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Introduction

This doctoral thesis consists of three independent papers in financial mathe-
matics.

Paper 1: Optimal investment and consumption under partial infor-
mation

We present a unified approach for partial information optimal investment and
consumption problems in a general non-Markovian Itô process market. The
main assumption is that volatility is a nonanticipative functional of the as-
set price trajectory. The local mean rate of return process and the Wiener
process cannot be observed by the agent, whereas the asset price volatility,
the stochastic interest rate and the asset prices can be observed. The mar-
ket is shown to be complete in the sense that any contingent claim adapted
to the observable filtration generated by the asset prices can be replicated.
Utility functions are general. We tackle this stochastic optimal control prob-
lem under partial information in two steps. First, we solve the corresponding
full information problem. The market is shown to be complete using a non-
standard martingale representation result, for which we need the volatility to
be a nonanticipative functional. We then use the martingale approach to study
the optimal investment and consumption problem. We characterize the agent’s
optimal consumption process and optimal portfolio weights process, as well as
the resulting value function and wealth process. We also study some common
utility function specifications and relate the solutions to the price processes of
certain financial derivatives. Second, we translate the original partial infor-
mation problem into a corresponding full information problem using filtering
theory. Using the solutions of the full information problem, we then derive so-
lutions to the original partial information problem. The main contribution of
the paper is the unified approach for partial information optimal investment
and consumption problems in complete non-Markovian Itô process markets
with stochastic interest rate and stochastic volatility.



2 Introduction

Paper 2: Option pricing under jump-diffusion dynamics for asset
prices and interest rates

In this paper we study option pricing when stock prices and an instantaneous
forward rate curve, with a corresponding continuum of bonds, follow certain
jump-diffusions with random jump sizes. Given specifications of these pro-
cesses, we derive reasonably explicit formulas for the price and the Greeks of
a specific derivative payoff. The payoff of the derivative may depend on two
assets which can be either bonds or stocks. We show that many of the option
payoffs studied in the literature can be represented as linear combinations of
our derivative payoff and hence our pricing formula can be used to price these
options. Examples of such options are the European call, put, min, max, ex-
change and digital options on either stocks or bonds. The main contribution
of the paper is to provide a reasonably explicit pricing formula for the above
mentioned options in a setting where both the price of the underlying asset
and the instantaneous forward rate curve follow jump-diffusions with random
jump sizes.

Paper 3: The end of the month option and other embedded options
in futures contracts

The end of the month option allows the holder of the short end of a futures
contract to deliver the underlying at any time during the last week of the con-
tract period at a fixed price determined at the start of the last week. We derive
a formula for this price within a general and incomplete market framework.
An approximation method to calculate this price and some special cases in
which explicit solutions for the price exist are also presented. We also study
the futures price process of a futures contract with a quality option that first
has no option active, then it has an active timing option and lastly it has an
active end of the month option. This is the natural setup for embedded options
in futures contracts. We show that the futures price process in our setting is
dominated by a standard futures price process with maturity at the time of the
activation of the end of the month option. Moreover, we show that the futures
price process during the time when the timing option is active coincides with
the futures price process of a certain other futures contract that only has a
timing option. The main contribution of the paper is to properly define the
end of the month option and to derive the futures price process of a futures
contract with the combination of options described above.


