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ABSTRACT 

COMPUTATIONAL PAIN QUANTIFICATION AND THE EFFECTS OF AGE, 

GENDER, CULTURE AND CAUSE 

 

Colin R. Ostberg, B.S. 

Marquette University, 2014 

Chronic pain affects more than 100 million Americans and more than 1.5 billion 

people worldwide. Pain is a multidimensional construct, expressed through a variety of 

means. Facial expressions are one such type of pain expression. Automatic facial 

expression recognition, and in particular pain expression recognition, are fields that have 

been studied extensively. However, nothing has explored the possibility of an automatic 

pain quantification algorithm, able to output pain levels based upon a facial image. 

Developed for a remote monitoring context, a computational pain quantification 

algorithm has been developed and validated by two distinct sets of data. The second set 

of data also included associated data for the fields of age, gender, culture and cause of 

pain. These four fields were investigated for their effect on automatic pain quantification, 

determining that age and gender have a definite impact and should be involved in the 

algorithm, while culture and cause require further investigation. 
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CHAPTER 1 INTRODUCTION  

Pain is a commonly experienced unpleasant sensation that can be caused by both 

physical and emotional stimuli. It can be something as minor as an inconvenience or 

irritant, or in severe cases as the Handbook of Pain Assessment says “a serious threat to 

one’s freedom, to the significance of one’s life, and ultimately to one’s self-esteem.” [1]. 

The American Academy of Pain Medicine (AAPM) gives a variety of statistics related to 

pain and pain management, including that chronic pain affects more 1.5 billion people 

worldwide, and at least 100 million Americans [2]. The American statistics indicate that 

roughly four times as many people suffer from chronic pain than do either diabetes or 

heart disease, and ten times as many when compared to cancer. However, before looking 

further at how pain affects people, it is important to define what pain is and how it is 

typically assessed as well as to define a variety of terms associated with pain. 

The Handbook of Pain Assessment defines pain as a multidimensional construct 

[1] and gives a breakdown of those dimensions and their typical means of assessment. 

The typical and most comprehensive pain assessment is the McGill Pain Questionnaire 

(MPQ), which takes means of assessment from each of the four dimensions to give 

medical personnel a complete picture of the pain the patient is experiencing. The four 

dimensions are intensity, location, quality and affect. Intensity and location are perhaps 

the easiest dimensions to define; they express how much pain an individual is in and 

where the pain is on their body. Three common methods exist to assess pain intensity; the 

Verbal Rating Scale (VRS), the Visual Analogue Scale (VAS), and the Numerical Rating 
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Scale (NRS). All three of these methods ask the patient to report their own pain ranging 

on a scale from no pain to the worst pain imaginable. VRSs are given verbally and 

present the patient with a list of adjectives which increase in perceived pain intensity. 

NRSs are mostly interchangeable with VRSs, as they simply ask a patient to supply a 

number on the same relative scale. VASs present a patient with a series of images 

corresponding to more and more pain, and ask them to select the image that corresponds 

to their pain appropriately. Again, this method can be mapped to an NRS with the same 

scale. A sample VAS is provided in Figure 1.1. 

 

Figure 1.1: A Sample VAS [1] 

Pain location can be assessed via two methods, a simple verbal question can be 

presented to the patient, asking where the pain is located. Otherwise, a pain drawing can 

be given to the patient, who is then asked to give the location(s) of the pain based on the 

drawing. A sample pain drawing is provided in Figure 1.2. 
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Figure 1.2: A Sample Pain Drawing [1] 

 The remaining two dimensions of pain can be more difficult to define. Pain 

quality refers to how the pain feels, independently of how much it hurts. These can also 

be called sensory qualities, and are assessed with several descriptors, such as sharp, hot, 

dull, cold, sensitive, itchy, deep and surface. It is not unknown to assign an NRS to each 

of these descriptors, having patients rate each descriptor on a numeric scale, but this is 

not a common practice. The final dimension, pain affect, is the most intangible dimension 

but also the most impactful. Pain affect measures how the pain someone is experiencing 

affects them on an emotional level. It is important that distinguish that this is not 

emotional pain, but rather how the patient is coping with the pain, how disruptive the 

pain is to their everyday life, how bearable the pain is and how the pain is affecting their 

emotional wellbeing. Pain affect is correlated with pain intensity, although different 

people are able to deal with it differently. For example, someone dealing with consistent, 

high levels of pain will be more likely to be affected more than someone with low, 

intermittent levels of pain, but this is not necessarily the case. Pain affect is typically 
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assessed via a VRS, although VASs also exist for assessment. A sample 15-point VRS 

presents the following descriptors to the patient: bearable, distracting, unpleasant, 

uncomfortable, distressing, oppressive, miserable, awful, frightful, dreadful, horrible, 

agonizing, unbearable, intolerable, and excruciating. 

 Two more important definitions associated with pain are acute pain and chronic 

pain [2]. Acute pain is the typical pain people feel when injured, it is relatively brief and 

typically milder, although it can reach the heights of pain intensity scales. Chronic pain, 

however, is pain that lasts for weeks, months or years. The causes of chronic pain are 

incredibly varied, everything from a sprained back to cancer. This work will focus 

predominantly on chronic pain. It is also important to note the subjective nature of pain 

[1], each individual’s pain intensity and pain affect can differ dramatically, regardless of 

the similarities of the causes. 

 While individuals experience pain individually, it is still something that affects a 

significant portion of the population, is unpleasant, and costs society as a whole. As 

mentioned previously, roughly 100 million Americans suffer from chronic pain [2], 

meaning that a third of Americans experience joint pain, swelling or a limitation of 

movement at any given time [3]. Pain also puts a substantial burden on our society due to 

the inability to perform daily activities, loss of work productivity [4] and increased 

healthcare costs [5]. The AAPM gives these costs as $297-$336 billion per year and 

$261-$300 billion per year respectively, giving total societal costs of pain as $560-$635 

billion per year in 2010 dollars [2]. In order to combat this, various health agencies and 

regulatory bodies have mandated that pain be assessed upon contact with a healthcare 

provider [6, 7, 8, 9]. In regards to quality of life, 51% of patients reported that they have 
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little to no control over their pain, and 59% reported an impact on their quality of life [2]. 

Based on the numbers provided by the AAPM, that would indicate that between 50 and 

60 million Americans have their quality of life affected by chronic pain, and between 750 

million and 900 million are affected worldwide. That said, continuous monitoring of pain 

intensity in intensive care units improves patient outcomes and quality of life 

tremendously [10]. This point and the following quote are what this work strives to do: 

“Pain is a dynamic, developmental process, not a single 

event or simple quantifiable product…Thus, when we and 

others talk of ‘objective’ measures or ‘quantifiable’ indices, 

the reader should understand that we do not intend to depict 

pain as a static, all-or-none, uni-dimensional, body-

centered occurrence that exists somehow independently of 

time, place, the patient’s states of consciousness, or the 

observer’s presuppositions. We have elsewhere noted: ‘As 

pain assessors, we are coparticipants, not merely observers 

and, therefore, although there is no single best way to 

interpret pain, we can probably serve our patients better if 

we acknowledge that we are jointly engaged in creating the 

pain dimensions we seek to measure.’” [1]  

 The purpose of this work is the development of a computational pain intensity 

algorithm based on facial images. It focuses primarily on chronic pain, and strives to 

provide additional, easy to obtain information on pain to medical personnel, allowing 

them to provide better care, pain management, and hopefully improve the patient’s 

quality of life. This algorithm is able to take only a facial pain image as input and 

determine the pain level of a patient accordingly. Furthermore, this work will investigate 

whether the age, gender, pain location or culture of a patient has an effect on 

computational pain quantification. 

 The majority of this work has been done in a Mobile Health, or mHealth, context 

for several reasons. First of all, the mHealth field is growing at a tremendous rate, and it 
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is projected that mHealth monitoring could save nearly $200 billion in the next 25 years 

[11]. Secondly, while this computational approach may not be immediately applicable 

within a medical facility, it would be in a remote monitoring scenario. Patients dealing 

with chronic pain who are not hospitalized could communicate easily with their health 

care providers and provide them with daily or even more frequent data points. While pain 

management is important for all chronic pain patients, some ailments place particular 

stress on pain management in standard treatment plans, such as sickle cell disease [12]. In 

these scenarios, providing medical personnel with daily updates on pain levels has the 

potential to increase the patient’s quality of life, and possibly help with treatment while 

maintaining a patient’s independence. All of that said, it is this author’s dream that health 

care facilities may someday employ a pain monitoring system evocative of modern day 

vital sign monitors as standard equipment in patient rooms. 

 The nature of this work naturally gives rise to several criticisms that demand 

answers. First is the fear that this work aims to replace medical personnel in the pain 

management process. Medical personnel are instrumental in pain management. As quoted 

above, “As pain assessors, we are coparticipants, not merely observers and, therefore, 

although there is no single best way to interpret pain, we can probably serve our patients 

better if we acknowledge that we are jointly engaged in creating the pain dimensions we 

seek to measure.” [1]. This work does not in any way mean to replace or remove medical 

personnel from pain management. Instead, the goal is to provide medical personnel with 

additional information to allow them to make more informed decisions. In remote 

monitoring contexts, providing daily information to medical personnel gives them more 

information than they would typically receive at a scheduled appointment with a patient, 
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so that in those scheduled appointments medical personnel can make better decisions 

with more information. Furthermore, it has been shown that in Bangladesh, a developing 

country where healthcare is not as readily available to the general populace, breast cancer 

patients tended to overstate their pain intensity levels, universally reporting a pain level 

of 10 on a 10 point scale, but when given a mobile device and told to submit pain values 

daily, their pain levels evened out to more truthful levels [13]. It was believe this was 

because in part the patients wanted to ensure they got appropriate medical attention from 

their doctors, but when they knew they were receiving medical attention on a daily basis 

this worry decreased, allowing them to give more accurate data to doctors, which in turn 

allowed them to make more informed decisions. This can be generalized to other 

developing countries, particularly as according to a recent UN study, 6 billion out of the 

world’s 7 billion people have access to a cellphone [14], and even further to any remote 

monitoring patients. Knowing that the medical personnel in charge of your treatment is 

getting data from you on a daily basis, while still allowing you to live your life as 

independently as possible, should help to assuage fears about proper treatment and in 

doing so, help ensure that data is accurate. This however, does bring up a second major 

criticism; the question of why facial images are necessary. The study conducted in 

Bangladesh mentioned above assessed pain via a smartphone application that recorded 

pain as a digital NRS. The question that needs to be answered is what can a facial pain 

image accomplish or accomplish better that an NRS does not? Both accomplish the same 

goal of providing more pain information to doctors. The difference is in how that goal is 

accomplished. One goal of paramount importance to this work is the improvement of 

patient quality of life, which means improving the amount and quality of data available to 
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doctors at minimum effort to the patients. The study in Bangladesh found two key points 

in this regard. First, most participants did not fill out the NRS themselves, instead they 

had family members or friends do it for them while they relayed the answers verbally. As 

this work requires only an image taken, this in essence removes that step, as only a daily 

picture has to be taken. Secondly, when patients did fill out of the NRS themselves, many 

of them encountered difficulties in inputting proper data due to tremors, caused either by 

age or pain. When patients submitted information themselves, it was found that they did 

so with an average error of greater than 1. 

1.1 Contributions of Thesis 

 The contributions of this thesis are threefold. First and foremost, this thesis will 

provide a novel approach to computational pain quantification. Secondly, this thesis will 

investigate the effects of age, gender, culture and pain location on this computational pain 

quantification method. Finally, this thesis will provide two distinct datasets of facial pain 

images with correlated pain intensity values, both of approximately 400 images, 

databases that do not exist elsewhere. 

1.2 Organization of Thesis 

 The rest of this thesis will be organized as follows: Chapter two will investigate 

existing work in the fields of computational facial, emotion and pain recognition. Chapter 

three will provide an in depth look at how the computational pain quantification model 

was developed. Chapter four will investigation the additional fields of age, gender, 

culture and pain location and their effects on pain intensity detection. Chapter 5 will 

conclude this thesis. 
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CHAPTER 2 RELATED WORKS 

Before delving into computational methods, the choice of using purely facial 

images for the work of this thesis, as well as why it was selected for existing 

computational emotional and pain detection methods, must be investigated. From a 

medical context, the face is recognized as a subjective conveyor of emotion and is a tool 

that can be used to gauge the intensity of a subjective experience [15]. It has been stated 

that only 7% of a face-to-face message is conveyed with linguistic language, while 38% 

is due to paralanguage and 55% of message is conveyed via facial expressions [16]. The 

Handbook of Pain Assessment extends this to pain specifically, indicating that the face is 

an ideal conveyor of not only emotion, but pain as well [17]. In fact, the three 

psychologists who authored that section of the Handbook of Pain Assessment, Dr.’s 

Craig, Prkachin and Grunau, will be cited several more times throughout this chapter 

from references dealing with computational emotion and pain recognition, indicating 

their support and collaboration in the development of such methods. 

 2.1 Existing Facial Detection, Facial Recognition and Emotional Recognition 

Methods 
 

A significant amount of research has been done in the fields of computational 

facial detection, facial recognition and emotional recognition methods. In this context, 

computational facial detection refers to any method or algorithm performed on a 

computer that is able to identify a face using an image as input.  This is also commonly 

referred to as face segmentation. Computational facial recognition builds upon facial 

detection, typically utilizing facial detection methods as a preprocessing step to the 
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image. As such, most facial recognition algorithms make the assumption that the image 

to be analyzed includes a face of some sort. Another typical assumption is that the face to 

be analyzed is unobstructed and forward facing. While work has been done on facial 

images where the face is in profile or at other angles has been done, this is not the focus 

of this thesis and is not a necessary precedent set in the field. These facial recognition 

algorithms are designed to recognize an individual based on the input facial images and 

typically involve a comparison between the input image and other images that the 

software has access to. Finally, computational emotion recognition developed 

tangentially to facial recognition and utilizes some similar techniques, and also has the 

tendency to make similar assumptions about the input facial images. Emotion recognition 

is also commonly called emotion detection or expression recognition and expression 

detection. Emotion recognition is able to use the input facial image and identify an 

emotion. There are two general methods of doing so. The first method selects an emotion 

from a list of available emotions. They second method focuses only on one emotion and 

detects the presence or absence of said emotion. The second method is commonly 

referred to by whatever emotion is being detected, i.e. a method that detects the presence 

or absence of pain would be called a pain recognition method. This section will 

investigate facial detection, facial recognition and emotion detection methods with the 

exclusion of pain recognition methods, those methods will be investigated in depth in 

another section. 

 2.1.1 Skin Color Facial Detection Method 

The skin color method is a commonly used and widely accepted facial detection 

method. Traditionally this method uses three different color spaces, Red Green Blue 
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(RGB), Hue Saturation Value (HSV), and Luminance Color Difference Signals (YCrCb) 

[18]. The Red Green Blue color space is the typical color space associated with coloring 

and pixels, each pixel has three values associated with it which correspond to the amount 

of the colors red, green and blue present in the pixel. It is believed in the field that the 

RGB color space is unsuitable for use in the skin color method due to the fact that human 

skin has a wide range of colors, it is unreliable in different lighting conditions [19], and it 

is a difficult color space to execute some image processing algorithms in [20]. HSV 

places less emphasis on the actual color, corresponding to two components, hue and 

saturation. Hue is the pure color, while saturation is the purity of that color present, or the 

amount of white light mixed with the hue. Value is indicative of brightness. This color 

space is used commonly for image analysis [18]. YCrCb is similar to HSV, as it too has a 

luminance or brightness component, Y, but it handles colors differently. Cr and Cb are 

the color difference signals, which are derived from the RGB values. This color space is 

used extensively in digital video [20].  

Both HSV and YCrCb have been shown to be reliable in terms of the skin color 

method, so the first step to this method will be to convert traditional RGB colors to one of 

these two color spaces, or a combination thereof. Once in these color spaces, identifying 

skin is relatively easy, as human skin, regardless of ethnicity, occupies a relatively unique 

range of values within each of these color spaces [20]. Once skin pixels have been 

identified, it is simply a matter of segmenting the region containing skin off from the rest 

of the picture. As one could reason out, this does mean that this method makes the 

assumption that a face is the only area of skin within a picture, so it has its limitations. 
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However, due to the typical assumptions that a facial image will include a forward facing 

face and includes one face, this method is widely accepted as useable in such a context. 

2.1.2  Eigenface Facial Recognition Method 

The Eigenface Method is by far the most widely used method for facial 

recognition. Its influence in the field does not stop with facial recognition either, but 

spreads to emotion and pain detection. While several additions and modifications exist 

to the method, they all revolve around Principal Component Analysis (PCA). PCA is a 

generic algorithm that does not necessarily need to apply to faces or any sort of facial 

recognition, it is a statistical and data compression technique with applications in image 

compression, as well as face and emotion recognition [21].  

The technique consists of six steps. The first step is data collection, some data 

must be present to perform PCA on. Once data has been collected, the last part of this 

step is to calculate the dimensional means, meaning that for every dimension that the 

data has, a mean must be calculated for that dimension. The next step is to subtract the 

dimensional means from each dimension at each data point. This yields what is called 

the data adjust. Step three calculates the covariance matrix of the data adjust. The 

covariance matrix is simply a matrix made up of every combination of covariance’s, or 

variances between two dimensions, for the entire dataset. So if one has n dimensions, 

the covariance matrix will be of size nxn, representing every possible pair of 

dimensions. Step four calculates the eigenvectors and eigenvalues of the covariance 

matrix. These are principal components of the data, meaning that the strongest patterns 

and relationships between the data are represented by the eigenvectors. In fact, the most 
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important and strongest component is the eigenvector with the largest eigenvalue. 

Similarly, the second largest eigenvalue’s corresponding eigenvector is the second most 

important component, and so forth. The next step then, involves selecting which 

components to use. All of the components can be used, but the lower components can 

be eliminated with little loss of data, as they are the least important components. 

Whichever eigenvectors are selected, whether it be all or a subset, are referred to as a 

feature vector. With this feature vector, the new data set can be derived in the sixth and 

final step. The new data is equal to the transpose of the feature vector multiplied by the 

data adjust. This puts the data in terms of the principal components, allowing for easier 

analysis [21]. 

When applied to facial recognition, however, PCA becomes a machine learning 

tool rather than an analysis tool. It is used in the 5 step eigenface algorithm to train the 

machine. The eigenface method was originally proposed by Turk and Pentland in 1991 

[22] .The first step is to create what is known as the facespace, this is done simply by 

performing PCA on a set of images denoted as the training set. The resulting 

eigenvectors, called by the titular name of eigenfaces, make up this facespace. Sample 

eigenfaces, created with real data from the Longitudinal Study, which will be detailed 

in chapter 3, are given in Figure 2.1.It is generally assumed that the training images are 

all of isolated faces. These training images are then projected onto the facespace. The 

second and third steps are to prepare new images for comparison with these projected 

images. Step two subtracts the mean image, calculated during PCA, from the new input 

image, while step three projects that difference onto the facespace. Step four compares 

the distances between the training projections and the new projection, and step five 
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finds the minimum distance. It is then assumed that the new image is most closely 

associated with the image that it is closest to, so from the machine’s perspective it takes 

on the characteristics of whatever training image the new image is closest to. Thus, for 

facial recognition, the new image is recognized as belonging to the individual who is 

represented on the training image closest to the new image [23].  

 

Figure 2.1: 6 Eigenfaces 

The eigenface method is used widely in the facial recognition literature with 

marked success for several reasons. For one, it is incredibly accurate, the first iteration 

of the eigenface method reported a 96% success rate [22]. Additionally it is incredibly 

modular, and can be used in conjunction with several other methods for increased 

accuracy, such as neural networks [24, 25, 26] and eigenfeatures, which perform the 

same eigenface algorithm on smaller features of the face such as on the nose or mouth 
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[27]  in the case of facial recognition. Research to further increase the accuracy of the 

basic eigenface method has also been conducted, resulting in a number of preprocessing 

techniques, such as using only greyscale images [28], to further increase accuracy. 

Furthermore, the eigenface method can be used in near real-time, seeing as the 

computationally expensive part, PCA, can be performed while the system has no other 

demands placed on it [22].  

 2.1.3 Evolutionary Pursuit Facial Recognition Method 

While technically a different method for facial recognition, evolutionary pursuit is 

built heavily on the principles that the eigenface method is built on, namely PCA and 

several steps of the eigenface method. Where it differs is that it applies two additional 

transformations, the whitening transformation and rotation transformations, to the 

facespace, and then applies genetic algorithms to search for solutions. The whitening 

transform reduces the dimension of the facespace, while the rotation transformations set 

up a basis, which in turn allow the genetic algorithms to search. This method reported as 

high as a 92% success rate. There is also no indication given as to if evolutionary pursuit 

can be done in near real-time, as the eigenface method can [29]. 

 2.1.4 Facial Action Coding System Emotion Recognition Method 

Facial Action Coding Systems (FACS) was one of the first methods used to look 

at emotion recognition. It has been researched rather extensively [30, 31, 32, 33, 34, 35] 

both as a standalone system and in regards to emotion recognition. It was first published 

by Ekman in 1978, where instead of being used for computerized, automatic emotion 

recognition, it was designed for readers to teach themselves emotion recognition. It 
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consists of identifying facial Action Units (AUs), combinations of which make up every 

facial expression possible. Ekman has identified over 500 AUs. Figure 2.2 shows a 

sample face of fear with detail action units. 

 

Figure 2.2: Sample Fear Face with Action Units [36] 

When identifying small amounts of AUs, or a single expression, automatic FACS 

performs very well, able to operate in real time [32] and with high accuracy, usually 97% 

to 98% [34]. FACS does tend to run into trouble, however, when combinations of 

expressions are presented on the same face [34]. FACS locates the features that it needs, 

known as feature extraction, and then locally determines the appropriate AUs. The active 

contour method is one commonly used method to accomplish this. An active contour, 

sometimes referred to as a snake, is a curve with a set of control points, and is used to 

find lines, edges or contours. These snakes can isolate local regions, which can then be 

analyzed. A common method of analysis is via Hidden Markov Models (HMMs), 

although other classifiers can be used [37], such as Markov-chain Monte-Carlo methods 
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[32], Support Vector Machines (SVM) [33, 38], AdaBoost [33] Neural Networks [34], 

and multi-layer perceptrons [39]. 

FACS does have several limitations, namely that faces and the underlying 

musculature are all different, and therefore the AUs are necessarily slightly different, and 

due to these different facial geometries, skin colors or brightness, and illumination 

conditions, in a real world setting much of the feature recognition has to be done 

manually [40]. 

 2.1.5 Eigenface Emotion Recognition Method 

The eigenface method when applied to emotion recognition is very similar in 

approach to the eigenface method for facial recognition. It uses the same algorithm, but 

instead of assigning an identity to each image, i.e. a person to identify, an emotion is 

assigned to each image. When presented a list of 6 emotions to identify, the eigenface 

method had a success rate between 70 and 80% [41].  

Previously, one of the strengths of the eigenface method was its modularity and 

ability to be readily combined with additional methods to improve accuracy. This is still 

the case in regards to emotion recognition. Recognition rates of 94-97% were reported 

with use of Local Gabor Filter Banks and Linear Discriminant Analysis [42], 94% for the 

Automated Pixel Selection method, which improved by an additional 2% with the use of 

the facial masks method [43]. This 2% increase with the use of facial masks was 

confirmed by the same authors but this time using only the basic eigenface method [44]. 

A generalized eigenspace method based on class features reported anywhere from 45%-

100% recognition [45], and a study also using class features, but applying kernels 
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reported similar recognition rates [46]. Finally, a method using hierarchical radial basis 

function networks reported rates between 66 and 75% for lips and 70-100% for eyes, that 

is, images of only lips and eyes [47]. 

While not directly applicable, it is worth noting that based on the success of the 

eigenface method, a performance animation method was developed based on facial 

expression recognition using eigenfaces [48]. 

 2.2 Existing Pain Detection Methods 

Pain detection methods, both automatic and manual, have undergone extensive 

research amongst a variety of age groups, from neonatal to adult, and also look at patients 

with cognitive impairments that can not communicate their pain in a traditional manner 

[49, 50, 51, 52, 53, 54, 55]. The focus of these methods is to identify the presence or 

absence of pain in the subject, and they do nothing dealing with pain intensity. 

 2.2.1 Facial Action Coding Systems Pain Detection Method 

The FACS methods for pain detection are similar to the generalized FACS 

emotion recognition. Several AUs have been identified by several sources to be 

indicative of pain, namely brow lowering, orbit tightening, levator contraction and eye 

closing [56, 57, 58, 36]. The sources cited give varying success rates, from 88% [58] 

down to 46% [57]. 

 2.2.2 Eigenface Pain Detection Method 

The eigenface pain detection method is similar to both the facial recognition and 

emotion recognition methods, but instead placing the presence or absence of pain as the 
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classifiers to be identified with. The eigenface method also retains its modularity when it 

comes to pain detection, allowing researches to couple it with other methods. Monwar 

was instrumental in using eigenfaces for pain detection, and most of the cited sources in 

this section were authored by him and his colleagues. Use of neural networks with the 

eigenface method gave 86-93% accuracy [59, 60], and use of a face mask gave 91% 

accuracy [60]. The use of eigeneyes and eigenlips was also investigated by Monwar, 

where the same approach to eigenfaces was used on eyes and lips. In this case, the 

eigenfaces alone gave 89% accuracy, eigeneyes gave 82%, eigenlips gave 84%, and a 

combination of all three gave 92% accuracy [61]. Monwar also extended his work to 

video based pain recognition [62]. While he did not give an accuracy percentage in this 

work, seeing as he extracted frames of the video and used those as pictures, it can 

reasonably be assumed that the accuracy was in line with the rest of his work. 

 2.2.3 Support Vector Machine Pain Detection Method 

In a generalized sense, SVM uses a similar approach to the eigenface method. It 

takes extracted feature vectors and maps them to hyperplanes, or high dimensional 

spaces, via a kernel function. The distance between these hyperplanes is then calculated. 

This is done to train SVM, much like the eigenface method does. When a new image is 

input, SVM finds the optimal hyperplane, giving the result in a somewhat similar fashion 

to the eigenface method [63] in that it compares the training hyperplanes to the new 

hyperplane to get the result. SVM alone gave a 96% accuracy [63], but like the eigenface 

method, SVM is typically paired with other methods such as Adaboost, Gabor Filters and 

Hidden Markov Models [58, 36]. Relevance Vector Machine, a Bayesian extension of 
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SVM, was used to increase classification accuracy over SVM [64]. Relevance Vector 

Machine achieved an accuracy rating of 91%. 
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CHAPTER 3 DEVELOPMENT OF COMPUTATIONAL PAIN 

QUANTIFICATION METHOD 
 

Of the criteria laid out for the computational pain quantification method first and 

foremost is that it must be an entirely automatic method capable of taking facial images 

as input and outputting pain intensity values. Both keeping it automatic and limiting it to 

purely facial images is for the express purpose of providing as much data to medical 

personnel as possible while at the same time minimizing the amount of time and effort 

required on both the patients and medical personnel’s parts. It must be reasonably 

accurate for a remote monitoring context. In initial talks with doctors, it was decided that 

an absolute error of approximately one would be appropriate for this context. Because 

this is designed to be in a remote monitoring context, runtime is not a necessary attribute, 

but reduced runtime is still an influential criterion particularly if future work is to develop 

this in or into different contexts. Finally, the method must be robust and able to handle 

varying image conditions, such as lighting, image quality and differences in the 

appearance of patients. It was also decided at this stage that self-reported pain intensity 

values would be taken as accurate, primarily due to the subjective nature of pain. Each 

patient will react to different stimulus differently, so the pain intensity values that the 

patients reported, whatever they were, were to be taken as absolutely accurate.  

3.1 Selection of Existing Methods 

The selection of methods to build off of was important. While no computational 

pain quantification method has been developed, basing the method off of existing, proven 

methods was a logical first step. The eigenface method was selected as this basis for 
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several reasons. First was for its pervasive success throughout the field. The method has 

worked reliably and accurately in all areas of facial detection, facial recognition, emotion 

recognition and pain recognition. Furthermore, the method has proven to be incredibly 

modular, able to be paired with several other methods for increased accuracy. It was 

believed that this could possibly be extended to not only increased accuracy, but also to 

determine pain levels in additional to identifying pain. This was believed due to the fact 

that images can be paired with classifiers, as in the case with emotion detection, several 

different emotions could be detected. The natural extension was to apply it to pain levels. 

Furthermore, this method is fully automatic, has proven capable of processing images and 

is able to do so at high speeds. Again, while runtime is not a necessary criterion for 

remote monitoring, it is still beneficial and worthwhile to investigate for possible future 

applications.  Finally, the method has also shown to be able to handle varying image 

conditions, particularly in differences in the appearance of patients. 

 3.2 Longitudinal Study Data and Evolution of Basic Method 

With a framework for a model selected, the next step was to develop the 

algorithm. In order to do so, data was required. Fortunately all of the data from the 

Longitudinal Study was at hand for use in testing and development. With support from 

the International Breast Cancer Research Foundation (IBCRF) and approval from 

Marquette University’s Institutional Review Board (IRB) as well as Bangladesh’s health 

department, the Longitudinal Study collected data from rural breast cancer patients in 

Bangladesh [13]. For this study, fourteen terminally ill breast cancer patients were given 

smartphones equipped with a data collection application. This application collected, 

amongst other fields, daily pain intensity values and associated facial images. 
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Unfortunately, due several reasons including patient deaths, only six patients submitted 

usable data. From those six patients, 444 facial pain images were collected. Not all 

patients submitted the same amount of data, either, some submitted only a handful while 

others gave a large amount. Table 3.1 breaks down the distribution of images by patient 

and Figure 3.1 details the distribution of pain intensity levels per patient. 

Subject Age Images 

Subject 1 45 14 

Subject 2 50 116 

Subject 3 42 158 

Subject 4 44 12 

Subject 5 51 114 

Subject 6 38 38 

Table 3.1: Distribution of Subject Image Numbers and Ages 
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Figure 3.1:Pain Intensity Distributions by Subject 

 This data would be used to develop and test the computational pain quantification 

method.  Initially, the data was divided into two sets, testing and training. 36 images were 

randomly selected from all patients and pain levels to form the training set, although it 

was ensured that all pain levels (1-10) were represented, while the remaining 408 images 

were used as the test set. The initial computational pain quantification method at this 

stage was very much akin to the standard eigenface method. It relied on PCA to train the 

method and Euclidean distance was used to determine the distances between training 

projections and the new input projections. The pain intensity value of the closest image 

was then selected as the pain intensity value of the input image. This initial method gave 

a resulting mean absolute error of 2.267, computed from all 408 test images. It is worth 
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noting that at this stage, a dataset of acted pain images was also tested. This dataset had 

36 images in it, and produced a mean absolute error of 2.5. While this dataset was 

discarded at this phase, it is worth noting that simulated pain was looked into and 

ultimately rejected. 

 The next stage of development looked at personalizing the method in an effort to 

reduce error. The President’s Council on Advisors on Science and Technology defines 

personalized medicine as “Personalized Medicine refers to the tailoring of medical 

treatment to the individual characteristics of each patient…to classify individuals into 

subpopulations that differ in their susceptibility to a particular disease or their response to 

a specific treatment.” [65]. Due to the subjectivity of pain previously discussed, it was 

decided to attempt a personalized approach. Furthermore, the nature of the eigenface 

method suits it perfectly to personalized medicine, as using training databases comprised 

only of a single individual reduces noise that would typically be found in training 

databases comprised of several individuals. While no direct source has made this claim, it 

can be inferred from statements such as “On the other hand, two images of different 

subjects should project to points that are as widely separated as possible.” [66] among 

others and the fact that the eigenface method was utilized to differentiate between 

individual people. As such, with using this method as a basis, it was decided to look into 

personalized databases. To do this, the Longitudinal Study dataset was divided based on 

patient, and then further divided into test and training datasets using the same criteria as 

for the initial tests. Figure 3.2 shows the breakdown of test and training datasets. 
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Figure 3.2: Breakdown of Individual Training and Test datasets 

 The patients with smaller datasets obviously had to have smaller training and 

testing datasets. The results of using individualized datasets gave an average mean 

absolute error across all six patients of 1.2458, significantly closer to the goal of 1. This 

was also a marked difference between this method and previous eigenface methods, as 

previous methods had made no distinction between individualized and group datasets. 

 The next step was to look at distance measurements. Up until this point, standard 

Euclidean distance had been used to determine distances between training projections and 

input projections. Upon looking at several different distance measurements, Angular 

distance, also known as Cosine distance, was chosen due to its success in high 
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dimensional spaces [23]. Seeing as every image within the training dataset adds an 

additional dimension to the data, due to the fact that there is an eigenface for every 

training image, although the two are not related, and each eigenface is perpendicular to 

every other eigenface, and each eigenface is itself multidimensional, a significant amount 

of dimensions are at play in this method. Angular distance is calculated by        

   

| || |
. In practice for images, this is computed by determining the frequency in which 

particular pixel values appear in an image and comparing those frequencies based on the 

presented formula. So d(A,B) becomes the frequency of the pixels that A and B share 

divided by the square root of the product of the individual frequencies of the pixels of A 

and B. Unlike Euclidean distance however, the shortest distance between two projections 

is the maximum cosine distance. That is, the more similar the frequencies are, the more 

similar the projections and therefore images are. As such, instead of Euclidean distance 

Angular distance was implemented, giving an average mean absolute error of 1.29, 

slightly higher than without Angular distance. The results of the Angular distance 

measurement, side by side with Euclidean distance, both acted images and real images, 

are shown in Figure 3.3. 



28 
 

 

Figure 3.3: Acted and Personalized with Euclidean Distance and Personalized with 

Angular Distance 

 

 Figure 3.3, in combination with Figure 3.2, are very influential visually, as they 

heavily influenced the decision to keep Angular distance, despite its overall slightly 

higher average mean absolute error. Figure 3.2 shows the training dataset sizes. Subjects 

1, 4 and 6 all had databases of 6 images, while subjects 2, 3 and 5 had training databases 

of 36. This was due to the variance in images available for each patient. However, it has 

been well documented that when using PCA on images, the amount of eigenvectors, that 

is eigenfaces, and therefore the amount of training images used has a huge effect on 

accuracy [23]. Figure 3.4 shows the disparity in accuracy between 6 eigenvectors and 36 

eigenvectors, determined using the Face Recognition Technology (FERET) database. 



29 
 

 

Figure 3.4: Accuracy of Identification Based on Eigenvectors [23] 

 As can be readily seen, the difference between 6 and 36 eigenvectors, using 5 and 

35 for reference, is huge. A roughly 35% proper identification disparity exists between 

the two. So because this is a huge factor in proper identification, the decision to keep 

Angular distance as the distance measurement was based off of the results of subjects 2, 3 

and 5. It is worth noting that this disparity wasn’t a factor in determining whether or not 

personalized databases were effective or not, due to the fact that the increase in accuracy 

when using personalized databases was significant and unanimous. Furthermore, it still 

applies to subjects 2, 3 and 5, so that decision stands. As such, looking at only subjects 2, 

3 and 5, average mean absolute error for Euclidean distance is 1.083 and .872 for Angular 

distance, which is within the bounds for error put forth at the beginning of development. 
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 3.3 Integration of SVM with Computational Pain Quantification Method 

With the mean absolute error under control, it was time to look at distributions. 

While having a low mean absolute error is important, it was equally important that the 

output was in the same distribution of the input. The first step was to look at the current 

distributions without any changes, which are presented in Figure 3.5. 

 

Figure 3.5: Input and Output Distributions for Subjects 2, 3 and 5 
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 Observationally, the distributions appear similar for each subject. To confirm, the 

inputs and outputs were compared via a Mann Whitney U test. The null hypothesis for 

this test says that both the samples are from distributions with equal medians and the 

alternative hypothesis is that they are not. Subjects 2 and 5 failed to reject the null 

hypothesis with p values of .18 and .13 respectively, while subject 3 also failed to reject 

the null hypothesis with a larger p value. The results of this test, combined 

observationally with Figure 3.5, are indicative that the data comes from the same 

distribution, but could still be improved. As such, it was decided to implement SVM as 

an add-on to the current method. While this had minimal impact on mean absolute error, 

it showed a marked difference in distribution, as shown in Figure 3.6. 
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Figure 3.6: Input and Output Distributions with SVM 

 Mann Whitney U tests were again performed, resulting in all three subjects 

passing with higher p values than before. This was more akin to what was expected for 

the method, low mean absolute error and similar input and output distributions. As such it 

was decided to keep SVM in the final method. 

 3.4 Discussion of Computational Pain Quantification Method Results 

With the mean absolute error and distributions at or exceeding expectations, most 

of the goals for the computational pain quantification method were met. It was reasonably 

accurate for a remote monitoring context, the method proved robust in allowing 
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additional add-ons for possible future work, and the method worked with a large amount 

of real data. This real data had a rather wide variety in image quality and lighting 

conditions, meeting another criterion. Furthermore, it dealt with facial images and was 

entirely automatic, and once trained, computation of a new pain intensity value could be 

done in real time. Finally, Table 3.2 shows a breakdown of the current facial recognition 

and detection methods, while Table 3.3 shows a breakdown of the computational pain 

quantification method in comparison to existing methods based on accuracy and 

classification methods. 

 

Table 3.2: Comparison of Existing Methods to New Method 

 

Table 3.3: Comparison of Existing Methods to New Method 

The biggest concern at this point was that the method had only been tested on six 

individuals, three if only considering those with large individual databases. It was 

decided that at this point, the strength of personalized databases had been proven fairly 

abundantly, due to the presented results and the nature of the eigenface method indicated 

Source Method Detection Accuracy Images

Chai 1999 Skin Color Facial Detection 82% 80

Turk 1991 Eigenface Facial Recognition 96% 2500

Liu 2000 Evolutionary Pursuit Facial Recognition 92% 1107

Source Method Detection Accuracy Images

Lo 2001 Eigenface Emotion Recognition 70-80% 63

Smith 2001 FACS Emotion Recognition 97% 451

Prkachin 2009 FACS Pain Detection 46-88% 129

Monwar 2006 Eigenface Pain Detection 86-93% 38 Videos

Monwar 2009 SVM Pain Detection 96% 68 Videos

Gholami 2010 RVM Pain Detection 91% 204

Ostberg 2014 Eigenface Pain Quantification 84% 444
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in the background material. However, what was needed was more raw data to validate the 

current pain quantification method. 
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CHAPTER 4 VALIDATION AND ADDITIONAL FIELDS 

In order to validate the computational pain quantification method, it was decided 

that a significant amount of additional data was required. The robustness and 

personalized database aspects had already been proven sufficiently, so what was truly 

needed was lots of raw data from as many individuals as possible in order to validate the 

method. However, as it has been shown that group training databases are not as accurate 

as personalized training databases, a slightly more lax mean absolute error of 2 was 

chosen to validate the method. It is also required that the output data still be from the 

same distribution as the input data, although again, the p values looked for would be 

under less constraints due to group databases. 

 Furthermore, since additional data was needed, it was decided to determine if any 

additional fields would influence computational pain quantification. The four fields 

selected were age, gender, culture and cause. While most of these additional fields have 

been researched, most of the research has looked at one of two things; either the effects 

these fields has on pain tolerance [67], such as men having higher pain tolerances than 

women, or the effects these fields have on recognition [68], such as culture not being a 

distinguishing factor in human beings recognizing pain expressions. Nothing, however, 

looks at if any of these fields affect automatic pain quantification. For example, while 

pain might be recognizable cross culturally, it might be more difficult to determine pain 

levels from facial expressions from one culture verses another. As such, with the new 

data these four fields would be included and investigated as to their effect on automatic 

pain quantification. 
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 In order to determine if these fields have any effect on automatic pain detection, 

the metrics for determining this will be relative accuracy. Assuming that the model is 

validated, the purpose of these additional fields will not be to look for mean absolute 

error, but instead to determine if the error is decreased by inclusion of these additional 

fields and to determine if the model is bias against these fields or certain aspects of these 

fields. The distributions will also be investigated to verify that they come from the same 

distribution. 

 4.1 Cross Sectional Study 

The Cross Sectional Study was how the new data was acquired. Funded by the 

IBCRF and cleared by Marquette University’s IRB and respective location specific 

review boards, the study collaborated with doctors from three different sites, Bangladesh, 

Nepal and South Dakota. It collected facial pain images, pain levels, the four fields 

discussed to be investigated, and a variety of other fields such as tiredness, from willing 

participants. The study lasted a year, starting in December 2012 and ending in December 

2013. Over the course of this time period, 518 useable facial pain images with respective 

data were collected from distinct individuals. Tables 4.1 through 4.4 give the breakdowns 

of the number of images for each associated field and their corresponding data. Note that 

in most cases the totals do not add up to the 518 useable facial pain images. This is due to 

the fact that, as was their right as willing participants, some participants did not disclose 

all their information. While some of this information could have been estimated from 

their images, such as gender or age, it was deemed unethical to do so, as the participants 

did not provide the appropriate or necessary information and as such would be a violation 

of their rights. 
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Table 4.1: Ages and Image Numbers 

 

Table 4.2: Cancer Types and Image Numbers 

 

 

 

Age Range Number of Images

30 and Under 53

31-40 40

41-50 82

51-60 97

61-70 93

71 and Over 60

Cancer Type Number of Images Cancer Type Number of Images

Bladder 12 Bone 3

Brain 5 Breast 65

Choriocarcinoma 1 Cervical 32

Colon and Rectal 50 Esophageal 7

Fibrosarcoma 2 Gallbladder 7

Germ Cell 2 Glottis 1

Leukaemia 2 Liver 11

Lung 79 Lymphoma 33

Mouth and Oropharyngeal 52 Multiple Myeloma 7

Omentum 1 Ovarian 25

Pancreatic 6 Periampullary 2

Pharynx 8 Plasmacytoma 1

Prostate 11 Renal 5

Sarcoma 9 Seminoma 3

Skin 10 Stomach 43

Testicular 2 Thymoma 2

Thyroid 5 Tongue 2

Uterus 3
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Table 4.3: Cultures and Image Numbers 

 

Table 4.4: Genders and Image Numbers 

Of particular note is the Cancer Type table. The vast majority of the cancers listed 

contain only a handful of images. As the model is dependent on the number of images 

used, it was decided that for this field, only subfields that had 30 images or more would 

be included, resulting in the use of Breast, Cervical, Colon and Rectal, Lung, Lymphoma, 

Mouth and Oropharyngeal and Stomach Cancers as the subfields used. 

 4.2 Validation of Computational Pain Quantification Method 

Originally, the Cross Sectional Study data was divided into two sets for validation 

purposes, training and testing. The training set contained 70 images and the testing set 

contained the remaining images. The model gave a mean absolute error of 3, which was 

completely unacceptable. However, due to the fact that eigenfaces can encode extraneous 

information such as lighting, glasses, facial hair, etc [66] and the data from the 

longitudinal study showed that individualized training sets improve performance, it was 

decided that this could be addressed. Since each image in the Cross Sectional Study is of 

a distinct individual, individualized databases were not an option. However, the 

Culture Number of Images

Bangladesh 131

Nepal 311

South Dakota 71

Gender Number of Images

Female 256

Male 239
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Longitudinal Study had a large database of only six individuals. As such, it was decided 

to use the entire Longitudinal Study set as a training set and test the new Cross Sectional 

Study data against it. 

This resulted in a mean absolute error of 1.96, which was a significant 

improvement, was considered satisfactory, and furthermore passed the Mann-Whitney U 

test, indicating that it originates from the same distribution. The input and output graph is 

shown in Figure 4.1 

 

Figure 4.1: Input and Output Distributions for Cross Sectional Study Data 
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 4.3 Additional Fields 

For each additional field the subfields were divided into two categories, training 

and test. In order to keep the analysis to being strictly about the fields, each subfield had 

the same amount of training images, while the test image sets varied in number. Table 4.5 

breaks down the training image sets sizes for each field. 

 

Table 4.5: Training Set Sizes by Field 

Each field had one additional training set, a combined training set. This training 

set took random entries from all the other training sets within that field and would be 

used in order to determine relative accuracy. As this training does not discriminate based 

on any of the fields, each subfield test set would be compared against their own subfield 

training set and the combined field training set to get both the relative error and 

distribution. As the goal of this analysis is to determine if the method is biased towards 

any of these fields and if these fields affect the accuracy of the method, the difference 

vectors will be used to compute the error. That is, for each subfield, the relative error will 

be computed between the difference vectors brought about by testing with a subfield 

training set and the combined training set, taking the combined training set as the true 

values. Furthermore, as these are all vectors, p-norms will be used in place of absolute 

values with p being the length of the difference vectors. 

Field Training Set Size

Age 6

Cause 6

Culture 10

Gender 36
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 4.3.1 Age 

From the tables above, there were 6 subfields for the Age field, and each one had 

6 training images. The relative errors and results of the Mann-Whitney U test are 

presented below in Table 4.6. Note that an h value of 0 represents passing the test, and p 

is the probability of observing the result if the medians are equal (test passed). As stated 

in the previous chapter, the Mann-Whitney U test’s null hypothesis is that the two 

distributions have the same median, and is one method of determining if data comes from 

the same distribution or not. As such, in this scenario, a test passed is indicative of both 

difference vectors coming from the same distribution. These tests were all performed at a 

95% confidence level, so while the chance is small; it is possible to incorrectly identify 

distributions with this test. 

 

Table 4.6: Relative Error for Ages 

Of particular interest here is the apparent trend in the relative errors. For ages 

under 40, the relative error is quite small, even if the difference distributions do not 

always match. Even in the 41-60 age range the relative errors are still small and easily 

tolerable, particularly as they have small p values. However, beyond that the relative 

error blows up. This trend is indicative of automatic pain quantification becoming more 

Age Range Training Test Relative Error h p

30 and Under 6 47 1.0432 0 0.0685

31-40 6 34 1.0443 1 0.0361

41-50 6 76 1.6667 1 0.003

51-60 6 91 1.3333 1 0.0284

61-70 6 87 4 0 0.7516

71 and Over 6 54 4 0 0.9847



42 
 

difficult as age increases, which in turn would mean that age should be a field included in 

future work to aid the algorithm’s accuracy. 

 4.3.2 Cause 

From the tables above, there were 7 subfields for the Cause field, and each one 

had 6 training images. The relative errors and results of the Mann-Whitney U test are 

presented below in Table 4.7. 

 

Table 4.7: Relative Error for Causes 

These relative errors appear to be rather varied, with some being very small and 

others being quite large. However, all but the largest relative error, Lung Cancer, passes 

the Mann-Whitney U test, indicating that the differences at least appear to be within the 

same distribution, although much like their errors, the p values range from very small to 

very large. This field may be worth future investigation based on these results, 

particularly if the cancer type could be even loosely correlated to location, one of the 

dimensions of pain. On the other hand, this data is indicative of the current method 

having not bias towards cancer type, which in turn indicates that it the method could be 

applicable to other chronic pain conditions and does not only apply to cancer. 

Cancer Type Training Test Relative Error h p

Breast 6 59 5 0 0.0871

Cervical 6 26 0.6667 0 0.9141

Colon and Rectum 6 44 5 0 0.2268

Lung 6 73 7 1 0.0051

Lymphoma 6 27 1 0 0.08

Mouth and Oropharyngeal 6 46 0.6667 0 0.899

Stomach 6 37 4 0 0.1149
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 4.3.3 Culture 

From the tables above there were 3 subfields for the Culture field, and each one 

had 10 training images. The relative errors and results of the Mann-Whitney U test are 

presented below in Table 4.8 

 

Table 4.8: Relative Errors for Cultures 

The results of this field are rather interesting. While Bangladesh and South 

Dakota both have small relative errors, they fail the distribution test, albeit with tiny p 

values. Nepal however, has the highest relative error seen so far, yet passes the Mann-

Whitney U test with a solid p value. Drawing conclusions from this is difficult, but it 

might be explained by over exaggeration of pain. It was encountered in the Longitudinal 

Study [13], where patients would over exaggerate their pain levels in order to get more 

attention from their health care provider. While this was observed and dealt with in 

Bangladesh during the Longitudinal Study, it might have been avoided due to 

collaborating with the same medical personnel. It might have occurred in Nepal, 

however, which over exaggeration of pain values could possibly explain this occurrence. 

This field warrants further study, particularly with why Nepal’s relative error is so high. 

Culture Training Test Relative Error h p

Bangladesh 10 121 1.0135 1 1.39E-19

Nepal 10 301 9 0 0.3348

South Dakota 10 61 2.5 1 9.79E-06
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 4.3.4 Gender 

From the tables above there were 2 subfields for the Gender field, and each one 

had 36 training images. The relative errors and results of the Mann-Whitney U test are 

presented in Table 4.9. 

 

Table 4.9: Relative Errors for Gender 

This field is by far the clearest to draw conclusions from. Despite the difference 

distributions being off, the relative errors are almost identical and rather high. Clearly the 

model could benefit from taking gender into account. 

 

 

 

 

 

 

 

 

Gender Training Test Relative Error h p

Female 36 220 6.0302 1 0.0211

Male 36 203 6.0329 0 0.2962



45 
 

CHAPTER 5 CONCLUSION 

5.1 Summary of Thesis 

An automatic pain quantification tool could be extremely useful to medical 

personnel. Children below the ages of 3 or 4 are generally unable to describe their pain 

with any degree of accuracy [69]. Furthermore, a large percentage of elderly patients in 

nursing homes suffer from dementia, which can affect self-reporting of pain levels. A 

method able to determine pain levels for these patients would benefit both medical 

personnel and patients, helping doctors to prescribe the correct pain management 

techniques which in turn will aid the patient’s quality of life. While the automatic pain 

quantification method developed in this thesis is designed with a remote monitoring 

context in mind, the end goal would be something to help patients in a hospital setting. 

This goal may not be as far off as it may seem, either, as it has been suggested that 

dividing the 0-10 pain level scale into segments of several pain levels could be quiet 

useful for some purposes [70]. Seeing as the current method is accurate within 1 pain 

level, this method should easily be able to provide a real time, highly accurate pain level 

if classified as low, medium and high pain, particularly as each level would span 3 pain 

levels. This would also be applicable for a remote monitoring context. 

5.2 Contributions of Thesis 

This thesis has provided three unique contributions. First and foremost, it has 

developed and validated a method for automatic pain quantification for application in a 

remote monitoring context. It is accurate when using an individual training set to within 1 
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unit of error, and within 2 when using a group training set. This thesis has also shown the 

effects of age, cause, culture and gender upon automatic pain quantification. While 

culture bears further investigation, age, cause and gender all have favorable results. 

Cause does not appear to be affected by the current method, which opens up the 

possibility of other chronic pain conditions, and that this method, while developed on 

cancer patients, should be able to be applied to other types of patients. Gender affects the 

method almost equally for both genders, while age affects the method more as it 

increases. Finally, two databases, totally almost a thousand pain images, have been 

created for further study. One of which also has the four fields discussed previously 

associated with each pain image, as well as others which have yet to be investigated, such 

as tiredness. 

5.3 Impacts of Work 

 This work’s most obvious impact will be on the quality of life for patients able to 

utilize this method. As this method was designed with a remote monitoring context in 

mind, patients will be able to ensure they are receiving adequate care from their doctors 

while maintaining their daily lives. It will also allow doctors to receive daily, or more 

frequent, pain data on their patients, allowing them to more accurately adjust pain 

medication, particularly as pain medication adjustments based on frequently determined 

pain levels improves patient outcomes and quality of life [10]. 

 Furthermore, as this is a system designed with mobile health in mind, it is a 

system that could easily be adapted to a world where the majority of people have access 

to a cell phone. Not all of these phones are capable of sending photographs, but it is 
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obvious that cellphone ownership is a growing, global trend, so it is not unreasonable to 

assume that access to phones with that capability is also growing. Thus, this method 

could potentially provide pain quantification to people in developing countries. 

 Long term, this method will hopefully be able to be adapted to a real time, pain 

monitoring system that could potentially be put into hospitals and intensive care units to 

give doctors real time pain updates, which again would allow for even faster medication 

adjustments.  

5.4 Future Work 

 In continuation of this work, several items could be investigated. The most 

obvious are the inclusion of age and gender within the algorithm, both have obvious 

effects on the accuracy of the method, so inclusion would improve the accuracy. For 

gender, this could be as simple as splitting training databases to only include one gender 

or the other, or it could be more complicated, but their inclusion will only help the 

method. Secondly, culture and cause should be investigated further. Nepal should be 

investigated as to whether or not over exaggeration of pain levels is an issue there, and 

cause should most definitely be investigated further. If the cause field presented here can 

be linked to location, location of pain would also be a useful inclusion in the method. 

Otherwise, causes other than cancer should also be included for study. Also, several other 

fields are available for further study that were collected by the Cross Sectional Study, and 

could warrant investigation.  In addition, the Mann-Whitney U test was used exclusively 

in this thesis. The instances where it was used should be investigated for normality, and 

then use the stronger t test to give additional strength to these findings.  Also, reducing 
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the number of eigenvectors can increase accuracy, by eliminating the ‘noise’ vectors that 

encode extraneous information. Removing these could potentially further improve 

accuracy. Finally, any way of taking this method and putting it in the hands of medical 

personnel should be looked at, whether it be simple remote monitoring, which could 

easily be done with the current method, or as a possible real time pain monitor. Anything 

that could possibly aid medical personnel in reducing the pain levels of their patients 

should be investigated in order to help improve the quality of life of everyone in pain. 
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