Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

ClayUI: A Framework for Delivering Object
Properties to Native Mobile Application
Components

Andrew Lize
Marquette University

Recommended Citation

Lize, Andrew, "ClayUI: A Framework for Delivering Object Properties to Native Mobile Application Components" (2012). Master's
Theses (2009 -). Paper 149.
http://epublications.marquette.edu/theses_open/149

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

CLAYUIl: AFRAMEWORK FOR DELIVERING OBJECT PROPERTIES TO
NATIVE MOBILE APPLICATION COMPONENTS

by
Andrew Lize

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,
in Partial Fulfilment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin
August 2012

ABSTRACT
CLAYUIl: AFRAMEWORK FOR DELIVERING OBJECT PROPERTIES TO NAVE
MOBILE APPLICATION COMPONENTS

Andrew Lize

Marquette University, 2012

As technology advances in the field of mobile computing with smartphones and
tablet computers becoming less expensive, people are adopting these devices into thei
daily lives. Due to this adoption, many developers are finding opportunities to develop
apps that target this growing form factor. One of the issues that developersccosse a
when developing for these multiple platforms is that there is a need togredesimon
elements of their applications for each of their platforms. They are aldenged with
the decision of breaking the prescribed design guidelines for each of the pdatfieym
are developing for so that they are able to provide support for these applicatioas i
future.

In this thesis, we propose a solution to this problem by generalizing common user
interface elements and configure them outside of the application. Our solutied, call
ClayUl, uses a client server model to house and publish user interface elements to a
mobile application using an API that is written in the target platform’seati
programming language. Our solution allows a developer to create a mobiletapplica
that adheres to the platform’s design guidelines with the flexibility ofgoslte to port it
to other platforms without having to do a full redesign of the application. Our solution
also introduces features that assist the developer with the process ofydee=ti and
remote database storage for the configured elements.

ACKNOWLEDGMENTS

Andrew Lize

For his support and encouragement to complete this thesis, | would like to thank
Dr. Sheikh Igbal Ahamed. Without his inspiration, | was on the fence about whether or
not to attempt this goal. Dr. Ahamed has always been a source of encouragement in m
academic program, providing challenges and advice wherever | needed them.

| would also like to thank Dr. Thomas Kaczmarek and Dr. Rong Ge for serving on
my thesis committee and helping me despite my hectic schedule.

Most importantly, | would like to thank my wife, Kristine Lize, for supporting me
through this program. | am immensely gracious for her patience and loving tsoippor
me.

Finally, I would like to give thanks to my employer, Douglas Dynamics, Inc. for

providing financial support of my academic career.

TABLE OF CONTENTS

LIST OF FIGURES .. e e e e e e e e e \%
CHAPTER 1: INTRODUCTION ..ottt ettt s et e e e et e eeeaa s
CHAPTER 2: BACKGROUND ...ttt et e e e e e e e e eenas
2.1 Mobile COMPULING === s o e e 3
2.2 Mobile Computing Form Factors ---------====mmmmmm e 4
2.3 Client/Server COMPULING -=--==========nmmmmmmmmmm e oo 5
2.4 Cloud Computing --=-=-========n=nmm e oo oo o e e 5
2.5 APPIE 10S -m-mmm e 6
2.6 Google ANAroid ----=-=-===mmm oo 7
2.7 Design guidelines for iOS and Android ----------=-=--=-=---——--memmmmm- 8
2.8 Challenges of Supporting Multiple Platforms ----------------——-—=-m-oom e - 9
CHAPTER 3: RELATED WORKottt e e e e e e e e e e e ees
3.1 Code once distribute many --------=====mm s m s 11
3.2 DyNnamic CONtENT -=--==nmmmmm oo oo oo e 12
3.3 DYNaMIC SEIVICES -----mnmnmmmmm oo oo oo e e e 13
3.4 Assistive application for code generation -------------==-=——mmmmm e m e oo 15

CHAPTER 4: MOTIVATIONottt e e e e

SCENANO 1 - oo e 19

SCENANO 2 === o e 19
SCENANO 3 == o e 20
CHAPTER 5: OVERVIEWce ettt aaaas
5.1 AAMINIStrative Site -----=mmmmm oo oo e 23
5.2 Database backend -------==-=-=mmmm oo 23
5.3 WeED ServiCes ----m-mmmmmmm oo oo 23
5.4 Local Database ------=========m = m oo 24
5.5 Client APIS —-mmmmmmmm s oo e oo e 24

CHAPTER 6: ADMINISTRATIVE INTERFACE FOR ADAPTABLE USER

INTERFACES ...
6.1 APPlICALION ===mmmmm e e 26
6.2 APP Part ---mmm oo 27
6.3 ElemMeNtS —---mmmmmm e 29
6.4 Data Tables ------=-m oo 33
6.5 WED SEIVICES ~---mmmmmm e 34

CHAPTER 7: CLAYUI APIDETAILS ...
7.1 ClayUl App Base ------===-mmm oo 37

7.2 App Parts and App Part ULilS ------==mmmmmm e 39

7.3 Element and Element ULilS -=--=-====mmmmmm e 40

7.4 Implementation ---------=-m s s 41

CHAPTER 8: EVALUATION ...ttt e e e e e e eeea e e aaeees 46

8.1 ClayUl Prototype -----=-=-mmmmemmmm e oo oo e 46

8.2 Ease of implementation ---------=--=-=== oo 51
CHAPTER 9: CONCLUSION AND FUTURE WORKcoiiiiiiiieeiiiei e 56

9.1 SUMMANY === = e 56

9.2 Contribution of this theSiS ==-==========mmm e 57

9.3 Short and long-term impact --------===-==-=====-m-mmm e 58

9.4 FULUI® WOIK === = m o m e o oo 59
BIBLIOGRAPHY .ttt e e e e et e e e et e e e e e e e e aaa 60
AP P EN D X A e e a e 64
AP P EN D X A e 64

APPENDIX B

LIST OF FIGURES

FIGURE 1 -- A COMPARISON OF COMMON CONTROLS.........cuciiiiiiiiiiiieeiiiiieieeiins 8
FIGURE 2 -- COMBO BOX DIFFERENCES ... 9
FIGURE 3 -- COMPARISON OF FEATURES ..., 16
FIGURE 4 -- CLAYUI OVERVIEW ... 22
FIGURE 5 - CLAYUI ADMINISTRATION APPLICATIONcuiiiiiiiiieeeeiiiieeeeeiiiiii 26
FIGURE 6 - APPLICATION DETAILS ..o 27
FIGURE 7 - APP PART DETAILS ... 28
FIGURE 8 - ELEMENTS OVERVIEW......coiiiiiiiiic e 29
FIGURE 9 - ELEMENT DETAILLS ...ooiiii e 32
FIGURE 10 - ELEMENT OPTIONS ...ooiiiiii e 33
FIGURE 11 - DATA TABLE VIEW ..ot 34
FIGURE 12 - CLAYUI COMPONENTS.....oiitiitiiiii e 36
FIGURE 13 - APP BASE USE CASE ... 38
FIGURE 14 - CLAYUI APP BASE CONCEPTUAL CLASS DIAGRAMccccuvuunee 38
FIGURE 15 - APP PART USE CASE ..o 39
FIGURE 16 -- APP PART CONCEPTUAL CLASS DIAGRAMcccooviiiiiiiiiiiinn 40
FIGURE 17 -- ELEMENT USE CASE ... 41
FIGURE 18 -- CLAYUI PROTOTYPE APPLICATION TREE ..., a7

FIGURE 19 -- CLAYUI PROTOTYPE (ANDROID AND WINDOWS MOBILE
IMPLEMENTATIONS) .ottt e e e e 48

FIGURE 20 -- RESULTING USER INTERFACE ... 49

Vi

FIGURE 21 -- CONTACTS DATA TABLE BEFORE RECORD ADDITION.............. 50
FIGURE 22 -- ENTERING CONTACT INFORMATION. ...t 50
FIGURE 23 -- SUCCESSFUL WEB SERVICE POST RESULTccoovviiiiiiiiii, 51
FIGURE 24 - NATIVE MOBILE APP FOR COMPARISON ... 52
FIGURE 25 - NATIVE APP VS. CLAYUI APIAPP.....oiiii e 53

FIGURE 26 -- CLAYUI ADMINISTRATION WEB APPLICATION SURVEY

RESULTS ettt e e e e e e e e e e e ennnnne 54

FIGURE 27 -- CLAYUI API SURVEY RESULTS ... 95

Chapter 1: Introduction

Since the birth of the smartphone in 1993 [Bellsouth1], mobile computing has fast
become a popular method of accessing data and information. With the advent of more
powerful mobile hardware, technologies like cloud computing and creativebneesi
and applied application software, smartphones and tablet computers are beginning to
replace the role of personal computers and laptops
[Nagaminel2a][Nagaminella][Millerll] [Albanesius1l] [NagaminelEbgp11]. As
evidence to the popularity of smartphones and tablet PCs, the fourth quarter sales for
2011 showed declines in PC sales growth [Nagaminel2c] while the growth of
smartphone sales hit a record high [Nagaminel2c] and tablet sales outpacedetest f
[IDC12] in the same quarter.

Smartphones and tablets are also becoming more pervasive in enterprise
environments [Haywood11] [Reed11]. However, as enterprises are accustomed to
providing custom software to their end users, the development and support of software on
these devices, which have unique design guidelines, several form factors, and various
screen sizes, is challenging and time consuming.

The purpose of this paper is to introduce and demonstrate a design pattern,
framework and API called ClayUl that assists in the development of mobildhegips
adhere to their respective design guidelines. In this paper, we will shovettzah c
portions of apps may be generalized enough to allow for dynamic layout reflow and
runtime design changes which typically might require code changes anchtppli

updates. This paper will also propose the idea that by using this technique, an

organization could develop a unified storage location and methodology for data created
on mobile devices.

This paper will demonstrate an administrative user interface that a devedope
use to define generalized portions of the user interface called app parts. The
configuration for these app parts are stored in a database local to the mabdeade
well as a database that is accessible via the Internet using websemhespaper will
also demonstrate the use of an API that assists the developer with the mmexfrtie
app parts in their mobile application. Finally, because of the nature of the foaknew
required for the distribution of app part configurations, we will demonstrate how our API
also provides assistance with the process of saving mobile application forro dabaal
database and a remote database using web services.

The following describes the organization of the rest of the paper. In chapter 2, we
will cover background information and describe any concepts that are integral to the
paper but not necessarily generally known in the field of computing. In chapter 3, we
will discuss related works. In chapter 4, we will describe the motivatiotihéoClayUl
system. In chapter 5, we will cover a general overview of the Claydtdrsy In chapter
6, we will cover the administrative web application used for setting up applisas
targets for the ClayUl API. In chapter 7, we will cover the general usabe aPI and
its application in a prototype app. In chapter 8, we will evaluate the lzeaklising
ClayUl for application development. In chapter 9, we will conclude by desgribe
contribution of this thesis, summarize any short and long-term impacts and propose

future work for this project.

Chapter 2: Background

In this chapter, we will introduce the background information and concepts that
are integral to this paper but are not necessarily generally known in the field of
computing. We will introduce some of the platforms evaluated for this project, discuss
their differences and propose some of the challenges with developing for fifesadi
platforms. Because there are numerous mobile platforms currently in use okt m
market, we will be focusing on the platforms used by Google and Apple. However, man

of the concepts covered may be applied to any of the platforms present today.

2.1 Mobile Computing

Mobile computing is a form of computing where the user is able to access and
process data into information from dynamic locations. Whereas traditional dogput
typically uses stationary personal computers with hard wired networks for
communication and a constant power source, mobile computing involves technologies
that allow for the mobility of the computer such as wireless networking ghd hi
capacity/lightweight batteries for a power source.

Mobile computing gives the user the ability to access information wherever he is
at the moment as long as he has the required network connectivity. This abilitg has t
potential for more timely information and communication, which is one of the keyglrive

for the increased of use of smartphones and tablet computers in the enterprise.

2.2 Mobile Computing Form Factors

In 1993 IBM unveiled what could be considered the first smartphone, the Simon
[Bellsouthl]. However, according to the Merriam-Webster dictionary, the ter
smartphone was first introduced four years later in 1997 [Webster12]. Thiplsomeris
a wireless, carrier-based phone that has additional software on it wiowfs dlto
perform tasks beyond telephony such as email, texting and Internet browsimgoitie
and popularity of smartphones was accented when Apple released the iPhone in 2007
[Apple07]. A year later, Google released its first Android phone [T-MOBIl. Other
manufacturers of smartphones include: Research In Motion (Blackberrypdditr
HTC, Samsung, Sony and Nokia.

In 2010, Apple introduced the iPad [Eaton10]. Although Microsoft attempted to
introduce their concept of a tablet computer over ten years earlier [NM@9kdhe iPad
was the first device in this form factor that had the potential to drive a charge in t
mobile PC market. The tablet computer is a mobile computer with a touch screen and
typically lacks a keyboard. The user interfaces for tablet computeusiéncistom
software that is optimized for a touch interface. Larger icons to accomntbdatiee of
the fingertip and gesture controls are common with tablets. Since thesrele¢hs iPad,
the PC market has seen a steady decline in growth for PCs and laptop computers

[Nagaminella], while the iPad and other tablet computers enjoy steadi.gro

2.3 Client/Server Computing

The client/server model of computing is a computing model where an
application’s tasks are distributed between a client and a server. In cwhjeiting,
the client is the mobile device, which has fewer resources for performingeqriong
running tasks and limited data storage capacity for saving data. Thersagvbe a web
server that interacts with the client device’s processing requests¢ueaeair save
records from and to a database. An example of this computing model would be a
messaging server’s contact database. The client may add new cankexstebbile
device and save them to the central contact database so that other people mdlgecces
contact as in a global address list. To store and search the contacts ofsevarythis
application on the mobile device would be impractical due to the device’s hardware
limitations. The client only needs to know how to contact the server to initiatech.sear

The server would then perform the search, providing the results to the client.

2.4 Cloud Computing

Cloud computing is a computing model that is very similar to client/server model
in that the client’s workloads may be offloaded to a more capable device. However,
cloud computing differs in that there is more of an abstraction of the specifer Heat
the to which the client sends its requests. There may very well be a grid cédminér
computers that will either, in turn, process a client’s request, or distributecirested

workload to several of the connected servers in the grid.

Cloud computing has several advantages over traditional client/serveatoognp
because compute and storage grids may be colocated in various locatiosishecros
globe. Servers that are geographically located closer to the client should resfond wi
less latency than ones that are further away. Having servers colocatedatesepa
locations also provides redundancy if there is a natural disaster or power outage at a
location. An additional advantage of cloud computing is the ability to appropriately

spread workloads to servers that are sized accordingly for the tasks.

2.5 Apple iOS

Apple introduced their first smartphone called the iPhone in 2007 [Apple07].
Later the same year, Apple introduced the iPod touch, which was similariRhtires
but lacked the carrier based wireless interface. And in 2010, Apple introduced their
tablet device, the iPad. All of these devices run Apple’s mobile operating syaliech
I0S. The mobile operating system i0OS is based on Apple’s OSX operating system,
BSD Unix-like operating system [Apple08]. At its initial release, the only wwa
develop applications for the iPhone was to develop web based apps. While this was
successful, it was limiting because a user could only use the apps wheth a g
connection to the Internet was available

At a town hall meeting in 2008 [Block08], Apple announced that they would
release a Software Development Kit (SDK) for iOS so developers could créage na
applications for the iPhone. This SDK, which is developed in Objective-C, is derived
from a subset of the foundation of OS X. The SDK provides user interface elements via

the Cocoa Touch framework and allows the developer to create applications that inter

with the hardware much like an application would on OS X. The commonality between
I0S and OS X development provides a great level of fluidity within Apple’s entire
ecosystem. For a user who understands using the Mac OS X, an iOS device is also

familiar.

2.6 Google Android

Google introduced its first smartphone in 2008, which was manufactured by HTC
[T-Mobile08] and its first tablet in 2011 manufactured by Motorola [Savov1ll]. These
devices run Google’s mobile operating system called Android, which Google acquire
from the company Android, Inc. in 2003 [MarkoffO7]. Android is a Linux-based mobile
operating system, which provides a Java framework for developing appisati

Android’s SDK was released prior to the introduction of its first smartphone as
part of the Open Handset Alliance [Rubin07]. The SDK, developed in Java, provides all
of the necessary components for developing applications on Android devices. The SDK
provides user interface elements through interactive widgets and allows thapdetve
interact with the hardware and other applications through a system of actwitle
intents.

Because of the open nature of Android, different vendors of smartphone hardware
customized the user experience of their Android phones. For instance, Samsung uses
their proprietary user interface Touchwiz, while HTC uses their propriasatyinterface
Sense. These two user interfaces deviate from the standard user intevédopeat by
Google. Because of this, a user of an Android smartphone from one vendor may not be

familiar with using an Android smartphone from another vendor. This resulted in

criticism of the Android smartphone market identifying a fragmentationraaility to

maintain updates to current hardware.

2.7 Design guidelines for iOS and Android

Apple and Google both have a set of guidelines for developing visually pleasing
and easy to navigate user interfaces for apps. However, while the typicgbpG&tion
maintains a look that is common to applications used in O SX and iOS, Android apps
may offer a look that is unique to Android alone. Both platform design guidelings stre
the importance of maintaining consistency within the platform to provide a fluid
experience between apps. As an example of the differences between thetfovopl

the Figure 1lillustrates commonly used controls: iOS on the left and Android aglthe r

Label ® ElementExamples

Label
Bution

Button

cution RadioButton

Text Field

Text Field

Slider

Toggle swilch

Figure 1 -- A comparison of common controls

As illustrated, these common controls differ in appearance; the iOS cdrdaxas
a rounded look to them while the Android controls have sharper edges and appear flatter.
One could certainly create icons for controls that would achieve the same look on
Android as are available on iOS and vice versa. However, doing so would interrupt the
flow of the user’s experience from the rest of the device.

In addition to having design guideline differences and common control
differences, the SDKs for iOS and Android provide controls that are unique to their
platform. For instance, a common control utilized in user interface deslynésinbo
box. While both iOS and Android do not provide a control for a traditional combo box,
they each provide their own alternative to a combo box. The implementation of these
controls is similar, however, their functionality and appearance are vermediffe=igure

2 illustrates the difference between the iOS and Android respectively.

Sunnyvale

Lupei o ftem 1 -

Santa Clara

Figure 2 -- Combo box differences

It is easy to see in this example that the iOS Picker View control’s spinnieg) wh
look appears to be more of a physical element, while the Android Spinner control
resembles the traditional combo box. The iOS Picker View consumes more space tha

the Android Spinner control.

2.8 Challenges of Supporting Multiple Platforms

10

When developing for multiple platforms one must consider the differences in
platform capabilities as well as the similarities. The developer nasstlatermine if
whether it is desirable to maintain a common look and feel for the application across
platforms or if the application should conform to a common look and feel within the
platform itself. If it is desirable to present a user interface thaboosfto the design
guidelines of the platforms, the developer will need to understand how to implement the
different common controls that are available for each platform.

In addition to user interface elements, the developer may wish to provide the
ability to locally store data on the device as well as save the data to a lecatiten
through a web service. Again, the developer needs to understand the way this is

implemented on each of the platforms he or she wishes to support.

11

Chapter 3: Related Work

The field of mobile computing is filled with various devices from a number of
hardware vendors. These devices vary in many ways including hardware dapabilit
screen sizes, network speeds and types; likewise they operate on sevembperaiing
system platforms. This situation presents a unique challenge for developerssiiio w
develop applications that reach a broad audience using these various devices.

There are several approaches that address the issue of supporting multifge mobi
platforms and environments. A developer may choose to use a programming language
that is rendered at run time such as HTML5 or JavaScript. An application may use a
proxy that changes the content that is delivered to the mobile application based on the
capabilities of the device. Or, an application may use middleware that preeidees
based on the context of the device, such as battery level, network availabditgtion.

Our approach is to develop mobile applications in their native programming larepuge
apply a design pattern that uses an API to assist in the creation of usecenddefaents
that conform to the design guidelines of the target platforms. To assist in tllsove
introduce a web-based assistive application for configuring the user isteféaments.

In this chapter we describe some of the research that attempts to addeess thes

challenges and compare the approaches with our framework.

3.1 Code once distribute many

One of the ways that a developer may accomplish developing an application that

targets multiple platforms is through the use of technologies that are supportedfon all

12

the target platforms. This typically involves using web technologies such a&HTM

One such project that accomplishes this is called Rhomobile [Rhomobilel]. Rhomobile
is a suite of development applications that assist the developer in creatingbHbEsEd
applications that are distributable to various platforms.

Our framework is distinct from this project in that we use native programming
languages and allow the developer to conform to the design guidelines of gatédtar
platform. Since a developer uses Rhomobile to develop the application, he would need to
design a common look and feel for the application that would not necessarily conform to

the design guidelines of each of the target platforms.

3.2 Dynamic Content

In order to address the challenge of building applications that target platform
with various capabilities and resources, be they network restrictions evdrard
resources, some papers demonstrate using a middleware that dynarnamadjgcthe
content based on these restrictions is effective for improving the overalkpseleace
of mobile applications and web applications.

In their paper, A. Fox et al. [Fox98] proposed that by using a proxy service which
is aware of the clients’ restrictions, they would be able to improve an applisaiser
experience by changing the content the client is requesting on the fly. aoicanst the
client were to request a page full of high-resolution images, the proxgeserguld be
able to re-render these images down to a smaller scale. This would cut down on the
network bandwidth, computational processing and memory requirements of the

application.

13

H. Zhang and W. Ma from Microsoft Research propose in their paper [Zhang04]
that a new web content representation document called Scalable Web Document could be
used to reformat web content based on the screen size of the device requesting it. The
Scalable Web Document would assist the mobile application by adjustingytext sand
reformatting large images via a proxy service.

In their paper, Z. Hua et al. [Zhigang06] discuss a project that addresses the
screen size constraints of mobile devices named MobiDNA. In this project, wehtconte
is broken into blocks and later cached so that a handheld device could more easily display
its content. Their project uses a novel method of reducing areas of web pages into
thumbnail-like sections that a user can both navigate and zoom in to view detail.

In our framework, we use an internal database to define the content and
application elements that are available to the application. The ClayUlgdihaludes
the ability to modify the contents of the internal database based on the fresaltse
web service queries that the framework provides and refreshes the usacénbaged on
this new content. Our framework does not need to address the hardware restrictions of
some devices because the developer knows the target devices which will lytusate
the application. These restrictions should be considered as if the developéuiaing

the application for a single device.

3.3 Dynamic Services

Another area of related research is the process of dynamically chavgihable

services based on location, application context, and device types and requests. In the

following papers, researchers use the various sensors available on the delices a

14

middleware to assist the device in locating the appropriate servicée fiasks the
software completes.

In their paper, A. Cole et al. [Cole03] discuss the process of binding middleware
to services based on the location of the device. For instance, one service aeailable
device might provide traffic congestion information for the metropolitan ahesenthe
device is located. Once that device moves to a new metropolitan area, a new provider
may be available for this service while the original one may not be aeaildbe
authors suggest that through the use of middleware, a device could deterministically
switch services without the end user knowing.

Another method proposed for dynamically changing the services available to a
mobile device is through an applications context. L. Capra et al. describec proje
named CARISMA in which middleware maintains the current context of a running
process and changes its behavior based on this context [Capra02]. In this project, L.
Capra et al. describe that the middleware could react to situations soehlztery
power by reducing graphics resolutions or color depths to conserve power. [rafesiy
authors A. Murarasu and T. Magedanz [MurarasuQ9] propose a process of shifting
workloads from the local device to a remote device based on the current load of a mobile
device. Using this method, an application dynamically utilizes remotesgimstead of
local services without the knowledge of the end user. In his dissertation, P. Grace
describes another method of adapting to the devices context by developing a areldlew
that reacts to context changes and utilizes different frameworks basezlahatige

[Grace04].

15

In the paper by F. Chien-Liang et al., the authors propose a method of
reprogramming wireless sensor network motes based on the recorded imiorseati to
one another [Chien-Liang05]. In their paper, the authors demonstrate thdifyeaibi
reprogramming a sensor network for a new purpose through the example of a fire
detection system. They demonstrate that the fire detection system could be
reprogrammed to act as a search and rescue system once a fire isl.ddteiste
reprogramming is necessary due to the lack of data storage and memory on she mote
used in the system.

In our framework, ClayUl, we dynamically build local resources that dediced |
user interface elements. While this resource may remain statigththe application’s
lifecycle, changes to the underlying database structure may be dgligpassed to the

configuration of the user interface elements if the developer so chooses.

3.4 Assistive application for code generation

In order to assist professors of the University of Massachusetts Amilikbr shev
distribution of classroom content to mobile devices over the Internet, the RIPRUES g
at the University developed the Multimedia Asynchronous Networked Individdalize
Courseware (MANIC) system [SchapiraOla] [Schapiara01b]. This systeptifies the
process of posting courseware to a website which is then pushed to mobile devices for
offline viewing. This system does not require the user to know any HTML or mobile
application development as the system handles this for the user.

In our framework, we provide an administrative website for configuring the part

of the application that are controlled by ClayUl. To configure these applicatitsn pa

16

one only needs to have an understanding of the different user interface elemets that
used and how to set them up in ClayUl. While a developer with experience of
developing for the target platforms is necessary, this is only true for tiad setup. Any
changes done to the ClayUl application part will be reflected in the user ceteffthe
application without the requirement of any development experience.

The following table (Figure 3) compares the features of severaldeiateed

projects and ClayUl.

Droie A
eature Descriptio ClayUl | Rhomobile | CARISMA | MANIC
Web based assistive application Yes No No Yes
Device native programming language | vy No Yes Yes
Device native design principal Yes No Yes Yes
Support multiple platforms Yes Yes No No
Runtime application changes Yes No Yes No
Data storage assistance Yes No No No

Figure 3 -- Comparison of features

17

Chapter 4: Motivation

As smartphones and tablets become more popular, software developers struggle to
create successful apps that target the various platforms in a timely aeffectsve
manner. Developers also have to make a conscious decision to either followdhe desi
guidelines for each platform, or develop their own guidelines across platforsisy dJ
consistent design between different platforms may be beneficial from pieent and
support standpoint, but it leads to problems where the user loses a sense of flow that is
established by the platform vendor. Designing around the platform’s design psncipal
helps establish a comfort level for the end user. A design pattern and APktbist as
developers as they create common controls and their associated methods, provides
opportunity to reduce time when developing applications that conform to platfornm desig
principals. It is the purpose of this paper to demonstrate such a design paitAfl 40
provide evidence of its benefits.

Every year smartphones and tablets become more affordable and more.capable
Because of this, these popular devices are more pervasive in our lives. In 2011, the
personal computer market saw the smallest growth in recent history [Nagaojine
while the smartphone and tablet markets produced record growth
[Miller11][Nagaminel2b]. This trend of purchasing smartphones and tablets oves PCs
an indication of the beginning of a shift of the mobile computing form factor from
traditional laptop PCs to smartphones and tablets. It is estimated thiattabjriter
sales grew by more than 181 percent from 2010 to 2011 and may continue to grow an

additional 89 percent from 2011 through the end of 2012 [Pettey10]. This is compared to

18

a growth of only 3.8 percent for PCs 2011 and a forecasted 10.9 percent growth in 2012
[Petteyl1].

One of the reasons for the popularity of the smartphone and tablet is their ability
to run apps that provide much of the same functionality that traditional PCs provide.
These devices include web browsers, email clients, newsreaders and many other
productivity apps that add usefulness to the device. While many of the apps that are
available on various platforms perform the same function, the design stratagies m
differ in their look and feel. Each vendor invests a considerable amount of time and
energy into improving the user experience with its platform. This is evemaskeasthin
the different hardware vendors for Google’s Android platform. For instance, Samsung
and HTC developed their own user interfaces named Touchwiz and Sense, respectively.
These vendors also develop their own apps to replace the default Google expppsence a
so they can control the designs of their respective platforms.

Smartphones and tablets are also becoming more prevalent in business
enterprises. And where traditionally the IT department dictates whiod$end
platforms are acceptable in the workplace, the trend is moving towards ¢hieqood
employees bringing their own devices to work [Reed11]. This practice insriase
complexity of developing applications for different platforms that conform fodlesign
guidelines by increasing the heterogeneity of platforms supported degvetopers.

Tools that are available to developers to assist with completing tasks such as
setting up common controls in user interfaces, setting up database connections, and

setting up communications with web services increases productivity and rélaeices

19

development lifecycle time. Here we consider a few scenarios to denteniséra

benefits of the ClayUl framework.

Scenario 1

A research firm wants to develop an application for mobile devices to help its
researchers track answers to questions during an interview. These multipge choic
guestionnaires may change based on the subject of the interviewee. The fichalsoul
like to be able track the results of these surveys in a database for fudlysisanlt is
assumed that the interviewer will not always have a persistent network tonriec
accessing surveys, so a web-based application could not be considered.

Our framework, ClayUl, would assist the developers with setting up the user
interface by simplifying the process of populating repetitive user agertontrols for
presenting the questions in the interview. ClayUl would also set up the data adagters
backend database used for storing results from the surveys. Finally, becairse the f
wants to track the results of the surveys for further reporting, ClayUl woulgh $be
necessary helper objects for persisting the results to a web servicethdhiwite the

data to a backend database used for reporting.

Scenario 2

A business that allows its sales force to use their personal smartphonaisleisd

for business use wants to extend the sales lead application built in-houseateghe s

personnel’s smartphones and tablets. The types of devices that the sales $osca use

20

mix of iPhone smart phones, iPad tablets, Android phones and tablets and Windows
Mobile phones. The IT department of this company understands that the users of these
devices chose them based on their preference for the way the device's\gsgsiém
functions and looks. The IT department desires to provide a new application that
conforms to the guidelines of their respective devices.

ClayUl would assist the developers with setting up the user interface ahd loca
backend database for storing contact information. As an optional benefit, the desveloper
could use ClayUl to store contact information in a central database by savdajdhe

through a web service.

Scenario 3

An ecommerce site wants to provide a mobile app for its customers. As a
customer courtesy and because the company knows its customers use a variety of
smartphones and tablets, the team decides to develop apps that conform to the design
guidelines of the various platforms that its customers use. Much of thenes&aes for
these will use common controls and the data for the mobile apps is stored on web server
where retrieval should be completed using web services. Additionally, the apg shoul
allow the user to store her shopping cart on her local device for later retrieval

ClayUl would assist the developers by setting up the user interface cométols t
are common between the different platforms conforming to their respective desig
guidelines. ClayUl would also assist in providing the necessary objectsriogs
shopping cart data to the local database on the mobile device as well as thdabjects

retrieving items that are available for purchase from the web service.

21

For all of the above scenarios, our research indicates that a developer can use a
framework and API to assist in the processes of developing an application teeg targ
multiple mobile platforms. This process reduces the overall development time by
configuring common user interface controls, configuring connections to a loabbdat
and configuring connections to web services for retrieving and saving data. ddesspr
also alleviates some of the burden of re-configuring common items on differéotrpi
where certain technologies in use may be different. For instance, Android&ndeO
SQLite as their database backend where Windows Mobile uses Microsoft SQUTE
finally, this process reduces the total cost of support for the applications througtethe

of APIs, which may be independently tested for bugs.

22

Chapter 5: Overview

ClayUl is a framework for assisting developers of mobile applications$aigpt
multiple platforms with differing design guidelines. The framework is caagrof five
major parts: the application administration web application, a server datsuksnd,
web services, a local database on the client, and the client APIs. Figure dnispites
overall design of the ClayUl framework and how each component interacts wlitiofea

the others.

(Losal Netwark| |

Application PHP _,| E
Lipdatizs mobil PHP WEE | o
application configuration Application i M‘ISQL database for
through Intamet ar local 510 I'{Hs EPP"CHﬂDI’I
netwark anfiguration and data

storage.

”

e
=
for data retrieval

rsisterice
LAMP Sérrvet

Persist/data if necassary

Syne local database for
application configuration

Figure 4 -- ClayUl Overview

23

In the following chapter, we will give an overview of each of the major

components used in ClayUl.

5.1 Administrative site

The administrative website uses open source components to deliver an interface to
the user via its web browser. The application is developed using a combination of
HTML5, CSS3 and PHP, and built on an open source LAMP (Linux, Apache, MySQL,
PHP) foundation to provide a simplified interface that is dynamic and resporidsing
the administrative site, a developer can rapidly configure the parts appieation he

wants controlled by ClayUl with a basic understanding of user interfateels.

5.2 Database backend

The storage behind the administrative website uses the open source database
engine MySQL. This database houses all of the configuration information for the
application parts that a developer creates as well as any of the dédtertapplications
generate if she so chooses. Since the data is stored using a databagsbarigoledes
connectors for multiple platforms, developers can further extend the funcyfahie

database backend for reporting or for other applications.

5.3 Web Services

ClayUl uses several PHP web services that produce JSON (JavaScript Object

Notation) objects in order to pass data between the administrative database badkend

24

the client API. This method provides a language independent data descriptor that is

lightweight and easy to read.

5.4 Local Database

ClayUl stores the application configuration in a local database of the mobile
device. Depending on the target device, the database engines used ared8@8e f
and Android devices, and the SQL Server Compact Edition for Windows Mobile devices.
These database engines are lightweight database engines that proedapabilities

than storing configuration and data in flat files.

5.5 Client APlIs

From the point of view of the client application, the API is the heart of the
framework. The ClayUl APl is structured in such a way that the developeneadls to
instantiate a few objects and execute their methods to control the layout pplicateon
parts, and save data locally or to the web. All of this is accomplished without the
requirement of the expertise for implementing this on the various platforms she is
targeting for her application.

Over the next couple of chapters we will go into further details of the

aforementioned components of ClayUl.

25

Chapter 6: Administrative Interface for Adaptable User Integface

One of the goals of the ClayUl framework is to ease the burden of setting up and
modifying portions of an application that use common user interface elements. rAnothe
goal was to provide this ability on all of the development platforms, including: Mi¢rosof
Windows, Apple Macintosh, Linux and others. In order to accomplish these goals, the
ClayUl administration site is built using web technologies that make thavaihble
via a modern web browser. These technologies: Linux, Apache, MySQL, and PHP,
commonly referred to as a LAMP stack, are now considered an industry standard method
for delivering dynamic and data-driven web applications.

The application administration website is laid out with a menu on the left side
which represents an application tree. An application tree is a graphicderfation of
the components that ClayUl maintains. The structure of the administration side of
ClayUl is broken into five major components: Applications, App Parts, Elemertts, Da
Tables and Web Services. Figure 5 illustrates the overall user inteffdmeClayUl

administration application and the components with which an administrator iateract

9 n n I-‘ﬂ‘.lwl ﬂ

L CH &= Clayul; e\

clayur Ap :
Components = -
— Welcome to ClayUl. Please
Bpplication ——uo ¢ ClayUI Demo select an item on the left for
Bpp Part ———— @ &l Contacts more options.
& ! Elements
UI Elements —— — = Firstl'\larne
~ EmailAddress
_ State
Data Table = DataTable
App Part —— @ = Products

Figure 5 - ClayUl Administration Application

Clicking on any of the components in the application tree displays the detalil
screen to the right of the application Tree. The detail screens are uséddo de
configuration values that are used in the app parts of the application. In therfgllow
sections, we will cover each component of the application administration oetenial

describe their role in the framework.

6.1 Application

ClayUl has the ability to control the configuration of multiple applications.nEac
application is represented as the root element of the ClayUl applicatiorCinee the
application is created in ClayUl, additional details such as the application&sarad a
description may be added to help document the application. Figure 6 illustrates the

application detail screen.

27

" aClayut

Clayul/

& # ClayUl_Demo 1d: 1
= ¥ Contacts Name: ClayUl_Pems
& [Elements Descrlptign: Clayul Dema
~ FirstName

! Emailaddress
7 State
= DataTable
i & Products

| Save |

Figure 6 - Application Details

Figure 6 demonstrates buttons for adding a new application, adding a new app
part, or deleting the application. The name value is used to identify the dpplmathe
application tree and does not have to be unique as the application ID value idémifies t
application in the backend database. The ID value is also used when the developer is

assigning the application ID later in the ClayUl API.

6.2 App Part

The next component down the application tree in ClayUl is the app part. An app
part is the section of the mobile application the developer would like to control with
ClayUl. These app parts are flexible in that the developer may code arowapugptparts,
controlling some elements outside of ClayUl. Some examples of this would be tab
controls for separating functionality, buttons that add functionality, or coempletw

forms within the application. Figure 7 illustrates the app part detaérscre

28

8ec0o ;o Chayul

|« C M| © s/ Clayul/ N

Relaad Menu Add New AppPart Delete AppPart

g # ClayUl_Demao 1d: 1
£ 4+ Contacts Name: contacts
= [Elements Description: Contacts Test
" FirstName
" EmailAddress
 State
~ DataTable
& M Products

Figure 7 - App Part Details

The above figure demonstrates buttons for adding additional app parts to the
application or deleting app parts from the application. The app part name valutis use
identify the app part on the application tree. This value does not need to be unique as the
app part ID value is used to uniquely identify the app part in the backend database. The
app part ID value is also used when the developer is assigning the app ptet iDtlze
Clay Ul API. There is no limit to the number of app parts that a developer is abi@ to a

to his application.

29

6.3 Elements

The next level in the application tree is the elements level. At this level the
developer will define the user interface elements she wishes to haveajpphesaurt.
These elements are common user interface controls used in mobile applidatidmes.
administrative application we use a generic name for the controls becausaytbe C
does not know the platforms the developer will use for the final application. Figure 8
illustrates the table of elements currently configure for the app paragesbivhen

selecting the elements item in the application tree.

o
8co J o Clayul »

‘(— cf O Clayll/ 2|9

1
= # ClayUl_Demo ElementName Type Label Stored Datatype Length Order Enabled
i i Contacts Firsthame __[Text Box [First Name |1 String |25 |1 1
[EmailAddress [TextBox [Emall Address|i [swing 25 2
@[Elements |state Combo Box|In State? 1 |sering |56 |3 1
" FirstName
" EmailAddress
" State
~ DataTable
u M Products

Figure 8 - Elements Overview

Each element added to the app part has the following details that a developer can

use to configure the layout of the app part in his application:

30

Name — The name of the element is used to represent the element in the
application tree as well as to assign a control name on the Windows Mobile
devices. This value must be unique to each app patrt.
Description — This value is not required, but may be used to further describe the
purpose of the element.
Element Type — This value determines the type of user interface control the
ClayUl API will place in the mobile application. Available user interfaeleanent
options are:
o0 Text Box — An element that allows the user to free form type text
o0 Label — An element that statically displays text
o Combo Box — An element that gives a list of items to choose from in a
drop down list
o Radio Button — An element that displays a grouping of items to choose
from with selection boxes
o Check Box — An element that gives the user the ability to either select or
de-select the item using a single selection box
Label — Text that will display along with the user interface elemérabél is the
selected element type, this is the only text that is displayed
Enabled — Determines whether or not the ClayUl API will display the element i
the mobile application. This option is useful for creating new versions of an
application where the developer wishes to retain historical data from a previous

version of an application

31

e Data Stored — Determines whether or not this element will have an associated dat
field in the underlying data table used to store user generated data from thee mobi
application

e Data Type — The data type maps to a MySQL data type used in the data table.
Available data types are:

0 String — a variable length data type for storing text

0 Integer — a signed or unsigned exact numeric

o Decimal — a signed or unsigned approximate numeric with a default
precision of 18 and scale of 4

o Date — short date data type such as ‘12/12/2012’

o DateTime — date time stored such as ‘12/12/2012 00:00:00°

e Length — If the selected data type is string, the length field is used tondete
the maximum number of characters stored in the field

e List Order — The order in which the elements will appear in the user irgerfac
all of the list order values are the same, the default order is in the order that the
elements are added to the app part in the application administration site

Figure 9 illustrates the form used to configure the element.

32

8090 ;o Chayut

‘(— e ﬁ @) 2/ Clayul/ ol

Add New Element Delete Elnment

2 & ClayUI_Demo Name: State
& 1 Contacts Description:
= [Elements
" FirstName
* EmailAddress

- State
" DataTable
@ I Products j
Element Type: | Combo Box :-I \.EEIK_E]EI\'II‘.HE 0_pl|o_ns |
Label: In Stats?
Enabled: 4 Data Stored: &
Data Type: [(Swina 3| Length: 258

List Order: 3

| Save |

Figure 9 - Element Details

If the developer chooses to use the element types combo box or radio button, he
also has the ability to define the options that the user will have from which to choose.
This is accomplished by selecting the Edit Element Options button in the eldetaitd
form. The form that is displayed gives the user the ability to add a value anigta@scr
to the option. The value field is used in the data table for efficiency of sorting and joins
The description field is used in the user interface to define the options availatbie for
combo box or radio button group. After the developer fills out the two fields and selects

the Add button, the form will refresh with the new values. Figure 10 illustratefoti.

33

" Clayu

C A | & =m/Claylil/

D Add Element Options
| Jue:
@ ¥ ClayUL_Demo value R
Description: | Add. |

&= 14 Contacts
& [Elements

4 FirstName Existing Otins
W Value Descrlptlon
! EmailAddress 1 L

" State 11
_ 3 [Maine
DataTable |l§ cA

w 4 Products |_C\|:|se |

Figure 10 - Element Options

6.4 Data Tables

The final component of the application tree is the Data Table. The data table
detail form gives the developer a look into what records are already stored in the
underlying data table for this app part. As new records are added, this viedepravi
convenient way for the administrator to see what records are being woittendatabase

via the web services ClayUl provides. Figure 11 illustrates this view.

34

8886 L Clayut

|I & C H Oe Claylily & X

= ¢ ClayUI_Demo _ID Z.FirstName 4.EmailAddress B.State
& I Contacts é: TJ'OHH .'_Id':“*,@é;‘a__"‘“;:ﬁ 3:;;
& [Elements 2 sin bsmith@hotmall.com|CA

* FirstName
7 EmallAddress
* State
~ DataTable
1 Products

Figure 11 - Data Table view

6.5 Web Services

In addition to an interface for creating applications and their respective dpp pa
the ClayUl application administration site provides PHP web services;wedsservices
provide the facility of retrieving the application configuration and accepéicgrds from
the ClayUl API for storage in the data table of the app part.

All of the functions of the web services are written using a RESTful actimé
Using this method, all calls to web services use standard HTTP GET and POST methods
REST, which stands for Representational State Transfer, is supported biyaliAdg P
clients on mobile devices and is slowly becoming the dominant interface method for
building web services [Rodriguez08]. The architecture defines that the web service
should use data descriptors such as XML or JSON. We chose to use JSON because it is
supported on more mobile devices than XML. However, the REST architecture suggest

that both JSON and XML could be used based on the request of the client.

35

All of the functions of the web services are written into the ClayUl API sdltleat
developer need not know how to access them. However, for the purposes of this paper,
the following services are defined and available:

e GetAppParts — Returns a JSON object of all of the app parts for the specified

application ID

e GetElements — Returns a JSON object of all of the elements for the expecifi

application ID and app part ID

o GetElementOptions -Returns a JSON object of all of the element options for the
specified application ID and app part ID

e GetDataTableSchema — Returns a JSON object of the schema informatibe that t
ClayUl API uses to define a data table in the local database for stppnzag
data

e PutTableData — Accepts a JSON object of data table records to send to the Clay
database

The calls to these web services use stored procedures in the ClayUl MySQL
database to minimize the possibility of a SQL injection. This also further §gaghe
routines that the PHP web services call to retrieve or accept the JSON abgtin

ClayUl.

36

Chapter 7: ClayUl API Details

One of the goals of ClayUl is to demonstrate a design pattern that is useful on
several mobile operating system platforms using the native progranemmgage. This
is to ensure that the developer has the flexibility to provide native applications that
conform to the platform’s design guidelines while simplifying the process of
implementing segments of the application that are controlled by ClayUl. Tenithist is
necessary to provide an API that is similarly structured for each of tlierpiatso that a
developer should easily understand the method of implementing the API in her
application. Figure 12 gives an overview of the structure of the ClayUl APhand t

relationship of its components with other Ul elements in a mobile application:

St andard non-Cl ayUl

control |l ed | abel \ Carrier 12:00 PM =
CayU Demo App

CayU controlled (Contacts)

Phone Number

i Bmail Address
Sate

: [Wlsconsm

| Qurrent Resident?
P ® Yes © no

St andard non-C ayUl Save to local database
controll ed check boxes Save to remote database

[Save Record] [Clear Record j

St andar d non-Cl ayUl)

control | ed buttons

ClayU controlled
U Elenents

Figure 12 - ClayUl Components

37

The ClayUl API provides all of the facilities necessary for connectirtiget
ClayUl web services and local database. It also provides all of the mgaesthods for
creating a structure for laying out user interface elements thgt/Chall control. In the
following sections we will explain each of the major areas of the ClayUl AdPpeovide

appropriate use cases for each area.

7.1 ClayUl App Base

The ClayUl App Base class is the foundation for all of the facilities ofl@la
Thus, this class is one of the required classes a developer will need toatetarttis
application. The app base class is responsible for setting up a new local datdbase a
creating all of the tables that hold the structure for the app parts codfigurtde
application. The app base class instantiates the utility classes &pglpart, element
and element option classes of the application. These utility classes coathadsithe
base class calls to synchronize the local database with the ClayUéréatabase by
sending requests to the ClayUl web services. The utility classes alsm coathods for
saving app part data to the local database and for saving local database oeterds t
ClayUl remote database through the ClayUl web service. Figures 13 athdbfrate the
use case for the app base class and the conceptual class diagram foattieynoé the
app base class. Both of these diagrams are derived from the Android implementation,

which uses Java. However, the diagrams for Windows Mobile and iOS would be similar.

/] \ N\

Base

ClayUl

Database
Helper
Object

Initialize
local
database

— <uses> =
> 7%
<uses> h

-~ P
Synchronize s
ClayUl locall <uses> //
7/
database y Y
<7~ <uses>
/ < ’
N N /
Instantiate /<
Utility , <uses>
i N
Objects // N
N

WebService
Helper
Object

Save App Part
Data To Local
Database

Figure 13 - App Base Use Case

ClayUlAppBase

38

<uses>
-
-
Save App Part
Data To Web
Service
ClayUlDatabaseHelper DatabaseHelper |< 7777777777777 ‘I SQLiteOpenHelper
<<Imf >
AppPartUtils AppPartWebServiceHelper |< 777777777777 1 ClayUIWebServiceHelper |
<<Implements>>
| AppPartDataAdapter |
ElementUtils ElementWebServiceHelper |€ 77777777777 -I ClayUlWebServiceHelper
<<Implements>>
il
ElementDataAdapter
ElementOptionUtils |-1—1-| ElementOptionWebServiceHelper |é 77777777 1 ClayUIWebServiceHelper

<<Implements>>

ElementOptionDataAdapter |

Figure 14 - ClayUl App Base Conceptual Class Diagra

39

7.2 App Parts and App Part Utils

The app part class is significant because it represents the portion of the user
interface that is controlled by ClayUl. Each app part defined in the ClayUl
administration application is mapped to an app part class in the mobile application. Thus,
it is necessary to instantiate an app part class for each of the app padd.defi

The app part class is responsible for fetching the user interface eddnoemthe
local database and adding the elements to the user interface. The appgaltelas
defines the appropriate methods for refreshing the user interface layoueleément
definition of an app part changes.

Figures 15 and 16 illustrate the use case for the app part class as well as the

conceptual class diagram.

ClayUl

Fetch UI
Elements

<uses>

Element
Data Adapter

/
T

Refresh

App Part Layout

Figure 15 - App Part Use Case

40

| <T>LayoutPanel 1 0..n AppPart

0l..n

| ElementOption "L 1 Element |

Figure 16 -- App Part Conceptual Class Diagram

It should be noted in the conceptual class diagram, a class of the type layout panel
references the app part class. This type is a generic representation elff dgssnwithin
the application. For instance, using the Android platform, the layout panel could be a
LinearLayout class. The layout panel is necessary as it is the clakartdées the
population of user interface elements in the mobile application.

Related to the app part class is the app part utils class. The purpose of thss class i
to simplify the implementation of the app base class when making calls tdabasa
helper and web service helper objects. The methods within the app part utilseclass a

publicly available; however, it is not necessary to call them directly.

7.3 Element and Element Utils

The element class is significant in that it represents an individual uséacete
component that is associated with an app part. The element class is responsible for
fetching the element options that are necessary for the element if the edacent
component type for the element is a combo box or an option group of radio buttons.

Figure 17 illustrates the use case for the element class.

41

ClayUl
Fetch Element
— Element — - <uses> - =>(Option Data
Options Adapter

Element

Figure 17 -- Element Use Case

Related to the element class is the element utils class. The purpose aisthis cl
to simplify the implementation of the app base class when making calls tdabasa
helper and web service helper objects. The methods within the element wiilsrelas

publicly available; however, it is not necessary to call them directly.

7.4 Implementation

One of the goals of the ClayUl APl is to provide a simplified method for
implementing a dynamic and adaptable user interface that performs consk®sueah
as data entry and information representation. As was mentioned above, we have
accomplished this through the use of utility classes and a base class. The minimum
requirement for the ClayUl API is to implement an instance of the Clayk# Blass and
the ClayUl App Part class. In this section we will give an example impliatnen for
use on the Android platform. The fundamentals of this implementation are applicable on

other platforms; however, appropriate adaptation for the target platforroassaey.

42

The implementation on Android is as follows:

1. Define and instantiate a LinearLayout class.

2. Instantiate a ClayUl App Base class by passing the applicatitmoibthe
ClayUl Application Administration website and the base URI for the ClayUl
Application Administration website to the constructor.

3. Instantiate a new ClayUl App Part class by calling the getAppPart method from
the App Base class, which returns an instance of the App Part, class. This method
requires that the app part ID from the ClayUl Application Administration wesbsi
is passed to the constructor.

4. Call the fetchElements method from the ClayUl App Part class by passing the
method a Context object.

5. Call the refreshLayout method from the ClayUl AppPart class by passing the
method the LinearLayout class defined previously and a Context class.

6. Override the onResume method of the Application Activity and add the ClayUl
App Base openDB method to open the SQLite database when the activity starts.

7. Override the onPause method of the Application Activity and add the ClayUl App
Base closeDB method to close the SQLite database when the activityad or
pauses.

At this point the application should be functional; however, not very useful. The
developer needs to provide a function for implementing the synchronization methods of
ClayUl which saves form data to the local database and uses a the webteesgitwt the

local database records to the ClayUl remote database. The ClayUl AfRliesrthe

43

necessary methods for these functions; however, it is up to the developer to design an
appropriate implementation.

In the following example, we chose to implement the synchronization function of
ClayUl by adding a menu to the mobile application. The following steps illeigrist
implementation.

1. Override the onCreateOptionsMenu method of the default Android Activity and
add menu options for the function of syncing the app part schema with the ClayUl
web service, saving local database records to the ClayUl remote éatafds

saving the app part data from the form to the local database as follows:

CODE: —mm oo e
@Override
public boolean onCreateOptionsMenu(Menu menu) {
menu.add(MendlONE 1, MenuNONE, R.stringsyncSchema
menu.add(MendlONE 2, MenuNONE, R.stringsyncDat3;
menu.add(MendONE 3, MenuNONE R.stringsaveAppPait
return true
}
END CODE: —---m- oo oo oo
2. Add a method that will handle the function of calling the ClayUl API method for

synchronizing the local database with the ClayUl web service. This method
fetches the database records that control the Ul layout in the mobile applicati

The implementation of this method is as follows:

44

(@] 5] RS R

private void syncSchema() {
Il sync with web service
appBase.syncLayoutStructure();
Il fetch new elements from local database
appPart.fetchElementk(s);
Il refresh Ul layout
appPart.refreshLayout(appPartLayadhbts);
ToastmakeTexgetApplicationContext(), "Layout updated",

ToasLENGTH_SHOR)I'show();

}
2] 70) ——

3. Add a method that will handle calling the ClayUl APl method for saving the app
part data from the form to the local database. The implementation of this method

is as follows:

(@] 5] R R

private void saveAppPart() {
appBasesaveAppPartDataLocappPartappPartLayoytthis);

}
= N5 0]] = ——

4. Add a method that will handle calling the ClayUl APl method for sending the
local database records to the ClayUl web service to insert in the remotesdataba
The implementation of this method is as follows:

CODE: ----=mmmmmmmmmmm e

private void syncData() {

45

appBase.saveAppPartDataWeb(appmiait);

}
2] 70) ———

5. Add the ability to call our methods to the menu items by overriding the
onOptionsltemSelected method like the following:

CODE: —--mmm oo
@Override

public boolean onOptionsltemSelected(Menultem item) {

/I check menu ID

switch (item.getltemlId()) {
case 1: this.syncSchemay();
break;
case 2: this.syncData();
break;
case 3: this.saveAppPart();
break;

}

return false;

}
= N5 0]] = ———

46

Chapter 8: Evaluation

In order to evaluate the usability of the ClayUl API, we developed a ppetot
app that demonstrates the capabilities of the ClayUl API. In the followatigpisg, we
will describe the prototype app and compare the implementation of the app on the
Android and Windows Mobile platforms, which will demonstrate the flexibility of
applying different design principals with the ClayUl app parts. Finally, ilgravide
some details on how the ClayUl APl may simplify the development processrfam

application functionality.

8.1 ClayUl Prototype

The mobile application we created to demonstrate the ClayUl API contains two
ClayUl app parts. The first app part is called Contacts, and its purpose is t@ alkar
to enter a few pieces of information related to some contacts he wishek tio thés
application. The second app part is called Products, and its purpose is to allow a user to
enter a few pieces of information related to some products that he wighesktm his
application. From a broad overview, a use for such an application could be to enter
purchased goods, and the sales representatives responsible for these gogdse 18 F

we illustrate the ClayUl application tree that demonstrates this.

a7

‘ L = C # ‘: s [Claylil/ o | & o I QY

= ¥ ClayUl_Demo Id: 1
= Bl Contacts Name: ClayliT_Demo
&) Elements Description: CayUt demo application,
7 FirstName
* EmailAddress
- State
~ DataTable
& kL Products

&) Elements
* Description
* ProductName
* Price
7 SKU
" DataTable

| save |

Figure 18 -- ClayUl prototype Application Tree

When we first configured the ClayUl prototype, we configured all of the user
interface element types as basic text boxes. We did this in order to denedihstrat
process of synchronizing the ClayUl configuration database with the remgtélCla
database and letting the ClayUl API refresh the layout. In Figure 1ifusteate the
resulting application implemented in Android on the left and Windows Mobile 6 on the

right.

48

Contacts
Email Address
Contacts app part
app part
Products
app part | SaveContact | Products
Contacts || Products e ! app part

Figure 19 -- ClayUl Prototype (Android and WindoMsbile implementations)

In the example shown, we separated the two app parts with a horizontal bar to
differentiate between the two on the Android implementation. Whereas in the Véindow
Mobile implementation, we used tab controls to separate the app parts. In the Android
implementation prototype app, the only user interface elements that requivedl ma
configuration were the placement of the FlowLayout views and the horizontal gaparat
bar. In the Windows Mobile implementation prototype app, the only user interface
elements that required manual configuration were the FlowLayout panels o the ta
controls, and the buttons. The ClayUl API creates the remaining user inedgaemnts
at runtime.

To demonstrate the ability of ClayUl to modify the user interface at rentia
changed some of the user interface types in the administration applicatichawged
the state and description fields to combo boxes and the price field to a radio group.

After making a call to the ClayUl API's method to synchronize the locall@la
configuration database with the remote database, our application makewmdhell

ClayUl API’s refresh layout method. These functions are executed via a nkectiose

49

in the Android implementation and the Windows Mobile implementation. The resulting
user interface changes illustrated in the Figure 20 were accomplighedtvany code

changes from the developer.

Contacts
Contacts app part
app part
Product Name
PrOduCtS Description
app part Box | SaveContact | Products
Price

Contacts | Products | — app part

(D)s500(2)s1000 (%) $15.00
Figure 20 -- Resulting user interface

Another feature of the ClayUl API is the ability to save records to the local
database as well as push the records to a remote database using a eebEervi
demonstrate this using the Android implementation, we will enter a new costact,
save it to the local database and then post it to the web service. Figure 21 shows that

our remote data table, we have three contact records.

50

80o , Clayul

‘ = i, Nal Clayul

Reload Menu

o ClayUl_Demo

_ID 2.FirstName 4.EmailAddress B8.5tate

= 1 Contacts LSS Lol oy
g . 21 |[mary mdoetigmall.com
= L Elements 22 (Bl bsmith@hotmall,com
" FirstName

" EmailAddress

Figure 21 -- Contacts data table before recordtiaadi

Within the ClayUl prototype app on Android, we enter some contact information

as illustrated in Figure 22.

AR = u
(ClayuIDemo |

st Name
James

Email Address

Figure 22 -- Entering contact information

Once we have finished entering our contact information, we need to save the form

data to the local database and subsequently push the data to the ClayUl web service. |

51

our Android application, this is accomplished using two menu functions that call the

ClayUl API methods to carry out the tasks. Once the records are suttgewsfien to

the remote database, we can verify the successful operation by refrdeh@igyUl

administration application data table page. This result is illustrated irgtire 23.

o Clayun

“ C N | © el Clayll/

Reload Menu

= ClayUi_Demo _1D 2.FirstName 4.EmailAddress B8.State
a B Contacts 20 batn kissBomations
5 3 El o 21 |Mary imdoe@gmall.com
i, =N 22 [Bill bsmith@hotmall.com
" FirstName 23 [James |iclark@gmail.com |[CA

T FmailAddress

Figure 23 -- Successful web service post result

8.2 Ease of implementation

In the previous section we demonstrated the implementation of the ClayUl APl on

the Android platform using a prototype app. In this app we provided an example form

which contained user interface elements and we provided facilities to saventhdafta

to the local database and subsequently post the local database records to a eeeboservi

that it is stored in a remote database. In this section we will demonsé &tentbfits of

52

the ClayUl APl by comparing our prototype application to an example apphdiat
accomplishes the same function without using the ClayUl API.
For comparison, we duplicated the ClayUl prototype application without the use

of the ClayUl API. This mobile app is illustrated in Figure 24.

all B 443

Email Address

In State?

WI

Product Name

Description

Figure 24 - Native mobile app for comparison

In order to accomplish this, we needed to manually create all of the usercmterfa
elements and develop the methods for creating the local database, saving to tegdor
to the local database and posting the local database records to the web sersice. Thi

ultimately required significantly more development time for this simpleil@app.

53

Figure 25 provides a comparison of the development of these two similar mobile apps on

the Android platform.

Comparison ‘ Native ClayUl API
Implementation
Approximate time to develop 2 hours 30 minutes
Total # of classes 7 1
Total lines of code 618 145
Knowledge of process for writing to Yes No

local database and web service

Figure 25 - Native app vs. ClayUl APl app

The target audience of the ClayUl web application is application adraiois

that may or may not have experience developing mobile applications while the audienc

of the API is mobile application developers. To get feedback from these target

audiences, a demonstration of the ClayUl web application and APl was giverotgpa g

of four application developers and two application administrators. After the

demonstration, all participants were given a survey to assess #wions to ClayUl.

Both groups were asked to answer the following questions regarding thel GlalyU

application:

1.

2.

What is your overall rating of the ClayUl Administrative web application?
How easy did you find the navigation of the user interface?

How would you rate the ease of setting up a new application?

How would you rate the ease of configuring user interface elementsstmgxi

App Parts?

5. How would you rate the need to expand Claus’s support to include more data types

All questions were evaluated on a scale of one to five. One was considered the least

54

and user interface element types?

favorable while five was considered the most. Figure 26 illustrates theotthdse

guestions, the number provided represents the mean of all scores:

5
4
3
2
1
0 T T T T 1
Overall rating Ease of Ease of Ease of element Need for
navagation application set changes expansion
up

Figure 26 -- ClayUl Administration Web Applicati@urvey Results

The application development group was also asked the following questions

regarding the ClayUl API:

1.

2.

What is your overall rating of the ClayUl API?

How easy did you find the implementation of the API?

How would you rate the flexibility of using the API in the design of a mobile
application?

How would you rate the usefulness of this API?

How would you rate the need to expand the ClayUl API to support more data

types, user interface element types and mobile platforms?

55

All questions were evaluated on a scale of one to five. One was considered the least
favorable while five was considered the most. Figure 27 illustrates theotthdse

guestions; the number provided represents the mean of all scores:

Figure 27 -- ClayUl API Survey Results

56

Chapter 9: Conclusion and Future Work

In this thesis, we have demonstrated a design pattern, framework and API that
assists with the development of mobile apps that adhere to their respective design
guidelines. In the next sections we will summarize the design and approachivie use
this paper, describe the contribution of this thesis, evaluate the short and longpewh i

of this thesis and propose the direction for future work.

9.1 Summary

ClayUl is a framework and API that is designed to assist developers with the
process of building mobile apps that target multiple mobile operating systéammpka
We have given evidence that the mobile computing environment is growing in the
number of users as well as the number of mobile operating platforms. In adulitids) t
the number of different mobile platforms support different native programmuggaaes
and design guidelines. ClayUl assists developers who design mobile apps that targe
different mobile platforms by allowing the developer to adhere to the designigesdef
the platform. In addition to this, our framework and API assist with the process of
creating a local database for saving user generated data and postilagetiitsa database
enabled web service where additional applications may access it.

The distinction of our solution is that it aids a developer with the construction of
segments of an overall mobile application while providing flexibility in the desighe
application so that the developer may apply the design guidelines of the platform. Our

solution provides an API that is written in the native programming language tair ¢fes

57

platform. This allows the developer to use the appropriate Software Developngent Kit
and any features and benefits that may be specific to the target plativithsour
solution, there is no reason to cut out a feature because it may not be supported on

another platform.

9.2 Contribution of this thesis

1. Working API for flexible and cross platform user interface design: as thdeanobi
computing industry continues to grow in divergence with respect to the mobile
operating systems used, it will become increasingly difficult to creatsle
applications that target these systems and continue to provide an user experience
that is fluid and expected with respect to the rest of the platform. Usinglan A
and design pattern for common user interface elements, a developer has the
flexibility to apply platform specific design principals.

2. Working API for a common system of storing and retrieving application data:
storing data in a local database as well as utilizing web services fargpast
retrieving data is a common task in mobile application development. When a
developer creates an application on multiple platforms, there is a chance the
platforms use different technologies for these tasks. An API that provides this
functionality for a developer reduces the need for a developer to learn the
different methods of accomplishing these tasks.

3. Applying distributed computing design patterns to mobile application design: one
of the benefits of mobile computing is that it helps to keep us connected and

allows us to access data on the move. The application of distributed computing

58

design patterns in the design of mobile applications helps to provide more robust
systems that have the capacity to deliver more value to the consumer. Hdsimg t
principals, a mobile app becomes a part of an overall system instead ohdn isla

of information.

9.3 Short and long-term impact

The growth of mobile devices in our daily lives is staggering. Manufacturers of
these devices continue to develop their own mobile operating platforms and developers
continue to develop mobile apps that enrich our daily activities. As developers dtdempt
target a larger audience of users using these mobile operating plattoegnwill
struggle to maintain applications that fit seamlessly into their targéonoles. It is our
belief that the framework and APIs that we developed add value to the ovieralbef
developing these mobile applications.

In the long term, mobile applications will regularly access informatiorugtro
web services and cloud services to provide functionality not yet attempted. The
framework we developed helps to alleviate the learning curve for utilizesgptservices
by providing simple to use methods that are implemented using similar procedwais
platforms. The developer does not need to know the underlying database technology
used, or the connectivity methods used for connecting to web services.

Overall, the use of our framework and API could reduce the cost to develop an
application that targets multiple platforms. Unit tests performed on the édtweduce
the amount of bugs introduced into systems by developers that do not fully understand

the proper implementation of the features that the API provides. Additionallyodex®

59

could bring their mobile apps to a larger audience of users by targeting more mobile
platforms while maintaining the look and feel intended by the design guidelires of t

target platform.

9.4 Future work

At the time of this paper the ClayUl only supports a fraction of mobile platforms
ClayUl also only supports a fraction of the layout types and user inteftéanerd types.
In order for wider adoption, ClayUl should be expanded to support, at least, the most
popular mobile platforms. Additionally, ClayUl should be extended to include more of
the widely used user interface layouts and controls.

In addition to the core functionality additions that ClayUl needs, no
considerations for security was included in this project. The ClayUl Admitmstra
Application and web services should be secured using SSL, and the applications that are
configured in ClayUl should be secured using a combination of username and passwords
or digital certificates.

Future expansion of this project should also include a seamless method of
deploying the backend web server, PHP scripts and MySQL database so thizlpote
users of the framework could deploy a private version of the framework. As of this

writing, there is only a single server sized appropriately for testing.

60

BIBLIOGRAPHY

[Albanesius11] C. Albanesius (2011, FebruaryShartphone Shipments Surpass PCs
for First Time. What's NextfOnline]. Available:
http://www.pcmag.com/article2/0,2817,2379665,00.asp

[Androidl1] (2012, June 13)What is Android7Online]. Available:
http://developer.android.com/guide/basics/what-is-android.html

[Apple07] (2007, January 9\ pple Reinvents the Phone with iPh¢@aline]. Available:
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-
iPhone.html

[Apple08] (2008, January 1Revolutionary PhonfOnline]. Available:
http://web.archive.org/web/20080111051348/http://www.apple.com/iphone/features
/index.html

[Applel0] (2010, March 5)Pad Available in US on April BOnline]. Available:
http://www.apple.com/pr/library/2010/03/05iPad-Available-in-US-on-ABriitml|

[Applel2] (2012)Develop for iOS: The world’s most advanced mobile platform
[Online]. Available:https://developer.apple.com/technologies/ios/

[Bellsouthl] (1993, November 83ellsouth, IBM unveil personal communicator phone
[Online]. Available:
http://findarticles.com/p/articles/mi_m3457/is_ n43 _vl1l/ai_14297997/?tag=content;
coll

[Block08] R. Block (2008, March 6).ive from Apple’s iPhone SDK press conference
[Online]. Available:http://www.engadget.com/2008/03/06/live-from-apples-
iphone-press-conference/

[Capra02] L. Capra; E. Wolfgang; G. Blair; P. Grace; P. Mascolo, “Explaigfigction
in mobile computing middlewareé¥obile Computing and Communications Review,
VO. 6, no. 4, pp34 — 34, January 2002.

[Chien-Liang05] F. Chien-Liang; , G.-C. Roman; L. Chenyang; , "Rapid Development
and Flexible Deployment of Adaptive Wireless Sensor Network Applications,"
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE
International Conference oywvol., no., pp.653-662, 10-10 June 2005 doi:
10.1109/ICDCS.2005.63

[Cole03] A. Cole; S. Duri; J. Munson; J. Murdock; D. Wood, "Adaptive service binding
middleware to support mobilityDistributed Computing Systems Workshops, 2003.
Proceedings. 23rd International Conference,al., no., pp. 369- 374, 19-22 May
2003 doi:10.1109/ICDCSW.2003.1203581

61

[Eaton10] N. Eaton (2010, January 2Kpple iPad: Your Impressiong®nline].
Available: http://blog.seattlepi.com/microsoft/2010/01/27/apple-ipad-your-

impressions/

[Fox98] A. Fox, S. Gribble, Y. Chawathe and E. Brewer, “Adapting to networks and
client variation using infrastructural proxies: Lessons and perspectiz€E’ Pers.
Commun.August, 1998, pp. 10-19, Aug., 1998.

[Fried11] I. Fried (2011, July 27Annual Smartphone Sales Could Reach One Billion by
2016[Online]. Available:http://allthingsd.com/20110727/annual-smartphone-sales-
could-reach-1-billion-by-2016/

[Grace04] P. Grace, “Overcoming middleware heterogeneity in mobile cogput
applications,” Ph.D. dissertation, Computing Department, Lancaster Unyyersit
Lancaster, England, 2004.

[Haahr00] M. Haahr; R. Cunningham; V. Cahill , "Towards a generic architecture f
mobile object-oriented applicationsérvice Portability and Virtual Customer
Environments, 2000 IEEEvol., no., pp.91-96, 2000 doi:
10.1109/SPVCE.2000.934166

[Haywood11] J. Haywood (2011, July 14)edia Tablets Have the Opportunity to
Transform the Enterprise: IDC Canada Examines Media Tablet Use in Canadian
BusinesgOnline]. Available:
http://www.idc.com/getdoc.jsp?containerld=prCA22937111

[IDC12] (2012, March 13)Media Tablet Shipments Outpace Fourth Quarter Targets;
Strong Demand for New iPad and Other Forthcoming Products Leads to Increase
in 2012 Forecast, According to ID[Online]. Available:
http://www.idc.com/getdoc.jsp?containerld=pruS23371312

[Markoff99] J. Markoff (1999, August 30Microsoft Brings In Top Talent To Pursue
Old Goal: The TablefOnline]. Available:
http://www.nytimes.com/1999/08/30/business/microsoft-brings-in-tegntab-
pursue-old-goal-the-tablet.html?pagewanted=all&src=pm

[Markoff07] J. Markoff (2007, Nov. 4)l, Robot: The Man Behind the Google Phone
[Online]. Available:
http://www.nytimes.com/2007/11/04/technology/04google.html?pagewanted=all

[Miller11] H. Miller (2011, January 18)ablet-Computer Sales to Triple This Year, IDC
SaygOnline]. Available:http://www.bloomberg.com/news/2011-01-18/tablet-
computer-sales-to-triple-to-44-6-million-units-this-year-idcsshiml

[Murarasu09] A.F. Murarasu; T. Magedanz, "Mobile Middleware Solution for Autemati
Reconfiguration of ApplicationsJhformation Technology: New Generations,
2009. ITNG '09. Sixth International Conference, mol., no., pp.1049-1055, 27-29
April 2009 doi: 10.1109/ITNG.2009.194 [Nagaminella] K. Nagamine (2011,

62

January 12)PC Market Records Modest Gains During Fourth Quarter of 2010,
According to IDC[Online]. Available:
http://www.idc.com/getdoc.jsp?containerld=pruS22653511

[Nagaminellb] K. Nagamine (2011, March 289)C Forecasts Worldwide Smartphone
Market to Grow by Nearly 50% in 20I®nline]. Available:
http://www.idc.com/getdoc.jsp?containerld=pruS22762fpdgaminel2a] K.
Nagamine (2012, April 11PC Market Returns To Positive Growth, Though Gains
Remain Small, According to ID[©nline]. Available:
http://www.idc.com/getdoc.jsp?containerld=pruS23433412

[Nagaminel2b] K. Nagamine (2012, FebruaryShartphone Market Hits All-Time
Quarterly High Due To Seasonal Strength and Wider Variety of Offerings,
According to IDC[Online]. Available:
http://www.idc.com/getdoc.jsp?containerld=pruS23299912

[Nagaminel2c] K. Nagamine (2012, January PIj.Market Stumbles on HDD Shortage
While U.S. Market Sees Worst Annual Growth Since 2001, According to IDC
[Online]. Available:http://www.idc.com/getdoc.jsp?containerld=pruS23261412

[Petteyl0] C. Pettey; L. Goasduff (2010, October IBartner says worldwide media
tablet sales on pace to reach 19.5 million units in 20@@line]. Available:
http://www.gartner.com/it/page.jsp?id=1452614

[Petteyll] C. Pettey (2011, September@artner says PC shipments to slow t03.8
percent growth in 2011; Units to increase 10.9 percent in 2Q@aline].
Available: http://www.gartner.com/it/page.jsp?id=1786014

[Reedll] B. Reed (2011, December E)terprise smartphone and tablet incursion to
grow in 2012I0Online]. Available:
http://www.networkworld.com/news/2011/122311-outlook-smartphone-tablet-
254341 .html

[Rhomobilel] (2011, September 119martphone apps made eg&nline]. Available:
http://rhomobile.com

[Rodriguez08] A. Rodriguez (2008, Nov GRESTFUL Web services: The
basics[Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-restful/

[Rubin07] A. Rubin (2007, November 5yVhere’s my Gphond®nline]. Available:
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html

[Savov11] V. Savov (2011, Jan. 2)lotorola Xoom Launching February T at Best
Buy (update: price at $700JOnline]. Available:
http://www.engadget.com/2011/01/22/motorola-xoom-launching-february-17th-at-
best-buy/

63

[SchapiraOla] A. Schapira.; K. De Vries; C. Pedregal-Martin, "MANIC: an-gperce
system to create and deliver courses over the InteAygplications and the
Internet Workshops, 2001. Proceedings. 2001 Symposiymobn no., pp.21-26,
2001 doi: 10.1109/SAINTW.2001.998204

[SchapiaraOl1lb] A. Schapira.; K. De Vries; C. Pedregal-Martin, "MANIC: an open-
source system to create and deliver courses over the Inté&ppli€ations and the
Internet Workshops, 2001. Proceedings. 2001 Symposiymobn no., pp.21-26,
2001 doi: 10.1109/SAINTW.2001.998204

[T-Mobile08] (2008, September 23))-Mobile Unveils the T-Mobile G1 — the First
Phone Powered by Androj@®nline]. Available:http://tinyurl.com/7wqobga

[Vaughan-Nichols04] S.J. Vaughan-Nichols, "Wireless middleware: glusaéamobile
infrastructure,'Computer, vol.37, no.5, pp. 18- 20, May 2004 doi:
10.1109/MC.2004.1297229

[Webster12] (2012, June &martphongOnline]. Available:http://www.merriam-
webster.com/dictionary/smartphone

[Zhang04] H. Zhang and W. Ma, “Adaptive content delivery on mobile internet across
multiple form factors,'Multimedia Modeling Conferenc@004. Proceedings, “10
International, vol., no., pp. 8, 5-7 Jan. 2004. doi: 10.1109/MULMM.2004.1264960

[Zhigang06] H. Zhigang; X. Xing; L. Hao; L. Hanging; M. Wei-Ying, "Design and
Performance Studies of an Adaptive Scheme for Serving Dynamic Web Content in
a Mobile Computing Environmentiobile Computing, IEEE Transactions on
vol.5, no.12, pp.1650-1662, Dec. 2006. doi: 10.1109/TMC.2006.182

64

Appendix A

Table of Definitions

heir

Term Definition
Android Mobile operating system developed by Google for use with t
smartphone and tablet computers
Apache A widely used open source web server

API

Application Programming Interface

Cloud Computing

System for delivering computing resources as a service

CSS3

Third version of the Cascading Style Sheets document desdriptor

Design Pattern

A programatic solution that is reusable in future softleargns

Distributed Computing environment where two or more devices share the

computing burden of processing and displaying computational applications

Framework Structure of services and resusable libraries to implement anp
application

HTML5 Fifth version of the HTML markup language used for creating
dynamic web applications

iI0S Mobile operating system developed by Apple for use with their
smartphones and tablet computers

Java Native programming language used for developing Android
applications

JavaScript Scripting language similar to Java used to add dynamic content to
web applications

JSON JavaScript Object Notation, a text-based data descriptor for data
interchange

LAMP Linux - Apache - MySQL - PHP

Linux Open general purpose operating system

MySQL A widely used open source database server engine

Objective-C Native programming language used for developing iOS
applications

Pervasive Computing using technology which allows for remote access|of

Computing information and services

PHP Server-side scripting language used to build dynamic and data-
driven web applications

REST Representational State Transfer, an architecture used for
distrubted systems

SDK Software Development Kit

Sensor Networks Computing environment built from distributed autonomous
sensors that monitor environmental conditions

Smartphone A mobile computing device that has a telephony radio interface

SQLCE A database engine based on Microsoft SQL Server optimized for
portability

SQLite An open source database engine optimized for portability

65

Tablet Computer

A mobile computing device that is optimized for a touch use
interface

1

Web Service System of retrieving and saving data using standard HTTP GET
and POST methods
XML eXtensible Markup Language, a text based descriptor for data

interchange

Appendix B

The source code for this project is available at

https://docs.google.com/folder/d/0BylubvV-X02FQWhkdXc2azY10Q1U/edit

66

