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ABSTRACT

INFERENCE AND ANALYSIS OF MULTILAYERED MIRNA-MEDIATED

NETWORKS IN CANCER

Duc Do, B.S.

Marquette University, 2018

MicroRNAs (miRNAs) are small noncoding transcripts that can regulate gene

expression, thereby controlling diverse biological processes. Aberrant disruptions of

miRNA expression and their interactions with other biological agents (e.g., coding

and noncoding transcripts) have been associated with several types of cancer. The

goal of this dissertation is to use multidimensional genomic data to model two differ-

ent gene regulation mechanisms by miRNAs in cancer. This dissertation results from

two research projects. The first project investigates a miRNA-mediated gene reg-

ulation mechanism called competing endogenous RNA (ceRNA) interactions, which

suggests that some transcripts can indirectly regulate one another’s activity through

their interactions with a common set of miRNAs. Identification of context-specific

ceRNA interactions is a challenging task. To address that, we proposed a compu-

tational method called Cancerin to identify genome-wide cancer-associated ceRNA

interactions. Cancerin incorporates DNA methylation (DM), copy number alteration

(CNA), and gene and miRNA expression datasets to construct cancer-specific ceRNA

networks. Cancerin was applied to three cancer datasets from the Cancer Genome

Atlas (TCGA) project. We found that the RNAs involved in ceRNA interactions were

enriched with cancer-related genes and have high prognostic power. Moreover, the

ceRNA modules in the inferred ceRNA networks were involved in cancer-associated

biological processes. The second project investigates what biological functions are

regulated by both miRNAs and transcription factors (TFs). While it has been known

that miRNAs and TFs can coregulate common target genes having similar biological

functions, it is challenging to associate specific biological functions to specific miR-

NAs and TFs. In this project, we proposed a computational method called CanMod

to identify gene regulatory modules. Each module consists of miRNAs, TFs and

their coregulated target genes. CanMod was applied on the breast cancer dataset

from TCGA. Many hub regulators (i.e., miRNAs and TFs) found in the inferred

modules were known cancer genes, and CanMod was able to find experimentally val-

idated regulator-target interactions. In addition, the modules were associated with

distinguishable and cancer-related biological processes. Given the biological findings

obtained from Cancerin and CanMod, we believe that the two computational methods

are valuable tools to explore novel miRNA involvement in cancer.
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CHAPTER 1

INTRODUCTION

This dissertation describes two computational methods that aim to model

two gene regulatory mechanisms governed by microRNAs (miRNAs) in cancer bi-

ology. The dissertation is organized as follow. Chapters 1 introduces the biological

background and the research motivations. Chapter 2 and Chapter 3 describe the

two computational methods in detail and analyze the results obtained from apply-

ing the methods to cancer datasets. Chapter 4 summarizes the contributions of the

dissertation and offers several future research directions.

This introductory chapter starts with a brief history of miRNA discovery

and a discussion about miRNA involvement in complex diseases such as cancer.

Next, it describes the overall research motivation of the dissertation. Then it presents

the biological background of miRNAs, including miRNA biogenesis and basic func-

tional roles of miRNAs. Next, it briefly discusses other types of important gene reg-

ulators besides miRNAs. The chapter ends with the specification of the research

goals of the dissertation.
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1.1 MicroRNA - a crucial gene regulator emerged from the “junk DNA”

world

The discovery of the DNA structure in 1953 by James Watson and Francis

Crick has guided molecular biology research to a new direction - understanding the

intricacy of cellular functions via understanding how genetic information is stored

and “decoded” in the cells [Pray, 2008]. In a seminal presentation in 1957, Crick

presented the “central dogma” of molecular biology [Cobb, 2017]. The “central

dogma” says that our genetic information is stored as a DNA code, which can be

converted into messenger RNAs (mRNAs) (Fig. 1.1). The mRNAs are “decoded”

to produce proteins, which are the agents that dictate different biological func-

tions. This fundamental understanding of protein synthesis from the DNA level has

played an essential role in many scientific breakthroughs and is undeniably one of

the greatest scientific achievements in the 20th century.

The “central dogma” implies that important instructions for protein synthe-

sis are packed into the protein-coding genes that produce mRNAs. However, it is

known that there are many sequences that are transcribed to RNAs but could not

be translated into protein [Cheng et al., 2005, Van Bakel et al., 2010]. Those RNAs

are known as non-coding RNAs (ncRNAs). While some ncRNAs are functional

molecules (e.g., transfer RNAs, ribosomal RNAs), most ncRNAs have unknown

functions [Hüttenhofer et al., 2005]. The DNA sequences that do not encode pro-
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Figure 1.1: Central dogma of molecular biology. The central dogma

describes the genetic information flow in cells from DNA to mRNA to pro-

tein. First, during the transcription process, precursor mRNAs (pre-mR-

NAs) are synthesized from DNA templates. Then, during the post-tran-

scription modification process, the pre-mRNAs are converted into ma-

ture messenger RNAs (mRNAs). Finally, during the translation pro-

cess, the sequences of nucleotides in mRNAs are translated into proteins.

(https://commons.wikimedia.org/wiki/Category:Central dogma of molecular biology/

media/File:Gene structure eukaryote 2 annotated.svg. Public Domain.)

teins were termed “junk DNAs” [Ehret and De Haller, 1963, Ohno, 1972, Palazzo

and Lee, 2015]. Prior to the 21th century, the scientific community primarily fo-

cused on identifying and understanding the importance of protein-coding genes and

overlooked the “junk DNA” world.

However, non-coding genes/RNAs have attracted much attention thanks to

the completion of the Human Genome Project (HGP) in 2003 [International Hu-

man Genome Sequencing Consortium, 2004], which was followed by the ongoing
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Encyclopedia of DNA Elements (ENCODE) project [ENCODE Project Consor-

tium, 2004]. While the HGP sequenced and mapped the whole human genome,

the ENCODE project aims to explore the biological significance of the genome

sequence. The HGP found that there are around 20,000 protein-coding genes in

human DNA, but surprisingly these genes make up only around 1% of the entire

genome [ENCODE Project Consortium, 2007]. The remaining 99% are “junk DNA”

regions that do not encode proteins. Thus, one major goal of the ENCODE project

is to determine the biological functions of the non-coding genes [Djebali et al., 2012,

Derrien et al., 2012]. A small portion of those genes, named miRNAs, emerged as

one of the important molecular players. By binding to the protein-coding tran-

scripts, miRNAs play an important role in regulating the production of proteins,

thereby regulating many important biological functions.

1.1.1 Discovery of miRNAs

Discovery of the first miRNA was traced back to 1993 by joint efforts of

different research groups while working on the nematode Caenorhabditis elegans.

Ambros and his colleagues Rosalind Lee and and Rhonda Feinbaum discovered

that the normal development of this organism required both the transcription of

the gene linc-4 and the downregulation of the protein LIN-14 [Ambros, 1989, Lee

et al., 1993]. They made a crucial observation that the lin-4 gene could not produce
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protein. Instead, the lin-4 gene produced two small non-protein-coding RNAs that

were approximately 21 and 61 nucleotides (nt) in length.

Soon after the lin-4 discovery by the Ambros group, Ruvkun and his col-

leagues Wightman and Ha made an important observation that there are repeated

regions on LIN-14 containing complementary sequences to the 21-nt long lin-4 RNA

[Arasu et al., 1991, Wightman et al., 1993]. Their follow up experiments showed

that the binding of the small lin-4 RNA to the LIN-14 RNA decreased the LIN-

14 protein expression. This was the first finding presenting an important regula-

tory mechanism that involved a binding between a small non-coding RNA with a

protein-coding RNA.

It took seven years for the second miRNA to be discovered. In 2000, Rein-

hart in Ruvkun’s laboratory discovered that let-7, another 21-nt long RNA, had a

crucial role in the final larval developmental transition from larval stage to adult-

hood in C. elegans [Reinhart et al., 2000]. Quickly after Reinhart’s discovery, let-7

was found also in many other organisms, including humans. The findings about the

conservation of let-7 across different species sparked a research interest in miRNAs

[Roush and Slack, 2008]. Since then, different important functional roles of miRNA

have been found not only in normal biological processes but also in diseases such as

cancer.
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1.1.2 MiRNA involvement in cancer

Cancer is a disease in which abnormal cells divide without control and be-

come invasive. Gene expression is dramatically deregulated in cancer [Cooper and

Hausman, 2000]. In 2002, George Calin and colleagues presented the first report of

miRNA involvement in cancer [Calin et al., 2002]. They observed that two miR-

NAs mir-15a and mir-16-1 were either consistently deleted or downregulated in B

cell chronic lymphocytic leukemia (B-CLL), suggesting their potential role as tu-

mor suppressors (“brakes” to inhibit tumorgenesis). Later it was confirmed that

the deletion or downregulation of these two miRNAs led to the activation of their

target oncogenes (“gas pedals” to accelerate tumorgenesis) CCND2 and CCND3

[Klein et al., 2010]. Since then, the involvement of miRNAs has been reported in

many types of cancers such as breast, kidney, head and neck [Iorio et al., 2005,

Catto et al., 2011, Tran et al., 2007].

1.1.3 Research motivation

There are many possible interactions between miRNAs and target tran-

scripts. Moreover, miRNAs’ and their target genes’ activities can vary consider-

ably in different contexts such as normal cells versus cancer cells. Thus, identifying

the functional significance of miRNA-target interactions in different cellular con-



7

ditions is challenging [Kwan et al., 2016, Catalanotto et al., 2016]. In addition,

since genes under miRNA regulation can also be regulated by many other types

of regulators such as transcription factors (TFs), copy number alteration (CNA),

and DNA methylation (DM), the interplay between miRNAs and those regulatory

factors can have important biological functions but not well understood [Hayes

et al., 2014, Jones, 2015]. There is still much unknown about different gene reg-

ulation mechanisms that miRNAs participate in. Fortunately, thanks to develop-

ments of technology, vast amounts of biological data have been generated, which

enables us to gain important information of miRNA functions [Motameny et al.,

2010, Aldridge and Hadfield, 2012].

By leveraging multiple types of biological data, this dissertation aims to

model two important cancer-associated gene regulation mechanisms governed by

miRNAs. The first mechanism involves the “competing endogenous RNA (ceRNA)”,

which suggested that two RNA transcripts can indirectly regulate each other through

their interactions with their common miRNA regulators. The second mechanism in-

volves the coordination of miRNAs and TFs in coregulating common target genes

that are in charge of important biological processes. These two mechanisms will be

discussed in more detail in Section 1.5 Research Goal and especially later in Chap-

ters 2 and 3.
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The next two sections specify the important biological background of miR-

NAs to facilitate the subsequent discussion and analysis in the dissertation.

1.2 MiRNA biogenensis

Typically, miRNA genes are transcribed by Polymerase II RNA to produce

long primary transcripts (pri-miRNAs) that are approximately 400 nt long [Denli

et al., 2004, Bartel, 2018]. The pri-miRNAs are bound by a microprocessor com-

plex comprised of Drosha, an RNase III families of enzymes, and a gene DGCR8

[Gregory et al., 2004]. The microprocessor complex cleaves the 5’cap and poly-A

tail out of the pri-miRNAs, leaving a hairpin pri-miRNAs structure [Ha and Kim,

2014].

After the pre-miRNAs are produced in the nucleus, they are exported into

the cytoplasm by a nucleocytoplasmic shuttler Exportin-5 [Kim, 2004] (Fig. 1.2

point 1). In the cytoplasm, an RNA III enzyme named Dicer binds to the pri-miRNAs

and cleaves the loop connecting the 3’ and 5’ arms of pri-miRNAs [Lund and Dahlberg,

2006] (Fig. 1.2 point 2). The cytoplasmic processing by Dicer yields double-stranded

RNAs, named the miRNA-3p/miRNA-5p duplex. In most cases, only one of the

miRNAs in the duplex is involved in gene regulation, and that miRNA is consid-

ered to be a mature miRNA. The remaining one is normally degraded and consid-

ered to be a passenger miRNA [Bartel, 2004, Lau et al., 2001]. Nevertheless, there
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are some miRNA duplexes where both miRNAs are functionally active in regulating

gene expression, and both are considered as mature miRNAs [Yekta et al., 2004].

1.3 Gene regulation by miRNA

The best-known function of miRNAs is their ability to repress translation

of protein-coding genes. The process starts with the miRNA duplex binding to an

Argonaute (AGO) protein to form RNA-induced silencing complex (RISC) (Fig.

1.2 point 21
2
). The binding with AGO separates the duplex into the mature miRNA

from the passenger miRNA. On the 5’ end of the mature miRNAs resides a region,

which is complementary or partially complementary with the miRNA-binding-sites

(“seed” region or miRNA response elements - MREs) located on the 3’UTR of the

target mRNAs [Pasquinelli, 2012, Thomson et al., 2011] (Fig. 1.2 point 4). It has

been demonstrated that a transcript can contain multiple MREs for one or mul-

tiple miRNAs, implying a many-to-many relation between mRNAs and miRNAs

[Pasquinelli, 2012]. Mature miRNAs recognize their target mRNAs based on the se-

quence complementary and guide their associated RISCs to bind to the MREs on

their target mRNAs, resulting in the decrease of the protein output of the target

mRNAs [Catalanotto et al., 2016].
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1.4 Other types of gene regulators

This dissertation explores the regulatory relationship between miRNAs and

their target genes. However, it is important to note that expression of a gene is

regulated by other regulatory factors besides miRNAs such as transcription factor

(TF), copy number alteration (CNA), and DNA methylation (DM).

1.4.1 Transcription factor (TF)

TFs are a type of protein that regulate their target genes at the transcrip-

tional level by binding to the genes’ promoter, enhancer, or repressor regions [Voss

and Hager, 2014] (see Fig. 1.3). TFs can either stimulate or repress the transcrip-

tion of their target genes, leading to either the increase or decrease of the target

genes’ expression [Spitz and Furlong, 2012]. Similar to the many-to-many relation

between miRNAs and their target genes, a TF can simultaneously regulate many

target genes, and a target gene can be regulated by multiple TFs.

1.4.2 Copy number alteration (CNA)

CNA is a type of structural alteration in the genome that result in gain or

loss in copies of sections of DNA [Beroukhim et al., 2010]. In humans, each gene

has two copies. Genes residing in the DNA regions that undergo copy number alter-
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Figure 1.3: Gene regulation at transcriptional level.

(https://commons.wikimedia.org/wiki/File:Transcription Factors.svg. Public Do-

main).

ation have their copy numbers changed. Genes with copy number gain often have

their expression increased; in contrast, genes with copy number loss often have their

expression decreased [Taylor et al., 2008]. Fig. 1.4 presents the cases of CNA due

to gene duplication and deletion of genes. CNA has been associated with complex

traits in human and aberrant CNA has been implicated in many diseases including

cancer [Taylor et al., 2008, Shlien and Malkin, 2009].

1.4.3 DNA methylation (DM)

DM is a chemical change to DNA, which occurs when methyl groups are



13

Figure 1.4: Duplication or deletion of genes on a chromosome.

(http://readingroom.mindspec.org/wp-content/genetics CNV.jpg. Public Domain).

added to the nucleotide cytosine [Phillips, 2008] (see Fig. 1.5). DM can alter the

activity of genes residing on the sequence without changing the primary nucle-

tide sequence. Thus, DM is considered as an epigenetic gene regulation mechanism

[Phillips, 2008]. When DM occurs on gene promoter regions, it often represses gene

transcription and therefore decreases the gene expression [Jones, 2012]. DM can de-

activate activities of important tumor-suppressor genes, which can trigger tumor

formation and development processes [Baylin, 2005].

The different regulatory factors including TFs, CNA, DM, and miRNAs

represent multilayers of gene expression regulation from transcriptional regulation

(TFs and CNA) and epigenetic regulation (DM), to post-transcriptional regulation

(miRNAs). Thus, studies that explore the functional importance of miRNAs based
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Figure 1.5: Transcriptional repression via DNA methylation.

on how they regulate expression of their target genes should be mindful about the

other regulatory factors to avoid spurious conclusions about miRNA-target gene

relation. The two computational methods proposed in this dissertation both incor-

porate those regulatory factors in their pipelines.

Given the related biological backgrounds, the following section will specify

the research goals of this dissertation.

1.5 Research goals

There is still much unknown about different gene regulation mechanisms in

which miRNAs participate and how they are associated with diseases such as can-

cer. This dissertation focuses on two specific gene regulation mechanisms involving

miRNAs. The first gene regulation mechanism involves identifying indirect inter-

action between RNA transcripts that are coregulated by common miRNAs. The
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second gene regulation mechanism involves identifying the gene regulatory modules

consisting of miRNAs, TFs, and their coregulated genes. To that end, we developed

two computational methods, namely Cancerin and CanMod, to identify ceRNA in-

teractions and gene regulatory modules in cancer, respectively. We believe that the

two methods can be used to provide meaningful insights of miRNA involvement in

cancer biology. The next two sections describe research goals behind the two com-

putational methods.

1.5.1 Identification of cancer-associated endogenous competing RNA

interactions

Competing endogenous RNA (ceRNA) interactions involve indirect inter-

actions between RNA molecules via their interactions with their common miRNA

regulators [Tay et al., 2011, Cesana et al., 2011]. The ceRNA hypothesis [Salmena

et al., 2011] posits that a change of expression level in one ceRNA would alter its

miRNA regulators’ abundance, which in turn alters the expression level of other

target ceRNAs of these miRNAs. For example, a highly expressed ceRNA can se-

quester many miRNA molecules, reducing the total miRNA abundance and leading

to the derepression of other target ceRNAs of these miRNAs. CeRNA interactions

are not only among protein coding RNAs (i.e., mRNAs). Recent studies have found

that non-coding RNAs such as long non-coding RNAs (lncRNAs) and pseudogenes
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also involved in ceRNA interactions [Xia et al., 2014, Zhang et al., 2018, An et al.,

2017].

CeRNA interactions have been shown to regulate important biological pro-

cesses, and disruption of ceRNA interactions has been implicated in multiple types

of diseases including cancer [Tay et al., 2014, Sanchez-Mejias and Tay, 2015, Li

et al., 2017]. Identification and construction of genome-wide and condition-specific

ceRNA interaction networks could facilitate better understanding of ceRNA reg-

ulatory mechanisms and their biological significance, especially in cancer biology.

Under that motivation, in Chapter 2, we propose a computational pipeline called

Cancerin, which infers Cancer-associated ceRNA iteraction networks. Cancerin

was applied to three cancer datasets. In brief, the analysis results show that com-

pared to existing methods, Cancerin is able to identify cancer-related ceRNA inter-

actions with higher accuracy. The ceRNA interactions obtained by Cancerin could

be used to help researchers acquire new insights on the roles of miRNAs in cancer

formation and development.

1.5.2 Identification of cancer-associated gene regulatory modules

Besides miRNAs, a gene also can be regulated by many other factors includ-

ing TFs [Voss and Hager, 2014, Jones, 2015]. Abnormal alternation of gene regu-

lation by either miRNA or TF can disrupt important biological processes and lead
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to tumor formation and development [Wang et al., 2014, Gabay et al., 2014, Patki

et al., 2013]. While numerous studies have advanced our understanding of the roles

of miRNAs and TFs in cancer pathology, not much is known on how miRNAs and

TFs are coordinated in regulating cancer-related biological functions.

An oncogenic process often involves many genes, and those genes can be

coregulated by multiple miRNAs and TFs [Martinez and Walhout, 2009, Hayes

et al., 2014]. Being able to identify such functional gene regulatory modules, which

consist of miRNAs, TFs, and their coregulated genes can further our understanding

of gene regulation mechanisms in cancer biology. Because of the many-to-many re-

lation between genes and their regulators (i.e., miRNAs and TFs), and how gene

regulation can vary significantly in different cellular conditions, deciphering the

coregulatory relationship between TFs, miRNAs to identify context-specific gene

regulatory modules is a challenging problem. To that end, in Chapter 3, we pro-

pose a computational method called CanMod, which aims at identifying Cancer-

associated Gene Regulatory Modules. CanMod was applied to the breast cancer

dataset from TCGA. In brief, CanMod was able to infer gene modules that are sig-

nificantly associated with cancer-related biological processes and pathways. Can-

Mod is a valuable tool for researchers to gain understanding of the interplay be-

tween miRNAs and TFs in regulating cancer-related biological processes.
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1.6 Datasets and Data Preprocessing

Before discussing the two computational methods in detail in Chapters 2

and 3, this section describes the what datasets were used and how the data were

preprocessed to be used as input for the two computational methods.

1.6.1 Datasets

Both of the methods were applied to real cancer datasets from The Cancer

Genome Atlas (TCGA) [Grossman et al., 2016]. TCGA is a public database that

stores various biological and clinical data types of both normal samples and tumor

samples of over 30 cancer types. TCGA uses different high-throughput techniques

to analyze the cancer patient samples. Those techniques include DNA sequencing,

gene expression (mRNA and miRNA) profiling, CNA profiling, and DM profiling.

Since both Cancerin and CanMod leveraged those data types, TCGA provides valu-

able datasets to apply the two methods.

We used the R Bioconductor package TCGABiolinks [Colaprico et al., 2016]

to download the genomic data of normal and solid tumor tissues for three types of

cancer from TCGA [Grossman et al., 2016]. The cancer types included breast inva-

sive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), and head and

neck squamous cell carcinoma (HNSC). For those cancer types, we retrieved mRNA

and miRNA gene expression data, CNA data, and DM data. Expression of lncR-
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NAs was retrieved from the TANRIC database [Li et al., 2015]. We also retrieved

the survival data (number of days until death) of the cancer patients from whom

the genomic data were collected.

In addition, the 3’UTR sequences of 18,959 mRNAs and 13,870 lncRNAs

were downloaded from the GENCODE Release 26 (GRCh38.p10) [Harrow et al.,

2012], and the sequences of 2,588 mature miRNAs and were downloaded from miR-

Base release 21 [Kozomara and Griffiths-Jones, 2013].

In both Cancerin and CanMod, putative regulator-target gene interactions

(i.e., miRNA-target and TF-target interactions) were used to reduce the search

space of regulators for each target gene. Putative miRNA-mRNA interactions were

retrieved from StarBase v2.0 [Li et al., 2013] and TargetScan 7.1 [Agarwal et al.,

2015] databases. StarBase predicts miRNA-RNA interactions based on inferring the

direct miRNA-RNA binding events from 108 CLIP-seq datasets [Li et al., 2013].

TargetScan predicts an mRNA to be a miRNA’s target if the mRNA contains bind-

ing sites that are complementary to the seed regions of the miRNA [Agarwal et al.,

2015]. Appendix A provides details about common methods to determine putative

miRNA-target gene interactions.

Putative miRNA-lncRNA interactions were retrieved from Starbase v2.0 [Li

et al., 2013], DIANA-LncBase v2 [Paraskevopoulou et al., 2015], and LnCeDb [Das

et al., 2014]. The putative miRNA-lncRNA interactions in the DIANA-LncBase v2
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are inferred using the DIANA-microT algorithm [Paraskevopoulou et al., 2013]. It

is a machine-learning approach that estimates miRNA-RNA target binding score

based on weighting multiple features such as sequence complementary, free bind-

ing energy, and conservation profile [Paraskevopoulou et al., 2013]. The putative

miRNA-lncRNA interactions in the LnCeDb are aggregated from two sources. The

first source includes interactions from the Mircode database [Jeggari et al., 2012],

which uses seed complementarity and evolutionary source to infer interactions. The

second source includes interactions inferred by its own sequence-based miRNA-

RNA target prediction algorithm, which is a speed-up version of the Smith–Waterman

sequence alignment algorithm [Smith and Waterman, 1981].

To assess the sequence complementarity between miRNAs and their mRNA/lncRNA

targets, we retrieved the sequences of 2,588 mature miRNAs from the miRBase

release 21 [Kozomara and Griffiths-Jones, 2013]. The 3’UTR sequences of 18,959

mRNAs and the sequences of 13,870 lncRNAs were retrieved from the GENCODE

Release 26 (GRCh38.p10) [Harrow et al., 2012].

The putative TF-gene interactions are retrieved from the TRED [Zhao et al.,

2005] and TTRUST (version 2) [Han et al., 2015] databases. TRED is an inte-

grated repository for TF binding events to both enhancer and promoter regions in

mammals [Zhao et al., 2005]. The binding events in TRED are curated through a

literature text mining algorithm. TTRUST is also a repository of putative TF-gene
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interactions, which is constructed using a sentence-based text mining algorithm,

followed by manual curation.

1.6.2 Data preprocessing

This section describes how the data were preprocessed to be used as input

for the Cancerin and CanMod.

1.6.2.1 Gene expression preprocessing and differential expression analy-

sis

Expression of a gene is quantified as the overall abundance of the gene’s

transcripts. RNA-Seq is a high-throughput sequencing technology that is used to

quantify genome-wide transcript abundance [Kukurba and Montgomery, 2015]. A

transcript abundance is quantified by the number of sequenced reads, called raw

counts, that are aligned and mapped to the transcript [Kukurba and Montgomery,

2015].

From TCGA, we retrieved the Illumina HiSeq 2000 sequencing data, which

provided the raw count values of genome-wide mRNAs and miRNAs. The pres-

ence of low-count mRNAs and miRNAs can decrease the sensitivity of different sta-

tistical analyses used in Cancerin and CanMod. The low-count RNAs are defined

as the RNAs that were not expressed in the majority of samples [Robinson et al.,

2010]. We used the R Bioconductor package edgeR [Robinson et al., 2010] to filter
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out low-count RNAs. First, the raw count values of each gene were converted to

counts-per-million (CPM) values, which handles the library size bias between sam-

ples [Robinson et al., 2010]. Then, to remove the RNAs that were not expressed

in the majority of samples, across all the samples for each cancer dataset, an RNA

was filtered out if its CPM value was less than 1 in more than t samples, where t

was set to the larger between the tumor and the normal group size.

We also used the edgeR package to identify differentially expressed (DE)

mRNAs and DE miRNAs between the normal and the tumor samples. First, the

package was used to model count data with a negative binomial (NB) distribution.

After the data was fitted under NB models, we applied the Fisher’s exact test to

identify DE mRNAs and DE miRNAs [Robinson et al., 2010]. As expression of

lncRNAs was in RPKM units and was normalized to follow a normal distribution,

to find DE lncRNAs, we fitted a linear model for each lncRNA using the lmFit

function in R package limma [Ritchie et al., 2015]. A miRNA, mRNA, or lncRNA

was considered to be DE if its adjusted Bonferroni-Hochberg p-value [Benjamini

and Hochberg, 1995] was smaller than 0.01.

To ensure the expression of the DE mRNAs, miRNAs, and lncRNAs was in

the same units, we converted raw counts of DE mRNAs and DE miRNAs to reads-

per kilobase-million (RPKM) values. We used log2(RPKM+0.001) to present the

expression of all DE RNAs. Expression of those RNAs were z-normalized across all
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the tumor samples since we only used the tumor samples after the preprocessing

step.

1.6.2.2 Copy number alteration (CNA)

We downloaded the level 3 CNA data (Affymetrix SNP Array 6.0) from

TCGA. The CNA data provides estimated mean copy numbers of chromosomal

segments in the whole genome. Using the genomic location information of 22,310

protein coding genes provided by GENCODE Release 26 (GRCh38.p10), we applied

the R Bioconductor package CNTools [Zhang, 2016] to convert the segmented CNA

data into a gene-level data matrix, where each entry represented the copy number

value of a gene in a specific sample.

1.6.2.3 DNA Methylation (DM)

We downloaded the level 3 DM data (Infinium HumanMethylation450 Bead-

Chip) from TCGA. The DM data measures the methylation level of approximately

450,000 CpG sites genome-wide. The methylation level of each CpG site (i.e., β

value) was estimated as the ratio of the methylated probe intensity to the overall

intensity (sum of methylated and unmethylated probe intensities). Thus β ranges

between 0 (hypomethylated) and 1 (hypermethylated). Previous studies indicated

that the methylation of CpG sites in promoter regions were associated with gene
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expression change [Nagae et al., 2011, Fernandez et al., 2012]. Therefore, we only

considered β values of CpG sites in genes’ promoter regions. To compute gene-

centric methylation values, we used the Bioconductor annotation package Illumi-

naHumanMethylation450kanno.ilmn12.hg19 [Hansen, 2015] to identify the probes

positioned at the genes’ promoter regions (upstream 200 to 1500 base pairs away

from of gene transcription start site). A gene’s methylation level was estimated as

the mean of its associated upstream probes’ β values.

The next two chapters will provide detailed descriptions of the two compu-

tational methods and the biological findings obtained from applying the methods to

the cancer datasets.
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CHAPTER 2

CANCERIN: A COMPUTATIONAL METHOD TO IDENTIFY

CANCER-ASSOCIATED COMPETING ENDOGENOUS RNA

INTERACTIONS MEDIATED BY MIRNA REGULATION

(This chapter is adapted from the research article [Do and Bozdag, 2018].

The article was accepted for publication in PLoS Computational Biology in June,

2018. We have full permission to reuse the article’s contents in this chapter.)

2.1 Abstract

MicroRNAs (miRNAs) inhibit expression of target genes by binding to their

RNA transcripts. It has been recently shown that RNA transcripts targeted by the

same miRNA could “compete” for the miRNA molecules and thereby indirectly

regulate each other. Experimental evidence has suggested that the aberration of

such miRNA-mediated interaction between RNAs – called competing endogenous

RNA (ceRNA) interaction – can play important roles in tumorigenesis. Given the

difficulty of deciphering context-specific miRNA binding and the existence of vari-

ous gene regulatory factors such as DNA methylation and copy number alteration,

inferring context-specific ceRNA interactions accurately is a computationally chal-

lenging task. Here we propose a computational method called Cancerin to iden-

tify cancer-associated ceRNA interactions. Cancerin incorporates DNA methyla-

tion (DM), copy number alteration (DM), gene and miRNA expression datasets

to construct cancer-specific ceRNA networks. We applied Cancerin to three can-
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cer datasets from the Cancer Genome Atlas (TCGA) project. Our results indicated

that ceRNAs were enriched with cancer-related genes, and ceRNA modules in the

inferred ceRNA networks were involved in cancer-associated biological processes.

Using LINCS-L1000 shRNA-mediated gene knockdown experiment in breast can-

cer cell line to assess accuracy, Cancerin was able to predict expression outcome of

ceRNA genes with high accuracy.

2.2 Motivation and Related Work

As a miRNA can regulate multiple targets, and a target be simultaneously

be regulated by multiple miRNAs, the regulatory network formed by miRNAs and

their target genes is complex. Many layers of biological knowledge still is hidden

in this complex miRNA-target gene regulatory network. Proposed by Pandofi in

2011, the ceRNA hypothesis, which posited that two RNA transcripts can indi-

rectly regulate each other via their direct interactions with common miRNAs, has

gained much attention, since this novel gene regulation can be involved in many

crucial biological processses [Salmena et al., 2011]. CeRNA interactions have been

shown to regulate important biological processes such as muscle differentiation [Ce-

sana et al., 2011], self-renewal capability of embryonic stem cells [Jovanovic and

Hengartner, 2006], and inhibition of cancer cell differentiation [Zhou et al., 2014a].

Aberrance of ceRNA interactions has been reported to be associated with tumorge-
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nesis in multiple types of cancer [Li et al., 2017, Yang et al., 2014, Sanchez-Mejias

and Tay, 2015, Karreth and Pandolfi, 2013, Tay et al., 2014].

The existence and strength of ceRNA interactions may vary significantly in

different physiological and cellular settings (i.e., normal cells versus tumor cells).

As ceRNA interaction is considered as a new layer of gene regulation, identifica-

tion and construction of genome-wide and condition-specific ceRNA interaction net-

works could facilitate better understanding of ceRNA regulatory mechanisms and

their biological significance. While experimental studies are of great importance to

confirm ceRNA interactions, inference of ceRNA interaction networks by only ex-

perimental methods is time- and cost-prohibitive. Thus, computational tools are

needed to infer ceRNA interaction networks and to generate new hypotheses for

further experimental validation.

Since ceRNA interactions are mediated via miRNAs, identifying interactions

between miRNAs and their targets is a prerequisite to infer ceRNA interactions.

Sequence-based miRNA target prediction algorithms such as TargetScan [Agar-

wal et al., 2015] and miRanda [John et al., 2004] have been employed to search for

miRNA-response-element (MREs) in 3’UTR of mRNAs, and miRNA-mRNA in-

teraction databases such as StarBase [Li et al., 2013] and miRWalk [Dweep et al.,

2011] store computationally and experimentally verified miRNA-mRNA interac-

tions. Expression profiles of both mRNAs and miRNAs also were used to identify
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condition-specific miRNA-mRNA interactions. As miRNAs were mostly known

to repress the expression of its targets, expression levels of miRNAs and their tar-

gets were often required to be negatively correlated [Zhou et al., 2014b, Shao et al.,

2015].

After predicting miRNA-target gene interactions, existing ceRNA inference

methods differed in how they related expression of miRNAs and their coregulated

genes to decide which genes can establish ceRNA interactions. Pair-wise gene ex-

pression correlation often were considered as the main criteria to select ceRNA in-

teractions. Two ceRNAs were required to have positively correlated expression, and

the ceRNAs and their miRNA regulators were required to have negatively corre-

lated expression [Zhou et al., 2014b, Shao et al., 2015]. However, miRNA expres-

sion data were used to model the mediating effect of miRNAs in regulating ceRNA

interaction. Partial Pearson correlation (PPC) [Paci et al., 2014] and conditional

mutual information (CMI) [Sumazin et al., 2011, Chiu et al., 2015] metrics have

been used to measure linear or nonlinear dependence of candidate ceRNAs’ ex-

pression on their shared miRNAs’ expression. Applying CMI to identify and con-

struct a glioblastoma-specific ceRNA interaction network, Sumazin et al. found

experimentally-validated interactions between PTEN and their known ceRNAs

in the ceRNA network [Sumazin et al., 2011]. In [Paci et al., 2014], a new metric

called sensitivity partial correlation was proposed to quantify the expression cor-



29

relation dependency between two ceRNAs conditioned on their shared miRNAs’

expression. The researchers applied this metric to gene and miRNA expression of

normal and tumor breast samples to construct normal-specific and tumor-specific

ceRNA interaction networks. They observed that multiple cancer hallmarks such

as tumor inflammation were only enriched in the tumor-specific ceRNA network. A

detailed review of computational methods to infer ceRNA interactions can be found

in [Le et al., 2016].

In existing ceRNA studies, most computational methods considered miR-

NAs as the only type of gene regulators, while overlooking other important types of

gene regulators (e.g., TF, DM, and CNA). Not considering other types of regulators

might lead to spurious miRNA-gene interactions, which would cause false positive

predictions of ceRNA interactions. Notably, lack of experimental studies to confirm

ceRNA interactions posed a big challenge to validate the accuracy and significance

of inferred ceRNA interactions.

This chapter presents a computational pipeline called Cancerin, which in-

fers Cancer-associated ceRNA iteraction networks. A cancer-associated ceRNA

interaction is defined as an interaction between two DE RNAs (between normal

and cancer samples), and the interaction is mediated by some DE miRNAs that

regulate both RNAs. besides mRNAs, non-coding RNAs such as long non-coding

RNAs (lncRNAs) have been shown to actively participate in functionally important



30

ceRNA interactions in both normal and cancer cells [Sanchez-Mejias and Tay, 2015,

Tay et al., 2014]. Thus, Cancerin considers both mRNAs and lncRNAs as poten-

tial ceRNAs. Cancerin employs knowledge from both putative miRNA-RNA inter-

actions and miRNA/RNA expression profiles. In addition, Cancerin incorporates

other types of gene expression regulatory factors, namely CNA, DM, and TF.

In brief, input data for Cancerin include expression of miRNAs, lncRNAs,

miRNAs, CNA and DNA of each mRNAs, and putative interactions between miRNA-

mRNA, miRNA-lncRNA, and TF-mRNA. Cancerin outputs inferred ceRNA inter-

actions of mRNA-mRNA, mRNA-lncRNA, and lncRNA-lncRNA. R software for

Cancerin is freely available (MIT license) at https://github.com/bozdaglab/Cancerin.

We believe that Cancerin is an easy-to-use method for both biologists and bioinfor-

maticians to infer ceRNA interactions.

Cancerin was applied to three cancer datasets. The result indicate that the

ceRNAs in the obtained ceRNA interaction networks were significantly enriched

with cancer-related genes. Additionally, closely connected ceRNAs in the ceRNA

networks were associated with cancer cell formation and development processes.

Compared to non-ceRNA genes, expression change of predicted ceRNAs had a higher

association with cancer survival outcomes. To validate the effect of ceRNA interac-

tions to expression change on an external dataset, we used the LINCS perturbation
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dataset [Liu et al., 2015a] and observed that the knockdown of ceRNAs was associ-

ated with the expression change of their ceRNA partners.

The rest of the chapter is organized as follows. Section 2.3 recaps the input

data and the data processing procedure. Section 2.4 provides a detailed description

of each computational step in Cancerin. Section 2.5 discusses the results obtained

from applying Cancerin to the three cancer datasets. Section 2.6 summarizes the

main components of Cancerin and the key biological findings discussed in the chap-

ter.

2.3 Input Data

As described in Section 1.6, the input data for Cancerin are genome-wide ex-

pression of miRNAs, mRNAs, and lncRNAs. Each mRNA is also associated with a

CNA value and a DM value. In addition, putative miRNA-mRNA, miRNA-lncRNA,

and TF-mRNA interactions are also employed to select candidate regulators for

each target RNA transcript. Cancerin was applied to the breast cancer dataset

(BRCA), the kidney cancer dataset (KIRC), and the head and neck cancer dataset

(HNSC) from TCGA. Section 1.6 describes for how the data were preprocessed to

be used as input for Cancerin.
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2.4 Cancerin pipeline

Cancerin is a computational pipeline to identify genome-wide cancer-associated

ceRNA interaction networks. It consists of three main steps (Fig. 2.1). Using puta-

tive miRNA-mRNA and miRNA-lncRNA interactions, the first step constructs an

interaction network between DE miRNAs and DE RNAs. In the second step, only

the miRNAs that are associated with their targeted RNAs’ expression change are

kept. In the final step, several filtering layers are applied to infer ceRNA interac-

tions between RNAs that are targeted by common miRNAs. The details in each

step in Cancerin are described in the following.

Step 1: Identifying putative regulatory interactions between DE miR-

NAs and DE mRNAs based on sequence binding

As discussed in Section 1.6, the putative interactions between miRNAs and

mRNAs came from the TargetScan 7.1 [Agarwal et al., 2015] and StarBase v2.0 [Li

et al., 2013] databases. The putative interactions between miRNAs and lncRNAs

came from Starbase v2.0 [Li et al., 2013], DIANA-LncBase v2 [Paraskevopoulou

et al., 2015] and LnCeDb [Das et al., 2014]. The output for Step 1 are putative in-

teractions between DE miRNAs and DE RNAs.
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Figure 2.1: Cancerin pipeline to infer cancer-associated ceRNA interac-

tion networks. Cancerin consists of three steps. In Step 1, for each DE RNA,

Cancerin selects its candidate DE miRNA regulators based on sequence binding

results. In Step 2, Cancerin applies a LASSO-based variable selection procedure

to select a subset of miRNA regulators that contribute to the expression variation

of the DE RNA. In Step 3, Cancerin applies multiple filtering conditions to infer

ceRNA interactions between the RNAs that are regulated by common miRNAs.

Step 2: Selecting miRNAs associated with expression change of their

predicted RNA targets

Given the putative interactions between DE miRNAs and DE RNAs ob-
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tained from Step 1, for each DE RNA and its putative DE miRNA regulators, Can-

cerin identified which miRNAs contributed to the RNA’s expression variation. As

mRNA expression can be controlled by TFs, CNA, DM, and miRNA, our LASSO-

based variable selection procedure to infer cancer-specific miRNA-mRNA interac-

tions considered all of those regulatory factors as candidate regulators for mRNA

expression.

LASSO is a regularized regression method that penalizes the sum of absolute

value of the regression coefficients, so that it shrinks some covariates’ coefficients to

be exactly zero. Hence, it can be used for variable selection purposes [Tibshirani,

1996]. LASSO regression was applied for each RNA. For each mRNA, its expres-

sion was used as the response variable’s value, and its CNA, DNA methylation, and

the expression of its candidate miRNAs and TFs were used as values of the inde-

pendent variables’ values. For each lncRNA, its expression was used as the response

variable, and its candidate miRNAs’ expression were used as the independent vari-

ables’ value.

Training a LASSO model requires selecting the regularization hyperparame-

ter λ. To select the optimal λ value, we applied 10-fold cross validation to find the

λ value that provided the simplest model such that its cross-validation error was

within one standard error of the minimum cross-validation error. Thus, for each

RNAj, out of all of its candidate predictors (independent variables), LASSO re-
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gression selected a set of non-zero coefficient predictors. We employed R package

glmnet [Friedman et al., 2010] to perform LASSO regression.

However, independent variables selected by LASSO have been shown to be

inconsistent, especially when sample size gets large [Tibshirani et al., 2013]. To ad-

dress this problem, we ran the LASSO regression 100 times for each RNA. Only the

non-zero coefficient predictors that were selected more than 75 times were consid-

ered as frequently selected regulators of the RNA.

Unlike in linear multiple regression, where each independent variable’s re-

gression coefficient is associated with a p-value testing the null hypothesis that its

coefficient is equal to zero, coefficients of LASSO-selected predictors are not associ-

ated with any statistical significance test, so we employed a bootstrap procedure to

construct a confidence interval for the frequently selected predictors that were ob-

tained above. Suppose a regulator Ri is a frequently selected predictor for RNAj.

From the 100 LASSO runs, we used the median of Ri’s coefficients to represent its

regression coefficient and called it αij. To estimate the confidence interval of αij,

for RNAj, we fit LASSO regression 500 times, each time on a set of bootstrapped

samples, to generate a bootstrap regression coefficient distribution {αbootstrap ij}. Ri

would be kept as one of the RNAj’s regulators if its αij was within the 95% confi-

dence interval of {αbootstrap ij}, and the 95% confidence interval did not include 0.

As miRNAs are mostly known to repress the expression level of its RNA target, for
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each RNA, out of all the retained variables, we only selected the miRNAs that had

negative αij coefficients. In brief, after Step 2, each RNA is associated with a set of

miRNA regulators selected by the LASSO procedure.

Step 3: Identifying cancer-associated ceRNA interaction networks

Using the miRNA-RNA interactions obtained from Step 2, we generated all

possible RNA-RNA pairs such that the constituent RNA in each pair share at least

one miRNA regulator. Those pairs were considered as candidate ceRNA pairs. Fol-

lowing the ceRNA hypothesis, we only kept the candidate ceRNA pairs with high

positive Pearson expression correlation (correlation ≥ 0.5, p-value < 0.05).

Given the number of miRNAs regulating each RNA, to assess whether the

two RNAs in each candidate ceRNA pair shared a significant number of miRNA

regulators, we applied a hypergeometric test to each of the candidate ceRNA pairs.

Let N be the total number of all DE miRNAs. For a ceRNA pair consisting of

RNAi and RNAj, let Ni and Nj be the total number of miRNAs regulating RNAi

and RNAj respectively, and Nij be the number of common miRNAs regulating

both RNAi and RNAj. The p-value of the hypergeometric test was calculated us-

ing the formula in Eq. 2.1. Based on the hypergeometric test results, a candidate
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ceRNA pair was selected if its adjusted Bonferroni-Hochberg p-value was smaller

than 0.05.

p− value = 1−
Nij−1∑
k=0

(
Nj

k

)(
N−Nj

Ni−k

)(
N
Ni

) (2.1)

To further eliminate potentially spurious ceRNA pairs, we employed the

sensitivity correlation (SC) metric proposed in [Paci et al., 2014] to estimate the

ceRNA interaction strength for each ceRNA pair. Let {miRNAij} be the set of

common miRNAs regulating both RNAi and RNAj. Let Corr(RNAi, RNAj) be

the expression correlation between RNAi and RNAj and PC(RNAi, RNA|{miRNAij})

be the partial expression correlation between RNAi and RNAj conditioned on

{miRNAij}. Sensitivity correlation SC(RNAi, RNAj|{miRNAij}) is

SC(RNAi, RNAj | miRNAij) = Corr(RNAi, RNAj)

− PC(RNAi, RNAj | {miRNAij}).
(2.2)

The the R package bnlearn [Scutari, 2009] was used to compute partial cor-

relation (PC) for each candidate ceRNA pair. Since PC(RNAi, RNAj|{miRNAij})

computed the correlation of the RNAs’ expression while controlling/eliminating

the effect of their shared miRNAs’ expression, SC(RNAi, RNAj | {miRNAij})

quantifies the contribution of the shared miRNAs to the linear relation between
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expression of the two RNAs. A high SC value signifies a strong indirect interac-

tion between the two RNAs mediated by their shared miRNA regulators. Thus, we

selected the ceRNA pairs with positive SC values and p-values from partial corre-

lation test smaller than 0.05. Additionally, to estimate the statistical significance

of SC, we computed the SC empirical p-value for each candidate ceRNA pair. For

the pair (RNAi,RNAj), suppose the {miRNAij} was of size Nij. Then we ran-

domly selected Nij miRNAs to compute the pair’s sampled SC value. For each

ceRNA pair, the resampling procedure was repeated 1000 times. An empirical SC

p-value was assigned as the percentage of iterations in which the sampled SC value

exceeded the original SC value. A ceRNA pair was kept if its empirical SC p-value

was smaller than 0.05.

2.5 Results

Our Cancerin pipeline used different types of cancer genomics data to in-

fer cancer-associated ceRNA interaction networks. In assessing the effectiveness of

Cancerin, we used Cancerin to infer ceRNA networks in three cancer types: breast

(BRCA), kidney (KIRC), and head and neck cancer (HNSC). We obtained the

RNAseq, miRNAseq, DNA methylation, and CNA datasets for BRCA, KIRC, and

HNSC samples from TCGA [Grossman et al., 2016]. The numbers of normal/tumor
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tissue samples in each cancer type were 47/193 (BRCA), 20/243 (KIRC), and 20/413

(HNSC).

2.5.1 Putative DE miRNA - DE RNA interactions (Step 1)

The first step in Cancerin involved aggregating the putative interactions

between miRNAs and RNAs from various data sources. The candidate miRNA-

mRNA interactions were downloaded from the StarBase and TargetScan databases.

Using mRNAs’ and miRNAs’ FASTA sequences, we selected only the mRNAs whose

3’UTR sequences and the miRNAs whose mature sequences were specified. To fur-

ther refine those putative interactions, the miRanda algorithm was used to check

for the existence of MRE(s) on the mRNAs’ 3’UTR and to estimate the thermody-

namic folding energy between the miRNAs and their predicted mRNA targets. The

lower the energy, the higher chance that an interaction will actually occur [Math-

ews et al., 1999]. A miRNA-mRNA interaction was kept if there was at least one

MRE on the mRNA as miRNA’s binding site, and the miRNA-mRNA interaction’s

folding energy was lower than 140 kcal/mol (default value). After applying mi-

Randa, there remained 465,049 interactions between 473 miRNAs and 13,932 mR-

NAs. Putative miRNA-lncRNA interactions were aggregated from Starbase v2.0,

DIANA-LncBase v2, and and LnCeDb, resulting in 3,961,135 interactions between

2,695 miRNAs and 24,215 lncRNAs.
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Given all the putative miRNA-RNA interactions, since we aimed to infer

cancer-associated miRNA-RNA interactions, we only kept the interactions between

DE miRNAs and DE RNAs. Table 2.1 reported the number of DE miRNA - DE

RNA interactions in each cancer type. There were 66 common DE miRNAs and

2,147 common DE RNAs across all the three cancer types. The putative DE miRNA

- DE RNA interactions were specific to each cancer type. There were only 15,591

common putative interactions that are included in all the three cancer types.

Table 2.1: Number of putative DE miRNA-DE RNA interactions and number of

DE miRNAs and DE RNAs included in those interactions (output for Cancerin -

Step 1).

BRCA KIRC HNSC

No. of putative DE miRNA - DE mRNA interac-

tions

153,465 107,348 94,980

No. of DE miRNAs 1 215 164 201

No. of DE mRNAs 1 7,502 6,690 5,005

No. of putative DE miRNA - DE lncRNA inter-

actions

60,935 18,589 17,350

No. of DE miRNAs 2 215 164 201

No. of DE lncRNAs 2 3,111 1,335 896
1: included in putative DE miRNA - DE mRNA interactions.
2: included in putative DE miRNA - DE lncRNA interactions.

To identify cancer-associated ceRNA interactions, Cancerin employed the

putative miRNA-RNA interactions and RNA expression as input data for the next

two steps, which included applying a LASSO-based variable selection procedure

to select cancer-specific miRNA-RNA interactions and using that information to

identify ceRNA interactions.
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2.5.2 Analysis of miRNA-RNA interactions obtained from the LASSO-

based variable selection procedure (Step 2)

The LASSO-based variable selection procedure (Cancerin Step 2) was ap-

plied to identify cancer-specific miRNA-RNA interactions while also taking into

account other types of gene regulators including TF, DM, and CNA. Table 2.2 sum-

marizes the number of miRNA-RNA interactions selected by the variable selection

procedure in each cancer type. We found only 44 common miRNA-RNA interac-

tions across all the three cancer types. The result is expected because there were

already few common putative miRNA-RNA interactions selected in the previous

step.

Table 2.2: Number of selected miRNA-RNA interactions obtained after applying

the variable selection procedure (output of Cancerin - Step 2).

BRCA KIRC HNSC

No. of miRNA-mRNA interactions 6,616 8,408 9,893

No. of miRNAs 1 196 154 190

No. of mRNAs 1 2,814 2,971 3,020

No. of miRNA-lncRNA interactions 502 217 467

No. of miRNAs 2 134 93 141

No. of lncRNAs 2 210 91 175
1: included in the selected miRNA - mRNA interactions.
2: included in the selected miRNA - lncRNA interactions.

2.5.2.1 Many miRNA-RNA interactions were only identified when dif-

ferent types of gene expression regulators were taken into ac-

count

The Cancerin pipeline was constructed under the premise that different
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types of gene regulators were important to infer miRNA-RNA interactions cor-

rectly. Out of all the RNA targets that were found to have at least one miRNA

regulator (3,024 (BRCA), 3,062 (KIRC), and 3,195 (HNSC)), we computed the per-

centage of those targets that were also under regulation of at least one additional

regulatory factor such as CNA, DNA methylation, or TF (Table 2.3). Not surpris-

ingly, those additional regulatory factors, especially CNA, were observed to be asso-

ciated with expression change in majority of target RNAs.

Table 2.3: Percentage of RNA targets regulated by miRNAs and also by at least

one additional type of regulators.

BRCA KIRC HNSC

Percentage of RNA targets under CNA regulation 76.2% 69.2% 77.2%

Percentage of RNA targets under DNA Methylation

regulation

30.4% 26.3% 35.0%

Percentage of RNA targets under TF regulation 54.1% 59.3% 48.0%

To check the impact of those additional regulators in inferring miRNA-RNA

interactions, we performed a comparative analysis between the miRNA-RNA inter-

actions that were selected in two different cases depending on whether the differ-

ent regulatory factors besides miRNA (i.e., CNA, DNA methylation, and TF) were

present in the LASSO-based variable selection procedure. In the first case when

those regulators were incorporated, we referred it as “Cancerin (original).” The sec-

ond case, in which miRNAs were the only type of regulators to be considered, was



43

referred as “Cancerin (only miRNA).” Table 2.4 shows the number of miRNA-RNA

interactions and their constituent miRNAs and RNA targets selected in the two

cases.

Table 2.4: Number of miRNA-RNA interactions and their constituent miRNAs

and RNAs selected in “Cancerin (original)” and “Cancerin (only miRNA)”. The

first, second, and third value in each cell refer to the results from “Cancerin (orig-

inal)”, “Cancerin (only miRNA)”, and the common results between the two cases,

respectively.

BRCA KIRC HNSC

No. of miRNA-

RNA interac-

tions

7,118/4,071/3,242 8,625/6,524/5,085 10,360/8,648/6,619

No. of miRNAs 204/201/198 155/153/153 195/196/195

No. of RNAs 3,024/1,763/1,523 3,062/2,219/2,068 3,195/2,520/2,404

While the two cases selected similar miRNAs that have at least one RNA

target (row 2 in Table 2.4), many miRNA-RNA interactions and RNA targets could

only be found in “Cancerin (original)” (row 1 and 3 in Table 2.4). To check how

the additional regulatory factors besides miRNAs played a role in that distinction,

we looked at the common RNA targets that were included in both “Cancerin (orig-

inal)” and “Cancerin (only miRNA)”, and compared them with the RNA targets

that were uniquely found in “Cancerin (original).” Among the common RNA tar-

gets, the percentage of RNAs that had at least one additional regulator in “Can-

cerin (original)” results was 78.2% (BRCA), 83.8% (KIRC), and 85.2% (HNSC).



44

Among the RNA targets unique to “Cancerin (original),” the percentage values in-

creased to 97.6% (BRCA), 96.7% (KIRC), and 97.1% (HNSC). These results sug-

gest that while “Cancerin (only miRNA)” could still discover some RNA targets

that were regulated by an additional regulatory factor besides miRNAs, there were

RNAs that could only be found to be regulated by miRNAs when different types

of regulatory factors were incorporated in the variable selection step. Thus, while

inferring miRNA-RNA interactions, it is important to include the different types of

regulatory factors since certain miRNA-RNA interactions can only be found when

the other regulatory factors are considered.

2.5.2.2 Hub miRNA regulators were known to be associated with can-

cer

In all three cancer types, there were miRNAs that regulated many RNA tar-

gets, which made those miRNAs common mediators in multiple ceRNA interac-

tions. The miRNA regulators with highest number of RNA targets in each cancer

type were let-7a-5p (BRCA), miR-106b-5p (KIRC), and miR-9-5p (HNSC), which

contributed to 2.5%, 3.6%, and 2.5% of total miRNA-RNA interactions, respec-

tively. Let-7a-5p was downregulated in the BRCA dataset (log fold change (FC)

= -0.42, False Discovery Rate (FDR) = 7e-4). Known as a tumor-suppressor, let-

7a-5p downregulation was shown to cause disruption of crucial signaling pathways,
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including Janus protein tyrosine kinase (JAK) and signal transducer [Wang et al.,

2012], which can lead to tumor cell migration and invasion in breast cancer [Kim

et al., 2012, Liu et al., 2015b]. In the KIRC dataset, miR-106b-5p was upregulated

(logFC = 1.5, FDR = 6e-19). Upregulation of this miRNA can enhance activa-

tion of the PI3K signaling pathway and promote tumor cell metastasis in KIRC

[Zhang et al., 2015]. In the HNSC dataset, miR-9-5p was highly upregulated (logFC

= 3.37, FDR = 5e-06). Upregulation of the miR-9 family was known to activate

oncogenic pathways in multiple cancers such as leukemia, breast, and colon can-

cer [Chen et al., 2013]. Interestingly, miR-130-3p was among the top five miRNAs

that had highest number of RNA targets in all the three cancer types. Aberration

in gene regulation by the miR-130 family was known to drive tumorgenesis in many

cancer types including BRCA, KIRC, and HNSC [Hamilton et al., 2013].

2.5.2.3 Selected miRNA-mRNA interactions included cancer-associated

miRNA-mRNA interactions

To test if our variable selection procedure to identify miRNA-mRNA inter-

actions was able to detect known cancer-associated miRNA-mRNA interactions,

we retrieved 2,259 cancer-related miRNA-mRNA interactions from the oncomiRDB

database [Wang et al., 2014]. Each miRNA-target interaction curated in oncomiRDB

meets two conditions: (1) the miRNA is invo0ved in at least one cancer-related

phenotype or cellular process, and (2) the mRNA is a known oncogene or tumor-
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suppressor. As our method only used DE miRNAs and DE mRNAs as input, we

only selected the interactions in oncomiRDB in which both miRNAs and mRNAs

were also DE miRNAs and DE mRNAs.

We observed that several miRNA-mRNA interactions in oncomiRDB also

were included in the miRNA-mRNA interactions inferred by Cancerin (Step 2). We

performed a hypergeometric test between the oncomiRDB interactions and inferred

miRNA-mRNA interactions to test whether they shared a significant number of in-

teractions. For each cancer type, the background sets in the hypergeometric test

consisted of all possible pairs between DE mRNAs and DE miRNAs. The num-

bers of overlapping interactions and their p-values from the hypergeometric test in

BRCA, KIRC, and HNSC were 50 (p-value = 1.75E−39), 40 (p-value = 4.6E−24),

and 49 (p-value = 1.7E−32), respectively. We also performed the same hypergeo-

metric test between the sequence-based miRNA-mRNA interactions (Cancerin -

Step 1) and the oncomiRDB interactions. The sequence-based interactions also had

significant enrichment in oncomiRDB interactions (p-values ≈ 0 in all three cancer

types).

2.5.3 Analysis of the inferred ceRNA networks (Step 3)

In Cancerin (Step 3), given all the miRNA-RNA interactions obtained af-

ter applying the LASSO-based variable selection procedure, we identified all the
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candidate ceRNA interactions in which both the constituent RNAs were regulated

by at least one common miRNA. Then we applied several filtering layers to select

the final ceRNA interactions out of those candidate ceRNA pairs. Two RNAs were

considered to have a ceRNA interaction if they had a significant number of shared

miRNAs, and their expression profiles were both significantly correlated (correlation

≥ 0.5, p-value < 0.05) and had significantly positive sensitivity correlation (empir-

ical p-value < 0.05). Table 2.5 summarizes the number of ceRNA interactions and

the constituent ceRNAs in those interactions for each cancer type.

Overall, the selected ceRNA interactions were very specific to each cancer

type. We found only one common ceRNA interaction in all the three cancer types.

The number of common ceRNA interactions between any two cancer types was also

very low (9 between BRCA and KIRC, 22 between BRCA and HNSC, and 32 be-

tween KIRC and HNSC). In all three cancer types, almost all ceRNA interactions

were between mRNAs (84% (BRCA), 99% (KIRC), and 95% (HNSC)). In BRCA

and HNSC, many lncRNAs that were involved in lncRNA-lnRNA ceRNA interac-

tions also participated in mRNA-lncRNA ceRNA interactions. Specifically, out of

57 lncRNAs (BRCA) and 20 lncRNAs (HNSC) involved in lncRNA-lncRNA ceRNA
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Table 2.5: Number of inferred ceRNA interactions and number of ceRNAs in those

interactions (output of Cancerin - Step 3).

BRCA KIRC HNSC

No. of all ceRNA interactions 4,115 4,639 2,725

No. of mRNA-mRNA ceRNA interactions1 3,674 4,614 2,589

No. of mRNA-lncRNA ceRNA interactions1 394 25 121

No. of lncRNA-lncRNA ceRNA

interactions1
47 0 15

No. of all ceRNAs 1,593 1,081 1,110

No. of mRNAs as ceRNAs2 1,491 1,071 1,063

No. of lncRNAs ceRNAs2 102 10 47
1: subset of all ceRNA interactions (Row 1)
2: subset of all ceRNAs (Row 5)

interactions, 41 (BRCA) and 14 (HNSC) of those lncRNAs also participated in

mRNA-lncRNA ceRNA interactions.

2.5.3.1 Inferred ceRNA networks were scale-free and independent from

protein-protein interactions (PPI) and TF-gene interactions

Biological networks usually exhibit a scale-free property, meaning that some

nodes have more connections than the others [Ma’ayan, 2011]. To check if the in-

ferred ceRNA networks were scale-free, we computed the degree probability distri-

bution function of each ceRNA network. Following the power-law rule [Girvan and

Newman, 2002], we fitted linear regression of log(ceRNA’s degree probability) to

log(ceRNA’s degree). Log-log plots of all three ceRNA networks had negative slope
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with high fitness, which clearly indicated that the inferred ceRNA networks were

scale-free as shown in Fig. 2.2.

Figure 2.2: Degree distribution and power-law statistics of the inferred

ceRNAs. (A) Degree distribution of ceRNAs for each cancer type. Linear regres-

sion statistics between log(ceRNA’s degree) and log(ceRNA’s degree probability) in

(B) BRCA, (C) KIRC, and (D) HNSC cancer types.

Two genes can interact and thereby regulate each other via different regula-

tory layers (e.g., protein-protein interactions (PPIs) and TF-gene interactions). To

test the specificity of Cancerin to identify ceRNA interactions, we checked whether

the inferred ceRNA interaction networks also contained TF-gene interactions or

PPIs. We collected 410,337 PPIs from the BioGrid database version 3.4.159 [Stark
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et al., 2006]. Within the total number of inferred ceRNA interactions in each can-

cer network, very few interactions were PPI (0.85% (BRCA), 0.63% (KIRC), and

0.73% (HNSC)). Similarly, we also found very few ceRNA interactions that were

also TF-gene interactions (0.78% (BRCA), 0.09% (KIRC), and 0.18% (HNSC)).

2.5.3.2 CeRNAs were significantly associated with cancer-related genes

To test whether the ceRNAs in the inferred ceRNA networks were enriched

in cancer-associated genes, we compiled a list of cancer-related genes (oncogenes

and tumor-suppressor genes) from the Cancer Gene Census in COSMIC v83 [Forbes

et al., 2016], the Bushman lab’s Cancer Gene List v3 [Bushman], and the Network

of Cancer Genes 5.0 [An et al., 2015], resulting in 2,944 cancer-related genes in to-

tal. We performed a hypergeometric test between the inferred ceRNAs in each can-

cer type with the cancer-related gene list. The results showed that ceRNAs were

significantly enriched in the cancer-related genes (p-values were 4.3e-4 (BRCA),

5.0e-3 (KIRC), and 1.9e-5 (HNSC)). We also performed a hypergeometric test be-

tween the DE RNAs that were not predicted to be ceRNAs (i.e., non-ceRNAs) and

the cancer-related genes. In all three cancer types, unlike the ceRNAs, the non-

ceRNAs did not show significant enrichment with the cancer-related genes (p-values

≈ 1 in all three cancer types).
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To explore the significance of lncRNAs which were ceRNAs, we analyzed

the degree of connection of lncRNAs in the ceRNA networks. A hub ceRNA in the

network was defined as the ceRNAs which had high degree (i.e., top 90% edge con-

nection) in the ceRNA network. Within of hub ceRNAs in each cancer, we found

a small number of hub lncRNAs (11 (BRCA), 0 (KIRC), and 2 (HNSC)). Inter-

estingly, MAGI2-AS3 was a hub lncRNA in both BRCA and HNSC, and it was

also the lncRNA with the highest degree in both BRCA and HNSC ceRNA inter-

action networks. Among the MAGI-AS3’s ceRNA partners, 25% (BRCA) and 35%

(KIRC) of them were cancer-associated genes. Recently, MAGI2-AS3 was shown

to play an important role in tumorigenesis and tumour progression in breast can-

cer [Yang et al., 2018]. These result suggests that while lncRNAs contributed to a

small number of ceRNA interactions, the hub lncRNAs may hold important func-

tions in cancer biology.

2.5.3.3 CeRNAs were potential biomarkers for cancer prognosis

To assess the prognostic power of the ceRNAs, we tested if the ceRNAs were

better than the non-ceRNAs (i.e., DE genes not in the ceRNA network) at pre-

dicting survival status of cancer patients. A Univariate Cox proportional hazard

model was fit for each DE RNA, which was either a ceRNA or a non-ceRNA. The

response variable was the number of days until death for each patient. The patients
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who were alive or had no death record were censored, and their last follow-up dates

were used.

After hazard model fitting, each DE RNA was associated with a hazard ra-

tio and a p-value (from testing the null hypothesis that its hazard ratio equals to

1). A hazard ratio > 1 implies that an increase of expression of the gene increases

the risk of death, while a hazard ratio < 1 implies that an increase of the gene ex-

pression decreases the risk of death. Thus, the prognostic power of a gene is re-

flected through how much its hazard ratio is deviated from 1 (i.e., |hazard ratio -

1|).

A DE RNA was considered as potential prognostic biomarker if its Cox pro-

portional hazard ratio’s p-value was smaller than 0.05. Fig. 2.3 shows the hazard

ratio distribution of prognostic ceRNAs versus prognostic non-ceRNAs for each

cancer type. The Wilcoxon rank-sum test was applied to test if the hazard ratio of

prognostic ceRNAs and non-ceRNAs came from the same distribution. In BRCA,

we observed a marginal Wilcoxon p-value (0.10). However, the median ceRNAs’

hazard ratio was high (1.54), signifying that an increase of BRCA ceRNAs’ expres-

sion was associated with increased risk of death event. The Wilcoxon p-values for

KIRC (1.4e-35) and HNSC (0.03) were both significant. Notably, in all three can-

cer types, compared to non-ceRNAs’ hazard ratios, ceRNAs’ hazard ratios were

deviated from 1 with higher magnitude, which suggests that ceRNAs hold higher
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prognostic power than non-ceRNAs. We observed that the hazard ratio of prognos-

tic ceRNAs were smaller than 1 in KIRC while prognostic ceRNAs in BRCA and

HNSC were higher than 1. This result indicates that prognostic ceRNAs in KIRC

were more likely to be involved in tumor suppressor-related activities, while prog-

nostic ceRNAs in BRCA and HNSC were more likely to be involved in oncogene-

related activities.

Figure 2.3: Hazard ratio distribution of prognostic ceRNAs and non-ceR-

NAs. A prognostic RNA was defined as a DE RNA whose p-value from univariate

Cox regression was smaller than 0.05. For each cancer type, prognostic RNAs were

categorized into ceRNAs and non-ceRNAs. The p-values shown in the plot were

from the Wilcoxon rank-sum test between hazard ratios of prognostic ceRNAs and

non-ceRNAs.
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2.5.3.4 CeRNA modules were enriched with cancer processes

To examine the biological significance of the inferred ceRNA networks, we

clustered each ceRNA network into modules and performed functional enrichment

on each module. A ceRNA module was defined as a sub-network of densely con-

nected ceRNAs. We hypothesized that the ceRNA modules, which were extracted

from the inferred ceRNA networks, may act as functional units and play an impor-

tant role in cancer development. To identify ceRNA modules in each ceRNA net-

work, we employed the R package igraph [Csardi and Nepusz, 2006] to implement

the multilevel graph clustering algorithm [Djidjev, 2007]. The algorithm identi-

fies densely-connected modules within a network by using a greedy approach that

aims to maximize the module’s modularity, which measures the density of connec-

tions inside the modules compared to connections between the modules. In each

iteration, each vertex is assigned/reassigned to a module to maximize the module’s

modularity. When no vertex can be reassigned, each module is considered a vertex,

and the process is restarted and would be stopped when only a single vertex is left

or when the modularity could not be increased. Therefore, the algorithm does not

require users to specify the number of modules in advance. When applied to large

networks (>100k nodes), the algorithm was able to return modules of high modu-

larity without over-merging or over-dividing those modules [Djidjev, 2007].

To explore the modules’ functional importance, we performed enrichment
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analysis between the ceRNAs in each ceRNA module and Cancer Hallmark (CH)

terms, Gene Ontology (GO) terms, and KEGG/REACTOME pathways. To make

an enrichment test statistically feasible, only modules with at least 10 ceRNAs were

used for this analysis. The R package clusterProfiler [Yu et al.] was used to perform

the enrichment analysis.

The number of ceRNA modules containing more than 10 ceRNAs for each

cancer type was 18 (BRCA), 11 (KIRC), and 14 (HNSC). The average number of

ceRNAs in each module was 74 (BRCA), 87 (KIRC), and 55 (HNSC). Table 2.6

lists the CH terms that were enriched with the ceRNA modules in each cancer

type. Notably, the CH term “Epithelial To Mesenchymal Transition” was enriched

in all three cancer types. The CH terms that were enriched in at least two can-

cer types included “G2M checkpoint,” “E2F targets,” “TGF beta signaling,” and

“MYC Targets V1.” In all the three cancer types, there existed ceRNA modules

that were associated with multiple CH terms (i.e., modules 3 and 7 in BRCA, mod-

ules 4 and 11 in KIRC, and modules 4 and 7 in HNSC). The same ceRNA modules

were also enriched in GO terms and pathways related to regulation of cell division,

development, and activation processes. Interestingly, while some ceRNA modules

that were not enriched in any CH terms, they were enriched in GO terms and path-

ways associating with disease development and progression processes. For instance,

module 15 in BRCA was enriched in the KEGG pathways related to Parkinson,
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Alzheimer, and Huntington diseases and module 2 in KIRC was enriched in GO

Terms involving in negative regulation of metabolic process and molecular function.

In brief, we observed multiple cancer hallmark terms, biological processes,

and pathways that were significantly enriched in the ceRNA modules across all the

three cancer types. The result indicated the functional significance of the ceRNA

interaction networks obtained by Cancerin.

Table 2.6: Cancer hallmark terms that were enriched in the ceRNA modules.

Cancer

type

Cancer hallmark geneset Description Enriched

Module

BRCA Epithelial Mesenchymal

Transition

Genes defining epithelial-

mesenchymal transition, as

in wound healing, fibrosis

and metastasis

2, 4, 14

E2F Targets Genes encoding cell cy-

cle related targets of E2F

transcription factors

3, 7, 13

Estrogen Response Early Genes defining late re-

sponse to estrogen

1, 11

G2M Checkpoint Genes involved in the

G2/M checkpoint, as in

progression through the

cell division cycle

3, 7

TGF Beta Signaling TGF-beta signaling path-

way

6

Spermatogenesis Genes up-regulated dur-

ing production of male

gametes (sperm), as in

spermatogenesis

7

IL-6/JAK/STAT3 Signal-

ing

Genes up-regulated by IL6

via STAT3, e.g., during

acute phase response

12

Interferon Gammaresponse Genes up-regulated in

response to IFNG

12
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UV Response Up Genes up-regulated in re-

sponse to ultraviolet (UV)

radiation

17

KIRC Epithelial Mesenchymal

Transition

Genes defining epithelial-

mesenchymal transition, as

in wound healing, fibrosis

and metastasis

4

UV Response DN Genes down-regulated in

response to ultraviolet

(UV) radiation

4

Oxidative Phosphorylation Genes encoding proteins

involved in oxidative phos-

phorylation

11

MYC Targets V1 A subgroup of genes regu-

lated by MYC - version 1

(v1)

11

Adipogenesis Genes up-regulated during

adipocyte differentiation

(adipogenesis)

11

HNSC Epithelial Mesenchymal

Transition

Genes defining epithelial-

mesenchymal transition, as

in wound healing, fibrosis

and metastasis

4, 5

TGF Beta Signaling TGF-beta signaling path-

way (UV) radiation

4

MYC Targets V1 A subgroup of genes regu-

lated by MYC - version 1

(v1)

6

G2M Checkpoint Genes involved in the

G2/M checkpoint, as in

progression through the

cell division cycle

7

E2F Targets Genes encoding cell cy-

cle related targets of E2F

transcription factors

7
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2.5.4 Modification of individual steps in the Cancerin pipeline substan-

tially changed the selected ceRNA interactions

In this section, we examine the technical importance of the two major steps

in the Cancerin pipeline. The LASSO-based variable selection to select miRNA-

mRNA interactions (Step 2) and sensitivity correlation-based filtering to select

ceRNA interactions (Step 3) were two key components in Cancerin. To assess the

importance of those two steps, we modified/deactivated those steps to see how it

would alter the final ceRNA interaction network topology. Specifically, we kept

Steps 1 and 3 in Cancerin, but in Step 2, we replaced the LASSO-based variable

selection procedure by ordinary least square (OLS) multiple regression. For each

RNA, its candidate miRNA regulators were selected if their coefficients from OLS

were negative and p-values < 0.05. We termed this method “Cancerin (OLS regres-

sion).” We also kept Steps 1 and 2 in Cancerin, but in Step 3, we deactivated the

ceRNA filtering criterion based on sensitivity correlation. We termed this method

“Cancerin (sensitivity correlation filtering step deactivated).” The Cancerin pipeline

with no modification is referred to as “Cancerin (original).”

To compare Cancerin to other existing methods, we replicated the method

used in [Zhou et al., 2014b, Shao et al., 2015], which inferred ceRNA interactions

based on negative expression correlation between miRNA and RNA targets and

positive expression correlation between RNA targets. We referred to this method as



59

the “Correlation-based” method. The method did not consider the other types of

regulators besides miRNA (i.e., TF, CNA, and DNA methylation) as potential reg-

ulators of gene expression and it also did not take into account the additive effects

of multiple regulators on controlling gene expression.

Table 2.7 summarizes the number of selected ceRNA interactions obtained

by applying the “Cancerin (original),” “Cancerin (OLS regression),” “Cancerin

(sensitivity correlation filtering step deactivated),” and “Correlation-based method.”

As expected, using only expression correlation to infer ceRNA interactions resulted

in many ceRNA pairs. Compared to Cancerin, the number of correlation-based

ceRNA interactions was more than 6-fold higher in BRCA, 10-fold higher in KIRC,

and 6-fold higher in HNSC. All ceRNA interactions found by “Cancerin (original)”

were included in the “Correlation-based” method. There were also more ceRNA

interactions found by “Cancerin (OLS regression)” than by “Cancerin (original)”

but the increased size was in smaller compared to the “Correlation-based” method.

There is a low overlap between the ceRNA interactions found in “Cancerin orig-

inal” and the those from “Cancerin (OLS regression).” Specifically, with respect

to interactions found in “Cancerin (original),” the percentages of common inter-

actions that were also found in “Cancerin (OLS regression)” were 26.8% (BRCA),

40% (KIRC), and 33.2% (HNSC). Compared to “Cancerin original,” deactivation

of sensitivity correlation filtering step also increased the number of ceRNA interac-
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tions. The fold-change increase in each cancer type was 1.7 (BRCA), 4.1 (KIRC),

and 3.0 (HNSC). Overall, this comparative analysis indicated that due to several

filtering layers used in “Cancerin (original),” the pipeline is more selective than

other methods in selecting ceRNA interactions.

We also checked the number of PPIs and TF-gene interactions that were

also inferred ceRNA interactions obtained by modifying particular steps in Can-

cerin or using the “Correlation-based” method. As expected, compared to ceRNA

interactions obtained by “Cancerin (original),” with other methods we observed

an increase of ceRNA interactions that were also PPI or TF-gene interactions. Es-

pecially the ceRNA interactions inferred by the “Correlation-based” method con-

tained a consistently higher percentage of PPI and TF-gene interactions. These

results suggest that the ceRNA interaction predictions obtained from pairwise ex-

pression correlation methods could have high false positive rate.

Table 2.7: Number of selected ceRNA interactions by applying different methods.

BRCA KIRC HNSC

Cancerin (original) 4,115 4,639 2,725

Cancerin (OLS regression) 6,039 19,202 6,262

Cancerin (sensitivity correlation filtering step deacti-

vated)

7,018 18,976 8,179

Correlation-based method 25,853 46,518 16,908
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2.5.5 Inferred ceRNA interactions were able to predict gene expression

change

To assess the accuracy of the inferred ceRNA interactions to predict gene ex-

pression change, we employed shRNA-mediated perturbation assays data obtained

from the Library of Integrated Network-based Cellular Signature (LINCS) database

[Liu et al., 2015a]. In the LINCS-L1000 shRNA-perturbation database, gene knock-

down experiments using shRNAs were conducted on multiple disease cell lines,

making the database a valuable resource to assess gene-gene interactions inferred

from computational methods. Each experiment reported gene expression changes of

978 genes as response to the knockdown of a specific gene, which was targeted by a

specific shRNA. We referred to the knocked down genes as upstream genes and to

the 978 expression-profiled genes as downstream genes. Details of how we used the

LINCS-L1000 dataset to evaluate the accuracy of inferred ceRNA interactions in

predicting gene expression change are described in Appendix B. In brief, if an up-

stream ceRNA is silenced, the upstream ceRNA’s miRNA regulators become more

available to bind and thereby downregulate the downstream ceRNA partners. Thus,

given a downstream ceRNA, its expression level should be lower in response to the

silencing of upstream ceRNA partners in comparison to the silencing of other up-

stream genes. Ratio Fold Change (RFC) of a downstream ceRNA is defined as ratio

of its expression fold change following the knockdown of its ceRNA partners to its
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expression fold change following the knockdown of upstream genes that are not its

ceRNA partners. A downstream ceRNA’s RFC was expected to be smaller than 1.

A lower value of RFC indicated better prediction of gene expression change due to

ceRNA interactions.

Table 2.8: Accuracy of the ceRNA networks inferred by different methods based on

the LINCS-L1000 (MCF7) dataset.

Accuracy

(96h)

Accuracy

(144h)

Overall

Accuracy

(96h +

144h)

Cancerin (original) 71.4% 69.6% 70.7%

Hermes 77.2% 60.0% 70.2%

Cancerin (only miRNA) 67.1% 73.9% 69.6%

Cancerin (OLS regression) 66.1% 58.1% 62.9%

Cancerin (sensitivity correlation filtering

step deactivated)

66.3% 66.1% 66.2%

Correlation-based method 62.8% 68.2% 65.0%

Chiu et al. [Chiu et al., 2017] used LINCS shRNA-mediated perturbation

assays to assess the Hermes algorithm, their genome-wide ceRNA interaction pre-

diction tool [Sumazin et al., 2011]. We also used the same LINCS dataset (L1000-

MCF7) that had been used in [Chiu et al., 2017] to validate our results and to com-

pare the accuracy of Cancerin with that of Hermes. We defined the accuracy of a

ceRNA network as the percentage of downstream ceRNAs whose RFCs were smaller

than 1. As gene expression in the MCF7 dataset was measured in two different
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time points (96h and 144h), our analysis was applied at each time point (Table

2.8). At 96h, out of all downstream ceRNAs (77 in Cancerin and 22 in Hermes),

the number of ceRNAs whose RFC was smaller than 1 was 55 in Cancerin (accu-

racy 71.4%) and 17 in Hermes (accuracy 77.2%). At 144h, out of all downstream

ceRNAs (46 in Cancerin and 15 in Hermes), the number of ceRNAs whose RFC

was smaller than 1 was 32 in Cancerin (accuracy 69.6%) and 9 in Hermes (accuracy

60%). While overall accuracy (i.e., percentage of total downstream ceRNAs whose

RFC was smaller than 1 at both time points) between Cancerin and Hermes was

approximately equal (70.7% in Cancerin and 70.2% in Hermes), Cancerin showed

consistent accuracy at both time points. We also computed the RFC values for the

downstream ceRNAs obtained when the individual steps in Cancerin pipeline were

modified and when only miRNAs were used as potential regulators in the variable

selection step (i.e., Cancerin (only miRNA)). Cancerin outperformed those methods

based on the overall accuracy (see Table 2.8).

2.6 Summary

In this chapter, we introduced Cancerin, a tool to infer genome-wide cancer-

associated ceRNA interaction networks and applied it in three types of cancer. Un-

like existing ceRNA inference tools that considered miRNAs as the only type of

gene regulator, Cancerin considered other types of gene regulators besides miR-
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NAs, namely TFs, DM, and CNA. In addition, using sensitivity correlation metric

proposed in [Paci et al., 2014], the method directly modeled the ceRNA hypothe-

sis, which posited that the expression profiles of two ceRNAs should be positively

correlated, and that correlation was conditioned on the expression of their shared

miRNA regulators.

The inferred ceRNA networks in all the three cancer types were scale-free

networks as the ceRNAs’ degree distribution followed power-law with high fitness.

There were very few overlapping interactions between the inferred ceRNA interac-

tions and the PPIs or TF-gene interactions.

Only a subset of input DE RNAs were selected as ceRNAs in the final ceRNA

networks. In all three cancer types, the ceRNAs were significantly enriched with

cancer-related genes whereas DE RNAs that were not in the ceRNA networks did

not have a significant enrichment. To explore the biological importance of our in-

ferred ceRNA networks, we clustered ceRNA networks into modules and performed

functional enrichment on each module. Various cancer hallmark terms, biological

processes, and pathways were enriched in the ceRNA modules across all the three

cancer types. In addition, some ceRNA modules were associated with multiple

cancer hallmark terms, making the ceRNAs in such module valuable biomarkers

to be further investigated. In brief, the results shows that Cancerin found cancer-

associated ceRNAs and the ceRNA modules were involved in cancer-related biologi-
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cal processes. Thus, Cancerin can be used to explore the functional roles of ceRNAs

in cancer.

To examine the prognostic capability of the inferred ceRNA networks, we

performed univariate Cox proportional hazard models for each ceRNA and non-

ceRNA. In all three cancer types, compared to non-ceRNAs, ceRNAs exhibited

higher association with cancer outcome. We also observed that KIRC ceRNAs had

low hazard ratios indicating that they might act as tumor-suppressors. Since the

ceRNAs found by Cancerin are prognostic of cancer outcome, they can be valuable

targets for cancer therapy.

We also examined the functional importance of the miRNAs that mediated

ceRNA interactions. The miRNAs that mediated the highest number of ceRNA in-

teractions (i.e., let-7a-5p, miR-106b-5p, and miR-9-5p) are well-known in the cancer

literature [Barh et al., 2010, Ivanovska et al., 2008, Coolen et al., 2013, Barbano

et al., 2017]; however, their prevalent roles in mediating ceRNA interactions could

suggest a novel role in cancer pathogenesis.

Validation of computationally predicted ceRNA interactions is challenging

due to the low number of experimentally-validated ceRNA interactions. To address

this challenge, we used the LINCS-MCF7 dataset [Liu et al., 2015a] to check if the

knockdowns of ceRNAs would cause downregulation of their predicted ceRNA part-

ners. We also compared Cancerin’s accuracy with that of Hermes [Sumazin et al.,
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2011], a ceRNA inference tool based on mutual information criteria. Based on the

prediction of gene expression change using the inferred ceRNA interactions, Can-

cerin achieved approximately equal accuracy as Hermes; however, the accuracy val-

ues from Cancerin at different experimental time points were more consistent.

In summary, Cancerin is a computational method that integrates genomic,

transcriptomic, and epigenetic regulatory factors to infer genome-wide ceRNA in-

teractions in cancer. Analysis of the inferred ceRNA networks constructed by Can-

cerin would provide novel insights on the biological functions of this novel layer of

gene regulation, especially on how it contributes to cancer pathogenesis.
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CHAPTER 3

CANMOD: A COMPUTATIONAL METHOD TO IDENTIFY

FUNCTIONAL MIRNA-TRANSCRIPTION FACTOR-TARGET

MODULES

(This chapter is adapted from a manuscript that we are preparing to submit

to conference IEEE International Conference on Bioinformatics and Biomedicine

2018. We have full permission to reuse the manuscript’s contents in this chapter.)

3.1 Abstract

Transcription factors (TFs) and microRNAs (miRNAs) are two important

classes of gene regulators that govern many critical biological processes. Dysregula-

tion of TF-gene and miRNA-gene interactions can lead to the development multiple

diseases including cancer. Many studies aimed to identify interactions between tar-

get genes and their regulators in both normal and disease settings. However, few

studies attempted to elucidate the collaborative relationship between TFs and miR-

NAs in regulating genes involved in cancer-associated biological processes. Iden-

tification of the coregulatory functions of those regulators in cancer would pro-

vide a better understanding of gene regulation at different layers and may also

suggest better approaches for targeted therapy. This study proposes a computa-

tional pipeline called CanMod to identify cancer-associated gene regulatory mod-

ules. CanMod was designed so that it could infer gene regulatory modules that

meet three criteria. First, within a module, target genes should involve in similar
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biological processes; thus, the modules are distinguishable based on their biolog-

ical functions. Second, the expression of target genes in a module should be col-

lectively dependent on the expression of their regulators. Third, a regulator and a

target should be allowed to be included in multiple modules to reflect the diverse

biological roles that the genes and the regulators may be responsible for. Unlike

some existing methods, our proposed pipeline also considered copy number alter-

ation (CNA) and DNA methylation (DM) data while inferring regulator-target gene

interactions with higher accuracy.

We applied CanMod on the breast cancer dataset (BRCA) from The Cancer

Genome Atlas (TCGA). We found that modules found by CanMod were associated

with distinguishable biological functions and the expression of target genes in the

modules were significantly correlated. In addition, many hub regulators in CanMod

were known cancer genes, and CanMod was able to find experimentally validated

regulator-target interactions.

3.2 Motivation and Related Work

While both miRNAs and TFs are important gene regulators, there is still

much unknown about their collaborative relationship in gene regulation. Moreover,

it is unclear what biological functions and processes are coregulated by miRNAs

and TFs, especially in complex diseases such as cancer. This chapter aims to iden-
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tify cancer-associated gene regulatory modules, which consist of miRNAs, TFs, and

their coregulated target genes involved in similar biological processes. Identification

of such modules can generate important understandings of gene regulation activities

involving miRNAs and TFs and how they are implicated in cancer.

The chapter is inspired by two streams of studies that are closely relevant

to the research goal. The first stream involves integrating miRNA-target and TF-

target interactions into an unified gene regulatory network and analyzing the net-

work to explore the coregulatory relationship between miRNAs and TFs. The sec-

ond stream involves identification of miRNA-target modules, in which multiple

miRNAs collectively regulate the expression of coregulated genes.

In the first stream of studies, the predicted interactions between TF-target,

miRNA-target, and TF-miRNA were retrieved from different public databases and

merged to construct the miRNA-TF-target (MTT) networks [Shalgi et al., 2007,

Delfino and Rodriguez-Zas, 2013]. Using gene expression, only certain edges in the

MTT networks were kept to model the expression dependency of the targets on

their regulators [Qin et al., 2014]. The miRNAs and TFs that regulate many sim-

ilar targets were analyzed to specify their coregulatory relationship as well as their

biological and clinical significance. Several hub regulators were found to be able to

classify different breast cancer subtypes [Qin et al., 2014] and had high prognos-

tic power to predict ovarian cancer recurrence [Delfino and Rodriguez-Zas, 2013].
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Several studies applied Bayesian network modeling approaches to learn the topol-

ogy of MTT networks [Zacher et al., 2012, Roqueiro et al., 2012], which could be

used to identify the coregulatory relationship between TFs and miRNAs based on

their common targets. While the above studies are helpful in exploring potential

relationships between TFs and miRNAs, the inferred MTT networks are often very

complex; thus it is challenging to interpret the biological significance of the rela-

tionships between those coregulators.

The second stream of studies focused on identifying functional miRNA-

target gene modules (MTMs), which were defined as groups of miRNAs and their

coregulated target genes holding important biological functions [Liu et al., 2009,

Tran et al., 2008]. Some studies considered an MTM as a maximal biclique, which

is a network composed of two sets of nodes (i.e., miRNAs and their targets) and

each node of one set is connected to the all nodes in the other set and form an all-

to-all connection pattern [Peng et al., 2009, Uhlmann et al., 2012]. After construct-

ing miRNA regulatory networks by leveraging putative miRNA-target interactions

and their expression profiles, different maximal biclique algorithms were applied to

identify MTMs [Peng et al., 2009, Uhlmann et al., 2012]. However, requiring an

MTM to be a maximal-biclique led to the unnecessary splitting of a reasonable

MTM into separate modules, thus creating many modules that contained a single

miRNA. Several studies relaxed the all-to-all connection requirement to be most-
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to-most and considered such MTMs as quasi-bicliques [Mukhopadhyay and Maulik,

2014]. The algorithms to find such MTMs often required users to predetermine the

number of MTMs, which was unknown in most cases. In addition, most of the ex-

isting computational methods to infer MTMs only allow a regulator and a target

gene to belong to a single gene module, which did not reflect the diverse biological

roles that the regulators and the target genes may hold. Moreover, it is challenging

to extend the existing methods to incorporate TFs as an additional type of regula-

tors.

This study proposes a computational pipeline called CanMod, which aims to

identify cancer-associated gene regulatory modules. A module consists of a group of

regulators (i.e., miRNAs and TFs) that coregulate a set of target genes with similar

biological functions in cancer. CanMod is different from previous computational

methods to infer gene regulatory modules in several aspects. First, CanMod re-

quires the target genes in a module to participate in similar biological processes

so that the modules are biologically significant and interpretable. Second, CanMod

does not require the number of modules to be predetermined. Third, to reflect the

diverse biological roles that a regulator or a target gene may have, CanMod allows

a regulator or a target gene to appear in different modules. Besides miRNAs and

TFs, there are other regulatory factors controlling gene expression such as CNA

and DM [Jones, 2015]. Thus, besides using gene expression, CanMod also employs
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CNA and DM data to infer regulator-gene interactions. R software for CanMod is

freely available (MIT license) at https://github.com/bozdaglab/CanMod.

We applied CanMod to the breast cancer dataset (BRCA) from The Cancer

Genome Atlas (TCGA) [Network et al., 2012]. We found that the regulators that

were included in many modules were previously known to be associated with can-

cer. In addition, the modules obtained by CanMod contained a significant number

of experimentally validated regulator-target interactions. Functional enrichment

analysis of the modules revealed that target genes in the modules were strongly en-

riched with cancer-associated biological processes, pathways, and cancer hallmark

terms.

The rest of the chapter is organized as follows. Section 3.3 recaps the input

data and the data processing procedure. Section 3.4 provides a detailed description

of each computational step in CanMod. Section 3.5 discusses the results obtained

from applying CanMod to the breast cancer dataset from TCGA. Section 3.6 sum-

marizes the main components of Cancerin and the key biological findings discussed

in the chapter.

3.3 Input Data

As described in Section 1.6, the input data for CanMod are genome-wide

expression of miRNAs and mRNAs. Each mRNA is also associated with a CNA
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value and a DM value. In addition, putative miRNA-target gene and TF-target

gene interactions are employed to select candidate regulators for each target target

gene. CanMod was applied to the breast cancer dataset from TCGA. Section 1.6

provides the details for how all of the data were preprocessed to be used as input

for CanMod.

3.4 CanMod pipeline

CanMod is a computational pipeline to identify cancer-associated gene reg-

ulatory modules. A module comprises two groups, a group of genes that have sim-

ilar biological functions and a group of regulators that coregulate the target genes.

CanMod allows a target gene or a regulator (i.e., TF or miRNA) to belong to mul-

tiple modules. CanMod consists of six main steps, which are illustrated in Fig. 3.1.

The details of each step are described in the following sections.

Step 1: Select regulators associated with expression change of each tar-

get gene

One important criterion for gene regulatory modules obtained by CanMod

is that the expression of target genes in a module is dependent on the expression of

the regulators in the same module. To infer group-wise expression dependence be-

tween regulators and targets, CanMod first identifies the pair-wise relation between
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Figure 3.1: CanMod pipeline. Step 1: Select regulators associated with the ex-

pression change of each target gene. Step 2: Identify regulator clusters (RCs) such

that regulators within an RC regulate similar target genes. Step 3: Identify target

gene clusters (GCs) so that genes within a GC share similar biological functions.

Step 4: Obtain candidate modules for each RC by recruiting co-expressed target

genes from the same GCs. Step 5: Select correlated regulators and targets in each

candidate module. Step 6: Merge candidate modules whose regulators have similar

target genes. (CNA: Copy Number Alteration, DM: DNA Methylation)
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a target gene and its candidate regulators. In other words, for each gene, CanMod

aims to select which regulators contribute to the expression change of the gene.

First, to reduce the search space of regulator-gene interactions, CanMod em-

ploys putative regulator-gene interactions. As described in Section 1.6 (Datasets

and Data Preprocessing), the putative miRNA-gene interactions were retrieved

from StarBase v2.0 [Li et al., 2013] and TargetScan 7.1 [Agarwal et al., 2015]. Pu-

tative TF-gene interactions were retrieved from TRED [Zhao et al., 2005] and TTRUST

(version 2) [Han et al., 2015].

CanMod also employs a similar LASSO-based variable selection procedure

used in the computational method Cancerin (Chapter 2) to identify the miRNA

and TF regulators for each gene.

Step 2: Cluster regulators with similar targets into regulator clusters

(RCs)

A regulator cluster (RC) is defined as a group of regulators that regulate a

high number of similar targets. In this step, CanMod identifies such RCs based on

the regulator-target pairs obtained in the previous step. First, CanMod constructs

a 2D matrix ZM ×N , where M is the number of possible regulators (i.e., TFs and

miRNAs), and N is the number of all the possible target genes. The value of each

cell (Zij) equals 1 if regulatori (ith row) is the regulator of genej (jth column) and 0

otherwise.
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Using ZM ×N as an input and considering target genes as attributes, Can-

Mod computes the square distance matrix of regulators, called RDM ×N , which

quantifies the dissimilarity between any two regulators based on what target genes

they regulate. Given two regulators Ri1 and Ri2, let O be the number of common

targets of Ri1 and Ri2, P be the number of targets of Ri1 but not of Ri2, and Q be

the number of targets of Ri2 but not of Ri1. CanMod applies the Jaccard distance

(Eq. 3.1) to compute the dissimilarity between regulators Ri1 and Ri2.

Jaccard dist(Ri1, Ri2) = 1− O

O + P +Q
(3.1)

Given the Jaccard distance matrix of the regulators, CanMod applies ag-

glomerative hierarchical clustering to identify the RCs. In agglomerative hierarchi-

cal clustering, each regulator is considered initially as a single-element cluster. At

each iteration, two clusters with the lowest dissimilarity are merged, and the algo-

rithm stops when all clusters are merged into a single big cluster. The distance be-

tween any two clusters is their average linkage value, which is the average of dissim-

ilarity values of all pairwise elements between the two clusters. Hierarchical clus-

tering produces a dendrogram. CanMod cuts the dendrogram at the top to obtain

RCs, which represent groups of regulators that regulate many similar target genes.
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Step 3: Cluster target genes with similar Gene Ontology - Biological

Process (GO-BP) terms into gene clusters (GCs)

One distinguishable characteristic of CanMod compared to existing gene

module inference methods is that we require modules found by CanMod to be bi-

ologically interpretable and functionally important. Specifically, genes in the same

module should have similar biological functions. To meet that criterion, CanMod

employed Gene Ontology - Biological Process (GO-BP) terms to cluster target

genes. For the rest of the chapter, GO-BP terms are referred to briefly as GO terms.

The ontology of a gene describes of its general biological roles such as what

molecular events the gene participate in. A gene can have diverse roles, and those

roles can be intricately related to one another, making annotating gene ontology

a challenging task. The Gene Ontology project [Day-Richter et al., 2007] aims to

address the challenge and provides a comprehensive and consistent vocabulary to

describe gene ontology. The outcome of the Gene Ontology project is a directed

acyclic graph (GO DAG) whose nodes are GO terms and whose edges represent

relationships between GO terms. A GO-BP term signifies a biological objective,

which could be broad such as cell proliferation (GO:0008283) or specific such as

regulation of neuroblast proliferation (GO:1902692). Specific biological objectives

(i.e., low-level GO terms in the GO DAG) are inherently parts of broad biological



78

objectives (i.e., high-level GO terms in the GO DAG), which explains the hierarchi-

cal structure of the GO DAG.

Since a single gene can participate in multiple biological processes, it is as-

sociated with multiple GO terms. In CanMod, genes with highly similar biological

functions are grouped into a gene cluster (GC). Using GO DAG, CanMod computes

the biological similarity between two genes based on the similarity of the GO terms

associated with those genes. CanMod employs a graph-based approach to compute

semantic similarity between any two GO terms [Wang et al., 2007]. Loosely speak-

ing, two GO terms are considered to be similar if they are close to each other in the

GO DAG, and two GO terms that are close to each other at a lower level are con-

sidered more similar than those at a higher level in the GO DAG.

Semantic similarity between two GO terms is computed using the seman-

tic value (S-value) of each GO term [Wang et al., 2007]. Computing the S-value

of a GO term A (i.e., SV (A)) is based on traversing a subgraph of the GO DAG

DAGA = (A, TA, EA). TA is a set of GO terms that includes term A and its an-

cestor terms, and EA is a set of edges connecting the terms in DAGA. SV (A) is de-
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fined as the sum of all terms in DAGA, and the terms closer to term A have more

weights in SV (A). For each term t in DAGA, its S-value to term A (i.e., SA(t)) is

SA(t) =


1 if t = A

max{we × SA(t′)|t′ ∈ children(t)} if t 6= A.

(3.2)

Thus,

SV (A) =
∑
t∈TA

SA(t). (3.3)

The semantic similarity between term A and term B is

sim(A,B) =

∑
t∈TA∩TB

SA(t) + SB(t)

SV (A) + SV (B)
. (3.4)

Suppose two genes g1 and g2 are associated with the set {term11, term12, ..., term1m}

and the set {term21, term22, ..., term2n}, respectively. Semantic similarity between

g1 and g2 is computed as the average similarity of all pairs of GO terms between

these two sets (Eq. 3.5):

sim(g1, g2) =

∑m
i=1

∑n
j=1 sim(term1i, term2j)

m× n
(3.5)
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CanMod employs the R package GoSemSim [Yu et al., 2010] to compute a

similarity matrix between all pairs of genes. Then, to obtain gene clusters based

on their biological similarity, the affinity propagation (AP) clustering algorithm is

applied [Frey and Dueck, 2007] to the similarity matrix. AP clustering is based on

the idea of “message passing” between data points to iteratively find “exemplars,”

which are some specific data points that are representative of clusters. In each it-

eration, the algorithm applies a heuristic approach to update “exemplars” to maxi-

mize the distances among “exemplars,” and to minimize the distances between “ex-

emplars” and their corresponding clusters’ members. Unlike clustering algorithms

such as k-means or k-medoids, AP clustering does not require the number of clus-

ters to be determined before applying the algorithms. Thus, AP clustering is appli-

cable to our case because it is not possible to determine in advance how many clus-

ters of genes have similar biological functions. In brief, after applying AP clustering

on the GO-based gene similarity matrix, CanMod obtains GCs such that genes in

the same GC are involved in similar biological processes.

Step 4: Obtain candidate modules for each regulator cluster (RC) by re-

cruiting co-expressed targets in the same gene clusters (GCs)

Generation of candidate modules starts with the RCs that are obtained in

Step 2. Each module is comprised of a group of regulators (i.e., RC) and a group

of target genes (i.e., GC). Suppose RC i consists of H regulators {R1, ..., RH}. For
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RC i, its candidate target genes are the union of all target genes of the regulators

in RC i (results obtained in Step 1). Let us refer to this union set of target genes of

RC i as {G}i and call the genes in {G}i as “seed” genes.

Next, using the GC assignment obtained in Step 3, CanMod splits {G}i into

different clusters such that each cluster includes seed genes belonging to the same

GC. Suppose the seed genes {G}i belong to k GCs. Thus, after the splitting proce-

dure, the mapping (RC i → {G}i) becomes {(RC i → GC i1), ..., (RC i → GC ik)}. A

mapping (RC i → GC ij) is considered as a candidate module. Next, for each can-

didate module (i.e., (RC i → GC ij)), additional candidate target genes are added

to GC ij. A target gene is added if it meets two conditions. First, it belongs to the

same GC (Step 3) as the seed genes in GC ij. Second, its expression correlation to

at least one of the seed genes is in the top 90% correlation in the correlation distri-

bution of all possible gene pairs. We require these two conditions to ensure that the

target genes in the candidate modules are co-expressed and have similar biological

functions.

Step 5: Select regulators and targets that are co-expressed in each can-

didate module

One important criterion for modules obtained by CanMod is that regula-

tors within each module should regulate the expression of their target genes col-

lectively. To model the group-based expression dependency between the regulators
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and the targets genes, for each module, CanMod applies Sparse Canonical Correla-

tion (SCCA) to select a subset of regulators and target genes such that expression

of the selected target genes exhibit (canonical) correlation with the selected regula-

tors. Let R = [R1, R2, ..., RP] and G = [G1, G2, ..., GQ] be expression of P regulators

and Q target genes in a module M i. SCCA aims to maximize the canonical corre-

lation ρ between canonical variates Ru and Gv, where u and v are weight vectors

u = (u1, , um), v = (v1, , vm). Thus

ρ =
v′R′G′u√

v′R′Rv
√
u′G′Gu

. (3.6)

While maximizing ρ, SCCA also applies regularization terms to u and v,

which shrinks some weights to zero and yields to p regulators (p < P ) and q tar-

gets (q < Q) to be selected. In brief, SCCA is applied on each candidate module to

select a subset of regulators and targets exhibiting high expression dependency.

Step 6: Merge modules whose regulators have similar target genes

The procedure used in Step 4 to generate candidate modules creates a likely

scenario that many modules may share a high number of similar target genes. Even

when several target genes might be removed from each module in Step 5, many

modules still may have many similar targets. Thus, to ensure the specificity of dif-

ferent modules while still allowing a target gene to be able to assigned in multiple
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modules, CanMod applies hierarchical clustering to merge modules that share many

similar target genes. The method details are similar to those in Step 4.

First, using results obtained in Step 5, CanMod computes a Jaccard distance

matrix of modules based on their shared targets. Then CanMod applies agglomer-

ative hierarchical clustering and uses average linkage to construct a dendrogram.

CanMod cuts the dendrogram at the top to obtain the final merged modules. In

brief, the final modules come from merging constituent modules obtained in Step 5.

3.5 Results

CanMod uses various data types, namely putative interactions between tar-

get genes and their candidate regulators (miRNAs or TFs), the expression of the

regulators and the target genes, and the CNA and DM of the target genes. Can-

Mod was applied to the breast cancer dataset from TCGA. CanMod considers only

the regulators and target genes that were DE between normal and tumor breast

samples. Between 47 normal and 193 tumor samples, we found 215 DE miRNAs,

1,185 DE TFs, and 7,502 DE genes. Among those, there were 158,819 putative

miRNA-gene interactions and 33,638 TF-gene interactions. The following sections

will discuss and analyze the results.
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3.5.1 Results from each step in CanMod

The CanMod pipeline consists of six steps. In Step 1, CanMod computes

regulator-target interactions. For each DE target gene, out of all of its candidate

DE regulators, CanMod applies a LASSO-based variable selection procedure to

select a subset of regulators that are significantly associated with the expression

change of the target gene. After Step 1, CanMod obtained 6,616 miRNA-gene in-

teractions between 196 miRNAs and 2,814 target genes, and 11,017 TF-gene in-

teractions between 944 TFs and 3,208 target genes. On average, a target gene was

regulated by two miRNAs and three TFs.

Using the results of Step 1, in Step 2, CanMod clusters regulators based on

their target similarity. Regulator clustering resulted in 343 regulator clusters (RCs)

and each RC had three regulators on average.

In Step 3, CanMod clusters target genes into gene clusters (GCs) based on

their GO term similarity. Gene clustering resulted in 251 GCs, and each GC con-

tained 17 genes on average.

Using all the results obtained in the previous steps, in Step 4, CanMod com-

putes candidate modules. Each candidate module consists of regulators in an RC,

their target genes from the same GC and other genes that are co-expressed with

target genes and are in the same GC with target genes. After Step 4, CanMod ob-
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tained 5,880 candidate modules and on average, each module had three regulators

and nine target genes.

In Step 5, CanMod filters regulators and target genes in candidate modules

based on their expression correlation. Specifically, for each candidate module, Can-

Mod applies SCCA to select a subset of regulators and target genes that exhibited

linear expression correlation. After regulator/target filtering, candidate modules

that have no regulators or target genes are eliminated. After this step, there re-

mained 4708 candidate modules, which had two regulators and five target genes on

average.

To ensure that modules are distinctive in terms of their target genes’ biolog-

ical functions, in Step 6, CanMod merges modules that share a high number of tar-

get genes. After module merging, there were 912 final modules. On average, each

module consisted of eight regulators and seven target genes (Fig. 3.2A). While a

module often contained more TFs than miRNAs, on average a miRNA appeared in

more modules than a TF did (Fig. 3.2B).

3.5.2 Hub regulators were associated with cancer

A hub regulator was defined as a regulator included in many modules, thus

having a high module degree value. Hub regulators may hold important biologi-

cal roles. We required a hub TF and a hub miRNA to have module degree in the
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Figure 3.2: Size and module degree of TFs, miRNAs, their target genes

included in the inferred modules. (A) Number of TFs, miRNAs, and target

genes in 912 modules obtained by CanMod. (B) Number of modules (module de-

gree) with which a TF, miRNA, or target gene was associated.top 10 percentile of module degree across all the TFs and miRNAs, yielding 61 hub

TFs and 13 hub miRNAs. On average, a hub TF and hub miRNAs had module

degree 41 and 95, respectively. To evaluate the functional relevance of the hub reg-

ulators, we performed a hypergeometric test between the hub miRNAs/TFs found

by CanMod and a list of cancer-related genes and miRNAs.

There were 2,944 cancer-related genes retrieved from the Cancer Gene Cen-

sus in COSMIC v83 [Forbes et al., 2016], the Bushman lab’s Cancer Gene List v3

[Bushman], and the Network of Cancer Genes 5.0 [An et al., 2015]. From the on-

comiRDB [Wang et al., 2014] database we retrieved 314 cancer-related miRNAs.

The hypergeometric results between the hub TFs versus the cancer-related
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genes and hub miRNAs versus the cancer-related miRNAs indicated that both the

hub TFs and the hub miRNAs were significantly associated with cancer (p-value =

2.5e-07 for hub TFs and p-value = 0.048 for hub miRNAs). In contrast, the TFs

and miRNAs that were included in only one module (i.e., module degree = 1) did

not show significant association with cancer (p-value = 0.073 for such TFs and p-

value = 0.91 for such miRNAs).

3.5.3 Experimentally validated regulator-target gene interactions were

found in the modules

To check the ability of CanMod to discover experimentally validated regulator-

target interactions, we collected validated miRNA-gene interactions from miRTar-

Base [Chou et al., 2017] and validated TF-gene interactions based on ChIP-seq data

of breast cancer cell line (MCF7) from ENCODE project [ENCODE Project Con-

sortium, 2004]. MiRTarBase is a database that curates experimentally validated

miRNA-target interactions found by different methods such as reporter assay, west-

ern blot, microarray, and next-generation sequencing experiments. The ChIP-seq

data (MCF7) from ENCODE provides direct binding validation between TFs and

their target genes. We only kept the interactions between DE regulators and DE

targets, which resulted in 29,693 miRNA-target interactions between 215 miRNAs

and 6,123 targets in miRTarBase, and 47,506 TF-gene interactions between 41 TFs

and 6,642 targets in ENCODE.
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For each module in CanMod, we checked whether it included at least one

validated interaction. We applied a sampling procedure to evaluate the significance

of the number of validated interactions found in each module. Suppose module M i

contained S validated interactions between H regulators {Ri1, .., RiH} and K tar-

gets {T i1, .., T iK}. From all DE targets, we generated a set of K randomly selected

targets {T ′i1, .., T ′iK}. Then we counted the number of validated interactions S ′ be-

tween {Ri1, .., RiH} and {T ′i1, .., T ′iK}, and checked if S ≤ S ′ . The procedure was

repeated 1,000 times. The empirical p-value of S was the number of times S ≤ S ′

over 1,000.

Significance of regulator-target gene interactions can be assessed in modules

that have at least one regulator and one target that also appeared in the miRTar-

Base or ENCODE datasets. Among 912 final modules, 667 and 257 modules had

regulators and targets in miRTarBase and ENCODE datasets, respectively. Out of

the 667 modules, 373 modules (56%) contained validated miRNA-target interac-

tions. Out of the 257 modules, 180 modules (70%) contained validated TF-target

interactions. Several examples of validated interactions between cancer-related

miRNAs and TFs with their cancer-related target genes are shown in Table 3.1.

Notably, in all modules that had validated interaction(s), the number of their vali-

dated interactions were significant (p-value < 0.005).
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Table 3.1: Examples of validated interactions between cancer-related regulators and

targets found in CanMod modules.

Cancer-related regu-

lators

Cancer-related

targets

Regulator description

hsa-miR-106a-5p CAV1, HBP1,

TP53INP1,

FBXO31

Promote cell migration and inva-

sion [Wang et al., 2014]

hsa-miR-130b-3p EGR2, SIX4,

HBP1, DLC1

Promote tumor aggression and

reduce multidrug resistance [Wang

et al., 2014]

hsa-miR-16-5p TM4SF1, UBR3,

USP7, WDR75,

GOLGA5

Suppress cell self-renewal and cell

growth [Patki et al., 2013]

MYC CCND1,

GOLGA5,

FBXO31, CUX1

Activate angiogenesis and sup-

press of the host immune response

[Safran et al., 2010]

RAD21 CAV1, EGR2,

MEF2D, RPN1

Repair DNA double-strand break

[Safran et al., 2010]

ELK1 CDK4, CORO1C,

E2F3, UBE2C

Regulate many genes responsible

for cell growth functions [Safran

et al., 2010]

3.5.4 Expression of target genes in large modules were significantly cor-

related

We expected that expression of the target genes within each modules should

be correlated because in Step 4, to generate candidate modules, only genes that

were highly correlated with the “seed” genes were incorporated into the candi-

date modules. However, because of the elimination of some genes in Step 5 and the

module merging procedure in Step 6, expression of the target genes in the final 912
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modules were not guaranteed to be correlated. To measure the expression corre-

lation of target genes within each module and assess its statistical significance, we

employed the procedure used in [Jin and Lee, 2015] to assign an empirical p-value

for the mean correlation of expression of the target genes within each module.

Briefly, for a module M i, we computed its mean expression correlation cor(M i),

i.e., the average of absolute pairwise expression correlation among the genes in M i.

If M i had A target genes, we generated a random target gene set of size A and

computed the sampled mean correlation of the generated target set. The proce-

dure was repeated 1,000 times, which produced a sampling distribution of the mean

correlation associated with cor(M i). P-value of cor(M i) was computed using Eq.

3.7:

p-value(cor(M i)) =

∑1000
j=1 F (cor(M i) < cor(random M ij))

1, 000

(3.7)

F = 1 if cor(M i) < cor(random M ij) and F = 0 otherwise. Cor(M i) is con-

sidered to be significant if the p-value(cor(M i)) < 0.05. Out of 912 modules, 693

of them (76%) had significant mean correlation. The mean correlation distribution

of the 912 modules is presented in Fig. 3.3. As shown in Fig. 3.3, the means of ex-
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Figure 3.3: Distribution of the average absolute correlations among target

genes across the inferred modules.

pression correlations of the target genes included in the modules (pink bars) are

higher than the mean of expression correlations of all genes (vertical line).

We hypothesized that the number of target genes included in each module

was correlated with its mean expression correlation significance. To check that, we

employed the Wilcoxon rank sum test to compare the distribution of the number of

target genes in the 693 modules that had significant mean correlations to those of

the remaining 219 modules that did not have significant mean correlations. P-value

from the Wilcoxon rank sum test was smaller than 2.2e-16. The median number

of target genes in the 693 modules and the 219 modules was nine and four, respec-
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tively. The result indicated that expression of target genes in the larger size mod-

ules were more likely to be significantly correlated.

3.5.5 Functional enrichment of the modules

The gene regulatory modules inferred by CanMod were based on the premise

that the regulated genes in each module participated in similar biological processes.

To assess the functional importance of the modules, we performed enrichment anal-

ysis between the target genes in each module and the GO terms, Cancer Hallmark

(CH) terms, and KEGG pathway terms. To make the enrichment test statistically

feasible, only the modules having at least five target genes were used as input for

this enrichment analysis. A term or pathway was considered to be enriched in a

module if its adjusted p-value from the enrichment test was smaller than 0.01. The

GO, CH, and KEGG pathway terms were retrieved from [Liberzon et al., 2011]. We

employed the R package clusterProfiler [Yu et al.] to perform the enrichment analy-

sis.

There were 2,098 significantly enriched GO terms across all the CanMod

modules. The top three most commonly enriched GO terms were GO:0009057 macro-

molecule catabolic process (44 modules), GO:0006396 RNA processing (40 mod-

ules), and GO:0016070 RNA metabolic process (39 modules). This enrichment

result is not surprising, as these terms are broad biological processes and are as-

sociated with many genes. In contrast, the GO terms that were enriched in only
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one module such as GO:0021517 ventral spinal cord development and GO:0007035

vacuolar acidification refer to specific biological processes and are associated with

a small number of genes (22 genes in human). Among all the enriched GO terms,

31% of those (664 terms) were enriched in only one module. The median number of

modules that a GO term was enriched in was only two. This result indicated that

modules obtained by CanMod were distinctive in term of their biological functions.

We also observed a number of cancer-related KEGG pathway terms in the

CanMod modules. For instance, KEGG:04110 Cell cycle, KEGG:05200 Pathways

in cancer, KEGG:03040 P53 signaling pathway, and KEGG:04010 MAPK signaling

pathway were enriched in 13, 8, 7, and 6 modules, respectively. Those pathways

are known to be activated in breast cancer [Gasco et al., 2002, Santen et al., 2002].

KEGG:04710 circadian rhythm mammal term was enriched in only one module.

Deregulation of circadian rhythm genes are shown in breast cancer [Chen et al.,

2005].

We observed that certain CH terms were enriched in multiple modules ob-

tained by CanMod. The most commonly enriched CH terms included CH:5926

MYC Targets V1 (17 modules), CH:5898 DNA Repair (15 modules), and CH:5901

G2M checkpoint (15 modules). On the other hand, CH terms such as CH:5903

Notch signaling, CH:9539 P53 pathway, CH5942: UV Response DN, CH:5895 WNT
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beta catenin signaling, and CH:5934 xenobiotic metabolism occurred in only one

module.

In overall, the modules obtained by CanMod were associated with important

biological processes and pathways associated with cancers. Thus, CanMod is a use-

ful tool to explore the functional significance of gene modules coregulated by TFs

and miRNAs. We also inferred gene modules by applying three other methods to

compare their functional enrichment results with those obtained by CanMod. Un-

like in CanMod, the three methods did not employ regulator-gene interaction data

and only used gene expression to infer gene modules. In the first method, we ap-

plied the K-means algorithm to cluster genes, and each cluster was considered as

gene module. We set K to 1000 to make sure the number of modules found by K-

means was comparable with the number of modules obtained by CanMod. In the

second method, we applied the agglomerative HC algorithm to construct the den-

drogram of gene clusters, and then applied dynamic cut tree algorithm [Langfelder

et al., 2007] to the dendrogram to construct the gene clusters, which were consid-

ered as gene modules. In the third method, to obtain gene modules, we applied a

functional gene module detection algorithm (namely FGMD) [Jin and Lee, 2017],

which was based on hierarchical clustering but modified so that a gene was allowed
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Table 3.2: Summary of enrichment analysis results obtained by four methods (Can-

Mod, K-means, HC, and FGMD).

CanMod Kmeans HC FGMD

No. of input modules for

enrichment analysis

643 763 169 149

Total no. of genes across

all input modules

4,695 7,502 7,502 479

Avg. occurrence of genes

across all input modules

2.3 1.0 1.0 6.9

GO-ES 6.06 4.29 5.13 4.19

KEGG-ES 4.82 3.40 4.57 4.82

CH-ES 5.54 3.72 4.46 5.92

No. of BP-enriched mod-

ules

511

(79.5%)

106

(13.9%)

42 (24.9%) 146

(98.0%)

No. of KEGG-enriched

modules

250

(38.9%)

103

(13.5%)

29 (17.2%) 116

(77.9%)

No. of CH-enriched mod-

ules

152

(23.7%)

88 (11.5%) 36 (21.3%) 131

(87.9%)

Avg. occurrence of an

enriched GO term

4.1 1.6 1.4 14.0

Avg. occurrence of an

enriched KEGG term

4.0 1.7 1.2 12.5

Avg. occurrence of an

enriched CH term

5.1 3.2 2.1 21.4

to belong to multiple modules. The enrichment analysis results obtained by the

CanMod, K-means, HC, and FGMD are summarized in Table 3.2.

To quantify the enrichment levels of all enriched terms from all the modules,

for each method we computed its GO enrichment score (GO-ES), KEGG enrich-

ment score (KEGG-ES), and CH enrichment score (CH-ES). Suppose there were
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totally T enriched GO terms across all the modules obtained in a method, then

GO-ES of the method was defined as GO-ES = 1
T

∑T
i=1 -log10 pvalue(T i)

CanMod had the highest GO-ES among the four methods, and nearly 80%

of modules in CanMod were associated with at least one BP term. The result indi-

cated that gene targets found by CanMod were strongly associated with GO terms.

The result was not surprising because CanMod employed GO terms to cluster tar-

get genes, which contributed to the high possibility that the genes associated with

similar GO terms were together in the final modules. As shown in Table 3.2, Can-

Mod had comparable high KEGG-ES and CH-ES values to those of FGMD.

FGMD outperformed the other methods in terms of the percentage of mod-

ules that were enriched with at least one BP, KEGG, or CH term. The result could

be explained by examining the average occurrence of genes across all input modules

in FGMD and the average occurrence of an enriched GO/KEGG/CH term across

all the enriched modules. In FGMD on average a gene was included in seven mod-

ules compared to two modules in CanMod. In addition, the number of input mod-

ules for enrichment analysis and the total number of genes across all input mod-

ules were much smaller in FGMD compared to CanMod (see Table 3.2). It led to

our hypothesis that that similar groups of genes would appear frequently in mod-

ules in FGMD, which increased the chance that similar terms would be enriched

in different modules in FGMD. The high average occurrences of an enriched terms
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across all modules in FGMD validated our hypothesis. It is clear that compared to

FGMD, CanMod was better at finding distinctive enriched terms, but not as good

as K-means and HC. The result is expected because K-means and HC did not allow

a gene to be assigned in multiple modules, which lowered the chance a term would

be enriched in different modules. In general, as we required different modules to be

distinguishable based on their biological functions while allowing a gene to be as-

sociated with different modules, compared to other methods, CanMod achieved the

best trade-off between the two criteria.

3.6 Summary

In this chapter, we presented CanMod, a computational method to infer

cancer-associated gene regulatory modules. Each module found in CanMod con-

tains genes that have similar biological functions and regulators that coregulate the

genes. Unlike some existing methods, CanMod does not require users to specify the

number of modules in advance. In CanMod, the target genes and regulators are al-

lowed to belong to multiple modules, which follows the biological fact that a single

gene or regulator may be involved in multiple biological processes.

We applied CanMod to infer gene regulatory modules in breast cancer us-

ing the BRCA dataset from TCGA. We found that the regulators that appeared in

many modules were known cancer genes. We also observed that a significant num-
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ber of experimentally validated regulator-target interactions occurred in the mod-

ules obtained by CanMod. Expression of target genes in large size modules were

significantly correlated. Functional enrichment analysis applied on the target genes

indicated that the coregulated genes in the modules were significantly enriched with

cancer-related biological processes. Given the results, CanMod is a valuable tool to

help deciphering the complex coregulatory relationship between TFs and miRNAs

in cancer biology.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

MiRNAs play important roles in regulating genome-wide gene expression,

thereby controlling many crucial biological processes. Dysregulation of miRNA reg-

ulation can lead to tumor formation and progression in many types of cancer [Jans-

son and Lund, 2012, Peng and Croce, 2016]. Many functional roles of miRNAs, es-

pecially in complex diseases such as cancer, are still unknown. This dissertation

presented two computational tools that integrated multiple types of biological data

to model two miRNA-mediated gene regulation mechanisms. In Chapter 2, we

presented the computational tool Cancerin, which identifies genome-wide cancer-

associated ceRNA interaction networks. In Chapter 3, we presented the compu-

tational tool CanMod, which identifies cancer-associated gene regulatory modules

consisting of miRNAs, TFs, and their coregulated target genes. This chapter sum-

marizes the contributions of the two computational tools and the important biolog-

ical findings obtained by applying the tools to different cancer datasets. We con-

clude the dissertation by pointing out multiple research directions to extend the

work discussed in the dissertation.
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4.1 Summary of Cancerin and CanMod

CeRNA interaction is a post-transcriptional gene regulation that involves

interactions between RNAs competing for common miRNA regulators. Dysregula-

tion of ceRNA interactions have been implicated in multiple diseases, including can-

cer. In Chapter 2, we described the computational pipeline Cancerin, which infers

genome-wide ceRNA interaction networks in cancer. Unlike existing ceRNA identi-

fication methods that consider miRNAs as the only factor regulating gene expres-

sion, Cancerin takes into account other types of gene regulators besides miRNAs,

which include transcription factor (TF), copy number alteration (CNA), and DNA

methylation (DM). Taking into account other types of gene regulators helps avoid

spurious inference of miRNA-target gene interactions, which would result in spuri-

ous inference of ceRNA interactions. Cancerin is able to find ceRNA interactions

among mRNAs, between mRNAs and lncRNAs, and among lncRNAs. By applying

the sensitivity correlation metric proposed in Paci et al. [2014], Cancerin directly

models the ceRNA hypothesis, which posited that two ceRNAs participating in a

ceRNA interaction should have a positive expression correlation, and that correla-

tion is conditioned on the expression of their common miRNA regulators.

To identify miRNA regulators for each gene, Cancerin incorporates a LASSO-

based variable selection procedure that leverages both sequence-based and gene ex-

pression information. Then multiple expression-based filtering conditions are em-
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ployed to select ceRNA interactions. Cancerin was applied to three cancer datasets

from TCGA. Functional analysis indicated that the inferred ceRNAs were enriched

with cancer-related genes, and ceRNAs within ceRNA modules (densely-connected

ceRNAs) were involved in cancer-associated biological processes. Survival analysis

showed that compared to non-ceRNAs, ceRNAs hold better prognostic power to

predict survival outcomes. Our results showed that Cancerin can be used to iden-

tify genome-wide and functionally important ceRNA interactions, which makes it a

valuable tool to explore the roles of this recently discovered gene regulation mecha-

nism in cancer biology.

In Chapter 3, we described the computational tool CanMod to infer cancer-

associated gene regulatory modules composed of miRNAs, TFs, and their coregu-

lated genes. We require the modules obtained by CanMod to satisfy several con-

ditions. First, different modules should have distinctive biological functions, which

makes them biologically meaningful and interpretable. Second, the expression of

target genes in a module is dependent on the expression of their regulators. Third,

a regulator (i.e., miRNA or TF) and a target gene should be allowed to be included

in more than one module. As different modules are distinguishable by their biolog-

ical functions, this requirement reflects a biological fact that a regulator or a gene

can carry multiple biological functions. In addition, in CanMod there is no need to

specify the number of modules in advance.
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CanMod was applied to the breast cancer dataset from TCGA. CanMod was

able to rediscover experimentally validated regulator-target interactions. We found

that the expression of target genes in the large modules were significantly corre-

lated, and the hub regulators in CanMod were known cancer-associated genes. By

applying functional enrichment analysis to the target genes in each module, we ob-

served that different modules were associated with distinctive biological processes,

and many modules were associated with cancer-related hallmarks. Given the re-

sults, CanMod is a valuable tool to help deciphering the complex coregulatory rela-

tionship between TFs and miRNAs in cancer.

4.2 Future Work

While our understanding of gene regulation by miRNAs continues to de-

velop, many functional roles of miRNAs are yet to be discovered. Due to the com-

plex interaction between miRNAs and their target genes and the intricate interplay

between miRNAs and the other types of gene regulators such as TFs, computa-

tional methods are important tools to study miRNAs. This section points out sev-

eral research directions in which computational approaches could be used to study

miRNA regulation.

In Chapter 2, we described the computational tool Cancerin, which infers

cancer-associated ceRNA interactions. Besides mRNAs and lncRNAs, which were
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considered as potential ceRNAs in Cancerin, other types of RNAs such as pseudo-

genes and circular RNAs have also been found to participate in ceRNA interactions

[Yamamura et al., 2017]. When data of those ncRNAs become more available in the

future, they can be easily incorporated as additional input for Cancerin, and Can-

cerin can be used to explore their biological importance in the context of ceRNA

regulation.

In each ceRNA interaction found by Cancerin, the constituent RNAs are

regulated directly by a common set of miRNAs. However, multiple RNAs also can

communicate, therefore regulate, each other through multiple layers of ceRNA in-

teractions, and each layer is mediated by different set of miRNAs. Such indirect

ceRNA interactions probably involve many miRNAs and RNA targets. The RNAs

involved in such chain-based multilayered ceRNA interactions can govern crucial

molecular functions and biological pathways. The indirect ceRNA interactions form

a complex gene regulation mechanism that can control important biological func-

tions. Identification of such interactions would be of great interest.

Recent studies have suggested several important factors for determining the

strength of ceRNA interactions such as the number of shared miRNA-response-

elements (MREs), the number of shared miRNAs, and the miRNA-RNA binding

affinity [Denzler et al., 2014, 2016]. However, the optimal configuration of those fac-

tors for ceRNA interactions to occur in different cellular conditions (e.g., normal
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cells versus tumor cells) remains unclear. Machine learning approaches could be

employed to address the challenge. For example, supervised machine learning ap-

proaches can be used to predict if two RNAs can establish ceRNA interactions in

different cellular settings. Under that scheme, the features for the supervised learn-

ing algorithms are the above mentioned factors (e.g., number of shared MREs and

number of shared miRNAs). The outcome variables are binary values indicating the

existence of ceRNA interactions based on the experimentally validated results.

Admittedly, supervised machine approaches require historical data of val-

idated ceRNA interactions. However, a repository of those interactions is not yet

available. Thus, a comprehensive database of experimentally validated ceRNA in-

teractions in different cellular conditions will be extremely helpful to build predic-

tive models for ceRNA interactions. Constructing a such database will be of great

significance.

In Chapter 3, we described a computational method called CanMod, which

infers cancer-associated gene regulatory modules consisting of miRNAs, TFs, and

their coregulated genes. While specifying the cooperation of miRNAs and TFs in

coregulating their commonly targeted genes, CanMod does not examine the reg-

ulatory relation among the regulators (e.g., miRNA regulates (→) TF and TF →

miRNA). “Directional gene regulatory modules” can be thought of as extensions of

the modules obtained by CanMod. A directional module has all the characteristics
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of a CanMod module. In addition, within the directional modules, the regulatory

direction among the regulators is specified. Multiple interesting biological findings

can be obtained from the directional modules. For example, the directionality be-

tween nodes (i.e., regulators → regulators, and regulators → targets) in a module

can present some specific biological pathways. Within a directional module, there

will be some hub regulators, which are the regulators that target many other reg-

ulators and target genes. Since a gene module is associated with specific biological

functions, the hub regulators in a module can be thought of as the trigger of the

functions; thus, hub regulators can have critical biological significance and are wor-

thy of further examination.

Probabilistic graphical approaches can be used to infer such directional gene

regulatory modules [Friedman et al., 1997, Yu et al., 2004]. For instance, the au-

thors in [Gosline et al., 2016] introduced a probabilistic network modeling approach

to model the how miRNAs regulates gene expression via TFs (i.e., miRNAs → TFs

→ genes). Biological knowledge (i.e., priors) can be used to facilitate inference of

the module structure. An inference algorithm can assign a high probability that a

specific miRNA will regulate specific TF if the TF’s sequence contains many bind-

ing sites for the miRNA and there is also a CLIP-seq experiment showing that

the miRNA/RISC complex can bind to the TF’s 3’UTR. In addition to using the
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regulator-target binding information, gene expression can also be used to update

the network structure and learn the network parameters.

Advances in sequencing technologies will yield more time-series sequencing

data. Hence, it is possible to learn the directional gene regulatory module at differ-

ent time points to study how the regulatory interactions evolved. It will be inter-

esting to compare a regulatory module at a tumor-free timepoint with the module

itself at a tumor-formation timepoint to see what alters in the module at different

timepoints that triggers the tumor creation.

Most existing computational methods to study miRNA-gene regulatory net-

works are based on using the gene expression of a group of samples with similar cel-

lular condition. However, samples collected from patients diagnosed with a similar

disease can still exhibit a highly heterogeneous expression profiles [Hu et al., 2013,

Norton et al., 2016]. In such cases, a single gene regulatory network constructed

by those samples is not informative enough, or even misleading, to represent the

gene regulatory network of the individual patients. Thus, we need to infer gene

regulatory networks for individual patients. Such patient-specific gene regulatory

models can be very helpful for precision medicine and targeted therapy research.

For instance, patient-specific miRNA-gene regulatory models can facilitate high-

resolution investigation on how miRNA’s activities are different among different pa-
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tients. Hence, they can enable the identification of new cancer types or novel cancer

subtypes.

However, building patient-specific gene regulatory networks is challenging

because the inference of connection between nodes (i.e., regulators and targets) in

a network often is based on measurements such as gene expression correlation or

mutual information from a group of samples, which does not satisfy the patient-

specific constraints. To address that challenge, one computational approach pro-

posed by [Liu et al., 2016] can be used as a framework to construct patient-specific

gene regulatory networks. Their basic idea is that to construct a network for a

patient Pi, we first construct a network using the data from all patients includ-

ing Pi, which is referred to as network {P}. Then we construct another network

called {P}-i, which uses the data from all the patients except the patient Pi. Thus,

the network for the patient Pi is inferred by comparing the two networks {P} and

{P}-i. The edges that are significantly different between the two networks are used

to construct the network for Pi. While this approach is able to discover gene inter-

actions that are distinctive to Pi, it is not able to rediscover the common interac-

tions between network Pi and network {P}. In addition, it is not clear to how to

infer interaction directionality using this approach. Hence, there is a need for more

sophisticated computational approaches to infer patient-specific models.

In conclusion, this dissertation described two computational methods to
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model the two miRNA-mediated gene regulation mechanisms. As we gain deeper

understanding of miRNA regulation mechanisms and at the same time, and more

genomic and clinical data are collected, computational methods are indispensable

tools for us to acquire new insights of miRNA functions in cancer.
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APPENDIX A

METHODS TO IDENTIFY MIRNA-TARGET INTERACTIONS

This appendix describes the principles behind common experimental and

computational methods to identify miRNA-target interactions. Understanding the

principles behind both the computational and experimental methods is crucial to

deciding which method to use and when/how to use them together to generate the

best set of putative miRNA-target interactions for different research purposes.

Most of the computational methods that are used to predict miRNA-target

interaction explore the sequence complementary rules between miRNAs and their

target genes. Using publicly available transcript sequences of miRNAs and candi-

date genes as input, computational methods are able to generate many candidate

miRNA-target interactions. While not as time-efficient or as cost-effective as com-

putational methods, experimental methods can not only provide strong evidence of

miRNA-target interaction, but also can generate understanding of miRNA regula-

tion mechanisms. It is also worth noting that every experimental method includes

some computational parts; thus there is not always a clear line between experimen-

tal and computational methods.
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A.1 Experimental methods

Common experimental methods to identify miRNA-target interaction fol-

low two main approaches. The first approach is based on profiling of gene expres-

sion change as a response to miRNA overexpression/inhibition. MiRNAs repress

translation and cause degradation of their targets, resulting in an inverse corre-

lation between the abundance of the miRNAs and their target transcripts. Thus,

this approach often is employed when researchers have a specific miRNA to study.

They transfect (introduce) the miRNA mimics or inhibitors into the cell of interest.

The expression of mRNAs is measured before and after the transfection; the genes

that show significant change of expression are considered as candidate targets of the

miRNA.

The methods to predict miRNA-target interactions based on gene expres-

sion profiling are unable to distinguish whether the target is a direct or an indirect

target of the miRNA. For example, expression of a gene could be changed not be-

cause it is bound by the miRNA (as the miRNA’s direct target), but because the

gene’s transcription factor was bound by the miRNA, which in turn alters the gene

expression at the transcriptional level.

The second experimental approach to identify miRNA-target interaction

is based on identifying the binding mark of RISC complexes, which are guided by
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miRNAs, on their target transcripts [Thomson et al., 2011]. This approach is able

to identify direct binding between miRNAs and their target transcripts. As RISC

complexes contain one of the AGO proteins, one experimental technique follow-

ing this approach involves using an antibody of the AGO protein associating with

a miRNA of interest. To predict targets of the miRNA, the antibody is injected

into the cells before and after the cells are transfected with the synthetic miRNAs.

By introducing the antibody before and after the miRNA transfection, a directly

bound target gene is detected based on measuring the antibody signals before and

after the miRNA transfection. Methods such as RIP-ChIP (Ribonucleoprotein Im-

munoprecipitation followed by microarray chip analysis), or RIP-Seq (Ribonucleo-

protein Immunoprecipitation followed by high-throughput sequencing) have been

used to quantify that differential binding information [Jain et al., 2011]. A limi-

tation of these techniques is that they cannot provide the precise binding location

between RISCs and their target transcripts.

Recent high-throughput methods based on AGO cross-linking and immuno-

precipitation (AGO CLIP) overcome this limitation [Chi et al., 2009]. This tech-

nique uses ultraviolet radiation to form a covalent bond (aka., cross-link) between

the RISC complex and the target genes. Therefore after being immunopreciptated,

the binding areas still contain the sequence information of the target genes, which

can be mapped back into the reference genome to decide the exact binding location.
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Thus, the AGO CLIP technique allows identification of genome-wide miRNA-target

direct bindings. Combined with the miRNA over-expression/inhibition method, this

technique can infer if the direct binding causes the gene expression change of the

target genes.

In summary, experimental methods are indispensable tools to find and con-

firm targets of miRNA regulation. The ability of the CLIP-based method to dis-

cover direct bindings between miRNAs and their targets also facilitates our under-

standing of miRNA regulation mechanisms. However, performing experimental pro-

cedures is costly and requires specialized wet-lab skills and knowledge. Computa-

tional methods have shown to be an invaluable alternative to experimental methods

when we want to quickly generate many candidate miRNA-target interactions for

various research purposes [Watanabe et al., 2007, Ekimler and Sahin, 2014].

A.2 Computational methods

While all existing computational methods to predict miRNA-target interac-

tions take sequences of miRNAs and their candidate target genes as input, they are

different in the way they convert the sequence information into different features

to be used for interaction predictions. The common features include seed match,

conservation, free energy, and site accessibility [Peterson et al., 2014].

Seed match: As mentioned above, the seed region of an miRNA contains nu-
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cleotides from position 2 to 8 from 5’ to 3’ ends. A seed region composed of seed

matches between the miRNA and an area of its target transcript (i.e., miRNA-

response-element (MRE) on 3’UTR of mRNAs). A seed matches is a complemen-

tary base-pair: adenosine (A) matches with uracil (U) or guanine (G) matches with

cytosine (C).

Some algorithms and tools such as TargetScan [Agarwal et al., 2015], PITA

[Kertesz et al., 2007], and RNAhybrid [Krüger and Rehmsmeier, 2006] require the

miRNAs to have perfect seed matches with their targeted genes. A perfect seed

match includes 6mer seeds, which are perfect matches from nucleotides 2–7 of the

miRNA to a region in the targetted gene’s 3’UTR region. As imperfect seed matches

are prevalent in animals, some algorithms such as MiRanda [Enright et al., 2003]

allow some exceptions of miRNA-target sequence matching in addition to perfect

seed matching. MiRanda allows GU wobble in the seed match, which refers to G

pairing with U instead of C. Also unlike other miRNA-target prediction tools that

only focus on miRNA seed region, MiRanda considers potential matching between

entire miRNA and target transcript bodies, but weigh the miRNA seed region match-

ing more heavily.

Free Energy: Free energy (or Gibbs free energy) in the miRNA-target inter-

action context indicates the thermodynamic stability of a miRNA-target binding.

If a miRNA is predicted to have a stable thermodynamic binding with its target,
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the miRNA-target interaction is also more likely to be true [Watanabe et al., 2007].

The Vienna RNA package [Hofacker et al., 1994] is a popular tool for estimating

the minimum energy (kcal/mol) needed to make the binding possible. It uses dy-

namic programming to compute the thermodynamic stability between a miRNA

and its predicted target based on sequence complementary between the miRNA and

the target. ∆G refers to the change in the thermodynamic stability before and after

the binding. More negative ∆G indicates that the system has less energy available

to react in the future, resulting in a more stable system and increasing the possibil-

ity of the binding.

Site Accessibility: Site accessibility measures how easily a miRNA can locate

its mRNA target. It has been shown that the secondary structure of a mRNA can

interfere with the ability of its miRNA regulator to bind to mRNAs’ MREs [Ekim-

ler and Sahin, 2014]. To ease the interference, the miRNA to first binds to a short

region of the mRNA, which enables the mRNA secondary structure to be unfolded

to complete the binding. The site accessibility feature is available in tools such as

miRanda [Enright et al., 2003], DIANA-microT-CDS [Paraskevopoulou et al., 2013],

TargetMiner [Bandyopadhyay and Mitra, 2009], PITA [Kertesz et al., 2007], and

RNAhybrid [Krüger and Rehmsmeier, 2006]
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APPENDIX B

VALIDATION OF THE INFERRED CERNA NETWORKS USING

LINCS-L1000 DATASET

This appendix describes how we employed LINCS-L1000 to assess the ac-

curacy of the inferred ceRNA interactions in predicting gene expression change. In

the LINCS-L1000 shRNA-perturbation database, each gene knockdown experiment

involved using a specific shRNA to target and thereby silenced a gene [Liu et al.,

2015a]. The shRNAs were designed to target and silence their predetermined tar-

gets (i.e., to avoid off-target matching and unwanted miRNA effects). For each ex-

periment, expression of 978 landmark genes were profiled before and after the gene

knockdown. Thus, in response to a gene knockdown experiment, for each of the

978 genes, its expression fold change (EFC) and p-value from differential expression

analysis were reported. As mentioned in Chapter 2, we refer to the targeted/knocked-

down genes as upstream genes and to the 978 genes as downstream genes.

We employed data from LINCS-L1000 shRNA-perturbation performed on

the breast cancer cell MCF7. In the MCF7 data set, expression changes of the 978

downstream genes were recorded at two different time points (96h and 144h). Thus,

our analysis was specific for each time point. One upstream gene could be silenced

by multiple shRNAs (on average by 3 shRNAs). Consequently, a downstream gene

would have multiple EFC records corresponding to the silencing of the upstream
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gene. In such cases, we used the downstream gene’s EFC average to represent its

overall EFC. The number of upstream-downstream pairs in each time point were

2,578,986 pairs (96h) and 1,022,988 pairs (144h). The number of upstream genes in

each time point were 2,637 (96h) and 1,046 (144h).

We used LINCS-L1000 (MCF7) shRNA-perturbation data to assess if the

inferred ceRNA crosstalks can be used to predict gene expression patterns. We ex-

pected that if a downstream gene is an inferred ceRNA, its EFC would be lower in

response to the silencing of its upstream ceRNA partners, compared to the silenc-

ing of its upstream non-ceRNAs. In other words, for a downstream ceRNA gene, its

ratio of expression fold change is expected to be smaller than 1 (see Eq. B.1).

Given the inferred ceRNA crosstalk results, a downstream ceRNAi in MCF7

has M upstream ceRNA partners and N upstream non-ceRNAs. Let EFC(ceRNAi ←

ceRNAm) and EFC(ceRNAi ← RNAn) be the expression fold change of ceRNAi

caused by silencing of its ceRNA partner ceRNAm and the non-ceRNA RNAn, re-

spectively. The ratio of expression fold change RFC(ceRNAi) is

RFC(ceRNAi) =
1
M

∑M
m=1EFC(ceRNAi ← ceRNAm)

1
N

∑N
n=1EFC(ceRNAi ← RNAn)

. (B.1)

Lower RFC indicates better prediction of gene expression change due to in-

ferred ceRNA crosstalks.
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In the LINCS-L1000 (MCF7) dataset, a subset of all upstream genes and a

subset of all downstream genes were also inferred ceRNAs. A downstream ceRNA

was selected for this analysis if it had at least one upstream ceRNA in the MCF7

dataset. As the Cancerin method only selected ceRNA crosstalk out of all possi-

ble pairs between DE mRNAs, we only kept the upstream genes that were also DE

mRNAs in the TCGA-BRCA dataset.
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APPENDIX C

ACRONYMS

AGO Argonaute (proteins)

CNA Copy Number Alteration

CPM Count Per Million

DM DNA Methylation

ENCODE Encyclopedia of DNA Elements

EFC Expression Fold Change

FGMD Functional Gene Module Detection

GC Gene Cluster

HC Hierarchical Clustering

LASSO Least Absolute Shrinkage and Selection Operator

mRNA Messenger RNA

miRNA Micro RNA

MRE MiRNA Response Element

MTM MiRNA Target Module

MTT MiRNA-Transcription factor-Target (network)

PC Partial Correlation

RC Regulator Cluster

RFC Ratio of Fold Change

RISC RNA-Induced Silencing Complex

RPKM Reads Per Kilobase Million

SC Sensitivity Correlation

TCGA The Cancer Genome Atlas

TF Transcription Factor

UTR Untranslated Region


