

and predict psychological crisis events.  For example, one crisis event of particular 

interest is angry outbursts (rage).  The middleware will use physiological sensor data and 
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social context technology to infer that rage is occurring within a social interaction that the 

veteran is party to. This system will output a value which represents whether or not the 

user's current social state indicates that they are likely to engage in an at-risk activity. To 

make this inference about the social context, it will take into account three types of 

underlying information, physiological data, text analysis, and GPS data. This middleware 

will be particularly useful in the development of an angry outburst detection and 

prediction system. 

The paper is organized as follows: first the motivation behind this research is 

presented, followed by the related works section which is based on past context-aware 

systems, next the solution for this project is discussed; Finally, the broad impact of this 

approach and a discussion of its weaknesses are presented. 
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CHAPTER 2: BACKGROUND 

In the past there have been several attempts to develop systems that help veterans 

to combat their PTSD. Mobile devices are ideal for mobile health (mHealth) 

interventions. Their built in sensor technology makes it possible to obtain relevant and 

useful data. Several studies suggest the use of mobile devices for developing systems that 

aid or facilitate mental health care. The VA has developed several apps that have a focus 

on PTSD.  PTSD Coach, PE Coach, PTSD Support, PTSD Eraser are a few of 

many mobile apps that have been developed to target issues associated with PTSD. These 

apps either work to inform veterans about PTSD, help them to self-assess, or provide 

management techniques to help them to cope with the disorder [3]. There have been a 

few projects which work on the social aspect of civil reintegration. POS REP connects 

veterans within a perimeter range. Veterans are able to use this app to reach out to other 

vets when they are in need of support [4].  There has yet to be a mobile app dedicated to 

the detection and prevention of AOB of veterans. 

Social computing is an interdisciplinary research and application field based on 

theoretical computational and social sciences [5]. Social computing is a focal point of 

many information and communication technology (ICT) systems. Social context is 

essential to developing an efficient model of the social system surrounding a particular 

individual or other social unit of interest. In order to understand a social interaction it is 

important to recognize the social context.  Successful social interactions construct 

common knowledge which is often an unspoken shared understanding that enforces 

social norms [6].   In order for technology to successfully detect or predict behavior it 

must be able to accurately describe social context, typically in quantitative ways. To this 
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end, the current project proposes social context middleware that can be used in a variety 

of systems to increase the system’s understanding of the social state of veterans.  
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CHAPTER 3: MOTIVATION 

Members of the armed forces experience an abundance of lifestyle changes as 

they transition from uniformed duty to civilian status. These changes can result in some 

veterans having to contend with challenges. Many veterans return to civilian society with 

post-traumatic stress (PTSD), along with other physical and emotional ailments. Due to 

the lack of veteran assistive programs a large number of veterans face their problem alone 

which eventually increases the severity of their issues. PTSD is a common mental illness 

attributed to military life. This illness along with other emotional disorders can lead to 

violent behavior, homelessness and in severe cases suicide. 

The following scenarios highlight the targeted research problem. The goal of 

these scenarios is to expose the common issues associated with anger related PTSD. In 

these scenarios the mobile phone and wearable device are constantly on the user’s person 

allowing the device to collect the necessary sensor data for the middleware to capture and 

analyze. These scenarios emphasize the need for a social context middleware. 

3.1 Scenario 1- Nightmares 

Michael has returned from Iraq. He has been involved with the Dryhootch peer mentoring 

program for several weeks. His peer mentor made a note in the peer report that Michael 

has been experiencing stress lately. The answers from Michael’s self-report indicates that 

he hasn't been getting much sleep. It is learned from the peer and self-reported data that 

Michael has recently been suffering from symptoms of PTSD. It is not clear, however, 

that his PTSD is manifesting as vivid nightmares. Over the past couple of weeks Michael 

has been waking up from these nightmares. The sensor data from the wearable device and 
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mobile phone reads in GPS, and physiological data which indicate that he paces around 

until he falls back to sleep. Recently Michael’s PTSD has worsened and he is now 

suffering from more intense nightmares of his time in Iraq causing him to relive his past 

experience (i.e. re-experiencing symptoms, commonly referred to as “flashbacks”). As he 

wakes up his flashbacks overlap with reality and he begins swinging his arms to punch 

whatever is near him. When Michael heads to bed, aware of his serious condition, he 

locks his bedroom door, turns off the lights and lies down.  

A system developed to detect angry outburst or PTSD related symptoms can 

greatly benefit from social context middleware. The middleware would first reads in 

Michael’s environmental data using his mobile phone and wearable devices. The system 

would use the middle wear to recognize the inactivity and deduces that Michael is 

sleeping. Again, michael wakes up in the middle of the night in a cold sweat, heart 

racing, and swinging his arms in a boxing-like motion. He is mentally unable to 

differentiate reality from his nightmare. His phone is sitting on the nightstand but he is 

wearing a wearable device. This device reads in social context data (his fast pulse, high 

temperature etc). The middleware produces an output which indicates that there is a high 

possibility Michael is engaging or will engage in further at risk behavior. The middleware 

enables the angry outburst detection system to conclude that Michael is waking up in the 

middle of the night with symptoms of PTSD. This means Michael is more likely to 

experience at-risk behavior.  The angry outburst detection system will be able to use the 

information provided by the middleware to prevent, stop, or later predict an angry 

outburst. 
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3.2 Scenario 2: At-risk Driving  

Craig has returned from war. We learned from the peer and self-report that he has 

recently been suffering from symptoms of PTSD that is manifesting as stress induced 

uncontrollable anger. Craig has been having a hard time finding a job and the bills are 

beginning to pile up. Craig comes home after going through what he considers a bad job 

interview.  He starts reading the mail and sees that his house is going into foreclosure. 

Enraged, Craig grabs his keys jumps in the car and searches for a familiar escape. An 

angry outburst detection system may utilize social context middleware to read in and 

analyze context data. The system will be able to use the data retrieved from the 

middleware in an algorithm to understand the user's current behaviors (speeding, erratic 

driving). In this particular scenario the phone is laying on the passenger seat. Michael is 

wearing his wearable device. He is violently gesturing to other drivers on the road. The 

wearable device is able to read in context data (fast heart rate and location). The angry 

outburst detection system, with the help of the social context middleware, can conclude 

that he is experiencing at-risk behavior- road rage or angry outburst. 

3.3 Scenario 3: At-risk Communication 

Jordan has been feeling stressed lately because his wife just lost her job making 

his job the main source of income. As a result of this stress he has become less motivated, 

more depressed and more hostile towards others. One day Jordan begins arguing with his 

wife via text message. He starts using violent language. His text messages are filled with 

swear words and threatening phrases. Later that day he posts on Facebook one sentence 

that says “Today my demons won, farewell”. Our social-context middleware would be 
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used to detect his unusual and suspicious communication with his loved ones.  An angry-

outburst/ PTSD assistive app would be able to use a middleware which provides social-

context data allowing it to successfully detect dangerous behavior. 

3.4 Characteristics of the Middleware 

The goal of this project is to help people in similar situations as those in the above 

scenarios. The three scenarios are common situations that at-risk veterans face on a 

regular basis. These common scenarios have very high costs. When a veteran experiences 

an AOB they put themselves at an increased likelihood of a dangerous, violent, or 

unhealthy outcome.  AOB can lead to an individual isolating themselves from their 

family. It can lead to a person losing their job. It can also cause others around them 

distress by placing them in an unsafe environment.  

It is apparent that new technology is necessary to help combat AOB. The middleware is 

designed to help veterans in situations  similar to the ones described above. In the future 

the middleware may be extended to help people suffering from other crisis events.  

The goal is to create a middleware that helps systems/mobile apps: 

• Detect AOB 

• Predict AOB 

• Gather pertinent user data to expand knowledge of AOB 
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CHAPTER 4: RELATED WORK 

4.1 Context-Aware Definitions 

In 1995 Schilit and Theimer were one of the firsts to introduce the concept of 

context -awareness. They defined context as: where the subject is physically located, the 

people that they are interacting with the subject, and objects or resources nearby [7]. 

Their research suggests that context-aware systems should be able to react to changes in 

the environment based off of the information it encompasses.  Schilit and Theimer break 

context aware-computing down into three applications (1) Proximate selection involves 

strategically placing an object on a user interface to increase accessibility;(2) Automatic 

Contextual Reconfiguration, which is the process of adding or removing a network 

connection based on the user's environment; (3)Contextual information and commands, 

which is the concept of a system accounting for the subjects situation particularly their 

location and adapts to system commands as a result. These applications were prototyped 

on a PARCTAB, a small palm size computer. This study shows the range of context- 

aware applications but is limited to proximate-environmental context. 

In 2006 Andid Dey defined context awareness technology as a system that 

provides relevant services or information to a user based on the user’s tasks [8].  This 

research generalizes context-aware computing by categorizing context- computing 

features into three categories,  (1) Presentation of information and services, (2)Automatic 

execution of services for a user and (3)tagging of context to information to support later 

retrieval. These types of features were combined with abstractions which were then 

implemented in a context tool-kit that is specific for building developers. The toolkit 
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makes it easy for software to develop into a context-aware system. Their system uses 

widgets, interpreters and aggregators. The widgets use conventional poll and subscribe 

methods, the interpreters fuse data to derive context and the aggregators gather the entire 

context about one particular entity. The tool-kit approach is useful because it generalizes 

context-awareness in such a way where it can have many applications however it is 

limited in its ability to derive the situational context as it relates to relevant information 

between the user and target outcome of the software. Situational context is one of the 

most significant aspects of context-aware computing. It determines the relevancy of data. 

 

Jason I. Hong and James A. Landay conducted a research study in 2001 to 

describe the benefits of a service infrastructure for context awareness [9]. They claimed 

the network based service infrastructure approach will benefit the developers and 

administrators and end-users. One benefit is that this approach will allow for 

compatibility with a wider range of devices due to its independence of hardware, 

operating system and programming languages. Another benefit of this approach is that 

the sensors can be changed independently and dynamically. This means other sensors or 

services may continue running as the context-aware service is being changed or updated 

etc. The third highlighted benefit in this research was that the context aware devices and 

applications will be easier to develop and deploy because all of the processing power, 

storage of data and sensors will be shared. This is beneficial because individual devices 

and apps will not need to handle every sensor in order to collect relevant context data. 

Instead, the burden can be placed on the infrastructure to find suitable nearby sensors. A 

context-aware network based middleware service approach is beneficial as it provides 
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external sensors and processing power that is not application dependent but it lacks the 

ability to provide specific context-data for a particular need. 

4.2 Physiological Context Data 

Physiological sensor data can be a useful indicator of a patient's health status. As 

technology advances it is becoming easier to obtain physiological data via mobile 

devices. Many devices such as mobile phones and wearable devices are used to collect 

such data because they have built in sensors such as accelerometers and gyroscopes. The 

increased use of mobile devices makes them an ideal source for physiological data.   For 

example, Won-Jae Yi  et al uses an android mobile phone to collect and fuse sensor data 

to determine whether the user is at risk of falling [10]. This study points to how activity 

sensor data can be used to achieve accurate health assessments.  

While most mobile devices have built in sensors many lack sensors that can 

obtain extensive physiological sensor data. Often research studies use external sensors to 

obtain accurate physiological data. A study by Rajan, D. et al uses a small wireless low 

sensor platform called SHIMMER which stands for Sensing Health with Intelligence, 

Modularity, Mobility and Experimental Reusability [11]. This platform combines a micro 

controller with daughter boards (bio sensors) making it perfect for medical sensing 

applications. In this study an app was developed using this platform pointing to how 

affective physiological sensors can be used as an effective way to extract relevant 

features from sensor measurements such as oxygen saturation and respiratory intake. 

Physiological sensor data can be additional context-aware data. A study on 

relationships between behavioral and physiological sensor data involves using an analytic 
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tool to mitigate the challenges of interfacing multiple software programs and 

implementing the data analysis functionality within and across these software programs 

[12]. In this case the physiological data was used to identify its correlation between 

behavioral data. This over all helps the subjects to comprehend the situation or context in 

which the behaviors and events transpire. This can result in the advancement of effective 

therapies. 

4.3 Emotion Based Context-awareness 

There have been many attempts to advance context-aware technology and 

increase its application use in systems however many approaches fail to address specific 

needs for context-aware data. Berthelon, F. et al focuses on a particular sphere of context- 

awareness which relates to emotion. They incorporated ontology, a well-known 

interoperable reasoning tool into the process of emotion detection. Their ontological 

model is broken into two parts, categorization and contextualization. Categorization maps 

the emotion while the contextualization part works to utilize emotion expression as a 

function of a person's contextual knowledge. The focus of this was limited to the study of 

philia and phobia but offered information for future research of context-awareness in 

respect to emotion detection. 

 

Context- aware technology can provide impactful information in emotion 

detection research.  Emotion detection is largely dependent on the situation at hand. Text 

is a growing mode of communication due to the rapid production and use of mobile 

devices. Text has become a tool for deriving context data. Douiji, Y. et al has developed a 

system that utilizes text as context data in order to recognize emotions [13]. In this 
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research study text data is collected from the subject’s mobile devices when they engaged 

in instant messaging and social media posts. Once collected the text data is sent to the 

server for text processing and emotion extraction. The text data is also combined with 

other context data such as location and upcoming calendar event data to improve the 

overall accuracy of emotion detection. This system takes into account three points of data 

(1) Presence of affective keywords in text - this context data is examined as historical 

data; (2) General knowledge context data of the subject which involves the collection of 

religion, social information from the subject prior to using the app; (3) How the subject 

emotionally perceives their surroundings - this involves using a case-based methodology. 

This study combines a text and context-data to interpret emotion. It considers situational 

data and user’s current perception and historical data to reach a concluded emotion. 

Analyzing text is a common way to infer emotion however auditory 

communication also consists of meaningful emotional data. Na Yang and Arjmand 

Samuel developed a system which recognizes emotion based on the way people speak 

[14]. Their system, implemented on a Windows Mobile phone, uses signal processing 

methods to extract speech features. Logistic Regression is the Machine learning 

algorithm used in the emotion prediction aspect of this research. Data is trained using the 

Prosody Database. In this study the speech data was combined with physiological and 

environmental context data such as an accelerometer and location in order to improve the 

accuracy of the system. Its overall accuracy is 71%. 

The research work above demonstrates the usefulness of context-aware 

applications as it relates to emotion. The presented social middleware not only  focuses 
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on extracting data which points to a specific emotion it also focuses on extracting data 

which points to a specific social behavior or activity.  

4.4 Social Context Awareness 

Social context is information that sheds light on a person’s social state. It is 

determined by how a person’s physically and emotionally interacts with another 

person.  In past research emotion recognition has been approached by analyzing how 

people emotionally react to others. Rana El Kaliouby et.al researched the effect of 

temporal facial-expression context on emotion recognition [15]. Their experiment 

involved investigating the effect of facial-expression cues on the recognition accuracy of 

basic and complex emotions. It aimed to understand the extent of how temporal context 

impacts the recognition of emotions from facial expressions.  It was discovered that small 

amounts of temporal facial expression context data had an obvious effect on recognition 

accuracy of complex emotions but not for basic emotions. In this study it’s clear how a 

facial expression, a facet,  of social context can be indicative of emotions. 

 

Varol Akman of Bikent University wrote a paper titled Rethinking context as a 

social construct [16]. This article highlights the effectiveness of social sciences stance as 

it relates to a better understanding of context. He used examples from literary theory to 

show that interpretation is possible only within shared contexts. One particular model 

highlighted in Akmans paper was Dell Hymes SPEAKING Model. This model takes on 

the cultural approach of communication. The acronym stands for :Setting and Scene, 

Participants, Ends, Act, Keys, Instrumentalities, Norms, and Genre.  Setting and Scene 

refers to the time and place of the social interaction. Participants represent the individuals 
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involved. Ends, refers to the purpose of the social interaction. Act, is the order of the 

events within the interaction. Keys are the cues which establish the tone. Instrumentalities 

are the style of speech. Norms are the social rules. Lastly, genre represents the type of 

categories the social interaction falls under (ie, prayer, lecture). While this model targets 

literary discourse it is reflective of the social interactions that occur in everyday life.  The 

SPEAKING model highlights the necessary elements to produce a full understanding of a 

social interaction. Varol Akman suggests these elements are the basis of social context.  

 

A. Pentland, built a socially aware system which predicted social outcomes [6]. 

This system measures a set of nonlinguistic social signals, like engagement, mirroring, 

activity level, and stress, using tone of voice over sixty second periods. The goal was to 

quantify the subject’s attitude rather than their internal state. In this system, social context 

is considered to be the identity of participants in the subject’s immediate presence. There 

are several methods to determine social context, including Bluetooth-based proximity 

detection, infrared (IR) or radio-frequency (RF) tags, and vocal analysis. This system 

yielded a 90% accuracy for determining behavioral outcomes such as which couples 

would exchange phone numbers at a bar; who would exchange business cards etc.  It is 

apparent from this research that social context is an effective tool to determining 

behavioral outcomes. 

Below is a taxonomy chart which compares the different types of context 

applications from previous works. This project extends on user context to make systems 

or applications more socially intelligent by providing social context as it relates to AOB. 
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Table 1 Context Taxonomy Chart 

Type of Context Examples Use 

Computing Context  network connectivity  

  communication cost, 
communication 
bandwidth „ 

  nearby resource 

Improving business 
applications 

Physical/environmental 
Context 

 Lighting 

 Sound 

 Temperature 
 

Improving accessibility of 
rooms, traffic  

Time Context 

 

 Day  

 Week 

 Month 

Creates historical context. 

  

User Context  User Profile 

 User Location  

 Social Situation 
 

Improves social intelligence of 
systems.  
-AOB social context 
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CHAPTER 5: SOLUTION 

In order for emotion detection/prediction systems to have accurate results it must 

consider situational context. One aspect of situational context is social context.  This 

thesis presents the design of a middleware which outputs a value that represents a 

person’s current social state. This middleware involves 3 information elements, 

physiological data, GPS data, and text analysis. Each of the elements will uses specific 

services and or machine learning models to produce a final value representative of the 

user’s current social state.  

5.1 Gathering Requirements 

It is necessary to strategically collect requirements to get an understanding of the 

type of data needed to produce the intended output. The goal of the middleware is to 

collect social context data associated with AOB and output a value which represents the 

user’s social state. Veterans are the target user for this middleware. For this project 

requirements were derived from informal focus groups. These sessions involved 

discussion between an interdisciplinary team of psychologists, computer scientists, and 

veterans. The veterans were asked open ended questions which helped to shed light on 

what an AOB looks like, when it occurs, why it occurs and who it occurs with. Below in 

figure 1 is a picture of notes taken from veterans as they discussed the AOB 

phenomenon. In this particular discussion veterans were asked what emotions they feel 

prior to the angry outburst. Their response provided us with information which allowed 

us to deduce the type of data needed to accurately assess their social state as it relates to 
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AOB. It was learned from these informal discussions that text, GPS, and physiological 

data are significant factors in determining a veteran’s social state.   

 

Figure 1. Notes from informal focus group 

 

 

 



19 
 

5.2 Components 

 

Figure 2 Middleware framework 

The physiological data of a person is an appropriate indicator of a person’s social 

environment. A person’s pulse, blood pressure, etc. can help to distinguish whether the 

user is in a fun, relaxing, exciting, or stressful social environment. The middleware will 

use the physiological data to calculate a value which will be used in the final calculation 

of the person's social state.  

 

GPS data is critical when determining a person’s immediate social state. For 

example, users who have history with drug and alcohol abuse should not be near 
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neighborhoods that have a high number of drug related crime reports. Literature points to 

the fact that communities characterized by poverty, inequality and socioeconomic 

disadvantages have an increased risk of having negative outcomes including recidivism 

[17]. This middleware design will use GPS data to produce a value representing the 

geographical element of the social context of the user. 

 

Text-analysis is another component of the middleware. This component will 

analyze the text of the user’s text messages, emails and social media updates to determine 

the person's social state. When people are frustrated, angry or depressed it often shows up 

in the way they communicate with others. The middleware will use an algorithm to 

produce a value that represents the communication element of the user’s social context. 

 

 

 

 

 

 

 

 

 

 

 



21 
 

CHAPTER 6: IMPLEMENTATION 

6.1 Study 1 – GPS Component 

This section discusses how high risk environments impact a person’s social state.   

The methods of using the Android Location Manager and the calculation of the social 

context of this component are also discussed in this section.  

6.1.1 High Risk Environments 

GPS is the first entity of our social context- middleware. Location is an important 

element of social context. It assists in the characterization of a situation [18]. A user’s 

location determines how they interact with a person, place, or object. Location 

information brings awareness to the user's social environment. When developing a social 

context-middleware for a specific group, such as at-risk veterans, it is critical to factor in 

social settings that are likely to cause a target outcome. In our case we are developing a 

social-context middleware for at risk veterans. It is important to consider locations that 

we consider risky behavior triggers [17]. There are two major high risk settings that our 

system will consider ;(1) General high risk settings,(2) personal high risk settings. 

6.1.1.1 General High Risk settings 

General high risk settings are social environments which are known to generally increase 

the likelihood of someone engaging in at-risk behavior. The goal of our social-context 

middleware is to generate a value that informs an angry outbursts/ crisis detection system 

of the user’s current social state. Veterans that find themselves in crisis situations often 
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suffer from PTSD. Veterans, particularly those who have suffer from PTSD, are more 

likely to engage in risky behaviors. Locations such as neighborhoods with high crime 

reports, liquor stores, casinos all fall under high risk areas [17]. Heavy alcohol 

consumption, illegal drugs, and gambling are common outlets for at-risk veterans.  

6.1.1.2 Personal High Risk environments 

Personal high risk environments are user specific social environments that 

increase the likelihood of the user engaging in at-risk behaviors. These social settings can 

range anywhere from the users mother’s house to a specific bank in their neighborhood. 

For example a user may not have a good relationship with their mother. Every time the 

user has a conversation with their mother they feel small or unaccomplished. As a result 

they get into a heated argument making this location a high risk setting. These locations 

are optionally set by the AOB or crisis/detection systems as a form of preprocessing data. 

Once these personal high risk settings are specified our social context middleware will 

use the information when evaluating the user’s social context.  

6.1.2 Methods  

The middleware uses Android GPS location Manager API to track the user's 

location. This API provides the service of updating software on the device's geographical 

location. It also sends an application-specified Intent when the device enters the 

proximity of a particular geographical location [19]. Creating a functioning Proximity 

feature involved referencing Android Location Manager Class in the code. This allowed 

the use  of services such as  requestLocationUpdates which notifies the middleware 

http://developer.android.com/reference/android/location/LocationManager.html#requestLocationUpdates%28java.lang.String,%20long,%20float,%20android.location.LocationListener%29
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whenever the user changes location. This service allows the calculation of the distance 

between the user’s current location and the area of interest. The Proximity Alert service is 

used in the middleware to set specific longitude and latitude coordinates along with a 

radius of the areas of interest. The combined use of these services allows for acute 

tracking of the user for the purposes of gaining social context.  

 

Figure 3 Android Location Services Framework 
 

6.1.2.1 Setting Parameters 

When developing middleware which utilizes the android GPS service there are a 

few parameters that need to be set based on the target user. In our case we are tracking 

location of an at-risk veteran using proximity service. Time and distance are parameters 

that have to be sensibly set so that the frequency of location updates are at a minimum to 
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conserve battery life. Each location update requires power from GPS, WIFI, Cell and 

other radios which can be a strain on the battery. Our system updates the user location 

every 5 minutes or whenever a user has traveled 503 meters. 

6.1.2.2 Calculating Social Context Value 

Developing a social-context middleware for at-risk veterans involves considering 

environments that may trigger at-risk behavior. After many round table informal 

discussions with veterans it has been discovered that alcohol abuse and drug use are 

common for those struggling with civil reintegration. In one discussion a veteran revealed 

that when he was using drugs he began to burglarize homes to pay for 

drugs.  Neighborhoods with high crime reports are high-risk environments because they 

may compel an at-risk person to engage in drugs, theft, or other criminal activity 

[17].  Our social-context middleware focuses on at-risk veterans in the city of Milwaukee 

WI. Based on our findings on neighborhoodscout.com the most crime ridden areas in 

Milwaukee are listed in the chart below. We have set the proximity points in our code to 

the locations in the chart. 

Table 2 Crime ridden neighborhoods in Milwaukee 
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The social context value for the GPS component of the middleware ranges on a 

scale of 0 to 6. 0 indicates that the user is in a neutral environment, they are not near an 

high risk location. The closer a person gets to the high risk area the more the social 

context value will increase. If the user is within 1 miles or closer of the high-risk 

neighborhood or location the social context value will return a 6.  This number indicates 

that the user is near a location where they are more likely to engage in at risk behavior. 

Figure 4 is a representation of the calculation of the social context value.  

 

Figure 4 Representation of social state algorithm for GPS 

6.2 Study 2 – Text Analysis Component  

This section discusses the pros and cons of selecting linear and logistic machine 

learning classifiers. It also reviews the process of learning weights of specific words, and 

determining the accuracy and error of the model.  The specific methods of the 
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implementation of this component are then discussed toward the end of this section. 

Lastly the results of the developed model and calculation of social context value for this 

component are presented.  

6.2.1 Choosing a Classifier – Linear Classifier 

A linear classifier can be used as a simple threshold classifier. In the case of a text 

analysis system the positive words and negative words would be considered in the 

sentence. One approach to a simple linear classifier is to use the word count of text. If the 

number of positive words is greater than the number of negative words then we can 

conclude that we are observing a positive sentence. For example: Today was great, the 

game was awesome, but the weather was terrible. Here there are two positives and one 

negative. (great, awesome, and terrible). The sentence could be labeled as having a 

positive sentiment. There are some things to consider when taking this approach. 

(1)Where does the list of positive and negative words come from?  (2)What are the 

degrees of sentiment or weight of the words?  How are the words weighted?  For 

example: Is the word amazing better than the word great?(3) Single words are not 

enough. For example: Today was good. Today was not good. The first two issues are 

addressed by using a machine learning classifier. Number 3 is addressed by more 

elaborate features. 

A simple linear classifier takes a list of words and adds weights to them based on 

the algorithm used in the training dataset. Table 3 includes words with a hypothetical 

corresponding weight. 
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This shows how some of the weights gradually decline as the sentiment become 

more negative. Some words get a weight zero because they are not sentiment indicators. 

Given these weights a linear classifier would calculate a score. In the case that the input 

sentence is “Today was great, the game was awesome, but the weather was terrible”. The 

score of the input sentence would be X = 1.2+1.7+-2.1 = 0.8. Since the score is greater 

than 0 it is a positive sentence. If the score was less than 0 it would be considered a 

negative sentence. A Linear classifier such as this one considers the weight of the sum of 

the input. 

If the sentences are plotted based on the score it would yield a graph similar to the 

graph in figure 5. Below the threshold are sentences that scored positively and above the 

threshold are sentences that scored negatively. The red line is the linear decision 

boundary. This separates the positive sentences from the negative.  

 

Figure 5 Example of Graph of sentiment text-analysis 
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Figure 6 Linear classifier algorithm 

6.2.2 Choosing a Classifier - Logistic Classifier: 

Logistic Regression classifiers can predict the probability of an outcome that only 

has two values (ie dichotomy). In our text analysis feature we distinguish between 

negative and positive sentiment {0,1}. The words in the sentences are also given weights 

similar to Table 3. Instead of having a threshold of zero like the above linear classifier, 

this classifier uses a probability of the text being positive.  The probability of the number 

being 1(positive) is far more reflective of the sentiment of the text than a threshold score. 
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Equation 1 Logistic Regression 

Word Weight 

Good 1.0 

great 1.5 

awesome 2.7 

bad -1 

terrible -2.1 

awful -3.3 

restaurant, the, we ,where,etc 0.0 

Table 3 Hypothetical weights for example sentiment text analysis 

6.2.3 Logistic Regression Classifier vs Linear Classifier 

6.2.3.1 Skewed Decision Boundary Line 

Linear regression classifiers are not always ideal or appropriate classifiers. A 

linear classifier is a simple threshold classifier and thus may not always hold up well 

when applied to an enormous amount of data.  Linear regression uses the best fit line as a 

threshold for determining the output. Given an outlier data point the best line may be 

skewed in such a way that causes a worse hypothesis or prediction.  
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6.2.3.2 Output Values Greater or Less than Target Range 

Linear classifier gives an output of exact numbers. These numbers may be outside 

of the target range. In our case we will be working with binary classification {0,1}, 

negative or positive respectively. The linear regression model can output values much 

larger than one or less than zero even when the training values are 0 and 1. 

6.2.4 Learning the Weights 

In order to learn the weights of the words in a sentence the classifier needs to be 

trained. To do this a dataset which involves positives and negatives sentences are used as 

input data .The data is then split into a training set and a test set. Next, the training set is 

fed into the classifier and the logistic algorithm learns the weights of words. 

 

Figure 7 work flow of classification process 
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6.2.5 Determining the Accuracy and Error 

Calculating the error involves feeding the classifier the test data. The classifier 

then outputs correct or incorrect results.  For example the input data will be a sentence 

and have a sentiment ie. (Sentence=Today was great, Sentiment= positive).The sentiment 

is hidden from the classifier. The classifier is only able to see the sentence. Let’s say in 

this case the classifier correctly classified the input data. In another case the input data 

might be (today was ok, negative). If the classifier incorrectly classifies the data as 

positive we will then have 1 correct and 1 incorrect. This process would continue for 

every sentence in the data set. To measure the error the numberof mistakes are divided by 

the total # of test sentences. To calculate accuracy the # of correct predictions are divided 

by the total # of sentences. The best possible value for error is 0 and the best possible 

value for accuracy is 1. 

6.2.5.1 Determining Good Accuracy 

It is important to consider what good accuracy is for any classifier. In this case, to 

determine the accuracy of the text-analysis classifier a base case is used.  The simple 

scenario of guessing whether or not the sentence is positive or negative is examined. 

Because this case deals with a binary classification our guess has the a .50 percent 

probability of being correct. For k number of classes we would use 1/k as the equation to 

calculate the accuracy of our guess. The classifier should be substantially better than the 

accuracy of our random guessing or the classifier is considered pointless.  The text-

analysis feature is veteran specific. The methodology used to determine the sentiment of 

the text involves counting the number of curse words. The use of profanity is a part of 



32 
 

veteran culture. In the case that a veteran uses profanity in 90% of their sentences if our 

classifier classifies every sentence as negative our system may still yield 90% accuracy. 

This is due to class imbalance which means one class is more common than others. In 

this scenario our 90% accuracy is not meaningful. This is something that is addressed 

later on. The goal is to develop a classifier that is able to beat simple base line approaches 

such as random guessing and majority class cases. 

6.2.6 Methods 

The methods of the implementation of the text analysis tool are presented below.  

The methods of developing this component involve selecting a machine learning tool, 

developing a classifier, and finally training the model with selected features.  

6.2.6.1 Machine Learning Tool 

In the implementation of the text analysis feature the python programming 

language and the IPython Notebook is used.  Ipython notebook is an easy interactive 

environment for programming in Python. 

A powerful python package called Graphlab Create is also used [20].  This is a 

scalable machine learning library for Python. It also includes the SFrame, which is great 

for data manipulation [18]. SFrames allows for the manipulation of large data sets 

because it is not limited by memory issues. 
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6.2.6.2 Developing the Classifier 

The data set used for the development of the model encompasses positive and 

negative sentiment text to create and test the sentiment classifier. The texts in the dataset 

are simulated messages. The texts with positive sentiment were developed based on a 

common understanding of what is considered positive. The texts with negative sentiment 

were created based off of texts found on the internet that are associated with acts of 

suicide or other crisis events. In the beginning there were two columns in the original 

data set labeled message and rating. The first column labeled message contained text. The 

second column, rating, was the positive or negative rating of the text.   Once the csv file 

was imported into graphlab the first step was to develop a word count vector for each 

message using graphlab text analytics function. This created a column in the data set 

which contained the word count of all the words in each message.  The next step was to 

develop the sentiment classifier. This process involved data engineering. The ‘rating’ 

column was used to define a sentence as positive or negative. The ratings ranged from 1-

5. It was decided to ignore all ratings of three because it lands in the middle of  the 

positive and negative ratings. In order to do this the data was filtered so that the only 

observable data were messages that did not have a rating of 3. This step was necessary 

because the rating of three did not offer meaningful data.  To define sentences as positive 

or negative another column in the data set called sentiment was created. If the message 

rating was greater than or equal to 4 the sentiment column was populated with a 1 and if 

the product rating was less than 4 it was populated with a 0. 
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6.2.6.3 Training the Data 

Once the data had been defined as positive or negative sentiment, the next step 

was to train the data. Training the data involved taking the dataset and randomly splitting 

the data, 80% for training and 20% for testing.   Curse words are often indicators of 

negative or angry sentiment while words like ‘great’ and ‘awesome’ have more positive 

connotations. A function was created to count the number of times a curse word appeared 

in the message. This function was used to populate a column of word counts for the 

following words {fuck, life, love, never, sucks, demons, damn, hell , kill, shit, great}. 

These words were selected because of their negative and positive connotations. 

 

Figure 8 Spread sheet containing text analysis data 

The goal was to use the training data to create a model which classified the 

messages by analyzing the sentiment column of 1’s and 0’s and their corresponding 
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selected word features. The graphlab logistic classifier, training data and my selected 

word features were used as parameters to build the sentiment model. It is part of veteran’s 

culture to use curse words. This cause the majority class case discussed in section 6.1.5.1. 

To combat this problem I added more features.     

6.2.6.3.1 All Caps and Punctuation 

Selecting features for text analysis should not only be based on a specific 

outcome, in this case Angry outburst, but they should also be selected based on the target 

user(veterans). This text analysis feature is to be implemented in a middleware that aims 

to detect angry outburst in veterans. Cursing is a common part of  veteran culture. Thus 

foul words may not always be indicative of anger or other emotions. Hence it is critical to 

add more features as a consideration to this point. Words that are in all caps often 

represent that a person is yelling or emphasizing a point. Words in all caps are frequently 

coupled with hostility or frustration. Punctuation is also very indicative of emotion. 

Multiple periods, exclamation and question marks can hint toward frustration or anger 

from the user. The number of words in all caps and punctuation count were also added as 

features to the text analysis model.  

6.2.6.4 Results 

In the first iteration of training the model the selected words feature, which 

contained words from the input data that had positive and negative connotations, was the 

only feature used. Using only the selected words as features yielded a result of 83% 

accuracy. This was not bad but given a larger data set this accuracy might not hold. After 
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adding new features such as number of punctuation and number of words with all capital 

letters the model yielded a result of 87% accuracy. The accuracy of the model increased 

by 4% . Using a priori modelling of how humans behave has created meaningful, 

incremental increases in the accuracy of this model.  

6.2.6.5 Calculating the Social Context Value 

Once the model has reached the goal accuracy it will be used in the middleware to 

assist with the calculation of the users overall social state. If the user's text data yields an 

output from our model between 0 and .50 then a value of 6 will be returned. If the model 

outputs a value between .50 and .80 a value of 3 will be returned. Lastly if the model 

outputs a predicted value over .83 a value of 0 will be returned. This value will be 

combined with the value from the physiological feature and GPS feature to arrive at a 

final social context value.  

6.3 Study – 3 Physiological Component 

This section discusses the development of the physiological component. The 

sensors used in the Empatica E4 are discussed in the beginning of this section.  The 

specific methods of collecting data, choosing a stimuli, choosing a classifier and 

developing a classier are then discussed toward the end of this section. Subsequently the 

results of the developed model and calculation of social context value for this component 

are presented.  

 



37 
 

6.3.1 Developing the Physiological Component  

This social context middleware uses the Empatica E4 [21]. The objective is to 

fuse the physiological sensor data from this device to find distinguishing output that 

allows us to determine the social state of the user.  When choosing physiological features 

it is best to extract features which have a strong correlation to the target outcome of the 

middleware.  The middleware functions to detect social-context as it relates to AOB. This 

section describes the physiological data that correlates to anger. The development of the 

physiological element of the middleware involved four steps - data collection, feature 

selection, and classification.  

6.3.1.1 Electrodermal Activity Sensor 

The physiological sensor data is extracted using the Empatica E4 wristband. This 

wrist band uses an Electrodermal Activity Sensor(EAS). This is used to measure the 

sympathetic nervous system arousal which extracts features related to stress, engagement, 

and excitement. Hypertension is heavily associated with the sympathetic activation in the 

human body [22]. Sympathetic activation increases when one experiences excitement or 

anticipation. It also increases as a result of physical, emotional or cognitive stress making 

the EAS a good source for estimating potential AOB from the user.  

Empatica uses the skin to measure sympathetic activation. Skin is the only organ 

that is completely innervated by the sympathetic nervous system (and not affected by 

parasympathetic activation).The sympathetic activation can be monitored by subtle 

electrical changes across the surface of the skin. Electrodermal activity(EDA) is typically 

measured in microSiemens.  The EDA is a combination of two components, the skin 
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conductance level (SCL) and the skin conductance response(SCR). The E4 records the 

SCL while keeping a sufficient sensitivity level to distinguish the SCR under any 

condition.  This high resolution data is used to measure the  sympathetic activation and 

autonomic stress of the user. The E4 device can measure conductance in the [0.01, 100] 

uS range . It has a default sampling rate of 4Hz and the digital resolution is 1 digit per 

900 Pico Siemens [23].  The high resolution data will provide us with three levels of 

zoom (5 hours, 30 minutes, 4 minutes) . The high dynamic range and sensitivity of the 

sensor are used in the analysis process to cardiovascular activity with AOB.  Real time 

user data from this sensor will be streamed from the Empatica to our middleware to be 

analyzed by our model.  

6.3.1.2 Photoplethysmography Sensor 

Heart Rate can also be an indicator of anger [24]. Light can be absorbed by 

different biological substances such as pigments in the skin, bone, and arterial and venous 

blood. Changes in blood flow occur mainly in the arteries and arterioles (but not in the 

veins). Arteries typically contain more blood volume during the systolic phase of the 

cardiac cycle where the ventricles contract and pump blood to the arteries than during the 

diastolic phase where the heart fills with blood.  PPG sensors optically detect changes in 

the blood flow volume by detecting the changes in the light intensity through the 

reflection from or transmission through the tissue [25]. 

The E4 wristband uses a PPG sensor to measure blood volume pulse (BVP). This 

gives critical information about the heart rate, heart rate variability (HRV), and other 

cardiovascular features. 
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6.3.1.3 Linking to Anger 

The EDA and PPG sensors are used to measure nervous system arousal associated 

with stress engagement, excitement and cardiac information. The goal is to fuse the data 

extracted from these features to discover a correlation with anger. A machine learning 

algorithm is implemented to train a classifier.  In order to classify data a subject used the 

E4 event marker feature. This provided us with a dataset that was useful in the data 

training process. This is discussed later on in the chapter.  

6.3.2 Empatica platform 

6.3.2.1 Bluetooth 

The Empatica E4 is able to collect real-time data using a Bluetooth 4.0 (Bluetooth 

Low Energy – BLE) interface and recording mode using its internal flash memory. This 

device allows for collection of quality continuous data representing the two main 

branches of the autonomic nervous system stress response outside of the lab which is 

ideal for research. The bluetooth connection is established using the function 

deviceManager.connectDevice(device). Once a connection is established the middleware 

collects data from the PPG and the EDA sensors. The data will be saved and stored as a 

csv file where it will be sent to a cloud server to be analyzed by a DATO support vector 

machine based model.  
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6.3.3  Methods 

Creating a machine learning based model requires collecting a set of data and 

splitting it up to train and test to improve its accuracy. Below describes the methods of 

collecting physiological data for sentiment analysis.  

6.3.3.1 Collecting data 

Mohammad Soleymani did a study on EEG-based emotion recognition.  Four 

minute movie clips were used as stimuli to arouse human emotion [23].In this experiment 

the primary focus was on positive and negative emotions. This is due to the fact that 

emotions are very complex. Often time’s people cannot accurately describe or distinguish 

their emotions [26]. For this reason each of the movie clips were classified into positive 

or negative sentiment.  

6.3.3.2 Choosing a clip  

Choosing a movie clip for data collection is critical. The videos must be chosen 

based on the desired output. The goal of the middleware in this project is to detect angry 

out bursts in veterans.  Experimental studies show that anger is associated to increased 

cardiovascular activities [27]. Fear and Anger evoke similar fight or flight physiological 

reactions. Thus fear evoking movie clips were selected as our stimuli. Comical clips were 

selected to evoke happy emotions in our subjects. 

The physiological feature in this project uses a support vector based model to 

determine whether a person is experiencing negative or positive emotions. During the 
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data collection process a subject was observed watching several scary and funny movie 

clips. The length of each clip ranged between 3-5 minutes. The subject wore the 

Empatica E4 device as they watched each clip. Once the physiological data was collected 

the data engineering process began. 

 

Figure 9 physiological data of subject  
 

6.3.3.3 Choosing a classifier 

Support Vector Machines (SVM) finds the optimal separating hyperplane which 

separates different label sets. In this case it is the goal to distinguish positive and negative 

sentiment. The physiological sensor data feature of the middleware implements SVM 

because it is a robust classifier. It can be used to classify large and small amounts of 

samples. This classifier can also be used for both simple and highly complex 

classification models. Lastly it can be used to implement sophisticated mathematical 

principles to avoid overfitting [28].    
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In our SVM model the data is represented as points in multidimensional space and 

mapped so that the data points from the two classes are divided by linear separator. 

Emotions are complex and not always easy to distinguish. Developing a physiological 

sentiment classifier requires a soft support vector machine algorithm because the data 

extracted from the sensors may not always be linearly separable.  This form of SVM 

implements a loss function. The loss function penalizes misclassification which means 

the margin between the positive and negative sentiments are smaller. This is not ideal. 

The SVM model used from Dato minimizes the loss function below:  

fi(θ)=max(1−θTx,0)fi(θ)=max(1−θTx,0) 

Figure 10. Loss Function 

The goal is to minimize the trade-off between maximum margin and classification 

error.  Delta is our penalty parameter which determines our tradeoff. An intercept term is 

added by appending a column of 1’s to the features. Regularization is necessary to 

prevent overfitting by penalizing models with extreme parameter values. The blended 

equation is shown below in figure 11.  

 

Figure 11. SVM Equation 
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6.3.3.4 Developing a classifier 

The Empatica E4 extracts physiological data from the subject which can be 

exported to individual csv files. Before training the data the csv files for Bvp, 

Temperature, Heart rate and  EDA  for both funny and scary observations were 

consolidated into one sheet. The sentiment column was populated with 1 or 0 indicating 

positive and negative respectively. These labels were placed by their corresponding data. 

6.3.3.5 Results 

Once the data was consolidated into one file the data was split into training data 

and test data. Out of 2499 samples 80% was designated to training data and 20% to test 

data. Dato’s support vector machine classifier was used to construct the physiological 

sentiment model. The model used temperature BVP, Heart rate and EDA as features. This 

model yielded 100% accuracy.  

Table 4 Evaluation of the model 

 



44 
 

6.3.3.6 Calculating Social Context Value 

This model will be used in the middleware to assist with the calculation of the 

final social state. If the user's physiological data yields an output from our model which 

represents negative sentiment a value of 6 will be returned. This value will be combined 

with the value from the text analysis and GPS feature to arrive at a final social context 

value.  

6.4 Using the trained Physiological and Text Models  

Models for the Text and Physiological elements of the middleware used the 

predictive services from DATO. Once the models have been developed in graphlab they 

must be deployed to the EC2 instances so that they can be used within the middleware. In 

order to deploy the model first an EC2 instance must be configured using the code below. 

import graphlab as gl 

 

# make sure to replace the following with your own information 

ps_state_path = 's3://<your-bucket-name>/predictive_service/ps' 

 

# Create an EC2 config 

# You can either specify your AWS credentials using environment variables, or 

# set them as arguments to this object's constructor 

ec2_config = gl.deploy.Ec2Config( 

   aws_access_key_id='<your access key>', 

   aws_secret_access_key='<your secret key>') 

Next the predictive service must be implemented. This process requires consideration of 

setting several optional parameters it is advised to have at least 3 nodes for cache utility 

and high availability. 
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# use the EC2 config to launch a new Predictive Service 

# num_hosts specifies how many hosts the Predictive Service cluster has. You can scale 

up and down later after initial creation. 

ps = gl.deploy.predictive_service.create( 

   name='sklearn-predictive-service', 

   ec2_config=ec2_config, 

   state_path=ps_state_path, 

   num_hosts=1) 

Once the Ec2 instance and predictive services have been configured the next step 

is to add the models to expose the trained text and physiological model as a REST 

endpoint in the newly configured predictive service.  This step requires wrapping the 

model in a python function then adding it to the predictive service code below. This will 

enable the middleware to use the model to produce an output reflective of the user’s 

social state.  

def classifyText(x): 

   prediction = textModel.predict(x) 

 

   # convert into a json serializable value 

   return list(prediction) 

 

# add your predictive function that wraps scikit-learn model 

ps.add('classify', classifyText) 

To use the model in the middleware a client config file must be created using the code 

below. Once the file is created the model can be queried by either using REST or a 

python client package. 

 ps.save_client_config(file_path='/tmp/ps_client.conf', predictive_service_cname = 

https://models.ubicomp.com). 

https://models.ubicomp.com/
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The models developed in this project will be accessed in the middleware to either attain 

an output which is reflective on the users’ social state as it relates to AOB or to update 

the model based on specific user data.  

6.5 Calculating Final Social Context Value 

The GPS component produces a social context value between 1 and 6. This value 

is based on the user's current location. Given the user is greater than 5 miles of a high risk 

area the component will return an output of 0.  If the user is between 1 and 3 miles of a 

high risk neighborhood, the component will return a social context value of 3. Whenever 

the user is within a mile of a high-risk neighborhood or near an area they have specified 

to be particularly stressful for them, the middleware will output a value of 6. This value 

indicates the user is at a higher risk of experiencing an angry outburst.  

Once the physiological data is extracted from the Empatica E4 device it is 

collected and analyzed using the machine learning model trained in study 3. A value of 0 

or 6 will be outputted from this component. If the model returns a value of 1, indicating 

the user is experiencing a positive sentiment, the social context value of 0 will be 

returned. This indicates that their physiological data is not reflective of someone who is 

at-risk of an angry outburst. If the model yields a value of 0, which indicates the user is 

experiencing a negative sentiment, then the component will out put a social context value 

of 6. This value indicates that the user is more likely to experience an angry outburst.  

The Text analysis component uses a machine learning model trained in study 2 to 

compute the output of a social context value between 1 and 6. Higher values produced 

from the model indicate that the user is more at risk of an angry outburst. Given the 
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model returns a value between .80 and 1 the text analysis component will return a value 

of 0. If the model returns a value between .50 and .80 the component will return a 3. 

Lastly if the model produces a value between 0 and .50 the text analysis component will 

return a value of 6. This indicates that the user is at a higher likely hood of experiencing 

an angry outburst.  

The values from the GPS, and text analysis and physiological components will be 

summed together. The sum is the final value used to indicate the current social state of 

the user.  This value is the output of the middleware. Applications will be able to use this 

middleware to determine the current social state of the user in order to detect or predict 

an emotion. 

 

Figure 12 Final Social Context Equation 
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CHAPTER 7: CONCLUSION & FUTURE WORK 

In this project I have defined several guidelines for developing a social context 

middleware. These guidelines involve methods of attaining requirements for a social 

context system, methods of developing a GPS proximity feature for high-risk location, 

and methods of distinguishing between positive and negative sentiment of a subject using 

physiological and text data. The process of developing machine learning models for the 

text and physiological features are explained in detail. The text analysis model yielded an 

accuracy of 87% and the physiological model was 100% accurate.   

Our social context middleware has a lot of potential. While the goal is to produce 

a value reflective of a veteran’s social state as it relates to AOB, future versions of the 

middleware can be applied to a broad range of users who are at-risk of various crisis 

events. 

Currently the middleware is designed to only take in physiological data from the 

Empatica E4. In the future the goal is to further develop the middleware to handle data 

from wearable devices that are widely available to the public. Other goals for the future 

are to improve the overall accuracy of the models by minimizing the false positive/false 

negative within the middleware models. Currently this project faces the ‘cold start’ 

problem which means we are unable to draw any inferences for a specific user because 

we have not gathered enough information.  This can prevent us from reaching a high 

level of accuracy for a specific user. We can achieve better accuracy by using DATO’s 

update functions which allows us to use data gathered from the user and update the model 

to be user specific. This is necessary in order to effectively assists AOB/ other crisis 

event detection systems.  Incorporating this middleware into applications will allow for 
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an in depth observations of social context as it relates to anger. In the future there will be 

enough data gathered to inform psychological science, providing a deeper understanding 

of the specific behaviors associated with this AOB. 
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