
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

ClayUI: A Framework for Delivering Object
Properties to Native Mobile Application
Components
Andrew Lize
Marquette University

Recommended Citation
Lize, Andrew, "ClayUI: A Framework for Delivering Object Properties to Native Mobile Application Components" (2012). Master's
Theses (2009 -). Paper 149.
http://epublications.marquette.edu/theses_open/149

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

CLAYUI: A FRAMEWORK FOR DELIVERING OBJECT PROPERTIES TO

NATIVE MOBILE APPLICATION COMPONENTS

by

Andrew Lize

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin

August 2012

ABSTRACT
CLAYUI: A FRAMEWORK FOR DELIVERING OBJECT PROPERTIES TO NATIVE

MOBILE APPLICATION COMPONENTS

Andrew Lize

Marquette University, 2012

As technology advances in the field of mobile computing with smartphones and

tablet computers becoming less expensive, people are adopting these devices into their
daily lives. Due to this adoption, many developers are finding opportunities to develop
apps that target this growing form factor. One of the issues that developers come across
when developing for these multiple platforms is that there is a need to redesign common
elements of their applications for each of their platforms. They are also challenged with
the decision of breaking the prescribed design guidelines for each of the platforms they
are developing for so that they are able to provide support for these applications in the
future.

In this thesis, we propose a solution to this problem by generalizing common user
interface elements and configure them outside of the application. Our solution, called
ClayUI, uses a client server model to house and publish user interface elements to a
mobile application using an API that is written in the target platform’s native
programming language. Our solution allows a developer to create a mobile application
that adheres to the platform’s design guidelines with the flexibility of being able to port it
to other platforms without having to do a full redesign of the application. Our solution
also introduces features that assist the developer with the process of creating local and
remote database storage for the configured elements.

i

ACKNOWLEDGMENTS

Andrew Lize

For his support and encouragement to complete this thesis, I would like to thank

Dr. Sheikh Iqbal Ahamed. Without his inspiration, I was on the fence about whether or

not to attempt this goal. Dr. Ahamed has always been a source of encouragement in my

academic program, providing challenges and advice wherever I needed them.

I would also like to thank Dr. Thomas Kaczmarek and Dr. Rong Ge for serving on

my thesis committee and helping me despite my hectic schedule.

Most importantly, I would like to thank my wife, Kristine Lize, for supporting me

through this program. I am immensely gracious for her patience and loving support of

me.

Finally, I would like to give thanks to my employer, Douglas Dynamics, Inc. for

providing financial support of my academic career.

 ii

TABLE OF CONTENTS

LIST OF FIGURES …………………………………………………………………… V

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: BACKGROUND ... 3

2.1 Mobile Computing --- 3

2.2 Mobile Computing Form Factors -- 4

2.3 Client/Server Computing -- 5

2.4 Cloud Computing --- 5

2.5 Apple iOS -- 6

2.6 Google Android --- 7

2.7 Design guidelines for iOS and Android --- 8

2.8 Challenges of Supporting Multiple Platforms -------------------------------------- 9

CHAPTER 3: RELATED WORK .. 11

3.1 Code once distribute many --- 11

3.2 Dynamic Content -- 12

3.3 Dynamic Services --- 13

3.4 Assistive application for code generation -- 15

CHAPTER 4: MOTIVATION .. 17

 iii

Scenario 1 --- 19

Scenario 2 --- 19

Scenario 3 --- 20

CHAPTER 5: OVERVIEW .. 22

5.1 Administrative site -- 23

5.2 Database backend -- 23

5.3 Web Services --- 23

5.4 Local Database --- 24

5.5 Client APIs --- 24

CHAPTER 6: ADMINISTRATIVE INTERFACE FOR ADAPTABLE USER

INTERFACES .. 25

6.1 Application --- 26

6.2 App Part --- 27

6.3 Elements -- 29

6.4 Data Tables --- 33

6.5 Web Services --- 34

CHAPTER 7: CLAYUI API DETAILS ... 36

7.1 ClayUI App Base -- 37

7.2 App Parts and App Part Utils -- 39

 iv

7.3 Element and Element Utils --- 40

7.4 Implementation -- 41

CHAPTER 8: EVALUATION ... 46

8.1 ClayUI Prototype -- 46

8.2 Ease of implementation --- 51

CHAPTER 9: CONCLUSION AND FUTURE WORK .. 56

9.1 Summary -- 56

9.2 Contribution of this thesis -- 57

9.3 Short and long-term impact -- 58

9.4 Future work --- 59

BIBLIOGRAPHY ... 60

APPENDIX A ... 64

APPENDIX A ... 64

APPENDIX B ... 66

 v

LIST OF FIGURES

FIGURE 1 -- A COMPARISON OF COMMON CONTROLS ... 8

FIGURE 2 -- COMBO BOX DIFFERENCES ... 9

FIGURE 3 -- COMPARISON OF FEATURES ... 16

FIGURE 4 -- CLAYUI OVERVIEW ... 22

FIGURE 5 - CLAYUI ADMINISTRATION APPLICATION .. 26

FIGURE 6 - APPLICATION DETAILS .. 27

FIGURE 7 - APP PART DETAILS ... 28

FIGURE 8 - ELEMENTS OVERVIEW... 29

FIGURE 9 - ELEMENT DETAILS ... 32

FIGURE 10 - ELEMENT OPTIONS ... 33

FIGURE 11 - DATA TABLE VIEW ... 34

FIGURE 12 - CLAYUI COMPONENTS... 36

FIGURE 13 - APP BASE USE CASE ... 38

FIGURE 14 - CLAYUI APP BASE CONCEPTUAL CLASS DIAGRAM 38

FIGURE 15 - APP PART USE CASE ... 39

FIGURE 16 -- APP PART CONCEPTUAL CLASS DIAGRAM 40

FIGURE 17 -- ELEMENT USE CASE .. 41

FIGURE 18 -- CLAYUI PROTOTYPE APPLICATION TREE 47

FIGURE 19 -- CLAYUI PROTOTYPE (ANDROID AND WINDOWS MOBILE

IMPLEMENTATIONS) ... 48

FIGURE 20 -- RESULTING USER INTERFACE .. 49

 vi

FIGURE 21 -- CONTACTS DATA TABLE BEFORE RECORD ADDITION 50

FIGURE 22 -- ENTERING CONTACT INFORMATION.. 50

FIGURE 23 -- SUCCESSFUL WEB SERVICE POST RESULT 51

FIGURE 24 - NATIVE MOBILE APP FOR COMPARISON .. 52

FIGURE 25 - NATIVE APP VS. CLAYUI API APP.. 53

FIGURE 26 -- CLAYUI ADMINISTRATION WEB APPLICATION SURVEY

RESULTS ... 54

FIGURE 27 -- CLAYUI API SURVEY RESULTS .. 55

 1

Chapter 1: Introduction

 Since the birth of the smartphone in 1993 [Bellsouth1], mobile computing has fast

become a popular method of accessing data and information. With the advent of more

powerful mobile hardware, technologies like cloud computing and creatively designed

and applied application software, smartphones and tablet computers are beginning to

replace the role of personal computers and laptops

[Nagamine12a][Nagamine11a][Miller11] [Albanesius11] [Nagamine11b] [Fried11]. As

evidence to the popularity of smartphones and tablet PCs, the fourth quarter sales for

2011 showed declines in PC sales growth [Nagamine12c] while the growth of

smartphone sales hit a record high [Nagamine12c] and tablet sales outpaced their forecast

[IDC12] in the same quarter.

Smartphones and tablets are also becoming more pervasive in enterprise

environments [Haywood11] [Reed11]. However, as enterprises are accustomed to

providing custom software to their end users, the development and support of software on

these devices, which have unique design guidelines, several form factors, and various

screen sizes, is challenging and time consuming.

The purpose of this paper is to introduce and demonstrate a design pattern,

framework and API called ClayUI that assists in the development of mobile apps that

adhere to their respective design guidelines. In this paper, we will show that certain

portions of apps may be generalized enough to allow for dynamic layout reflow and

runtime design changes which typically might require code changes and application

updates. This paper will also propose the idea that by using this technique, an

 2

organization could develop a unified storage location and methodology for data created

on mobile devices.

This paper will demonstrate an administrative user interface that a developer can

use to define generalized portions of the user interface called app parts. The

configuration for these app parts are stored in a database local to the mobile device as

well as a database that is accessible via the Internet using web services. The paper will

also demonstrate the use of an API that assists the developer with the integration of the

app parts in their mobile application. Finally, because of the nature of the framework

required for the distribution of app part configurations, we will demonstrate how our API

also provides assistance with the process of saving mobile application form data to a local

database and a remote database using web services.

The following describes the organization of the rest of the paper. In chapter 2, we

will cover background information and describe any concepts that are integral to the

paper but not necessarily generally known in the field of computing. In chapter 3, we

will discuss related works. In chapter 4, we will describe the motivation for the ClayUI

system. In chapter 5, we will cover a general overview of the ClayUI system. In chapter

6, we will cover the administrative web application used for setting up applications as

targets for the ClayUI API. In chapter 7, we will cover the general usage of the API and

its application in a prototype app. In chapter 8, we will evaluate the benefits of using

ClayUI for application development. In chapter 9, we will conclude by describing the

contribution of this thesis, summarize any short and long-term impacts and propose

future work for this project.

 3

Chapter 2: Background

In this chapter, we will introduce the background information and concepts that

are integral to this paper but are not necessarily generally known in the field of

computing. We will introduce some of the platforms evaluated for this project, discuss

their differences and propose some of the challenges with developing for these different

platforms. Because there are numerous mobile platforms currently in use in the mobile

market, we will be focusing on the platforms used by Google and Apple. However, many

of the concepts covered may be applied to any of the platforms present today.

2.1 Mobile Computing

Mobile computing is a form of computing where the user is able to access and

process data into information from dynamic locations. Whereas traditional computing

typically uses stationary personal computers with hard wired networks for

communication and a constant power source, mobile computing involves technologies

that allow for the mobility of the computer such as wireless networking and high

capacity/lightweight batteries for a power source.

Mobile computing gives the user the ability to access information wherever he is

at the moment as long as he has the required network connectivity. This ability has the

potential for more timely information and communication, which is one of the key drivers

for the increased of use of smartphones and tablet computers in the enterprise.

 4

2.2 Mobile Computing Form Factors

In 1993 IBM unveiled what could be considered the first smartphone, the Simon

[Bellsouth1]. However, according to the Merriam-Webster dictionary, the term

smartphone was first introduced four years later in 1997 [Webster12]. The smartphone is

a wireless, carrier-based phone that has additional software on it which allows it to

perform tasks beyond telephony such as email, texting and Internet browsing. The growth

and popularity of smartphones was accented when Apple released the iPhone in 2007

[Apple07]. A year later, Google released its first Android phone [T-Mobile08]. Other

manufacturers of smartphones include: Research In Motion (Blackberry), Microsoft,

HTC, Samsung, Sony and Nokia.

In 2010, Apple introduced the iPad [Eaton10]. Although Microsoft attempted to

introduce their concept of a tablet computer over ten years earlier [Markoff99], the iPad

was the first device in this form factor that had the potential to drive a change in the

mobile PC market. The tablet computer is a mobile computer with a touch screen and

typically lacks a keyboard. The user interfaces for tablet computers include custom

software that is optimized for a touch interface. Larger icons to accommodate the size of

the fingertip and gesture controls are common with tablets. Since the release of the iPad,

the PC market has seen a steady decline in growth for PCs and laptop computers

[Nagamine11a], while the iPad and other tablet computers enjoy steady growth.

 5

2.3 Client/Server Computing

The client/server model of computing is a computing model where an

application’s tasks are distributed between a client and a server. In mobile computing,

the client is the mobile device, which has fewer resources for performing complex, long

running tasks and limited data storage capacity for saving data. The server may be a web

server that interacts with the client device’s processing requests to retrieve or save

records from and to a database. An example of this computing model would be a

messaging server’s contact database. The client may add new contacts to her mobile

device and save them to the central contact database so that other people may access the

contact as in a global address list. To store and search the contacts of every user of this

application on the mobile device would be impractical due to the device’s hardware

limitations. The client only needs to know how to contact the server to initiate a search.

The server would then perform the search, providing the results to the client.

2.4 Cloud Computing

Cloud computing is a computing model that is very similar to client/server model

in that the client’s workloads may be offloaded to a more capable device. However,

cloud computing differs in that there is more of an abstraction of the specific server that

the to which the client sends its requests. There may very well be a grid of hundreds of

computers that will either, in turn, process a client’s request, or distribute the requested

workload to several of the connected servers in the grid.

 6

Cloud computing has several advantages over traditional client/server computing

because compute and storage grids may be colocated in various locations across the

globe. Servers that are geographically located closer to the client should respond with

less latency than ones that are further away. Having servers colocated in separate

locations also provides redundancy if there is a natural disaster or power outage at a

location. An additional advantage of cloud computing is the ability to appropriately

spread workloads to servers that are sized accordingly for the tasks.

2.5 Apple iOS

Apple introduced their first smartphone called the iPhone in 2007 [Apple07].

Later the same year, Apple introduced the iPod touch, which was similar to the iPhone

but lacked the carrier based wireless interface. And in 2010, Apple introduced their

tablet device, the iPad. All of these devices run Apple’s mobile operating system called

iOS. The mobile operating system iOS is based on Apple’s OSX operating system, a

BSD Unix-like operating system [Apple08]. At its initial release, the only way to

develop applications for the iPhone was to develop web based apps. While this was

successful, it was limiting because a user could only use the apps when a good

connection to the Internet was available

At a town hall meeting in 2008 [Block08], Apple announced that they would

release a Software Development Kit (SDK) for iOS so developers could create native

applications for the iPhone. This SDK, which is developed in Objective-C, is derived

from a subset of the foundation of OS X. The SDK provides user interface elements via

the Cocoa Touch framework and allows the developer to create applications that interact

 7

with the hardware much like an application would on OS X. The commonality between

iOS and OS X development provides a great level of fluidity within Apple’s entire

ecosystem. For a user who understands using the Mac OS X, an iOS device is also

familiar.

2.6 Google Android

Google introduced its first smartphone in 2008, which was manufactured by HTC

[T-Mobile08] and its first tablet in 2011 manufactured by Motorola [Savov11]. These

devices run Google’s mobile operating system called Android, which Google acquired

from the company Android, Inc. in 2003 [Markoff07]. Android is a Linux-based mobile

operating system, which provides a Java framework for developing applications.

Android’s SDK was released prior to the introduction of its first smartphone as

part of the Open Handset Alliance [Rubin07]. The SDK, developed in Java, provides all

of the necessary components for developing applications on Android devices. The SDK

provides user interface elements through interactive widgets and allows the developer to

interact with the hardware and other applications through a system of activities and

intents.

Because of the open nature of Android, different vendors of smartphone hardware

customized the user experience of their Android phones. For instance, Samsung uses

their proprietary user interface Touchwiz, while HTC uses their proprietary user interface

Sense. These two user interfaces deviate from the standard user interface developed by

Google. Because of this, a user of an Android smartphone from one vendor may not be

familiar with using an Android smartphone from another vendor. This resulted in

 8

criticism of the Android smartphone market identifying a fragmentation and inability to

maintain updates to current hardware.

2.7 Design guidelines for iOS and Android

Apple and Google both have a set of guidelines for developing visually pleasing

and easy to navigate user interfaces for apps. However, while the typical iOS application

maintains a look that is common to applications used in O SX and iOS, Android apps

may offer a look that is unique to Android alone. Both platform design guidelines stress

the importance of maintaining consistency within the platform to provide a fluid

experience between apps. As an example of the differences between the two platforms

the Figure 1illustrates commonly used controls: iOS on the left and Android on the right.

Figure 1 -- A comparison of common controls

 9

As illustrated, these common controls differ in appearance; the iOS controls have

a rounded look to them while the Android controls have sharper edges and appear flatter.

One could certainly create icons for controls that would achieve the same look on

Android as are available on iOS and vice versa. However, doing so would interrupt the

flow of the user’s experience from the rest of the device.

In addition to having design guideline differences and common control

differences, the SDKs for iOS and Android provide controls that are unique to their

platform. For instance, a common control utilized in user interface design is the combo

box. While both iOS and Android do not provide a control for a traditional combo box,

they each provide their own alternative to a combo box. The implementation of these

controls is similar, however, their functionality and appearance are very different. Figure

2 illustrates the difference between the iOS and Android respectively.

Figure 2 -- Combo box differences

It is easy to see in this example that the iOS Picker View control’s spinning wheel

look appears to be more of a physical element, while the Android Spinner control

resembles the traditional combo box. The iOS Picker View consumes more space than

the Android Spinner control.

2.8 Challenges of Supporting Multiple Platforms

 10

When developing for multiple platforms one must consider the differences in

platform capabilities as well as the similarities. The developer must also determine if

whether it is desirable to maintain a common look and feel for the application across

platforms or if the application should conform to a common look and feel within the

platform itself. If it is desirable to present a user interface that conforms to the design

guidelines of the platforms, the developer will need to understand how to implement the

different common controls that are available for each platform.

In addition to user interface elements, the developer may wish to provide the

ability to locally store data on the device as well as save the data to a remote location

through a web service. Again, the developer needs to understand the way this is

implemented on each of the platforms he or she wishes to support.

 11

Chapter 3: Related Work

The field of mobile computing is filled with various devices from a number of

hardware vendors. These devices vary in many ways including hardware capabilities,

screen sizes, network speeds and types; likewise they operate on several mobile operating

system platforms. This situation presents a unique challenge for developers who wish to

develop applications that reach a broad audience using these various devices.

There are several approaches that address the issue of supporting multiple mobile

platforms and environments. A developer may choose to use a programming language

that is rendered at run time such as HTML5 or JavaScript. An application may use a

proxy that changes the content that is delivered to the mobile application based on the

capabilities of the device. Or, an application may use middleware that provides services

based on the context of the device, such as battery level, network availability or location.

Our approach is to develop mobile applications in their native programming language and

apply a design pattern that uses an API to assist in the creation of user interface elements

that conform to the design guidelines of the target platforms. To assist in this, we also

introduce a web-based assistive application for configuring the user interface elements.

In this chapter we describe some of the research that attempts to address these

challenges and compare the approaches with our framework.

3.1 Code once distribute many

One of the ways that a developer may accomplish developing an application that

targets multiple platforms is through the use of technologies that are supported on all of

 12

the target platforms. This typically involves using web technologies such as HTML5.

One such project that accomplishes this is called Rhomobile [Rhomobile1]. Rhomobile

is a suite of development applications that assist the developer in creating HTML5 based

applications that are distributable to various platforms.

Our framework is distinct from this project in that we use native programming

languages and allow the developer to conform to the design guidelines of each targeted

platform. Since a developer uses Rhomobile to develop the application, he would need to

design a common look and feel for the application that would not necessarily conform to

the design guidelines of each of the target platforms.

3.2 Dynamic Content

In order to address the challenge of building applications that target platforms

with various capabilities and resources, be they network restrictions or hardware

resources, some papers demonstrate using a middleware that dynamically changes the

content based on these restrictions is effective for improving the overall user experience

of mobile applications and web applications.

In their paper, A. Fox et al. [Fox98] proposed that by using a proxy service which

is aware of the clients’ restrictions, they would be able to improve an application’s user

experience by changing the content the client is requesting on the fly. For instance, if the

client were to request a page full of high-resolution images, the proxy service would be

able to re-render these images down to a smaller scale. This would cut down on the

network bandwidth, computational processing and memory requirements of the

application.

 13

H. Zhang and W. Ma from Microsoft Research propose in their paper [Zhang04]

that a new web content representation document called Scalable Web Document could be

used to reformat web content based on the screen size of the device requesting it. The

Scalable Web Document would assist the mobile application by adjusting text layout and

reformatting large images via a proxy service.

In their paper, Z. Hua et al. [Zhigang06] discuss a project that addresses the

screen size constraints of mobile devices named MobiDNA. In this project, web content

is broken into blocks and later cached so that a handheld device could more easily display

its content. Their project uses a novel method of reducing areas of web pages into

thumbnail-like sections that a user can both navigate and zoom in to view detail.

In our framework, we use an internal database to define the content and

application elements that are available to the application. The ClayUI API also includes

the ability to modify the contents of the internal database based on the results from the

web service queries that the framework provides and refreshes the user interface based on

this new content. Our framework does not need to address the hardware restrictions of

some devices because the developer knows the target devices which will ultimately use

the application. These restrictions should be considered as if the developer were building

the application for a single device.

3.3 Dynamic Services

Another area of related research is the process of dynamically changing available

services based on location, application context, and device types and requests. In the

following papers, researchers use the various sensors available on the devices and

 14

middleware to assist the device in locating the appropriate services for the tasks the

software completes.

In their paper, A. Cole et al. [Cole03] discuss the process of binding middleware

to services based on the location of the device. For instance, one service available to the

device might provide traffic congestion information for the metropolitan area where the

device is located. Once that device moves to a new metropolitan area, a new provider

may be available for this service while the original one may not be available. The

authors suggest that through the use of middleware, a device could deterministically

switch services without the end user knowing.

Another method proposed for dynamically changing the services available to a

mobile device is through an applications context. L. Capra et al. describe a project

named CARISMA in which middleware maintains the current context of a running

process and changes its behavior based on this context [Capra02]. In this project, L.

Capra et al. describe that the middleware could react to situations such as low battery

power by reducing graphics resolutions or color depths to conserve power. In their paper,

authors A. Murarasu and T. Magedanz [Murarasu09] propose a process of shifting

workloads from the local device to a remote device based on the current load of a mobile

device. Using this method, an application dynamically utilizes remote services instead of

local services without the knowledge of the end user. In his dissertation, P. Grace

describes another method of adapting to the devices context by developing a middleware

that reacts to context changes and utilizes different frameworks based on the change

[Grace04].

 15

In the paper by F. Chien-Liang et al., the authors propose a method of

reprogramming wireless sensor network motes based on the recorded information sent to

one another [Chien-Liang05]. In their paper, the authors demonstrate the flexibility of

reprogramming a sensor network for a new purpose through the example of a fire

detection system. They demonstrate that the fire detection system could be

reprogrammed to act as a search and rescue system once a fire is detected. This

reprogramming is necessary due to the lack of data storage and memory on the motes

used in the system.

In our framework, ClayUI, we dynamically build local resources that define local

user interface elements. While this resource may remain static through the application’s

lifecycle, changes to the underlying database structure may be dynamically passed to the

configuration of the user interface elements if the developer so chooses.

3.4 Assistive application for code generation

In order to assist professors of the University of Massachusetts Amherst with the

distribution of classroom content to mobile devices over the Internet, the RIPPLES group

at the University developed the Multimedia Asynchronous Networked Individualized

Courseware (MANIC) system [Schapira01a] [Schapiara01b]. This system simplifies the

process of posting courseware to a website which is then pushed to mobile devices for

offline viewing. This system does not require the user to know any HTML or mobile

application development as the system handles this for the user.

In our framework, we provide an administrative website for configuring the parts

of the application that are controlled by ClayUI. To configure these application parts,

 16

one only needs to have an understanding of the different user interface elements that are

used and how to set them up in ClayUI. While a developer with experience of

developing for the target platforms is necessary, this is only true for the initial setup. Any

changes done to the ClayUI application part will be reflected in the user interface of the

application without the requirement of any development experience.

The following table (Figure 3) compares the features of several related named

projects and ClayUI.

Feature Description

Project Name

ClayUI Rhomobile CARISMA MANIC

Web based assistive application Yes No No Yes

Device native programming language Yes No Yes Yes

Device native design principal Yes No Yes Yes

Support multiple platforms Yes Yes No No

Runtime application changes Yes No Yes No

Data storage assistance Yes No No No

Figure 3 -- Comparison of features

 17

Chapter 4: Motivation

As smartphones and tablets become more popular, software developers struggle to

create successful apps that target the various platforms in a timely and cost effective

manner. Developers also have to make a conscious decision to either follow the design

guidelines for each platform, or develop their own guidelines across platforms. Using a

consistent design between different platforms may be beneficial from a development and

support standpoint, but it leads to problems where the user loses a sense of flow that is

established by the platform vendor. Designing around the platform’s design principals

helps establish a comfort level for the end user. A design pattern and API that assists

developers as they create common controls and their associated methods, provides an

opportunity to reduce time when developing applications that conform to platform design

principals. It is the purpose of this paper to demonstrate such a design pattern and API to

provide evidence of its benefits.

Every year smartphones and tablets become more affordable and more capable.

Because of this, these popular devices are more pervasive in our lives. In 2011, the

personal computer market saw the smallest growth in recent history [Nagamine12c],

while the smartphone and tablet markets produced record growth

[Miller11][Nagamine12b]. This trend of purchasing smartphones and tablets over PCs is

an indication of the beginning of a shift of the mobile computing form factor from

traditional laptop PCs to smartphones and tablets. It is estimated that tablet computer

sales grew by more than 181 percent from 2010 to 2011 and may continue to grow an

additional 89 percent from 2011 through the end of 2012 [Pettey10]. This is compared to

 18

a growth of only 3.8 percent for PCs 2011 and a forecasted 10.9 percent growth in 2012

[Pettey11].

One of the reasons for the popularity of the smartphone and tablet is their ability

to run apps that provide much of the same functionality that traditional PCs provide.

These devices include web browsers, email clients, newsreaders and many other

productivity apps that add usefulness to the device. While many of the apps that are

available on various platforms perform the same function, the design strategies may

differ in their look and feel. Each vendor invests a considerable amount of time and

energy into improving the user experience with its platform. This is even the case within

the different hardware vendors for Google’s Android platform. For instance, Samsung

and HTC developed their own user interfaces named Touchwiz and Sense, respectively.

These vendors also develop their own apps to replace the default Google experience apps

so they can control the designs of their respective platforms.

Smartphones and tablets are also becoming more prevalent in business

enterprises. And where traditionally the IT department dictates which brands and

platforms are acceptable in the workplace, the trend is moving towards the practice of

employees bringing their own devices to work [Reed11]. This practice increases the

complexity of developing applications for different platforms that conform to their design

guidelines by increasing the heterogeneity of platforms supported by the developers.

Tools that are available to developers to assist with completing tasks such as

setting up common controls in user interfaces, setting up database connections, and

setting up communications with web services increases productivity and reduces the

 19

development lifecycle time. Here we consider a few scenarios to demonstrate the

benefits of the ClayUI framework.

Scenario 1

 A research firm wants to develop an application for mobile devices to help its

researchers track answers to questions during an interview. These multiple choice

questionnaires may change based on the subject of the interviewee. The firm would also

like to be able track the results of these surveys in a database for further analysis. It is

assumed that the interviewer will not always have a persistent network connection for

accessing surveys, so a web-based application could not be considered.

Our framework, ClayUI, would assist the developers with setting up the user

interface by simplifying the process of populating repetitive user interface controls for

presenting the questions in the interview. ClayUI would also set up the data adapters and

backend database used for storing results from the surveys. Finally, because the firm

wants to track the results of the surveys for further reporting, ClayUI would set up the

necessary helper objects for persisting the results to a web service that would write the

data to a backend database used for reporting.

Scenario 2

A business that allows its sales force to use their personal smartphones and tablets

for business use wants to extend the sales lead application built in-house to the sales

personnel’s smartphones and tablets. The types of devices that the sales force uses is a

 20

mix of iPhone smart phones, iPad tablets, Android phones and tablets and Windows

Mobile phones. The IT department of this company understands that the users of these

devices chose them based on their preference for the way the device's operating system

functions and looks. The IT department desires to provide a new application that

conforms to the guidelines of their respective devices.

ClayUI would assist the developers with setting up the user interface and local

backend database for storing contact information. As an optional benefit, the developers

could use ClayUI to store contact information in a central database by saving the data

through a web service.

Scenario 3

An ecommerce site wants to provide a mobile app for its customers. As a

customer courtesy and because the company knows its customers use a variety of

smartphones and tablets, the team decides to develop apps that conform to the design

guidelines of the various platforms that its customers use. Much of the user interfaces for

these will use common controls and the data for the mobile apps is stored on web servers

where retrieval should be completed using web services. Additionally, the app should

allow the user to store her shopping cart on her local device for later retrieval.

ClayUI would assist the developers by setting up the user interface controls that

are common between the different platforms conforming to their respective design

guidelines. ClayUI would also assist in providing the necessary objects for storing

shopping cart data to the local database on the mobile device as well as the objects for

retrieving items that are available for purchase from the web service.

 21

For all of the above scenarios, our research indicates that a developer can use a

framework and API to assist in the processes of developing an application that targets

multiple mobile platforms. This process reduces the overall development time by

configuring common user interface controls, configuring connections to a local database

and configuring connections to web services for retrieving and saving data. This process

also alleviates some of the burden of re-configuring common items on different platforms

where certain technologies in use may be different. For instance, Android and iOS use

SQLite as their database backend where Windows Mobile uses Microsoft SQLCE. And

finally, this process reduces the total cost of support for the applications through the use

of APIs, which may be independently tested for bugs.

 22

Chapter 5: Overview

ClayUI is a framework for assisting developers of mobile applications that target

multiple platforms with differing design guidelines. The framework is comprised of five

major parts: the application administration web application, a server database backend,

web services, a local database on the client, and the client APIs. Figure 4 represents the

overall design of the ClayUI framework and how each component interacts with each of

the others.

Figure 4 -- ClayUI Overview

 23

 In the following chapter, we will give an overview of each of the major

components used in ClayUI.

5.1 Administrative site

The administrative website uses open source components to deliver an interface to

the user via its web browser. The application is developed using a combination of

HTML5, CSS3 and PHP, and built on an open source LAMP (Linux, Apache, MySQL,

PHP) foundation to provide a simplified interface that is dynamic and responsive. Using

the administrative site, a developer can rapidly configure the parts of the application he

wants controlled by ClayUI with a basic understanding of user interface elements.

5.2 Database backend

The storage behind the administrative website uses the open source database

engine MySQL. This database houses all of the configuration information for the

application parts that a developer creates as well as any of the data that her applications

generate if she so chooses. Since the data is stored using a database engine that includes

connectors for multiple platforms, developers can further extend the functionality of the

database backend for reporting or for other applications.

5.3 Web Services

ClayUI uses several PHP web services that produce JSON (JavaScript Object

Notation) objects in order to pass data between the administrative database backend and

 24

the client API. This method provides a language independent data descriptor that is

lightweight and easy to read.

5.4 Local Database

ClayUI stores the application configuration in a local database of the mobile

device. Depending on the target device, the database engines used are SQLite for iOS

and Android devices, and the SQL Server Compact Edition for Windows Mobile devices.

These database engines are lightweight database engines that provide more capabilities

than storing configuration and data in flat files.

5.5 Client APIs

From the point of view of the client application, the API is the heart of the

framework. The ClayUI API is structured in such a way that the developer only needs to

instantiate a few objects and execute their methods to control the layout of the application

parts, and save data locally or to the web. All of this is accomplished without the

requirement of the expertise for implementing this on the various platforms she is

targeting for her application.

Over the next couple of chapters we will go into further details of the

aforementioned components of ClayUI.

 25

Chapter 6: Administrative Interface for Adaptable User Interfaces

One of the goals of the ClayUI framework is to ease the burden of setting up and

modifying portions of an application that use common user interface elements. Another

goal was to provide this ability on all of the development platforms, including: Microsoft

Windows, Apple Macintosh, Linux and others. In order to accomplish these goals, the

ClayUI administration site is built using web technologies that make the tool available

via a modern web browser. These technologies: Linux, Apache, MySQL, and PHP,

commonly referred to as a LAMP stack, are now considered an industry standard method

for delivering dynamic and data-driven web applications.

The application administration website is laid out with a menu on the left side

which represents an application tree. An application tree is a graphical representation of

the components that ClayUI maintains. The structure of the administration side of

ClayUI is broken into five major components: Applications, App Parts, Elements, Data

Tables and Web Services. Figure 5 illustrates the overall user interface of the ClayUI

administration application and the components with which an administrator interacts.

 26

Figure 5 - ClayUI Administration Application

Clicking on any of the components in the application tree displays the detail

screen to the right of the application Tree. The detail screens are used to define

configuration values that are used in the app parts of the application. In the following

sections, we will cover each component of the application administration interface and

describe their role in the framework.

6.1 Application

ClayUI has the ability to control the configuration of multiple applications. Each

application is represented as the root element of the ClayUI application tree. Once the

application is created in ClayUI, additional details such as the application’s name and a

description may be added to help document the application. Figure 6 illustrates the

application detail screen.

 27

Figure 6 - Application Details

Figure 6 demonstrates buttons for adding a new application, adding a new app

part, or deleting the application. The name value is used to identify the application on the

application tree and does not have to be unique as the application ID value identifies the

application in the backend database. The ID value is also used when the developer is

assigning the application ID later in the ClayUI API.

6.2 App Part

The next component down the application tree in ClayUI is the app part. An app

part is the section of the mobile application the developer would like to control with

ClayUI. These app parts are flexible in that the developer may code around the app parts,

controlling some elements outside of ClayUI. Some examples of this would be tab

controls for separating functionality, buttons that add functionality, or completely new

forms within the application. Figure 7 illustrates the app part detail screen.

 28

Figure 7 - App Part Details

The above figure demonstrates buttons for adding additional app parts to the

application or deleting app parts from the application. The app part name value is used to

identify the app part on the application tree. This value does not need to be unique as the

app part ID value is used to uniquely identify the app part in the backend database. The

app part ID value is also used when the developer is assigning the app part ID later in the

Clay UI API. There is no limit to the number of app parts that a developer is able to add

to his application.

 29

6.3 Elements

The next level in the application tree is the elements level. At this level the

developer will define the user interface elements she wishes to have in her app part.

These elements are common user interface controls used in mobile applications. In the

administrative application we use a generic name for the controls because the ClayUI

does not know the platforms the developer will use for the final application. Figure 8

illustrates the table of elements currently configure for the app part displayed when

selecting the elements item in the application tree.

Figure 8 - Elements Overview

Each element added to the app part has the following details that a developer can

use to configure the layout of the app part in his application:

 30

• Name – The name of the element is used to represent the element in the

application tree as well as to assign a control name on the Windows Mobile

devices. This value must be unique to each app part.

• Description – This value is not required, but may be used to further describe the

purpose of the element.

• Element Type – This value determines the type of user interface control the

ClayUI API will place in the mobile application. Available user interface element

options are:

o Text Box – An element that allows the user to free form type text

o Label – An element that statically displays text

o Combo Box – An element that gives a list of items to choose from in a

drop down list

o Radio Button – An element that displays a grouping of items to choose

from with selection boxes

o Check Box – An element that gives the user the ability to either select or

de-select the item using a single selection box

• Label – Text that will display along with the user interface element. If label is the

selected element type, this is the only text that is displayed

• Enabled – Determines whether or not the ClayUI API will display the element in

the mobile application. This option is useful for creating new versions of an

application where the developer wishes to retain historical data from a previous

version of an application

 31

• Data Stored – Determines whether or not this element will have an associated data

field in the underlying data table used to store user generated data from the mobile

application

• Data Type – The data type maps to a MySQL data type used in the data table.

Available data types are:

o String – a variable length data type for storing text

o Integer – a signed or unsigned exact numeric

o Decimal – a signed or unsigned approximate numeric with a default

precision of 18 and scale of 4

o Date – short date data type such as ‘12/12/2012’

o DateTime – date time stored such as ‘12/12/2012 00:00:00’

• Length – If the selected data type is string, the length field is used to determine

the maximum number of characters stored in the field

• List Order – The order in which the elements will appear in the user interface. If

all of the list order values are the same, the default order is in the order that the

elements are added to the app part in the application administration site

Figure 9 illustrates the form used to configure the element.

 32

Figure 9 - Element Details

If the developer chooses to use the element types combo box or radio button, he

also has the ability to define the options that the user will have from which to choose.

This is accomplished by selecting the Edit Element Options button in the element details

form. The form that is displayed gives the user the ability to add a value and description

to the option. The value field is used in the data table for efficiency of sorting and joins.

The description field is used in the user interface to define the options available for the

combo box or radio button group. After the developer fills out the two fields and selects

the Add button, the form will refresh with the new values. Figure 10 illustrates this form.

 33

Figure 10 - Element Options

6.4 Data Tables

The final component of the application tree is the Data Table. The data table

detail form gives the developer a look into what records are already stored in the

underlying data table for this app part. As new records are added, this view provides a

convenient way for the administrator to see what records are being written to the database

via the web services ClayUI provides. Figure 11 illustrates this view.

 34

Figure 11 - Data Table view

6.5 Web Services

In addition to an interface for creating applications and their respective app parts,

the ClayUI application administration site provides PHP web services; these web services

provide the facility of retrieving the application configuration and accepting records from

the ClayUI API for storage in the data table of the app part.

All of the functions of the web services are written using a RESTful architecture.

Using this method, all calls to web services use standard HTTP GET and POST methods.

REST, which stands for Representational State Transfer, is supported by almost all HTTP

clients on mobile devices and is slowly becoming the dominant interface method for

building web services [Rodriguez08]. The architecture defines that the web services

should use data descriptors such as XML or JSON. We chose to use JSON because it is

supported on more mobile devices than XML. However, the REST architecture suggests

that both JSON and XML could be used based on the request of the client.

 35

All of the functions of the web services are written into the ClayUI API so that the

developer need not know how to access them. However, for the purposes of this paper,

the following services are defined and available:

• GetAppParts – Returns a JSON object of all of the app parts for the specified

application ID

• GetElements – Returns a JSON object of all of the elements for the specified

application ID and app part ID

• GetElementOptions -Returns a JSON object of all of the element options for the

specified application ID and app part ID

• GetDataTableSchema – Returns a JSON object of the schema information that the

ClayUI API uses to define a data table in the local database for storing app part

data

• PutTableData – Accepts a JSON object of data table records to send to the ClayUI

database

The calls to these web services use stored procedures in the ClayUI MySQL

database to minimize the possibility of a SQL injection. This also further simplifies the

routines that the PHP web services call to retrieve or accept the JSON objects used in

ClayUI.

 36

Chapter 7: ClayUI API Details

One of the goals of ClayUI is to demonstrate a design pattern that is useful on

several mobile operating system platforms using the native programming language. This

is to ensure that the developer has the flexibility to provide native applications that

conform to the platform’s design guidelines while simplifying the process of

implementing segments of the application that are controlled by ClayUI. To this end, it is

necessary to provide an API that is similarly structured for each of the platforms so that a

developer should easily understand the method of implementing the API in her

application. Figure 12 gives an overview of the structure of the ClayUI API and the

relationship of its components with other UI elements in a mobile application:

Figure 12 - ClayUI Components

Carrier 12:00 PM

Name

ClayUI Demo App (Contacts)

Phone Number

Email Address

State

Current Resident?

Save Record Clear Record

Wisconsin

Yes No

Save to local database

Save to remote database

Standard non-ClayUI
controlled label

ClayUI controlled
App Part

Standard non-ClayUI
controlled check boxes

Standard non-ClayUI
controlled buttons

ClayUI controlled
UI Elements

 37

The ClayUI API provides all of the facilities necessary for connecting to the

ClayUI web services and local database. It also provides all of the necessary methods for

creating a structure for laying out user interface elements that ClayUI will control. In the

following sections we will explain each of the major areas of the ClayUI API and provide

appropriate use cases for each area.

7.1 ClayUI App Base

The ClayUI App Base class is the foundation for all of the facilities of ClayUI.

Thus, this class is one of the required classes a developer will need to instantiate in his

application. The app base class is responsible for setting up a new local database and

creating all of the tables that hold the structure for the app parts configured for the

application. The app base class instantiates the utility classes for the app part, element

and element option classes of the application. These utility classes contain methods the

base class calls to synchronize the local database with the ClayUI remote database by

sending requests to the ClayUI web services. The utility classes also contain methods for

saving app part data to the local database and for saving local database records to the

ClayUI remote database through the ClayUI web service. Figures 13 and 14 illustrate the

use case for the app base class and the conceptual class diagram for the hierarchy of the

app base class. Both of these diagrams are derived from the Android implementation,

which uses Java. However, the diagrams for Windows Mobile and iOS would be similar.

 38

Figure 13 - App Base Use Case

Figure 14 - ClayUI App Base Conceptual Class Diagram

ClayUI

App
Base

Database
Helper
Object

Initialize
local

database
<uses>

Synchronize
ClayUI local

database

WebService
Helper
Object

<uses>

<uses>
Instantiate

Utility
Objects

<uses>

Save App Part
Data To Local

Database

<uses>

Save App Part
Data To Web

Service

<uses>

1

1
ClayUIAppBase

AppPartUtils

1

1

ElementUtils

1

1

ClayUIDatabaseHelper

ElementOptionUtils

1

1

DatabaseHelper11 SQLiteOpenHelper

<<Implements>>

1

1

AppPartDataAdapter

11 AppPartWebServiceHelper ClayUIWebServiceHelper

<<Implements>>

ElementDataAdapter
1

1
ElementWebServiceHelper ClayUIWebServiceHelper

<<Implements>>

1 1

ElementOptionDataAdapter
1

1
ElementOptionWebServiceHelper ClayUIWebServiceHelper

<<Implements>>

1 1

 39

7.2 App Parts and App Part Utils

The app part class is significant because it represents the portion of the user

interface that is controlled by ClayUI. Each app part defined in the ClayUI

administration application is mapped to an app part class in the mobile application. Thus,

it is necessary to instantiate an app part class for each of the app parts defined.

The app part class is responsible for fetching the user interface elements from the

local database and adding the elements to the user interface. The app part class also

defines the appropriate methods for refreshing the user interface layout if the element

definition of an app part changes.

Figures 15 and 16 illustrate the use case for the app part class as well as the

conceptual class diagram.

Figure 15 - App Part Use Case

ClayUI

App Part

Fetch UI
Elements

Refresh
Layout

Element
Data Adapter

<uses>

 40

Figure 16 -- App Part Conceptual Class Diagram

It should be noted in the conceptual class diagram, a class of the type layout panel

references the app part class. This type is a generic representation of a panel class within

the application. For instance, using the Android platform, the layout panel could be a

LinearLayout class. The layout panel is necessary as it is the class that handles the

population of user interface elements in the mobile application.

Related to the app part class is the app part utils class. The purpose of this class is

to simplify the implementation of the app base class when making calls to the database

helper and web service helper objects. The methods within the app part utils class are

publicly available; however, it is not necessary to call them directly.

7.3 Element and Element Utils

The element class is significant in that it represents an individual user interface

component that is associated with an app part. The element class is responsible for

fetching the element options that are necessary for the element if the user interface

component type for the element is a combo box or an option group of radio buttons.

Figure 17 illustrates the use case for the element class.

AppPart

0 ..n

1

Element0 ..n 1ElementOption

<T>LayoutPanel 0 ..n1

 41

Figure 17 -- Element Use Case

Related to the element class is the element utils class. The purpose of this class is

to simplify the implementation of the app base class when making calls to the database

helper and web service helper objects. The methods within the element utils class are

publicly available; however, it is not necessary to call them directly.

7.4 Implementation

One of the goals of the ClayUI API is to provide a simplified method for

implementing a dynamic and adaptable user interface that performs common tasks such

as data entry and information representation. As was mentioned above, we have

accomplished this through the use of utility classes and a base class. The minimum

requirement for the ClayUI API is to implement an instance of the ClayUI Base class and

the ClayUI App Part class. In this section we will give an example implementation for

use on the Android platform. The fundamentals of this implementation are applicable on

other platforms; however, appropriate adaptation for the target platform is necessary.

ClayUI

Element

Fetch
Element
Options

Element
Option Data

Adapter
<uses>

 42

The implementation on Android is as follows:

1. Define and instantiate a LinearLayout class.

2. Instantiate a ClayUI App Base class by passing the application ID from the

ClayUI Application Administration website and the base URI for the ClayUI

Application Administration website to the constructor.

3. Instantiate a new ClayUI App Part class by calling the getAppPart method from

the App Base class, which returns an instance of the App Part, class. This method

requires that the app part ID from the ClayUI Application Administration website

is passed to the constructor.

4. Call the fetchElements method from the ClayUI App Part class by passing the

method a Context object.

5. Call the refreshLayout method from the ClayUI AppPart class by passing the

method the LinearLayout class defined previously and a Context class.

6. Override the onResume method of the Application Activity and add the ClayUI

App Base openDB method to open the SQLite database when the activity starts.

7. Override the onPause method of the Application Activity and add the ClayUI App

Base closeDB method to close the SQLite database when the activity is closed or

pauses.

At this point the application should be functional; however, not very useful. The

developer needs to provide a function for implementing the synchronization methods of

ClayUI which saves form data to the local database and uses a the web service to send the

local database records to the ClayUI remote database. The ClayUI API provides the

 43

necessary methods for these functions; however, it is up to the developer to design an

appropriate implementation.

In the following example, we chose to implement the synchronization function of

ClayUI by adding a menu to the mobile application. The following steps illustrate this

implementation.

1. Override the onCreateOptionsMenu method of the default Android Activity and

add menu options for the function of syncing the app part schema with the ClayUI

web service, saving local database records to the ClayUI remote database, and

saving the app part data from the form to the local database as follows:

CODE: ---

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 menu.add(Menu.NONE, 1, Menu.NONE, R.string.syncSchema);

 menu.add(Menu.NONE, 2, Menu.NONE, R.string.syncData);

 menu.add(Menu.NONE, 3, Menu.NONE, R.string.saveAppPart);

 return true;

}

END CODE: ---

2. Add a method that will handle the function of calling the ClayUI API method for

synchronizing the local database with the ClayUI web service. This method

fetches the database records that control the UI layout in the mobile application.

The implementation of this method is as follows:

 44

CODE: ---

private void syncSchema() {

 // sync with web service

 appBase.syncLayoutStructure();

 // fetch new elements from local database

 appPart.fetchElements(this);

 // refresh UI layout

 appPart.refreshLayout(appPartLayout, this);

 Toast.makeText(getApplicationContext(), "Layout updated",

 Toast.LENGTH_SHORT).show();

}

END CODE: ---

3. Add a method that will handle calling the ClayUI API method for saving the app

part data from the form to the local database. The implementation of this method

is as follows:

CODE: ---

private void saveAppPart() {

appBase.saveAppPartDataLocal(appPart, appPartLayout, this);

 }

END CODE: ---

4. Add a method that will handle calling the ClayUI API method for sending the

local database records to the ClayUI web service to insert in the remote database.

The implementation of this method is as follows:

CODE: ---

private void syncData() {

 45

 appBase.saveAppPartDataWeb(appPart, this);

}

END CODE: ---

5. Add the ability to call our methods to the menu items by overriding the

onOptionsItemSelected method like the following:

CODE: ---

@Override

public boolean onOptionsItemSelected(MenuItem item) {

 // check menu ID

 switch (item.getItemId()) {

 case 1: this.syncSchema();

 break;

 case 2: this.syncData();

 break;

 case 3: this.saveAppPart();

 break;

 }

 return false;

}

END CODE: ---

 46

Chapter 8: Evaluation

In order to evaluate the usability of the ClayUI API, we developed a prototype

app that demonstrates the capabilities of the ClayUI API. In the following sections, we

will describe the prototype app and compare the implementation of the app on the

Android and Windows Mobile platforms, which will demonstrate the flexibility of

applying different design principals with the ClayUI app parts. Finally, we will provide

some details on how the ClayUI API may simplify the development process for certain

application functionality.

8.1 ClayUI Prototype

The mobile application we created to demonstrate the ClayUI API contains two

ClayUI app parts. The first app part is called Contacts, and its purpose is to allow a user

to enter a few pieces of information related to some contacts he wishes to track in his

application. The second app part is called Products, and its purpose is to allow a user to

enter a few pieces of information related to some products that he wishes to track in his

application. From a broad overview, a use for such an application could be to enter

purchased goods, and the sales representatives responsible for these goods. In Figure 18,

we illustrate the ClayUI application tree that demonstrates this.

 47

Figure 18 -- ClayUI prototype Application Tree

When we first configured the ClayUI prototype, we configured all of the user

interface element types as basic text boxes. We did this in order to demonstrate the

process of synchronizing the ClayUI configuration database with the remote ClayUI

database and letting the ClayUI API refresh the layout. In Figure 19 we illustrate the

resulting application implemented in Android on the left and Windows Mobile 6 on the

right.

 48

Figure 19 -- ClayUI Prototype (Android and Windows Mobile implementations)

In the example shown, we separated the two app parts with a horizontal bar to

differentiate between the two on the Android implementation. Whereas in the Windows

Mobile implementation, we used tab controls to separate the app parts. In the Android

implementation prototype app, the only user interface elements that required manual

configuration were the placement of the FlowLayout views and the horizontal separation

bar. In the Windows Mobile implementation prototype app, the only user interface

elements that required manual configuration were the FlowLayout panels on, the tab

controls, and the buttons. The ClayUI API creates the remaining user interface elements

at runtime.

To demonstrate the ability of ClayUI to modify the user interface at runtime, we

changed some of the user interface types in the administration application. We changed

the state and description fields to combo boxes and the price field to a radio group.

After making a call to the ClayUI API’s method to synchronize the local ClayUI

configuration database with the remote database, our application makes a call to the

ClayUI API’s refresh layout method. These functions are executed via a menu selection

 49

in the Android implementation and the Windows Mobile implementation. The resulting

user interface changes illustrated in the Figure 20 were accomplished without any code

changes from the developer.

Figure 20 -- Resulting user interface

Another feature of the ClayUI API is the ability to save records to the local

database as well as push the records to a remote database using a web service. To

demonstrate this using the Android implementation, we will enter a new contact record,

save it to the local database and then post it to the web service. Figure 21 shows that in

our remote data table, we have three contact records.

 50

Figure 21 -- Contacts data table before record addition

Within the ClayUI prototype app on Android, we enter some contact information

as illustrated in Figure 22.

Figure 22 -- Entering contact information

 51

Once we have finished entering our contact information, we need to save the form

data to the local database and subsequently push the data to the ClayUI web service. In

our Android application, this is accomplished using two menu functions that call the

ClayUI API methods to carry out the tasks. Once the records are successfully written to

the remote database, we can verify the successful operation by refreshing the ClayUI

administration application data table page. This result is illustrated in the figure 23.

Figure 23 -- Successful web service post result

8.2 Ease of implementation

In the previous section we demonstrated the implementation of the ClayUI API on

the Android platform using a prototype app. In this app we provided an example form

which contained user interface elements and we provided facilities to save the form data

to the local database and subsequently post the local database records to a web service so

that it is stored in a remote database. In this section we will demonstrate the benefits of

 52

the ClayUI API by comparing our prototype application to an example application that

accomplishes the same function without using the ClayUI API.

For comparison, we duplicated the ClayUI prototype application without the use

of the ClayUI API. This mobile app is illustrated in Figure 24.

Figure 24 - Native mobile app for comparison

In order to accomplish this, we needed to manually create all of the user interface

elements and develop the methods for creating the local database, saving to the form data

to the local database and posting the local database records to the web service. This

ultimately required significantly more development time for this simple mobile app.

 53

Figure 25 provides a comparison of the development of these two similar mobile apps on

the Android platform.

Comparison Native

Implementation
ClayUI API

Approximate time to develop 2 hours 30 minutes

Total # of classes 7 1

Total lines of code 618 145

Knowledge of process for writing to

local database and web service
Yes No

Figure 25 - Native app vs. ClayUI API app

The target audience of the ClayUI web application is application administrators

that may or may not have experience developing mobile applications while the audience

of the API is mobile application developers. To get feedback from these target

audiences, a demonstration of the ClayUI web application and API was given to a group

of four application developers and two application administrators. After the

demonstration, all participants were given a survey to assess their reactions to ClayUI.

Both groups were asked to answer the following questions regarding the ClayUI web

application:

1. What is your overall rating of the ClayUI Administrative web application?

2. How easy did you find the navigation of the user interface?

3. How would you rate the ease of setting up a new application?

4. How would you rate the ease of configuring user interface elements in existing

App Parts?

 54

5. How would you rate the need to expand Claus’s support to include more data types

and user interface element types?

All questions were evaluated on a scale of one to five. One was considered the least

favorable while five was considered the most. Figure 26 illustrates the result of these

questions, the number provided represents the mean of all scores:

Figure 26 -- ClayUI Administration Web Application Survey Results

The application development group was also asked the following questions

regarding the ClayUI API:

1. What is your overall rating of the ClayUI API?

2. How easy did you find the implementation of the API?

3. How would you rate the flexibility of using the API in the design of a mobile

application?

4. How would you rate the usefulness of this API?

5. How would you rate the need to expand the ClayUI API to support more data

types, user interface element types and mobile platforms?

0

1

2

3

4

5

Overall rating Ease of
navagation

Ease of
application set

up

Ease of element
changes

Need for
expansion

 55

All questions were evaluated on a scale of one to five. One was considered the least

favorable while five was considered the most. Figure 27 illustrates the result of these

questions; the number provided represents the mean of all scores:

Figure 27 -- ClayUI API Survey Results

0

1

2

3

4

5

 56

Chapter 9: Conclusion and Future Work

In this thesis, we have demonstrated a design pattern, framework and API that

assists with the development of mobile apps that adhere to their respective design

guidelines. In the next sections we will summarize the design and approach we used in

this paper, describe the contribution of this thesis, evaluate the short and long term impact

of this thesis and propose the direction for future work.

9.1 Summary

ClayUI is a framework and API that is designed to assist developers with the

process of building mobile apps that target multiple mobile operating system platforms.

We have given evidence that the mobile computing environment is growing in the

number of users as well as the number of mobile operating platforms. In addition to this,

the number of different mobile platforms support different native programming languages

and design guidelines. ClayUI assists developers who design mobile apps that target

different mobile platforms by allowing the developer to adhere to the design guidelines of

the platform. In addition to this, our framework and API assist with the process of

creating a local database for saving user generated data and posting this data to a database

enabled web service where additional applications may access it.

The distinction of our solution is that it aids a developer with the construction of

segments of an overall mobile application while providing flexibility in the design of the

application so that the developer may apply the design guidelines of the platform. Our

solution provides an API that is written in the native programming language of the target

 57

platform. This allows the developer to use the appropriate Software Development Kits

and any features and benefits that may be specific to the target platforms. With our

solution, there is no reason to cut out a feature because it may not be supported on

another platform.

9.2 Contribution of this thesis

1. Working API for flexible and cross platform user interface design: as the mobile

computing industry continues to grow in divergence with respect to the mobile

operating systems used, it will become increasingly difficult to create mobile

applications that target these systems and continue to provide an user experience

that is fluid and expected with respect to the rest of the platform. Using an API

and design pattern for common user interface elements, a developer has the

flexibility to apply platform specific design principals.

2. Working API for a common system of storing and retrieving application data:

storing data in a local database as well as utilizing web services for posting and

retrieving data is a common task in mobile application development. When a

developer creates an application on multiple platforms, there is a chance the

platforms use different technologies for these tasks. An API that provides this

functionality for a developer reduces the need for a developer to learn the

different methods of accomplishing these tasks.

3. Applying distributed computing design patterns to mobile application design: one

of the benefits of mobile computing is that it helps to keep us connected and

allows us to access data on the move. The application of distributed computing

 58

design patterns in the design of mobile applications helps to provide more robust

systems that have the capacity to deliver more value to the consumer. Using these

principals, a mobile app becomes a part of an overall system instead of an island

of information.

9.3 Short and long-term impact

The growth of mobile devices in our daily lives is staggering. Manufacturers of

these devices continue to develop their own mobile operating platforms and developers

continue to develop mobile apps that enrich our daily activities. As developers attempt to

target a larger audience of users using these mobile operating platforms, they will

struggle to maintain applications that fit seamlessly into their target platforms. It is our

belief that the framework and APIs that we developed add value to the overall effort of

developing these mobile applications.

In the long term, mobile applications will regularly access information through

web services and cloud services to provide functionality not yet attempted. The

framework we developed helps to alleviate the learning curve for utilizing these services

by providing simple to use methods that are implemented using similar procedures on all

platforms. The developer does not need to know the underlying database technology

used, or the connectivity methods used for connecting to web services.

Overall, the use of our framework and API could reduce the cost to develop an

application that targets multiple platforms. Unit tests performed on the API would reduce

the amount of bugs introduced into systems by developers that do not fully understand

the proper implementation of the features that the API provides. Additionally, developers

 59

could bring their mobile apps to a larger audience of users by targeting more mobile

platforms while maintaining the look and feel intended by the design guidelines of the

target platform.

9.4 Future work

At the time of this paper the ClayUI only supports a fraction of mobile platforms.

ClayUI also only supports a fraction of the layout types and user interface element types.

In order for wider adoption, ClayUI should be expanded to support, at least, the most

popular mobile platforms. Additionally, ClayUI should be extended to include more of

the widely used user interface layouts and controls.

In addition to the core functionality additions that ClayUI needs, no

considerations for security was included in this project. The ClayUI Administration

Application and web services should be secured using SSL, and the applications that are

configured in ClayUI should be secured using a combination of username and passwords

or digital certificates.

Future expansion of this project should also include a seamless method of

deploying the backend web server, PHP scripts and MySQL database so that potential

users of the framework could deploy a private version of the framework. As of this

writing, there is only a single server sized appropriately for testing.

 60

BIBLIOGRAPHY

[Albanesius11] C. Albanesius (2011, February 8). Smartphone Shipments Surpass PCs
for First Time. What’s Next? [Online]. Available:
http://www.pcmag.com/article2/0,2817,2379665,00.asp

[Android1] (2012, June 13). What is Android? [Online]. Available:
http://developer.android.com/guide/basics/what-is-android.html

[Apple07] (2007, January 9). Apple Reinvents the Phone with iPhone [Online]. Available:
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-
iPhone.html

[Apple08] (2008, January 11) Revolutionary Phone [Online]. Available:
http://web.archive.org/web/20080111051348/http://www.apple.com/iphone/features
/index.html

 [Apple10] (2010, March 5). iPad Available in US on April 3 [Online]. Available:
http://www.apple.com/pr/library/2010/03/05iPad-Available-in-US-on-April-3.html

 [Apple12] (2012). Develop for iOS: The world’s most advanced mobile platform
[Online]. Available: https://developer.apple.com/technologies/ios/

[Bellsouth1] (1993, November 8). Bellsouth, IBM unveil personal communicator phone
[Online]. Available:
http://findarticles.com/p/articles/mi_m3457/is_n43_v11/ai_14297997/?tag=content;
col1

[Block08] R. Block (2008, March 6). Live from Apple’s iPhone SDK press conference

[Online]. Available: http://www.engadget.com/2008/03/06/live-from-apples-
iphone-press-conference/

[Capra02] L. Capra; E. Wolfgang; G. Blair; P. Grace; P. Mascolo, “Exploiting reflection
in mobile computing middleware” Mobile Computing and Communications Review,
vo. 6, no. 4, pp34 – 34, January 2002.

[Chien-Liang05] F. Chien-Liang; , G.-C. Roman; L. Chenyang; , "Rapid Development
and Flexible Deployment of Adaptive Wireless Sensor Network Applications,"
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE
International Conference on , vol., no., pp.653-662, 10-10 June 2005 doi:
10.1109/ICDCS.2005.63

 [Cole03] A. Cole; S. Duri; J. Munson; J. Murdock; D. Wood, "Adaptive service binding
middleware to support mobility," Distributed Computing Systems Workshops, 2003.
Proceedings. 23rd International Conference on , vol., no., pp. 369- 374, 19-22 May
2003 doi:10.1109/ICDCSW.2003.1203581

 61

 [Eaton10] N. Eaton (2010, January 27). Apple iPad: Your Impressions? [Online].
Available: http://blog.seattlepi.com/microsoft/2010/01/27/apple-ipad-your-
impressions/

[Fox98] A. Fox, S. Gribble, Y. Chawathe and E. Brewer, “Adapting to networks and
client variation using infrastructural proxies: Lessons and perspectives,” IEEE Pers.
Commun., August, 1998, pp. 10-19, Aug., 1998.

[Fried11] I. Fried (2011, July 27). Annual Smartphone Sales Could Reach One Billion by
2016 [Online]. Available: http://allthingsd.com/20110727/annual-smartphone-sales-
could-reach-1-billion-by-2016/

[Grace04] P. Grace, “Overcoming middleware heterogeneity in mobile computing
applications,” Ph.D. dissertation, Computing Department, Lancaster University,
Lancaster, England, 2004.

[Haahr00] M. Haahr; R. Cunningham; V. Cahill , "Towards a generic architecture for
mobile object-oriented applications," Service Portability and Virtual Customer
Environments, 2000 IEEE , vol., no., pp.91-96, 2000 doi:
10.1109/SPVCE.2000.934166

[Haywood11] J. Haywood (2011, July 14). Media Tablets Have the Opportunity to
Transform the Enterprise: IDC Canada Examines Media Tablet Use in Canadian
Business [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prCA22937111

[IDC12] (2012, March 13). Media Tablet Shipments Outpace Fourth Quarter Targets;
Strong Demand for New iPad and Other Forthcoming Products Leads to Increase
in 2012 Forecast, According to IDC [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23371312

[Markoff99] J. Markoff (1999, August 30). Microsoft Brings In Top Talent To Pursue
Old Goal: The Tablet [Online]. Available:
http://www.nytimes.com/1999/08/30/business/microsoft-brings-in-top-talent-to-
pursue-old-goal-the-tablet.html?pagewanted=all&src=pm

[Markoff07] J. Markoff (2007, Nov. 4). I, Robot: The Man Behind the Google Phone
[Online]. Available:
http://www.nytimes.com/2007/11/04/technology/04google.html?pagewanted=all

[Miller11] H. Miller (2011, January 18). Tablet-Computer Sales to Triple This Year, IDC
Says [Online]. Available: http://www.bloomberg.com/news/2011-01-18/tablet-
computer-sales-to-triple-to-44-6-million-units-this-year-idc-says.html

[Murarasu09] A.F. Murarasu; T. Magedanz, "Mobile Middleware Solution for Automatic
Reconfiguration of Applications," Information Technology: New Generations,
2009. ITNG '09. Sixth International Conference on , vol., no., pp.1049-1055, 27-29
April 2009 doi: 10.1109/ITNG.2009.194 [Nagamine11a] K. Nagamine (2011,

 62

January 12). PC Market Records Modest Gains During Fourth Quarter of 2010,
According to IDC [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS22653511

[Nagamine11b] K. Nagamine (2011, March 29). IDC Forecasts Worldwide Smartphone
Market to Grow by Nearly 50% in 2011 [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS22762811 [Nagamine12a] K.
Nagamine (2012, April 11). PC Market Returns To Positive Growth, Though Gains
Remain Small, According to IDC [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23433412

[Nagamine12b] K. Nagamine (2012, February 6). Smartphone Market Hits All-Time
Quarterly High Due To Seasonal Strength and Wider Variety of Offerings,
According to IDC [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23299912

[Nagamine12c] K. Nagamine (2012, January 11). PC Market Stumbles on HDD Shortage
While U.S. Market Sees Worst Annual Growth Since 2001, According to IDC
[Online]. Available: http://www.idc.com/getdoc.jsp?containerId=prUS23261412

[Pettey10] C. Pettey; L. Goasduff (2010, October 15). Gartner says worldwide media
tablet sales on pace to reach 19.5 million units in 2010. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1452614

[Pettey11] C. Pettey (2011, September 8). Gartner says PC shipments to slow to3.8
percent growth in 2011; Units to increase 10.9 percent in 2012. [Online].
Available: http://www.gartner.com/it/page.jsp?id=1786014

[Reed11] B. Reed (2011, December 23). Enterprise smartphone and tablet incursion to
grow in 2012 [Online]. Available:
http://www.networkworld.com/news/2011/122311-outlook-smartphone-tablet-
254341.html

[Rhomobile1] (2011, September 11). Smartphone apps made easy [Online]. Available:
http://rhomobile.com

[Rodriguez08] A. Rodriguez (2008, Nov 6). RESTFUL Web services: The
basics.[Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-restful/

[Rubin07] A. Rubin (2007, November 5). Where’s my Gphone? [Online]. Available:
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html

[Savov11] V. Savov (2011, Jan. 22). Motorola Xoom Launching February 17th at Best
Buy (update: price at $700). [Online]. Available:
http://www.engadget.com/2011/01/22/motorola-xoom-launching-february-17th-at-
best-buy/

 63

[Schapira01a] A. Schapira.; K. De Vries; C. Pedregal-Martin, "MANIC: an open-source
system to create and deliver courses over the Internet," Applications and the
Internet Workshops, 2001. Proceedings. 2001 Symposium on , vol., no., pp.21-26,
2001 doi: 10.1109/SAINTW.2001.998204

[Schapiara01b] A. Schapira.; K. De Vries; C. Pedregal-Martin, "MANIC: an open-
source system to create and deliver courses over the Internet," Applications and the
Internet Workshops, 2001. Proceedings. 2001 Symposium on , vol., no., pp.21-26,
2001 doi: 10.1109/SAINTW.2001.998204

[T-Mobile08] (2008, September 23). T-Mobile Unveils the T-Mobile G1 – the First
Phone Powered by Android [Online]. Available: http://tinyurl.com/7wqobga

[Vaughan-Nichols04] S.J. Vaughan-Nichols, "Wireless middleware: glue for the mobile
infrastructure," Computer , vol.37, no.5, pp. 18- 20, May 2004 doi:
10.1109/MC.2004.1297229

[Webster12] (2012, June 6). Smartphone [Online]. Available: http://www.merriam-
webster.com/dictionary/smartphone

[Zhang04] H. Zhang and W. Ma, “Adaptive content delivery on mobile internet across
multiple form factors,” Multimedia Modeling Conference, 2004. Proceedings, 10th
International, vol., no., pp. 8, 5-7 Jan. 2004. doi: 10.1109/MULMM.2004.1264960

[Zhigang06] H. Zhigang; X. Xing; L. Hao; L. Hanqing; M. Wei-Ying, "Design and
Performance Studies of an Adaptive Scheme for Serving Dynamic Web Content in
a Mobile Computing Environment," Mobile Computing, IEEE Transactions on ,
vol.5, no.12, pp.1650-1662, Dec. 2006. doi: 10.1109/TMC.2006.182

 64

Appendix A

Table of Definitions

Term Definition
Android Mobile operating system developed by Google for use with their

smartphone and tablet computers
Apache A widely used open source web server
API Application Programming Interface
Cloud Computing System for delivering computing resources as a service
CSS3 Third version of the Cascading Style Sheets document descriptor
Design Pattern A programatic solution that is reusable in future software designs
Distributed
computing

Computing environment where two or more devices share the
burden of processing and displaying computational applications

Framework Structure of services and resusable libraries to implement an
application

HTML5 Fifth version of the HTML markup language used for creating
dynamic web applications

iOS Mobile operating system developed by Apple for use with their
smartphones and tablet computers

Java Native programming language used for developing Android
applications

JavaScript Scripting language similar to Java used to add dynamic content to
web applications

JSON JavaScript Object Notation, a text-based data descriptor for data
interchange

LAMP Linux - Apache - MySQL - PHP
Linux Open general purpose operating system
MySQL A widely used open source database server engine
Objective-C Native programming language used for developing iOS

applications
Pervasive
Computing

Computing using technology which allows for remote access of
information and services

PHP Server-side scripting language used to build dynamic and data-
driven web applications

REST Representational State Transfer, an architecture used for
distrubted systems

SDK Software Development Kit
Sensor Networks Computing environment built from distributed autonomous

sensors that monitor environmental conditions
Smartphone A mobile computing device that has a telephony radio interface

SQLCE A database engine based on Microsoft SQL Server optimized for
portability

SQLite An open source database engine optimized for portability

 65

Tablet Computer A mobile computing device that is optimized for a touch user
interface

Web Service System of retrieving and saving data using standard HTTP GET
and POST methods

XML eXtensible Markup Language, a text based descriptor for data
interchange

 66

Appendix B

The source code for this project is available at

https://docs.google.com/folder/d/0BylubvV-Xo2FQWhkdXc2azY1Q1U/edit

