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Abstract	

In this paper, we zoom in on the points of contact between the two materials in 

order to truly understand the surface-to-surface interface. We choose aluminum oxide 

(Ruby/Sapphire) spheres and polydimethylsiloxane (PDMS) discs to investigate the 

variability of real adhesive contact. An in-situ optical tribometer is built and 

implemented for use in obtaining forces of adhesion between PDMS and Ruby and 

comparing against the Johnson-Kendall-Roberts (JKR) contact model.  Adhesion 

hysteresis is explored and compared to results found in the literature. High resolution 

in-situ imagery is coupled with custom data acquisition software to examine the 

relationship of contact area to applied force, loading rate, dwell time, and unloading 

rate. Contact area and pull-off force are shown to be dependent on applied force, dwell 

time, and unloading rate, while loading rate shows no major effect. Newton Rings in 

captured in-situ contact images are used to create three-dimensional models and height 

maps of the tensile region. This method provides accurate representations of surface 

and bulk behavior in a variety of contact conditions. A tensile zone is found at the 

edge of contact for all testing scenarios.  
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A. Introduction	

Tribology has been important to the engineering of practically everything since 

the dawn of civilization and continues to dominate discussions about efficiency in 

modern mechanical systems.  Overcoming the force of friction was just as important 

those dragging stones into place for the pyramids in Egypt as it is to lubrication 

engineers today.  In Egypt, wooden sliding sledges piled with stone were dragged 

across wetted wooden planks to create the Statue of Tehuti-Hetep in 1880 B.C., and in 

16th century China, sledge pullers took advantage of icy roads instead of wooden 

planks in order to transport stone to the construction of the Forbidden City[1]. These 

ancient builders may not have known the science behind their useful pulling 

techniques, but their makeshift engineering has grown into an essential field of 

science. 

Today, we apply lubrications for basically all moving parts, whether they are 

solid lubricants or liquid ones. The application, effectiveness, and improvement of 

these lubricants, as well as their elimination in favor of low friction parts, is the result 

of Materials Tribology. It is common knowledge that friction wears down materials 

and can cause problems in mechanical systems, yet this awareness is just a taste of the 

field of contact mechanics.  

Apart from Tribological applications, understanding contact mechanics is 

vitally important to science in general, industry, and everyday life. Learning the 

mechanics of soft matter is subsumed within a desire for understanding soft matter in 

general. In such a case, we provide opportunities to create materials with improved 

characteristics while also reducing our reliance on harvesting natural polymers. 
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Thanks to polymer research, the Rubber Manufacturers Association estimates that 

approximates 70% of all rubber used in manufacturing now is synthetic. Synthetic soft 

matter is particularly important for its application to bioengineering and 

medicine[2][3]. For example, soft polymers can resemble natural materials and are 

often used in their place. Biomedical objects like plastic implants and tissue scaffolds 

have been used for years to improve people’s lives[4], and now they’re being 3d 

printed to provide quick, custom parts to surgeons[5].  

In this paper, we consider the contact mechanics of soft matter, particularly 

adhesion. Contact behavior of soft polymers and contact mechanics in general have 

been widely studied because of applications in numerous engineering fields. In 

industry, we see these polymers used in products like tires, brakes, paints, lubricants, 

foams, films and more. In these cases, the contact between the material and another 

substrate is especially important to its function.  In nature and biology, contact 

mechanics plays a part on a microscopic scale, particularly with soft matter. The 

movement of small particles, organisms, and cells is often dominated by adhesion 

forces[6][7].  
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A.1	Adhesion	

This study looks at adhesion that occurs because of van der Waals forces 

present between two materials.  This dispersive adhesion is often observed 

macroscopically in liquids, where intimate contact between the liquid and a surface 

can be produced[8]. For example, rain droplets will follow along a wall and continue 

under a ledge, sticking to the underside of a window or gutter due to adhesive forces 

between the water molecules and the surface. This same principle of adhesion is 

present in all surface interactions, including those between two hard materials. The 

reason we don’t see every days items adhering to each other like water on a window is 

because, with solids, the real contact area between surfaces is a small fraction of the 

apparent contact area[9]. In order to witness strong adhesions, the surfaces must be in 

intimate contact. The adhesive force is significant, but its effective range is short, and 

solids often have rough surfaces that prevent intimate contact[10]. In other words, the 

adhesive force is opposed by the elastic restoring force of the deforming materials[11].  

When the elastic force is high, as it is with solids, the adhesive force is less noticeable. 

Solid surfaces have an associated roughness that can prevent the intimate 

contact needed for noticeable adhesion. The tips of asperities present on two surfaces 

are the first areas to come into contact. If the materials have a high modulus (i.e. very 

stiff), then the asperities experience minimal deformation upon loading, preventing the 

rest of the surface from reaching a sufficiently close distance to form contact. In lower 

modulus materials however, asperities can be deformed more easily. As such, the 

surfaces of two materials can more easily form intimate contact as asperities deform to 

a height that permits adhesive attraction.  
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The large deformation available to soft materials is what makes them useful for 

gripping. Of course, there is more involved, but the increased area of real contact is 

central to this capability as large areas of adhesive contact are needed for gripping. 

Geckos make use of this phenomenon to walk along vertical and upside down 

surfaces. The contact area between their feet and these surfaces is made incredibly 

large by the bristle-like Seta lining their toes, adhering the gecko to smooth and rough 

surfaces alike[12]. The adherence is so strong that it can both counteract the force of 

gravity perpendicular to the adhesive force if the gecko is upside down. Such intimate 

contact is possible with clean, smooth, soft matter. Functionally, intimate contact is 

required in seals, O-rings, and other places where the proper adherence of a material to 

its enclosure is necessary to prevent leaks or separation. 

There is also a desire to understand what happens to surface interactions as the 

mass of interacting objects shrinks in order to keep up with the miniaturization of 

modern technology. Though it is always present, adhesion effects are more substantial 

as the surface area to volume ratio of components gets larger.  This leads to more 

microscopic tribological interactions that can cause unforeseen effects[13].  To 

mitigate unexpected failures, it is necessary to confirm the predictions of contact 

models with experimentation. 

The forces responsible for adhesion play a huge part in surface 

characterizations, lithography, and various other applications of Atomic Force 

Microscopy (AFM)[14][15][16].  This technique uses a very small probe, with a tip 

radius on the order of nanometers, to scan a surface for topographical data. The 

cantilevered tip is dragged along, tapped across, or floated above the surface to collect 
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information on its height. In tapping and non-contact modes, the cantilever oscillates 

at a known frequency and with a known height. Van der Waals forces pull on the 

probe as it nears the surface, affecting the amplitude and frequency of oscillation and 

providing information about topography. In this case, a better understanding of 

adhesive forces leads to better AFM techniques and more accurate data. 

 

A.2	Standard	Models	of	Contact		

The following contact models are early, simple models that are often still used 

in contact research today, including as a baseline for comparison with new methods of 

data acquisition or theoretical calculations. 

A.2.a	Hertz	

Modern theories of contact mechanics are rooted in Ueber die Beruehrung 

elastischer Koerper (On Contact between Elastic Bodies) by Heinrich Hertz. This 

paper, published in 1882, outlined the first major understanding of contact area and 

has been built upon continuously to develop more accurate models[17][18]. Hertz 

defined a circular contact area of radius 𝑎"#$%&  between a spherical indenter and 

sample.  

𝑎"#$%&' =
𝑃𝑅
𝐾 	 1  

 

where P is the load, R is the equivalent radius, and K is the equivalent elastic modulus. 

𝑅 =
𝑅.𝑅/
𝑅. + 𝑅/

	 2  
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where 𝑅.&	𝑅/ are the radii of the spheres. Given the contact is between a sphere and a 

flat surface, we treat the flat surface radius to be ∞ and so R is equal to the radius of 

the single sphere. 

𝐾 =
4
3
1 − 𝜈./

𝐸.
+
1 − 𝜈//

𝐸/

9.

3  

 

where 𝐸.&	𝐸/  is the elastic modulus for the indenter and sample and 𝜈.&	𝜈/  is 

Poisson’s ratio for the indenter and sample.  

Distant points within each sphere will travel towards each other upon loading. 

The change in the distance between them is defined as 𝛿. 

𝛿' =
9
16𝜋

/ 𝑘. + 𝑘/ / 𝑅. + 𝑅/
𝑅.𝑅/

𝑃?/	 4  

 Hertz verified this theory by viewing the contact of glass spheres with an 

optical microscope.  Hertzian Contact mechanics, as it is now called, is succeeded by 

models that found errors with its calculations. For example, at low or zero loads, the 

predicted contact area is much smaller than the observed contact area. This is due, in 

part, to adhesive forces present in the interaction.  

 

A.2.b	JKR	

In their paper Surface Energy and the Contact of Elastic Solids, Johnson, 

Kendall, and Roberts(JKR) explore the role of surface energy in contact area[17]. 
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They reference earlier studies, including some of their own, that find the contact area 

of loaded spheres does not match that of the calculated contact area proposed by 

Hertz[19]. Their work adds the adhesive force, based on surface energy, into the 

contact area equation. This addition makes sense of the inconsistencies within the 

Hertz Model. 

Every surface has an associated surface energy.  This surface energy is a 

product of the forces present in the creation of the surface. Separation of two bodies 

requires work to overcome the adhesive forces present between the bodies. The energy 

required to create the new surface is the free surface energy(𝛾) and is defined as: 

𝛾 =
𝑈D
𝜋𝑎?/

5  

where 𝑈D is the surface energy lost in separation and the denominator represents the 

area of contact before separation. Then, the work of adhesion 𝛥𝛾, is defined: 

𝛥𝛾 = 𝛾. + 𝛾/ − 𝛾./ 6  

where 𝛾. and 𝛾/ are the free surface energies for each body and 𝛾./ is the interfacial 

free energy.  This new term is used in defining the contact area. The radius of a 

circular contact area is defined: 

𝑎GHI' =
𝑅
𝐾 𝑃 + 3𝜋𝛥𝛾𝑅 + 6𝜋𝛥𝛾𝑅𝑃 + 3𝜋𝛥𝛾𝑅 /

.
/ 7  

where P is the load, R is the equivalent radius, and K is the equivalent elastic modulus. 

𝑅 =
𝑅.𝑅/
𝑅. + 𝑅/

8  

𝐾 =
4
3
1 − 𝜈./

𝐸.
+
1 − 𝜈//

𝐸/

9.

9  



 
 

 

9 

Notice that given 𝛥𝛾 = 0, the JKR model reverts to the Hertz model. 

The load/pull-off force at 𝑎GHI = 0 is: 

𝑃MN GHI = −
3
2𝜋𝛥𝛾𝑅 10  

 

It is important to notice, as pointed out within the work, that the pull-off force is 

independent of elastic modulus and so must be the adhesive force. It is also noted that 

the radius of contact at zero load is nonzero, as seen in experimentation: 

𝑎GHI' =
6𝜋𝛥𝑅/

𝐾

.
'

11  

 

A.2.c	DMT	

At around the same time as JKR, another trio of scientists developed a theory 

of contact that takes into account the attractive forces present in non-contact 

regions[20]. Derjaguin, Muller, and Toporov(DMT) penned a paper partially in reply 

to JKR alleging a different approach was necessary.  In reference to JKR, 

Dahneke[21], and work done by Bradley on cohesion of smoke particles[22], DMT 

stated that the current work, particularly Dahneke’s work, ignored the effects of 

deformation and many other things and thus was “grossly erroneous”.  After 

considering these other influences, DMT gives contact radius(𝑎) as 

𝑎OPQ' =
𝑅
𝐾 𝑃 + 2𝜋𝛥𝛾𝑅 12  

where P is the load, R is the equivalent radius, and K is the equivalent elastic modulus. 
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𝑅 =
𝑅.𝑅/
𝑅. + 𝑅/

13  

𝐾 =
4
3
1 − 𝜈./

𝐸.
+
1 − 𝜈//

𝐸/

9.

14  

 

The load/pull-off force at 𝑎OPQ = 0 is  

𝑃MN OPQ = −2𝜋𝛥𝛾𝑅 15  

 

Here, we notice that the pull-off forces for JKR and DMT theories are similar, but not 

the same. Both models seem to be verified through experimentation, though under 

different circumstances.  

 

A.2.d	MYD	&	Others	

A connection between the JKR and DMT models was created in 1977 by 

Tabor, who concluded the adhesion was depended on surface forces, surface 

roughness, and the ductility of the solids[23]. He clarified discrepancies between the 

two models and suggested shortcomings in both cases that could be accounted for with 

a new parameter. Using this new Tabor parameter, Tabor generalized the current 

theories of contact. The Tabor Parameter 𝜇  is defined as  

𝜇 =
𝑅 𝛥𝛾 /

3
4𝐾

/
𝑧?'

.
'

16  
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where R is the equivalent radius, 𝛾 is the free surface energy, K is the equivalent 

elastic modulus, and 𝑧?  is the equilibrium spacing according to Lennard-Jones 

potential.   

Muller, Yushchenko, Derjaguin (MYD) followed up this new theory with the 

result that there is a smooth transition between the JKR and DMT theories in 

accordance with the Tabor parameter[24]. Maugis further clarified the transition 

between the two models using the Sneddon approach for contact[25][26]. 

More comprehensive models of contact have been developed[27][28][29][30], 

however, adoption of these models can require significantly more calculation than the 

simplified models presented by DMT and JKR[31]. These old models are often 

accurate enough to be used as long as their limitations are taken into account, and have 

been used as recently as 2017[32][33]. In our case, JKR is most applicable because it 

remains accurate. However, it is useful to know Hertzian mechanics, as well as DMT 

and MYD techniques, to truly understand how the JKR approximation fits into the 

grand scheme of adhesive contact. 
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Table 1: Comparison of Contact Models 

Model Applications Assumptions 

Hertz Stiff solids 

Any radius 

Neglects adhesion 

Single point contact at zero load 

JKR Low modulus solids 

Large radius 

Tensile and compressive stress 
within contact area 
Adhesion from surface energy in 
contact zone only 
Neglects adhesive forces outside 
of contact area 

DMT High modulus solids 

Small radius 

Hertzian contact model within 
contact zone 
Adhesive forces occur outside 
contact zone 

MYD Solids with modulus outside       
of JKR or DMT 
Any Radius 

Makes use of Tabor parameter, 
Lennard-Jones potential, Dugdale 
adhesion/stress 

 

A.3	Modern	Related	Research		

Standard contact models provide an excellent basis for investigating contact 

behavior of elastic materials, but no material is perfectly elastic.  Viscoelasticity is 

present in all materials, significantly complicating measurements taken to relate 

contact area, deformation, and force. This can be mediated to some extent, but in 

nearly all cases viscoelasticity will play a part and must be accounted for. Along with 

viscoelasticity is a host of other complications in this type of investigation that are 

present in the literature. 
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A thorough review of fracture and adhesion of soft materials is outlined in 

Creton et al[34]. This is a very useful resource for understanding historic advances in 

soft matter surface interactions. Such an in-depth assessment will not be found in this 

paper, but we have attempted to include particularly pertinent research. This research 

is based on the foundation built by Krick et al 2012 [35]. Similar instruments have 

been built for imaging of tribological and adhesive testing[11][36][37][38][39], 

however the instrumentation used below has especially exceptional resolution in 

imaging and in data capture frequency for similar sized studies.  

The role of surface roughness has been studied by Lorenz et al 2013[40] 

whereby adhesive pull-off force was determined to decrease with randomly rough 

surfaces as opposed to smooth ones, caused mainly by reduction in real contact area. 

More in depth analysis on surface roughness has been performed by 

Persson[10][41][42]. These analyses have shown a dependence of adhesive force on 

viscoelastic energy dissipation at the crack tip in conjunction with contact area, as well 

as a generally decreasing work of adhesion after run-in, the period where free 

oligomers transfer freely from the soft material to the previously clean indenter 

surface. Work of adhesion is made independent from number of indents through 

extraction of free chains from the surface. Non-adiabatic viscoelastic energy 

dissipation at the crack tip results in an adhesive force that is larger upon pull-off then 

upon approach. This is referred to as adhesion hysteresis[43]. In crack propagation, the 

viscoelastic energy dissipation results in strongly increasing the energy necessary to 

propagate a crack[44]. 
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The extraction of free chains from the surface is one of many treatments done 

to isolate components of adhesive force. Surface interactions have a significant effect 

on overall adhesion of soft materials like PDMS. Chaudhury & Whitesides 1991[11] 

and Chaudhury & Whitesides 1992[45] showed significantly increased adhesion after 

surface oxidation, and surface functionalization allowed for separation of surface 

effects from bulk viscoelastic effects. Silberzan 1994[46] shows hysteresis loops as a 

result of hydrogen bonding across the interface between Si-OH molecule. 

Experimentation in with HCl surface modification supports this theory, as it showed 

increased adhesion. 

Separately, Jagota 2002[52] explores natures applications of adhesive 

interfaces through fibrillary microstructures present in many organisms. Fibrillar 

structures allow room for deformation of fibrils, so that the carpet of fibers may act as 

a plastic material for greater contact area and thus greater adhesion in presence of 

roughness. The advantage of fibrils over a solid soft material in contact is the ability to 

use stiffer materials for fibrils so that there is no undesired stickiness at the interface, 

relying on Van Der Waals forces exclusively for adhesion. 

Adhesion as a function of separation rate is explored in Ruths 1998[47], 

showing a positive correlation with most materials. Further investigation by 

Kovalchick 2013[48] confirms this dependence in peel tests. Vorvolakos 2003[49] 

investigates the relationship of loading force with contact area and sliding velocity of 

PDMS elastomers. Results showed heavy dependence on molecular weight due to the 

subsequent contact area and highlighted the intricacy of the adhesive interface. Similar 

research in shear induced adhesive failure was described in Chaudhury 2007[50]. 
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Applicable mechanics of interfacial rate processes are outlines in Ghatak 

2000[51]. For an elastic ball on a flat, the growing and shrinking contact at the surface 

follows a work of adhesion (W) nearly equal to strain energy release rate (G)  

𝐺 =

4𝐸∗𝑎'
3𝑅 − 𝑃

/

8𝜋𝐸∗𝑎' 17
 

that is function of contact radius a, ball radius R, pressure P, and equivalent elastic 

modulus 𝐸∗ where 

𝐸∗ =
1

1 − 𝜈./
𝐸.

+ 1 − 𝜈//
𝐸/

18  

However, viscoelastic energy dissipation results in thermodynamic irreversibility in 

contact mechanics studies such that 𝑊 ≠ 𝐺 and in fact 

𝐺 −𝑊 = 𝑊𝜙(𝑎Q𝑉) 19  

 where 𝜙 is a dimensionless viscoelastic dissipation function that depends on 𝑎Q(the 

WLF shift factor), the viscoelastic properties of the materials, crack speed V, and 

temperature T.   

 In general, three phenomena dominate adhesive indenting interactions: bulk 

strain energy release dependent on material properties, local viscoelastic strain at the 

crack tip, and intermolecular forces. Intermolecular forces, namely hydrogen bonds 

and dispersive adhesion, effect the total force of adhesion differently. As demonstrated 

by Ghatak 2000[51], dispersive adhesive contact with no hydrogen bonding shows 

almost no rate dependence, while the opposite is true for hydrogen bonded contact. 

This suggests a connection between bulk/local viscoelastic strain and hydrogen 

bonding at the surface. The connection is relaxation time. The bond number 
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dependence of relaxation time explains the requirement for hydrogen bonding at the 

surface to see rate dependent adhesive forces. These bonds couple bulk and surface 

viscoelastic phenomena with intermolecular forces. Because of this, we know equation 

19 is a generalized case because it has no dependence on bond number. We can expect 

to see a rate dependence of adhesion force in experimentation because viscoelastic 

properties act to dissipate energy otherwise going to break bonds/polymer chains at 

the interface. 
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B. Methods	

B.1	Tribometers	

Tribometers come in myriad shapes and sizes because they are built with their 

samples in mind. Most often this includes sliding a material sample against a substrate 

that represents a typical contacting material. Friction force, wear, and normal force are 

all recorded over time or ‘cycles’ of testing. This data will show the points where a 

material wears due to friction, how the wear affects the mechanics of the material, and 

what is happening at the surface to surface interaction. This data helps estimate a 

useful lifetime for the sample.  

B.2	In-Situ	Imaging	

In-situ imaging is hardly a new technique. Such a method provides valuable 

information about what led to the final results of a research subject. It is easy to see 

the aftermath of a wear test and conclude that friction has led to the degradation of a 

material, but in-situ investigation shines a light on the causes and mechanisms of the 

wear, a peek at the evolution of a wear scar.  This is not only applicable to tribology, 

however.  

In-situ magnetic resonance imaging has been used to produce 3D models of 

neuronal pathways in a rat brain[53]. The growth of carbon nano-fibers has been 

viewed in-situ using a transmission electron microscope, allowing researchers to see 

what happens at the gas-solid interaction of nickel and methane [54]. In-Situ Raman 

spectroscopy measurements have been used to monitor doping of graphene 
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transistors[55].  In-situ studies are important tools to many areas of science, including 

materials tribology.  

In-situ tribometers have been used in the study of solid lubricants in a manner 

that is very similar to the techniques we apply in our studies [36], [37]. In Chromik et 

al., transfer films and interfacial dynamics were observed through a sapphire 

hemisphere. The in-situ observations motivated the establishment of four velocity 

accommodation modes (VAMS) that better described tribological performance of 

solid lubricants used in aerospace applications. An even more related study was done 

by Wahl et al[37]. quantifying transfer film thicknesses through optical observation. A 

Newton Rings method was used to quantify the evolution of the transfer film in real 

time. We will use this Newton Rings technique to quantify real contact area using the 

Lehigh in-situ optical tribometer.  

 

B.3	Lehigh	In-situ	Optical	Tribometer	(LISOT)	

Lehigh’s in-situ optical tribometer is a purpose-built instrument that is 

designed to allow for non-intrusive imaging of sliding or contacting surfaces during 

experimentation.  

B.3.a	LISOT:	Design	

The LISOT has 3 main systems that sit within the aluminum base structure, the 

xy-stage, the z-stage, and the imaging system. It sits on a Minus k Technology 

isolation stage, which rests on a 1,000lb granite isolation table for vibration damping. 
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This is all caged off by a quasi-cleanroom structure made of plastic sheeting to prevent 

dust and other contaminants from tampering with tests. 

The foundation of the xy-stage system consists of two manual linear 

micrometer positioning stages. The y-stage is placed perpendicular and atop the x-

stage. Above these stages is a PI M-683.2U4 piezo motorized precision stage in the x 

position, followed by a PI P-628.1CD piezo linear stage that holds the sample holder. 

This setup allows the possibility to accommodate for multiple different test cycles on 

one substrate by changing the positioning. The aluminum sample holder extends in the 

x direction to float above the imaging system and below the z-stage system and is 

capable of holding 1 inch glass discs as well as standard 3-inch microscope slides. 

FEA was performed in SolidWorks to confirm that negligible deflection was present 

in the sample holder due to indentation loads. 

The imaging system consists of perpendicularly aligned optical components. 

The xy plane consists of the CCD camera and LED light whose optical paths are 

reflected in the positive z direction by a beam splitter and mirror where they culminate 

at a microscope objective. This allows for viewing of object in the sample holder from 

below. The optical components are placed on an adjustable z-stage for focusing the 

objective lens without changing the distance of the optical path. 

The lens used is a 10X Olympus Plan N objective. The coaxial lighting is an 

XPE2 Amber 590nm wavelength LED driven by an A011-D-V-350 350mA driver 

purchased from Digi-Key. This powered by an Acopian W20FT370 power supply. 

The LED color is based on the successful in-situ LED lighting of the optical 

tribometer used by Krick et al.[35]. The camera is a Ximea xiD MD120xU-SY 12-
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megapixel scientific grade camera with a pixel size of 3.1 µm. Paired with our 10X 

objective, the camera takes images with a pixel size of 0.31 µm. The rest of the optical 

system was manufactured my Marcel Aubert for use by the University of Florida and 

has now been adapted to the LISOT system.   

The z-stage system is the most technically complicated part of the tribometer. 

Attached to a vertical aluminum support is a manual linear micrometer positioning 

stage and PI P-628.1CD piezo linear stage providing programmable travel in the ±𝑧 

direction. The z-piezo is supporting an aluminum structure that reaches out above the 

sample holder. This structure holds the cantilever-mounted ruby probe and two 

micrometer-mounted capacitance probes.  
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Figure 1: XY-Stage System 
X and Y micrometer positioning stages, short and long travel x piezo stages, sample 
holder 
 

Figure 2: Imaging System 
CCD Camera, tube system with beam splitter, objective lens with coaxial LED 
illumination, z-axis adjustment 
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The ruby spheres are glued to set screws that allow them to be secured in the 

flexible cantilever. The cantilever consists of two waterjet cut titanium sheets that 

allow for rectilinear flexure. When the z-piezo is lowered, so is the attached cantilever. 

When the ruby probe makes contact with a substrate, the cantilever will flex. The z-

stage provides position information, but does not provide the capability to apply a 

specified force. With the cantilever, however, Hooke’s Law allows us to gather and 

specify forces on the ruby probe.  

Hooke's	Law:				𝐹 = 𝑘𝑥 20  

where F is the force on the probe, k is the stiffness of the cantilever, and x is the flex 

of cantilever obtained by the capacitance probe. Cantilever stiffness is recorded before 

Figure 3: Z-Stage System 
Z-axis micrometer positioning stage, z-piezo, cantilever for ruby probe, micrometer- 
mounted capacitance probes with wires. 



 
 

 

23 

testing. Known masses are used to create deflection in the cantilever. This deflection is 

measured, recorded, and plotted against gravitational force to find k. For our 

cantilever, normal stiffness k is 510 gh
gi

. The lateral stiffness is ignored because there 

is no lateral movement in the LISOT setup. 

 The micrometer-mounted capacitance probes are used to measure the 

displacement with respect to the position of the z-piezo. The capacitance probes are 

from Lion Precision and are driven by a Lion CPL290 Driver. These probes can 

measure sub-nanometer resolution in the distance between themselves and the 

cantilever. Changes in this distance correlate to a change of capacitance between the 

probe and cantilever, which is detected by the driver. The driver produces an output 

voltage proportional to the distance which can be converted with the known gi
j

 

parameter.  

 All electronic components of the LISOT are controlled through LabVIEW and 

a National Instruments BNC-2120 DAQ Device. All output signals providing data also 

return through this setup to provide instantaneous analysis in LabVIEW. 

 

Figure 4: LISOT Communication Schematic 
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  Figure 5: Lehigh's In-Situ Optical Tribometer 

 

 

  Figure 6: LISOT Cantilever Close-up 

Ruby probe in contact with PDMS, under-lit by coaxial lighting 
through objective lens. Micrometer positioned capacitance probes 
measure the change in the distance to the cantilever block. Sample 
holder maintains positioning of glass window and PDMS substrate. 
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B.3.b	LISOT:	Indenting	

Indenting with the LISOT is controlled by a LabVIEW code designed 

specifically for tribometers. This code has been built upon and adjusted to fit the needs 

of Lehigh’s tribometers, like the LISOT. The user inputs experimental conditions and 

the code organizes the output data from the tests into excel files. 

Before true data can be extracted from a test, the indenter and substrate must 

be “run-in” to reach a steady state adhesion force[56][40]. Free oligomers present 

from un-crosslinked polymer chains act to change the mechanics of contact as they 

transfer to the surface of the ball. These oligomers can change the interfacial 

interaction energy of either surface as well as the required pull-off force. Once this 

process has reached an equilibrium, tests can be run without worrying about 

appreciable drift due to changing surface environments.  

After run-in, the actual testing varied the indenting speed, hold time, and pull-

off speed of the ruby sample to look for effects on contact area and adhesion force. 

The indenting speed is the speed at which the ruby met the PDMS substrate. Dwell 

time refers to the amount of time that the ruby ball and the PDMS remained in contact 

at a fixed load. Pull-off speed is the speed that the ruby ball came out of contact with 

the PDMS substrate. Trials were based on a 1, 10, 100 numbering system. Each indent 

would vary the indenting speed between 1gi
D

, 10gi
D

, and 100gi
D

, vary the dwell time 

between 1,10, and 100 seconds, and vary the pull-off speed between 1gi
D

, 10gi
D

, and 

100gi
D

. This is a total of 27 different indenting scenarios. Each test included the 27 
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indenting scenarios at a constant load. The load was changed between tests at 0mN, 

1mN, 10mN, and 100mN. Tests were performed in air and water.  

In all tests, the ruby began in a position where it was significantly out of 

contact. It was then driven by the z-piezo towards the PDMS at the defined rate. As 

the ruby ball approaches the PDMS surface, the adhesive forces begin to pull the two 

surfaces towards each other. The static PDMS pulls the flexible cantilever down into 

contact, providing a momentary negative force on the ruby ball. At this point the 

adhesive force is equal to that of the elastic restoring force of the cantilever. As the z-

piezo continues to move down, the negative force increases to zero, at which point 

adhesion keeps the surfaces in contact even with zero load. In the case of 0mN tests, 

the probe would then unload. In the case of 1mN, 10mN, and 100mN tests, the probe 

would continue to indent to the specified load before pulling off. 

Table 2: Example LISOT Data from the First 0.1 Seconds of an Indent Cycle  
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 Data from the LISOT is exported directly in excel format, providing force and 

z- piezo position as a function of time, from which cantilever displacement and 

indentation depth can be calculated. The excel data was loaded into a Matlab script 

that ripped the tests into the 27 cycles. It then found the adhesion force and errors in 

load, unload, and hold time for each cycle based on user specified points along the 

force-displacement curve. 

𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝐷𝑒𝑝𝑡ℎ	(𝛿) = 𝑧? − 𝑑 = 𝑧? −
𝐹
𝑘  

𝑃𝑢𝑙𝑙 − 𝑂𝑓𝑓	𝐹𝑜𝑟𝑐𝑒	 𝐹Mz{ = 𝑘𝑑 

where 𝑧? is the position of the z-stage at zero load, d is the z-axis displacement of the 

cantilever, F is the load, k is the cantilever stiffness. 

 

 

Figure 7: LISOT Indenting in Water Environment 

A 3mm ruby probe indents a PDMS sample under water using a 
mount for liquid environments. 
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B.3.c	LISOT:	Imaging	

Imaging for the camera is done both through a combination of LabVIEW 

triggering and Ximea CamTool. Ximea CamTool allows for adjustments to typical 

camera features like framerate, resolution, and exposure. It can display a live feed of 

the camera while recording and saving at a framerate of up to 16 fps. Frame captures 

are handled in two ways. If using exclusively Ximea CamTool, the camera can be 

commanded to capture images and save at a defined rate (i.e. frames per second) or at 

max speed, were the program will capture and save as many frames as the computer 

processing will allow.  

A second way of image capture involves triggering the camera directly with a 

5-Volt digital signal. The LabVIEW code can be set to generate a signal from the TI to 

trigger the camera at a specified rate, just as the LabVIEW data saving rate is 

specified. The triggered images are recorded and saved through Ximea Camtool, just 

as they would be when triggered from the program itself. Using LabVIEW for 

triggering gives us the flexibility of automatic image capture at different capture rates. 

For example, the LabVIEW code can take fewer pictures during slow contact speeds 

or when there is no contact in order to save storage space. 

Images taken by LISOT show Newton Rings, concentric fringes of bright and 

dark interference. The very inner ‘full’ circle is the contact of the ruby sphere and 

PDMS. At locations of contact, light reflects off the top surface of PDMS and bottom 

surface of ruby, which are at the same optical location. At the ruby, however, a 180-

degree phase shift is imparted on the light wave due to the changing index of 

refraction. This reflected light interferes destructively with the light reflected from the 
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PDMS surface and so the contact area is dark. Higher order interferences exist moving 

radially away from the 0th order destructive interference at the contact area. Bright 

fringes represent locations where the surface of the ruby sphere is a multiple of |
/
 away 

from the surface of PDMS, so light travels a total distance of 𝜆 more and interferes 

constructively. Dark fringes represent locations where the optical path from the 

surface of the ruby sphere to the surface of PDMS is 𝑛𝜆 ± |
~
 and so light travels a total 

distance of |
/
 more and interferes destructively. 

 

Constructive interference at separation distance 𝑑� = 	𝑛 |
/
 

Destructive interference at separation distance 𝑑z = 	
/��.
~

𝜆  

 

 

Figure 8: Interference Fringes Provide Valuable Data  

Locations of constructive and destructive interference fringes correspond 
directly with changes in distance between the PDMS substrate and the ruby 
probe. By subtracting the known curvature of the probe from the distances 
given by interference fringes, it is possible to map the height of the tensile zone 
surrounding the contact region. 
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Figure 9: Newton rings captured by the LISOT imaging system  

Photo results of the in-situ optics are shown.  Coaxial illumination is produced 
by a 595 nm orange LED. This was taken directly after first contact where the 
load is about zero. Real contact is shown in the dark central circle which is . 
Rings are present due to interference at the interface. Concentric fringes 
present information about the distance between the surfaces. These images are 
‘unwrapped’ by post processing for use in tensile zone height map 
construction. 
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B.3.d	LISOT:	Post	Processing	

 
Figure 10: Newton rings unwrapped for processing 

 
 

Figure 11: Direction of Peak/Valley Finding for Fringe Position Data 
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Figure 12: Light Intensity Along Radius of Newton Rings  

Considerable post processing was required to consistently collect data on 

contact area and tensile zone geometries as a function of time. Much of this was 

achieved through MATLab. Bitmaps were converted into matrices where a 

thresholding value was used to separate the large dark area of contact from light and 

dark interference fringes. Contact area was recorded based on the pixel size and 

number of pixels with values above the threshold. Fringe location were recorded as a 

function of degrees about the center of contact (Figures 11& 12). This was done using 

the unwrapped contact image (Figure 10). Three-dimensional positioning for points 

along the surface was possible using this technique.  Height in the z direction was 

obtained based on the wavelength of the coaxial illumination, the number of fringes 

from dark contact area, and the radius of curvature of the ruby indenter. Two 

dimensional x,y or r,𝜃 was obtained from pixel location in the image. 
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B.4	PDMS		

Polydimethylsiloxane is a multipurpose polymer with ubiquitous presence in 

everyday life. This organosilicon is part of a group of compounds that makes up a 

huge part of the materials typically used for everything from sealants, lubricants, and 

cosmetics, to lithography and silly putty. Recently, PDMS is being used increasingly 

in electronic applications. Highly applicable mechanical and chemical properties lend 

to the versatility that PDMS is known for [57]. 

The mechanical and chemical/biochemical properties of PDMS are fairly well 

documented[58][59][60]. Elastic modulus is dependent on mixing ratios and curing 

time/temperature and is in the range of 1.32 to 2.97 MPa. Poisson’s ratio of is 0.499 is 

a common accepted approximation used in literature for small strains. One of the most 

widely used PDMS elastomers is Sylgard 184 from Dow Corning. This is a two-part 

liquid that cures in 48 hours when combined, or quicker with heat treatment. Typical 

ratios of the base to curing agent are in the area of 10:1, however, this ratio can be 

adjusted to impart different mechanical properties. For example, the elastic modulus 

increases as the ratio increases up to 9:1, at which point the modulus begins to 

decrease[58].  

PDMS also has fairly stable mechanical properties through a large range of 

temperatures (-100°C to 100°C) and timescales, including a high dielectric strength (≈

14 j
gi
), making it a reliable material in microelectronics and microelectromechanical 

systems (MEMS)[61]. It is clear, chemically inert, and easy to handle, making it a 

friendly material for almost any application. Being biocompatible and non-toxic, it is 
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used in pacemakers, catheters, and other implants[62]. PDMS does not show 

appreciable absorption or reaction to the typical laboratory solvents isopropanol, 

methanol, and acetone, so it can be easily cleaned, sterilized, and/or sonicated. 

The PDMS used in our experiments is Sylgard 184. Samples were prepared in 

a lab environment by combining 10 parts base liquid a to 1 part curing agent in a 

plastic cup for a total of over 20 grams of liquid.  After mixing, the uncured PDMS 

was placed under vacuum for 30 minutes. This was done in a VWR Vacuum Oven 

model # 10752-398 at room temperature (20°C). The liquid was then carefully 

deposited on one-inch diameter Edmund Optics glass optical windows using 

disposable pipette tips. The glass discs provide a sturdy foundation for indenting, a 

clear window for viewing, and have a stiffness of 64 GPa so as to provide no added 

deformation. They are held in 25mm diameter cylindrical PTFE cavities that allow for 

a 25mm diameter, 2mm thick ‘disk’ of PDMS to be molded directly atop the glass.  

The PTFE mold holds 16 separated samples and it was placed in the Vacuum oven at 

90°C for 2.5 hours. Both the free-air side and the glass side of the PDMS can be used 

for indenting after curing.   

Using an AFM, the PDMS was tested to find the elastic modulus with the 

result of 1.87 MPa. Due to results presented in this paper, AFM measurements of soft 

materials with adhesive surfaces cannot always be considered completely accurate. 

The samples were also measured on a Scanning White Light Interferometer (SWLI) to 

validate the intended thickness range. Thicknesses of samples were between 1.8mm 

and 2.2mm. 
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B.5	Ruby/Sapphire	

Ruby is a variety of corundum, the mineral also responsible for sapphire. 

These gems are 𝛼 − alumina	(Al/O'), a particularly stable form of alumina[63]. Ruby 

spheres are chosen for a few reasons. Ruby/Sapphire spheres provide a relatively 

smooth, hard, and stiff surface with which to form intimate contact.  Hardness 

provides peace of mind that micro scratches and other wear will not develop, 

hindering accurate data collection. The modulus of elasticity varies form 345- 494 

MPa, but the value used most is 350MPa. Stiffness on the order of 350MPa is high 

enough to ensure that most of the deformation is seen within the PDMS. The rubies 

are unlikely to cause chemical reactions with a substrate or the environment. They are 

also optically transparent, inexpensive, single crystals capable of a polish, as opposed 

to other materials that may use sintering or a binder to form a hard, smooth sphere.  

Ruby spheres of 1.5mm and 3mm diameters were purchased from Swiss Jewel 

and used in testing. They were sonicated in acetone for 20 mins and methanol for 20 

mins and glued to 5/8-inch-long 4-40 threaded set screws for placement in the 

tribometer.  The gluing was done carefully with Loctite SuperGlue Gel so as not to 

contaminate the ruby surface. 

 

Figure 13: 3mm Ruby Probe and 25mm PDMS Sample on Glass Window 
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C. Results	&	Discussion	

C.1	Initial	1,	10,	100	Testing	
The following figures are sourced from the raw adhesion data that is visible in the 
appendix.  

 

Figure 14: Effect of Loading rate on Pull-off Force 

Each cycle value represents an individual indent, each with a different 

combination of parameters (i.e loading rate, dwell time, unloading rate, and applied 

load). The first varying parameter in our data collection is Loading rate, the speed at 

which the ruby indenter strikes the PDMS. The trend above shows adhesion force 

increasing as the testing parameters change. Each line represents a cycle of tests with 

the same unloading velocity but varying parameters of dwell time, loading rate and 
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applied load. Each color represents a loading rate. There are clearly 3 clusters of test 

cycles. Each cluster represents tests with the same applied force. From dark to light is 

10mN, 1mN, and 0mN loads. The only varying parameter within these line clusters is 

loading rate.  

Based on this analysis we can conclude that a varying loading rate has almost 

no effect on the final adhesive force. There are small variations within these clusters, 

so we theorize that the loading rate can be lumped into dwell time when investigation 

changes in adhesion force. The slower the loading rate, the longer the ruby and PDMS 

will be in contact before the dwell time even starts. This acts like a first dwell time 

that adds to the overall length of time that the surfaces are in contact. Further 

investigation into dwell time effects highlight the importance of distinction. 

 

Figure 15: Effect of Dwell Time on 1 µm/s Pull-off 
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Figure 16: Effect of Dwell Time on 10 µm/s Pull-off 

 
 
Figure 17: Effect of Dwell Time on 100 µm/s Pull-off 
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Figures 13-15 show trends in dwell time vs pull-off force for varying loads and 

unloading speeds. Because the loading speeds seem to have no almost no correlation 

with pull-off force, tests with the same applied load have been averaged together for 

ease of viewing. Different colors represent different applied loads and the three plots 

group different unloading speeds together. In each plot a clear trend of increasing 

average pull-off force with increasing dwell time is clear. This trend is present in the 

literature as well and can be explained by a few different mechanisms.   

The first effect to be aware of is that of fluid squeeze-out at the interface. 

Persson 2012[64] outlines the dynamics of fluid flow at the interface of elastic solids 

with rough surfaces. Environmental fluid (i.e. water, air, silicone oil, surface 

contaminants) is pushed out of the contact region as indentations take place and as the 

surfaces come together, energy is lost in squeezing fluid along the surface.  In rough 

surfaces, fluid can get trapped among asperity regions preventing intimate contact and 

providing pressure that diminishes the adhesive force[65]. Such an analysis of fluid 

flow in the contact helps understand the relationship between loading rate and dwell 

time: faster loading speeds provide less time for fluid squeeze out than slower ones. 

Longer dwell times allow more time for the interface to develop intimate contact as 

asperities are compressed and fluid is expelled from regions between the two surfaces. 

In our case, longer contact allows for percolation of air, surface contaminants, and un-

crosslinked silicone from the contact region. 

 A second closely related effect that is exhibited in contact of rubbers is surface 

bloom. Roberts & Othman 1997[66] prove the importance of dwell time to contact 

after extracting surface bloom from the surface of vulcanized rubbers. Longer dwell 
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times allow for the surfaces to effectively expel particles or other substances that have 

migrated to the surface from within the material. Our results are comparable to Choi 

2008[67] who experimented with contact of a flat indenter and elastic rubbers. We 

believe the increase in adhesion force with increasing dwell time in our study is due to 

fluid/contaminant squeeze out and resultant growth of contact area. 

 

Figure 18: Effect of Unloading Rate on Pull-off Force 

 Due to the adhesive nature of the contact and viscoelasticity of the PDMS, 

unloading rate has a significant effect on pull-off force. Crack propagation in soft 

matter is a young field of study, but consistent results like these help verify current 

theories. The range of numbers in the 100 µm/s tests suggests that it is not unloading 

speed alone that contributes to increased pull-off force and that this rate has a more 

multiplicative effect on other parameters, namely contact area. This relationship can 

be viewed clearly in the next figure. 
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Figure 19: Effect of Load Pull-off Force 

 Each group of data above represents the evolution of pull-off forces through 

testing for a given load. The only constant in each of these datasets is applied force. 

The visible peaks are points where longest dwell times and fastest unloading rates 

meet, both of which have been shown to increase pull-off force.  

This may be the least surprising data we have gathered.  Increased load 

correlates with increased contact area and larger intimate contact means a greater 

adhesive force must be overcome to separate the two surfaces. 
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C.2	In-Situ	Contact	Area	Data	

 

Figure 20: JKR fit on Area vs Force Adhesion Hysteresis Loop 

Preliminary tests in the 1,10,100 testing cycles motivated further testing with 

in situ area measurements. The figure above shows a typical area vs force curves for 

adhesion hysteresis indentations. This test loaded to 1.5 mN. JKR theory fits 

exceptionally well to the loading regime. 

𝑎GHI' =
𝑅
𝐾 𝑃 + 3𝜋𝛥𝛾𝑅 + 6𝜋𝛥𝛾𝑅𝑃 + 3𝜋𝛥𝛾𝑅 /

.
/  

  The JKR fit predicts a modulus of 1.84 MPa, Poisson’s ratio of 0.49, and work 

of adhesion(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑠𝑢𝑟𝑓𝑎𝑐𝑒	𝑒𝑛𝑒𝑟𝑔𝑦	𝛥𝛾) of 39 mJ/m2. These values are typical 
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for Sylgard 184 10:1. An exciting result is the work of adhesion which is consistent 

with results found in Silberzan et al 1994[46] and others. 

 JKR theory is incredibly accurate for basic loading at slow speeds but as 

expected, it doesn’t hold up for the case of the unloading regime and falls apart in 

regard to adhesion hysteresis.  Strong adhesion keeps the surfaces in contact during 

unload and viscoelasticity slows the reformation of the PDMS. The indenter pulls 

upwards quicker than the elastic restoration of the PDMS allows, spiking the pull-off 

force. Contact is only broken when the contact area is reduced to a point where the 

growing pull-off force can overcome the adhesion force. 

 
Figure 21: Full Adhesion Hysteresis Loops for Varying Parameters (A vs F) 
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Figure 22: Full Adhesion Hysteresis Loops for Varying Parameters (A vs ∂) 



 
 

 

45 

 

Figure 23: Full Adhesion Hysteresis Loops for Varying Parameters (F vs ∂) 

Adhesion hysteresis is seen above as the loading regimes collapse in a single 

path while the unloading regimes show varying paths based on changing parameters. 

The loading regimes overlap as parameters there do not change. Applied Load(Normal 

Force) was kept relatively constant. Hysteresis increased significantly due to 

unloading rate(pull-off speed) and minimally with hold time. Rates of change of 

contact area with respect to displacement are identical for loading.  A rate dependence 

is visible in unloading as contact area is maintained for longer distances with higher 

velocities. Below, further investigation is done with close-ups of the Area vs Force 

figure. 



 
 

 

46 

 

Figure 24: Bottom of Adhesion Hysteresis Loops for Varying Parameters 

 Here we see the beginning and end of the indenting cycles. There is noticeable 

adhesion upon initial contact shown by the negative jump on the x-axis as the ruby is 

pulled into the PDMS substrate. Normal force returns to a positive number as the z-

stage catches up with the deflected cantilever and begins to apply a load. The 

unloading regimes reach significantly large negative loads before returning to their 

original positions as shown by the shallower slopes upon return. Positive values of 

load upon return are a result cantilever flexure after contact is broken and the indenter 

overshoots the zero position upon return.  It is interesting to note the density of the 

data upon return. For the faster unloads, data is sparse because of the probe velocity. 
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The 1µm/s unloading regime shows larger areas of contact at larger negative loads 

than that of the initial contact, a perfect characterization of adhesion hysteresis. 

Because of intimate contact caused by loading, pulling apart the surfaces causes great 

strain in the PDMS, enough to shrink the contact area to about half of the initial 

contact area, before the force of unloading is great enough to overcome adhesion.   

 

Figure 25: Loading Regime of Adhesion Hysteresis Loops 

 A close-up of the loading regime shows how tightly the different tests adhere 

to the same loading path. Discrepancies here are likely as much experimental error as 

they are actual changes in loading path. 
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Figure 26: Middle of Adhesion Hysteresis Loops for Varying Parameters 

 A close-up on the middle of the loading and unloading regimes show a pattern 

of increasing pull-off force with increasing hold times and increasing unloading 

speeds. Each cluster of unloading data with the same pull off speed (i.e. circles, stars, 

crosses) contains the same pattern of indents with varying hold times. This further 

confirms the correlation of hold times with greater pull-off speeds. However, 

increasing pull-off speed increases pull-off force with respect to area at a greater rate 

than increasing dwell time, showing that overall contact area is far more important 

than how intimate the contact is.  
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Figure 27: Top of Adhesion Hysteresis Loops for Varying Parameters 

 The dwell regimes are visible in the figure above. The 1, 10, and 100 second 

hold time tests were run consecutively attributing to their consistency. The 1000 

second tests were run in a separate experiment due to limitations in computing for 

tests of such length. There is drift in the force channel causing the applied force in the 

long tests to change over time. Despite this, the shape of the adhesion hysteresis loops 

provides telling data about the behavior of the contact region. 

 Looking specifically at the 1 µm/s pull-offs(circles), it is evident how hold 

time ultimately changes the pull-off force. The probe reaches the desired applied force 



 
 

 

50 

and begins to settle into the PDMS substrate during dwell time, causing the area to 

increase and the applied force to decrease. This settling may be due to viscoelasticity 

and fluid squeeze-out. Notice that this slope is relatively constant in each indent 

despite the varying parameters, suggesting some sort of constant of viscoelastic 

settling based on material characteristics.  

Traveling up this settling slope, we reach a max area for each indent. As the 

probe and PDMS stop settling and begin to sit comfortably in equilibrium contact at 

this point, data continues to write at the same speed causing the dense concentrations 

of points at the top of the hysteresis loops. In the 1000 second holds these dense lines 

reach the maximum area of the loop and then continue horizontally in the negative 

force direction. The force begins to drift in the negative direction but the area stays the 

same signifying that between 100 and 1000 seconds the contact becomes so intimate 

that negative forces upwards of 200mN have no immediate effect on the contact area. 
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C.3	3D	Tensile	Zone	Height	Map	Construction	

 

Figure 28: Adhesion Hysteresis Loop for 3D Modeling 

 The figure above shows the hysteresis loop of a 1.5 mN indent that 

corresponds to the following height maps. Numbered locations on the curve 

correspond to different height maps below. 
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Figure 29: Five Height Maps Showing Evolution of the Tensile Zone 
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The height maps and 3D model have been distorted in the y-direction considerably 

to allow for viewing of relative changes in the tensile zone. Data is no longer reliable 

after 160 µm in the radial direction due to size and clarity of fringes that far out. A 

solid meniscus, or tensile zone, was observed for all indentation forces (adhesive and 

compressive). Consistency in geometry was observed between all loads modeled using 

this technique. The following numbered descriptions correspond to the number on 

each height map and on the hysteresis loop. 

1. The Ruby ball and PDMS surface snapped into contact due to adhesive forces. 

The silicone surface was pulled up to the ball, resulting in relatively large 

tensile region and a negative load. 

2. Balance between compressive and tensile (adhesive) energies resulted in zero 

externally applied load. Contact area continued to grow with increasing applied 

load. The tensile zone was small. 

3. The normal load of 1.5 mN causes a downward deformation of the silicone. 

However, a small tensile zone persisted where the PDMS was adhered to the 

ruby surface. Dwell resulted in intimate contact. 

4. The force between tensile zone and pull-off was equal, but there was a 

significant increase in tensile zone height due to bulk viscoelasticity. The ball 

began to unload quickly, and adhesion hysteresis caused the contact area to be 

larger than at the previous equilibrium position.  

5. At pull-off(max adhesive force), the ruby position was above zero, the contact 

are was small, and the tensile zone was very large in both height and width. 
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Figure 30: 3D Model of the PDMS Surface in the Tensile Region  

 

Figure 31: Area vs Displacement & Force vs Displacement Plots  

 The Area vs Displacement plot helps reinforce statements about the behavior 

of the tensile zone. For the most part, contact area increased linearly as displacement 

increased, except at the beginning of pull-off. In this region, the displacement 

decreased with decrease in force, while contact area remained relatively stable due 

strong adhesion formed through intimate contact. The contact area eventually began to 

reduce in an inverse fashion as the loading phase. The force vs displacement plot 

shows measureable negative forces upon approach and upon unload as expected based 

on area vs force plots. 
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Figure 32: Area Vs Force of Two Indents Without Breaking Contact  

 Tests were run to explore hysteretic behavior of indents where there was no 

break in contact. In these cases, an initial load was applied and then subsequent loads 

were reached without fully removing the ruby from contact with the PDMS. The 

figure above shows one such test. All loading and unloading for this test was done at 1 

µm/s, and all dwell times were 10 seconds. Initial load was about 5 mN and the second 

load was 1.5 mN.  

 Initial loading and unloading follow the expected path based on prior 

experimentation. Interesting behavior begins to happen at the second dwell time(blue 
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star). At this point, area drops with no change in force. You’ll notice that this drop in 

area is at a similar rate and slope as the increase in area seen at the initial dwell time. It 

appears that the viscoelastic effects acting at the dwell times are the same in either 

direction. In all cases of testing, the second dwell time brought the path of the 

hysteresis loop down to the original loading path. The longer the second dwell time, 

the closer the path will get to the original loading path. Upon second loading, the 

loading paths meet and the same hysteresis loop is traced out again.  

Full size height maps corresponding to the numbers on Figure 32 can be viewed in 

Appendix 2. Below, the tensile zone at each location is described: 

1. This is first contact. Notice the ruby/PDMS interface is at a height of zero. 

There is a visible tensile region due to adhesion. 

2. At zero load, the ruby/PDMS interface is below the point of initial contact. The 

PDMS sucks in the sphere and the tensile zone persists. 

3. At load, the ruby is fully indented. Deformation of the bulk PDMS is apparent, 

as the surface outside of contact is visibly deformed. The tensile region persists 

despite the load as it can be seen climbing up to ball. 

4.  Less bulk deformation is visible with the decreased load and the tensile region 

remains about the same size.  

5. The tensile region remains during dwell time as indentation depth remains 

relatively the same.  

6. Deformation is visible upon loading and the tensile zone seems to have lost its 

peak. Additional force seems to have no effect on contact area in this regime, 



 
 

 

57 

instead deforming the tensile zone until the force/area ratio reaches that of the 

loading regime.  

7. The second dwell period (5mN) shows no considerable difference from the first. 

8. Zero load on unloading has a much larger tensile zone than zero load on 

loading. 

9. The PDMS surface is pulled upwards resulting in large tensile region with small 

contact area. 

D. Conclusions	

When indenting Ruby into PDMS, contact is initialized by attractive forces 

between the surfaces that are observed as a negative load on the cantilever. Varying 

adhesive forces are a product of different loading rates, dwell times, unloading rates, 

and applied loads. Unloading rates and dwell times can be considered one parameter, 

as both affect total contact time before pull-off, which increases adhesive force. In the 

future, loading rate can remain constant and the adhesion force can be evaluated solely 

as a function of dwell time. Longer dwell times lead to higher adhesive forces due to 

enhanced bonding at the interface, in part, by ample time for fluid to squeeze out. This 

effect is independent of the loading rate and applied force. Area continues to grow 

during contact, despite constant load, due to settling and other factors. At load, an 

equilibrium is reached where small negative variations in force have no noticeable 

effect on contact area. In order to lower the area of contact between the two surfaces in 

contact, the applied force must be significantly reduced. Another critical force is 
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reached at pull-off, the max adhesion force, that corresponds to the critical area before 

separation.  

Increasing unloading rate will increase adhesion force. The reason for this 

phenomenon is still not entirely understood, but the results are consistent with 

previous experimentation in showing rate dependence. Crack tip velocity is limited 

due to viscoelasticity at the surface and in the bulk material. Faster unloading may 

allow for greater forces to be reached before the contact area can adjust with an equal 

but opposite adhesive force. Higher loads result in larger adhesion forces. Greater 

contact area due to greater deformation results in more bonds at the interface and more 

area for dispersive adhesion, which both contribute to the energy required to break 

contact.  

Newton Rings captured in images of contact were used successfully to create 

height maps and three dimensional models of the tensile region. The models show that 

the tensile region is always present during contact, even during loading and when the 

substrate deforms under the applied load. Local adhesion at the interface is so large 

that the solid PDMS meniscus will remain during increased loading. The changing 

load instead effects bulk deformation and overall contact area. This meniscus is only 

reduced during a second loading, after in-contact unloading. The additional load 

causes a transition at the surface as the system returns to the loading regime from the 

unloading regime. Separately, the tensile region grows during unloading, as local 

adhesion forces increase. 
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E. Future	Work		

 This work provides the foundation for an endless amount of other 

experimentation in adhesion. In the current set-up, high speed unloading rates present 

a challenge to the imaging system which can only reasonably acquire at 8 fps. A high-

speed camera would not only provide better data for plots, but also better data for 

tensile zone reconstruction. There are critical points where strong adhesive contact 

begins to peel and where contact seizes entirely that would be possible to image with 

such a setup, allowing for assignment of critical contact area.  In the same realm, using 

multiple monochromatic light sources could potentially help provide more accurate 

3D models. During the times where there is compression and tension, using two 

separate wavelengths can help find if there are any ripples in the surface through 

comparing fringe patterns.  

 The LISOT is designed to provide opportunities for environmental testing, a 

logical next step. Tiwari et al 2017[68] have shown interesting results for indents 

submerged in water and acetone, while Persson 2012[64] offered implications for fluid 

squeeze out. Removing any fluid altogether (i.e. vacuum) and creating a completely 

dust free environment would provide a strong data for effects of fluid squeeze out and 

contaminants at the surface. Future experimentation might also look at what specific 

parameters effect the geometry of the tensile region and attempt to create model for 

the surface based on their findings. 
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