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Abstract

The dynamic interactions between a line vortex and a Joukowski airfoil in harmonic

motion are determined analytically and simulated numerically. The equations of vortex

motion and the fluid forces on the airfoil are derived from two-dimensional inviscid poten-

tial flow theory for fixed and heaving airfoil configurations, and the continuous shedding of

vorticity from the trailing edge is modelled by the emended Brown and Michael equation.

Special attention is paid to limiting cases of flat airfoils that are either stationary or un-

der prescribed harmonic motions. This work extends beyond these restrictions to include

the effects of airfoil thickness and camber on the incoming vortex path, and the dynamic

interplay between the vortical field and the prescribed harmonic motions of the airfoil.
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Chapter 1

Introduction

1.1 Motivation

Coherent vortices in the atmosphere or generated by aircraft creates a gust field that can

produce unsteady aerodynamic forces on aircraft flying through such a field. For example,

in Autonomous Formation Flight (AFF), the streamwise-oriented vortices from the wingtips

of the leader aircraft can have a significant influence on the aerodynamics of the follower

aircraft, as shown in Fig. 1.1a. For example, in 2001, flight tests of F/A-18s in formation

showed that the induced drag reduced due to vortex impingement on the following F/A-18s

led to 14% fuel savings of the trailing aircraft compared to the fuel consumption when flying

alone [20]. Similar phenomena occurs in migrating bird flight [5], as shown in Fig. 1.1b. As

each bird flaps its wings, the vortex wake creates an ‘upwash’ for the birds downstream.

By flying in a ‘vee’ formation, the flock as a whole achieves a 70% greater flying range than

the capacity of an individual bird [5].

The interactions of solid bodies with streamwise vortices or vortex structures with other

orientations are reviewed by Rockwell [19]. Of present interest is the spanwise-oriented

vortex, whose motion is coupled aeroelastically to transverse deformation of the wings; this

scenerio is related to the classical tunnel gust problem that is common to aircraft [19]. Such

unsteady vortical gust conditions affect the aerodynamic forces on the wing and produce

2



(a) (b)

Figure 1.1: Examples of vortex-wing interactions: (a) a pair of F/A-18s in Autonomous
Formation Flight; (b) geese fly in a “V” formation

an unsteady vortex wake that is also coupled to the motion of the incident vortex and to

the wing shape and position. The coupled interactions and effects of the vortex trajectory,

airfoil motions and airfoil geometry are examined theoretically in this thesis.

1.2 Background

Two-dimensional high-Reynolds-number flow moving past a thin airfoil is a classical

problem in fluid-structure interactions that has received considerable attention in the past

decades. A general schematic of the model problem is shown in Fig. 1.2. The schematic

directs the mathematical modeling to describe a Joukowski airfoil on elastic supports in a

two-dimensional uniform flow that encounters a line vortex Γ and sheds a vortex γk, whose

strength satisfies the Kutta condition and whose motion obeys the emended Brown and

Michael equation [8]. Σ denotes the entire vorticity field, α is the angle of attack, and kα

and kh are the spring stiffnesses for the system. For the present work, no aeroelastic motions

(kh=0) are considered; however, prescribed harmonic plunging motions are considered in

the present work. The general scenario shown in Fig. 1.2 can be pared down to simpler

problems for verification purposes, which are outlined in §3.1 and §3.2. The procedures to

generalize the formulations to include the Joukowski airfoil shape and its prescribed motions

are identified in Chapter 4.

For theoretical analyses in particular, the representation of how vorticity is shed into the

3
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Figure 1.2: Schematic of the generalized model problem of vortex gust interactions with an
airfoil on elastic supports. Only fixed and prescribed harmonic plunging airfoil motions are
considered in this work.

wake to satisfy the Kutta condition at the trailing edge plays a crucial role in gust-airfoil

interactions and their related unsteady airfoil problems. In contrast to continuous-wake

models of thin airfoil problems, Brown and Michael [3] developed a wake model involv-

ing coherent vortices to model vortex shedding from a delta wing. Their model supposed

that the shed vorticity rolls up via a connecting vortex sheet into a point vortex with

time-varying circulation, and this model has also formed the basis of many numerical simu-

lations of unsteady vortex shedding. For example, Cortelezzi and Leonard [4] analyzed the

two-dimensional unsteady separated flow past a semi-infinite plate with transverse motion.

Michelin and Llewellyn Smith [17] described a two-dimensional model for the flapping of

an elastic flag immersed in an axial flow, and they later studied the vortex shedding of a

heaving flexible wing in a steady flow [16]. Wang and Eldredge [21] developed a point-vortex

model for two-dimensional unsteady aerodynamics of a flat plate airfoil.

However, Peters and Hirschberg [18] pointed out that the original Brown and Michael

equation does not guarantee the vanishing of a reaction force due to an unbalanced couple,

which is of minor concern to the fluid dynamic problem but is important when making

acoustic predictions. Howe later corrected this error and put forth the so-called emended

Brown and Michael equation [8], in which he compared the wake flow and the acoustic

4



pressure signature of the original and emended models. Howe concluded that both models

exhibit small differences in the predicted wake flow (i.e. the vortex trajectories) near the

edge, the predicted acoustic amplitudes (reductions in the radiated sound) for both mod-

els are qualitatively the same. However, the predicted noise reduction is smaller for the

emended Brown and Michael equation by about 4 dB. The emended Brown and Michael

equation has become a popular tool in two-dimensional theoretical approximation of high-

Reynolds vortex shedding problems. For example, Howe estimated the sound produced

by a line vortex encountering steps [10]. Guo discussed a vortex-airfoil interaction prob-

lem to demonstrate the two-dimensional Ffowcs Williams/Hawkings equation [6]. Kuo and

Dowling modelled a continuous sound-free vortex shedding of vorticity at a duct exit [13].

Manela and Huang constructed a vortex sound model for a wing-vortex interaction problem

involving a movable flap [15]. Manela [14] also studied the combined effects of airfoil motion

and of an incident vortex on the sound radiation from a flat plate airfoil, which provides

the verification case in the present work for the limit of zero airfoil thickness and camber.

The present work extends beyond the present literature to examine the effects of airfoil

thickness and camber together with the dynamically-coupled motions of a coherent incident

vortex, airfoil with oscillating motion, and its wake of free vortices. For the theoretical

analyses, the gust-airfoil interactions are simplified as the coupling between an incident

vortex and a Joukowski airfoil in two spatial dimensions. The present analysis is limited to

only heaving motions of the airfoil; pitching is not considered in this analysis. Knowledge

of the vortex and airfoil motion enable the prediction of the vortex noise generated by an

incident spanwise gust, which is left as an item for future research outside the scope of this

thesis and is not pursued here.

1.3 Research questions

This thesis addresses the following research questions:

1. How do the airfoil thickness and camber distributions affect the path of an incident

line vortex and induced forces on the airfoil?

5



2. What is the effect of coupling between the vortex and the airfoil on prescribed har-

monic motion?

1.4 Thesis outline

The remainder of the thesis is outlined as follows. A review of the pertinent mathe-

matical background and the technical approach are introduced in Chapter 2. Chapter 3

validates the present mathematical framework against previous work for flat plate airfoils in

different scenarios, including the starting vortex problem and the case of multiple shed vor-

tices. The main analysis of gust-airfoil interactions for the Joukowski airfoil is established

in Chapter 4. Chapter 5 presents numerical results to verify for theoretical analyses in the

former chapters. Chapter 6 summarizes the conclusions and contributions of this work. A

pair of appendices are provided at the end of the thesis, which included detailed derivations

of the emended Brown and Michael equation in different mathematical formulations.
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Chapter 2

Mathematical modelling

preliminaries

2.1 Conformal mapping

Conformal mapping provides a general mathematical framework to solve Laplace’s equa-

tion in a geometrically simple domain and relate the solution back to the original physical

domain in two-dimensional potential flows. Suppose a complex function ζ = f(z) that de-

fines a transformation between points z = x+iy in the z plane and points ζ ≡ ξ+iη in the ζ

plane, as shown in Fig. 2.1. A complex potential w(z) = φ(x, y) + iψ(x, y) may then be de-

x

y

ξ

η

z plane z plane

z(𝑧)
𝐶 𝐷

Figure 2.1: Schematic of conformal mapping
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x

y

ξ

η
z plane z plane

z(𝑧)

-a

r =1

a

Figure 2.2: Mapping of a flat plate in the physical z-plane to a unit circle in the ζ-plane.

termined, where scalar functions φ and ψ both satisfy Laplace’s equation [9]. The mapping

ζ = f(z) when f(z) is an analytic function will possible isolate non-analytic points, defines

a conformal mapping from a regular region C in the z plane into a region D in ζ plane,

where the corresponding functions are Φ and Ψ . It is well known [9] that the solutions Φ

and Ψ of Laplace equation in D are the solutions of Laplace’s equation in C. Therefore, a

conformal transformation allows the flow past a system of rigid boundaries in the z plane

to be represented by an equaivalent flow in the ζ plane. Point vortex singularities mapped

between the z and ζ planes have the same circulation value in each plane.

2.1.1 Flat plate airfoil

The conformal mapping of the flat plate airfoil in the physical z-plane and the mapped

ζ-plane is described by

ζ(z) =
1

a
(z +

√
z2 − a2). (2.1)

Using (2.1), the airfoil is mapped from a stationary flat plate airfoil (−a ≤ z ≤ a, Imz = 0)

in the physical z-plane (z = x+ iy) into a circle in ζ-plane (ζ = ξ + iη) with a radius r = 1

(see Fig. 2.2).
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x
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ξ
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z(𝑓)

r =1

(𝜆,0)
f1

(2𝑓*+ − 𝜆 + ./

01234.
, 0)

Figure 2.3: Successive mappings of a Joukowski airfoil in the physical z-plane to a unit
circle centered at the origin in the ζ-plane.

2.1.2 Joukowski airfoil

From previous introduction of mapping in §2.1, the conformal mapping of the Joukowski

airfoil in the physical z-plane and the mapped ζ-plane is described by

ζ(z) =
1

2
(z +

√
z2 − 4λ2)− f0. (2.2)

Using equation (2.2), the Joukowski airfoil in the physical z-plane (z = x + iy) with its

trailing edge locating at (2λ, 0) is mapped in a circle f -plane (f = f1 + if2) with a radius

r = 1 (see Fig. 2.3). Note that the offset of the circle center at f0 = fx0 + ify0 and the

corresponding trailing edge at (λ, 0). The circle in f -plane is then mapped into the same

unit circle with its origin at (0, 0) in ζ-plane (ζ = ξ + iη), and the corresponding trailing

edge is at λ− f0.

2.2 Equation of vortex motion

2.2.1 Free vortex motion

The equations of motion for a line vortex are derived here and followed the presentation

by Howe [9]

9



w′(z0) =
dz∗0
dt
, (2.3)

where

w0(z) = w(z) +
iΓ

2π
log (z − z0) , (2.4)

and the asterisk denotes the complex conjugate of a complex number.

Following the conformal mapping introduction in §2.1, and if ζ = ζ(z0) is the image of

the line vortex in the ζ plane, the complex potential w(z) may be written in the form

w(z) = − iΓ
2π

log (ζ(z)− ζ(z0)) + F (z), (2.5)

where ζ(z) and F (z) are regular functions of z in the neighborhood of the line vortex with

strength Γ at z = z0. In particular, when |z − z0| is small, ζ(z) could be expanded by Taylor

series in the form

ζ(z) = ζ(z0) + (z − z0)ζ ′(z0) +
(z − z0)2

2
ζ ′′(z0) + · · ·+, (2.6)

where the primes denote differentiation with respect to z. Therefore, in the neighborhood

of the vortex, the complex potential is accomplished by

w0(z) = w(z) +
iΓ

2π
log (ζ(z)− ζ(z0)) ,

= − iΓ
2π

log (ζ(z)− ζ(z0)) + F (z),

≈ − iΓ
2π

log

[
ζ ′(z0) +

1

2
ζ ′′(z0)(z − z0)

]
+ F (z). (2.7)

Therefore, by substitution of (2.7) into (2.3) and subsequent differentiation, the equation

10



of the free vortex motion becomes

dz∗0
dt

=
dx0

dt
− idy0

dt
= − iΓζ

′′(z0)

4πζ ′(z0)
+ F ′(z0). (2.8)

The complex-valued (2.8) equation supplies two nonlinear first-order ODEs for the vortex

position (x0, y0).

2.2.2 Emended Brown and Michael equation

From the literature [8], it is known that the emended Brown and Michael equation

is a reappraisal of original Brown and Michael equation, which is the theoretical basis of

approximations of vortex shedding from two-dimensional airfoils in flow with high-Reynolds

and low-Mach numbers. A correction is introduced in the emended Brown and Michael

equation to account for inconsistent reaction forces introduced by the original Brown and

Michael formulation.

The emended Brown and Michael equation is usually represented in vector form

dxγn
dt
·∇Ψi +

Ψi
γn

dγn
dt

= vγn ·∇Ψi, i = 1, 2 (2.9)

where xγn represents the location of a shed vortex tethered to the trailing edge with cir-

culation γn in a vector form with respect to the rectangular coordinate system x ≡ (x, y).

Ψi(x, t) denotes the stream function of complex potential of the flow in the i-direction, and

vγn is the fluid velocity when the local velocity induced by γn is excluded.Equation (2.9)

can be rearranged into the form

dz∗γn
dt

+ (H1 − iH2)
1

γn

dγn
dt

= v∗γn , (2.10)

where z∗γn = x− iy, and v∗γn = vx − ivy. Here,

v∗γn = − iγnζ
′′(zγn)

4πζ ′(zγn)
+ F ′γn(zγn). (2.11)

11



Equation (2.10) is the general scalar form of the emended Brown and Michael equation,

which will be employed for the theoretical analyses in this work. Specific details related to

the derivation of (2.10) can be found in Appendix A.

2.3 Kutta condition

Experimental evidence [12] demonstrates that, when a body with a sharp trailing edge

passes through a fluid, the action of the fluid viscosity causes the flow over the upper and

lower surfaces to merge smoothly at the trailing edge. As a result, at the trailing edge

the pressure is continuous, i.e.there is no pressure jump. This condition, termed the Kutta

condition, sets the airfoil circulation to be of sufficient strength to hold the rear stagnation

point at the trailing edge. In the present work, the Kutta condition sets the instantaneous

circulation γn of the vortex shed and tethered to the trailing edge, whose motion is governed

by the Brown and Michael equation 2.9.

12



Chapter 3

Flat plate airfoil problem

3.1 Starting vortex problem

3.1.1 Mathematical model

Consider the degenerate case of a Joukowski airfoil as a rigid flat plate airfoil of length

2a, which is at a fixed angle of attack α relative to a uniform flow U (see Fig. 3.1). To satisfy

the Kutta condition at the sharp trailing edge, a point vortex of time varying circulation

γ(t) is assumed to be released from the trailing edge only if dγ/dt changes sign. The shed

vorticity does not change sign in this problem; therefore, the emended Brown and Michael

equation is expected to recover the classical, steady thin-airfoil result for large time.

𝜸

U

y

x
𝜶 a-a

z(𝑧)

z plane

r =1

z plane

ξ

η

𝜸

Figure 3.1: Schematic and mapping of starting vortex problem
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3.1.2 Flow complex potential

The complex potential of the flow is constructed by superimposing the complex potential

to the shed vortex wγ with that of a uniform flow at angle α,

w(ζ) = wγ +
a

2
U

(
ζe−iα +

1

ζe−iα

)
. (3.1)

The complex potential associated with the single shed vortex at ζγ in the ζ-plane is

wγ(ζ) = − iγ
2π

log(ζ − ζγ) +
iγ

2π
log

(
ζ − 1

ζ∗γ

)
, (3.2)

where γ is the time-varying circulation of the shedding vortex, and the complex potential

is obtained by placing an image vortex with circulation −γ at the inverse point ζ = 1
ζ∗γ

(an

asterisk denotes the complex conjugate of a complex number).

Thus, the complex velocity in the mapped ζ-plane is obtained

w′(ζ) ≡ dw

dζ
= − iγ

2π

1

ζ − ζγ
+
iγ

2π

1

ζ − 1
ζ∗γ

+
a

2
U

(
e−iα − 1

ζ2eiα

)
. (3.3)

3.1.3 Evolution of vortex shedding

The motion of the starting vortex is determined by the scalar form of the emended

Brown and Michael equation (2.10). For the present case of a flat stationary airfoil with an

angle of attack α in the ζ-plane [7],

Ψ1 = Im

{
a

2

(
ζe−iα +

1

ζe−iα

)}
and Ψ2 = Im

{
−ia

2

(
ζe−iα − 1

ζe−iα

)}
. (3.4)

Therefore, the corresponding equations of the vortex motion zγ = xγ + iyγ are found by

substituting (3.4) into (2.10).

The instantaneous circulation of the vortex γ(t) can be determined by applying the
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Kutta condition, which requires that the flow velocity at the trailing edge (ζ = 1) vanishes:

γ(t) = 2πaU sinα
|ζγ |2 − 1

|ζγ − 1|2
. (3.5)

3.1.4 Formulation of the dynamical problem

From the introduction of equation of the vortex motion in §2.2, the complex velocity of

the starting vortex at zγ is

v∗γ ≡
dz∗γ
dt

= − iγζ
′′(zγ)

4πζ ′(zγ)
+ F ′(zγ), (3.6)

with

F ′(zγ) =
a

2

(
e−iα − 1

ζ2
γe
−iα

)
ζ ′γ +

iγ

2π

ζ ′γ

ζ − 1
ζ∗γ

. (3.7)

Summarizing the above discussion, a system of equations is derived. The real and

imaginary parts of the system supply two nonlinear first-order ordinary differential equations

for the position (xγ(t), yγ(t)) of the starting vortex at time instant t. Here the system of

equations is solved numerically using ODE45 in MATLAB. Once the circulation profile of

vortex is known, the section lift coefficient of the airfoil Cl can be determined from

Cl =
L

1
2ρU

2S
=

ρUγ(t)
1
2ρU

2(2a)
=
γ(t)

Ua
(3.8)

The resulting vortex trajectory and time-varying strength can then be determined, and

the lift coefficient history can then be compared against existing data for validation. Specific

results are shown in §5.1.
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Figure 3.2: Schematic and mapping of multiple vortices problem

3.2 Multiple shedding vortices problem

3.2.1 Mathematical model

Consider a rigid flat plate airfoil of length 2a immersed in a uniform flow U in the

x-direction. An incident line vortex of constant strength Γ is released into the flow at

the initial instant in time (t = 0) and pass along the airfoil nearby (see Fig. 3.2). The

unsteady forces due to the incident vortex on the airfoil require vorticity to be shed into

the wake to satisfy Kelvin’s theorem. In this problem, a field of multiple vortices shedding

are described by as a set of line vortices whose positions zγn = xγn + iyγn (n = 1, 2, 3, · · · )

and strengths γn (n = 1, 2, 3, · · · ) change with time. The position and strength of a vortex

tethered to the trailing edge is governed by the emended Brown and Michael equation. If

dγn/dt of the tethered vortex changes sign, the strength of the vortex becomes fixed and

the vortex is released from the trailing edge, i.e. moves as a free vortex. This scenario has

been previously investigated by Manela [14] and furnishes a verification case for the more

general framework in Chapter 4.

3.2.2 Flow complex potential

The conformal mapping for this scenario is the same as in §3.1.1 for the flat plate airfoil.

However, the complex potential of the flow changes due to the introduction of an incident
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line vortex. The complex potential of the flow becomes:

w(ζ) = wγ + wΓ +
a

2
U

(
ζ +

1

ζ

)
, (3.9)

in which wΓ is determined by placing an image vortex with circulation −Γ at the inverse

point ζΓ = 1/ζ∗Γ, together with a vortex Γ at the center of the unit circle. The two interior

vortices ensure that the total circulation around the circle vanishes. Then

wΓ(ζ) = − iΓ
2π

log (ζ − ζΓ) +
iΓ

2π
log

(
ζ − 1

ζ∗Γ

)
− iΓ

2π
log ζ. (3.10)

Now the complex potential of the shedding vortices is given by the sum

wγ(ζ) =
n∑
k=1

(
− iγk

2π
log(ζ − ζγk

) +
iγk

2π
log

(
ζ − 1

ζ∗γk

))
, (3.11)

where γk is the circulations of n− 1 free vortices composing the trailing edge wake, which

have been released from the trailing edge when dγk/dt (k = 1, 2, ..., n− 1) changed sign.

3.2.3 Evolution of vortex shedding

The motion of the most-recently shed vortices is determined by the scalar form of the

emended Brown and Michael equation derived in §2.4. To better understand the complex

form of the emended Brown and Michael equation derived by Manela [14], it is instructive

to start with the developing of original form of the emended Brown and Michael equation

(2.9) and derived the scalar form (2.10). For the present case of a thin stationary airfoil at

zero angle of attack in the z-plane [11],

Ψ1 = Im {z} and Ψ2 = Im
{
−i
√
z2 − a2

}
. (3.12)
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Therefore, the corresponding equations of the vortex motion zγn = xγn + iyγn is found by

substituting (3.12) into (2.10):

dz∗γn
dt

+

 Im
{
−i
√
z2
γn − a2

}
− yIm

{
zγn√
z2
γn−a2

}
Im

{
−i zγn√

z2
γn
−a2

} − iy

 1

γn

dγn
dt

= v∗γn . (3.13)

It is proved in subsequent numerical results in Chapter 5 that (3.13) is equivalent to the

complex form of the emended Brown and Michael equation derived by Manela in his pa-

per [14]. The detailed derivation procedure is presented in Appendix B.

Similarly, the instantaneous circulation of the vortex γn(t) is obtained

γn(t) =
|ζγn − 1|2

|ζγn |2 − 1

(
2Γ(1− Re{ζΓ})
|ζΓ − 1|2

−
n−1∑
k=1

γk
|ζγk |2 − 1

|ζγk − 1|2

)
. (3.14)

3.2.4 Formulation of the problem

From the equations of vortex motion introduced in §2.2, the position of the incident line

vortex zΓ obeys

dz∗Γ
dt

= − iΓζ
′′(zΓ)

4πζ ′(zΓ)
+ F ′(zΓ), (3.15)

with

F ′Γ(zΓ) =
iΓ

2π

ζ ′Γ
(ζ2

Γ − 1)ζΓ
−
iζ ′Γ
2π

n∑
k=1

γk

(
1

ζΓ − ζγk
− 1

ζΓ − 1/ζ∗γk

)
+ 1. (3.16)

Note that equation (3.16) corrects a typographical error in the first term of F ′(zΓ) in

Manela [14].

Similarly, the equation of motion for the n− 1 free vortices is

dz∗γk
dt

= − iγkζ
′′(zγk)

4πζ ′(zγk)
+ F ′γk(zγk), (3.17)
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with

F ′γk(zγk) =
iΓ

2π
ζ ′γk

(
1

ζγk − ζΓ
− 1

ζγk − 1/ζ∗Γ
+

1

ζγk

)
+
iγk
2π

ζ ′γk
ζγk − 1/ζ∗γk

−
iζ ′γk
2π

n∑
m=1,m 6=k

γm

(
1

ζΓk − ζγm
− 1

ζγk − 1/ζ∗γm

)
+ 1. (3.18)

The equation of motion for the shedding vortex is also determined by (3.17) and (3.18) with

k = n.

The system of equations is formed by combining equations (3.15) to (3.18), which con-

sists of 2(n + 1) first-order ordinary differential equations for the position (xΓ(t), yΓ(t)) of

the incident vortex and the positions (xγn(t), yγn(t)) of n trailing edge vortices. The system

of equations is solved numerically using ODE45 in MATLAB, and results are compared in

§ 5.2 with the results that Manela obtained in his paper [14].
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Chapter 4

Joukowski airfoil problem

4.1 Mathematical model

Now consider a general case of a Joukowski airfoil subject to a parallel uniform flow U

in the x-direction. An incident line vortex of constant strength Γ is released into the flow

at the initial instant in time (t = 0) and passes near the Joukowski airfoil (see Fig. 4.1).

And the airfoil moves harmonically in the y-direction with prescribed heaving motion

h(t) = 2ελ cos(ωt), t ≥ 0, (4.1)

where ε� 1 and ω is the frequency of the heaving motion. Vortex shedding is produced to

satisfy the Kutta condition at the trailing edge of the airfoil. In this problem, we consider

𝜸𝒌
U

y

x
2𝜆

z(𝑧)

z plane

r =1

z plane

ξ

η
å

𝜞

-2𝜆

å𝜞

h(t)

Figure 4.1: Schematic of Joukowski airfoil problem

20



multiple vortices shedding which is discretized as a set of line vortices whose position zγn =

xγn + iyγn (n = 1, 2, 3, · · · ) and strength γn (n = 1, 2, 3, · · · ) change with time. Only if

dγn/dt changes sign will a tethered vortex obeying the Brown and Michael equation be

released and allowed to move as a free vortex.

4.2 Flow complex potential

The complex potential of the flow is similar to that in §3.2.2 and as follows

w(ζ) = wγ + wΓ + wh + U

(
ζ + f0 +

λ2

ζ + f0

)
. (4.2)

The complex potentials wΓ(ζ), wγ(ζ) and wh(ζ) are obtained by using mapping transfor-

mation introduced in (2.2). With time-dependent airfoil vortices considered, (2.2) becomes

ζ(s) =
1

2

[
s(z, t) +

√
s2 − 4λ2

]
− f0, s(z, t) = z − ih(t). (4.3)

Using (4.3), the Joukowski airfoil under prescribed heaving motion in z-plane is mapped

into a stationary airfoil in s-plane. This mapping yields

wΓ(ζ) = − iΓ
2π

log (ζ − ζΓ) +
iΓ

2π
log

(
ζ − 1

ζ∗Γ

)
− iΓ

2π
logζ, (4.4)

wγ(ζ) =

n∑
k=1

(
− iγk

2π
log (ζ − ζγk) +

iγk
2π

log

(
ζ − 1

ζ∗γk

))
, (4.5)

wh(ζ) = iV

(
ζ − 1

ζ

)
, (4.6)

where V = dh/dt is the vertical velocity of the harmonic motion of the Joukowski airfoil [1].
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4.3 Evolution of vortex shedding

The motions of the shed vortices are determined by the scalar form of the emended

Brown and Michael equation (2.10), For a Joukowski airfoil in the ζ-plane [7]

Ψ1 = Im

{
ζ +

1

ζ

}
and Ψ2 = Im

{
−i(ζ − 1

ζ
)

}
. (4.7)

Using (2.10) and (4.7), the corresponding equations of the vortices motion are established.

Similarly, the instantaneous circulation of the vortex γn(t) is obtained

γn(t) =
|T ∗ζγn − 1|2

|ζγn |2 − 1

(
2Γ (1− Re{T ∗ζΓ})
|T ∗ζΓ − 1|2

−
n−1∑
k=1

γk
|ζγk |2 − 1

|T ∗ζγk − 1|2
− 2πV Re (T ∗)

)
, (4.8)

in which T ∗ is complex conjugate of the trailing edge T location (T = λ−f0) in the ζ-plane.

4.4 Formulation of the dynamical problem

The complex velocity of the incident line vortex at sΓ is

ds∗Γ
dt

= − iΓζ
′′(sΓ)

4πζ ′(sΓ)
+ F ′(sΓ), (4.9)

where

F ′Γ(sΓ) =
iΓ

2π

ζ ′Γ
(ζ2

Γ − 1)ζΓ
−
iζ ′Γ
2π

n∑
k=1

γk

(
1

ζΓ − ζγk
− 1

ζΓ − 1/ζ∗γk

)
+ iV ζ ′Γ

(
1 +

1

ζ2
Γ

)
+ U.(4.10)

Similarly, the equations of motion for the n− 1 free vortices are determined

ds∗γk
dt

= − iγkζ
′′(sγk)

4πζ ′(sγk)
+ F ′γk(sγk), (4.11)
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where

F ′γk(sγk) =
iΓ

2π
ζ ′γk

(
1

ζγk − ζΓ
− 1

ζγk − 1/ζ∗Γ
+

1

ζγk

)
+
iγk
2π

ζ ′γk
ζγk − 1/ζ∗γk

−
iζ ′γk
2π

n∑
m=1,m 6=k

γm

(
1

ζΓk − ζγm
− 1

ζγk − 1/ζ∗γm

)
+ iV ζ ′γk

(
1 +

1

ζ2
γk

)
+ 1. (4.12)

The system of dynamical equations is formed from equations (4.9) to (4.12), which

consists of 2(n+ 1) first-order ordinary differential equations for the position (sxΓ(t), syΓ(t))

of the incident vortex and the positions (sxγn (t), syγn (t)) of n trailing edge vortices. The

system of equations is also solved numerically using ODE45 in MATLAB. Once solved, the

results are mapped into the z-plane by using z(t) = s(t) + ih(t).
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Chapter 5

Results and Analysis

This chapter presents and describes the numerical simulation based upon the theoretical

analyses of the previous chapters. These results are separated into four main sections: (1)

a discussion of the verification of results in the starting vortex problem, where the results

are compared with the classical Küssner function approximation; (2) an examination of

the results of Manela [14], which involves multiple vortices shedding from a fixed flat plate

airfoil; (3) the results of an upgraded version of (2) when airfoil thickness and camber are

considered in the case of a Joukowski airfoil; (4) the results of an extended version of section

(3) when the Joukowski airfoil is under prescribed harmonic motion.

5.1 Starting shedding vortex

The mathematical problem is rendered dimensionless using the length, velocity and

time scales of a, U , a/U . Dimensionless quantities are marked by overbars. For starting

vortex problem, the initial trailing edge location is specified to be zγ(0) = zγ(0)/a =

(1, 0.0001), and the angle of attack is set arbitrarily to α = 10◦. Figure 5.1 compares the

path of the starting vortex with respect to t with an asymptote with a slope of 10◦. The

resulting lift coefficient on the airfoil calculated from Kelvin’s theorem is also compared,

where the numerical results of CL/α agree with the classical Padé approximant of the
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Figure 5.1: Starting vortex trajectory and lift history: (a) the trajectory of the starting
vortex starts from the trailing edge and the asymptote with a slope of 10◦; (b) time history
comparison of CL/α between the numerical results and the Küssner function approximation.

Küssner function [2]

K(t) = 2π

(
t
2

+ t
)

(
t
2

+ 2.82t+ 0.80
) . (5.1)

5.2 Multiple shedding vortices

The setup of the non-dimensional method and initial conditions replicate those by

Manela [14] to furnish a direct comparison: x = x/a, y = y/a and Γ = Γ/(2πUa), and

the initial line-vortex location is zΓ(0) = zΓ(0)/a = (−20, 0.2). Setting the initial shed

vortex location to be zγ(0) = zγ(0)/a = (1, 0.0001). It was found from the results that

after the third vortex is shed from the trailing edge, dγ3/dt did not change sign any more.

Therefore, the trailing edge wake can be described by shedding only three vortices in maxi-

mum. Results including the trajectories of three shed vortices and strengths are illustrated

in Figure 5.2, which are in agreement with Manela [14].
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Figure 5.2: Trajectories of an incident line vortex Γ and three shed vortices γ1, γ2 and γ3

from a flat plate airfoil in uniform flow with α = 0: (a) trajectories of incident vortex Γ and
trailing edge vortex γ2; (b) trajectories of trailing edge vortices γ1 and γ3; (c) circulation of
the connnected airfoil and trailing edge vortices in time.
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5.3 Joukowski airfoil

5.3.1 Stationary airfoil

In this part, we compared the results with different airfoil thickness of a stationary

Joukowski airfoil (ε = 0, α = 0◦). First, we compared the trajectories of the incident vortex

and three shedding vortices are composed in the cases of different airfoil thickness (0%, 15%,

25%, 35%), see Fig. 5.3. Since for 0% thickness is a degenerate case of the Joukowski airfoil

and is also the same setup the multiple vortices shedding problem studied by Manela [14],

a similar non-dimensional method and initial conditions are applied here: x = x/(2λ),

y = y/(2λ) and Γ = Γ/(4πUλ), and the initial line vortex location is zΓ(0) = zΓ(0)/(2λ) =

(−20, 0.2). The initial shed vortex location to be zγ(0) = zγ(0)/(2λ) = (1, 0.0001). The

circulation of shedding vortices as well as the loads on the airfoil are compared in Fig. 5.4.

Figure 5.3 compares the trajectories of incident vortex Γ and shed vortices γ1 and γ2 and

γ3 for increasing values of airfoil thickness. The trajectories of γ2, γ3 and Γ have a similar

shape for different values of airfoil thickness, where greater deviations are observed at long

times for the thickest airfoil. However, the trajectory of γ1 shows a sudden drop between

the time range 12 < t < 16 when the airfoil thickness is 35%. Figure 5.4 shows that both

the circulation of the shed vortices and of the airfoil change modestly but monotonically

with airfoil thickness. As the airfoil thickness increases, the circulation of free vortices also

increases (see Figs. 5.4 (a) and (b)).

The effects of different airfoil camber (0%, 4%, 9%) are also considered at fixed airfoil

thickness (12%), and the airfoil camber reference NACA 4 digit airfoil calculation. Figure 5.5

compares the trajectories of incident vortex Γ and shed vortices γ1 and γ2 and γ3 for

increasing values of airfoil camber. The trajectories of γ2, γ3 and Γ have a similar shape

for different values of airfoil camber, where greater deviation are observed at long times for

the airfoil with largest camber. However, the trajectory of γ1 shows a sudden drop between

the time range 12 < t < 15 when the airfoil camber is 9%. Figure 5.6 shows that both the

circulation of the shed vortices and of the airfoil change as models but monotonically with
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Figure 5.3: Trajectories of an incident line vortex Γ and three shed vortices γ1, γ2 and γ3

from a stationary Joukowski airfoil with different thicknesses in uniform flow with α = 0:
(a) trajectories of trailing edge vortex γ1; (b) trajectories of trailing edge vortex γ2; (c)
trajectories of trailing edge vortex γ3; (d) trajectories of incident vortex Γ.

airfoil camber. As the airfoil camber increases, the circulation of free vortices also increases

(see Figs. 5.6 (a) and (b)).

5.3.2 Harmonic airfoil motion

For a Joukowski airfoil that is not stationary (ε 6= 0, α = 0), numerical-results are first

compared against time variation of scaled airfoil circulation in Manela’s paper [14] when

ε = 0.01. The non-dimensional method and the initial conditions are similar to Manela,

which are: x = x/(2λ), y = y/(2λ), ω = (2ωλ)/U and Γ = Γ/(4πUλ), and the initial

line vortex location is zΓ(0) = zΓ(0)/(2λ) = (−20, 0.2). Setting the initial shed vortex

location to be zγ(0) = zγ(0)/(2λ) = (1, 0.0001) and the heaving frequency ω = 1 and ω
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Figure 5.4: Strengths of the bound vorticity Γa/Γ and of the shed trailing edge vortices γn/Γ
for a stationary Joukowski airfoil with different thicknesses in uniform flow with α = 0: (a)
circulation of trailing edge vortex γ1; (b) circulation of trailing edge vortex γ2; (c) circulation
of trailing edge vortex γ3; (d) circulation of incident vortex Γ.
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Figure 5.5: Trajectories of the incident vortex Γ and the shed trailing edge vortices γ1,
γ2 and γ3 for a stationary Joukowski airfoil (NACA 4 digit airfoil) with different camber
in uniform flow with α = 0: (a) trajectories of trailing edge vortex γ1; (b) trajectories of
trailing edge vortex γ2; (c) trajectories of trailing edge vortex γ3; (d) trajectories of incident
vortex Γ.
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Figure 5.6: Strengths of the bound vorticity Γa/Γ and of the shed trailing edge vortices γn/Γ
for a stationary Joukowski airfoil (NACA 4 digit airfoil) with different camber in uniform
flow with α = 0: (a) circulation of trailing edge vortex γ1; (b) circulation of trailing edge
vortex γ2; (c) circulation of trailing edge vortex γ3; (d) circulation of incident vortex Γ.
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Figure 5.7: Time variation of scaled bound circulation for different frequencies of airfoil
plunging oscillation

= 1.5, respectively. The results are shown in Figure 5.7, which agree with Fig. 4.(d) in

Manela [14].

The influence of different airfoil thickness (0%, 15%, 25%, 35%) are now explained for

prescribed heaving motions at fixed frequency, ω = 1. The result of time-varying scaled

bound circulation is presented in Fig. 5.8, which shows that there is a dramatic change

of the bound circulation near t ≈ 20 for all airfoil thicknesses. The considered reason

may be because when the incident vortex approaches the airfoil, the unsteady interaction

between the vortex and the airfoil becomes stronger and results in a large change in bound

circulation. Specifically, as airfoil thickness increases, the bound circulation deviates more

when the incident vortex is approaching the airfoil. After the incident vortex passes by

the airfoil, the interactions between the fluid and airfoil weaken, and the bound circulation

decreases to zero at large times as expected. Figure 5.8 also shows that with increasing of

airfoil thickness, the attenuation of bound circulation (damping) becomes weaker after the

time when the incident vortex passing by the airfoil. The effect of different airfoil camber

is also studied, for a Joukowski airfoil with 12% thickness, consider different airfoil camber

(0%, 4%, 9%) for the same frequency of prescribed heaving motion (ω = 1). The result of

time-varying scaled bound circulation is presented in Fig. 5.9, which shows that the bound
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Figure 5.8: Time variation of scaled bound circulation for different airfoil thickness under
the same frequency of airfoil plunging oscillation, ω = 1.

circulation has a similar shape for different values of airfoil camber, where smaller deviations

are observed even at longer times.
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Figure 5.9: Time variation of scaled bound circulation for different airfoil camber with same
airfoil thickness (12%) and under the same frequency of airfoil plunging oscillation, ω = 1.
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Chapter 6

Conclusions and Future Directions

This work studies the effects of the geometry and harmonic motions of Joukowski airfoil

in gust-airfoil interactions upon the evolution of trailing edge wake. A review of the current

literature and existing theory that models the trailing edge wake. This thesis compares

with existing theory as well as with previous work of Manela [14] for validation, and the

comparison is divided into two parts: (1) starting vortex problem; (2) multiple shed vortices

problem. Verification of (1) agrees with the starting vortex theory, and the comparison of

(2) agrees with the results found by Manela.

Upon the above comparisons, a set of modifications are made that make it possible to

study the interactions between unsteady gust and a Joukowski airfoil with different geome-

try. The modifications are divided into two main research investigations: (1) the stationary

Joukowski airfoil with different geometry (camber and thickness); (2) the Joukowski airfoil

with different geometry (camber and thickness) under prescribed harmonic motion with

different frequencies. However, both model problems are restricted to a uniform flow under

zero airfoil angle of attack, and the formulation of pertinent mathematical models will be

modified if a non-zero angle of attack is considered. Results of (1) show that there are

always three vortices shed from the trailing edge from a stationary Joukowski airfoil with

various airfoil thickness or camber, and both the trajectories and the strengths of vortices

change modestly but monotonically with airfoil thickness or camber, except for the tra-
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jectory of the first shed vortex when the airfoil thickness or the camber is at maximum,

which shows greater deviation in its trajectories in long times. Results of (2) agree with

Manela [14] when different frequencies of oscillation for a flat plate airfoil are considered,

and the results also shows that the bound circulation of a Joukowski airfoil under same

frequency of oscillation changes modestly with airfoil thickness or camber.

6.1 Future Work

Future work on this topic will include analyses that may be organized into three different

research investigations. First, the effects of elastic supports for a Joukowski airfoil on the

aeroelastic coupling between the incident vortex and airfoil may be considered. Second, the

plunging motion of a Joukowski airfoil at a non-zero angle of attack may also be developed

as an extension of the present work. Lastly, the two future investigations could inform the

prediction of vortex sound due to the vortex-airfoil interactions.
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Appendix A

Scalar form of emended Brown and

Michael equation

The original emended Brown and Michael equation is [8]

dxγn
dt
·∇Ψi +

Ψi
γn

dγn
dt

= vγn ·∇Ψi, i = 1, 2 (A.1)

(A.1) can be expanded in vector formats as

(
dx

dt
,
dy

dt

)
·
(
∂Ψ1

∂x
,
∂Ψ1

∂y

)
+
Ψ1

γn

dγn
dt

= (vx, vy) ·
(
∂Ψ1

∂x
,
∂Ψ1

∂y

)
, (A.2)(

dx

dt
,
dy

dt

)
·
(
∂Ψ2

∂x
,
∂Ψ2

∂y

)
+
Ψ2

γn

dγn
dt

= (vx, vy) ·
(
∂Ψ2

∂x
,
∂Ψ2

∂y

)
. (A.3)

(A.2) and (A.3) can be also expanded respectively as

dx

dt

∂Ψ1

∂x
+
dy

dt

∂Ψ1

∂y
+
Ψ1

γn

dγn
dt

= vx
∂Ψ1

∂x
+ vy

∂Ψ1

∂y
, (A.4)

dx

dt

∂Ψ2

∂x
+
dy

dt

∂Ψ2

∂y
+
Ψ2

γn

dγn
dt

= vx
∂Ψ2

∂x
+ vy

∂Ψ2

∂y
. (A.5)

From (A.4) and (A.5), the general scalar form of emended Brown and Michael equation
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may be written as

dx

dt
+

Ψ1
∂Ψ2
∂y − Ψ2

∂Ψ1
∂y

∂Ψ1
∂x

∂Ψ2
∂y −

∂Ψ2
∂x

∂Ψ1
∂y

1

γn

dγn
dt

= vx, (A.6)

dy

dt
+

Ψ1
∂Ψ2
∂x − Ψ2

∂Ψ1
∂y

∂Ψ1
∂y

∂Ψ2
∂x −

∂Ψ2
∂y

∂Ψ1
∂x

1

γn

dγn
dt

= vy. (A.7)

Let

H1 =
Ψ1

∂Ψ2
∂y − Ψ2

∂Ψ1
∂y

∂Ψ1
∂x

∂Ψ2
∂y −

∂Ψ2
∂x

∂Ψ1
∂y

, (A.8)

H2 =
Ψ1

∂Ψ2
∂x − Ψ2

∂Ψ1
∂y

∂Ψ1
∂y

∂Ψ2
∂x −

∂Ψ2
∂y

∂Ψ1
∂x

. (A.9)

Expressions (A.6) and (A.7) can be rearranged into

dz∗γn
dt

+ (H1 − iH2)
1

γn

dγn
dt

= v∗γn , (A.10)

where z∗γn = x− iy, and v∗γn = vx − ivy.

Equation (A.8) can be regarded as a general scalar form of the emended Brown and

Michael equation for future theoretical analyses. Once the stream function Ψi (i = 1, 2) is

known, it is possible to get ∇Ψi = (∂Ψi/∂x, ∂Ψi/∂y), thus H1 and H2 are known, and the

vortex motion can be analyzed from (A.8).
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Appendix B

Emended Brown and Michael

equation for multiple shed vortices

The original emended Brown and Michael equation in [8]:

dxγn
dt
·∇Ψi +

Ψi
γn

dγn
dt

= vγn ·∇Ψi, i = 1, 2 (B.1)

(B.1) can be expanded in vector formats as

(
dx

dt
,
dy

dt

)
·
(
∂Ψ1

∂x
,
∂Ψ1

∂y

)
+
Ψ1

γn

dγn
dt

= (vx, vy) ·
(
∂Ψ1

∂x
,
∂Ψ1

∂y

)
, (B.2)(

dx

dt
,
dy

dt

)
·
(
∂Ψ2

∂x
,
∂Ψ2

∂y

)
+
Ψ2

γn

dγn
dt

= (vx, vy) ·
(
∂Ψ2

∂x
,
∂Ψ2

∂y

)
. (B.3)

(B.2) and (B.3) can be also expanded respectively as

dx

dt

∂Ψ1

∂x
+
dy

dt

∂Ψ1

∂y
+
Ψ1

γn

dγn
dt

= vx
∂Ψ1

∂x
+ vy

∂Ψ1

∂y
, (B.4)

dx

dt

∂Ψ2

∂x
+
dy

dt

∂Ψ2

∂y
+
Ψ2

γn

dγn
dt

= vx
∂Ψ2

∂x
+ vy

∂Ψ2

∂y
. (B.5)

The stream function of the flat plate airfoil is [11]

Ψ1 = Im{z} and Ψ2 = Im
{
−i
√
z2 − a2

}
, (B.6)
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can be rearranged in the following manner:

∇Ψ1 = ∇Im{z} = Im{∇z},

= Im{∇(x+ iy)},

= Im{(1, i)},

= (0, 1) =

(
∂Ψ1

∂x
,
∂Ψ1

∂y

)
. (B.7)

Also

∇Ψ2 = Im
{
∇
(
−i
√
z2 − a2

)}
,

= Im

∇(z)
d
(
−i
√
z2 − a2

)
dz

 ,

= Im

{
(1, i)

(
−i z√

z2 − a2

)}
,

= Im

{(
−i z√

z2 − a2
,

z√
z2 − a2

)}
=

(
∂Ψ2

∂x
,
∂Ψ2

∂y

)
. (B.8)

Substituting (B.7) into (B.4) yields

dy

dt
+

y

γn

dγn
dt

= vy. (B.9)

Then substitution of (B.8) into (B.5) produces

dx

dt
+
Ψ2 − y ∂Ψ2

∂y

∂Ψ2
∂x

1

γn

dγn
dt

= vx. (B.10)

Combine (B.7), (B.8), (B.9) and (B.10) to get the complex equation of motion

dz∗γn
dt

+

 Im
{
−i
√
z2
γn − a2

}
− yIm

{
zγn√
z2
γn−a2

}
Im

{
−i zγn√

z2
γn
−a2

} − iy

 1

γn

dγn
dt

= v∗γn , (B.11)

which is equivalent to (A.10) derived by alternate means.
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