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ABSTRACT
GENE SET ENRICHMENT AND PROJECTION: A COMPUTATIONAL
TOOL FOR KNOWLEDGE DISCOVERY IN TRANSCRIPTOMES

KARL D. STAMM, M.S.

Marquette University, 2016

Explaining the mechanism behind a genetic disease involves two phases, collecting and
analyzing data associated to the disease, then interpreting those data in the context of biological
systems. The objective of this dissertation was to develop a method of integrating
complementary datasets surrounding any single biological process, with the goal of presenting
the response to a signal in terms of a set of downstream biological effects. This dissertation
specifically tests the hypothesis that computational projection methods overlaid with domain
expertise can direct research towards relevant systems-level signals underlying complex genetic
disease. To this end, I developed a software algorithm named Geneset Enrichment and Projection
Displays (GSEPD) that can visualize multidimensional genetic expression to identify the
biologically relevant gene sets that are altered in response to a biological process.

This dissertation highlights a problem of data interpretation facing the medical research
community, and shows how computational sciences can help. By bringing annotation and
expression datasets together, a new analytical and software method was produced that helps
unravel complicated experimental and biological data.

The dissertation shows four coauthored studies where the experts in their field have
desired to annotate functional significance to a gene-centric experiment. Using GSEPD to show
inherently high dimensional data as a simple colored graph, a subspace vector projection directly
calculated how each sample behaves like test conditions. The end-user medical researcher
understands their data as a series of somewhat-independent subsystems, and GSEPD provides a
dimensionality reduction for high throughput experiments of limited sample size. Gene Ontology
analyses are accessible on a sample-to-sample level, and this work highlights not just the
expected biological systems, but many annotated results available in vast online databases.
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CHAPTER 1

INTRODUCTION AND OUTLINE

Explaining the mechanism behind any genetic disease involves two phases,
collecting and analyzing genetic data, then interpreting those data in the context of
biological systems. While advances have come to both phases, few tools facilitate both
phases. My objective is to develop a method integrating several datasets surrounding a
biological process, with the goal of presenting the response to a test condition in terms of a
set of downstream biological effects. I hypothesize that heuristic methods overlaid with
automated domain expertise will highlight relevant systems-level signals underlying
complex biological conditions that have not been seen by previous methods. To this end, I
have developed an algorithm called Geneset Enrichment and Projection Displays
(GSEPD), which visualizes multidimensional gene expression data to identify the
biologically-relevant gene sets that are altered in response to a test condition. With
inspiration from state of the art model organism experiments, in vitro experiments, and
genome sequencing, I present a tool that can help to explain the cellular mechanisms of a

complex test condition.

1.1 Introducing the Problem Context

Medical researchers are interested in the diseases with as-yet unknown causes. An

interesting and longstanding research area is human birth defects, broadly defined as a



problem present in a newborn [1]. Early genetic screening indicated that “not less than 4%
of all live births” are impacted by one or more genetic diseases [2]. Presuming a medical
condition is caused by genetic or environmental factors, or their combination, researchers
seek to discover the shared cause among independent patient cases. For some medical
conditions a common environmental factor can be found through retrospective studies, but
in the situation of a spontaneous/sporadic birth defect where common environmental
causes are ruled-out, researchers could search for a mutation impacting a developmental
pathway. Organ development has not been understood completely; only some vital genetic
components have been identified [3, 4]. Master control points are known from
mutagenesis studies of model organisms [5] but subtle effects on complex organs like the
human brain or heart are still unknown [6].

Over 100 genes are required to work together to construct a mammalian heart [7]
and altering any one will cause some form of a visible final trait [8, 9]. Each separate
gene malfunction can be considered a subtype of the visible trait, and as each gene may
malfunction in several ways, a few hundred causally-distinct subtypes of the same visible
trait are generated. The presence of multiple subtypes causes a problem for statistical
analyses, as each portion of genetic-location specific evidence is relevant for only a subset
of the cases with a common disease, thereby decimating the power of a case/control study
[10, 11].

Genetic analyses usually are performed by examining “case” and “control” groups
of subjects. Researchers collect genetic information and analyze the genetic information
for commonalities that segregate the disease case group from the healthy control group

[12]. The data collection takes several technical forms depending on the technological and



social platforms. Gene usage platforms such as sequencing and microarray assays are
briefly discussed below, each having different strengths, weaknesses, and costs. When
studying model organisms, one might create controlled animals, but when studying human
traits researchers need to work with public health organizations or recruit volunteers. The
prevalence of a disease and the affected population determine the costs and difficulties
encountered in collecting samples. For instance, where something like high blood
pressure affects millions of adults, it is possible to collect tens of thousands of willing
participants to give a blood sample. Conversely, to directly study organ development
researchers need to obtain fetal tissue, or work backwards from subjects who have
completed organ development. Ethical considerations generally make direct study of
healthy human tissue impossible, and researchers are limited to incomplete data and must
piece together information wherever it is available.

The simplest solution to the problem of hard to collect samples lies in model
organisms. Model organisms are the inbred and outbred lab rats, mice and lower animals,
with the simplest model organisms being yeasts and bacteria. All of these model
organisms share some biological systems with Homo sapiens from which we can learn
human-relevant insights. For example, below I present a work involving mice that is
relevant to heart development, as the mouse heart is very similar to a human’s [13].
However, molecular discrepancies exist between mouse and human too, causing
difficulties for analysis and interpretation of results [14]. Direct measurements of human
tissues are key, and I present some data on the heart development of humans in Chapter

2.



There exist decades of statistical research in genetic analysis of single-gene traits
[15, 16]. A trait that has not been explained by single-gene analyses can safely be assumed
to require multiple interacting factors. Organ development is known to require many
genomic factors to proceed correctly [1]. Through natural selection, modern life has
developed redundant systems and safeguards against breakdown of genetic systems [17],
and modern research identifies redundant systems that have evolved to work around
deficiencies [18]. Research focus is shifting to networks of genes because many
biochemical pathways depend on one another, and some proteins fill multiple roles [19].
A phenotype may not manifest when a single gene is changed. This makes detecting the
genetic cause more difficult because a mutation seen in one gene may not wholly cause
the disease in any one subject’s particular genetic background [20]. The notion of
penetrance of a gene variant captures the probability carrying the mutation causes the
disease.

As illustrated by breast cancer, often a genetic mutation causes an increase in
probability of disease without directly influencing the visible trait 100% of the time [21].
Incomplete penetrance forces researchers to collect probabilistic results across ever-
increasing subject counts. Any mutation in an active gene can be assumed to have some
measurable effect on some biological systems. Observing the apparent reaction to a
mutation should reveal the activity of related systems [22]. To short-circuit the statistical
power problems present in human disease studies of single mutations, my work is directed
at biological pathways [23]. If a case/control analysis can be reframed as a perturbed
system reaction, then medical researchers can learn about impacted components of the

systems involved with the case/control contrast.



My work specifically is to facilitate the endeavors of biological research labs
mired in copious, complex, and incomplete gene expression data. Computational Sciences
must be brought to bear in an intelligent way to improve research efficiency.
Computational time efficiency is not the major factor preventing genetic discoveries:
biomedical research is in need of intelligently directed and data driven hypothesis
generating tools. Here I present how to merge disparate data types towards the
overarching goal of explaining systems that have been opaque to traditional research.

As example datasets, I focus on heart development. Congenital heart disease
(CHD) is just one of many examples of a situation that has not been solved by traditional
experimentation, but computer scientists could help with modern data mining and
processing techniques. Instead of directly assaying every genetic variation, I propose a
broad systematic search and refinement system that layers the knowledge we do have into
a coherent picture. Specifically, I have developed free and open source software that
automates the conversion of gene expression data from human samples into a perturbed-
systems overview, targeting the interpretation and knowledge extraction problems

inherent in low-sample-count studies.

1.2 Dissertation Qutline

In this dissertation I present 1) background studies motivating the methods, 2)
software for mining useful knowledge out of imperfect experimental data, and 3)
applications to published studies where systems-level results were sought. The
culmination of these three sections is a new method for determining altered systems in

complex experimental data as alluded to in Figure 1.1.



In this work three independent data types are brought together and two major tools
are developed. Application of the developed software herein highlights systems level
expression patterns in genomic datasets, with the objective of directing further research in
novel directions.

Starting on the leftmost column of Figure 1.1 are three major unique data types
accompanying genetic association analyses. “Structural Alteration” refers to the data
obtained by the analysis of large-scale genomic alterations, and serves as a solid
foundation for the idea that a set of genes can collectively be responsible for disease

phenotypes [24, 25].

Structural :
Alteration Gene
Regulatory
Network
Functional Multigenic
Annotation Hypotheses

Geneset
Enrichment and
Gene | Projection Displays
Expression :

Figure 1.1 Flowchart of Concepts Presented in this Dissertation. Blue boxes represent
data or information sources, red boxes are published knowledge-generating tools I and
collaborators have produced, with the overall goal is presented in the green box at right.
Arrows represent information flow, from primary sources in blue, through toolkits in red,
towards the goal in green.



“Functional Annotation” refers to the apriori domain specific knowledge obtained
from published studies. Primarily Gene Ontology [26], but also the Ingenuity Pathway
database [27] are used in my work to mark novel findings in the context of prior
information.

“Gene Expression” refers to data sets of mRNA abundance, or transcriptomes. A
transcriptome may be measured from any tissue sample or cell culture, and represents a
high-dimensional data type. The primary algorithm “Geneset Enrichment and Projection
Displays” is developed to help analyze and interpret transcriptomic datasets.

The upper red box, “Regulatory Network,” refers to a novel method and
application of identifying gene expression dependencies. In Chapter 2 I describe two
studies where we built a set of genes relevant for organ development, show their impact,
then build a network of putative gene-gene interactions and refine the interactions listing
to testable novel hypotheses.

The lower red box, “Geneset Enrichment and Projection Displays,” is a novel
algorithm developed herein (abbreviated GSEPD), specifically aiming to aid biological
research labs in interpreting their gene expression data. By automating best-practice
statistical analyses, then recombining data in a novel way, we can understand genetic-
pathway-based sample behavior. GSEPD is the focus of Chapter 3.

Both of these tools are brought together on the right of Figure 1.1 and in Chapter
4, where we explore specific case studies in both commercially available stem cells and
human CHD. I present how these tools shed more light on more complex situations than

was previously possible.



1.3 Motivation to Data Refinement

Observational sciences often work with uncontrolled variability with under-
specified hypotheses, and researchers demand computational support to find signal among
the noise. The scale of new measurement technologies in biology is overwhelming: a
quantitative measure is available associated to every one of the nearly four billion unique
locations within a person’s DNA. Because no researcher can review each and every
finding manually, computationally filtering and prioritizing results is key. If not
conducted carefully, genome-wide association analyses may inadvertently lead to errors,
biases and misunderstandings. Therefore a very high degree of certainty (such as p < 10)
is required and often no significant results are achieved [28].

When no single factor can be pinned as the global cause of a disease/trait, we need
to consider multi-factor hypotheses. Multi-factor association is susceptible to
combinatoric explosion [29] where the number of evaluated variables corresponds to the
dimensionality of the search space. For example, there are only twenty ways to choose one
gene from twenty genes, but there are 1,140 ways to choose three genes from twenty
genes. Acknowledging the unfeasibly large scope of searching for pairs or triples of genes
in the whole genome, my strategy is a heuristic search, using informed priors to boost the
success rate in a restricted relevant space.

One may move beyond the DNA to the next level: gene expression, where other
kinds of analysis can shed light on what is and is not relevant for whichever process being
studied. Recent advances in data acquisition technologies around genomics are starting to

shed light on unexplored biological systems, at unprecedented data volumes [30]. New



datasets and analysis methods have formed the field of bioinformatics, wherein computer
science meets biology. Modern high-performance computing resources are often required
to process and review the results of routine genomic analyses in timely fashion [31, 32].
The genomic approaches mentioned above are used routinely by teams of scientists and
healthcare providers, but improved methods are required to better discover knowledge

from the volume of data obtained.

1.3.1 Forward Development

Standard genetic analysis methods have focused on controllable experiments in
yeasts, mice, or simulation. Human developmental genetic analysis is ripe for
computational advancement. Human tissues studies in particular struggle with restricted
sample collection opportunities, and restricted experimental designs while supporting high
levels of complexity in data and outcome [33].

Low-dimensional outcomes are required for statistical power, but the
transcriptomic measurements are inherently high dimensional [34]. Recognizing the
multiple testing problem inherent in a high dimensional test, we turn to intelligently biased
strategies. Gene sets are the relevant determinant of physiological outcome [35], but
searching all possible sets for an association signal guarantees spurious results. Therefore I
propose searching restricted spaces with prior knowledge that certain genes are relevant to
the organ function [36], or certain gene tuples which are known to interact [37]. Instead of
reinventing the wheel, we can proceed from the state of the art by building on curated

knowledgebases available online [26, 38].
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1.3.2 Relevant Hypothesis Generation

Exploratory or observational studies are considered hypothesis-generating in that
they are not designed to test any precise statistical statement, but rather to give an
overview and direct more precise future studies. A genome-wide search can produce more
results than can be followed up on, so restricting the reported results to those with
likelihood of usability would be helpful. Regarding human disease studies, note that every
human sample has tens of thousands of unique mutations [39, 40], such that researchers
need guidance in the form of curated knowledgebases to sift through the results and find

the real cause of disease or tested condition.

1.4 Summary

Bioinformatics covers many disciplines: scaled at its smallest, protein atomic
structures, at its largest, writing the tree of life. I see the study of organ development as a
high dimensional physical system that is exciting to work with, and an opportunity to give
fruitful advances to medicine. The software rgsepd, (implementing the method GSEPD)
can help make discoveries in human tissues studies such as inborn disease, cancers, drug
treatments, stem cells, or trauma and healing situations.

Presently it is not exactly known how organs are formed, or why this process goes
wrong sometimes. Our best organ regeneration methods reanimate cellular skeletons with
reprogrammed cells [41]. The challenge lies in monitoring ever-smaller and more precious
subjects and the destructive measurement process. Only very recently has anyone
measured gene usage in time series for a gestational mammal’s heart [13], and we

subsequently conducted a study to see what kind of gene-gene causality inferences we



11

could make [7]. To assuage the great cost of bio-specimen acquisition, many studies are
designed around the bare minimum number of samples able to be obtained and processed.
The cost and sample size problems create a field of independent laboratories working over
complex data with simple tools. My goal is to create automatable intelligence to
accelerate knowledge discovery.

The goal of this dissertation is to highlight the biological research community’s
need for data analysis support, and show how computational sciences can help by
developing automated software tools. Primarily by integrating high-dimensional datasets, I
have produced a new analytical software to accelerate knowledge discovery in
transcriptomes. An overview of what follows in the remaining chapters is concisely
revisited below.

In Chapter 2 I reinforce the method of searching for clues in complementary data
types in both human and mouse. Chapter 2 explores two biological studies to set the
context and motivation of the GSEPD method. In one study, I quantified the genomes of
humans with and without congenital heart disease. That study of human genomes
solidifies the concept that some experimental conditions are necessarily uncontrolled
[25]. In the second study, I build a gene regulatory network from a time series gene
expression data set in mouse heart ventricle development. The gene regulatory network
study shows the importance of uniquely verifiable results as distinct from the bulk of
possible results [7]. These two studies’ result set overlap reveals a core of genetic effects
necessary for mammalian life, highlighting the utility of independent data types, and the
associated needs for computational analysis to integrate such data types, regardless of the

studied condition.
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In Chapter 3 I briefly review transcriptomics: the measuring and exploration of
the messenger transcripts responsible for gene usage. New technologies are revealing
more detail in transcriptomes (such as exon splicing probabilistic effects), and analytical
methods have fallen behind the needs of biomedical researchers. The standard method is
to compare samples in batches and collect a list of the dimensions with the most difference
between two classes, then to query the set of dimensions for meaning. This two-step
process of collecting genes and querying the set for biological implication is highly error
prone and does not use the full scope of information present in a gene expression data set.
I attempt to remedy these concerns by introducing a new software on Bioconductor named
rgsepd that performs GSEPD: a complete transcriptome analysis from raw sequencing
read counts through a novel bio-pathway perturbation detection. GSEPD is novel in that it
simplifies the workflow for a biomedical researcher by identifying segregating gene sets
between test conditions. I have published rgsepd as an open-source toolkit on
Bioconductor to let everyone access these automated knowledge discovery methods.

In Chapter 4 I describe two case studies, their original manual results with limited
functional findings, and systematic application of both GSEPD and another popular
functional analysis tool to highlight what further functional findings are possible with
data-driven tools. The first case study follows stem cell differentiation, tracking the steps
nature uses to generate pumping muscle cells. The second case study involves the CHD
cohort at the Children’s Hospital of Wisconsin and the genomic analyses that have been
performed to root out the cause of one type of CHD. In each case study three sets of
results are presented, 1) as originally published by the domain expert, 2) as possible with a

popular functional analysis tool, and 3) as possible with GSEPD.



In Chapter 5 I briefly summarize the findings from GSEPD for the application

above. Future directions of this avenue of research are identified.
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CHAPTER 2

BACKGROUND AND MOTIVATION: COMPLEMENTARY

DATASETS

This chapter covers two published studies where disparate data types that
complement one another were used to gather a more complete understanding of a shared
system. An analysis of the structural alterations in human genomes with known cardiac
status is paired with an analysis of gene regulatory networks in mouse cardiac
development. The findings of either study are particular to its context, and careful
computational integration is required to achieve efficient knowledge discovery [42]. The
term “complementary” is used to clarify that each study adds to the other synergistically in
information content. The two studies are incorporated here to highlight practical
challenges of data processing that guided the development of GSEPD.

The first study, CNV2012, is a study of genomes in CHD patients, resulting in a
set of associations between genes and congenital heart defects [25]. Gene associations are
moderately useful on their own, reproducing previous studies and evaluating a population
for its rate of genetic defect. CNV2012 is included here to show that human populations
carry large-scale genomic differences, so any tool development should account for this
sample-specific heterogeneity.

The second study, GRN2014, is where we built upon the gene associations from

CNV2012. Seeding from the association results in CNV2012, I built a regulatory gene



15

network in collaboration with The Mayo Clinic and Medical College of Wisconsin
Biotechnology and Bioengineering Center. We predicted a set of verifiable gene-gene
interactions found in gestational mouse heart. The predicted gene-gene interactions can
direct future experimentalists toward hypotheses that are more likely to be true than those
in a full genome-wide search. GRN2014 is included in this dissertation to show the
complexity possible in a field like mammalian organ development, and to reiterate the
need for the more intelligent data usage developed in Chapter 3, such as the usage of pre-

defined gene sets.

2.1 Candidate Gene Lists and Copy Number Variants

In 2012 we studied a population of healthy and sick children for their prevalence
of a class of mutation on a candidate gene list to demonstrate and confirm that class of
mutations is important in the development of the disease [25].

Candidate gene listing is a common method to trim the experimental scope such
that the new finding is almost guaranteed to have interpretable results [36]. A major
drawback of the candidate gene listing method is the limitation in the search space. A
study using a candidate gene list can only find results among genes on the list. Building on
established science increases the interpretability of new findings while decreasing the
ability to discovery truly new effects [43].

Most genome-wide analyses do not find significant associations [44] unless they
are restricted to a few dozen genes of relevance, such that the multiple testing correction

penalty is not as high [38, 45]. As statistical power is linked to subject counts,
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unrestricted searches require large numbers of independent samples [46, 47], which may
not be possible with rare diseases or limited budgets.

Even with nearly a thousand subjects, no significant association was found with a
genome-wide search. To narrow the scope, a candidate gene list was developed with
literature review. “The 100 gene list” of those known to be important for heart
development was compiled. Table 1 of [12] indicates 85 cited studies that were reviewed.
We were interested in a particular class of genetic aberration that had not yet been
thoroughly investigated, the copy number variant. A copy number variant, or CNV, is a
structural alteration which is difficult to detect by high throughput analyses [48, 49], so a
study had not been performed investigating their incidence among cardiac development
cases.

A CNV is a segment of the genome that is non-diploid. Where most of the human
genome is expected to have unique sequence, one copy from each parent, non-diploid
regions are those that somehow become single copy or 3 or more copies. This is a normal
mutational mode and a mechanism of evolution, but like most mutations, a CNV is most
often either silent or detrimental. Our study detected CNVs with a microarray technology,
described in more detail in the literature [25]. Further discussion of CNV detection
methods is outside the scope of this dissertation.

Point mutations that damage the gene are known from other instances [50] but are
difficult to assay in a large cohort. The CNV analysis was an affordable way to broadly
assay the whole genomes of the cohort. We used Affymetrix GenomeWide SNP 6.0

assays, with over one million probes each.
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After collection of samples, they were analyzed as a batch to account for platform
biases. CNV segments were called genome-wide and annotated by their underlying gene
impacts. The number of CNVs found in both a healthy population and a congenital heart
defect cohort are comparable. An interesting takeaway is that both cases and controls
show similar counts of CNV losses, the difference being which genes are impacted.
Affected individuals have nominally more gain segments, but even unaffected individuals

tend to have >5 segments, indicating some level of genomic instability is normal.

2.1.2 Six Subtypes Syndromic — Phenotypic Refinement

In the CN'V2012 study, there were 958 subjects with various forms of CHD. If all
958 shared a single causative genetic defect, it would be apparent. However, no single
factor was identified, and the implication is that the evidence is spread across several
different causes. To address the issue of multiple potential causes, the subjects were
labeled with 42 separate diagnoses by domain experts, which were regrouped into six
categories. The individual diagnoses are categories summarizing unique individual
variation by defined codes (specifically the EPCC 2011 coding scheme). The six
categories are “syndromic” in that they represent major named conditions. We
hypothesized the categories would show similar genetic burden profiles. We showed the
prevalence of various CNVs in various groupings of subjects.

There is reason to believe similar phenotypes have similar causes, i.e. heart valve
defects having shared genes. In biological genetics it is known that one or more genes are
responsible for various physical systems, and the genes’ perturbations yield various
related outcomes [51]. Continuity of causation is key to the belief that gene sets can

inform complex outcomes [36].
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A Fisher’s exact test identified 21 genes as significantly differentially impacted by
CNV among cases and controls. This re-verification of candidate genes cements their
importance as cardiac development products. Previous indications for each gene came
from varied platforms and study populations; no genome-wide analysis had been
performed.

A result of CNV2012 was the “spectra” or frequency sets of CNVs at each
analyzed gene. Figure 2.1 notes the rates of gain and loss in each as a frequency with
standard error bars and chromosomal location. The results indicate genes may be present
in multiple copies or deleted entirely in both sick and healthy individuals.

The major takeaways from the CNV study for us are the use of a literature-review
sourced candidate gene list as a technique, and that precisely phenotyped results are a key
to precision. Tables in the CNV manuscript list the genes identified by literature review,
as well as the CNV findings verifying their association.

The number of gene copies drives the amount of gene-product produced, and is
therefore referred to as a gene’s dosage. Higher or lower than normal dosage results in an
amplification or reduction in the available proteins, which may cause disease [52]. The
abnormal gene dosage may not always lead to disease, due to the body’s regulatory
systems that control gene expression [19]. These systems are referred to as “regulatory
networks” as proteins, genes, and DNA interact with each other to coordinate

development [1, 53].
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CNV Frequency By Region and Cohort

_| » CHOP cohort
3 ® CHD cohort t
3 = MFHS cohort
B 'S -
@ o
L
£
[+
S 3 |
o
ity SRE RN , ot by Y
| RRRR44 R X X A
2 3
[+
g
u': _ ++
&
§ g 5383’%2égﬁﬂeﬁgac”s%?;ﬁzgmésifﬁﬁa:zhaﬂﬁgii
TR P S R R R EEE R
1 = & =g 7. s P G 44 1546 17 $8 19 =20 24 ~—PP—

Gene/Region by Chromosome

Figure 2.1 CNV Frequency Spectra. Calculated incidence rates of CNV gains and losses
in three cohorts. In red, CHD cohort is the Children’s Hospital of Wisconsin congenital
heart disease group. In green, CHOP cohort is the Children’s Hospital of Philadelphia
healthy group and can be considered young controls. In blue, MFHS cohort is the
Milwaukee Family Heart Study healthy group and can be considered elderly controls.
Vertical error bars represent one standard error from the mean in the estimated sampling
distribution. For example, gains over gene FKBP6 (chr7, just left of center) occur in all
three cohorts, while losses of the same gene are only seen in the CHD cohort, implying a
loss could cause CHD. The red point near the top of the diagram shows an 8.5% rate of
copy number gains at gene RUNX/ in the CHD cohort, mostly indicative of Trisomy 21
patients.

2.2 The GRN2014 Study

The second example source of a complementary dataset comes from our GRN2014
study [7]. There we built and refined a model of the gene regulatory effects necessary to

construct a mammalian heart. That study constructed a regulatory network, and involves
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model organisms, small sample sizes, tissue specificity, time course dynamics, and
uncertainty. Our focus was on providing relevant verifiable results. The first step produced
millions of putative gene-gene regulatory interactions, which were later pared down to
those that are identifiable, testable, and likely. The result is a shortlist of actionable
insights. We estimated correctness via overlap to a gold standard in gene-gene interaction,

Ingenuity Pathway Analysis [54].

2.2.1 Mouse Heart Development Dataset

Thanks to a partnership with the Todd and Karen Wanek Foundation for
Hypoplastic Left Heart, in 2014 the Mitchell Lab at The Medical College of Wisconsin
was part of a data-sharing agreement with the Nelson Lab at Mayo Clinic. We had early
access to a unique dataset. Starting from a collection of mouse embryonic tissues in time-
course, we had access to the gene expression dynamics of the developing heart for the first
time [13].

A time series gene expression dataset is distinct from a case/control study in that
we have sequential measurements of transcriptome and a notion of causality. By
measuring the same organ’s transcriptome at various stages of development, we can see
gene expression evolve through the course of the experiment. We know that
transcriptomic analyses are sensitive to the cell type peculiarities, so measuring a heart as
it grows is key to learning about that process.

The process by which cells grow and divide is regulated by the chemicals present
within them [1, 55, 56]. A gene regulatory network (GRN) is a graphical representation of
the factors that activate or deactivate each other at the gene level. The network is a

graphical representation where genes correspond to vertices, and interactions are
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represented by edges. The GRN2014 study was an attempt to deduce the GRN of the
developing mouse heart by numerically exploring the dynamics and modeling

multidimensional differential equations [7, 57].

2.2.2 Method

Our analysis used a parallel computational technique to fit models to the data, and
report which genes seem like they could be regulators of other genes based solely on their
time course dynamics [57]. For example, gene A increasing one time step before gene B’s
rise is mild evidence for A driving B. This is known to be a hard problem computationally
because every gene may impact every other. A network (vertex graph) is created by
default with every possible edge present, and the edges can be evaluated for significant
coefficients. This is computationally intractable in a genome-wide sense, and with limited
data many possible network configurations are equivalently supported. Pre-supposing a
sparse network with effect propagation leads to a computational shortcut [58]. Each gene
is instead evaluated independently and repeatedly as in a random forest technique, and
only later overlaid as a probabilistic network. A ‘confidence’ threshold then filters the
network to a sparse collection of the most plausible configuration, by dropping edges that
occur with less than a specified frequency. For a detailed description of this method, see
the Supplemental Materials of [7, 57].

A major drawback with this method is that many genes may share a time course
profile. For example, any two genes that have the same expression dynamics could fill the
same role in the network. Although we named the nodes with their originating gene, the
software is agnostic to gene name metadata, and represents myriad potential connections.

Each node could represent many genes, and each edge represents the product of the node
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cardinalities [59]. We needed a way to prevent reporting high-multiplicity edges because
they represent gene-gene interactions with a low likelihood of reproducibility when the

gene products are physically tested.

2.2.3 Assaying A Gene Dynamics’ Uniqueness

To clarify which gene profiles are similar to one another, any distance metric can
be used, although which metric is the most appropriate is a difficult question in general.
The data set was a branching time course. Each gene was evaluated once for the first few
time points, and in two tissues (left and right ventricle) when the fetal development was
complete enough to differentiate them. The network was developed only on one heart
ventricle, but we know the genes to be differentiable using all data. The gene expression
unit of measurement here is an arbitrary product of the microarray technology, a relative
fluorescence score, which was normalized to (0-1) at each time point. The normalized (0-
1) scores at fifteen measurements produce a data point in a unit hypercube of R*15 as
shown in Figure 2.2.

To evaluate the expectation that many genes share a similar profile without
defining the similarity threshold, we used a clustering technique called the self organizing
map (SOM) [60]. The SOM algorithm performs clustering on a predefined topology. An
example of the SOM algorithm behavior on a 6x6 hexagonal grid is shown in Figure 2.2,
where all gene profiles are organized. The self organizing map is so-named because it
automatically places data points into identifiable clusters that are locally similar, thus
reducing the possibly high dimensional input vector to an element in the finite grid. The

SOM algorithm puts elements into a regular grid and iteratively moves each data point to
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the grid coordinate that best represents its properties. Thus a finer grid yields more

possible clusters with an enforced similarity within each grid cell.
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Figure 2.2 Example Self-Organizing Map (SOM) Schematic. A SOM of the
GRN2014’s mouse time series data is shown on a 6x6 hexagonal grid. The shading shows
the number of genes per cell. The canonical profile is drawn with a red curve within each
grid cell. Each circle represents a graph of gene expression profile over time, with the
vertical axis representing gene expression between 0 and 100%, and the horizontal
denoting the time-course. The cell fourth from the left on the bottom row shows a highly
populated cell, where more than seven hundred genes are initially turned off, then on, then
off again through the time-course.

After ten thousand iterations of randomly sized SOM grids, each gene was
clustered together with others at varying degrees of precision (grid resolution). Two
dimensional SOM grids were used with random numbers of rows and columns sampled
between 4 and 50. Two examples from the 10,000 clusterings are presented in Figure 2.3.

Resampling the SOM algorithm yields a similarity metric as a percentile of co-clustering
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agnostic to the originating R*15 space. Genes that co-clustered more than 80% of the
time are said to have the same profile, so similar that they might serve the same role in the
numerical network model (Supplemental Methods of [7]). An important caveat to a
numerical model is that any number of genes with equivalent input profiles can play the
same role in the final output network, and the numerical model cannot differentiation

between these genes.
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Figure 2.3 SOM Similarity Clustering. Two examples of different resolution SOM grids
on the mouse time series gene expression data. At left is a 4x4 grid of all genes, each
subplot consists of the time courses that are classified by the SOM into the corresponding
cell. The vertical axes are 0-100% expression, and all horizontal axes are time. The 4x4
grid is quite coarse and broadly overlays similar profiles. At right is a 12x12 SOM of the
same data clustered more finely.

To convert the collection of SOM-based clusterings to a single canonical cluster,
some threshold of co-occurrence is required. Ten example genes’ co-occurrence results
from the 80% and 90% thresholds are presented in Table 2.1, and the 80% level was

finally used as the threshold and definition for similarly expressing genes throughout the
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time course. Clusters with many genes co-occurring are going to have poor uniqueness
with respect to regulatory interaction predictions.

Each node in the network was expanded from one gene to N, encompassing all
similarly profiled genes. Each edge then truly represented N;*N, possible edges, where N;
is the number of genes with similar profile to the source node, and N, is the number of
genes with similar profile to the destination node. Due to the numeric nature of this

analysis, any genes with a shared expression profile were interchangeable in the network.

80% 80% 90% 90%
Cluster Cluster Cluster Cluster
GenelD | Name ID Size ID Size
11287 Pzp 1 27 1 27
11304 Abca4 2 11 2 3
11305 Abca2 3 104 3 39
11307 Abcgl 4 47 4 1
11352 Abl2 5 1 5 1
11363 Acadl 6 3 6 1
11364 Acadm 7 7 7 6
11370 Acadvl 8 65 8 14
11409 Acads 9 41 9 22
11419 Acen? 10 2 10 1

Table 2.1 Co-Occurrence Clustering Statistics. Top ten genes by ID number of a table
of all genes involved in the iterated SOM clustering scheme to identify unique profiles.
The 80% and 90% cutoffs show progressively more stringent clusters, for example the
second gene Abca4 is identified as Cluster#2 with 11 genes at the 80% threshold, but just
three genes at the 90% threshold. Regulatory network predictions involving Ab/2 can be
called unique to that gene, while regulatory network predictions involving Abca2 are

unlikely to be fruitful, with more than 100 other genes sharing its curve at the 80% similar
threshold.

Some of the originally proposed edges came to represent thousands of potential

configurations, decimating the interaction’s verifiability in future experiments. Therefore
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we only reported findings on edges with sufficient uniqueness. A z-score filtering step
culls low-uniqueness candidate interactions.

A functional annotation was used to evaluate whether predicted interactions
involve genes with known similar function. The functional overlap adds independent
evidence of the veracity of an interaction. Using the Gene Ontology to note which genes
in the network were known to perform which functions: each gene has a series of
annotations through the GO hierarchy. The leaf node in the GO hierarchy and the path to
the root in the GO hierarchy define a set of increasingly general annotations. All annotated
genes are annotated with the root node of the GO hierarchy. Any two genes’ paths through
the GO hierarchy have an intersection. The cardinality of the intersection is a measure of
the degree of known functional similarity between the two genes. We used the Jaccard
index to score the similarity of these annotation sets for every pair of genes. The Jaccard
index measures similarity between sets by measuring the cardinality of the intersection as
a fraction of the cardinality of the union. For example, the sets (A, B, C) and (C, D, E) has
Jaccard similarity 1/5 because they share one element from a universe of five. The score
was called the GO term overlap (GOTO).

The GOTO score was then used to prioritize gene-gene interactions with a higher-
than-zero apriori likelihood of biological relevance due to the genes’ GO annotations.
The GOTO score and the uniqueness z-score were scaled and a weighted average was
used as a “Fidelity” score. The weights were determined by evaluation against a gold-
standard database of gene-gene interactions [7].

The available gold standard is a commercial database mentioned above, Ingenuity

Pathway Analysis. Ingenuity Pathway Analysis is a curated online resource identifying
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edges of its graph via text mining and manual review [54, 61]. For each gene in the study
we downloaded the participating interactions from Ingenuity Pathway Analysis and
screened them for our predicted hits. The details of this analysis are in [7], and by
recapitulating known gene-gene interactions, the putative interactions are granted higher
confidence. GRN2014’s result is a table of newly proposed gene-gene regulatory
interactions that take place in the developing heart, filtered to biological relevance and
uniqueness (excerpted here as Table 2.2). The interactions become pairs of genes for the
multi-hit hypothesis of disease etiology. Pairs of genes now strongly believed to be
working together on cardiac development and they constitute a resource for knowing

which genes are more likely to cause CHD.

Source Verb Target IPA
Myom1 activates Myom2 No
Hbb-bhl activates Hbb-y Yes
Hbb-bhl activates Hba-x Yes
Hba-al/2 activates Hbb-b2 Yes
Foxa3 activates Nréal No
Foxa3 activates Foxal Yes
Lama3 inhibits Lama4 No
Sox7 activates Flil No
Sox18 activates Sox7 No

Table 2.2 Predicted Gene-Gene Interactions. Results from GRN2014 Table 1 indicating
the highest fidelity gene-gene interaction predictions [7]. Column IPA notes whether the
gene pair was found in the Ingenuity Pathway Analysis search.
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2.4 Summary

The state of the art in human gene association studies involves a literature review
of the condition of interest to generate a list of possibly important genes, creating a
candidate gene list. The list could be evaluated for altered dosage (CNV) in
developmental patients. The confirmed genes are re-evaluated in a different context, in
this case a mouse-based gene network study performed with several outside collaborating
laboratories.

The results from the GRN2014 study combined with the CNV2012 give
complementary views on heart development. For example, in Figure 2.1 we see a small
percentage of CHD patients carry CNVs (of both gain and loss types) at the gene SOX7.
Table 2.2 reports the top ten interactions ranked by fidelity. Sox7 is indicated twice, as an
activator of F/il and downstream of Sox/8. SOX7 is known to be important for heart
development but its function was unclear [62]. FLII is known to be important for tissue
development in a general sense: it has been associated with sarcomas and leukemias [63].
Bringing these two studies together yields novel approaches to heart development
research. Many other refined predictions are available, due to the methodology of
integrating complementary datasets.

The techniques shown in GRN2014 could be applied to other data types.
Whenever a systems analysis produces a list of putative findings, it is helpful to provide a
fidelity ranking so other researchers may pursue only the best results. Computational
systems biology studies may report thousands or millions of hypothetical findings [64,

65], but the results can be difficult to integrate with low-throughput experimental
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techniques. When presented with many putative results researchers may be more likely to
follow up hypotheses that are easier to confirm [66], inflicting undue bias to further
research paths. In the GRN study we specifically addressed these issues by measuring
how verifiable and how apriori-likely each reportable finding is.

Using completely separate experimental protocols, it is possible to refine a view on
a core subject. The methods of combining data from these two sources (each of which also
draws upon other databases) culminate in a reliable picture of cardiac development, not
possible by previous simpler analyses. Cardiac development is just one example of a
system where sample collection is difficult, and new data analysis methods are needed.
The CNV2012 study serves to highlight how differences between individuals are
unavoidable in human tissues analyses, emphasizing the need for better tools. The
GRN2014 study serves to highlight how automated searches in a large space often
produce too many results to follow up on, and emphasizes the need to collapse results
along apriori biologically defined gene sets. Chapter 3 introduces the software rgsepd,
using these two principles to facilitate systems-level analyses when the data available has

more measurement dimensions than samples available.
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CHAPTER 3

TRANSCRIPTOMICS AND THE GSEPD

Often considered a synonym to transcriptomics is the exploration of the
“transcriptome” or the genome of transcripts. A transcript is a gene isoform messenger
RNA, or one particular blueprint for a protein. Almost every gene produces several forms
of protein through a process called alternative splicing: therefore the transcriptome is
larger than the genome. Alternative splicing is a common feature of higher organisms that
boosts the complexity possible from the genome [67]. A single genome can produce
myriad tissue-types in different contexts, and therefore transcript-level analyses are vital
to the understanding of genetic diseases. In this chapter I explain some techniques popular
in exploring the human tissue transcriptome, and present a new software algorithm
Geneset Enrichment and Projection Displays (GSEPD) designed to facilitate the extraction

of important features from a transcriptomic data set.

3.1 Introduction

Why is the transcriptome important? A common belief is that the genome defines
the species, but the complexity of various tissue types is reliant on various levels of gene
usage at various times. The transcriptome is the set of all transcripts for an organism, and
the word is used synonymously with a numerical measure of gene usage: for each gene
and in each location. It is a spatio-temporal me