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ABSTRACT

MARKOV CHAIN MODELING OF ECG-GATED LIVE LEFT

ATRIAL FLUOROSCOPY VARIABILITY TO ESTABLISH

A WELL-DEFINED BASIS FOR RIGID

REGISTRATION TO A

3D CT IMAGE.

Shivani Ratnakumar, B.A., M.S.

Marquette University, 2008

Real-time 2-dimensional X-ray to acquired 3-dimensional computed tomog-

raphy (CT) image registration is currently of interest for improving visualization in

the fluoroscopy guided catheter ablation treatment of atrial fibrillation. An impor-

tant feature of this registration is 3d pose estimation of the left atrium from the 2d

fluoroscopy image prior to registration. Computational complexity constraints on this

real-time application limit registration to rigid methods. Aimed at satisfying the rigid-

ity assumption, ECG gating is employed to acquire images at fixed phases of the car-

diac cycle to circumvent the otherwise continuous elastic deformations of the cardiac

chamber. Observations of the ECG gated fluoroscopy sequences, however, yield dy-

namic variability in the location of registration landmark features across the image se-

quences. There is currently no protocol for identifying which gated fluoroscopy frame

to use in the rigid registration to the CT image. As such, the registration process is

not sufficiently well-defined to address the issue of 3d pose estimation. A standard

protocol for establishing a well-defined registration representative from the fluoroscopy

images is therefore desired. This thesis presents a novel Markov chain method as such

a protocol. In this method, patient specific Markov chains are identified from patient

data. Empirical transition matrices and the associated unique limit distributions are

defined and used to identify a set of registration points. The method was tested on

sequences of patient ECG gated left atrial fluoroscopes. A notion of optimality in a

set of representative registration points is defined and optimality measures designed to

quantify these components were computed and compared to points identified by two
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control methods. The results indicated that the MC identified representative points

converged rapidly to a stable set once a threshold level of input sequence length was

reached. Comparison with the control methods indicated that the MC method was an

improvement in each of the optimality measures over the existing random approach.

Additionally, the MC method showed optimal stability over the other methods with

respect to longer data sequences. This has positive implications for the ablation pro-

cedure that follows registration. The well-defined registration representatives form

a rigid basis for addressing the challenge of 3d pose estimation from the fluoroscopy

images. This is discussed in the context of ongoing and future work.
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Chapter 1

Introduction

1.1 Overview of Problem

Medical image registration is the alignment and superimposition of at least two dif-

ferentially acquired medical images of a single anatomical region. One image is chosen

as a reference, while the other is geometrically manipulated to match its size and ori-

entation. Registration is achieved when the manipulated image is superimposed onto

the reference. This creates a single fused image which contains all the visual informa-

tion provided by the individual component images. The registered images can either

be from a single imaging modality or from different ones depending on the goal of

registration and the available images.

Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United

States. During AF, the atria of the heart experience episodes of rapid, but weak

heartbeats. One of the causes of AF is believed to be errant electrical impulses orig-

inating in the left atrium (LA) and pulmonary vein (PV) regions. Of interest in this

thesis is the treatment of AF by ablating the region around the PVs to electrically

isolate them from the LA. Ablation is performed by applying a radio frequency cur-

rent to the targeted sites through an ablation catheter placed in the LA. The ablation

catheter is navigated to the target sites by a cardiologist whose main visual guide is

a live X-ray feed showing the location of the catheter but no other structural detail.

The success of the treatment depends largely on accurate ablation. Inaccurate abla-
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tion could result in a recurrence of the arrhythmia. Stenosis of the pulmonary veins is

another potential consequence of inaccuracy, with high costs to patient health.

There are increasing trends in morbidity and co-morbidity of AF which are asso-

ciated with increasing costs to patient health and to health care. Consequently, there

is growing interest in developing improved treatment techniques. This thesis centers

on an effort to use the registration of live X-ray images to an acquired 3d CT of the

left atrium to improve visualization for catheter navigation. The single view contain-

ing both 3d structural detail and real-time ablation catheter location information

improves visualization for the cardiologist. This has the potential to improve accu-

racy and speed in the ablation procedure. These benefits, however, are dependent on

accurate alignment of the X-ray and 3d CT-derived images. Unfortunately, in the con-

text of this application, accuracy has been difficult to establish. The complexity of the

structure and movement exhibited by the cardiac chamber distinguish this registration

problem from other medical image registration problems. Additionally, the real-time

constraints of the application require an assumption of rigidity on a non-rigid anatom-

ical region, with unique implications.

Registration accuracy is dependent on the alignment of regions of interest, or

target regions, in the component images. It is generally the case in medical image reg-

istration that the target region is not discernible in all the images involved. As such

it is not uncommon that indirect measures be used to form an estimate of registra-

tion accuracy. In some cases this is a well studied and understood problem. However,

those cases involve more rigid anatomical regions where the alignment of target re-

gions can be correlated to the alignment of other discernible features. In the registra-

tion of CT and X-ray cardiac images, the difficulty in evaluating registration results

stems from the lack of discernible features in the X-ray image. Further, the amount

and complexity of elastic movement experienced by the heart makes it difficult to

apply the known methods of error estimation. Electrocardiogram (ECG) gating is em-

ployed with the aim of satisfying the rigidity assumption on the application. However,

as will be discussed, visible variability in ECG-gated fluoroscopes of the LA indicate

that ECG-gating is insufficient to completely circumvent cardiac motion. Addressing
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this insufficiency is the central part of this thesis. Additionally, this registration is 3d

to 2d. Interdimensional registrations require an estimate of the 3d orientation of the

imaged region in the 2d projection image. This is known as 3d pose estimation and

must be conducted prior to registration. This difficulty in performing a pose estima-

tion from a 2d cardiac fluoroscopy image is compounded by the variability witnessed

in the ECG-gated images.

The uniqueness of this CT to live fluoroscopy registration and the considerations

required due to the complexity of cardiac structure and dynamics necessitate a novel

approach to ascertaining registration accuracy. The following section presents the

current status of 3d to 2d and cardiac image registration, leading up to a statement of

the thesis in Section 1.3

1.2 Present Status of Problem

Cardiac image registration has received increasing amounts of attention over the last

decade. Cardiac imaging systems are now common place and registration is often

invoked to optimize the information contained in the images. Left atrium (LA) im-

age registration, as a navigational tool in the surgical treatment of atrial fibrillation

(AF), is the specific area of interest in this thesis. It is believed to have the potential

to improve accuracy and reduce procedural time in this minimally invasive (in the

context of surgical treatment of AF) treatment. Numerous recent studies identify an

increasing incidence of AF, and its associated health and monetary costs.[105][135][37]

This has led to active interest in improving treatment tools and techniques and there

are currently numerous groups working on various types of LA image registration

applications.[25][26][58][60][91][114][119] Given the sensitive nature of the ablation

process, accuracy in ablating is essential, placing demands on the accuracy of the

registration applications. Thus far, however, error analysis of LA image registration

has not received much attention. This thesis will address issues surrounding error

analysis in 2d to 3d LA image registration. The discussion of the problem’s present

status herein, thus, spans a few areas of medical image registration and the advances
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that have shaped the current problem.

Image registration has been successfully employed in such fields as neurosurgery

and oncology as an aid in diagnostics and treatment planning and execution. The

technique is fairly common in these and other medical fields, and is currently used

with confidence. The fields that have seen the most success with the clinical use of

image registration are all ones in which rigorous validation studies have been carried

out. These fields involve anatomical regions whose geometry and function are compar-

atively easiest to characterize. This is because these situations allow the generation

of realistic simulated data (whether based on computer simulation, phantom data or

image database information) with which rigorous in vitro tests can be conducted. It

is the in vitro tests that generally form the gold standards against which registra-

tion methods are measured before being clinically tested. Gold standards provide a

benchmark for evaluating novel registration techniques. In the case of cardiac image

registration, however, the complex anatomy and mechanics of the heart are difficult to

characterize. In vitro testing of registration methods has been limited to techniques

such as using static phantoms, yielding results that have not captured the essence of

the problem. In these cases, it is often acknowledged in the discussion that observed

accuracy levels may be reduced in a clinical setting due to movements.

The majority of registration applications and subsequent validation studies ad-

dress 2d to 2d or 3d to 3d problems. These are well-studied in the non-cardiac con-

text, and registration evaluation techniques, such as Holton et al’s, 1995, validation

paradigm for 3d to 3d image registration[46], are easily found. When images of dif-

ferent dimensionality are registered, one of the image spaces has to be shifted to that

of the other, either at a loss or gain of one dimension. This adds an additional source

of error to the registration process, and requires special consideration in validation

studies. Numerous gains have been made in recent years, to improve inter-dimensional

registration problems, and in 2005 a standardized evaluation methodology for 2d to 3d

registration[131] was proposed and is currently in use. This method, however, evalu-

ates the registration software, independently of the anatomical region being imaged.

As such, it provides a current gold standard by which to evaluate 2d to 3d registra-
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tion algorithms. Certainly, the standardized evaluation would help in evaluating the

technical soundness of a 3d to 2d cardiac image registration method, but would still

not address the complexities that arise from the nature of the imaged cardiac chamber

itself.

3d to 2d registrations applications arise primarily where there is a need to incor-

porate structural or functional detail with a real-time image. In these applications,

3d pose estimation is an integral and well-studied component. The 3d pose, or orien-

tation, of the object represented in the 2d image has to be estimated in order for an

alignment of the two image spaces. Two standard ways in which pose estimation is

approached are bi-plane fluoroscopy and ray casting.[9][26][142] Bi-plane fluoroscopy

creates two orthogonal projections of the anatomical region and aims to use the com-

bined projected information to reconstruct the object’s 3d position. Ray casting mim-

ics the action of an X-ray projection on a 3d image data set, creating 2d associated

datasets for each projection. The 3d volume is incrementally rotated and projected

datasets are recomputed and compared to the 2d image. The process is repeated un-

til a pre-determined degree of similarity is achieved between a projected dataset and

the 2d image, thus identifying the 3d orientation of the imaged object. Both of these

methods are computationally complex, however.

The field of cardiac image registration for intra-procedural navigation is new and

fast growing. While the literature clearly acknowledges validation as a vital step in

any registration effort, this aspect of the problem has not been the focus of attention.

The majority of effort has been placed in developing methods for registering cardiac

images, based on ideas developed in other fields of medical image registration. These

methods utilize the latest technical advances found in other fields and the latest car-

diac image acquisition processes to best suit the rigid registration implementation.

However, there is little discussion in the literature about methods of appropriately

testing these registration methods. Most of the LA registration validation work that

has been done involves clinical trials in which accuracy is difficult to establish. Recur-

rence rates and the incidence of pulmonary vein (PV) stenosis, a consequence of inac-

curate ablation, are the main means by which accuracy is currently discussed in the
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context of AF ablation treatment. As discussed in a 2005 Circulation editorial[127],

one of the current questions is how to better measure accuracy in the use of registra-

tion for cardiac interventional purposes since there is no leading theory found in the

literature. Figures 5.1 and 5.2 in Chapter 5 show the 2d fluoroscopy image and 3d CT

rendering that are to be registered for the purpose of catheter navigation for ablation

treatment of AF.

A limiting factor in LA registration for catheter ablation treatment is that reg-

istration has to be conducted in real-time, while the patient is in the operating suite.

This places restrictions on the amount of computational complexity involved in the

registration. What would ideally be a non-rigid, elastic, registration of images, in

which allowance is made for the soft-tissue deformations observed in the heart, has

to be simplified to a rigid registration.[116] In rigid registration, the imaged objects

are assumed to be rigid structures whose orientations can be aligned by a sequence

of scaling, translation and rotation. Rigid registration problems have a small, finite,

number of parameters to be determined, which allow them to be solved quickly.[40][43]

In non-rigid registration, the extra deformations allowed between images add a sig-

nificant number of parameters to the registration problem. Thus, although non-rigid

methods would be ideal for cardiac image registration, the time constraints on intra-

procedural registration require the use of rigid methods. Truly rigid body registration

problems are well-understood - indeed, in 1998 Fitzpatrick[32] developed a closed form

estimate of error in certain types of rigid body registration. Simplifying assumptions

of rigidity have been used in registration methods which involve other anatomical

regions, since no part of the human body is truly rigid.08[59][75][94] However, the

known methods of error estimates are not expected to apply with complete accuracy

in these cases, since the objects are not truly rigid. Validation in these situations has

also proven to be challenging, with a number of studies relying on animal experiments

and external skin markers.[68][75][90][91][114][117] The degree of non-rigidity of the

cardiac chamber, and its almost (but not exactly) periodic beating mean that care-

ful measures have to be taken in order to make the assumption of rigidity. ECG- and

respiration-gated image acquisition are the main measures currently looked upon to
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