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ABSTRACT 

The lattice Boltzmann method (LBM) has been employed to investigate the temporal and 

spatial characteristics of complex flows. Such complex flows include turbulent flows past 

cylinders confined in a channel, interfacial flows of two immiscible fluids and flows driven 

by density stratifications. Two dimensional and three dimensional thermal lattice 

Boltzmann models have been developed to study non-linear dynamics of these flows. 

Detailed formulations of the single relaxation lattice Boltzmann method are presented. 

Also presented by the present author are several variations of the lattice Boltzmann method. 

These methods include the multi relaxation lattice Boltzmann, regularized lattice 

Boltzmann and thermal lattice Boltzmann. Multi relaxation time converts velocity space to 

moment space, and regularized lattice Boltzmann uses the non-equilibrium parts of the 

stress. These methods are introduced to overcome stability problem of the lattice 

Boltzmann method. A unique lattice Boltzmann model that combines regularized and 

multi-relaxation time lattice Boltzmann method is introduced here to overcome the 

shortcoming of the lattice Boltzmann method. It is demonstrated here that the new model 

is stable for high speed turbulent flows. Turbulent flow structures predicted by the 

proposed method agree well with those observed by the experiments and those predicted 

by the large eddy simulations. Spatial resolution of the turbulence resolved here is 

equivalent to that obtained by direct numerical simulations. A two dimensional nine 

velocity and a three dimensional fifteen velocity lattice Boltzmann models have been 

employed to study interfacial flows. Body forces and interactive forces are included in 

these models. Several different approaches are adopted to handle different type boundary 

conditions imposed on the velocity and temperature fields. The nonlinear stages of 
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Rayleigh Taylor instabilities and droplets rising in a stagnant fluid are characterized. The 

developed model shows and more stable more accurate results. The thermal model was 

employed to study the Rayleigh-Benard convection in a square and rectangular cavity. It 

has been demonstrated here that the lattice Boltzmann method can be an effective 

computational fluid dynamics tool to tackle complex flows. 
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CHAPTER 1:  MOTIVATION AND OBJECTIVES 

1.1. Motivation and Objectives 

The Lattice Boltzmann method is a tool from statistical mechanics that predicts 

macroscopic properties of fluids such as viscosity, thermal conductivity, and diffusion 

coefficient from the microscopic properties of atoms and molecules. The method has been 

investigated by several investigators and has been increasing in popularity since its 

development in the early nineties. LBM has been shown to have accuracy comparable to 

traditional CFD methods. Since its initial application using a single relaxation time, the 

method has been modified in a number of ways to improve its stability.  Two well-known 

modifications are the Multi-Relaxation Time method (MRTLBM) and the Regularized 

method (RLBM). MRTLBM gained some traction especially with higher Reynolds number 

flows. In multi-phase applications, such as the Rayleigh-Taylor Instability, single 

relaxation time LBM can easily become unstable at larger density difference between the 

phases. MRTLBM improves the stability of the multiphase LBM model and it is enough 

to study this problem with Atwood number of 0.1. The Regularized LBM is proven to 

improve the stability for high speed flows.  

The main objective here is to develop a stable lattice Boltzmann method to solve two and 

three dimensional complex flows problems. The Regularized Multi-Relaxation time was 

introduced and shown to be a stable technique to simulate turbulent flows. The method is 

simple in implementation and provides very stable and accurate solutions compared to the 

direct numerical simulation and large eddy simulation.  The method is tested upon complex 

interfacial flows and turbulent flows past obstacles and is proven to provide an accurate 

solutions. Computational time required by the present model is order of magnitude less 
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than that of high resolution large eddy simulations and direct numerical solution for the 

same level of accuracy attained. 

1.2. Background 

The Lattice Boltzmann method (LBM) is derived from the kinetic theory.  It can be used 

to predict the physical properties of substances from the microscopic properties of atoms 

and molecules. The method has been investigated by several investigators and has been 

increasing in popularity since its development in the early nineties. Chen and Doolen [1] 

account the history of the Lattice Boltzmann Method (LBM) and its evolution from the old 

Lattice Gas Automata method. They go on to discuss some of the classical flows studied 

with LBM such as: multiphase flows, suspended particles, and heat transfer problems. 

Historically, the lattice Boltzmann method originated from the lattice-gas cellular automata 

method (LGCA)[2]. The BGK which is known as the lattice Bhatnagar-Gross-Krook 

method has been developed rapidly and applied for many studies. The nonlinear term in 

the lattice Boltzmann approximated by BGK to be linear term, and this term is known as 

the collision term in the lattice BGK governing equation. The main idea of LBM is to 

bridge the gap between micro scale and macro scale by not considering individual behavior 

of particles alone but behavior of a collection of particles as a unit. The property of particle 

is represented by a distribution function. The distribution function acts as a representative 

for collection of particles. This scale is known as mesoscopic scale. The terminology of the 

kinetic theory is the essence of the lattice Boltzmann equation. In 1970 Pornue and de 

Pazzis started working on LBM or the Lattice Gas Automata Method or HPP method [3]. 

They modeled the movements of particles and studied each particle movement and their 

initial speed and direction. The particles follow two steps: first collision steps, then 
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streaming or transport steps. During the collision step every node is searched for a collision, 

where a collision is defined as either two particles sharing a node or a particle on a 

boundary node. Wherever a collision is found and the velocities are updated. The velocity 

of each particle at each node is updated and then calculated the next neighbor’s nodes. All 

of these processes can be done either by collision or streaming steps. The modern Lattice 

Boltzmann method removes the discrete particles from the model. In their place, there is 

the density distribution function. 

The governing equation of the Lattice Boltzmann (LBE) is called the evolution equation 

of the distribution function of the particles. The density distribution function updates at 

every time step. Then, from the density distribution function the velocities are evaluated. 

In most mathematical models, the evolution equation is updated in two steps. In the spirit 

of the old Lattice Gas Automata method, the two steps are called the collision step and the 

streaming step. The first step, which updates the density distribution function at every node 

with a relaxation time and an equilibrium density distribution function, is the collision step. 

Following that, the density distribution function moves outward in a transport step called 

the streaming step. Early research in LBM compared the solutions of flow problems 

obtained by LBM to solutions obtained by other methods, such as: Spectral Methods [4,5].   

In 1990, Benzi realized that LBM can be employed for Multi-phase flows. The basic reason 

that LBM can be so easily applied to problems with multiple fluids; is because there is no 

need to track fronts or interfaces (capturing  of the interface can be traced using LBM 

naturally). This is due to the way that LBM model multiple fluids [6]. The coloring method 

of the multiple fluids is utilized to show each fluid location at every time step. The Rotman 

model was developed even before LBM on the Lattice Gas Automat (LGA) method [7]. 
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Some researchers adapted the coloring method to LBM, however the method still retains 

several problems with the exaggerated effects of numerical noise that could be seen in 

(LGA). Shan and Chen model was developed which known as a more practical method. 

The idea in this model is to add the effects of the other fluids “external sources” which is 

called interactive or interparticle force between the fluids which can be added directly 

either in the evolution equation or in the equilibrium equation [8]. Recently, free energy 

method was introduced by Swift (1995). His idea is to re-derive the equation for the 

equilibrium density function using a free energy function. Therefore, the equilibrium can 

be made to include a variety of effects include the effects of multiple fluids [9]. He at el.  

showed that Shan and Chen model and free energy model can be derived from the 

Boltzmann evolution equation for the kinetic theory [10]. They apply various 

simplifications and approximations on the same governing equation. Therefore, each 

produces the same solutions with various levels of accuracy. He et al. [11] also produced 

their own method for dealing with multiphase problems, called the He’s method. He also 

derives a new equilibrium density distribution function. He’s method relies on a second 

equilibrium function for pressure. It is easier to model multiple fluids with Shan and Chen’s 

model, which can be employed to a variety of problems.  

LBM has been shown to be comparable to traditional CFD methods [12]. Since its initial 

application using a single relaxation time, the method has been modified in a number of 

ways to improve its stability. Two well-known modifications are the Multi-Relaxation 

Time method (MRTLBM) and the Regularized method (RLBM). MRTLBM gained some 

traction especially with higher Reynolds number flows.  
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The present investigators [13] have studied Rayleigh-Taylor instabilities and droplet 

problems using MRTLBM. In multi-phase applications, such as the Rayleigh-Taylor 

instability, single relaxation time LBM can easily become unstable at low viscosities. 

MRTLBM improves the stability of this method enough to investigate these flows 

effectively. McCracken and Abraham [14] also work around this stability problem when 

studying two-phase oscillating liquid cylinders problem using the MRTLBM. There are far 

fewer examples of the Regularized method being used. Izham et al. [15] demonstrates the 

Regularized lattice Boltzmann method (RLBM) on a high Reynolds number lid driven 

cavity flow. The RLBM was implemented to improve the stability. The density of the 

distribution function on the collision term of the evolution governing equation to broken 

into its equilibrium and non-equilibrium distribution functions. The non-equilibrium 

distribution functions substituted into the non-equilibrium stress tensor.   

In the present investigation the new lattice Boltzmann method is introduced to study high 

speed turbulent flows. The method introduced here is the combined multi-relaxation time 

and regularized lattice Boltzmann method. Such method improves the stability of the LBM 

and helps LBM to be applicable to study highly turbulent flows. This newly introduced 

unique method has been applied to study turbulent flows past a square cylinder. The 

turbulent flow structures in this geometry has been identified at the resolution of LES or 

even Direct Numerical simulations level. The present results were compared to those 

obtained by large eddy simulation and experimental studies. The present investigators also 

considered the flow past an array of square cylinders, both inline and staggered 

arrangements [16]. 
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Classical methods for modeling turbulent flows include LES and Direct Numerical 

Simulations (DNS). Both methods are resource hogs with unacceptably long runtimes. The 

method used in the present study runs in a fraction of the time required by LES or DNS.  

A wide range of complex flows are covered in the present study. These flows include 

turbulent flows and interfacial flows. The main goal of this research is to develop stable 

lattice Boltzmann method to study two and three dimensional turbulent and interfacial 

flows. Stability enhancement of lattice Boltzmann method has been demonstrated in 

turbulent flows pass a cylinder confined in a channel and the interfacial flows induced by 

Rayleigh Taylor instabilities.  
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CHAPTER 2: MATHEMATICAL MODELS  

2.1. BGK Approximation -Single Relaxation Time (SRT) 

The Lattice Boltzmann Method (LBM) was developed from the Lattice Gas Automaton 

method (LGA) studied by Martin et al. [17] and by Wolf-Gladrow [18]. In LGA imaginary 

particles are placed on the lattice and are given velocities. At each time step the particles 

will move along the lattice to their next position based on their velocities, this is the 

streaming or propagation step. Then, if multiple particles are on the same node in the lattice, 

certain collision rules are followed. This is called the collision step. By the collision step 

the velocities are updated for the next time step. This easily conserves mass and 

momentum. Mass is conserved by maintaining the same number of imaginary particles 

throughout the simulation and momentum is conserved by the rules set in the collision step. 

However, there are serious problems with noise due to the bulk treatment of the particles 

and the viscosity is hard to control due to how collisions are treated. LBM uses 

Boltzmann’s density distribution function to create a continuous model for the particles 

which introduces a relaxation term. Due to this relaxation term and the fact that LBM uses 

a continuous distribution function, the problems with noise are smoothed out and the 

viscosity becomes easy to set.  

Before we continue into the discussion of LBM there are a few issues that should be 

addressed. The lattice variables, while typically retaining the same or similar notation as 

their real counterparts are not the same. For example lattice viscosity is actually determined 

by 

 𝜈𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
δx2

3δt
(τ − 0.5)                                                                                                         1 
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 As outlined by Succi [2], the general rule is to obtain the lattice parameters using the 

discretization parameters δx = 1 and δt = 1. In effect this means that δx is the spacing 

between two adjacent lattice nodes, δt  is the time of a single time step and τ  is the 

relaxation time.  

A description of the lattice structure is also necessary for the method. It is common to refer 

to the lattice being studied as DnQl, where n and l are numbers. In this shorthand, the n is 

the number of spatial dimensions and the l is the number of lattice directions at each node. 

The present study was done using D2Q9, which is depicted in Figure 1. 

 

Figure 1. D2Q9 arrangement for lattice inside the flow domain. 

 

The Boltzmann relation which all of LBM research is based on is  

∂f

∂t
+ 𝐯 ⋅ ∇f +

𝐅

mp

∂f

∂𝐯
= Ω(f)colision                                                                                                 2 

In equation (2) v is the particle velocity, F is the term of external forces, and mp is the 

particle mass. Note that the third term will be dropped as the present investigation contains 

no external forces. f is the density distribution function, which is to say, for some position 

and some time, the number of particles per volume with a velocity between v and v + dv. 

f1 f5 

f2 

f6 f3 f7 

f8 

f4 

f0 
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This form of the equation is, unfortunately, unusable since the time rate of change of "f " 

due to collisions on the right hand side is not easy to be determined. In the 1950s Bhatnagar 

et al. [19] introduced the approximation: 

Ω(f)colision =
δt
τ
(feq − f)                                                                                                                 3 

Here 𝜏  is the lattice relaxation time; which is, in the single relaxation time method 

described below, determined by the viscosity and the lattice parameters, as displaced in 

equation(1). The Boltzmann equation with this relation, sometimes called the BGK model, 

is what most LBM research is based on. The original research into the modern LBM was 

done on the single relaxation time method. Martinez [20] verifies the results of the method 

by comparing his results for a shear flow with results obtained by a spectral method. Hazi 

and Jimenez [21] verify a modified version of this equation for 2-D decaying turbulence in 

a square box against pseudo-spectral methods. Single relaxation time LBM is still popular 

in research since it is simple and easy to be implemented.  In single relaxation time LBM 

the propagation and collision steps are represented in the evolution equation.  

fk(𝐫 + 𝐞kδt, t + δt) − fk(𝐫, t) = −
δt
τ
[fk(𝐫, t) − fk

eq(𝐫, t)]                                                       4 

In equation (4) above, the left hand side represents streaming and the right hand side 

represents the collision.  Here the function fk(𝐫, t) is the density distribution function along 

the lattice branch k, r is the spatial coordinate, and t is time. 𝐞k is the expression for the 

discrete velocities along each lattice branch k, fk
eq(𝐫, t) is the equilibrium distribution 

function. fk
eq

  is a very important term, since the appropriate selection of this function 

guarantees that the evolution equation satisfies the Navier Stokes equation. To select fk
eq
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a Chapman-Enskog expansion is applied. As Chapman and Cowling [22], the equilibrium 

distribution function is 

fk
eq
= C {1 + C1𝐞k ⋅ 𝐮 + C2 [(𝐞k ⋅ 𝐮)

2 −
1

2
|𝐮|2] + ⋯ }                                                              5 

where 𝐮 is the fluid velocity. The higher order terms are unnecessary for an incompressible 

fluid; therefore only three constants (C, C1, C2) need to be selected.  To select these 

constants these three constraints from kinetic theory are applied 

∑ fk
[0] = ρk                                                                                                                           6 

∑fk
[0]𝐞k = ρ0𝐮

k

                                                                                                                               7 

Equation (6) and (7) are necessary to satisfy the conservation laws. Here ρ0 is the density 

of the fluid and ρ is the local density. While the fluid in question is incompressible ρ it is 

capable of small variation in ρ  since in this method ρ defines pressure as described below. 

After applying constrains (equations (6) and (7)) to the Chapman-Enskog expansion 

(equation 5), yields: 

fk
eq(𝐫, 𝐭) = wk {ρk + ρ0(3

ek. 𝐮

e2
+
9

2

(ek. 𝐮)
2

e4
−
3

2

|𝐮|2

e2
}                                                             8 

where e is the lattice speed defined as 

 𝐞 =
δx

δt
                                                                                                                                  9 

and w𝑘 is the weighting function specific to the lattice geometry.  

The full proof that the evolution equation satisfies the Navier Stokes equation can be found 

in He and Lou [23]; however for the sake of understanding the RLBM discussed below a 



13 
 

brief overview must be provided. The first step is to express the equation (10) terms in 2-

D Taylor series expansion 

fk(𝐫 + 𝐞kδt, t + δt) = ∑
∈𝑛

𝑛!
∞
𝑛=0  Dtfk(𝐫, 𝐭)                                                                                   10      

 where ϵ = δt  is a small parameter and Dt is the operator (∂t + 𝐞k ⋅ ∇) . Then from 

perturbation analysis the function fk can be expressed as in equation (11) 

∑ϵnfk
[n]
                              

∞

n=0

                                                                                                                 11 

and the operator ∂t as in equation(12) 

∑ϵn ∂tn

∞

n=0

                                                                                                                                              12 

 Then substitute these definitions into the evolution equation and extract the terms of order 

ϵ zero, one and two. By applying the constraint equations above and with the definition of 

dimensionless pressure as  

P =
𝑐𝑠
2ρ

𝜌0
                                                                                                                                               13  

The first order 𝜖equation can be shown to be the Euler equation and the second order 𝜖 

equation can be shown to be the full Navier Stokes equation.  

2.1. Multi-Relaxation Time -MRTLBM 

Single relaxation time LBM has a great deal of stability issues and will begin to fail even 

at fairly low Reynolds numbers. To solve these stability issues past investigators 

(d’Humieres [24]) developed the Multi-Relaxation Time Lattice Boltzmann Method 

(MRTLBM).  At the start of the present study MRTLBM was employed to deal with the 
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high Reynolds numbers in the problem. In MRTLBM the evolution equation becomes the 

system of equations: 

𝐟(𝐫 + 𝐞kδt, t + δt) − 𝐟(𝐫, t) = S[𝐟(𝐫, t) − 𝐟
eq(𝐫, t)]                                                         14   

where the bold face is used to denote a vector of k elements and S is a matrix called the 

collision matrix. Notice that when the collision matrix is defined as   

S =
δt

τ
𝐈                                                                                                                                             15 

where I is the identity matrix, the equation reduces to the single relaxation time LBM 

evolution equation. In MRTLBM the idea is to go from the velocity space where 𝐟 exists 

to a moment space where the function m exists. Note that the vector m is made up of 

elements mB where the set B has the same cardinality as the set of k. Each moment mB can 

be found using the relation 

mB = ϕB ⋅ f                                                                                                                       16 

This definition clearly shows that the moments are linear combinations of f. From this, 

basic linear theory tells us that the velocity space and the moment space must have a linear 

mapping 

𝐦 = M ⋅ 𝐟                                                                                                                                           17 

Now choose the collision matrix in such a way that its eigenvectors are ϕB the collision 

process will be naturally accomplished. Applying these relations to equation (14) will result 

in the MRTLBM evolution equation. 

fk(𝐫 + 𝐞kδt, t + δt) − fk(𝐫, t) = −M−1Ŝ[mk(𝐫, t) − mk
eq(𝐫, t)]                                            18 

where Ŝ is a diagonalized new collision matrix such that 
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 Ŝ = M ∙ S ∙ M−1                                                                                                                                 19                                                        

For a more detailed derivation, please refer to d’Humieres and his colleagues [24, 25]. The 

Multi-relaxation time has been applied to study the complex flow in the lid driven up to 

Re=20000 [26]. 

2.3. Regularized –Lattice Boltzmann -RLBM 

With MRTLBM alone present investigators were able to bring the flow past a cylinder to 

around Reynolds number of 10000 for the lattice resolution selected. Past this, the method 

again begins to see stability problems. A number of years ago another method was 

developed from single relaxation time LBM; this method, called Regularized Lattice 

Boltzmann Method (RLBM), was an attempt to improve the stability of single relaxation 

time LBM by using a non-equilibrium distribution function. However as MRTLBM grew 

more popular the method got less attention.  In the classical RLBM, a non-equilibrium 

distribution function is introduced such that 

fk
neq(𝐫, t) = fk(𝐫, t) − fk

eq(𝐫, t)                                                                                                      20 

Similarly, a non-equilibrium stress tensor is found as  

Πkij
neq

= Πkij − Πkij
eq
                                                                                                                           21  

Now introduce this definition for the relationship between the stress tensor and the 

distribution function as  

Πkij =∑𝐞ki𝐞kjfk

𝟖

𝐤=𝟎

                                                                                                                          22 
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Notice that this is simply the velocity moment of the distribution function. Combining these 

two equations gets the following relation for the non-equilibrium part of the stress tensor 

Πkij
neq

= Πkij −∑𝐞ki𝐞kjfk
eq
                                                                                                          23

𝟖

𝐤=𝟎

 

Now in the interest of canceling higher order contributions to our governing equation as 

described in Latt and Chopard [27] the following expression is found using the Chapman-

Enskog expansion. 

fk
neq(𝐫, t) ≈ fk

(1) =
wk
2cs4

𝐐kijΠij
neq
                                                                                                  24 

where the tensor 𝐐kij is defined as  

𝐐kij = 𝐞ki𝐞kj − cs
2𝛅ij                                                                                                                                                  25 

where 𝛅ij  is the Kronecker delta function. Using this equation the modified evolution 

equation of the form is obtained 

fk(𝐫 + 𝐞kΔt, t + Δt) − fk(𝐫, t) = −
ωk
2τcs4

𝐐kijΠij
neq
                                                                   26 

2.4. Regularized Multi-Relaxation Time -RMRTLBM 

In the present investigation it was attempted to further increase the stability so as to 

simulate the turbulent flow past a square cylinder at much higher Reynolds numbers than 

what had been previously studied [16]. To do this the two methods mentioned above are 

combined. The same procedure as the regularized method was followed except that this 

was introduced. 
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fk
neq(𝐫, t) = fk(𝐫, t) − fk

eq(𝐫, t)                                                                                                      27 

Continuing along the same reasoning as in regularized LBM the following relation is 

reached. 

mneq = Mfneq(𝐫, t) = M [
ωk
2cs4

𝐐kijΠij
neq
]                                                                                    28 

m = Mf                                                                                                                                               29 

Substitution into the equation (14) yields to R-MRTLBM 

fk(𝐫 + 𝐞kΔt, t + Δt) − fk(𝐫, t) = −M−1ŜM[fk(𝐫, t) − f
eq(𝐫, t)]                                            30 

Using this governing equation, turbulent flow past a bluff body for Reynolds numbers 

above 20000 can be achieved. Numerical values of components of M, mk
eq

,Ŝ,wk, and ek 

are given in as 

M =

[
 
 
 
 
 
 
 
 
1
−4
4
0
0
0
0
0
0

1
−1
−2
1
−2
0
0
1
0

1
−1
−2
0
0
1
−2
−1
0

1
−1
−2
−1
2
0
0
1
0

1
−1
−2
0
0
−1
2
−1
0

1
2
1
1
1
1
1
0
1

1
2
1
−1
−1
1
1
0
−1

1
2
1
−1
−1
−1
−1
0
1

1
2
1
1
1
−1
−1
0
−1]
 
 
 
 
 
 
 
 

 and meq =

[
 
 
 
 
 
 
 
 
 
 

ρ

−2ρ + 3(Jx
2 + Jy

2)

ρ − 3(Jx
2 − Jy

2)

Jx
−Jx
Jy
−Jy

(Jx
2 − Jy

2)

JxJy ]
 
 
 
 
 
 
 
 
 
 

                                   31                                          

Here Jx and Jy are linear momentum in x and y directions. Components of the diagonal 

matrix �̃� are 1, 1.4, 1.4, 1, 1.2, 1, 1.2, τ and τ. The weighting function for k =1 to 9 is 

 wk =
1

9
{4,1,1,1,1,

1

4
,
1

4
,
1

4
,
1

4
 }                                                                                                32                                                                          

and the discrete lattice velocity is  

𝐞𝐤 = {(0,0), (1,0), (0,1), (−1,0), (0, −1), (1,1), (−1,1), (−1,−1), (1, −1)}                    33                                    
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2.5. Multi-phase Flow Model 

To deal with multiple fluids simply introduce multiple density distribution functions: fk
σ, 

with σ = {1…α}  where α  is the number of fluids in the system. Now the evolution 

equation becomes the system of equations: 

∂fk
σ

∂t
+ ek. ∇f

σ
k = ω(f

σ
k
eq − fσk) +

Wkck𝐅
𝛔

cs
4                                                                              34                                                                     

As it is, this evolution equation is missing a key component to multiphase flows, inter-

particle forces, 𝐅i𝐧𝐭 .To add this effect into the multiphase flow we used the model 

introduced by Shan and Chen is used [28]. Also we need a common velocity and a density 

which can be found by what is effectively mass averaging are needed 

ρσ =∑𝐟𝐤
σ

𝐐

𝐤=𝟎

,          𝐮σ =
∑

1
τσσ ∑ fk

σekk

∑
1
τσ
ρσσ

                                                                                       35 

With this we can solve for an equilibrium velocity can be determined. Using this velocity 

in the calculations for  fk
𝜎𝑒𝑞

will automatically account for the inter-particle forces as 

demonstrated in Shan and Chen. The total external forces can be treated by different ways. 

The force term can be added as an external term to the right hand side of the governing 

evolution equation (34) as, ρFσ and the other way is to add the force term to the LBE, by 

modifying velocity in calculating equilibrium distribution functions. Newton’s second law 

of motion states that, 

F = m𝐚 = m
d𝐮

dt
                                                                                                                               36 

where a and u are acceleration and velocity vectors, respectively, then  
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∆𝐮 =
𝜏σ𝐅σ

𝜌𝛔
                                                                                                                                        37 

where τσ is the relaxation time of  σ components                                                       

The velocity should be modified by Δu in calculating equilibrium distribution functions 

only,  

𝐮𝜎𝑒𝑞 = 𝐮𝜎 + ∆𝐮                                                                                                                               38 

The external force represents body force, interfacial force, adhesive force, or any other 

external forces.  

Fσ=Fσ
int+Fσ

body+Fσ
adh                                                                                                                                                                                 39 

Here 𝐅σ is the total inter-particle force on fluid σ per unit volume. It has been shown by 

Huang et al [29] that 𝐅σ can be extended to include other forces such as body forces and 

adhesion forces. In the present investigation adhesion forces were ignored; however, a 

body force was included. This was necessary since, by definition, the Rayleigh Taylor 

instability requires a body force in the opposite direction to a density gradient. Therefore, 

in the present investigation the inter-particle force is calculated using [30] 

𝐅σ = 𝐅int
σ + 𝐅body

σ                                                                                                                             40 

𝐅𝐢𝐧𝐭
σ (𝐫, t) = −G𝜓σ̅̅ ̅̅   (𝐫, t)∑wa

a

ψσ(𝐫 + ∆𝐫)                                                                              41 

The potential strength is determined by using Shan and Chen model [28] as 

ψσ(𝐫, 𝐭) = ρ
0
σ(1 − e−ρσ ρ0

σ⁄ )                                                                                                           42 
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Since only the interactions between point and its x neighbours are being considered G can 

be written as: 

G(𝐫, 𝐫′) = {
0,   |𝐫 − 𝐫′| > 𝑐

ℊii̅, |𝐫 − 𝐫′| ≤ c   
                                                                                           43                                                                                  

where ℊii̅ is a constant parameter which controls the strength of the inter-particle forces.  

The gravity force is much simpler: 

𝐅body
σ = 𝐠𝐫ρ

σ                                                                                                                                     44                                                                               

For the sake of presentation a colouring step can be added to this method in the two fluid 

cases. The idea is to create a function κ which is one at a node entirely dominated by the 

lighter fluid, negative one at a node entirely dominated by the heavier fluid, and somewhere 

between one and negative one for a node which consists of both the light and heavy fluid.  

 κ =
ρlight−ρheavy

ρlight+ρheavy
                                                                                                                              45                                                                                 

At any given instant this colouring function can be contour plotted to produce an image 

showing where each fluid is. 

2.6. Lattices Boltzmann Arrangements 

The common terminology of LBM arrangement is DnQl which refers to the dimension of 

the domain and the number of distribution functions, where n denotes to the dimension of 

the domain and l denotes the directional velocity.  
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2.6.1 One Dimensional LBM Arrangements 

This terminology can be employed for one–dimensional flow. It can be written as D1Q2 

.The lattice arrangement for D1Q2 is shown in Table 1.1. It means that one dimensional 

problem with two linkages or distribution functions. It can be applied for flow or heat 

transfer problem. 

Lattice Arrangements type  Linkages / or distribution functions  

D1Q2 

(One dimension and two distribution 

functions) 

 

 

 

 

Table 1.1. One dimensional lattice arrangements.  

  

2.6.2 Two Dimensional LBM Arrangements 

There are various two dimensional lattice arrangements. As an example D2Q4, D2Q5 and 

D2Q9 are illustrated in Table 1.2.  

Lattice Arrangements type  Linkages / or distribution functions  

D2Q4 

(Two dimensions and four distribution 

functions) 

 

  

 

 

 

 

  

f1 

f4 

f3 

f2 

f1 f2 
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D2Q5 

 

(Two dimensions and five distribution 

functions) 

 

 

 

 

 

D2Q9 

 

 

(Two dimensions and nine distribution 

functions) 

 

 

 

 

 

 

 

Table1.2. Two dimensional lattice arrangements.  

 

2.6.3 Three Dimensional LBM Arrangements 

 Three dimensional lattices Boltzmann arrangements, D3Q15, D3Q19, have been 

employed to study three-dimensional lid-driven study [31]. It is shown that as the number 

of distribution functions increases, the accuracy of the simulations improves. The accuracy 

of the results also depends on how the boundary conditions are treated. Here in this chapter 

various boundaries are applied such as periodic, 2nd order accuracy boundary, and 

Neumann boundary. 

 

f1 

f8 

f5 f2 f6 

f3 

f7 
f4 

f0 

f1 

f4 

f3 

f2 

f0 
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Lattice Arrangements type  Linkages / or distribution functions  

D3Q15 

 

 

 

(Three dimensions and fifteen 

distribution functions) 

 

 

 

D3Q19 

 

 

(Three dimension and nineteen 

distribution functions) 

 

 

Table 1.3. Three dimensional lattice arrangements. 

  

2.7. Equilibrium Distribution Function 

 

The equilibrium distribution function is the key element in implementing LBM. The 

different physical problem can be solved by using LBM provided that a proper equilibrium 

distribution function is utilized. 

The normalized Maxwell’s distribution function can be written as, 
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fk =
3ρ

2π
e
−3ek

2(𝐮2−ek.𝐮)
2                                                                                                                    46   

which can be re-written as,  

fk =
3ρ

2π
e−

3e2

2 𝐞
3(e.𝐮−𝐮2)

2                                                                                                                   47  

where e2 = e.e   and u2 = u.u .Using the Taylor series expansion of  exponential (e-x) 

equation (47) can be written as  

fk =
3ρ

2π
e−

3C2

2  (1 + 3(ek. 𝐮) −
3

2
𝐮2 +⋯)                                                                                    48 

The general form of the equilibrium function can be written as  

fk
eq
= wk∅(X, t) (1 + 3(ek. 𝐮) −

3

2
𝐮2 +⋯)                                                                             49 

where ∅  represents a temperature, a species or a density, wk is the weighting  function, ek 

is lattice velocity vector  

ek =
δx
δt
𝐢 +

δy

δt
𝐣 +

δz
δt
𝐤                                                                                                                    50 

The velocity field in two-dimensional problems can be defined as  

𝐮 = u𝐢 + v𝐣                                                                                                                                        51 

The velocity field in three-dimensional problems can be defined as  

𝐮 = u𝐢 + v𝐣 + w𝐤                                                                                                                            52 

where i,j, and k are unit vectors in x,y, and z directions.  
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2.8. Lattice Boltzmann Domain and Physical Domain 

The conversion from lattice domain to physical domain is the important issue to present 

results with the physical dimensions [32]. The conversion is an easy process. The 

dimensionless parameters that make linking between lattice and physical domain such as 

Reynolds number, Prandtl number, and Rayleigh number have to be selected. In this 

section detailed description of such conversion is provided.  

ReD = (
UD

𝑣
)
physical

= ReN = (
UlbN

𝑣𝑙𝑏
)
lattice

                                                                             53 

where U is the actual velocity in [m/s], D is the characteristic dimension in [m], Ulb is the 

velocity per lattice, 𝑣  is the actual kinematic viscosity in [m2/s], 𝑣𝑙𝑏  is the kinematic 

viscosity per lattice,  ReD is the Reynolds number based on the physical parameters, and 

ReN is the Reynolds number based on the lattice parameters.  

The actual (physical) time can be evaluated by  

Tphy = (
D

U
)
phy

                                                                                                                                 54 

and the lattice time can be calculated by  

Tlb = (
N

Ulb
)
lb

                                                                                                                                    55 

Since the ReD = ReN the time can be presented in terms of the kinematic viscosity of the 

fluid  physical and the lattice domain as follow  

(
D2

𝑣
)
phy

= (
N2

𝑣lb
)
lb

                                                                                                                         56 

From equation (56) the kinematic viscosity per unit lattice (lu2/ts) can be determined  

𝑣lb =
(UlbN)lb
(U × D)phy

𝑣phy                                                                                                                   57 
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Therefore, the actual time step in LBM is expressed as 

ts =
D2𝑣lb
N2𝑣phy

                                                                                                                                      58 

In the case when the Rayleigh number characterizes the flow  

Ra =
gβ∆TH3

𝑣α
=   

g∆ρH3

𝑣2ρ
                                                                                                              59 

The kinematic viscosity per unit lattice can be defined in terms of physical domain 

properties (ρ, υ, and g) as   

𝑣lb = √
ρ𝑣2

gL3∆ρ

∆x2

∆t
                                                                                                                           60 

For natural convection, selecting the product of the acceleration and the thermal expansion 

should be selected for the conversion process 

gβ =
Ra × 𝑣 × α

∆θN3
                                                                                                                              61 

where N is the numbers of lattices in the characteristic length, α, υ are kinematic viscosity 

(m2/sec) and thermal diffusivity (m2/sec), respectively, and Δθ is the normalized 

temperature difference between the hot side and the reference temperature. The normalized 

temperature is defined as  

θ =
T − Tc
Th − Tc

, thus θh = 1 and θc = 0, and   θref =
(θh + θc)

2
 , ∆θ = θh − θref              62 

2.9. Calculation of Stream Functions and Vorticity  

The vorticity field is determined from the definition  

ω =
∂V

∂X
−
∂U

∂Y
                                                                                                                                   63  

The equation (63) is discretized by using the central scheme    
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ω(i, j) =
V(i + 1, j) − V(i − 1, j)

2∆X
−
U(i, j + 1) − U(i, j − 1)

2∆Y
                                              64    

The stream functions can be evaluated from the vorticity Poisson equation 

ω = −(
∂2ψ

∂X2
+
∂2ψ

∂Y2
  )                                                                                                                          65  

Discretizing equation (64) by using the central scheme for the interior nodes yield 

2 ≤ i ≥ Nx − 1, 2 ≤ j ≥ Ny − 1 

ψ(i, j) =
1

2
Δx2

+
2
ΔY2

(
[ψ(i + 1, j) + ψ(i − 1, j)]

ΔX2
+
[ψ(i, j + 1) + ψ(i, j − 1)]

ΔY2
+ ω(i, j)) 66 

The discretized equations for the boundary node is listed in Table 1.4 for various type of 

boundary conditions. 

Type of scheme  No-slip BCs Periodic BCs 

 

 

 

 

 

 

 

 

Forward scheme  

Vortcicity: 

ω = −
∂U

∂Y
(Lower) 

 

ω =
∂V

∂X
(Left) 

 

 

Stream Function: 

ψ(i, 1) = 0 

ψ(1, j) = 0 

 

 

Vortcicity: 

ω =
∂V

∂X
−
∂U

∂Y
(Lower) 

 

ω =
∂V

∂X
−
∂U

∂Y
(Left) 

 

Stream Function: 

 

−ω =
∂2ψ

∂X2
+
∂2ψ

∂Y2
(Lower) 

 

−ω =
∂2ψ

∂X2
+
∂2ψ

∂Y2
(Left)    
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Table 1.4. Vorticity and stream function discretization at the boundary. No-slip and 

periodic boundary conditions are applied. 

 

2.10. Types of Boundary Conditions in the Lattice Boltzmann Method 

There are several models for treating boundary conditions in lattice Boltzmann method. 

This section describes these boundary conditions: a reflection boundary condition, a 

periodic boundary condition, and a mass conserving boundary condition similar to the one 

studied by Zou and He [33] and Kuo and Chen [34].  

2.10.1. Reflection Boundary Conditions 

The non-equilibrium bounce back condition states that the part of the density distribution 

function not contributing to the equilibrium will be reflected from the boundary. Therefore: 

 

 

 

 

 

 

 

Backward scheme  

Vortcicity: 

 

ω = −
∂U

∂Y
(Lower) 

 

ω =
∂V

∂X
(Right) 

 

Stream Function: 

 

ψ(i, Ny) = 0 

ψ(Nx, j) = 0 

 

 

Vortcicity: 

ω =
∂V

∂X
−
∂U

∂Y
 

ω =
∂V

∂X
−
∂U

∂Y
(Lower) 

 

ω =
∂V

∂X
−
∂U

∂Y
(Right) 

 

Stream Function: 

 

−ω =
∂2ψ

∂X2
+
∂2ψ

∂Y2
(Upper) 

 

−ω =
∂2𝜓

∂X2
+
∂2𝜓

∂Y2
(Right)    
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fa − fa
eq
= fb − fb

eq
                                                                                                       67                                                                             

where the direction b is opposite of a. In the no-slip no penetration case shown in Figure 2 

this generates: 

f1 = f3  

f5 = f7 −
1

2
(f2 − f4)                                                                                           68                                             

f8 = f6 +
1

2
(f2 − f4)  

 

Figure 2. D2Q9 arrangement for the lattice located on the bottom boundary. 

 

2.10.2. Periodic Boundary Conditions 

Periodic boundary conditions become necessary to isolate repeating flow conditions. To 

explain this type of boundary condition, for instant, the leaving distribution functions from 

a line a same as the distribution functions entering to a line b and vice versa, as shown in 

Figure 3. 

f8,a = f8b, f4,a = f4,b, and f7,a = f7,b                                                                                   69 

 

 

f1 f5 

f2 

f6 f3 𝐟𝟕 

f8 

f4 

𝐟𝟎 
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Figure 3. D2Q9 periodic flow boundary condition. 

 

2.10.3. Neumann Boundary Conditions 

Zou and He [33] and Kou and Chen [34] described a method to calculate the unknown 

distribution functions based on the conservation of mass and momentum in the x and y-

direction. For D2Q9 arrangement there are three unknown distribution functions 

(f2, f5, f6) and the density (ρ). They can be evaluated from:   

The conservation of mass 

ρσ =∑𝐟𝐤
𝛔

𝐐

𝐤=𝟎

    ,                                                                                                                                  70 

The conservation of momentum in the x direction  

ρu = f1 + f5 + f8 − f6 − f3 − f7     ,                                                                                   71 

The conservation of momentum in the y- direction  

ρv = f5 + f2 + f6 − f7 − f4 − f8                    ,                                                                       72 

a 

b 

f1 

f8 

f5 f2 f6 

f3 

f7 
f4 

f0 

f1 

f8 

f5 f2 f6 

f3 

f7 
f4 

f0 
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The equilibrium condition normal to the boundary; yields 

f1 − f1
eq
= f3 − f3

eq
, f2 − f2

eq
= f4 − f4

eq
                                                                           73 

The Neumann boundary condition is shown in the Appendix A for D3Q19.  

2.10.4. Symmetry Boundary Conditions 

Many practical problems are symmetric about a line or a plane. Using symmetry boundary 

conditions will reduce the computational domain. The symmetry can be presented as a 

mirror of the three distribution functions around the symmetry line a’-a:  

f6 = f7, f2 = f4, and f5 = f8                                                                                                 74 

The way to construct the symmetry is to set them equal to their mirror around the symmetry 

line, as shown in Figure 4.   

 

 

 

 

Figure 4. A symmetry boundary condition about a symmetry line a-a’. 

 

2.11. Spatial Discretization 

The Boltzmann equation is discretized and solved numerically. Each points of the 

discretized physical space of interest are assigned a lattice point. Each point is populated 

by discrete particles. These particles move from one lattice to another lattice site with 

f1 

f8 

f5 f2 f6 

f3 

f7 
f4 

𝑓0 
a a' 
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discrete velocities (ek) and the colliding with each other at lattice nodes. Thus, the 

discretization form of the LB is referred to as the lattice Boltzmann equation. Generally, 

the lattice Boltzmann discretized equation is given by 

fk(𝐫, t + δt) − fk(𝐫, t)

δt
+ ck

fk(𝐫 + ∆r, t + δt) − fk(𝐫, t + δt)

δr

= −
1

τ
[fk(𝐫, t) − fk

eq
(𝐫, t)]                                                                                  75 

where r = (x, y, z), δr = (δx, δy, δz), ek =
Space

time
=

δx

δt
=

δy

δt
=

δz

δt
= ±1. Note that δr =

ek. δt .  

Equation (75) can be written as  

fk(𝐫, t + δt) − fk(𝐫, t) + fk(𝐫 + δr, t + δt) − fk(𝐫, t + δt) = −
δt
τ
[fk(𝐫, t) − fk

eq(𝐫, t)]  76 

A simple algebraic manipulation yields: 

fk(𝐫 + δr, t + δt) − fk(𝐫, t) = −
δt
τ
[fk(𝐫, t) − fk

eq
(𝐫, t)]                                                         77 

 

2.12. Temporal Discretization 

To solve equation (75) and (76) numerically, the following temporal discretization is 

adapted:  

fk(𝐫 + δr, 𝑡 + 𝛿𝑡) − fk(𝐫, 𝑡) = −∫
f𝑘(𝐫, 𝑡) − fk

eq(𝐫, 𝑡)

𝜏
𝑑𝑡

𝑡+𝛿𝑡

𝑡

                                             78 

The integrand of the right hand side of the equation (78) is assumed to be constant over 

one time step. That is the first integrand in the collision term which is treated explicitly, 

using the first order approximation. This assumption yields an artificial viscosity that can 

be absorbed into the real viscosity of fluid.  
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CHAPER 3: TURBULENT FLOWS PAST CYLINDERS 

3.0. Objective 

The novel lattice Boltzmann method introduced by the present author is used to simulate 

turbulent flows pass a cylinder. The regularized multi-relaxation lattice Boltzmann model 

is expected to improve the stability of the single relaxation time lattice Boltzmann method. 

Simulations are conducted for a wide range of the Reynolds number. In order to validate 

the model, predicted results from the regularized MRTLBM are compared against 

measured results. Turbulent flows pass a cylinder are selected here to validate the newly 

introduced model since these flows are well-characterized and well-documented.  

3.1. Introduction 

Several investigators studied the flow past a circular or a square cylinder using single 

relaxation time lattice Boltzmann method (SRT) [35]. These studies showed that SRT 

becomes unstable at high values of the Reynolds number. In order to improve the stability 

by pervious investigators is proposed a multi-relaxation time or a regularized lattice 

Boltzmann method. Regularized and multi-relaxation time (RLBM and MRT) proposed by 

the present author is employed to study turbulent flow past a single and arrays of cylinders 

for a wide range of the Reynolds number. The method is shown to be stable for Reynolds 

number as high as 21400.   

3.2. A Mathematical Model 

The RLBM and MRT LBM have been implemented to study turbulent flows past a single 

and arrays of cylinders. The predicted results have been compared with those obtained by 

experimental observations and by large eddy simulations [37,38]. The schematic diagrams 
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shown in Figure 5 illustrates the geometries considered.  At the inlet the velocity profile is 

fully developed and it is normalized by the average velocity. The cylinder is located on 5D 

away from the inlet where D is the hydraulic diameter, D = 4A/P. The conservation of mass 

and momentum are applied in the upper and the lower boundary. These boundary 

conditions are referred to as Neumann boundary conditions. For the inline cylinders 

geometry, the distance between the origins of two successive cylinders is 2.5D. For the 

staggered geometry, the cylinders are offset by T/D. No-slip and no-penetration conditions 

are imposed at the upper and the lower walls of the channel. At the inlet the velocity profile 

is  

U= 4×Umax(Y-Y2)                                                                                                                               79 

where  Umax  is the maximum velocity at the center. 

At the outlet the pressure is set to be constant. The pitch ratio (PR) is placed to be the same 

for the inline and the staggered geometry, as shown in Figure 5. 
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a)  

 

 

 

b) 

 

 

 

 

c) 

Figure 5. The schematic diagram of various geometries: a) the single cylinder, b) the 

inline arrangement, and c) the staggered arrangement for AR=10. 

 

The schematic diagram of geometries used in the present study is shown in Figure 5. AR 

is the aspect ratio and BR is the blockage ratio.  
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The force exerted by the fluid on the cylinder is determined from  

F = ∑ ∑ ek[fk(xb, t) + f(xb + ∆xb, t)] × (1 − ∅(xb + ∆xb))
∆x

∆t

Nb

k=1 all xb

                                 80 

where Nb is the non-zero lattice velocity vectors and )( bb xx  is an indicator. The 

indicator can be defined as  










b

f

xat  x      1

xat x      0


                                                                                                                   81 

where xf is the fluid location and xb is the boundary location  

The coefficient of drag and lift are defined as  

Cl =
2 × F

ρAUav2
                                                                                                                                        82 

CD =
2 × Fx
ρAUav2

                                                                                                                                      83 

where A is the projected area (A = D), and the average velocity is  

Uav =
2

3
Umax                                                                                                                                    84 

The Strouhal number is determined from 

St =
𝑓D

Umax
                                                                                                                                          85 

where 𝑓 is the frequency  of oscillations.  

The geometric parameters are listed in Table 1.5.   
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Single square cylinder obstacle  

 

Reynolds number ( Re = Umax D/ν)  

50 250 

Number of grids  Nx 

Ny 

150 350 

500 600 

The actual velocity in 

m/sec 

 

Umax 

 

2.4×10-3 

 

0.0122 

The size of the 

obstacle  

(Hydraulic diameter) 

 

 

 

 

 

 

D = 0.02048 m,  

The scaling of the diameter D is (Do= D/H 

= 0.16) 

 

The height of the 

channel 

 

H 

 

H = 0.128 m 

Max. velocity per 

unit lattice  

 

Umax 

 

0.1 (lu/ts)  

Blockage ratio BR 0.16 

Inflow length  Lo 2D 

Aspect ratio AR 10 

The length of the 

channel  

L= AR×H 1.28 m 

Inline and staggered square cylinder 

obstacle  

Reynolds number ( Re = Umax D/ν)  

50 250 

Number of grids  Nx 

Ny 

150 350 

500 600 

D 
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Table1.5. Geometric parameters  

 

3.3. Results and Discussions 

In this section the spatial and temporal structure of the flow in a single and arrays of square 

cylinder will be presented for the Reynolds number up to 20000 for a blockage ratio of 1/6. 

The spatial and temporal structures of flow are also presented for the Reynolds number of 

21400 for a blockage ratio of 1/14. Simulations are carried out for various geometries: a 

single cylinder; tandem arrays; and staggered arrays. A wide range of the Reynolds number 

for selected blockage ratio is considered. Dimensions of all geometries are listed in Table 

1.5.  

The present and previous studies prove that flows pass bluff bodies can be simulated for  

the Reynolds number up to 1000 by employing a single relaxation lattice Boltzmann 

method. Above such Reynolds number the method becomes unstable. It is also 

demonstrated here that by utilizing multi-relaxation time lattice Boltzmann method the 

stability boundary can be extended to the Reynolds number of about 10000. Simulations 

 

Pitch (spacing)  

 

 

SP = PR×D 

where PR is the 

pitch ratio which 

is =2.5 

If PR = 2.5, SP = 0.1024m,  

The scaling of spacing SP is SP0, thus SP0 

= i×Do 

where, i= 5, SP0=0.625 

 

 

Normalized offset   

T/D  

0.25 
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are conducted by employing the newly proposed regularized multi-relaxation lattice 

Boltzmann method to demonstrate that the stability boundaries can be extended further. 

Figure 6 illustrates the streamlines, contours of vorticity, lift coefficient versus time, and 

the power spectrum of the lift coefficient at the representative Reynolds number of 250 for 

a single cylinder geometry.  The streamlines and the vorticity contours clearly indicate the 

presence of eddies downstream of the blockage. The eddies are formed in the wake region 

directly behind the blockage. When the eddy becomes sufficiently large they detach. This 

phenomenon is referred to as vortex shedding. As typical of vortex shedding the position 

of the vortex is alternating between the top and the bottom of the wake region. This is 

demonstrated by the periodic nature of the lift coefficient. Power spectrum density of the 

lift coefficient leads to a dominant frequency, f, of 0.1017 Hz. The corresponding Strouhal 

number for the vortex shedding, St , is 0.1707.  

 

 

. 

 

 

 

 

 

 

a) 

b) 
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Figure 6. a) Instantaneous streamlines , b) instantaneous vorticity contours , and c) the lift 

coefficient versus the time , and d) the power spectrum of the lift coefficient at Re = 250 

for a single cylinder geometry. 

 

Figures (6-11) show the instantaneous streamlines and contours of vorticity for Reynolds 

number of 50,100,500, 1000, 10000, and 20000 for flow past a single cylinder geometry. 

At Re = 50, the vortex shedding from the cylinder alternates from the top and the bottom 

corner. The alternating vortex is not well organized but the flow in the wake region is 

almost perfectly periodic. This is obvious from the lift coefficient as a function of time, as 

shown in Figure 7. At Reynolds number of 100 and 500 the counter-rotating vortices are 

uniformly spaced downstream of the blockage, as shown in Figures 8 and 9. There is very 

little indication of interaction between the eddies and the boundaries. The vortices are 

losing strength downstream in the region further of the cylinder due to dissipation. When 

the Reynolds number is increased to 1000, the periodic nature of the flow is complicated 

by the boundary effects, as shown in Figure 10. Secondary eddies are forming near the 

boundaries, which are in turn causing a reorientation of the primary eddies shed from the 

c) d) 
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body. Clearly, this effect is very pronounced, as it can be seen even in the streamlines. As 

Reynolds number increases to 10000 and 20000 the influence of the boundary on eddies 

becomes stronger, as shown in Figure 11. This is evidenced by the secondary eddies which 

formed near the boundaries. By the Reynolds number of 10000 these secondary eddies are 

as large as the primary eddies formed by the blockage as shown in Figure 11. It is possible 

that the primary vortices are splitting, but it is difficult to tell since the secondary eddies 

have become nearly indistinguishable from the primary eddies. It should also be noted that 

as the Reynolds number increases the position at which the boundary effects become 

significant is pushed further downstream.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 
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                                                           c) 

Figure 7. a) Instantaneous streamlines, b) instantaneous vorticity contours, and c) the lift 

coefficient vs time and the Fast Fourier Transform of the lift coefficient  at Re = 50. 
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Figure 8. a) Instantaneous streamlines , b) instantaneous vorticity  contours, and  c) the lift 

coefficient vs time and the Fast Fourier Transform of the lift coefficient at  Re = 100. 
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 c) 

Figure 9. a) Instantaneous streamlines, b) instantaneous vorticity contours and c) the lift 

coefficient vs time and the Fast Fourier Transform of the lift coefficient at Re = 500. 

  

  

 

 

 

a) 

b) 
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c) 

Figure 10. a) Instantaneous streamlines, b) instantaneous vorticity contours and c) the lift 

coefficient vs time and the Fast Fourier Transform of the lift coefficient at Re = 1000. 

        

 a)  Re = 10000 

c) 



46 
 

 

b)  Re = 20000  

Figure 11. Instantaneous streamlines and vorticity contours at various Reynolds number: 

a) 10000 and b) 20000 for flow past a single cylinder. 

 

It is shown that the vortex shedding frequencies increases as the Reynolds number 

increases, as shown in Figures (7-10). The instantaneous vortices and streamlines contours 

depicted in Figures (7-11) clearly indicate that the flow induced by the vortex shedding has 

well organized structures. The vortices shed by the cylinder interact with the boundary 

layer.  

Next, the results are presented for inline and staggered geometries for various values of the 

Reynolds number. The instantaneous streamlines and iso-vorticity contours for flow past a 

square cylinder have been examined. The lift coefficients of different cylinders in these 

flows are calculated and the Strouhal number are determined for various values of the 

Reynolds number.  For the inline geometry at Re = 50. Flow patterns behind each cylinder 
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are similar. Figure 13 depicts the lift coefficients of each cylinder. They are nearly the 

same. Fast Fourier transform is applied to determine the dominant frequency of the periodic 

flow structure. The frequency of the vortex shedding from all cylinders is the same, as 

shown in Figure 13. Figures (12-20) show streamlines, vorticity contours and lift 

coefficients for the inline geometry at Re = 100, 500,1000,10000, and 20000. As Re 

increases the flow patterns behind the second cylinder and other downstream cylinder 

differ significantly compared to the flow pattern in the wake of the first cylinder. The 

interaction of eddies  with the boundary layer becomes much stronger .The vortex shedding 

patterns from each cylinder differ significantly, as shown  in Figures 13,15,17,and19. The 

frequencies of vortex shedding from cylinders at Re about 500 become different. Figures 

(21-27) show the instantaneous streamlines and vortices patterns for the staggered 

geometry at various values of the Reynolds number.  They are shown that the vortex 

shedding frequencies in the leading, the trailing and in the middle cylinders are the same 

up to Re = 500.  For Re ≥ 1000 the shedding frequencies are different from cylinders. The 

magnitude of the lift coefficients for each cylinder is also different. The frequencies of the 

vortex shedding in the staggered geometry is higher than the frequencies of the vortex 

shedding in the inline geometry.   
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Figure 12. a) Instantaneous  streamlines and b) instantaneous vorticity contours for flow 

past inline cylinders at Re =50.  
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d) 

Figure 13. The lift coefficient vs time and the FFT of the lift coefficient. The lift coefficient 

is calculated a) 1st cylinder, b) 2nd cylinder , c) 3rd cylinder , and d) 4th cylinder  at Re = 50. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. a) Instantaneous streamlines and b) instantaneous vorticity contours for the 

flow past inline cylinders at Re = 500. 

a) 

b) 
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d) 

 

 

Figure 15. The lift coefficient vs time and the FFT of the lift coefficient. The lift coefficient 

is calculated a) 1st cylinder, b) 2nd cylinder , c) 3rd cylinder , and d) 4th cylinder at Re = 100. 
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Figure 16. Instantaneous streamlines and b) instantaneous vorticity contours for flow past 

inline cylinders at Re = 500. 
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Figure 17. The lift coefficient vs time and the FFT of the lift coefficient. The lift coefficient 

is calculated a) 1st cylinder, b) 2nd cylinder , c) 3rd cylinder , and d) 4th cylinder at Re = 500. 

 

 

Figure 18. a) Instantaneous streamlines and b) instantaneous vorticity contours for flow 

past  inline cylinders at Re = 1000. 
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Figure 19. The lift coefficient vs time and the Fast Fourier Transform of the lift coefficient. 

The lift coefficient is calculated a) 1st cylinder, b) 3rd cylinder, and c) 4th cylinder at Re = 

1000. 

 

 

a) Inline Re = 10000 
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b) Inline Re = 20000 

Figure 20. Instantaneous streamlines and vorticity contours for flow past inline cylinders 

at a) Re =10000 and b) Re = 20000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 21. a) Instantaneous streamlines contour and b) instantaneous vorticity contours 

for flow past  staggered cylinders at Re = 50. 
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Figure 22. The lift coefficient vs time and the Fast Fourier Transform of the lift coefficient. 

The lift coefficient is calculated a) 1st cylinder, b) 2rd cylinder, c) 3rd  cylinder, and d) 4th 

cylinder at Re = 50. 
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Figure 23. a) Instantaneous streamlines contour and b) instantaneous vorticity contours for 

flow past  staggered cylinders at Re =500. 
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d)                                                  

Figure 24. The lift coefficient vs time and the Fast Fourier Transform of the lift coefficient. 

The lift coefficient is calculated a) 1st cylinder, b) 2rd cylinder, c)3rd cylinder,  and d) 4th 

cylinder at Re = 500. 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. a) Instantaneous streamlines contour  and b) instantaneous vorticity contours 

for flow past  staggered cylinders at Re = 1000.  
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Figure 26. The lift coefficient vs time and the Fast Fourier Transform of the lift coefficient. 

The lift coefficient is calculated a) 1st cylinder, b) 3rd cylinder, c) 3rd cylinder,  and d) 4th 

cylinder at Re = 1000. 
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a) Re = 10000 

 

 

 

b) Re = 20000  

Figure 27. Instantaneous streamlines and vorticity contours for flow past staggered 

cylinders at a) Re =10000 and b) Re = 20000. 
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As mentioned above the vortex shedding frequency is determined from the lift coefficient 

by applying the Fast Fourier Transform. The Strouhal number is plotted as a function of 

the Reynolds number for the single cylinder geometry in Figure 28. The Strouhal number 

increases rapidly for low Reynolds number until it reaches its maximum value near the 

Reynolds number of 250. Beyond the Reynolds number of 1000 the Strouhal number 

decreases slowly. The frequency of the vortex shedding predicted by the lattice Boltzmann 

model is compared with the experimental results reported by R.W. Davis et al. [36]. Since 

the results match the experimental results very well, the present model is validated. 

Streamline and vorticity contours are depicted in Figures 13-27 for the inline and the 

staggered geometry. The streamlines in the inline geometry are very different to those in 

the single cylinder geometry. Turbulence eddies induced by the first cylinder effects the 

flow past the following cylinders. It is also noted that the influence of the boundary on the 

flow structure is enhanced in the inline geometry. These effects are more pronounced in 

the staggered geometry, as shown in Figures 21-27. 
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Figure 28. Strouhal number as a function of the Reynolds number for a single cylinder 

geometry. Line connecting triangles denotes prediction and the squares denote the 

experimental measurement by Davis et al. [36]. 

 

The power spectrum calculated for the first cylinder of the staggered array at Re = 20000. 

It is found that the frequency of the vortex shedding even from the first cylinder in both 

inline and staggered geometries shows several peak frequencies, as shown in Figure 29. 

This behavior is similar for the other cylinders in the array. This indicates that the vortex 

shedding phenomena occurring from arrays of cylinders at this high Reynolds number have 

a disrupted temporal nature. 
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Figure 29. Power spectrum of the lift coefficient in the flow past an array of staggered 

cylinders.  

 

Figure 30 shows the instantaneous streamlines, iso-vorticity lines and the power spectrum 

of the lift coefficient for the flow past a square cylinder with the blockage ratio of 1/14 at 

Re = 21400. Streamlines and vorticity field in the wake of the cylinder are very similar to 

those observed by Lyn et al. [37, 38] and those predicted by large eddy simulations and 

Reynolds-stress averaging [39-40]. The vortices shed by the upper corner of the cylinder 

shift slightly upward while the vortices shed by the lower corner shifts slightly downward 

from the centerline. For the computational domain selected here the vortices does not 

interact with the boundaries. This is unlike for flows past a cylinder with the blockage ratio 

of 1/6. As mentioned above the vortices interact strongly with the boundary away from the 

boundary when the blockage ratio is larger. This interaction occurs even for Re as low as 

1000, as shown in Figure 10b. 
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a) Instantaneous streamlines and  the vorticity contours. 

 

 

b) Power spectrum of the lift coefficient at Re =21400. 

 

 

 

 

Figure 30. a) Instantaneous streamlines and the vortcity contours and b) power spectrum 

of the lift coefficient. Flow field is presented for the single cylinder geometry at Re = 21400 

for BR= 1/14. 
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The frequency of the vortex shedding predicted here is St = 0.133 (see Figure 30b) which 

agrees well with those measured [36,39] and predicted by large eddy [39,41]and Reynolds-

stress averaging (RSE) [40], as shown in the Table 1.6 

PresentLBM [16] Exps [36,42] LES [41] LES [39] LES [38] RSE[40] 

St 0.133 0.132 0.132 0.134 0.139 0.136 

Table1.6. Comparison Between the present results and pervious results. 

 

In summary, a novel regularized multi relaxation lattice Boltzmann model has been 

proposed to extend the stability boundary of the lattice Boltzmann model for high speed 

turbulent flows. The new model has been successfully applied to turbulent flows past bluff 

bodies at high Reynolds number to resolve spatial and temporal characteristics of the flow 

in the wake. Unsteady turbulent flow around a square cylinder and arrays of square 

cylinders confined in a channel were studied computationally by employing regularized 

multi-relaxation lattice Boltzmann method. Spatial and temporal characteristics of the flow 

created by vortex shedding were examined for Re up to 21400. The frequency of the vortex 

shedding predicted here agrees well with the results measured and predicted by large eddy 

simulations for a wide range of Reynolds number. This study clearly demonstrates that the 

lattice Boltzmann method developed here improves the stability challenge of the lattice 

Boltzmann method for high Reynolds flows. One of the advantages of the method 

developed here is that computation time is an order of magnitude lower when it is compared 

with large eddy simulations or direct numerical simulations. 
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CHAPTER 4: RAYLEIGH BENARD CONVECTION 

4.0. Objective 

The aim of this study is to develop a stable thermal lattice Boltzmann model to study the 

buoyancy driven convection. The multi-relaxation thermal lattice Boltzmann model is 

introduced. The equilibrium equation in the collision term is derived to solve the energy 

equation. Thus, the thermal lattice Boltzmann model has been developed to study flows 

induced by the density stratifications by employing the Boussinesq approximation. Two 

geometries with different aspect ratios are considered using D2Q9 lattice arrangements. 

The results are compared against those obtained by R. Allen and T. Reis [43]. The results 

agree well with those obtained by the empirical correlation as well. It is shown here that 

the lattice Boltzmann method can be applied for flows with the presence of the temperature 

gradient by selecting the appropriate local equilibrium distribution function.  

4.1. Introduction 

Thermal lattice Boltzmann method has been developed. The method has been tested on 

two dimensional natural convection problem in a rectangular cavity. Two geometries with 

different aspect ratios and thermal boundary conditions are considered. One is a square box 

(aspect ratio of one) with top and bottom boundaries are insulated. The side boundaries are 

kept at different constant temperatures, as shown in Figure 31. The other geometry is a 

rectangular box with aspect ratio of 5, as shown in Figure 32.  For the latter geometry the 

temperature of the bottom boundary is greater than the top boundary. When the Rayleigh 

number exceeds the critical value for the onset of convection, the fluid motion will onset. 

The fluid motion is a result of the density stratification. The buoyancy driven convection 

is well known as Rayleigh- Benard convection. The thermal lattice Boltzmann method is 
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tested by examining the flow pattern of the Rayleigh-Benard at various values of the 

Rayleigh number. The mathematical model for the thermal lattice Boltzmann method is 

summarized below.  

4.2. A Mathematical Model  

The lattice Boltzmann equation is  

∂fk

∂t
+ ck. ∇fk = ω(f

eq
k − fk) +

W1Ck.Fk

Cs
2                                                                                         86 

The distribution function of the thermal model is defined as   

∂gk

∂t
+ ck. ∇gk = ω(geq

k
− gk)                                                                                                      87 

where the local equilibrium distribution for temperature is  

gk
eq
= wk𝜃 {1 + (3

𝐞k ⋅ 𝐮

c2
+
9

2

(𝐞k ⋅ 𝐮)

c4

2

−
3

2

|𝐮|2

c2
)}                                                                88 

The equation (87) satisfies the conservation of mass, the momentum and the energy with 

following constraints 

𝛒 = ∑ fk  

𝑄

𝑘=0

                                                                                                                                                       89 

𝜃 = ∑𝑔𝑘

𝑄

𝑘=0

                                                                                                                                                       90 

 𝛒𝐮 = ∑ fk. 𝑒𝑘

𝑄

𝑘=0

                                                                                                                                               91 
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Figure 31. Schematic diagram of natural convection cavity for AR=1. 

 

where F is the gravitational force or  the body force and it can be evaluated from the 

Boussinesq approximation as 

Fk = ρgyβ(θ − θref)                                                                                                                      92    

where the  normalized reference temperature is defined as  

   θref =
θH − θc
2

                                                                                                                              93 

 

 

 

 

 

Figure 32. Schematic diagram of a Rayleigh Benard problem with AR=5. 
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The momentum and energy equations are coupled in these problems and solved 

simultaneously.  

4.3. Results and Discussions 

The MRT lattice Boltzmann model has been employed to study the natural convection in 

a square cavity. Simulations are conducted for various values of the Rayleigh number. The 

Nusselt number is calculated and compared with those reported in the open literature [43]. 

The results are well agreement with those obtained in literature, as shown in Table 1.6. The 

D2Q9 arrangements is used and the no-slip and no-penetration conditions are imposed on 

the velocity field. The boundary conditions are treated as described in section 2.10.   

 

 

 

 

 

 

 

 

Figure 33. Isotherms at Ra = 1×105 in a square cavity.  
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Figure 34. Temperature profiles at various values of the Rayleigh number in a square 

cavity. 

Figure 35. a) Streamlines and b) isotherms at Ra = 1x105 in a cavity with AR=5. 

  

a) 

b) 
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When the warmer fluid (lighter fluid) is at the bottom and the cooler fluid (heavier fluid) 

is at the top, the density stratification is unstable. In such situation natural convection will 

be set when the Rayleigh number exceeds the critical value. The Rayleigh number is 

defined by 

Ra =
gβ∆TH3

𝑣α
                                                                                                                                   94 

The critical value of the Rayleigh number for the onset of convection in the configuration 

shown in Figure 32 is 1708. For Ra > Racrit, the dominant heat transfer in the system 

becomes convection. At such regime, the buoyancy-driven force becomes greater than the 

viscous force. That results in a fluid motion. As the Rayleigh number is increased the 

intensity of the fluid motion becomes greater. For very large values of the Rayleigh 

number, the flow induced by the density stratification becomes turbulent.  

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Temperature profiles plotted in the middle of the rectangular cavity for various 

values of the Rayleigh number.   
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 In an unstable stratification, in which the lighter fluid is at the bottom, and the denser fluid 

is at the top, provided that the density gradient is sufficiently large, convection will start 

spontaneously and significant mixing of the fluid will occur. The temperature contour in 

Figure 35b illustrates the natural convection phenomena. If the temperature gradient is 

parallel to the direction of the gravitational acceleration in the absence of other effects, 

convection will be absent. Conduction is the only mode of heat transfer in this case. 

Uniformly spaced convection cells are seen in the streamlines as shown in Figure 33a for 

Ra = 1×105. The convection cells are uniformly placed between the plates. They are nearly 

the same size. The cells adjacent to the wall are slightly distorted.  

The temperature profiles in the middle of the rectangular cavity are plotted in Figure 36 for 

Ra = 1000, 10000, and 100000. For Ra < Racrit the temperature is uniform along the cavity. 

For Ra > Racrit the temperature becomes periodic along the cavity. The periodic 

temperature profile is resulted from the buoyancy – driven convections.  

 

 

 

 

 

Table1.7. Comparison of the average Nusselt number for Pr = 0.71. 

 

Rayleigh Numbers current study pervious study [43] 

Ra=1×103 1.132107 1.11773 

Ra=1×104 2.271969     2.4466 

Ra=1×105 4.526193     4.52178 
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Figure 37. The Nusselt number at the top and the bottom wall at Ra = 1×105 in the cavity 

with AR=5. 

 

Figure 37 shows the average Nusselt numbers calculated by the thermal LBM. They agree 

with those obtained by the empirical correlation as  

Nu̅̅ ̅̅  = 0.54×Ra0.25                                                                                                                                     95 

Here 104 ≤ Ra ≤107. For Ra = 104, the average Nu̅̅ ̅̅  is calculated to be 5.4 at the bottom wall. 

For Ra = 105, the average Nu̅̅ ̅̅  is calculated to be 9.6 at the bottom wall. The average of 

Nusselt number for Ra = 104 and 105 predicted by the thermal lattice Boltzmann method is 

5.6 and 9.78 at the bottom wall, respectively.  If the Rayleigh number is less than 1708, the 

average Nusselt number equals 1 which means that no convections currents. 

The Nusselt number is defined as  

NuL = 2
(Th − Tc)

Tref − Tc

∂θ

∂Y
                                                                                                                     96 
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In summary, the multi-relaxation thermal lattice Boltzmann model has been developed to 

study a buoyancy-driven convections. Convection cells in a closure with a presence of no-

slip surfaces were characterized. The results presented here agree well with those 

documented in the literature for flow patterns manifested by the Rayleigh-Benard 

instabilities.  
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CHAPTER 5: INTERFACIAL FLOWS  

5.0. Objective  

The objective of this study is to better understand the physical significance of the 

interaction forces proposed by Shan-Chen multi-phase flow model. Shan– Chen model has 

ability to simulate the multiple fluids by introducing non-local interactions between 

particles at each lattice site. The multi-relaxation time lattice Boltzmann collision operator 

with the Shan-Chen model was developed to obtain a better stability. Such level of stability 

is not achievable by using the original Shan-Chen model with a single relaxation time. The 

model can be utilized in cases where there is a need for the anisotropic dependency of the 

surface tension. It is believed that the surface tension has linked through the interactive 

strength. Such link is not established in the literature. One of the objective of the present 

study is to establish the relationship between the interactive force and the surface tension 

exerted at the interface between two immiscible fluids. The two and three Shan-Chen 

model dimensions with 9 and 19 directional velocities are applied. The droplet surface 

tension test is conducted to determine the strength of the surface tension in water and oil 

interface flows. The rising droplets dynamics and the Rayleigh Taylor instabilities in the 

bounded and the infinite domain are investigated. Our simulation results show that linear 

and nonlinear stages of the Rayleigh Taylor instability can be characterized successfully 

by using multi-phase lattice Boltzmann model. Further studies are needed to develop more 

stable multiphase lattice Boltzmann models to study the interfacial flows when larger 

density gradient is present.  
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5.1. Rising Droplets 

5.1.1. Introduction 

Several investigators studied droplet dynamics by using MRT–LBM for different 

configuration of droplets either in-line or staggered arrangements. Amit .G. and Kumar [44] 

studied the effect of the vortex shedding on the oscillatory motion of the bubbles and 

subsequent coalescence. Moreover, Amit and his co-workers recently studied the droplet 

breakup and they found that the droplets more viable for the case when the wall is non-

wetting or neutral as compared to a wetting surface [45]. Droplet motions under electro-

wetting control are investigated by using a finite volume method, with the focus on the 

effects of key control parameters on the induced droplet oscillation. They found that the 

electro-wetting enhanced the mixing within the droplet [46].  Droplets in the micro-fluidic 

has been studied as well by Hao [47]. Azwadi and Sidiket [48] employed a new variant of 

Shan-Chen multiphase model to compute the dynamics of droplet on non-permeable solid 

surface. Volume of fraction (VOF) was implemented to study the dynamics of drop impact 

and spreading on inclined surfaces. Different regimes of drop impact and spreading process 

were investigated by Siddhartha et al. [49]. Amaya and Lee determined the terminal shape 

and calculated the Reynolds number at different regimes and they found that the terminal 

shape and the Reynolds number are interactive quantities relying on the size of the bubble, 

the surface tension, the viscosity, and the density of the surrounding fluid [50]. Bozzanoand 

Dente studied two aspects of the rising bubble. The first aspect is that the shape assumed 

by the rising bubble is the one minimizing the total energy associated with it. The second 

aspect is that is constituted by the approximated generalization of the drag coefficient [51]. 
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In this section, our interest in these flows is to study temporal and spatial characteristics of 

the lighter fluid droplets as they rise through the heavier fluid. Nonlinear phenomena such 

as the effect of the boundary have been considered in the present study. The model utilized 

here to study liquid-liquid multiphase flow includes the interactive forces between fluids. 

The interactive force model proposed by Shan-Chen is related to the surface tension 

between two fluids considered here. Different arrangements of droplets have been studied 

for different boundary conditions. Both no-slip boundary conditions and periodic boundary 

conditions are considered. Simulation are conducted for a single droplet placed on the 

lower boundary, two droplets placed on top of each other’s, two droplets placed side by 

side, and four droplets placed in the middle of the domain at the same distance from each 

other’s, as shown in Figure 38. 

 

 

 

 

  

   

 

 

 

 

Figure 38. Various arrangements of droplets. F2 denotes the droplet of lighter fluid while 

F1 denotes heavier surrounding fluid.  
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5.1.2. Validation Test 

The result of the spectral and temporal convergence test is illustrated in Figure 45. The 

density contour for the single droplet at t = 0.6 s is shown for various grid sizes. The 

terminal shape of the droplet obtained for 100 × 400, 125 × 500, and 150 × 600 are shown 

in Figure 39. The results for grid size of 125 × 500 and 150 × 600 overlaps; indicating that 

the spatial and the temporal convergence can be attained for the grid size 125 × 500 and 

higher. 

 

Figure 39. Grid optimization for the rising droplet. The shape of the droplet with different 

grid sizes is determined at t = 0.60 sec.  

 

The surface tension can be estimated from Young-Laplace equation by simulating various 

size of the droplets and evaluate the slop of the pressure difference between inside and 

outside the droplet vs the inverse of the radius of the droplet, as shown in Figure 40.  
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λ = ∆P × r    [Young − Laplace Equation]                                                                               97 

∆P =
𝜆

𝑟
= c2sΔρ −

G

6
( Δψ(ρ))

2
                                                                                                   98 

where  𝜆 is the surface tension, r is the initial radius of the droplet, ∆P is the pressure 

difference between  the inside and the outside of the droplet, and ψ is the potential density 

strength.  

 

Figure 40. Pressure difference between the inside and the outside of the droplet vs 1/r for 

various droplet sizes for G = 1.6. 

 

From the surface tension test, the surface tension is determined to be 𝜆 = 0.0271 by using 

Yang-Laplace equation. In the previous studies the surface tension is approximated as a 

function of the interactive strength [52]. The surface tension is an important to characterize 

the droplet dynamics. By using the value of the surface tension the Morton number, Weber 
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number, and Eötvös number can be calculated. Theses parameters will help characterizing 

the various droplets dynamics regimes.     

 

Figure 41. Density contours for different droplet sizes at various times for a single rising 

droplet in an infinite domain.  

 

a) d= 25 (lattice unit)  

 

b) d =35 (lattice unit)    
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The droplet’s dynamics is determined by the following dimensionless groups:  

Reynolds number  

Re =
ρUtd

μ
                                                                                                                               99 

Eötvös number  

EO =
ρd2g

λ
                                                                                                                             100 

Morton number  

 MO =
gμ4∆ρ

ρ25
                                                                                                          101      

Weber number  

 We = ρUt
2d/                                                                                                                    102             

Here Ut is the terminal speed of the droplet, which is determined as part of the solution,  

is the surface tension coefficients (determined to be 0.0271) and Δρ is the density difference 

between two fluids for oil droplets rising inside in the water Δρ = 0.2. In order to validate 

the model employed by the present study, simulations for a single droplet rising in an 

infinite fluid are conducted for two different set cases. The Reynold number and Eötvös 

number are different for these two different cases. The evolution of the droplets of these 

two cases is shown in Figure 41. For the first case (Re = 2.88 and EO = 17.8) the oblate 

ellipsoid shape is attained as the terminal speed is reached. For the second case (Re = 11.32 

and EO = 54.4) the spherical cap is predicted, as depicted in Figure 41. These two cases 
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are determined by the initial size of the droplet (d = 25 lattice unit for the first case and d 

= 35 lattice unit for the second case). The interactive forces are kept the same for both 

cases. The flow regime and the shape of the droplet agree well with those reported by Gupta 

et al. [44]. The terminal speed of the rising droplet will be attained as the drag force and 

the interactive forces exerted on the droplet are balanced [48]. Figure 42 shows the speed 

of the droplet for Re = 11.32 and EO = 54.4 as a function of the dimensionless time, T = 

t(g/d)1/2. The terminal speed agrees very well with correlations documented earlier [53,54]. 

The rising velocity can be described by a theory proposed by Davis and Taylor [54]  

Ut =
2

3
√
gd∆ρ

2ρh
 , V = Ut [

d2ρh
2

λ × 𝑣h
]

1
3

                                                                                             103 

Where Ut is the terminal velocity and V is the velocity number. This simple correlation has 

been proposed by Rogdrigue [55] for the dynamic bubble rising in a pure viscous fluid. 

The terminal velocity is obtained as a function of density, surface tension, viscosity, and 

the geometry of a droplet. D. Roderigue calculated the analytical velocity number based 

on the shape of bubble [55] as  

V =
aFb

1 + cFd
 , a =

1

12
, b = 1, c =

49

1000
, d =

3

4
                                                                    104 

The flow number “FN” is defined as  

FN = EO(
Re

Ca
)

2
3
                                                                                                                             105 

The hydrodynamic regimes for this correlation is covered for   
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1.9 × 10−7 < Re < 1.9 × 104,   1.9 × 10−11 < MO < 1 × 107 

Capillary number can be evaluated as  

Ca =
μUt
λ
                                                                                                                                         106 

 

Figure 42. The droplet speed as a function of time. The terminal speed predicted by the 

LBM is compared against that obtain by Davis and Taylor. [54] 

 

The droplet speed reaches the terminal velocity as the droplet speed doesn’t change with 

time. As the terminal speed is reached the droplet shape is maintained. The terminal 

velocity plotted against those obtained by the correlation as [49, 50] 

Ut = −
8𝑣

3√gD3
+
√2

3
[1 +

32𝑣2

gD2
]

1
2

                                                                                            107 

Ut is dimensionless terminal velocity and the dimensionless time isT = t√
𝑔

𝐷
. Figure 42 

shows the terminal speed predicted by the LBM agree well with that obtained by the 

correlation. 
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Table1.8. The values of Re and EO calculated for a single droplet rising in a heavier fluid 

 

As shown in Table1.8 after calculating the Re, and EO at steady motion of the droplet, the 

shape of the droplet is oblate ellipsoid cap which agrees very well with those obtained by 

Amit and Kumar. Amit and Kumar plotted the regime map for different bubble shapes [44]. 

This proves that the surface tension coefficient determined by the test described above is 

valid. It also proves that the multi-relaxation time multiphase lattice Boltzmann model 

developed here can accurately captures the flow induced by the rising droplets.  

5.1.3. Single Droplet 

In density contours, the red color denotes the higher density fluid while the blue color 

denotes the lower density fluid. A 300 × 300 node lattice is sufficient to provide the spatial 

convergence in all simulations presented here. Since the lattice spacing and the time steps 

are related in the lattice Boltzmann method through the lattice speed, c; the corresponding 

time step of 0.00015 sec is sufficient to provide the temporal convergence. 

Both no-slip and periodic boundary conditions are imposed at the lower and the upper 

boundaries. For the time steps and the spacing between the lattices selected in the present 

simulations, the relaxation frequency, inverse of relaxation time, for lighter fluid is ω1 = 

0.5657 and for the heavier fluid  is ω2 = 1.3815. The density ratio of fluids is 1.2 and the 

Atwood number, At≃ 0.1  where 𝜌ℎ  and 𝜌𝑙  are densities of the heavier and the lighter 

Cases  Reynolds Number Eötvös Number (EO) 

Oblate ellipsoid  (d= 25 lattice unit)  2.88 17.18 

Oblate ellipsoid Cap  (d= 35 lattice unit) 11.3 54.43 
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fluids, respectively. The Atwood number of this flow corresponds to the Reynolds number. 

Figures 49 and 50 show the density contours at various times for a single droplet placed at 

the bottom of the boundary at t = 0. The no-slip boundary condition is imposed on the 

velocity field at the bottom boundary. The initial shape of the droplet is circle. It is noted 

that the droplet is attached to the boundary at a single point. At time t = 0.071 sec the 

droplet is slightly elongated in the direction of gravity and it is still in contact with the 

boundary. At the later stages the droplet rises above the boundary and the tail of the droplet 

streaks of the lighter fluid extend to the surface. The back side of the droplet is nearly flat 

with a small dimple at the center region of the back side. At t = 1.57 sec the tail is 

completely broken and the droplet assumes the shape of the crescent, caused by the faster 

rise of the bottom compared to the front and side section of the droplet. The effect of the 

boundary on the dynamics of the droplet is obvious but not that strong. This is due to the 

fact that the droplet touches to the boundary at a single point. More pronounced effects of 

the no-slip boundary would have been studied. The D2Q9 Shan and Chen model multi-

components has been employed to model the interactive forces. The density contours for 

no-slip and periodic boundary conditions on the side walls have been shown in Figures 43 

and 44.  
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a) t = 0.0356 sec 

 

 

         

 

                                                                      

b) t = 0.3919 sec 

 

           

 

c) t =1.38 sec 

Figure 43.  Density contours of a single rising droplet in an infinite domain. Images are 

calculated at various times.  
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a) t = 1.351 sec 

 

  

 

 

 

b) t = 1.57 sec                     

 

 

c) t = 2.031 sec 

Figure 44. Density contours of a single rising droplet with no-slip boundary at the bottom 

and top walls. Images are calculated at various times.  
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Initially, the semi-circled shaped droplet placed on the no-slip bottom boundary. The no-

slip boundary is also applied at the top boundary while periodic conditions are applied at 

the side boundaries. Again the droplet is lighter than the fluid around it. The droplet starts 

rising and it is elongated in the direction of gravity. At the early stages it is still attached to 

the boundary, but as time progress it develops a filament connecting the droplet to the no-

slip surface. This filament is stretched and eventually breaks up. As the unattached droplet 

rises in the heavier fluid the residue of the droplet sticks to the surface, as shown in Figure 

45. The buoyancy force is not strong enough to lift the residue of the droplet away from 

the surface so the residue remains on the surface. The influence of the no-slip boundary on 

the evolution of the droplet is very strong, as shown in Figure 46. The instantaneous 

streamlines and the vorticity contours are depicted, as shown in Figure 46a and c, for a 

single semi-circled droplet that is initially placed on the no-slip boundary at time, t = 0 sec. 

The interface separating the droplet from the heavier fluid is also shown on the contours of 

the stream function. Two counter rotating vortices cover both the droplet and the heavier 

fluid. Another pair of weaker counter rotating vortices at each side of the droplet is also 

present. The intensity of the flow is much stronger near the droplet as the flow is induced 

by the rising droplet, as shown in Figure 46c.The fluid away from the droplet is undisturbed 

as shown both by flow and the vorticity field. The pressure gradient is induced by the rising 

droplet, as shown in Figure 46d. 
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a) t = 0.0 sec   

 

               c) t = 0.660 sec 

b) t = 0.340 sec 

 

                     d) t = 1.88 sec  
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Figure 45. Density contours for the single semi-circled droplet at various times. 

 

The contact area of the droplet is 2R, where R is the radius of the droplet. The amplitude 

of the interaction strength is G = 1.6. The rising droplet creates small neck and breaks up. 

It moves in the opposite of the direction of the gravity and creates awake region behind the 

rear surface of the droplet. The residue of the droplet stays on the surface since there is not 

enough buoyancy force to remove the residue of the droplet from the surface. In the late 

stage, the rising droplet move inside the heavier fluid and reaches to the equilibrium state 

and its shape becomes constant, as shown in Figure 47a.  

  

                 e) t = 2.103 sec                       f) t = 2.663sec 
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Figure 46. a) Density contours, b) streamlines contours, c) vorticity contours, and d) 

pressure contours of a single semi-circled droplet placed on the lower boundary  at t =1.17 

sec. 

 

 

 

a)                                                  

 

                             

                                               

     

                                       c)                                                                             

     

      d) 

  

b) 
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  a) 
 

 

 

 c)  

 

d) 

Pressure:0.0260 – 0.102 mu/lu2 

Figure 47. a) Density contours, b) streamlines contours, c) vorticity contours, and d) 

pressure contours of a single semi-circled droplet placed on the lower boundary at t = 

2.27 sec. 

 

b) 
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5.1.4. Flow Structures and Flow Regimes  

In this section different arrangements of the droplet and the effect of the boundary on the 

terminal shape of the droplet have been investigated. A single droplet arrangement is 

placed inside the domain with different side wall boundaries.  

 

  

         a)                                                         b)                                                  c)                                                                                                       

Figure 48. a) Density contours, b) streamlines contours, and c) vorticity contours of a single 

rising droplet. No-slip boundary condition is applied at side walls and periodic boundary 

condition at the top and the bottom walls.  

 

The lighter fluid droplet rises in a heavier fluid with periodic top and bottom boundary 

conditions and no-slip boundary in the side walls. In the early stage the shape of the rising 

droplet changes. The back side of the droplet rises faster compared to the front side leading 

the shape predicted at later stage, as seen in Figure 48.  The terminal shape of the droplet 
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and the flow field around the droplet is shown in Figure 49 for fully periodic boundaries. 

The rising droplet induces a flow in both fluids, as shown in Figure 49a and b. The location 

of the droplet is imposed on the contour of the stream function to better illustrate how the 

flow field is induced by the rise of the droplet. The complex flow field is present in the 

vicinity of the droplet with the presence of small and large scale recirculating vortices. 

They dissipate quickly away from the droplet. Larger pressure gradient is present at the 

front side of the droplet, as shown in Figure 49d.  

  

 

a)                                      b) 
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               c)                       d) 

Figure 49. a) Density contours, b) streamlines contours, c) vorticity contours and d) 

pressure contours for a single droplet rising in an infinite fluid. Images are shown at t = 

1.16 sec. 

5.1.5. Two and Four Droplets 

The two droplets are placed on the infinite domain. Initially, the two droplets are placed 

close to each other’s. At the early stage the droplets merge in a point. At the late stage the 

two droplets completely merge together and create a crescent structure as shown in Figure 

50.    

 

 

 

 

a) t = 0 sec  
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b)  t = 0.0356 sec                      

 

 

 

 

 

 

 

c)  t = 0.213 sec 

 

 

 

 

 

 

 

d) t = 0.816 sec 
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e)  t =1.425 sec                     

 

 

 

 

 

 

 

 

       f)  t = 1.532 sec           

 

Figure 50. Density contours of the two vertical adjacent droplets at various times. 

 

The two semi-circled droplet is initially placed on the lower boundary, as shown in Figure 

51. The contact area of the droplet is 2R and the amplitude of the interaction strength is G 

= 1.6. In the early stage the two droplets elongate in the direction of the gravity. In the late 

stage, each droplet creates small neck and breaks up. They move in the opposite direction 
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of the gravity. Part of droplets stay in the lower boundary since there is not enough 

buoyancy force to remove the residue of each droplets from the surface. The rising droplets 

move inside the heavier fluid and reach to the equilibrium state. As they reach the 

equilibrium state their shape become constant, as shown in Figure 52a. 

 

       a) t = 0.06 sec  

 

b) t = 0.4632  sec             

                 c) t = 0.7126 sec                                                                   d) t = 0.7126 sec               
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    e) t =1.7817 sec                                                                         f) t = 2.104 sec                                                                                                                                                       

Figure.51. Density contours of two semi-circled droplet placed on the lower boundary 

at various times.  

 

Figure 51 shows the density contours of two semi-circled droplets at various times. The 

effect of the no-slip boundary on the shape of the semi- circled droplet is clear and the 

droplet elongates in the direction of the gravity. The residues of the droplets remain on 

the boundary and stretch horizontally on the boundary as shown in Figure 51e and f.  

Finally, the droplet takes spherical cap shape and their shape keep constant because the 

droplet reaches to the equilibrium state. The pressure gradient and the vorticity is induced 

by the rising droplet are shown in Figure 52c and d for the late stage. The small and large 

scale vortices can be seen clearly near the droplets.  
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                              a) 

 

b) 

 

c) 

 

   d) 

Figure 52. a). Density contours, b) streamlines contours ,c) vorticity contours, and d) 

pressure contours of  two semi-spherical droplets placed side by side  at t = 4.12 sec 

Periodic boundary conditions are imposed at the side boundaries and the top boundary is a 

no-slip and no-penetration surface. The droplets move away from each other’s as they rise. 

This is due that fact that the heavy fluid flowing between two droplets exert a drag force 

on each fluid. Each droplet is tilted slightly and the drag force acting on each droplet pushes 

them apart from each other. At time, t = 2.1sec, the droplets are attached to the surface by 
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a thin filament, as seen in Figures 52a. At later stages of the flow, both droplets are 

unattached from the surface and still move away from each other. Even later stage of the 

flow, the residue remains on the no-slip surface and spreads over the surface while the 

unattached droplets rise further into the heavier fluid as seen in Figure 52a. Again the no-

slip surface strongly influences the development of the droplets and the flow induced by 

the rising droplets. Instantaneous streamlines and the vorticity contours are shown in Figure 

52a and c for the two semi droplets case discussed above at the time, t = 4.12 sec. The 

location of the droplets is imbedded on the contours of the stream function; helping to relate 

the induced flow field to the rising droplets. The presence of several counter rotating vortex 

pairs and their interaction with the no-slip boundaries are creating a very complicated flow 

field around the rising droplets [56].  

Figure 53 depicts the evolution of four droplets in bounded medium. The shape and the 

dynamics of each droplet are influenced significantly by the presence of the other droplets 

in the field. The initial shape and the configuration of the droplets are illustrated in Figure 

53a. The top droplet assumes nearly the shape of the oblate ellipsoid and remains 

unattached from the other droplets at all times, as shown in Figure 53a. However, its shape 

is still influenced by the other droplets. The droplets in the middle show a quite complicated 

evolution. Their leading edge gets closer to each other and merges at the later stages of the 

flow. Their trailing edge separates and coalescences with the droplet which was located at 

the bottom initially, as shown in Figure 53c and 53d.   
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                  a) t = 0 sec 

 
 

                          b) t = 0.313 sec  

 
c) t = 0.835 sec 

 
d) t = 1.47 sec 
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e) t = 1.77 sec  

Figure 53. Density contours of four droplets at various times. 

 

Figure 54 shows the flow field near the four rising droplets in an infinite fluid at t = 1.47sec. 

The density and the streamlines contour are shown together in Figure 54. The complex 

flow field around the droplets is obvious from these images. Both the intensity of the 

vortices and the pressure gradient induced by the rising droplets decay rapidly away from 

the droplet. The pressure field is determined by the density field. Hence the pressure 

contour is similar to the density contour.   
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                        a)                         b)                           c) 

Figure 54. a) Streamlines contours, b) vorticity contours and c) pressure contours for four 

droplets rising in an infinite domain at t = 1.47sec. 

 

The wall effects can be seen clearly on the flow structure around the droplets.  Mainly, the 

initial condition is that a lighter density droplet is suspended in a heavier fluid. The droplet 

is determined to be in equilibrium when the shape changes are insignificant. Figure 55 

demonstrates the density and pressure profiles along the center line of the droplet when 

equilibrium state is reached. The size of the computational domain is 300 ×300. The initial 

diameter of the droplet is 35 lattices (spherical droplet). The center of the spherical droplet 

is located at the center of the computational domain. The pressure inside is constant up to 

the interface and is constant outside the droplet. The difference between the two constant 
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values of pressure can be used to evaluate the surface tension for different droplet size as 

it is discussed earlier.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55. The equilibrium pressure and the density profiles along the center line of a 

droplet. 
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5.2. Rayleigh Taylor Instabilities 

5.2.0. Objective 

The Lattice BoltzmannMethod (LBM) is employed to study a number of complex 

interfacial flows induced by the Rayleigh Taylor (RT) instabilities [57, 58].  Previous 

studies have shown the LBM can be an effective tools for studying multiphase flows [59]. 

Andrea Parmigiani (2010) applied LBM to study multi-phase flows [60]. A stagnant 

heavier fluid is placed above a stagnant lighter fluid in this study. This is an unstable 

equilibrium so any disturbance in the system will grow and create a flow.  In general the 

RT instability occurs when a body force is present in the direction opposite to a steep 

density gradient [60-63]. Here, the method that was developed in the past research was 

used to study more interesting RT instabilities. The first two cases being studied show the 

RT instability initiated from periodic disturbances. Our interests in these flows lie in 

LBM’s ability to model the nonlinear stage of the RT instabilities. The pulling of the 

initially flat interface is also considered a form of disturbance the system. 

5.2.1. Introduction 

 Evolution of RT instabilities are presented for various cases. The multi components Shan 

and Chen model (1993) has been employed here to study Rayleigh Taylor Instability of oil 

and water. The density ratio of fluids is 1.2. The thermo-physical properties of oil and water 

are shown in Table1.8. Various type of boundary conditions are considered to study the 

wall effect. Different fluid arrangement in a two-dimensional geometry is considered at 

various values of aspect ratios [57, 58]. 
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Table1.9. Thermo-physical properties of water and oil. 

 

5.2.2. Two Layers with AR=1/3 

The water is placed at the top and the oil is placed at the bottom. The simulation is carried 

out for 300 × 600 lattices and with time step of 1.0×10-3. Shan and Chen multi-phase model 

has been employed in MRT lattice Boltzmann method. The aspect ratio is AR = L/H =1/3, 

where L is the length and H is the height of the cavity.  Both side walls are treated as no-

slip surfaces. At the early stage of the instability the influence of side walls on the evolving 

interface and the flow structure is very significant. The classical mushroom structures 

manifested by RT instabilities are distorted by the no-slip walls. At even later stages, the 

top and the bottom walls influence the flow, as shown in Figure 56. 

 

Working  Fluid  

𝜌 (
kg

m3
) 𝑣 (

m2

s
) 

λ (kg/s2) 

Water  1000 1x10-6 0.072 

Oil 825.1 10.6 x 10-6  0.036 
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                 a)  t = 0 sec        b) t = 1.53 sec        c) t = 1.84 sec      d) t = 2.385 sec  

 
 

 

 e) t = 3.60 sec                f) t = 4.23 sec      g) t = 6.165 sec     h) t = 6.75 sec                  
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i) t = 8.41 sec         j)  t = 9.10 sec           k)  t =10.25 sec         l) t =14.65 sec 

Figure 56. Density contours of two immiscible fluids (oil and water) at various times. 

 

5.2.3. Two Layers with AR=1 and 2 

The evolution of RT instabilities are studied here in a cavity with aspect ratio of 1 and 2. 

The oil and water are considered as fluids, as shown in Figure 57. The length of each fluid 

column is L and the height of light and heavy fluid is H1 and H2, respectively. The aspect 

ratio is defined by L/H.  
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Figure 57. Schematic diagram of the two layers.  

 

Three different types of disturbances are considered. Two different cases of the periodic 

disturbances with a wavelength of 3L and 5L and with normalized amplitude of 0.001 are 

studied. The third case of disturbance considered is the bump at the interface caused by 

pulling the interface [58]. The evolution of the unstable interfaces is investigated for aspect 

ratios of one and two. The effect of wall on the Rayleigh-Taylor instability is studied. 300 

× 300 lattice grid is used, for aspect ratio of 1 and 600 × 300 lattice grid is used, for aspect 

ratio of 2. These lattice nodes in the D2Q9 orientation are selected to ensure the spatial 

convergence. Simulation is conducted using a time step of 2.5×10-4 s to ensure the temporal 

convergence. The Rayleigh number for each fluid is calculated to be Ra1 = 6.69×107 (lighter 

fluid) and Ra2 = 7.53×109 (denser density). For the selected time step and the lattice spacing 

the relaxation frequencies are calculated for water as ω1 = 0.5657 and for oil as ω2 = 1.3815. 

The contours of coloring function are shown in Figure 58 at various time. Flow manifested 

by the RT instabilities in this case is initiated by the periodic disturbance with wavelength 

of 3L and amplitude of 0.001. The aspect ratio of the tank (L/H) is 1 for the images 

illustrated in Figure 58. The dark blue color denotes oil (κ-1) while the dark red color 

L 

Water – Heavy fluid (Red 

fluid) 

Oil – Light fluid (Blue 

fluid) 

H 

H2 

H1 
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denotes water (κ+1). The system is unconditionally unstable to these disturbances so 

they will grow in time.  

The red fluid pushed down initially is heavier than the fluid surrounding it and it will be 

pushed further down while the lighter fluid pushed up will move further up. This process 

will accelerate as the amplitude of the disturbance becomes larger. Growth of disturbance 

and the evolution of the Rayleigh-Taylor instability is strongly influenced by the presence 

of side walls. The instability grows much faster near the wall as shown even in the very 

early stage of the instability (see Figures 58a and b). The section of the interface near the 

middle is not disturbed as much as the parts near the side walls.  

As the denser fluid sinks and the light density fluid (oil) rises the classical mushroom-like 

structure is formed. The mushroom-like structure in the water is being distorted by the 

presence of the boundary as shown in Figure 58 (e,f). At the later stage of the instability 

the influence of both side walls and the bottom and the top wall influence the dynamics of 

the interface separating two immiscible fluids, as shown in Figure 58f.  The evolution of 

the interface and the growth of the instabilities can be seen clearly in the images shown in 

Figure 58 at various times.   
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a) t = 0.102 sec 

 

 

 

 

 

 

 

 

 

 

 

 

b) t = 0.8 sec 

 
 

 

 

 

 

 

 

 

c) t = 1.88 sec 
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d) t = 2.92 sec 

 

 

e) t = 4.0 sec 

f) t = 5.54 sec 

 

 



120 
 

g) t = 6.25 sec                  

   

            

Figure 58. Density contours at various times. The blue color denotes oil while the red 

color denotes water. The initial disturbance is periodic with the wavelength of 3πand 

the amplitude of 0.001.  

i) t = 9.577 sec 

h) t =7.36 sec 
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The contours of coloring function for the bounded case is shown in Figure 59 at various 

times for the initial periodic disturbance.  The wavelength of the disturbance is 5L and the 

amplitude is 0.001. At the early stages shown in Figure 59 (a,b,c), the Rayleigh-Taylor 

instability manifests itself with the wavy structure of the interfaces. The effects of the 

boundaries becomes obvious at the late stages of the instability as seen in Figure 59 (d,e,f). 

The interface is influenced by both side walls and the upper and the lower boundary as 

well. That makes the periodic interface being distorted. Instead it is seen that the water is 

being forced push to the center from each side by the rising oil pockets forming on the 

sides. These are the wall effects manifesting themselves at the later/non-linear stage of the 

instability, as depicted in Figure 59 (e,f). 

 

 

 

 

 

 

a) t = 0.05sec 

 

 

 

 

 

 

 

 

 

b) t = 2.27 sec 
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c) t = 3.97 sec 

 

 

 

 

 

 

 

d) t = 4.17 sec 

 

 

 

 

 

 

 

      e) t = 5.760 sec 
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 f) t = 6.61 sec 

 

Figure 59. Density contours at various times. The blue color denotes oil while the red 

color denotes water. The initial disturbance is periodic with the wavelength 5π and the 

amplitude of 0.001.  

 

The contours of coloring function for the disturbance created by the pull of the interface 

is shown in the Figure 60 at various times for the aspect ratio of 2. The interface is flat 

everywhere except near the center at the early stages of the Rayleigh-Taylor instability. 

The ripple spreads toward the side boundary at later stage. Oil comes from the center 

region and near the walls. The high density fluid goes down while light density fluid (oil) 

goes up forming the mushroom-like structure in oil near the center. The mushroom-like 

structure in the water is being distorted by the presence of the lower boundary, as shown 

in Figure 60f. 
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a) t = 0.05 sec 

 

 

 

 

 

 

 

b)  t = 0.112 sec 

 

 

 

 

 

 

c) t = 1.84 sec 
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d)  t = 2.27 sec 

 

 

 

 

 

 

e)   t = 3.80 sec  

f) t = 4.23 sec 

Figure 60. Density contours at various time. The dark blue color denotes oil while the 

dark red color denotes water. The initial disturbance is introduced by pulling of the 

interface.   

 

The contours of coloring function and the streamlines at t = 4.35 sec and 5.3 sec are shown 
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for aspect ratio of 1 in Figure 61. The flow created by the Taylor-Rayleigh instability is 

initiated near the interface by the sine wave with wavelength of 5L. Images are obtained at 

very late stages of the instability. There are two pairs of counter-rotating vortices resulted 

from the Taylor-Rayleigh instability becomes larger and stronger as the instability grows. 

The vortices become larger as the time progress as shown in the Figure 61. 

 

 

 

a) Density contour at t = 4.35 sec 

 

b) Streamlines contour at t = 4.35 sec 
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c) Streamlines at t = 5.3 sec 

 

 

 

 

 

 

 

d) Density contour at t = 5.3 sec  

Figure 61. Density and streamlines contours at t = 4.35 sec and t = 5.3 sec. The dark blue 

color denotes oil (while the dark red color denotes water. The initial disturbance is 

periodic with the wavelength 5π and the amplitude of 0.001.  

 

5.2.4. Three Layers with AR=2 

The three fluids are arranged in the certain way, the heavy fluid is placed in the middle and 

other two partitions are filled with the lighter fluid. The single mode disturbance is applied 

in the lower interface of the heavy fluid, as shown in Figure 62a [57]. The periodic 
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conditions are applied at the side walls. No effects of the sided wall boundaries are on the 

flow structures, as shown in Figure 62d. 

 

 
a) t = 3.234 sec 

 
b) t = 6.16 sec 

 
c) t = 7.89 sec 

 
d) t = 8.74 sec 
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e) t = 9.11 sec 

 
f) t = 9.45 sec 

 

Figure 62. Density contours in three layers at various times. The lower interface is 

disturbed by the periodic disturbances of π wavelength and 0.001 amplitude. Periodic sided 

walls.  

 

 

a) t = 3.00 sec 
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b) t = 6.27 sec 

 
c)  t = 8.14 sec 

 

 
d) t = 8.77 sec 
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e) t = 9.28 sec 
 

 

Figure 63. Density contours in three layers at various times. The lower interface is 

disturbed by the periodic disturbances of π wavelength and 0.001 amplitude. Periodic 

side walls. 

 

The fluid structure behavior is completely different due to the effects of the boundary 

conditions in both sides, as shown in Figures 62 and 63.  The lower interface is unstable; 

however, the upper interface is stable. At the late stage the upper interface becomes 

unstable as well. The wall boundary effects can be observed, as shown in Figure 62c and 

63d. At the early stage the flow structure is dominated by the no-slip boundary effect. The 

mushroom structure appears due to the difference in thermo-physical properties of the two 

fluids. These results prove that LBM can trace the interface between the two fluids 

effectively.  
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5.3. Three Dimensional Interfacial Flows Using D3Q19- Multi-Components –Shan 

and Chen Model 

5.3.1. Introduction 

A three dimensional nineteen velocity, D3Q19, lattice Boltzmann model has been 

developed to study the evolution of the three-dimensional Rayleigh–Taylor instability. The 

geometry considered is H×H×6H cavity. The gravitational acceleration is acting in the 

direction of z. The heavier fluid, water, is placed above the lighter fluid, oil; creating 

unstable equilibrium. By introducing periodic disturbance the Rayleigh-Taylor instability 

onsets. The flows induced by the flow transition at the early and the late stage of the 

instability is characterized.  

5.3.2. A Mathematical Model 

There are several cubic lattice arrangements to study three dimensional flows. Fifteen 

velocity; D3Q15, and nineteen velocity; D3Q19 are the two of them [64-66]. These lattice 

arrangements are illustrated earlier in Table1.3. At each physical location x, the D3Q19 

models have a rest particle with zero velocity in the discretized velocity set {ek}. The 

discretized lattice velocity is given by  

ek = {

(0,0,0)                                                   k = 0
(∓c, 0,0), (0, ±c, 0), (0, ±c, 0)            𝑘 = 1: 6

(±c,±c, 0), (±c, 0, ±c), (0, ±c, ±c)       k = 7: 18
                                                    108 

Shan and Chen model has been employed to model a non–ideal interaction between 

particles at neighboring lattice nodes. A force at each site is employed to approximate the 

effects of the molecular interaction. This large–range force acting on the particle cause 

modification of the momentum calculation at each time step as  
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ρσ𝐮σ =∑fk
σ(𝐫, t)ek + τ∑Fk

σ(r, t)

kk

                                                                                    109 

where Fk  is  the interaction potential acting on the particles at site r. It is modeled as  

Fσk(𝐫, t) = −G𝜓^𝜎̅̅ ̅̅ ̅̅ (𝐫, t)∑ψσ(𝐫 + ∆𝐫, t + δt)

k

wkek                                                         110 

Here the potential strength ψ(r,t) is a function of fluid density and it plays a role of the 

effective density. G measures the strength of the interactions between particles on the 

nearest-neighbor grid site, f(r,t) is the single-particle distribution function or probability of 

σ component. The macroscopic velocity of σ is 𝐮𝜎, the relaxation time is τ and δt is the 

time step. The r represents the three dimensional spatial coordinates r = (x,y,z) and u 

denotes the velocity vector u = (u,v,w).  

Although the total momentum is conserved over the entire domain, the momentum is not 

conserved locally within grid cells. By introducing an additional forcing term explicitly to 

the velocity field, the intermolecular interactions can effectively be modeled.  

The diagonal matrix of MRT for D3Q19 lattice arrangement is written as  

D = diag(0, S1, S2, 0, S4, 0, S4, S9, S2, S1, S9, S9, S16, S16, S16, S9, S9, S9, S9)                       111 

The equilibria of the moments, meq, are the functions of the conserved moments, which are 

the mass density. 
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=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−11Δρ + 19J. J

φє∇ρ +
φεj

ρo
J. J

0

−
2

3
Jx,y,z

0

−
2

3
Jx,y,z

m6
eq

0

−
2

3
Jx,y,z

1/ρo(3Jx
2 − J. J)

φxx1/ρo(3Jx
2 − J. J)

1/ρo(Jy
2 − Jz

2)

φxx1/ρo(Jy
2 − Jz

2)

1/ρo(Jx. Jy)

1/ρo(Jy. Jz)

1/ρo(Jz. Jx)
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        J=(Jx,Jy,Jz)= ρou                                                       112 

The numerical stability of the model can be achieved by selecting  𝜑є = 𝜑𝑥𝑥 = 0 and 

𝜑є𝑗 = −
475

63
[ 67]. The density fluctuation Δρ is utilized instead of the total density ρ in 

order to reduce the numerical instabilities due to the round-off error [67].  The viscosity 

per unit lattice for D3Q19 is defined as in equation (1).  

The weighting functions of D3Q19 are: 

wk =

{
 
 

 
 
1

18

1

3
                                   k = 0

                                      k = 1: 6
1

36
                                 k = 7: 18

                                                                            113   

  The summation of the weighting function should be unity.  
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∑ wk = 118
0                                                                                                                           114 

In our simulation, the values of the relaxation rates inside the diagonal matrix was chosen 

to be   

S1 = 1.19, S2 = S10 = 1.4, S4 = 1.2 and S16 = 1.98, 𝑆6 𝑎𝑛𝑑  𝑆9 =
1

𝜏
                               115 

The momentum matrix M is  

M =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
−30
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
−11
−4
1
−4
0
0
0
0
2
−4
0
0
0
0
0
0
0
0

1
−11
−4
−1
4
0
0
0
0
2
−4
0
0
0
0
0
0
0
0

1
−11
−4
0
0
1
−4
0
0
−1
2
1
−2
0
0
0
0
0
0

1
−11
−4
0
0
0
0
1
−4
−1
2
−1
−2
0
0
0
0
0
0

1
−11
−4
0
0
0
0
−1
4
−1
2
−1
2
0
0
0
0
0
0

1
8
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
−1
0

1
8
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
−1
0

1
8
1
−1
−1
1
1
0
0
1
1
1
1
−1
0
0
−1
−1
0

1
8
1
1
1
−1
−1
0
0
1
1
1
1
−1
0
0
−1
−1
0

1
8
1
−1
−1
−1
−1
0
0
1
1
1
1
1
0
0
−
1
0

1
8
1
1
1
0
0
1
1
1
1
−1
−1
0
0
1
−1
0
1

1
8
1
−1
−1
0
0
1
1
1
1
−1
−1
0
0
−1
1
0
1

1
8
1
1
1
0
0
−1
−1
1
1
−1
−1
0
0
−1
−1
0
−1

1
8
1
−1
−1
0
0
−1
−1
1
1
−1
−1
0
0
1
1
0
−1

1
8
1
0
0
1
1
1
1
−2
−2
0
0
0
1
0
0
1
−1

1
8
1
0
0
−1
−1
1
1
−2
−2
0
0
0
1
0
0
−1
−1

1
8
1
0
0
1
1
−1
−1
−2
−2
0
0
0
−1
0
0
1
1

1
8
1
0
0
−1
−1
−1
−1
−2
−2
0
0
0
1
0
0
−1
1 ]
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The resulting discretized lattice Boltzmann equation is  

fσk(𝐫 + 𝐞kδt, t + δt) − f
σ
k(𝐫, t) = −M−1σDσ[mσ

k(𝐫, t) − mk
σeq(𝐫, t)]                          117 

5.4.3. Results and Discussions 

Three dimensional flows created by the Rayleigh –Taylor instability is presented for 

various types of boundary conditions. The heavier fluid is placed at the top while the lighter 

fluid at the bottom. The simulation is carried out for the time step of 1.0×10-3sec. Shan and 

Chen model has been employed to treat the interactive forces between the phases. The 

aspect ratio is AR = L/H = 6, where L is the length and H is the height of the rectangular 

cavity. The width of the three dimensional cavity is W=H. In an infinite medium (periodic 
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boundary conditions) flow patterns are nearly periodic in x-direction, as shown in Figures 

64  and 65 for Ra = 1×105. Slight distortion in the flow patterns is due to the nature of the 

initial periodic disturbance (sine wave disturbance). At the late stage of the instability the 

mushroom-like structure are formed. These mushrooms like structure are distorted 

significantly by the presence of the top and the bottom slip surface. Slices of the three 

dimensional flow patterns in the x-z plane are depicted in Figure 65 at various stages of the 

Rayleigh –Taylor instabilities. Figures 66 illustrates the velocity vectors of the x-z plane at 

t = 1.1 sec and t = 2.1 sec. Flow induced by the Rayleigh-Taylor instability becomes 

stronger at the later stage of the flow transition, as seen in Figure 67a and 67b. Figure 68 

depicts the density contours for Ra =1×105 at various times of a narrow channel. The no-

slip walls influence the flow patterns at both early and late stages of the flow instabilities. 

The interface starts deforming near the side walls and stay nearly flat away from the side 

walls at the early stage. The flow patterns becomes very complicated by the influence of 

side and the top and the bottom walls at the later stage of the instabilities. The intensity of 

flow increases and spatial flow structures become significantly more complicated at later 

stage of the instability, as shown in Figure 69a and b.   
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Figure 64. Three Dimensional density iso surfaces at a) t = 0 sec, b) t =1.2 sec. c) t =1.85 

sec d) t =2.13 sec, and f) t =2.41 sec. Simulations are conducted for AR=5 with periodic 

boundary conditions.   
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Figure 65. Three dimensional density iso surfaces: a) The slice in the y-z plane at t = 

0.98 sec, b) the slice in the x-z plane at t = 0.98 sec, c) the slice in the y-z plane at t = 

1.20 sec, d) the  slice in the x-z plane at t =1.20 sec, e) and f) the  half of the domain in 

the x-y plane at t = 0.98 sec and 1.20 sec, respectively. 

 

d) 

e) 

f) 

 

 

 



140 
 

 

 

a)  

 

b) 

Figure 66. Velocity vectors in the x-z plane at a) t = 1.1 sec and b) t = 2.1 sec. Periodic 

boundary conditions are applied at the side walls.  
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e) 

 

f) 

Figure 67. The density iso surfaces:  a) The slice in the y- z-plane at t = 0.98 sec, b) the  

slice in the x-z plane at t = 0.98 sec, c) the slice in the y-z plane at t =1.20 sec, and d) the 

slice in x-z plane at t =1.20 sec.  e) and f) The density iso surfaces in the half of the domain 

in z-plane at t t = 0.98 sec and t = 1.20 sec, respectively.  The no-slip boundary conditions 

are applied at the side walls.  
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Figure 68. The density iso surfaces at a) at t = 0, b) t =1.85 sec, c) t = 2.13 sec and d) t = 

2.41 sec. Simulations are conducted for AR=5 with periodic boundary conditions at the 

side walls of a narrow channel.  
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a)  

 

 

 

 

 

 

 

 

 

b) 

Figure 69. Velocity vectors in the x-z plane at a) t =1.1 sec and b) t = 2.1 sec. No-slip 

boundary conditions are applied at the side walls.   
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5.4. The effect of the Interactive Strength “G” and Limitations of Shan & Chen 
Model 
 

Note that the surface tension and the equation of state depend on the same parameter G, 

which is clearly a limitation of the Shan-Chen model [68]. Therefore, by taking a larger 

parameter G the liquid-liquid density ratio is not only increased, as shown in Figure 70, but 

also the interface width is decreased because of the larger surface tension. This is one 

reason for the stability failure with the large G parameter. As the interface is narrowed the 

scheme fails due to large density gradients. Sbragagliaet al. (2007) introduced the 

multirange potential to separate the equation of state and the surface tension [69]. However, 

it is not compliant with the Navier-Stokes surface tension term. One can see the difference 

between the profiles as G increases. However, the equation of state makes the density value 

to be almost the same as in the original Shan-Chen model. 

 

 

 

 

 

 

 

 

 

 

Figure 70. Density profiles for various values of “G” at the interface at t = 0.46 sec.  
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The interface width decreases with increase of the liquid-liquid density as G increases. 

Figure 71 illustrates the pressure profiles at the interface and shows that if G increases the 

pressure at the interface decreases. Relationship between the pressure field and G is 

expressed as follows  

P = c2sρ −
G

6
( ψ(ρ))

2
                                                                                                                  118 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71. Pressure profiles across the interface for various values of “ G” at t = 0.46 sec. 

  

The relaxation frequency has strong effect on the density gradient across the interface. 

Selecting appropriate relaxation frequency is an important factor to keep the code stable. 

When the relaxation frequency 0.5 ≤ ω ≤ 1.1, the present simulations provide stable results.  

As the relaxation frequency increases, the density gradient across the interface increases, 

as shown in Figure72.  Stif density distribution across the interface leads to the instability. 
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Figure 73 shows the Mach number (Ma) for various values of G. For stable and accurate 

simulations Ma should be small. As G increases Ma increases, as shown in Figure 73.  

 

 

 

 

 

 

 

 

 

 

Figure 72. Density profiles across the interface for various values of the relaxation 

frequencies and G =1.2 at t = 0.46 sec. 

 

 

 

 

 

 

 

 

 

 

 

Figure 73. Mach number profiles across the interface for various values of “G” at t = 0.46 

sec.   
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In summary, multi-phase multi relaxation lattice Boltzmann method have been developed 

to study two and three dimensions interfacial flows. Flow field induced by rising droplets 

in confined geometry are examined. The dynamics of the interface separating two fluids 

have been characterized for various geometry. Flows induced by Rayleigh–Taylor 

instability are examined at the linear and nonlinear stage of the instability. Dynamics of 

the interface is studied in confined geometry near walls.    
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CHAPTER 6: CONCLUSIONS 

A detailed description of a single relaxation time lattice Boltzmann model and its variations 

has been presented. Implementation of various types of velocity and thermal boundary 

conditions was discussed. Extension of interactive forces between phases and the surface 

tension for modeling interfacial flows was described in detail for various methods. Stability 

of lattice Boltzmann model has been improved significantly by adopting a multi-relaxation 

and regularized model. A novel regularized multi relaxation lattice Boltzmann model has 

been proposed by the present author to overcome the stable shortcomings of the lattice 

Boltzmann model. The new model has been successfully applied to turbulent flows past 

bluff bodies at high Re to resolve spatial and temporal characteristics of the flow in the 

wake. Thermal lattice Boltzmann model has been developed to study flows induced by the 

density stratifications. 

Unsteady turbulent flow around a square and arrays of square cylinders confined in a 

channel were studied computationally by employing regularized multi-relaxation lattice 

Boltzmann method. Spatial and temporal characteristics of the flow created by vortex 

shedding were examined for Re up to 21400. The frequency of the vortex shedding 

predicted here agrees well with the results measured and predicted by large eddy 

simulations for a wide range of Re. Flow field in the wake near body is similar to those 

observed and predicted by large eddy simulations. Vortices shed by the bluff body interact 

strongly with the boundaries away from the body, in the more confined case. It is also 

noticed that, for flows past an array of cylinders, multiple frequencies are seen in the power 

spectrum of the lift coefficient. This implies that the complexity of the vortex growth and 

the shedding from cylinders is greater than in the single cylinder case. It is observed even 
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for the first row of the arrayed cylinder. This study clearly demonstrates that the lattice 

Boltzmann method developed here overcomes the stability issues of the lattice Boltzmann 

method for high Re flows up to Re=21400. One of the advantages of the method developed 

here is orders of magnitude lower computation time when compared with large eddy 

simulations or direct numerical simulations. 

Multi-Relaxation Time Lattice Boltzmann method was implemented to study lighter 

droplets rising in a heavier fluid. Both an infinite and bounded fluid domains were 

considered. Density distribution functions for each fluid and the function for the coloring 

step to identify the location of interface separating each immiscible fluid was determined 

at various stages. The evolution of the rising droplet and the temporal and spatial 

characteristics of the flow induced by such motion were examined for various 

arrangements. The present method was validated by comparing our results against well-

known regimes in droplet dynamics. Interactions between multiple droplets and the 

interactions between droplets and a solid boundary were illustrated. These interactions 

create a complicated velocity, vorticity and the pressure field in the vicinity of rising 

droplets. It is also illustrated here how droplets rise when they are placed on the no-slip 

boundary initially. First, droplets from a long thin filament and at a later stage of evolution 

the filament breaks and droplet dis-attach from the boundary. As the residue of the droplet 

spreads over the no-slip surface dis-attached droplet continue to rise away from the surface. 

This study proves that Lattice Boltzmann method could be an effective computational fluid 

dynamics (CFD) tool to simulate multi-phase flows with interfaces evolving with complex 

fashion.  
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Multi-Relaxation Time Lattice Boltzmann Method with D2Q9 lattice arrangement has 

been employed to study to study the nonlinear dynamics of the Rayleigh Taylor instabilities 

in confined geometries. The expected mushroom structures, which are well documented in 

Rayleigh Taylor studies, are distorted by the choice of initial disturbances and by the effects 

of boundary walls. A growing ripple at the interface can be seen in the case of the non-

periodic initial disturbance. Streamlines at various times show that the circulation begins 

around the interfaces and rapidly grows outward in time. The odd angles of the circulations 

again indicate the effect of the no slip boundaries. It is demonstrated that the Lattice 

Boltzmann method is efficient at handling complex interfacial flows manifested by flow 

transitions such as the one discussed here. Both linear and nonlinear stages of the 

instabilities can be captured accurately near and away from boundaries. 

A three dimensional nineteen velocity, D3Q19, multi relaxation lattice Boltzmann model 

has been developed to study the nonlinear dynamics of the Rayleigh Taylor instabilities in 

a three dimensional cavity. Early and late stages of three dimensional Rayleigh Taylor 

instabilities were characterized. 

Multi-relaxation thermal lattice Boltzmann model has been developed to study buoyancy-

driven convections. Convection cells in a closure with a presence of no-slip surfaces were 

characterized. The results presented here agree well with those documented in the literature 

for classical flow patterns manifested by Rayleigh Benard instabilities. 

It has been shown that the lattice Boltzmann method is an effective computational fluid 

dynamics tool. It can be an alternative to direct numerical simulations in resolving spatial 

and temporal structure of turbulent flows. It is also shown that the lattice Boltzmann 

method is a great tool to study the interfacial flows. 
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Stability of lattice Boltzmann method can be further improved by implementing Entropy 

lattice Boltzmann model to study high speed flows. The model can be made more flexible 

by introducing different lattice arrangements. Triangular, hexagonal or other placement of 

lattices in the computational domain can make model easily applied to solve flows in 

complex geometries. 
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APPENDIX A  

A. Unknown and Known Distribution Functions for D3Q19 Arrangement. 

A1. No- slip boundary Conditions  

 y-z plane  

f5, f11, f12, f15, f17 

 y-z plane: 

f6, f13, f14, f16, and f18 

A. Left and right boundary conditions: 

 x-y plane: 

f3, f7, f9, f15,  and f16 

x-y plane:  

f4, f8, f10, f17,  and f18                        Figure A. 1. Distribution functions in the y − z plane  

B.  Front and back boundary conditions:  

x-z plane :  

f2, f9, f10, f12,  and f14 

x- z plane: 

f1, f7, f8, f11,  and f13 

  

 

 

 

 

 

 

Figure A.2. Distribution functions in the  x-y plane    Figure A.3. Distribution functions 

in the x-z plane  
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To summarize all known and unknwon distribution functions as follow:  

 

At X=0 (Front wall) At X=1 (Back wall) 

Unknown 

distribution 

functions  

Known distribution 

functions  

Unknown s 

distribution 

functions  

Known distribution 

functions  

f2 f1 f1 f2 

f9 f8 f8 f9 

f10 f7 f7 f10 

f12 f13 f13 f12 

f14 f11 f11 f14 

Table 1.10 Distribution functions at the front and the back walls.  

 

At Y=0 (left) At Y=1 

Unknown 

distribution 

functions  

Known 

distribution 

functions  

Unknown s 

distribution 

functions  

Known distribution 

functions  

f15 f18 f18 f15 

f3 f4 f4 f3 

f16 f17 f17 f16 

f7 f10 f10 f7 

f9 f8 f8 f9 
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At Z=0 At Z=1 

Unknown  

distribution 

functions  

Known 

distribution 

functions  

Unknown 

distribution 

functions  

Known distribution 

functions  

f11 f14 f14 f11 

f12 f13 f13 f12 

f5 f6 f6 f5 

f15 f18 f18 f15 

f17 f16 f16 f17 

Table 1.11. Distribution functions at the left and the right walls.  

 

In order to determine five  unknown distribution functions  at the boundaries  listed in 

Table A.1.10 and A.1.11 following five equations are used  

ρ =∑fk                                                                                                                                          (1)

18

k=0

 

ρu =∑fkcxk                                                                                                                                  (2)

18

k=0

 

ρv =∑fkcyk                                                                                                                                  (3)

18

k=0

 

ρw =∑fkczk                                                                                                                                 (4)

18

k=0

 

fi − fi
eq
= fi+1 − fi+1

eq
  (where i = 5 and 12)                                                                           (5) 

Coupled linear set of equations (1-5), can be solved to determine the unknown distribution 

functions along the boundary.  
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A.2. Reflection Boundary Conditions  

Simple reflection boundary conditions employ dummy nodes located near the walls to 

evaluate distribition functions  at the boundary. A fluid domain particle colliding with 

boundary site reserves the direction of its velcoity. The particle distribution functions 

locally can be determined from 

fk
out(r, t) = fk

in(r, t)                                                                                                                         (6) 

where fk
in(𝐫, t) is the particle distribution function entering the boundary site and fk

out(𝐫, t) 

is the particle distribution function leaving the boundary site. The distribution functions 

can be re-written  as listed in Table A1.1 and A1.2. On a boundary site, the  mass and the 

momentum are conserved and  the velocity on the boundary site is zero. Any particle 

entering the site with a given velocity leaves the boundary with the same velocity in the 

opposite direction. In case of the reflection conditions, the collision processs doesn’t occur 

at the boundary.  

A.3. Periodic Boundary  Conditions 

The periodic boundary conditions can be utilized in case of the infinite domain. They are 

implemented in the streamwise direction by treating nodes on inflow and outflow faces as 

nearest neighbours if they share common y and z coordinates. With this convention, the 

streaming operation automatically defines the population on all incoming links at the end 

of lattice. Imposing  periodic as a natural part of the streaming operations; outgoining 

populations at the end the lattice become incoming populations at the other end. For 

example: at the left end (y=0) and right end (y=Ny-1) in which Ny is the number of lattices 

in y-direction, the following zero derivative condition is imposed after the collision steps: 
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fk
out(x, 0, z, t) = fk

in(x − ∆x, Ny, z − ∆z, t)                                                                                 (7) 

The periodic boundary conditions should satisfy the conservation of mass and the 

conservation of momentum. 
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