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Abstract

One of the most promising devices for realizing power production through nu-

clear fusion is the tokamak. In order to maximize performance, it is preferable that

tokamaks achieve operating scenarios characterized by good plasma confinement, im-

proved magnetohydrodynamic stability, and a largely non-inductively driven plasma

current. Such scenarios could enable steady-state reactor operation with high fusion

gain, the ratio of fusion power produced to the external heating power needed to

sustain reactions. There are many experimental tokamaks around the world, each

exploring different facets of plasma physics and fusion technology. These experiments

have reached the point where the power released from fusion is nearly equal to the

power input required to heat the plasma. The next experimental step is ITER, which

aims to reach a fusion gain exceeding ten for short pulses, and to sustain a gain of five

for longer pulses (of lengths of ≈1000s). In order for ITER to be a success, several

challenging control engineering problems must be addressed.

Among these challenges is to precisely regulate the plasma density and tempera-

ture, or burn condition. Due to the nonlinear and coupled dynamics of the system,

modulation of the burn condition (either during ramp-up/shut-down or in response to

changing power demands) without a well designed control scheme could result in unde-

sirable transient performance. Feedback control will also be necessary for responding

to unexpected changes in plasma confinement, impurity content, or other parameters,

which could significantly alter the burn condition during operation. Furthermore, al-

though stable operating points exist for most confinement scalings, certain conditions

can lead to thermal instabilities. Such instabilities can either lead to quenching or

a thermal excursion in which the system moves to a higher temperature equilibrium
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point. In any of these situations, disruptive plasma instabilities could be triggered,

stopping operation and potentially causing damage to the confinement vessel.

In this work, the problem of burn condition control is addressed through the de-

sign of a nonlinear control law guaranteeing stability of desired equilibria. Multiple

actuation methods, including auxiliary heating, isotopic fueling, and impurity injec-

tion, are used to ensure the burn condition is regulated even when actuators saturate.

An adaptive control scheme is used to handle model uncertainty, and an online opti-

mization scheme is proposed to ensure that the plasma is driven to an operating point

that minimizes an arbitrary cost function. Due to the possible limited availability of

diagnostic systems in ITER and future reactors, an output feedback control scheme is

also proposed that combines the nonlinear controller with an observer that estimates

the states of the burning plasma system based on available measurements. Finally,

the control scheme is tested using the integrated modeling code METIS.

The control of spatial profiles of parameters, including current, density, and tem-

perature, is also an important challenge in fusion research, due to their effect on MHD

stability, non-inductive current drive, and fusion power. In this work, the problem of

kinetic profile control in burning plasmas is addressed through a nonlinear boundary

feedback control law designed using a technique called backstepping. A novel imple-

mentation of the backstepping technique is used that enables the use of both boundary

and interior actuation. The backstepping technique is then applied to the problem of

current profile control in both low-confinement and high-confinement mode discharges

in the DIII-D tokamak based on a first-principles-driven model of the current profile

evolution. Both designs are demonstrated in simulations and experimental tests.
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Chapter 1

Introduction

1.1 Nuclear Fusion and the Tokamak

As the world’s population increases and more countries become highly industrialized,

the demand for energy rapidly rises. The increasing energy usage exacerbates the

major drawbacks of burning fossil fuels, which accounts for most of the world’s energy

production. The burning of fossil fuels results in the generation of vast amounts

of greenhouse gases, contributing to the problem of global warming, and creates

additional pollutants with harmful effects on the environment. Furthermore, although

the supply of fossil fuels is not likely to be totally depleted for a few hundred years,

extraction is becoming more difficult and an energy shortfall is predicted to occur in

the next few decades [1, 2]. While solar, wind, and hydroelectric power are attractive

alternatives to fossil fuels, they lack the energy density needed to satisfy growing

energy demands. Nuclear fission, the production of energy through splitting heavy

atomic nuclei, has a much higher energy density, and is a mature technology that

already accounts for a significant portion of the world’s energy production. However,

fission results in the production of long lasting and highly radioactive nuclear waste

3



!"

!"

!"
!"

!"

!"

#$%&'("

)$'*+,-"
.+&/'("

0$'*$+&'("

1-$+23"

Figure 1.1: The D-T fusion reaction.

and can result in dangerous nuclear accidents. Nuclear fusion, on the other hand,

generates only short term, low-level radioactive waste and poses no risk of nuclear

meltdowns, while still possessing the desirable characteristics of high energy density,

abundant fuel supply, and no air pollution production. For these reasons, nuclear

fusion has been the focus of extensive research over the last several decades.

In nuclear fusion reactions, two light atomic nuclei combine to form a heavier

nucleus and, in the process, a significant amount of energy is released. Most present

day efforts consider the reaction depicted in Figure 1.1,

2
1D +3

1 T →4
2 He+1

0 n+ 17.6 MeV, (1.1)

in which deuterium (D) and tritium (T ), two isotopes of hydrogen, fuse into a helium

(He) nucleus, releasing an energetic neutron and 17.6 MeV of energy. The fuel is

plentiful: deuterium can be obtained from seawater, and tritium can be bred from

lithium (a metal found in large quantities in the Earth’s crust) through bombardment
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with a source of neutrons, i.e., through the reactions

7
3Li+1

0 n→4
2 He+3

1 T +1
0 n+ 2.5 MeV (1.2)

6
3Li+1

0 n→4
2 He+3

1 T +1
0 n+ 4.8 MeV. (1.3)

Indeed, tritium breeding could potentially be done within a fusion reactor by coating

the walls with liquid lithium.

Due to the strong Coulombic repulsion force experienced by the positively charged

D and T nuclei, the fuel must be heated to extremely high temperatures, on the order

of 100 million degrees, in order for a significant number of fusion events to occur

within a reactor. The major challenge to fusion energy has been to create a device

capable of achieving these high temperatures and subsequently confining the fuel long

enough for more energy to be released than is required by the heating process. Three

approaches to this are known: gravitational confinement - the method used by stars,

inertial confinement - the process of using inertia to implode the hydrogen gases long

enough for fusion reactions to occur, and magnetic confinement - the use of magnetic

fields to confine ionized fuel atoms. Currently, magnetic confinement is the most

promising approach, and magnetic confinement devices are the likely technology for

future fusion power plants.

At the temperatures required for fusion, the fuel becomes an ionized gas, called a

plasma. In an applied magnetic field, the individual charged particles of the plasma

travel along magnetic field lines in a helical path due to the Lorentz force. This effect,

illustrated in Figure 1.2 , restricts particle motion perpendicular to the applied field,

but does not confine particles in the parallel direction. Building on this concept, the

tokamak [3], one of the most promising magnetic confinement devices, uses a system

of magnetic coils and currents to close and twist the applied magnetic field lines into
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Figure 1.2: Magnetic confinement of charged particles.

a helical structure to trap the plasma inside a toroidal vessel and create a magnetic

equilibrium.

A schematic of the coils and magnetic fields in a tokamak is shown in Figure 1.3.

The D-shaped toroidal field (TF) coils are in blue, while the poloidal field (PF) coils

are shown in gray. The current flowing in these coils as well as the plasma itself

produces the helical magnetic field needed to confine the fusion plasma. The plasma

current, which contributes to heating the plasma and generates the poloidal magnetic

field needed for confinement, is primarily sustained inductively by the ohmic heating

coil. Additional non-inductive current and plasma heating are obtained through the

injection of high energy neutral particles (uncharged fuel atoms) and electromagnetic

waves. Because present day tokamaks rely heavily on transformer action to generate

the critical plasma current, they cannot be operated in steady state. They are instead

operated in short pulses, usually referred to as discharges or shots. In present day

tokamaks, typical discharge lengths are on the order of seconds or minutes. During

discharges, the plasma is refueled through gas puffing valves at the plasma boundary,
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Figure 1.3: Cutaway view of a tokamak.

as well as frozen pellets of deuterium and tritium that can penetrate deep into the

plasma core before ablating. Operation of a successful tokamak machine requires

careful control over the fueling and heating, as well as the magnetic fields used for

confinement. A schematic of the heating and fueling actuators is given in Figure 1.4.

The 17.6 MeV of energy released by the D-T fusion reaction is distributed to

both products of the reaction. The neutron, which is not charged and therefore not

confined within the magnetic field of the tokamak, carries 80% (14.1 MeV) of the

fusion energy to the vessel wall. In an operational reactor, the wall would capture

the neutrons and convert their kinetic energy into the heat needed to drive electrical

generators. The other 20% (3.5 MeV) of the fusion energy is associated with the other

product of the reaction, a helium ion or alpha particle. These particles are charged

and are confined by the magnetic field. Through collisions with other particles, the
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Figure 1.4: Actuators used to control kinetic variables in tokamaks.

energy of the alpha particles self-heats the plasma. Given the right conditions, the

plasma can produce enough fusion power to completely heat itself. This situation, in

which no external energy is required, is termed an ignited plasma. While this would

be the ultimate goal of fusion research, a more modest goal is to create a plasma in

which a majority of the plasma heating comes from the alpha particle heating. This

is termed a burning plasma.

There are many experimental tokamaks around the world, each exploring different

facets of plasma physics and fusion technology. Devices like JET in the UK, Tore-

Supra in France, and DIII-D in the United States, have made significant progress

towards realizing the goal of fusion energy. Experiments have reached the point

where the power released from fusion is nearly equal to the power input needed to

heat the plasma (the so-called break-even condition). The next experimental step is

ITER, an international collaboration that is designed specifically to reach the burning

plasma state. A cut-away view of the ITER tokamak is shown in Figure 1.5. The

fusion gain, defined as the ratio of fusion power to heating power and denoted as Q,
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Figure 1.5: Cut-away of the ITER tokamak (source: ITER.org).

is expected to exceed ten in certain ITER operating scenarios, and to be sustained

at Q = 5 for ≈1000s. The ITER tokamak will be used to explore so-called advanced

tokamak (AT) scenarios. These operating modes are characterized by high plasma

confinement and pressure as well as largely non-inductively driven plasma current.

These characteristics are necessary for achieving steady-state operation.

1.2 Control Engineering Challenges for ITER

Advanced tokamak modes rely heavily on active control to reach high levels of perfor-

mance and to regulate the plasma density, temperature, and confinement in order to

maintain the fusion reaction. Mathematical modeling and control of tokamak plasmas

is extremely challenging because tokamak plasmas are high order, highly coupled, dis-

tributed parameter, nonlinear systems. Tokamak plasmas also have many instabilities

and a limited number of actuators and sensors. The control challenges are generally

separated into two groups: electromagnetic control and kinetic control. Electromag-
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netic control refers to controlling the magnetic and electric fields to regulate the

position and shape of the plasma, as well as the total plasma current. Kinetic control

refers to controlling fueling rates and auxiliary heating to modify the plasma density,

temperature, and pressure. The density and temperature are critical reactor param-

eters, as they influence fusion power, heat loads to plasma facing components, and

plasma stability. Furthermore, since the tokamak plasma is a spatially distributed

system, it is important to not only control the volume averaged values of these phys-

ical quantities, but also their spatial profiles. Energy confinement, plasma stability,

and the fraction of non-inductive plasma current, can all be improved through control

of pressure and current profiles. This dissertation focuses on developing and studying

strategies for addressing the important problems of burn condition control, kinetic

profile control in burning plasmas, and current profile control.

1.3 Burn Condition Control

For nuclear fusion to become an economical alternative energy source, tokamak reac-

tors must be capable of operating for extended periods of time in a burning plasma

mode characterized by a large value of Q, the ratio of fusion power to auxiliary

power. Achieving and maintaining such conditions will require precise control over

the plasma density and temperature. Due to the nonlinear and coupled dynamics of

the system, modulation of the burn condition (either during ramp-up/shut-down or in

response to changing power demands) without a well designed control scheme could

result in undesirable transient performance. Feedback control will also be necessary

for responding to unexpected changes in plasma confinement, impurity content, or

other parameters, which could significantly alter the burn condition during operation.

Furthermore, although stable operating points exist for most confinement scalings,
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certain conditions can lead to thermal instabilities. Such instabilities can either lead

to quenching or a thermal excursion in which the system moves to a higher temper-

ature equilibrium point. In any of these situations, disruptive plasma instabilities

could be triggered, stopping operation and potentially causing damage to the con-

finement vessel. Thus, it will be important to implement an active feedback control

system that can ensure good transient performance as well as stability of the desired

operating points.

1.3.1 Prior Work

In past work on the problem of burn condition control, the physical and technological

feasibility of various potential actuators has been studied. Prior work, including

[4, 5, 6], considered modulation of the auxiliary power, modulation of the fueling rate,

and controlled injection of impurities as possible actuators. While these methods can

be effective approaches for burn control, each have unique drawbacks that must be

considered when developing a comprehensive burn control strategy.

Controllers based solely on auxiliary power modulation [7, 8, 9] are best suited

for sub-ignition operating points where the auxiliary power is nonzero. The ability of

these schemes to reject thermal excursions is restricted since the maximum heating

reduction is a complete shutoff of the auxiliary power and the ability to reject negative

perturbations is limited by the maximum installed auxiliary heating power. For

devices operating with very high fusion gain Q, the amount of auxiliary heating

will be quite small compared to the total plasma heating, such that modulation of

auxiliary power may have a limited effect on the plasma temperature. In hybrid and

steady-state scenarios, the control authority may be further restricted by the need to

use some auxiliary power sources to drive plasma current. This essentially forces the

burn control system to respect a nonzero minimum auxiliary heating power constraint.
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Operating points characterized by an auxiliary heating power requirement very close

to the minimum required for current drive will be difficult to stabilize and control

with auxiliary power modulation alone. Similarly, auxiliary power modulation alone

will not be appropriate for future devices exploring ignited operation.

Controller designs based on the modulation of the deuterium-tritium fueling rate,

including [10, 11, 12, 13, 14], can enable ignited operation (or operation near the

minimum auxiliary power required for current drive) by increasing or decreasing the

fusion power through changing the plasma density. Due to disruptive density limits,

the plasma density cannot be increased arbitrarily high. The approach is also limited

by the decay rate of the density, which can be quite slow when particle recycling rates

are high. Additionally, the plasma density is nonlinearly coupled to many plasma

parameters, such that changes in plasma density could lead to undesirable changes

in the reactor operating scenario. The nonlinear coupling is important to consider in

control design since, for certain conditions, increasing density results in a net increase

in heating while for others, heating is decreased. For example, in [15], where a PID

(proportional-integral-derivative) control law was used to regulate fusion power using

the deuterium-tritium fueling rate, the sign of the controller gains had to be flipped

when switching between thermally stable points and thermally unstable ones.

Controlled impurity injection can be used to cool the plasma and prevent thermal

excursions. Injecting impurities increases radiative power losses and contaminates

the plasma, decreasing fusion heating. Both effects lead to a reduction of the net

plasma heating, causing a reduction in temperature. For large perturbations in initial

temperature, this method can require large amounts of impurities to be injected. After

the excursion, additional heating power, with a consequent reduction in the fusion

gain Q, is needed to compensate the excess radiation losses until the impurities are

completely removed from the reactor.
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Most existing burn control efforts make use of only one of the available actuators

(single-input control) and study the range of perturbations that can be rejected by

the actuator. Prior work combining actuation concepts include [16, 17, 18, 19, 15,

20] for zero-dimensional (volume-averaged) models. Studies of kinetic control and

thermal stability for 1-D (radial profile) models can be found in [21, 22, 23]. In

[24], a diagonal multi-input, multi-output linear control scheme for burning plasma

kinetics was developed by observing actuator influences during numerical simulations

of plasma physics codes. The approximation of the nonlinear burning plasma model

by a linearized one for controller design is a common denominator in previous model-

based controller designs. The model is linearized, a controller is synthesized using

linear techniques, and the resulting design is tested on the original nonlinear model.

When tested in nonlinear simulations, these controllers succeed in stabilizing the

system against a limited set of perturbations and disturbances.

In [25], a zero-dimensional nonlinear model involving approximate conservation

equations for the energy and particles densities was used to synthesize a nonlin-

ear feedback controller for burn conditions stabilization. The controller makes use

of all of the previously considered actuators simultaneously, using auxiliary power

modulation to prevent quenching, impurity injection to increase radiation losses and

stop thermal excursions, and fueling modulation to regulate the density to the tar-

get value associated with the chosen operating point. The use of nonlinear control

techniques removes the limits imposed by linearization in other works and the result-

ing controller can accommodate very large perturbations. The controller works for

suppressing both thermal excursions and quenches, can operate at sub-ignition and

ignition points (or points near the minimum power required for current drive), and

can drive the system from one point to another during operation. Only those works

that use non-model based control techniques, like neural networks [26, 27], have also
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followed these guidelines. A zero-dimensional (volume-averaged) simulation study

was performed to show the capabilities of the model-based controller and compare it

with previous linear controllers.

Despite the advantages of the nonlinear controller designed in [25], a few draw-

backs remain. The control scheme relies on the use of impurity injection to reject

increases in temperature. This type of actuation could lead to undesirable accumula-

tion of impurity ions within the plasma core, which could reduce the efficiency of the

reactor long after the thermal excursion is rejected. Ideally, the injection of impuri-

ties would be used only when the other available methods fail to prevent a thermal

excursion. Also, the model used for design and simulation assumed an optimal 50:50

mix of deuterium and tritium within the plasma at all times and did not consider the

effects of particle recycling. Because experiments indicate that deuterium and tri-

tium may have different transport properties [28], fueling efficiencies, and deposition

profiles, and because the isotopic mix in the core effects the amount of fusion heat-

ing, the deuterium and tritium systems should be modeled and actuated separately.

Additionally, since particle recycling will effect the response of the plasma density

and isotopic mix to the available actuators, recycling effects should be included in

the model used for design and simulation in some way.

1.3.2 Isotopic Fuel Tailoring

The isotopic fuel mix is a critical reactor parameter as it has a major influence on

the fusion power produced. The α-particle heating power, Pα, from a burning DT

plasma is given as

Pα = Qαγ (1− γ)n2
DT 〈σν〉, (1.4)
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where Qα is the energy of the α-particles produced by the reaction (3.52 MeV),

nDT = nD + nT , (1.5)

is the deuterium-tritium density, 〈σν〉 is the reactivity, and

γ = nT/nDT , (1.6)

is the tritium ratio, a measure of the isotopic mix. We note that for a constant

density and temperature, the fusion heating depends quadratically on the tritium

ratio, with the maximum fusion power at γ = 0.5. Even with 50:50 DT injection,

the possible differences in deuterium and tritium transport or fueling deposition and

efficiency may lead to non-optimal fuel mix in the core, which would reduce reactor

efficiency. Additionally, depending on the operating scenario, it may be desirable or

even necessary to operate at a lower tritium fraction or modulate the tritium fraction

during operation.

To control the tritium ratio it is possible to use a method of fueling referred to

as isotopic tailoring, in which the relative mix of deuterium and tritium injected

by the fueling system is modulated in real-time [29]. While it is not possible to

adjust the tritium ratio within pellets on a fast enough time scale for control, the

pellet injection system for ITER will include two separate injectors - one with pellets

made of primarily deuterium and the other with pellets made primarily of tritium.

A gas injection system will be used to supply deuterium at the edge of the plasma.

Together, these systems will allow for fuel mix modulation. Diagnostics for measuring

the tritium ratio in both the edge and core plasma should be available and adequate

for the purposes of real-time control [30, 31, 32]. Therefore, feedback control of the

tritium ratio in ITER plasmas through isotopic fuel tailoring should be feasible.
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1.3.3 Results of This Work

In this work, a zero-dimensional (volume averaged) model of the evolution of the burn

condition in a tokamak plasma is presented and used to design a nonlinear burn con-

trol strategy that uses all of the available actuators simultaneously to stabilize desired

equilibria. The model includes a simplified model of particle recycling (refueling of

the plasma from the walls of the machine), which is used to study the potential use

of isotopic fueling as a means to reduce fusion heating during thermal excursions for

a range of model parameters. Impurity injection is considered as a back-up means of

rejecting excursions. The ability of the combined control scheme to move the system

between operating points, even when one or more actuators are saturated, is demon-

strated in both zero- and one-dimensional simulations. An adaptive control scheme

is then added to handle model uncertainty, and an online optimization scheme is

proposed to ensure that the plasma is driven to an operating point that minimizes a

given cost function. Due to the possible limited availability of diagnostic systems in

ITER and future reactors, an output feedback control scheme is also proposed that

combines the nonlinear controller with an observer that estimates the states of the

burning plasma system based on available measurements. Finally, the control scheme

is tested using the integrated modeling code called METIS.

1.4 Kinetic Profile Control

Most approaches to the control of kinetic variables in tokamaks begin by consider-

ing 0-D (zero-dimensional) models of transport within the fusion plasma in which

the governing equations of the system are averaged over the volume of the plasma.

This allows the problem to be approached with lumped-parameter control design

techniques. However, these 0-D control efforts do not take into account the 1-D (one-
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dimensional) effect of modulating the bulk heating, fueling, and impurity injection

on the shape of the spatial profiles. In a reactor, the heating, fueling, and impurity

injection rates are indeed distributed throughout the plasma and can be used to affect

the shape of the kinetic variable profiles. The shape of the temperature and density

profiles not only directly affect the burn condition and particle/energy transport, but

also play a significant role in determining the evolution of the current profile through

the temperature dependent resistivity and pressure gradient dependent bootstrap

current. It has been demonstrated that setting up a suitable spatial distribution of

the toroidal plasma current can, in turn, enable certain advanced operating scenarios

characterized by high fusion gain and non-inductive sustainment of plasma current

that could lead to steady-state operation (see [33]).

The importance of controlling the spatial profiles of density and temperature in

burning plasmas has been recognized in previous work, including [21], [22], [23], [34],

and [35]. In these pieces of work, a 1-D plasma model is represented by a set of

partial differential equations (PDEs) and various methods are utilized to reduce the

distributed parameter model to a lumped-parameter one. The resulting set of ODEs

are then linearized and conventional linear control techniques are used for controller

design. In contrast, the control methods presented in [36, 37] for non-burning plasmas

avoided linearization through the use of a backstepping boundary feedback technique

to stabilize and regulate density and temperature profiles.

1.4.1 Results of This Work

In this work, the backstepping boundary control technique is extended to enable

combined boundary+interior feedback control and the combined approach is used to

develop a nonlinear control strategy for density and temperature profiles in a burning

plasma. With the addition of adaptive disturbance estimation, asymptotic tracking of
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an unstable set of equilibrium profiles is demonstrated in a simulation study, despite

the presence of input disturbances. Because burning plasma experiments are still sev-

eral years away, it is not currently possible to experimentally test the burn condition

control or burning plasma kinetic profile control approaches proposed in this work.

However, the backstepping boundary control technique can also be applied to the

important problem of current profile control, which is an active area of research in

present-day tokamaks. In this work, a backstepping current profile control algorithm

is designed based on first-principles-driven models of the current profile evolution

in the DIII-D tokamak for both L-mode (low confinement) and H-mode (high con-

finement) discharges. The effectiveness of these approaches is demonstrated in both

simulations and experimental testing on DIII-D.

1.5 Dissertation Outline

This dissertation is organized as follows.

Chapter 2

In this chapter, the use of nonlinear, multi-input-multi-output control design tech-

niques for stabilization of the burn condition of tokamak fusion reactors is studied. A

simplified burning plasma model is presented, and a control scheme is designed that

can overcome limitations due to actuator saturation by incorporating several available

actuation techniques (auxiliary heating, isotopic fueling, and impurity injection).

Chapter 3

The model-based control scheme designed in Chapter 2 relies on knowledge of several

model parameters that are, in practice, uncertain. This uncertainty could lead to
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poor controller performance if unaccounted for. In this chapter, a nonlinear adaptive

control strategy is used to couple the multi-input-multi-output control design with

a set of parameter update laws. The design ensures asymptotic tracking of desired

references. An online optimization scheme is also proposed to update the controller

references in real-time to minimize a given cost function.

Chapter 4

The nonlinear adaptive control scheme proposed in Chapter 3 relies on knowledge

of the states of the burning plasma system. However, in practice, only a limited

number of output measurements may be available. In this chapter, the nonlinear

control scheme is augmented with an observer that reconstructs the states of the

system based on the available real-time measurements.

Chapter 5

In this chapter, the nonlinear burn control schemes presented in the previous chap-

ters are tested more rigorously through closed loop simulations using METIS, an

integrated tokamak modeling code.

Chapter 6

In this chapter, a backstepping boundary control technique that includes interior

control and online disturbance estimation is developed and the approach is used to

design a nonlinear control law for the density (deuterium, tritium, and alpha-particles)

and energy profiles in burning tokamak plasmas. The ability of the controller to

stabilize an unstable equilibrium is demonstrated in a simulation study.
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Chapter 7

In this chapter, the problem of current profile control in L-mode discharges in DIII-

D is addressed through the design of a nonlinear backstepping boundary feedback

control law based on a first-principles-driven model of the current profile evolution.

The controller, designed using the backstepping technique, is demonstrated in both

simulations and experimental tests on DIII-D.

Chapter 8

In this chapter, the backstepping boundary+interior feedback technique is used to

design a nonlinear controller for H-mode discharges in DIII-D. The performance of

the design is demonstrated in both simulations and experiments.

Chapter 9

In this final chapter, the contributions of this dissertation are summarized and po-

tential future research work is discussed.
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Chapter 2

Zero-dimensional Nonlinear Burn

Condition Control

2.1 Introduction

In this chapter, we consider the simultaneous use of auxiliary power, fueling modu-

lation, isotopic fuel tailoring, and impurity injection for stabilizing and controlling a

burning plasma. The isotopic fueling technique planned for ITER is used to control

the tritium ratio within the plasma. In addition, we exploit the effect of the tritium

ratio on the fusion heating power to modulate plasma heating and control the temper-

ature. Doing so allows the proposed scheme to, under certain conditions, maintain

control of the plasma temperature when the auxiliary power is saturated without

resorting to impurity injection. We note that a non-model based PID (proportional-

integral-derivative) algorithm for controlling the isotopic mix was presented in [19],

however, the modulation of the isotopic mix as a means of controlling the plasma

heating was not considered. For scenarios in which the modulation of auxiliary power

and isotopic mix cannot achieve stability and performance requirements, we propose
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the use of impurity injection as a back-up actuator to augment the isotopic mix based

control. The combined control scheme simultaneously regulates the energy, density,

and tritium fraction (and consequently the fusion power), and can, through the use

of all of the available actuators, maintain stable control of the system despite sat-

uration of even several of the actuators. The controller synthesis is based on the

full nonlinear model, allowing the controller to deal with a larger set of perturba-

tions in initial conditions than linear model based controllers. The controller handles

both thermal excursions and quenches and depends parametrically on the equilib-

rium point, allowing it to be used to drive the system from one equilibrium point

to another. A zero-dimensional simulation study compares the performance of the

actively controlled system to the open loop system when switching between operating

points, showing a significant improvement in performance. A series of simulations is

performed to study the effect of different particle recycling model parameters on the

performance of the controller. A one-dimensional simulation study is also done which

shows that the control design based on a zero-dimensional model is potentially robust

to spatially varying parameters.

This chapter is organized as follows. The burning plasma model is given in Section

2.2. The control objective is described in Section 2.3. In Section 2.4, the controller

algorithm is presented. Sections 2.5 and 2.6 contain the results of zero-dimensional

and one-dimensional simulation studies, respectively. Finally, the conclusions are

discussed in Section 2.7.

2.2 Burning Plasma Model

In this work, we use a zero-dimensional model for a burning plasma that employs ap-

proximate energy and particle balance equations. The model considers the deuterium
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and tritium ion densities separately, allowing for the possibility of different confine-

ment characteristics and fueling rates for the individual species. It also includes an

approximate global model of particle recycling for the purposes of studying the effect

of recycling parameters on controller performance.

2.2.1 Particle Recycling

The particle balance describing the dynamics of the plasma density and isotopic mix is

affected (and under certain conditions dominated) by the recycling of particles from

plasma facing components of the confinement vessel walls. An important effect of

particle recycling is an increase in the effective confinement time of particles. While

a controller can quickly increase the density through increased fueling, the density

can be decreased no faster than the effective decay rate, which can be dominated by

the recycling effect. Recycling not only poses a problem for actively reducing the

total plasma density but may also lead to accumulation of helium ash in the core,

which could dilute the fusion fuel. In addition, since the recycled fuel will have a

particular isotopic mix, recycling reduces the dependence of the core isotopic mix on

the controlled pellet and gas injection fueling composition, an effect that was observed

in [38]. This could limit the effectiveness of isotopic ratio control schemes.

As one of the goals of this work is to study the feasibility of using modulation of

the isotopic mix and plasma density to control fusion heating in a burning plasma,

it is important to include the effects of recycling in the model used for design and

simulation. Global models of recycling, like those presented in [39, 40, 41], reduce the

detailed physical description of the processes involved to a small number of physically

motivated parameters, and can be used to gain a qualitative understanding of the

effects of recycling on the system. In this work, we incorporate a parameterized

model of coupled deuterium-tritium recycling processes that allows us to study the
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performance of the proposed controller for a range of different recycling conditions.

This model captures the dominant effects of recycling on the proposed isotopic fueling

based control approach, that is, it captures the slowed response time of the deuterium

and tritium densities to decreases in fueling and also reflects the fact that the isotopic

mix of recycled material may differ from that of the exiting particle flux. Because

α particle and impurity ion fluxes are much smaller than the DT flux, recycling of

these species is likely to be only weakly coupled to DT recycling and have little

effect on the performance of the proposed control approach. We therefore account

for α-particle and impurity recycling separately through use of effective confinement

times τ ∗α > τα and τ ∗I > τI . This simplification makes it possible to compare the

controller performance for a particular operating point using different DT recycling

parameters, without having to simultaneously change the α-particle and impurity

recycling conditions, which would alter the fusion power, radiative losses, etc., and

significantly change the characteristics of the operating point being studied. Note

that the control design approach is not dependent on this modeling choice.

The model of deuterium and tritium recycling used here is based on the following

description. Upon leaving the plasma and reaching the vessel walls, a fraction fref of

the exiting particles may be reflected back towards the plasma, while the remainder

are either absorbed by the wall material (an effect called wall pumping), or removed

from the vessel by the active pumping system. The wall pumping effect causes the

development of a inventory of particles in the wall, which is, over time, re-emitted

back to the confinement vessel (a small percentage of particles may be trapped more

permanently through processes like codeposition [42]). To avoid the need for a com-

plex model of wall conditions and active pumping efficiency, the amount of recycling

from the plasma facing surfaces can be characterized by a global recycling coefficient

Reff = SR/SS, where SR is the recycled particle flux and SS is the particle flux
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to the plasma facing surfaces. The wall inventory, and consequently the re-emitted

particles, will have some isotopic mix, which we denote γPFC . The recycled (reflected

or re-emitted) particles go on to fuel the plasma core with some efficiency, feff , de-

pending on their energy and interaction with the plasma scrape-off-layer (SOL). The

fraction of particles that is ‘screened’ by the SOL returns to the surface again to be

either reflected, absorbed, or pumped out [41]. Based on this description, we can

derive (see Appendix A) the following expressions for the recycled flux of deuterium

and tritium:

SRD =
1

1− fref (1− feff )

{
fref

nD
τD

+
(
1− γPFC

) [(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)}
, (2.1)

SRT =
1

1− fref (1− feff )

{
fref

nT
τT

+γPFC
[

(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)}
, (2.2)

where τD and τT are the respective confinement times for the two species.

2.2.2 Particle and Energy Balance

The α-particle balance is given by

ṅα = −nα
τ ∗α

+ Sα, (2.3)

where nα is the α-particle density, τ ∗α is the effective confinement time for the α-

particles, and

Sα = γ (1− γ)n2
DT 〈σv〉, (2.4)
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is the source of α-particles from fusion. The deuterium and tritium ion densities are

governed by

ṅD = −nD
τD

+ feffS
R
D − Sα + SinjD , (2.5)

ṅT = −nT
τT

+ feffS
R
T − Sα + SinjT , (2.6)

where SinjD and SinjT (controller inputs) are the deuterium and tritium injection rates,

respectively.

We consider two impurity populations: nI,s representing impurities arising from

plasma surface interaction and nI,c representing impurities injected for the purposes

of burn control. The particle balances are given by

ṅI,s = −nI,s
τ ∗I,s

+ SspI , (2.7)

ṅI,c = −nI,c
τ ∗I,c

+ SinjI , (2.8)

where τ ∗I,s and τ ∗I,c are the effective impurity confinement times, SspI is the uncon-

trolled source of impurities due to sputtering, and SinjI is the controlled injection of

impurities. For the purposes of this work, we model the sputtering source as

SspI =
f spI n

τ ∗I
+ f spI ṅ,

where 0 ≤ f spI � 1 in order to maintain nI,s = f spI n where n is the total plasma

density. This simple model reflects the fact that there is typically a small uncontrolled

impurity content in the plasma. To simplify presentation, we consider both impurity

populations to have the same effective confinement time τ ∗I , and atomic number ZI .
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The total impurity content nI = nI,s + nI,c is then governed by

ṅI = −nI
τ ∗I

+ SinjI + SspI . (2.9)

The energy balance is given by

Ė = − E
τE

+ Pα − Prad + Paux + POhm, (2.10)

where E is the plasma energy, τE is the energy confinement time, Pα = QαSα

is the alpha-heating (Qα = 3.52 MeV is the energy of α-particles), Prad represents

the radiation losses, and POhm is the ohmic heating power. This model uses the

approximation that the 3.52 MeV α-particles slow down instantaneously.

The DT reactivity 〈σν〉 is a highly nonlinear, positive and bounded function of

the plasma temperature, T , and is calculated by

〈σν〉 = exp
( a
T r

+ a2 + a3T + a4T
2 + a5T

3 + a6T
4
)
, (2.11)

where the parameters ai and r are taken from [43]. In this work, the radiation

loss Prad is taken as the combination of bremsstrahlung, line, and recombination as

approximated by [44]

Pbrem = 4.8× 10−37
(
nD + nT + 4nα + Z2

InI
)
ne
√
T (keV ), (2.12)

Pline = 1.8× 10−38
(
nD + nT + 16nα + Z4

InI
)
ne (T (keV ))−1/2 , (2.13)

Prec = 4.1× 10−40
(
nD + nT + 64nα + Z6

InI
)
ne (T (keV ))−3/2 , (2.14)

where ne is the electron density. The electron density is obtained from the neutrality

condition ne = nD + nT + 2nα + ZInI . The effective atomic number, plasma density,
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Table 2.1: ITER machine parameters [45].

Symbol Description Value

I Plasma current 15.0 MA
R Major radius 6.2 m
a Minor radius 2.0 m
B Magnetic field 5.3 T
κ95 Elongation at 95% flux surface/separatrix 1.7
δ95 Triangularity at 95% flux surface/separatrix 0.33
V Plasma volume 837 m3

and temperature are given by

Zeff =
∑
i

niZ
2
i

ne
=
nD + nT + 4nα + nIZ

2
I

ne
, (2.15)

n = nα + nD + nT + nI + ne

= 2nD + 2nT + 3nα + (ZI + 1)nI , (2.16)

T =
2

3

E

n
, (2.17)

where Zi is the atomic number of the different ion species. Note that we take Te =

Ti = T as a simplification. We approximate the Ohmic heating as

POhm = 2.8× 10−9ZeffI
2

a4T 3/2
, (2.18)

where I is in Amps and T is in keV.

The state-dependent energy confinement time is given by

τE =0.0562HHI
0.93
p B0.15

T P−0.69n0.41
e19 M

0.19R1.97ε0.58κ0.78
95 , (2.19)

where HH is a scalar representing uncertainty in the scaling, Ip is the plasma current

(MA), BT is the toroidal magnetic field (T), P = Paux + POhm + Pα − Prad is the
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total power (MW), ne19 is the electron density (1019m−3), M is the effective mass of

the plasma (amu), R is the major radius (m), ε = a/R with a the minor radius (m),

and κ95 is the elongation at the 95% flux surface/separatrix [45]. We utilize the main

plasma parameters and dimensions given in [45] and shown in Table 2.1.

Expression (2.19) represents the H-mode confinement time and is valid when the

power transported across the separatrix is greater than PLH where

PLH = 2.84M−1B0.82
T n0.58

e20 R
1.00a0.81, (2.20)

with the units MW, amu, T, 1020m−3, and m.

Particle confinement times are assumed to scale with the energy confinement time,

i.e.,

τ ∗α = k∗ατE, (2.21)

τD = kDτE, (2.22)

τT = kT τE, (2.23)

τ ∗I = k∗IτI . (2.24)

We note again that the α-particle and impurity particles balances use effective confine-

ment times chosen to account for recycling, while the confinement times for deuterium

and tritium do not, as deuterium-tritium recycling is modeled separately.

For the purposes of control, we will consider the states of the burning plasma

system to be nα, nI , E, γ, and n. The dynamic equations for the first three have

already been given in (2.3), (2.9), and (2.10), while, by noting (1.5), (1.6), and (2.16),
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the remaining two equations can be written as

γ̇ = − γ

τT
+
γ (1− γ)

τD
+
γ2

τT

+
2

n− 3nα − (ZI + 1)nI

{
feffS

R
T − Sα + SinjT

−γ
[
feff

(
SRD + SRT

)
− 2Sα + SinjD + SinjT

]}
, (2.25)

ṅ = 2

[
−n− 3nα − (ZI + 1)nI

2

(
1− γ
τD

+
γ

τT

)
+feff

(
SRD + SRT

)
− 2Sα + SinjD + SinjT

]
+ 3

[
−nα
τ ∗α

+ Sα

]
+ (ZI + 1)

[
−nI
τ ∗I

+ SinjI + SspI

]
. (2.26)

2.3 Controller Objectives

The possible steady-state operating points of the system are given by the equilibria

of the dynamic equations (2.3), (2.9), (2.10), (2.25), and (2.26). If we consider no

controlled injection of impurities at steady-state, i.e. S̄injI = 0, the equilibrium values

of the fueling source terms S̄D, S̄T , and the external power P̄aux, can be determined
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by solving the nonlinear algebraic equations

0 = − n̄α
τ̄ ∗α

+ S̄α, (2.27)

0 = − γ̄

τ̄T
+
γ̄ (1− γ̄)

τ̄D
+
γ̄2

τ̄T

+
2

n̄− 3n̄α − (ZI + 1) n̄I

{
feff S̄

R
T − S̄α + S̄injT

−γ̄
[
feff

(
S̄RD + S̄RT

)
− 2S̄α + S̄injD + S̄injT

]}
, (2.28)

0 = 2

[
− n̄− 3n̄α − (ZI + 1) n̄I

2

(
1− γ̄
τ̄D

+
γ̄

τ̄T

)
+feff

(
S̄RD + S̄RT

)
− 2S̄α + S̄injD + S̄injT

]
+ 3

[
− n̄α
τ̄ ∗α

+ S̄α

]
+ (ZI + 1)

[
− n̄I
τ̄ ∗I

+ S̄injI + S̄spI

]
, (2.29)

0 = − Ē
τ̄E

+ P̄α − P̄rad + P̄aux + P̄Ohm, (2.30)

0 = − n̄I
τ̄ ∗I

+ S̄spI . (2.31)

A unique solution to this system can be obtained by specifying T = T̄ , γ = γ̄, nI = n̄I ,

and β = knT
B2/2µ0

= β̄ where B is the magnetic field strength, µ0 is the permeability of

free space, and k is the Boltzmann constant. We assume the magnetic field B is held

constant, such that β ∝ nT ∝ E. The objective of a burn condition controller can

then be stated as regulation of E, n, γ, nα and nI to the chosen set of equilibrium

values. We note that, as a result of regulating these values to the chosen targets,

the outputs of the system, including the fusion power, will also be regulated to the

value associated with that particular operating point. In this chapter, the choice of

the desired operating point is considered to be made offline prior to the discharge,

however, in the following chapter, a real-time optimization algorithm will be used to

determine the operating point that best achieves some predetermined goal, e.g., to

maximize fusion gain.
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We will use the notation x̃(t) = x(t)− x̄(t) to represent the difference between the

actual and desired states of the system. We can write the dynamics of these errors as

˙̃nα = −nα
τ ∗α

+ Sα, (2.32)

˙̃nI = − ñI
τ ∗I
− n̄I
τ ∗I

+ SinjI + SspI , (2.33)

˙̃E = − Ẽ
τE
− Ē

τE
+ Pα − Prad + POhm + Paux, (2.34)

˙̃γ = − γ̃

τT
+

2
[
u+ (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

, (2.35)

˙̃n = −ñ
(

1− γ
τD

+
γ

τT

)
+ v + 2

(
SinjT + SinjD

)
, (2.36)

where

u(γ̄) =
n−3nα−(ZI+1)nI

2

[
− γ̄
τT

+
γ (1−γ)

τD
+
γ2

τT
− ˙̄γ

]
+ feffS

R
T − Sα − γ

[
feff

(
SRD + SRT

)
− 2Sα

]
, (2.37)

v = (−n̄+ 3nα + (ZI + 1)nI)

(
1− γ
τD

+
γ

τT

)
+ 2

[
feff

(
SRD + SRT

)
− 2Sα

]
+ 3

[
−nα
τ ∗α

+ Sα

]
+ (ZI + 1)

[
−nI
τ ∗I

+ SinjI + SspI

]
. (2.38)

As noted before, our model assumes that the source of impurities from plasma

facing components, SspI , maintains nI,s = fIn at steady-state. Without controlled

injection of impurities, i.e., SinjI = 0, the content of injected impurities, nI,c, will

decay to zero such that nI = nI,s = f spI n. Therefore, if we regulate the total plasma

density to n̄, we can be sure that ñI → 0. This implies that there exists a Lyapunov

function VI(ñI) (see Appendix B for the basics of Lyapunov stability analysis) such
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that

VI

∣∣∣∣
ñ=0

< 0. (2.39)

If we consider a Lyapunov function Vα = ñ2
α

2
, then

V̇α = ñα

(
−nα
τ ∗α

+ Sα

)
. (2.40)

We note that, if nI , n, γ, and E are driven to their equilibrium values, we can write

Sα =

[
n̄− 3nα − (ZI + 1) n̄I

2

]2

γ̄ (1− γ̄) ¯〈σv〉. (2.41)

For physically meaningful values of nα, Sα decreases with an increase in nα and vice

versa. Also, for the confinement scaling (2.19), the term nα/τ
∗
α increases with an

increase in nα and vice versa. This allows us to write −nα
τ∗α

+ Sα = −ñαφα where φα

is a positive continuous function and

V̇α

∣∣∣∣
Ẽ,ñI ,ñ,γ̃=0

= −ñ2
αφα < 0. (2.42)

We can therefore be sure that ñα goes to zero as long as the other states go to zero.

Noting (2.39) and (2.42), we can restate the control objective as regulation of Ẽ, ñ,

and γ̃ to zero. We will achieve this objective through control laws for the auxiliary

heating Paux, the fueling terms SinjD and SinjT , and the impurity injection term SinjI .
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2.4 Controller Design

We begin the controller design by looking at the energy subsystem. We note that the

dynamic equation (2.34) can be reduced to

dẼ

dt
= − Ẽ

τE
−KEẼ, (2.43)

where KE > 0 is a design constant, by satisfying the condition

f (n,E, nα, nI , γ) = − Ē
τE

+ POhm + Pα − Prad + Paux +KEẼ = 0. (2.44)

The Ẽ subsystem is then asymptotically stable since τE > 0. The condition (2.44)

can be satisfied in several different ways. The auxiliary heating term Paux enters the

equation directly. The actuators SinjD and SinjT can be used to change the α-heating

term Pα by modulating the isotopic mix, and the impurity injection term SinjI can be

used to increase the impurity content and consequently Prad. Having several methods

available for controlling the energy subsystem enables us to design a control scheme

that can still achieve stabilization despite saturation of one or even several of the

available actuators.

The control approach proposed in this work integrates all three methods, as

needed. First, the algorithm attempts to control the energy through modulation

of the auxiliary power. If the auxiliary power saturates, the controller identifies a

trajectory γ∗ for the isotopic mix that alters the fusion heating to satisfy f = 0. The

trajectory γ∗ and the equilibrium density n̄ are then stabilized through choice of SinjD

and SinjT and impurity injection is set to zero. If the system cannot meet stability

or performance criteria due to fueling actuator saturation, the controller goes on to

identify a trajectory n∗I for the impurity density that can satisfy f = 0 and stabilizes
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the trajectory using impurity injection.

Step 1: We first calculate the stabilizing value of Paux as

P unsat
aux =

Ē

τE
−Qαγ̄(1−γ̄)n2

DT 〈σv〉+ Prad − POhm −KEẼ, (2.45)

Paux = sat
(
P unsat
aux − Pmin

aux

Pmax
aux − Pmin

aux

)
, (2.46)

where the limit Pmax
aux depends on the installed power on the tokamak and the

limit Pmin
aux ≥ 0 depends on the operating scenario.

Step 2: We next find a trajectory γ∗ satisfying (2.44), i.e.,

Qαγ
∗(1−γ∗)n2

DT 〈σν〉−Prad+POhm+Paux+KEẼ =
Ē

τE
. (2.47)

Solving this equation yields

γ∗ (1− γ∗) =
Ē
τE

+Prad−POhm−Paux −KEẼ

Qαn2
DT 〈σν〉

= C, (2.48)

γ∗ =
1±
√

1− 4C

2
, (2.49)

We note that this equation is implicit, since C depends on τE, which, according

to the scaling law (2.19), depends on γ through the effective mass M . To

overcome this, we can use a fixed-point iteration scheme, i.e.,

γ∗n =
1±

√
1− 4C(γ∗n−1)

2
, (2.50)

and stop the iterations once some tolerance is met. Based on numerical sim-

ulation results, very few iterations are needed to achieve convergence, in fact,

there is typically little change between the first and second iteration. Note that,
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if the value of Paux calculated in Step 1 is not saturated, then γ∗ = γ̄. This

can be shown by substituting (2.45) into (2.47). If C ≤ 0.25, the two result-

ing solutions for γ∗ are real and we take the tritium-lean solution, such that

γ∗ ≤ 0.5. If C ≥ 0.25, even the optimal isotopic mix and maximum value of

auxiliary heating will not generate enough heating to satisfy f = 0, indicating

that the requested operating point may not be achievable for the amount of

auxiliary heating power installed on the device. Barring this situation, based

on our choice of Paux and γ∗, we have that

f (n,E, nα, nI , γ
∗) = 0. (2.51)

This allows us to write f = γ̂φγ where γ̂ = γ − γ∗ and φγ is a continuous

function. Noting (2.34), (2.44), we can then write the dynamics of the energy

perturbation as
˙̃E = − Ẽ

τE
−KEẼ + γ̂φγ, (2.52)

and the dynamics of γ̂ can be written as

˙̂γ = − γ̂

τT
+

2
[
u(γ∗) + (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

. (2.53)

Step 3: Having selected Paux and γ∗ in the previous steps, we must next choose SinjD

and SinjT to ensure that Ẽ, γ̂, and ñ, which are governed by (2.52), (2.53), and

(2.36), are driven to zero. We consider the Lyapunov function V0 = Vn + VE,γ

where Vn = 1
2
ñ2 and VE,γ = 1

2
k1Ẽ

2 + 1
2
γ̂2. It can be shown that satisfying the

conditions

V̇n = −ñ2

(
1− γ
τD

+
γ

τT

)
+ ñ

[
v + 2

(
SinjD + SinjT

)]
. (2.54)
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By satisfying

2
(
SinjT + SinjD

)
= −v −Knñ, (2.55)

where Kn > 0, (2.54) is reduced to

V̇n = −ñ2

(
1− γ
τD

+
γ

τT
+Kn

)
< 0, (2.56)

guaranteeing ñ→ 0. We then alculate the derivative of VE,γ as

V̇E,γ = k1Ẽ

[
− Ẽ
τE
−KEẼ + γ̂φγ

]

+γ̂

{
− γ̂

τT
+

2
[
u (γ∗) + (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

}
,

= −k1
Ẽ2

τE
− k1KEẼ

2 − γ̂2

τT

+γ̂

{
k1Ẽφγ +

2
[
u (γ∗) + (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

}
. (2.57)

By satisfying

(1− γ)SinjT − γSinjD = −n− 3nα − (ZI + 1)nI
2

(
k1Ẽφγ +Kγ γ̂

)
− u, (2.58)

where Kγ > 0, we can reduce (2.57) to

V̇E,γ = −k1

(
1

τE
+KE

)
Ẽ2 −

(
1

τT
+Kγ

)
γ̂2 < 0, (2.59)

which is negative definite, implying that V̇0 < 0. This guarantees that Ẽ, ñ,

and γ̂ will be driven to zero. The conditions (2.55) and (2.58) can be satisfied
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by choosing

SinjD =
n− 3nα − (ZI + 1)nI

2

(
k1Ẽφγ +Kγ γ̂

)
+u (γ∗) + (1− γ)

(−v −Knñ

2

)
, (2.60)

SinjT =

(−v −Knñ

2

)
− SinjD . (2.61)

These values are subject to the constraints 0 ≤ SinjD ≤ SmaxD and 0 ≤ SinjT ≤

SmaxT . If one of the fueling actuators saturates, we cannot satisfy both con-

ditions of the control law, so we must choose to either control n or γ. If we

choose to hold condition (2.58), the energy and tritium fraction subsystems

will remain stable, however, the density subsystem will no longer be controlled.

This could potentially lead to a violation of the density limit. To avoid this, we

instead choose to maintain control of the density by satisfying (2.55). Because

of fueling actuator saturation, it may be possible that V̇E,γ > 0, that is, we

may not be able to ensure stability of the burn condition with the previously

considered actuators. There are two possible situations to consider, either a

thermal quench or an excursion. If the system is experiencing a quench, the

controller has already increased auxiliary heating to its maximum, so the only

alternative would be to change the magnetic plasma parameters to improve en-

ergy confinement (see (2.19)) or to change the reference operating point to one

that is achievable. If the system is experiencing a thermal excursion, however,

we can still use impurity injection to stabilize the energy subsystem, despite

the heating and fueling actuator saturation. In these cases we enable the use of

impurity injection by setting the control logic flag Fimp = 1 and proceeding to

Step 4.
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Step 4: If Fimp = 1, we use the expression for radiation losses given in (2.12) to find

an impurity density trajectory n∗I that satisfies condition (2.44). Defining the

error n̂I = nI − n∗I , we can write its dynamics as

˙̂nI = − n̂I
τ ∗I
− n∗I
τ ∗I

+ SinjI + SspI − ṅ∗I . (2.62)

Based on the choice of n∗I , we have that

f (n,E, nα, γ, n
∗
I) = 0, (2.63)

which allows us to write f = n̂IφI where φI is a continuous function. We can

then rewrite (2.34) as
˙̃E = − Ẽ

τE
−KEẼ + n̂IφI . (2.64)

We take as a Lyapunov function V1 = Vn + Vγ + VE,I where Vγ = 1
2
γ̂2 and

VE,I = 1
2
k3Ẽ

2 + 1
2
n̂2
I .

V̇E,I = k3Ẽ

[
− Ẽ
τE
−KEẼ + n̂φn

]
+ n̂I

{
− n̂I
τ ∗I
− n∗I
τ ∗I

+ SinjI + SspI − ṅ∗I
}

= −k3
Ẽ2

τE
− k3KEẼ

2 − n̂2
I

τ ∗I
+ n̂I

{
k3ẼφI −

n∗I
τ ∗I

+ SinjI + SspI − ṅ∗I
}
.

(2.65)

By satisfying

SinjI = −k3ẼφI +
n∗I
τ ∗I
− SspI + ṅ∗I −KI n̂I , (2.66)

where KI > 0, this can be reduced to

V̇E,I = −k3

(
1

τE
+KE

)
Ẽ2 −KI n̂

2
I < 0, (2.67)
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guaranteeing Ẽ and n̂I go to zero. We modify the tritium fraction trajectory to

γ∗ = γ∗(Step 2)−KS

´ t
t0
SinjI dt where γ∗(Step 2) is the value of γ

∗ calculated in Step 2,

KS > 0, and t0 is the time at which impurity injection was first engaged. This

modification ensures that the tritium fraction is, if possible, eventually reduced

to such a level that impurity injection is no longer needed, i.e., SinjI → 0.

Once SinjI = 0, we disable impurity injection in subsequent executions of the

algorithm by setting Fimp = 0. By satisfying

2
(
SinjT + SinjD

)
= − v −Knñ, (2.68)

(1− γ)SinjT − γSinjD = − n− 3nα − (ZI + 1)nI
2

Kγ γ̂

− u(γ∗I ). (2.69)

We can ensure that V̇n < 0, V̇γ < 0, and therefore V̇1 < 0, guaranteeing stability

of the system. The conditions (2.68) and (2.69) can be satisfied by choosing

SinjD =
n− 3nα − (ZI + 1)nI

2
Kγ γ̂

+ u(γ∗) + (1− γ)

(−v −Knñ

2

)
, (2.70)

SinjT =

(−v −Knñ

2

)
− SinjD , (2.71)

which are again subject to saturation. If one of the fueling actuators saturates,

we again choose to hold (2.68) to ensure stability of the density.

Through the proposed control algorithm, values for Paux, SinjD , SinjT , and SinjI are found

in such a way that, if possible, the energy and density are driven to the desired values.

As the system approaches the desired operating point and any saturated actuators

leave saturation, the trajectories γ∗ and n∗I return to γ̄ and n̄I , respectively. Once Ẽ,

ñ, and γ̃ go to zero, we can be sure, from (2.39) and (2.42), that the remaining states
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Table 2.2: Actuator limits.

Symbol Description Value

Pmax
aux Maximum power 73 MW
Pmin
aux Maximum power 5/7× Pmax

aux

Ṗmax
aux Maximum power ramp rate 2.25× 104 Wm−3s−1

SmaxD Maximum fueling (D) 3× SrD
ṠmaxD Maximum fueling (D) ramp rate 3× 1018 m−3s−2

SmaxT Maximum fueling (T) 3× SrT
ṠmaxT Maximum fueling (T) ramp rate 3× 1018 m−3s−2

ñα, and ñI also go to zero.

2.5 Zero-Dimensional Simulation Study

In this section we study the performance of the proposed control scheme through a

zero dimensional simulation study. We use the model described in Section 2.2 for the

simulations. We consider magnitude and rate limits on the actuators of the form

xmin ≤ x ≤ xmax,

|ẋ| ≤ ẋmax,

where x is a particular actuator. For this study, we use the limits given in Table

2.2. In addition to the actuator limits, we limit the feedforward terms γ̇∗ and ṅ∗I to

prevent the controller from reacting to strongly to step changes in these references.

We also force φγ = 0 when |γ̂| < ε and φI = 0 when |n̂I | < ε, where ε is small, so

there is no possibility of errors in precision causing φγ or φI to become unbounded.

The study is divided into two sections. The first shows how the controller can

improve the response of the plasma when moving between operating points, even when

the desired operating points are unstable. We then study the effect of recycling model
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parameters on controller performance. Throughout the simulations, the parameters

ZI = 4, k∗α = 7, k∗I = 10, and kD = kT = 3 are used.

2.5.1 Switching Between Operating Points

We begin the simulation study by comparing the open loop (uncontrolled) and closed

loop (controlled) performance of the system when switching between operating points.

This allows us to simultaneously test the response of the nonlinear control scheme

to initial perturbations in plasma parameters and to show how, by embedding the

nonlinear model of the system in the control scheme, the controller can stabilize a

range of operating points. The ability to transition between operating points will be

important during reactor startup and shutdown but may also be necessary during op-

eration in order to respond to changes in power load demands or device configuration.

For example, if a neutral beam injector malfunctions during operation, the reactor

could switch to a different operating point that does not require as much beam power.

During such transitions, it will be important to maintain stable control and to avoid

large peaks in fusion power or other parameters.

2.5.1.1 Scenario 1

In this study, we started the system at a set of perturbed initial conditions and

requested the plasma to move to an operating point with an auxiliary heating re-

quirement near the power saturation limit Pmin
aux , then to a second operating point

with a higher fusion power and auxiliary heating requirement, and finally to a third

operating point again characterized by an auxiliary heating requirement near the

saturation limit.

The simulations used model parameters fI = 0.01,HH = 1.13, Reff = 0.9, γPFC =

0.5, fref = 0.7, and feff = 0.2. The initial conditions were set as nD(0) = 1.1× nrD,
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Figure 2.1: Closed loop, open loop, and desired operating point during the first
simulation scenario: (a) Plasma β, (b) plasma density n, (c) temperature T , and (d)
fusion heating Pα.
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Figure 2.2: Closed loop and open loop (a) heating Paux, (b) tritium fueling ST , (c)
deuterium fueling SD, and (d) a comparison of the tritium fraction reference, closed
loop and open loop results, and γ∗ during the first simulation scenario.
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nT (0) = 1.1× nrT , nα(0) = 0.6× nrα, nI(0) = nrI , E(0) = 0.85× Er.

The βN , T , n, and Pα results for the two simulations are compared in Figure 2.1

(a), (b), (c), and (d), respectively. The auxiliary heating, tritium fueling, deuterium

fueling, and tritium fraction are shown in Figure 2.2 (a), (b), (c), and (d), respectively.

Due to the initial condition perturbation, there was a rapid increase in βN initially in

both the open and closed loop cases. This led to a large overshoot in both βN and Pα in

the open loop case. In the controlled case, however, the nonlinear control law was able

to significantly reduce the overshoot and return the system to the desired operating

point. Due to the proximity of the operating point to the auxiliary heating saturation

limit, the controller was forced to reduce the tritium fraction in order to limit the

severity of the excursion. This was accomplished by temporarily reducing the tritium

fueling to zero. With more favorable recycling parameters, the controller could have

reduced the tritium fraction more quickly and further reduced the overshoot in βN

and Pα. At t = 70s, the desired operating point was changed. Again, in the open loop

case there was a significant overshoot in βN and Pα, as well as a slow density and

temperature response. The system response was greatly improved by the nonlinear

control law. Note how the isotopic fueling capability was used to improve the response

time of the isotopic mix. At t = 130s, the desired operating point was switched to

one that required the minimum auxiliary power. The open loop case experienced an

undershoot in βN and Pα and a slow density response. The controlled case, on the

other hand, quickly tracked the desired βN , T , and n, and avoided the undershoot

in Pα. Note that, because the auxiliary power saturated, the controller altered the

tritium fraction to track γ∗. This was done through isotopic fuel tailoring, as seen in

Figures 2.2 (b) and (c).
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Figure 2.3: Closed loop, open loop, and desired operating point during the second
simulation scenario: (a) Plasma β, (b) plasma density n, (c) temperature T , and (d)
fusion heating Pα.

2.5.1.2 Scenario 2

Next, we considered a second scenario of switching between operating points, this

time using an alternative confinement scaling law. For these results, the simulation

and controller used the scaling law ITER90H-P [46]

τE,90H−P = HH0.082I1.02R1.6B0.15M0.5κ−0.19
95 P−0.47. (2.72)
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Figure 2.4: Closed loop and open loop (a) heating Paux, (b) tritium fueling ST , (c)
deuterium fueling SD, and (d) a comparison of the tritium fraction reference, closed
loop and open loop results, and γ∗ during the second simulation scenario.
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We again started the system at a set of disturbed initial conditions and requested

the plasma to move to three operating points with auxiliary heating requirements near

the power saturation limit Pmin
aux . The simulations used model parameters fI = 0.017,

HH = 0.75, Reff = 0.9, γPFC = 0.4, fref = 0.7, and feff = 0.2. The initial conditions

were set as nD(0) = 1.05 × nrD, nT (0) = 1.05 × nrT , nα(0) = 0.8 × nrα, nI(0) = nrI ,

E(0) = 1.1× Er.

The βN , T , n, and Pα results for the two simulations are compared in Figure 2.3

(a), (b), (c), and (d), respectively. The auxiliary heating, tritium fueling, deuterium

fueling, and tritium fraction are shown in Figure 2.4 (a), (b), (c), and (d), respectively.

Clearly, with this alternative confinement scaling, the system exhibited much worse

open loop performance. The density dropped below the desired level, while βN and

T increased far beyond the requested values. This resulted in a significantly higher

fusion heating than desired. These results indicate that the stability of operating

points is strongly affected by the dependence of plasma confinement on changes in

other parameters. In the controlled case, this nonlinear effect was accounted for and

the controller was able to stabilize all three operating points and achieve excellent

transient performance. Note that, because the operating points were so close to

the minimum heating power, the controller often saturated the auxiliary heating

actuator. The controller reduced γ∗ during the heating saturation in order to maintain

the reference value of E, and the isotopic fueling capability was used to track this

reference. Due to particle recycling the tritium fueling actuator occasionally saturated

in an effort to track γ∗, however the overall system performance was still quite good.

2.5.1.3 Scenario 3

For a third scenario, we again used the alternative scaling (2.72). In this case, however,

a higher recycling rate was used, making it harder for the controller to track the
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desired isotopic mix γ∗. The simulations used model parameters fI = 0.017, HH =

0.75, Reff = 0.95, γPFC = 0.4, fref = 0.7, and feff = 0.2. The same initial conditions

as Scenario 2 were used.

The βN , T , n, and Pα results for the open and closed loop simulations of scenario 3

are compared in Figures 2.5 (a), (b), (c), and (d), respectively. The auxiliary heating,

tritium fraction, deuterium and tritium fueling, and impurity injection/density are

shown in Figures 2.6 (a), (b), (c), and (d), respectively. As in the previous case, the

open loop performance was quite poor. In the closed loop simulation, the controller

drove the auxiliary heating to saturation several times in order to stabilize the desired

operating points. Due to the higher recycling rate, the isotopic mix could not be

changed as quickly as in Scenario 2, which prompted the controller to switch to

the use of impurity injection (see Figure 2.6 (b) and (d)). The injected impurities

cooled the plasma and stabilized the operating points. However, because of the long

confinement time of impurities, the impurity density decayed slowly and additional

heating power was necessary long after the impurity injection was stopped, as seen

in Figure 2.6 (a).

2.5.2 Effect of Recycling Model Parameters

The previous simulation scenario showed how, for certain values of the recycling

parameters fref , feff , and Reff , it can be difficult to track the stabilizing isotopic

mix reference γ∗ due to fueling actuator saturation, which degrades the performance

of the proposed control scheme and may necessitate the use of impurity injection in

some cases. Since the reference γ∗ is highly dependent on the stability characteristics

of the desired operating point and how close it is to the heating actuator saturation

limits, any study of the effect of recycling parameters on performance will be highly

scenario dependent. Nevertheless, we can get a qualitative understanding of how
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Figure 2.5: Closed loop, open loop, and desired operating point during the third
simulation scenario: (a) Plasma β, (b) plasma density n, (c) temperature T , and (d)
fusion heating Pα.
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Figure 2.6: Open and closed loop (a) auxiliary heating power, (b) tritium fraction,
(c) deuterium and tritium fueling, and (d) impurity injection/density during Scenario
3.

51



the parameters influence performance by doing a parametric study for a particular

scenario and comparing controller performance metrics. For this study, we chose a

scenario (HH = 1.1, γPFC = 0.5, fI = 0.015) in which the controller had to respond

to a sudden increase in the confinement parameter HH of 5%. The reference for the

energy was chosen such that, after the confinement parameter change, the controller

was forced to reduce the auxiliary heating to the minimum level and reduce the tritium

fraction in order to maintain the desired energy. We used the percent overshoot (the

maximum percent difference between the achieved E and the desired value Er), 1%

settling time (the time it takes the energy E to come within 1% of its final value),

and steady-state error (the difference between the ultimate value of E and the desired

value Er) as the controller performance metrics to compare. We note again that, due

to the nonlinearity of the system, the results of this type of study are dependent on

the particular scenario studied.

Results for Reff = 0.85 , Reff = 0.90, and Reff = 0.95 are shown in Figure 2.9(a)-

(c), (d)-(f), and (g)-(i), respectively. Each subplot depicts a particular performance

metric as a function of fref and feff . It is apparent that the controller works best

for low values of feff and Reff coupled with high values of fref . We note that for

Reff = 0.85 there is a large region of parameter space in which there is no steady

state error. The region decreases in size as Reff is increased. The overshoot is most

strongly dependent on Reff and feff , though the dependence on fref increases for

high values of feff . In the region of parameter space without steady-state error, the

settling time increases with feff and decreases with fref , however, a more complex

behavior occurs within the region with steady-state error. The slowest settling time

occurs at high values of feff at the values of fref where steady-state error begins. In

the region with steady-state error, the settling time decreases with decreasing fref .

This complex dependence occurs because, although the response time of the system
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is slower in this region, the final value of E is closer to the maximum overshoot, so

the system takes less time to come to steady-state.

Based on these results, the controller performance can be optimized most effec-

tively by lowering the recycling rate Reff and recycled particle fueling efficiency feff .

Based on experimental studies of a recycling model similar to the one used in this

work [41], feff may be quite low (<0.5) for divertor configurations. Divertor designs

that prevent recycled flux from escaping the divertor region could reduce feff while

significant active pumping capabilities may be necessary to reduce Reff . The reflec-

tivity fref is dependent on material properties and the angle at which particles strike

the surface. By operating with high reflectivity, the problem of steady-state error can

be minimized because the isotopic mix of the recycled material is made less dependent

on the content of the walls. We note also that, as the wall inventory exchanges with

the plasma, the isotopic mix of the wall inventory γPFC may change slowly over time.

This would cause the steady-state error seen in these simulations to eventually tend

to zero, however, the settling time could be very long since the wall acts as a very

large reservoir of particles.

2.6 One-dimensional Simulation Study

In this section, we introduce a simple one-dimensional burning plasma model of the

evolution of the radial profiles of the plasma parameters. We use the one-dimensional

model to study the performance of the proposed control scheme in the presence of

spatially varying parameters. The model is given by the following set of coupled
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Figure 2.7: Simulation results for confinement disturbance case with Reff = 0.95,
feff = 0.2, fref = 0.7.
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Figure 2.8: Simulation results for confinement disturbance case with Reff = 0.95,
feff = 0.5, fref = 0.2.
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Figure 2.9: Controller performance metrics as a function of recycling parameters for
the confinement disturbance scenario with Pmin

aux = (5/7)P̄max
aux .
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nonlinear partial differential equations:

∂nα
∂t

=
1

r

∂

∂r
r

(
Dα

∂nα
∂r

)
+ Sα,

∂nD
∂t

=
1

r

∂

∂r
r

(
DD

∂nD
∂r

)
− Sα + SD + feffS

R
D,

∂nT
∂t

=
1

r

∂

∂r
r

(
DT

∂nT
∂r

)
− Sα + ST + feffS

R
T ,

∂nI
∂t

=
1

r

∂

∂r
r

(
DI

∂nI
∂r

)
+ SI ,

∂E

∂t
=

1

r

∂

∂r
r

(
DE

∂E

∂r

)
+QαSα − Prad + POhm + Paux,

where nα(r), nD(r), nT (r), nI(r), and E(r) now represent spatially varying model

states and Sα(r) and Prad(r) are calculated based on local plasma parameter values.

This simple cylindrical model assumes a constant diffusivities DE = 0.3, DD = 0.17,

DT = 0.14, Dα = 0.10, DI = 0.06, and negligible pinch velocities. The heating and

fueling rates are distributed throughout the plasma based on the deposition profiles

of the respective actuators. We assume the shape of deposition profiles are fixed in

time and only the magnitude of the actuators can be modulated by the controller,

i.e.,

SD(r, t) = 〈SD〉(t)× ŜD(r),

ST (r, t) = 〈ST 〉(t)× ŜT (r),

SI(r, t) = 〈SI〉(t)× ŜI(r),

Paux(r, t) = 〈Paux〉(t)× P̂aux(r),

where ŜD(r), ŜT (r), ŜI(r), and P̂aux(r) are the normalized deposition profiles. The

deposition profiles used in this study are shown in Figure 2.10. Profile 1 was used

for P̂aux(r), while Profile 2 was used for ŜD(r), ŜT (r), and ŜI(r). The recycling
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Figure 2.10: Normalized actuator deposition profiles used in the one-dimensional
simulations.

model used in the zero-dimensional study is used to calculate the recycling rates of

deuterium and tritium, and the recycled deuterium and tritium are assumed to fuel

the plasma with time-invariant deposition profile, i.e.,

SRD(r) = 〈SRD〉(t)× ŜRD(r),

SRT (r) = 〈SRT 〉(t)× ŜRT (r),

where 〈SRD〉 and 〈SRT 〉 are calculated using expressions (2.1) and (2.2), respectively,

and ŜRD(r) and ŜRT (r) are set as Profile 3 in Figure 2.10.

Based on the cylindrical symmetry of the model, no-flux boundary conditions are
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used at r = 0. For the set of boundary conditions at the minor radius r = a, we take

∂nα
∂r

∣∣∣∣
r=a

= −dαnα,

∂nD
∂r

∣∣∣∣
r=a

= −dDnD,

∂nT
∂r

∣∣∣∣
r=a

= −dTnT ,

∂nI
∂r

∣∣∣∣
r=a

= −dInI ,

∂E

∂r

∣∣∣∣
r=a

= −dEE,

where dα = 4.4, dD = 1.2, dT = 1.6, dI = 1.4, and dE = 4.3.

Volume averaged quantities were obtained from the model through integration.

For a quantity x, its volume average, denoted 〈x〉, is found as

〈x〉 =
2
´ a

0
rxdr

a2
.

Furthermore, the confinement time for the state x can be obtained by computing

τx = − a〈x〉

2Dx
∂x
∂r

∣∣∣∣
r=a

. (2.73)

During the closed loop simulation of the 1-D model, the diffusivity for each species

is updated based on (2.73) such that the confinement times follow the confinement

scaling (2.19) used in the zero-dimensional study.

During the simulation, the volume averages and confinement times were computed

and passed as inputs to the controller, which then output the volume averages of the

actuators. We assume that the volume averaged plasma parameters, including 〈Sα〉,

〈Prad〉, and the confinement times are all measured or estimated. To account for the
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effect of the spatial distribution of parameters, the calculation of γ∗ in the Step 2 of

the control scheme must be modified slightly. We define 〈γ〉 = 〈nT 〉/(〈nT 〉 + 〈nD〉)

and write 〈Sα〉 = fγp 〈γ〉 (1− 〈γ〉) 〈nH〉2〈σv〉 (〈T 〉) where fγp is a scale factor to account

for the effects of spatial profiles. The scale factor is then used to calculate

〈γ∗〉 (1− 〈γ∗〉) =

〈E〉r
τE

+〈Prad〉−〈POhm〉+〈Paux〉
fγpQα〈nH〉2〈σv〉 (〈T 〉)

≡ 〈C〉,

〈γ∗〉 =
1±

√
1− 4〈C〉
2

,

The rest of the control scheme is left unchanged, aside from the 〈·〉 notation, i.e.,

〈P unsat
aux 〉 =

¯〈E〉
τE
−fγpQα〈γ〉r(1−〈γ〉r) 〈nDT 〉2〈σv〉 (〈T 〉)+ 〈Prad〉 − 〈POhm〉,

〈SinjD 〉 =
〈n〉 − 3〈nα〉 − (ZI + 1) 〈nI〉

2

(
k1〈Ẽ〉φγ +Kγ〈γ̂〉

)
+〈u (γ∗)〉+ (1− 〈γ〉)

(−〈v〉 −Kn〈ñ〉
2

)
,

〈SinjT 〉 =

(−〈v〉 −Kn〈ñ〉
2

)
− 〈SinjD 〉.

Actuator limits in the one-dimensional simulation were the same as those used in the

zero-dimensional simulation.

For the one-dimensional simulation, a low temperature operating point with an

auxiliary heating requirement near the minimum auxiliary power saturation limit was

chosen as a reference. Based on the chosen values of 〈T 〉, 〈β〉, and 〈γ〉, as well as the

actuator and recycling deposition profiles, the set of equilibrium profiles and actuator

values associated with the operating point were determined. Two simulations, one

using the equilibrium fueling and heating rates (open loop) and the other with the

proposed controller active (closed loop), were run, both starting from a perturbed set

of initial profiles. The parameters used were HH = 0.88, Reff = 0.9, γPFC = 0.4,
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feff = 1, and fref = 0.5. Figure 2.11 compares the open loop and closed loop

volume averages, as well as the spatiotemporal evolution of the percent error, for the

(a) temperature and (b) plasma density. Figure 2.12 shows the same set of results

for (a) energy and (b) fusion heating. The open loop response of the temperature

and density to the perturbed initial profiles was quite slow, while in closed loop the

desired temperature and density are quickly recovered. In closed loop, the profile

percent error tended to zero at all spatial locations with about the same response

time as the spatial average values. The energy and fusion heating averages initially

responded on similar time scales in both open and closed loop. However, the open loop

response exhibited an undershoot that persisted for a long time, while the closed loop

system quickly reached the desired values. We see similar results in the spatiotemporal

evolution of the percent error. Figure 2.13 compares the open loop and closed loop

values of the actuators (a) Paux, (b) ST , and (c), SD, as well as the (d) tritium

fraction and controller requested tritium fraction γ∗. We see that, because the heating

requirement for the operating point was quite close to the minimum saturation limit,

the controller could not reduce heating much in response to the initial condition errors.

The controller maintained control of the system by requesting a reduction in the

tritium fraction γ∗, which was successfully tracked through isotopic fuel tailoring. The

open loop tritium fraction did not deviate from the reference value. Finally, Figure

2.14 shows the initial, final (t=50s), and reference profiles of the states nα, E, nD,

and nT from the closed loop simulation, showing that, for the simple one-dimensional

model used in this work, the profiles tended toward the reference magnitude and

shape.

61



0 20 40 60 80 100
8

8.5

9

9.5

10

Time (s)

Te
m

pe
ra

tu
re

 (k
eV

)

 

 
Closed Loop
Open Loop
Reference

Profile Percent Error  Closed Loop

Time (s)

R
ad

iu
s 

(m
)

 

 

0 20 40 60 80 100
0

0.5

1

1.5

0

10

20

30

Profile Percent Error  Open Loop

R
ad

iu
s 

(m
)

Time (s)

 

 

0 20 40 60 80 100
0

0.5

1

1.5

0

10

20

30

(a)

0 20 40 60 80 100

1.95
2

2.05
2.1

2.15
x 1020

Time (s)

D
en

si
ty

 (m
3)

 

 

Closed Loop
Open Loop
Reference

Profile Percent Error  Closed Loop

Time (s)

R
ad

iu
s 

(m
)

 

 

0 20 40 60 80 100
0

0.5

1

1.5

12
10
8
6
4
2

0

Profile Percent Error  Open Loop

Time (s)

R
ad

iu
s 

(m
)

 

 

0 20 40 60 80 100
0

0.5

1

1.5

12

10

8

6

4

(b)

Figure 2.11: Comparison of closed loop, open loop, and reference volume averages of
(a) temperature and (b) plasma density, along with contour plots depicting the closed
loop and open loop spatiotemporal evolution of the percent error of each quantity.
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Figure 2.12: Comparison of closed loop, open loop, and reference volume averages of
(a) energy and (b) fusion heating, along with contour plots depicting the closed loop
and open loop spatiotemporal evolution of the percent error of each quantity.
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Figure 2.13: Closed loop and open loop (a) heating Paux, (b) tritium fueling ST , (c)
deuterium fueling SD, and (d) a comparison of the tritium fraction reference, closed
loop and open loop results, and γ∗ during the second simulation scenario.
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Figure 2.14: Initial, final (t=50s), and reference profiles for the one-dimensional closed
loop simulation.
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2.7 Conclusions

We have presented a nonlinear burn stability controller capable of rejected perturba-

tions in the energy and ion species densities. By avoiding linearization, the controller

can deal with a larger set of perturbations than previous linear controllers and the

simultaneous use of multiple actuation techniques allows for the rejection of pertur-

bations that lead to either thermal excursions or quenching. The nonlinear control

law depends parametrically on the operating point, so it can be used to drive the

system between different operating points. This allows for online adjustment of the

power or other plasma parameters, or for transition from sub-ignition to ignition. No

scheduled controllers are necessary because the control law is not designed around a

particular operating point.

The deuterium and tritium ion densities are accounted for separately, allowing for

control of the isotopic fuel mix within the plasma. This will be important for main-

taining the desired fuel mix within the plasma core despite difference in confinement

properties between the species. The isotopic fueling capability is exploited by the

control scheme to help reject perturbations in the temperature when the control law

for the heating reaches saturation limits. This extends the operating space of the

control scheme and can help to avoid the need for impurity injection during positive

temperature perturbations. We include impurity injection in the proposed scheme as

a back-up actuator to handle more severe excursions.

A zero-dimensional simulation study was carried out to test the performance of

the proposed control scheme. Scenarios studied included moving between various op-

erating points, some of which were characterized by a required heating power very

near the minimum power limit imposed in the scenario. Results using two differ-

ent confinement scalings were shown, and the controller was shown to be capable of
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stabilizing unstable points and improving the performance of the system for stable

operating points. A study of the effectiveness of isotopic mix based control of the en-

ergy for a range of recycling model parameters was also presented. The study showed

that the use of isotopic fueling for burn condition control purposes is most promising

for low values of feff and relatively low values of Reff . Such favorable conditions

could be realized with appropriate divertor design and active pumping capabilities.

For unfavorable recycling parameters, it is found that isotopic mix control may be

too slow to be used to reject thermal excursions (due to the much faster time scale of

the energy subsystem). In such cases, isotopic mix control may still be quite useful

for slower time scale modulation of the burn condition and impurity injection may be

necessary to reject thermal excursions. A one-dimensional simulation study was also

presented to show controller performance when plasma parameters vary in space, as

they would in a real tokamak. Though a very simplified one-dimensional model was

used, the success of the zero-dimensional control law on the one-dimensional model

is promising and motivates further testing on more sophisticated predictive codes.

It should be noted that the approach taken in this work is not restricted to the

particular confinement scaling and machine parameters used here. The control design

could be used in other fusion reactors with isotopic fueling capability. While many

of the parameters used in the control law are either measured or well-known, some

parameters, like recycling parameters are uncertain. The selection of the controller

gainsKE,Kn,Kγ, andKI , is a trade-off between the robustness of the scheme to these

uncertainties and the sensitivity of the controller to noise. In order to handle the the

uncertainties in a parametric way, a nonlinear adaptive control law will be synthesized.

A real-time algorithm for updating the choice of operating point parameters Ē, n̄,

and γ̄ in response to changes in impurity content or confinement parameters will also

be included. The optimization algorithm will be used to improve upon the response
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of parameters like the fusion power and the divertor heat load, while maintaining the

stability properties of the controller proposed in this work.
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Chapter 3

Adaptive Nonlinear Burn Control

and Online Optimization

3.1 Introduction

In the previous chapter, a nonlinear multi-input-multi-output burn control strategy

capable of handling actuator saturation through the use of isotopic fueling and impu-

rity injection was proposed. It was shown that the nonlinear controller could stabilize

unstable equilibria, even in the presence of actuator saturation. A model of particle

recycling was included in the burning plasma model to study the effectiveness of the

proposed isotopic fueling under different recycling conditions. Despite the advantages

of the proposed scheme over linear approaches, the design relies on complete knowl-

edge of the parameters of the burning plasma model. While many of the necessary

parameters are either measured or can be calculated based on first-principles equa-

tions or scaling laws, some parameters will be, in practice, uncertain or unknown. In

order to handle the model uncertainty, a nonlinear adaptive control scheme is pro-

posed in this chapter. The resulting nonlinear adaptive control scheme ensures that
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the desired burn condition is still asymptotically stable despite model uncertainty.

Adaptive control design seeks to combine a control law with an online parameter

estimator in order to control systems that have uncertain (or possibly time-varying)

parameters. As the parameter estimates converge to the true values, the performance

of the controller tends to that of a controller based on known parameters [47]. Typi-

cally, in adaptive control for linear systems, the certainty equivalence design approach

is used, i.e., the uncertain parameters are assumed to be known to design a parameter-

ized controller. This achieves a level of modularity, allowing any stabilizing controller

design to be paired with any parameter estimation approach. For nonlinear systems,

the weakness of certainty equivalence based control laws can allow the states of the

uncertain system to become unbounded under certain conditions. Through the use of

design tools like nonlinear damping in the control law, a system can be made input-

to-state stable with respect to the parameter estimation error, i.e., the states remain

bounded given a bounded parameter estimation error [48]. This property enables the

use of modular designs, i.e., the nonlinear controller can be paired with any kind of

estimator, so long as it guarantees bounded estimation errors.

While the nonlinear adaptive control scheme proposed in this chapter will drive

the burn condition to the desired reference (defined by the energy, density, and tritium

fraction), the model uncertainty may lead to differences between the resulting out-

puts, like fusion power or divertor heat load, and those predicted by the model. For

example, differences in impurity or alpha particle confinement could alter radiation

losses and DT fuel content in the plasma at the reference values of E, n, and γ. With

large enough parameter changes, the outputs for a given reference could differ signifi-

cantly from the predicted values, making it difficult to choose the controller references

prior to a discharge. To overcome this issue, an online optimization scheme, similar

to the general approach proposed in [49, 50] is used to alter the controller references
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in real-time to minimize a cost function related to the desired reactor performance.

The chapter is organized as follows. The uncertain parametric burning plasma

model used for design is given in Section 3.2. In Section 3.3, the adaptive nonlinear

control design is presented, and in Section 3.4 an online optimization scheme is pre-

sented. Section 3.5 shows the results of a simulation study of the adaptive scheme

alone, while simulations of the optimization scheme are presented in Section 3.6.

Finally, conclusions are discussed in Section 3.7.

3.2 Uncertain Parametric Model

The burning plasma model described in Chapter 2 is again used for controller design.

In practice, many of the parameters of the model may be uncertain and the control

algorithm must make use of estimated model parameters. We will utilize an adaptive

control approach to ensure reference tracking despite the model uncertainty. To

facilitate the adaptive control design, we lump the uncertain parameters together to

write the model as

ṅα =− θ1
nα
τ scE

+ Sα, (3.1)

Ė =− θ2
E

τ scE
+ Pα − Prad + Paux + POhm, (3.2)

ṅI =− θ7
nI
τ scE

+ SinjI + SspI , (3.3)

ṅD =− θ3
nD
τ scE

+ θ4
nT
τ scE
− Sα + SinjD , (3.4)

ṅT =θ5
nD
τ scE
− θ6

nT
τ scE
− Sα + SinjT , (3.5)
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where τ scE is the energy confinement time predicted by the confinement scaling law,

i.e.,

τ scE = 0.0562I0.93
p B0.15

T P−0.69n0.41
e19 M

0.19R1.97ε0.58κ0.78
95 ,

and the uncertain parameters θ = [θ1, θ2, . . . , θ7] are given by

θ1 =
1

k∗αHH

,

θ2 =
1

HH

,

θ3 =
1

kDHH

− feff
kDHH [1− fref (1− feff )]

{fref

+
(
1− γPFC

) [(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

]}
,

θ4 =
feff

(
1− γPFC

)
kTHH [1− fref (1− feff )]

×[
(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

]
,

θ5 =
feffγ

PFC

kDHH [1− fref (1− feff )]
×[

(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

]
,

θ6 =
1

kTHH

− feff
kTHH [1− fref (1− feff )]

×{
fref + γPFC

[
(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

]}
,

θ7 =
1

k∗IHH

.
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Using these expressions, the equations (2.25) and (2.26) can be written in the form

ṅ =2

[
(θ5 − θ3)

nD
τ scE

+ (θ4 − θ6)
nT
τ scE
− 2Sα + SinjD + SinjT

]
+ 3

[
−θ1

nα
τ scE

+ Sα

]
+ (ZI + 1)

[
−θ7

nI
τ scE

+ SinjI + SspI

]
, (3.6)

γ̇ =
1

nDT

{
θ5
nD
τ scE
− θ6

nT
τ scE
− Sα + SinjT

−γ
[
(θ5−θ3)

nD
τ scE

+(θ4−θ6)
nT
τ scE
− 2Sα+SinjD +SinjT

]}
. (3.7)

We consider the model parameters to be bounded, i.e.,

2 ≤ kα ≤ 10, 0.1 ≤ feff ≤ 0.5,

2 ≤ kD ≤ 5, 0.2 ≤ fref ≤ 0.9,

2 ≤ kT ≤ 5, 0.8 ≤ Reff ≤ 0.95,

2 ≤ kI ≤ 10, 0.1 ≤ γPFC ≤ 0.5,

.75 ≤ HH ≤ 1.25.

Note that, although the existence of bounds is necessary for the stability analysis, the

control design is not dependent on the particular values of the bounds. The above

bounds are only considered for the purpose of simulation. With these constraints, we

can determine bounds on the uncertain parameters. For the limits considered in this
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work, the uncertain parameters lie within the bounds

0.08 ≤ θ1 ≤ 0.6, 0 ≤ θ5 ≤ 0.2647,

0.75 ≤ θ2 ≤ 1.25, 0.0222 ≤ θ6 ≤ 0.6330,

0.0175 ≤ θ3 ≤ 0.5633, 0.08 ≤ θ7 ≤ 0.6,

0 ≤ θ4 ≤ 0.4765.

These bounds were established by using the constrained nonlinear minimization

function fmincon in MatLab. In addition to the above model parameter constraints,

θ4 and θ5 were restricted to being positive semi-definite to ensure that the desorbed

flux from the plasma facing components, SPFC , is always positive semi-definite. For

the range of model parameters considered, it is always the case that θ3 > θ5, θ6 > θ4,

and the eigenvalues of the matrix

 θ3 θ4

θ5 θ6

 are positive definite. We can exploit

our knowledge of parameter bounds in our estimation strategy by projecting the

estimated parameters generated by the adaptive laws onto the subspace of possible

parameter values.

We can write the dynamics of the error variables Ẽ = E − Er, ñ = n − nr, and

γ̃ = γ − γr as

˙̃E = −θ2
Ẽ

τ scE
− θ2

Er

τ scE
+ Pα − Prad + POhm + Paux − Ėr, (3.8)

˙̃γ = −θ6
γ̃

τ scE
+

2
[
u(γr) + (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

, (3.9)

˙̃n = −ñ
[
− (θ5 − θ3)

(1− γ)

τ scE
− (θ4 − θ6)

γ

τ scE

]
(3.10)

+ v − ṅr + 2
(
SinjD + SinjT

)
, (3.11)
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where

u(γr) =
n−3nα−(ZI+1)nI

2

[
θ5

(1− γ)

τ scE
− θ6

γr

τ scE
−γ̇r

− (θ5 − θ3)
(γ − γ2)

τ scE
− (θ4 − θ6)

γ2

τ scE

]
+(2γ−1)Sα, (3.12)

v = [−nr+3nα+(ZI+1)nI ]

[
− (θ5−θ3)

(1−γ)

τ scE

− (θ4−θ6)
γ

τ scE

]
− 4Sα + 3

[
−θ1

nα
τ scE

+ Sα

]
+ (ZI + 1)

[
−θ7

nI
τ scE

+ SinjI + SspI

]
. (3.13)

The objective of the controller designed in the following section is to ensure the

stability of the origin for this dynamic system.

3.3 Controller Design

3.3.1 Nominal Control Design

We first consider the design of a nominal controller, i.e., we assume the uncertain

parameters are exactly known. In the subsequent sections, the design will be aug-

mented to ensure stability and regulation despite model uncertainties. We begin the

nominal controller design by looking at the energy subsystem (3.8). We note that Ẽ

can be driven to zero by satisfying the condition

f(n,E,nα,nI ,γ) =− θ2
Er

τ scE
+POhm+Pα−Prad+Paux− Ėr +KEẼ = 0. (3.14)

The condition (3.14) can be satisfied in several different ways. The auxiliary heating

term Paux enters the equation directly, the actuators SinjD and SinjT can be used to

change the α-heating term Pα by modulating the tritium fraction, and the impurity
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injection term SinjI can be used to increase the impurity content and consequently

Prad. Having several methods available for controlling the energy subsystem enables

us to design a control scheme that can still achieve stabilization despite saturation of

one or even several of the available actuators.

Step 1: We first calculate the Paux as

P unsat
aux =θ

Er

τ scE
−Qαγ

r(1−γr)n2
DT 〈σv〉+Prad−POhm+Ėr−KEẼ, (3.15)

Paux = sat
(
P unsat
aux − Pmin

aux

Pmax
aux − Pmin

aux

)
, (3.16)

where the limit Pmax
aux depends on the installed power on the tokamak and the limit

Pmin
aux ≥ 0 depends on the operating scenario. For example, some minimum amount of

power may be needed to maintain the required amount of non-inductive current drive

during a particular discharge since some sources of power (neutral beam injection,

electron-cyclotron current drive, etc.) double as sources of plasma current.

Step 2: We next find a trajectory γ∗ satisfying (3.14), i.e.,

Qαγ
∗(1−γ∗)n2

DT 〈σν〉=Prad−POhm−Paux+θ2
Er

τ scE
+Ėr−KEẼ, (3.17)

Solving this equation yields

γ∗ (1− γ∗) =
1

Qαn2
DT 〈σν〉

[
θ2
Er

τ scE
+Prad−POhm−Paux+Ėr −KEẼ

]
= C, (3.18)

γ∗ =
1±
√

1− 4C

2
. (3.19)

Note that, if the value of Paux calculated in Step 1 is not saturated, then γ∗ = γr.

This can be shown by substituting (3.15) into (3.17). If C ≤ 0.25, the two resulting

solutions for γ∗ are real and we take the tritium-lean solution, such that γ∗ ≤ 0.5. If
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C ≥ 0.25, even the optimal isotopic mix and maximum value of auxiliary heating will

not generate enough heating to satisfy f = 0, indicating that the requested operating

point may not be achievable for the amount of auxiliary heating power installed on

the device. Barring this situation, based on our choice of Paux and γ∗, we have that

f (n,E, nα, nI , γ
∗) = 0. (3.20)

This allows us to write f = γ̂φγ where γ̂ = γ − γ∗ and φγ is a continuous function.

Noting (3.8), (3.14), we can then write the dynamics of the energy perturbation as

˙̃E = −θ2
Ẽ

τ scE
−KEẼ + γ̂φγ, (3.21)

and the dynamics of γ̂ can be written as

˙̂γ = −θ6
γ̂

τ scE
+

2
[
u(γ∗) + (1− γ)SinjT − γSinjD

]
n− 3nα − (ZI + 1)nI

. (3.22)

Step 3: Having selected Paux and γ∗ in the previous steps, we must next choose

SinjD and SinjT to ensure that Ẽ, γ̂, and ñ, which are governed by (3.21), (3.22), and

(3.11), are driven to zero. We consider the Lyapunov function V0 = Vn + VE,γ where

Vn = 1
2
ñ2 and VE,γ = 1

2
k1Ẽ

2 + 1
2
γ̂2. It can be shown that satisfying the conditions

2
(
SinjT + SinjD

)
=− v −Knñ+ ṅr, (3.23)

(1− γ)SinjT − γSinjD =− n− 3nα − (ZI + 1)nI
2

×
(
k1Ẽφγ +Kγ γ̂

)
− u(γ∗), (3.24)
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where Kn > 0 and Kγ > 0 results in

V̇n = −ñ2

(
− (θ5 − θ3)

(1− γ)

τ scE
− (θ4 − θ6)

γ

τ scE
+Kn

)
< 0, (3.25)

V̇E,γ = −k1θ2
Ẽ2

τ scE
− k1KEẼ

2 −
(

1

τT
+Kγ

)
γ̂2 < 0, (3.26)

such that V̇0 < 0, guaranteeing asymptotic stability of the system. The conditions

(3.23) and (3.24) can be satisfied by choosing

SinjD =
n− 3nα − (ZI + 1)nI

2

(
k1Ẽφγ +Kγ γ̂

)
+ u(γ∗) + (1− γ)

(−v −Knñ+ ṅr

2

)
, (3.27)

SinjT =

(−v −Knñ+ ṅr

2

)
− SinjD . (3.28)

These values are subject to the constraints 0 ≤ SinjD ≤ Sinj,maxD and 0 ≤ SinjT ≤

Sinj,maxT . If one of the fueling actuators saturates, we cannot satisfy both conditions

of the control law, so we must choose to either control n or γ. If we choose to

hold condition (3.24), the energy and tritium fraction subsystems will remain stable,

however, the density subsystem will no longer be controlled. This could potentially

lead to a violation of the density limit. To avoid this, we instead choose to maintain

control of the density by satisfying (3.23).

Because of fueling actuator saturation, it may be possible that V̇E,γ > 0, that

is, we may not be able to ensure stability of the burn condition with the previously

considered actuators. There are two possible situations to consider, either a thermal

quench or an excursion. If the system is experiencing a quench, the controller has

already increased auxiliary heating to its maximum, so the only alternative would be

to change the magnetic plasma parameters to improve energy confinement (see (2.19))

or to change the reference operating point to one that is achievable. If the system
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is experiencing a thermal excursion, however, we can still use impurity injection to

stabilize the energy subsystem, despite the heating and fueling actuator saturation.

In these cases we enable the use of impurity injection by setting the flag Fimp = 1

and proceeding to Step 4.

Step 4: If Fimp = 1, we use the expression for radiation losses given in (2.12)

to find an impurity density trajectory n∗I that satisfies condition (3.14). Defining the

error n̂I = nI − n∗I , we can write its dynamics as

˙̂nI = −θ7
n̂I
τ scE
− θ7

n∗I
τ scE

+ SinjI + SspI − ṅ∗I . (3.29)

Based on the choice of n∗I , we have that

f (n,E, nα, γ, n
∗
I) = 0, (3.30)

which allows us to write f = n̂IφI where φI is a continuous function. We can then

rewrite (3.8) as
˙̃E = −θ2

Ẽ

τ scE
−KEẼ + n̂IφI . (3.31)

We take as a Lyapunov function V1 = Vn + Vγ + VE,I where Vγ = 1
2
γ̂2 and VE,I =

1
2
k3Ẽ

2 + 1
2
n̂2
I . By satisfying

SinjI = −k3ẼφI + θ7
n∗I
τ scE
− SspI + ṅ∗I −KI n̂I , (3.32)

where KI > 0, the derivative of VE,I can be reduced to

V̇E,I = −k3θ2
Ẽ2

τ scE
− k3KEẼ

2 −KI n̂
2
I < 0. (3.33)

We modify the tritium fraction trajectory to γ∗ = γ∗(Step 2) − KS

´ t
t0
SinjI dt where
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γ∗(Step 2) is the value of γ∗ calculated in Step 2, KS > 0, and t0 is the time at which

impurity injection was first engaged. This modification ensures that the tritium

fraction is, if possible, eventually reduced to such a level that impurity injection is

no longer needed, i.e., SinjI → 0. Once SinjI = 0, we disable impurity injection in

subsequent executions of the algorithm by setting Fimp = 0. By satisfying

2
(
SinjT + SinjD

)
=− v −Knñ, (3.34)

(1− γ)SinjT − γSinjD =− n− 3nα − (ZI + 1)nI
2

Kγ γ̂

− u(γ∗I ). (3.35)

We can ensure that V̇n < 0, V̇γ < 0, and therefore V̇1 < 0, guaranteeing stability of

the system. The conditions (3.34) and (3.35) can be satisfied by choosing

SinjD =
n− 3nα − (ZI + 1)nI

2
Kγ γ̂

+ u(γ∗) + (1− γ)

(−v −Knñ

2

)
, (3.36)

SinjT =

(−v −Knñ

2

)
− SinjD , (3.37)

which are again subject to saturation. If one of the fueling actuators saturates, we

again choose to hold (3.34) to ensure stability of the density.

3.3.2 ISS Controller for Uncertain Model

Having designed a nominal controller that stabilizes the system, we now consider the

effects of uncertainty in the model parameters θ. In practice, the nominal controller

must utilize estimated parameters θ̂ = θ − θ̃, where θ̂ =
[
θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6, θ̂7

]T
and

θ̃ =
[
θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6, θ̃7

]T
is the estimation error. Knowing a priori bounds on
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θ allows us to restrict our estimates to within these bounds, guaranteeing that the

estimation error will have a known bound. In this section, we show that the closed loop

system can be rendered input-to-state-stable (ISS) [51] with respect to the estimation

errors. We exploit this fact in the design of adaptive parameter estimation update

laws in the sequel.

We begin by considering the results of Step 3. The control laws are calculated

using estimated model parameters, which, upon substitution, results in

V̇n =ñ2

[
(θ5 − θ3)

(1− γ)

τ scE
+ (θ4 − θ6)

γ

τ scE
−Kn

]
+ ñṽ, (3.38)

V̇E,γ =− k1θ2
Ẽ2

τ scE
− k1KEẼ

2 − k1Ẽ

[
θ̃2
Er

τ scE

]
−
(
θ6

τ scE
+Kγ

)
γ̂2 + γ̂ũ, (3.39)

where

ũ(γr) =

[
θ̃5

(1− γ)

τ scE
− θ̃6

γr

τ scE
−
(
θ̃5 − θ̃3

) (γ − γ2)

τ scE

−
(
θ̃4 − θ̃6

) γ2

τ scE

]
n−3nα−(ZI+1)nI

2
, (3.40)

ṽ = [−nr+3nα+(ZI+1)nI ]

[
−
(
θ̃5−θ̃3

) (1−γ)

τ scE

−
(
θ̃4−θ̃6

) γ

τ scE

]
+ 3

[
−θ̃1

nα
τ scE

]
+ (ZI + 1)

[
−θ̃7

nI
τ scE

]
. (3.41)
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We note that the uncertain terms are bounded, i.e.,

|ṽ| = 2 nDT

[∣∣∣θ̃5 − θ̃3

∣∣∣ (1−γ)

τ scE
+
∣∣∣θ̃4 − θ̃6

∣∣∣ γ
τ scE

]
+ 3

∣∣∣θ̃1

∣∣∣ nα
τ scE

+ (ZI + 1)
∣∣∣θ̃7

∣∣∣ nI
τ scE

+ |ñ|
[∣∣∣θ̃5 − θ̃3

∣∣∣ (1−γ)

τ scE
+
∣∣∣θ̃4 − θ̃6

∣∣∣ γ
τ scE

]
≤ 2

∣∣∣θ̃max∣∣∣ n+ |ñ|
τ scE

|ũ| ≤ 4 |θ̃max|
nDT
τ scE

,

If we choose Kn = Cn
n+|ñ|
τscE

, KE = CE
Er

τscE
, and Kγ = Cγ

nDT
τscE

where Cn , CE, and Cγ

are positive constants, it can then be shown that the negative definite term −Knñ
2

is guaranteed to dominate the indefinite term ñṽ whenever

|ñ| ≥ 2

∣∣∣θ̃max∣∣∣
Cn

.

Furthermore, the indefinite terms −k1Ẽ
[
θ̃2

Er

τscE

]
and γ̂ũ are dominated by −k1KEẼ

2

and −Kγ γ̂
2, respectively, whenever conditions

∣∣∣Ẽ∣∣∣ ≥
∣∣∣θ̃2

∣∣∣
CE

,

|γ̂| ≥
4
∣∣∣θ̃max∣∣∣
Cγ

,

are satisfied. This implies that the system is ISS with respect to the model uncertainty.

A similar analysis can be completed for the results of Step 4.
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3.3.3 Adaptive Parameter Update Laws

The use of a controller that renders the system ISS with respect to bounded uncertain-

ties allows us to design an adaptive parameter estimation update law separately from

the controller [48]. This simplifies the design and analysis, gives us freedom to choose

from among the various types of adaptive laws that are available, and enables the in-

corporation of techniques that make the adaptive system robust to disturbances and

unmodeled dynamics. In order to identify the uncertain parameters, we will construct

an observer for the burning plasma system based on the estimated model parameters,

and render the prediction error of this system asymptotically stable through choice

of parameter update laws. We define the observer for the system as

ṅobα =− θ̂1
nα
τ scE

+ Sα −Kob
α

(
nobα − nα

)
,

Ėob =− θ̂2
E

τ scE
+ Pα − Prad

+ Paux + POhm −Kob
E

(
Eob − E

)
,

ṅobI =− θ̂7
nI
τ scE

+ SinjI + SspI −Kob
I

(
nobI − nI

)
,

ṅobD =− θ̂3
nD
τ scE

+ θ̂4
nT
τ scE
− Sα + SinjD −Kob

D

(
nobD − nD

)
,

ṅobT =θ̂5
nD
τ scE
− θ̂6

nT
τ scE
− Sα + SinjT −Kob

T

(
nobT − nT

)
,

where nobα , Eob, nobI , nobD , and nobT are the states of the observer, θ̂ represents model

parameter estimates, and Kob
α , Kob

E , Kob
I , Kob

D , and Kob
T are observer gains. If we define

the observer error ñobα = nobα −nα, Ẽob = Eob−E, ñobI = nobI −nI , ñobD = nobD −nD, and
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ñobT = nobT − nT , the dynamics of the error can be expressed as

˙̃nobα =− θ̃1
nα
τ scE
−Kob

α ñ
ob
α ,

˙̃Eob =− θ̃2
E

τ scE
−Kob

E Ẽ
ob,

˙̃nobI =− θ̃7
nI
τ scE
−Kob

I ñ
ob
I ,

˙̃nobD =− θ̃3
nD
τ scE

+ θ̃4
nT
τ scE
−Kob

D ñ
ob
D ,

˙̃nobT =θ̃5
nD
τ scE
− θ̃6

nT
τ scE
−Kob

T ñ
ob
T .

To study the stability of the system, we consider the Lyapunov function

V ob =
1

2

(
ñobα
)2

+
1

2

(
Ẽob
)2

+
1

2

(
ñobI
)2

+
1

2

(
ñobD
)2

+
1

2

(
ñobT
)2

+
1

2
θ̃Γ−1θ̃,

where Γ is a positive definite diagonal matrix of design parameters, and calculate its

derivative as

V̇ ob =−Kob
α

(
ñobα
)2 −Kob

E

(
Eob
)2 −Kob

I

(
ñobI
)2

−Kob
D

(
ñobD
)2 −Kob

T

(
ñobT
)2 − θ̃1ñ

ob
α

nα
τ scE
− θ̃2Ẽ

ob E

τ scE

− θ̃7ñ
ob
I

nI
τ scE
− θ̃3ñ

ob
D

nD
τ scE

+ θ̃4ñ
ob
D

nT
τ scE

+ θ̃5ñ
ob
T

nD
τ scE

− θ̃6ñ
ob
T

nT
τ scE

+ θ̃Γ−1 ˙̃θ.
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We can render this expression negative definite by choosing the adaptive update laws

˙̃θ =
1

τ scE
Γ



ñobα nα

ẼobE

ñobDnD

−ñobDnT
−ñobT nD
ñobT nT

ñobI nI



.

3.3.4 Supervisory Control

Because small prediction errors corrupted by measurement noise have a very low sig-

nal to noise ratio, they contain inaccurate information that can negatively impact the

online model identification process. In general, this can lead to phenomena such as

parameter drift and bursting, potentially causing instabilities or performance degra-

dation [47]. The problem can be avoided by using sufficiently exciting input signals

that provide useful data to the model identification scheme at all times. However, to

overcome the effect of noise, the amplitude of the reference modulation may need to

be quite large, which could cause a reduction in closed loop performance.

An alternative approach is to utilize a supervisory scheme to monitor the perfor-

mance of the adaptive update law. One such scheme, called a deadzone, switches the

model identification scheme on or off based on the size of the model prediction error.

If the prediction error is smaller than some specified threshold value (an a priori

estimate of the unknown output disturbance), the signal-to-noise ratio is assumed to

be too low for the information to be useful and identification is halted. Once the

prediction error exceeds the threshold, identification is resumed. In the dual-model
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approach [52], two parameter estimators are used, one generating θC , used in the con-

troller, and another generating θS, used only by the supervisory scheme. The control

parameters are only updated if the state prediction of the model using θC is worse

than that of the model based on θS, with some prescribed threshold.

3.4 Online Operating Point Optimization

Since a given reference for the controlled states r = [Er, nr, γr]T determines the

steady-state fusion power, temperature, and all other plasma parameters that may

be of interest during operation, part of the burn control problem is the selection of r

in such a way that a particular figure of merit for reactor performance is optimized.

In this work, we consider a convex (at least locally) cost function p(r, x, θ̂) where

x = [nα, nI ]
T . We assume the states of the system to be constrained within a region

of parameter space over which the cost function is convex, guaranteeing a unique

minimum.

Following an approach similar to the one used in [53, 49, 50], we take as a Lyapunov

function

Vr =
1

2

(
∂p(r, x, θ̂)

∂r

)T
∂p(r, x, θ̂)

∂r
. (3.42)

By taking the time derivative of Vr, we obtain

V̇r =

(
∂p

∂r

)T [
∂2p

∂r2
ṙ +

∂2p

∂r∂x
ẋ+

∂2p

∂r∂θ̂

˙̂
θ

]
. (3.43)

We can then choose as an update law

ṙ = −
(
∂2p

∂r2

)−1 [
KRTO

∂p

∂r
+

∂2p

∂r∂x
ẋ+

∂2p

∂r∂θ̂

˙̂
θ

]
, (3.44)
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where KRTO is a diagonal positive definite matrix, leading to

V̇r ≤ −
(
∂p

∂r

)T
KRTO

∂p

∂r
. (3.45)

This implies that ∂p
∂r
→ 0 and, therefore, r is driven toward the optimal x-dependent

and θ̂-dependent set point, r∗.

3.4.1 Constrained Optimization

It is important to include constraints in the optimization problem for several reasons.

First, there are MHD stability limits that must be avoided, including the β limit

and the Greenwald density limit. Violating these constraints could cause plasma dis-

ruptions and potentially damage the confinement vessel. Additionally, the optimized

references should respect the physical limitations of the available actuators. If these

limits are not considered, the optimization scheme may converge to a set of references

that are not physically achievable and the burning plasma system will converge to a

different (possibly far from optimal) operating point. By considering the limitations,

the optimization scheme will converge to the optimal physically achievable reference.

This approach could enable the control system to respond to actuator faults (e.g.,

loss of a beam) and find new optimal operating points. Finally, upper and lower

bounds on the references can be included in the scheme to ‘supervise’ the optimiza-

tion process and prevent unreasonable references from being selected. In order to

include these constraints in the optimization scheme, they are first written in the

form gi(E, n, γ, nα, nI) ≤ 0, where i ∈ (1, K) and K is the number of constraints.

The interior point barrier function method to constrained optimization is used, i.e.,
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an augmented cost function is written in the form

pc = p− 1

ηc

K∑
i=1

ln(−gi). (3.46)

The optimization scheme must be initialized at a feasible point (one that does not

violate the constraints), but is otherwise unchanged.

3.5 Simulation of Adaptive Control Scheme

3.5.1 Comparison of Static and Adaptive Controllers

In this section, the results of two closed loop simulations, one with Γ = 0, i.e without

adaptation, and one with

Γ = diag(0.08e-36, 0.02e-10, 0.05e-38, 0.05e-38, 0.05e-38, 0.05e-38, 0.08e-36),

i.e., with adaptation, are compared. The simulations considered a nominal impurity

content of 1 × 1018#/m3, and the atomic number of the impurity species was taken

to be ZI = 6. The confinement scaling parameters were taken to be HH = 1.1,

k∗α = kD = kT = 3, and k∗I = 10. We considered an installed ICRH power Pmax
ICRH = 20

MW and a constant power from the current drive sources, Pcd = 53 MW. The recycling

model parameters used were γPFC = 0.5, feff = 0.3, fref = 0.5, and Reff = 0.9.

During the adaptive simulation, the parameters Kob
α = Kob

E = Kob
D = Kob

T = Kob
I =

0.03 were used.

The results of the simulations are shown in Figure 3.1. While the static (non-

adaptive) controller resulted in a steady-state error in the energy, density, and tri-

tium fraction, as seen in Figures 3.1 (a-c), the adaptive simulation was able to achieve
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Figure 3.1: Comparison of states (a-d) and actuator trajectories (e,f) in static and
adaptive control simulations.
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Figure 3.2: Comparison of estimated and nominal model parameters during the adap-
tive control simulation.
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asymptotic stability of the desired equilibrium. Differences in the evolution of impu-

rities and alpha-particles, as well as the actuator responses, are apparent in Figures

3.1 (d-f). The initial oscillations present during the adaptive simulation occur as the

parameter estimator converges to constant estimates of the uncertain model param-

eters. The parameter estimates are compared with their respective nominal values

in Figure 3.2. The transient response can be adjusted through choice of the design

parameters.

3.5.2 Adaptive Control with Noisy Measurements

In this section, the same simulation scenario is considered, with the addition of white

noise disturbances in the measurements sent to the adaptive controller. The variance

of the noise was in the range of 5-10% of the nominal signal level for each measure-

ment. The supervisory control strategy discussed in Section 3.3.4 was used during

the simulation to supervise the parameter estimation.

Results of the simulation are shown in Figure 3.3. As shown in Figures 3.3a-

d, the states of the system asymptotically track the references Er, nr, and γr, and

the impurity and alpha-particle fractions settle to constant values within 100s. The

noisy measurements cause the actuator signals, shown in Figures 3.3e and f to be

noisy (since the measurements enter the control laws directly), however, the noise is

attenuated by the plasma model, as made evident by the fairly noise-free evolution

of states during the simulation. As it is possible that unmodeled dynamics could

be excited by the high-frequency actuation, it is advisable to filter the measurements

used by the controller in some way if high noise levels are expected. Time traces of the

parameter estimates used by the controller (in blue) and those used by the supervisory

strategy (denoted with an S and shown as black-dashed lines), are compared with the

nominal model parameters in Figure 3.4. Due to the presence of noise, the parameters
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Figure 3.3: Comparison of states (a-d) and actuator trajectories (e,f) in the adaptive
control simulation with noise.

θS are more noisy than the estimates in the previous noise-free simulation, and in the

case of θ3, θ4, θ5, and θ6, begin to drift slowly over time. Through the use of the

supervisory control strategy, the parameters used by the controller, θ̂C , were only

updated when the model prediction using θ̂C was 1.15 times worse than the model

prediction by θ̂S. As a result, the parameters θ̂C evolve more closely to the way the

parameter estimates evolved in the previous noise-free simulation.
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3.6 Simulation of Online Optimization Scheme

In this section, the results of a simulation study of the online optimization scheme

are presented. The simulations use a cost function given by

p =
wT
2

(T − T p)2 +
wPα

2
(Pα − P p

α)2 +
wγ
2

(γ − γp)2 − 1

ηc

K∑
i=1

ln(−gi). (3.47)

where T p, P p
α , and γp are references for temperature, alpha-heating, and tritium

fraction, and the tracking errors are weighted by constants wT , wPα , and wγ. By

altering the references and weights in this general cost function, many different sce-

narios can be tested. The last term represents the barrier functions for constraints.

The constraints considered in these simulations include

ne < nGW , PICRH < Pmax
ICRH ,

βN < βmaxN , PICRH > 0,

E

τE
< Qmax

div ,

where nGW is the Greenwald density limit, βN is the Troyon β limit, Qmax
div is the

maximum allowed heat load to the divertor. Note that the optimization approach is

general and could be applied to other general cost functions.

3.6.1 Scenario 1

In the following results, the controller was initialized with arbitrary references Er and

nr, which were modified in real-time to minimize the cost function p. The reference

γr = 0.5 was kept constant throughout this simulation, i.e., it was not modified by

the real-time extremum-seeking algorithm, and wγ was taken as zero. The other

weights were taken as wT = 0.1 and wPα = 1. Constraints were not considered in
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Figure 3.5: Closed loop evolution of (a) fusion heating, (b) temperature, (c) energy,
(d) density, (e) tritium fraction, (f) alpha-fraction, and impurity fraction, along with
closed loop response of (g) auxiliary heating and (h) fueling actuators during the
simulation of Scenario 1.
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the cost function. The references for fusion heating and temperature, P p
α and T p,

which enter into the cost function, were modified twice during the simulation (at

t = 60s and t = 120s) to show the ability of the scheme to move the system between

operating points. The simulation considered a fractional content of impurities of 2%,

i.e., f spI = 0.02, and the atomic number of the impurity species was taken to be

ZI = 4. The confinement scaling parameters were taken to be k∗α = 7, kD = kT = 3,

and k∗I = 10. We considered an installed heating power Pmax
aux = 73 MW with the

additional constraint Pmin
aux = 5

7
Pmax
aux . The recycling model parameters used were

γPFC = 0.5, feff = 0.3, fref = 0.5, and Reff = 0.95, which represent unfavorable

conditions for control of the tritium fraction. These parameters were selected to

ensure that impurity injection was required during the simulation so that all aspects

of the control scheme could be illustrated. Actual recycling parameters in machines

like ITER may be more favorable for control such that tritium fraction control may

be more effective in experiments than it is in the results shown here.

The results of the simulation are shown in Figure 3.5. The fusion heating and

temperature are compared with their respective references in Figures 3.5a and 3.5b,

while the system states E, n, and γ are depicted in Figures 3.5c, 3.5d and 3.5e.

The fractional content of alpha-particles and impurities are shown in Figure 3.5f

and the actuators are given in Figures 3.5g and 3.5h. Because the initial operating

point was not optimal, the optimization scheme immediately began to adjust the

references Er and nr to move the system towards an optimal point. Due to the

initial conditions of the system, a significant reduction in heating was required to

track the reference Er at t = 0, causing the auxiliary power to saturate. In order to

achieve the necessary reduction in heating, the requested tritium fraction trajectory γ∗

was reduced, however, the unfavorable particle recycling conditions in the simulation

caused the fueling actuators to saturate and the actual tritium fraction could not
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track the request. To overcome this, impurity injection was enabled and used to cool

the plasma. The impurity content increased for a short time until around t = 10s,

at which point, due to the increasing reference Er, additional auxiliary heating was

required and impurity injection was disabled. The tritium fraction then returned to

its reference value and the impurity content slowly decayed back to its nominal level

fI = f spI = 0.02. By around t = 40s, the scheme successfully forced the system to

the optimal operating point, achieving the desired fusion heating and temperature.

At t = 60s the requested fusion heating and temperature were changed and the

optimization scheme adjusted the references Er and nr accordingly. These requests

were successfully tracked by the nonlinear control scheme through a reduction in

heating and fueling, and the desired fusion heating and temperature were achieved

by around t = 100s. At t = 120s, the references were changed again. The reference

Er was driven down significantly by the optimization scheme and, as a result, the

auxiliary power saturated at its minimum. Again, the request γ∗ was reduced and,

although the actual tritium fraction began to follow the request this time, impurity

injection was still needed to cool the plasma initially. By around t = 150s, the tritium

fraction reached the requested value γ∗ and impurity injection was disabled. At about

the same time, the fusion heating and temperature reached the desired values and

the controller regulated the system at this operating point throughout the remainder

of the simulation. Over time, the fractional content of impurities decayed back to

its intrinsic level fI = f spI = 0.02 and the alpha particle content converged to its

steady-state value.

3.6.2 Scenario 2

In the following, the controller was initialized with arbitrary references Er, nr, and

γr which were modified in real-time to minimize the cost function p (with wT = 0.1,
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Figure 3.6: Closed loop evolution of (a) fusion heating, (b) temperature, (c) energy,
(d) density, (e) tritium fraction, (f) alpha-fraction, and impurity fraction, along with
closed loop response of (g) auxiliary heating and (h) fueling actuators. The shaded
light gray region indicates the time interval in which the confinement disturbance was
introduced, and the dark gray region indicates the impurity disturbance.
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Figure 3.7: Comparison of estimated and nominal model parameters during the sim-
ulation of Scenario 2.
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wPα = 1, and wγ = 1, and constraints on ICRH heating power active). This time, the

cost function references for fusion heating, temperature, and tritium fraction, P p
α, T p,

and γp, were kept constant throughout the simulation, however, disturbances were

introduced to the system, to illustrate the controller’s ability to cope with changing

plasma conditions. Between t = 350s and t = 400s, the confinement factor HH was

ramped from 1.15 to 1.2 and held there throughout the discharge. At t = 500s, the

impurity content was increased by a value of 2×1017#/m3. The simulation considered

a nominal impurity content of 1× 1018#/m3, and the atomic number of the impurity

species was taken to be ZI = 6. The confinement scaling parameters were taken to

be k∗α = kD = kT = 3, and k∗I = 10. An installed ICRH power Pmax
ICRH = 20 MW

and a constant power from the current drive sources of Pcd = 53 MW was considered.

The recycling model parameters γPFC = 0.5, feff = 0.3, fref = 0.5, and Reff = 0.9

were used.

The results of the simulation are shown in Figures 3.6 and 3.7. The fusion heating

and temperature, the components of the cost function (3.47), are shown in Figures

3.6a and 3.6b, while the system states E, n, and γ are depicted in Figures 3.6c, 3.6d

and 3.6e. The fractional content of alpha-particles and impurities are shown in Fig-

ure 3.6f and the actuators are given in Figures 3.6g and 3.6h. Finally, the nominal

and estimated model parameters are compared in Figure 3.7. The initial operating

point was again not optimal, and the optimization scheme adjusted the references

Er, nr, and γr, as seen in Figures 3.6c, 3.6d and 3.6e, in order to reduce the cost

function. Despite initial condition errors, these requests were successfully tracked by

the nonlinear control scheme through modulation of the heating and fueling, and the

optimal operating point, producing the desired fusion heating and temperature, was

achieved by around t = 200s. At t = 350s, the confinement disturbance was ramped

up, forcing the adaptive parameter estimation scheme to update its estimates, as seen
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in Figure 3.7. During the transient part of the disturbance, small tracking errors can

be noted in Figures 3.6c and 3.6d. The increase in confinement caused the controller

to ramp down the ICRH power, eventually reaching saturation (Figure 3.6g). The

constrained online optimization scheme responded to the saturation by decreasing

the reference γr, as seen in Figure 3.6e, resulting in an operating point that could be

stabilized without ICRH heating, while still remaining close to the desired tempera-

ture and fusion power, i.e., the optimal feasible operating point. The desired fusion

power was achieved by around t = 320s, while a slight deviation from the reference

temperature remained (Figure 3.6b) due to the fact that the optimization scheme

was constrained by the saturation of the ICRH power (recall that the cost function

weight on fusion heating tracking error was significantly higher than that placed on

the temperature tracking error). As seen in Figure 3.6f, the impurity disturbance was

introduced at t = 500s, which increased radiation losses and diluted the fusion fuel,

causing a reduction in temperature and fusion heating. The optimization scheme re-

sponded by increasing all three controller references, and the nonlinear controller was

able to track them and regulate the optimal operating point. Due to the increased

impurity level, the ICRH power was increased out of saturation and the optimization

scheme was able to drive the system to the optimal point, achieving the desired values

P p
α, T p, and γp, as shown in Figures 3.6c, 3.6d and 3.6e. Turning to the model pa-

rameter estimates, it should be noted that only θ2 affects the cost function (through

its influence on the constrained input PICRH). Despite the fact that the nominal

parameter changed during the simulation, the parameter estimation scheme was able

to keep the estimated value close to the true value, as seen Figure 3.7b. After the

confinement disturbance, the estimates of θ3, θ4, θ5, and θ6, shown in Figures 3.7c,

3.7d, 3.7e, and 3.7f, do not converge to the true values, due to a lack of persistent

excitation. However, this does not influence the tracking performance of the control,
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Figure 3.8: Comparison of (a) fusion heating, (b) temperature, (c) divertor heat load,
and (d) the cost function p during simulations of Scenario 3 using both constrained
and unconstrained optimization.

nor does it affect the optimization scheme, as these parameters do not enter into the

calculation of the cost function.

3.6.3 Scenario 3

In the following, the cost function from the previous section was considered, and the

references for fusion heating, temperature, and tritium fraction, P p
α = 120, T p = 14,

and γp = 0.5, were kept constant throughout the simulation. However, this time a

constraint on the divertor heat load was added, i.e., Qdiv < Qmax
div , where Qmax

div was

set to 155 MW, to illustrate the controller’s ability to cope with constraints. The

simulation considered a nominal impurity content of 1 × 1018#/m3, and the atomic

number of the impurity species was taken to be ZI = 6. The confinement scaling

parameters were taken to be k∗α = kD = kT = 3, and k∗I = 10, while the confinement
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Figure 3.9: Closed loop evolution of (a) fusion heating, (b) temperature, (c) energy,
(d) density, (e) tritium fraction, (f) alpha-fraction, and impurity fraction, along with
closed loop response of (g) auxiliary heating and (h) fueling actuators during the
simulation of Scenario 3. The shaded light gray region indicates the time interval in
which the confinement disturbance was introduced, and the dark gray region indicates
the impurity disturbance.
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Figure 3.10: Comparison of estimated and nominal model parameters during the
simulation of Scenario 3.
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factor was taken as HH = 1.1 throughout the discharge. An installed ICRH power

Pmax
ICRH = 20 MW and a constant power from the current drive sources, Pcd = 53

MW, were considered. The recycling model parameters used were again γPFC = 0.5,

feff = 0.3, fref = 0.5, and Reff = 0.9.

Figure 3.8 compares the fusion power, temperature, heat load, and cost function

during the constrained simulation with the results of an unconstrained simulation.

The remaining plasma parameters during the constrained simulation are shown in

Figures 3.9 and 3.10. The fusion heating and temperature, the components of the

cost function (3.47), are shown in Figures 3.9a and 3.9b, while the system states

E, n, and γ are depicted in Figures 3.9c, 3.9d and 3.9e. The fractional content of

alpha-particles and impurities are shown in Figure 3.9f and the actuators are given in

Figures 3.9g and 3.9h. The nominal and estimated model parameters are compared

in Figure 3.10.

Comparing the results of the constrained simulation with an unconstrained one,

it can be seen that the fusion power and temperature settle to values lower than the

requested ones in the constrained case, while the request values are achieved in the

unconstrained case. This results in a slightly higher value of the cost function in the

constrained case, as seen in Figure 3.8d. In Figure 3.8c, it can be seen that, while

the the unconstrained optimization scheme violates the divertor heat load constraint,

the constrained version keeps the heat load below the specified limit by driving the

system to the optimal feasible point. As seen in Figures 3.6c, 3.6d and 3.6e, the

optimization scheme adjusted the references Er, nr, and γr to achieve the optimal

operating point. Reference tracking errors can been seen decaying away in the first

50s as the parameter estimations, shown in Figure 3.10, converged toward a constant

set of model parameter estimates.
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3.7 Conclusions

The nonlinear burn control law designed in Chapter 2 has been augmented with

an adaptive control scheme to ensure reference tracking despite uncertainty in the

parameters of the model used for control design. A dual model supervisory strategy

has also been proposed to oversee the adaptive controller to avoid parameter drift due

to noisy measurements. In addition, an online optimization scheme has been proposed

to modify the controller references in real-time to minimize a given cost function in

response to changes in nα and nI , and to make use of the improved model parameters

arrived at through adaptive update laws. Constraints are included in the optimization

scheme through the use of barrier functions in the cost function. Simulations show

the ability of the adaptive optimization scheme to move the system between operating

points, handle uncertainty and disturbances, and respect state/input constraints.
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Chapter 4

Nonlinear Burn Control With Output

Feedback

4.1 Introduction

Due to the extreme conditions in fusion reactors, as well as economic considerations,

diagnostic systems for measuring plasma parameters may be limited. The proposed

nonlinear burn control control approach, which relies on knowledge of the states of

the system to calculate actuator trajectories (state feedback), may not, therefore,

be directly implementable. To overcome this obstacle, an observer, a computer-

implemented dynamic system that combines knowledge from the mathematical model

of the system with the available real-time output measurements to estimate the system

states, will likely be necessary in practice. For linear systems, observers typically take

the form of a copy of the plant dynamics with the addition of output error injection
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terms, i.e., for the general system

ẋ = Ax+Bu

y = Cx+Du,

the observer would take the form

˙̂x = Ax̂+Bu+ L (ŷ − y)

ŷ = Cx̂+Du.

Through proper choice of the gain L, the state estimation error (the difference between

x and x̂) can be quickly driven to zero. For linear systems, the separation principle

makes it possible to separately design the control law for the input u and the output

injection gain L. Observer design for the burning plasma system is complicated by

the presence of modeling uncertainties, the nonlinearity of the state dynamics, and

the fact that the output map is, in general, nonlinearly dependent on the states of the

system. Because each nonlinear system is unique, no general approach to nonlinear

observer design exists (see [54] for a survey of nonlinear observer approaches). Designs

for particular types of systems with nonlinear dynamics and output maps have been

proposed based on coordinate transformations and local linearization of the nonlinear

system [55, 56]. It so happens that, based on the dynamics and available diagnostics

for ITER, an observer design approach similar to that used in [55] for a steel converter

process, can be taken here.

The nonlinear observer proposed in this work makes use of the concept of a

proportional-integral observer. PIO designs differ from the previously cited observers

by the presence of an integral component in the output injection term, which pro-
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vides an additional degree of freedom that can be used to decrease sensitivity to

model uncertainties and disturbances. Output feedback controllers with PIOs have

been proposed for general linear systems [57, 58] and have more recently been applied

to certain nonlinear systems [59, 60]. For the nominal burning plasma system, the

nonlinear PIO design proposed in this work is stable for suitably small state estima-

tion errors or observer gains. The state estimation error is ISS with respect to the

considered set of uncertain model parameters, and, due to the inclusion of an integral

output injection term, the output estimation error converges to zero asymptotically.

A simulation study is presented showing the performance of the output feedback

scheme for a particular diagnostic set expected to be available on ITER. A list of the

ITER diagnostic systems that are relevant to the problem of burn control, adapted

from [61], is provided in Table 4.1.

This chapter is organized as follows. The design of a nonlinear controller and

proportional-integral observer is presented in Section 4.2. The scheme is augmented

with adaptive parameter update laws to estimate uncertain model parameters in

Section 4.3, and the design of an output feedback based real-time optimization scheme

is provided in Section 4.4. A simulation study of the output feedback control scheme

is presented in Section 4.5. Finally, conclusions and possible extensions to this work

are discussed in Section 4.6.
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4.2 Controller and Observer Design

We consider an observer of the form

˙̊nα =− θ̂1
n̊α
τ scE

+ Sα + Lα, (4.1)

˙̊
E =− θ̂2

E̊

τ scE
+ Pα − Prad + Paux + POhm + LE, (4.2)

˙̊nI =− θ̂7
n̊I
τ scE

+ SinjI + SspI + LI , (4.3)

˙̊nD =− θ̂3
n̊D
τ scE

+ θ̂4
n̊T
τ scE
− Sα + SinjD + LD, (4.4)

˙̊nT =θ̂5
n̊D
τ scE
− θ̂6

n̊T
τ scE
− Sα + SinjT + LT , (4.5)

where Lα, LE, LI , LD, and LT are to-be-designed output injection terms. The terms

Sα, Pα, Prad, POhm, and SspI are considered to be measured, based on the diagnostic

systems planned for ITER [61] (if unavailable, these terms could always be estimated

based on the observer state estimates). The output map is considered to be of the

form

y = h(nα, E, nI , nD, nT ).

The system is augmented with an additional state, ž, governed by

˙̌z = ẙ − y = y̌, (4.6)

where ẙ = h(̊nα, E̊, n̊I , n̊D, n̊T ).

For the purposes of control design, we consider the estimated states n̊ and γ̊,

which are governed by

111



˙̊n =2

[(
θ̂5 − θ̂3

) n̊D
τ scE

+
(
θ̂4 − θ̂6

) n̊T
τ scE
− 2Sα + SinjD + SinjT + LD + LT

]
+ 3

[
−θ̂1

n̊α
τ scE

+ Sα + Lα

]
+ (ZI + 1)

[
−θ̂7

n̊I
τ scE

+ SinjI + SspI + LI

]
, (4.7)

˙̊γ =
1

n̊DT

{
θ̂5
n̊D
τ scE
− θ̂6

n̊T
τ scE
− Sα + SinjT + LT

−γ̊
[(
θ̂5−θ̂3

) n̊D
τ scE

+
(
θ̂4−θ̂6

) n̊T
τ scE
− 2Sα+SinjD +SinjT + LD + LT

]}
. (4.8)

We define the errors Ẽ = E̊ − Er, γ̃ = γ̊ − γr , and ñ = n̊− nr to write

˙̃E =− θ̂2
Ẽ

τ scE
− θ̂2

Er

τ scE
+ Pα − Prad + Paux + POhm + LE − Ėr, (4.9)

˙̃γ =− θ̂6
γ̃

τ scE
+

2
[
u(γr) + (1− γ̊)SinjT − γ̊SinjD

]
n̊− 3̊nα − (ZI + 1) n̊I

, (4.10)

˙̃n =− ñ
[
−
(
θ̂5 − θ̂3

) (1− γ̊)

τ scE
−
(
θ̂4 − θ̂6

) γ̊

τ scE

]
+ v − ṅr + 2

(
SinjD + SinjT

)
, (4.11)

where

u(γr) =
n̊−3̊nα−(ZI+1) n̊I

2

[
θ̂5

(1− γ̊)

τ scE
− θ̂6

γr

τ scE
−γ̇r

−
(
θ̂5 − θ̂3

) (̊γ − γ̊2)

τ scE
−
(
θ̂4 − θ̂6

) γ̊2

τ scE

]
+(2̊γ−1)Sα

+ (1− γ̊)LT − γ̊LD, (4.12)

v = [−nr+3̊nα+(ZI+1) n̊I ]

[
−
(
θ̂5−θ̂3

) (1−γ̊)

τ scE

−
(
θ̂4−θ̂6

) γ̊

τ scE

]
− 4Sα + 3

[
−θ̂1

n̊α
τ scE

+ Sα + Lα

]
+ (ZI + 1)

[
−θ̂7

n̊I
τ scE

+ SinjI + SspI + LI

]
+ 2 (LD + LT ) . (4.13)

Note that, if no controlled impurity injection at steady-state is considered, the ref-
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erence r = [Er, nr, γr] uniquely determines the equilibrium values of nα and nI , and

these states remain bounded if r is stabilized. We therefore make regulation of r the

objective of the control design.

4.2.1 Controller Design

We note that Ẽ can be driven to zero by satisfying the condition

f(n,E,nα,nI ,γ) =− θ̂2
Er

τ scE
+POhm+Pα−Prad+Paux+ LE − Ėr

+KEẼ = 0, (4.14)

The condition (4.14) can be satisfied in several different ways. The auxiliary heating

term Paux enters the equation directly, the actuators SinjD and SinjT can be used to

change the α-heating term Pα by modulating the tritium fraction, and the impurity

injection term SinjI can be used to increase the impurity content and consequently

Prad. Having several methods available for controlling the energy subsystem enables

us to design a control scheme that can still achieve stabilization despite saturation of

one or even several of the available actuators.

Step 1: We first calculate the Paux as

P unsat
aux =θ̂

Er

τ scE
−γr (1− γr) Pα

γ̊ (1− γ̊)
+Prad

−POhm− LE +Ėr−KEẼ, (4.15)

Paux = sat
(
P unsat
aux − Pmin

aux

Pmax
aux − Pmin

aux

)
, (4.16)

where Pα/ [̊γ (1− γ̊)] is an estimate of Qαn
2
DT 〈σν〉, the limit Pmax

aux depends on the

installed power on the tokamak, and the limit Pmin
aux ≥ 0 depends on the operating
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scenario. For example, some minimum amount of power may be needed to maintain

the required amount of non-inductive current drive during a particular discharge since

some sources of power (neutral beam injection, electron-cyclotron current drive, etc.)

double as sources of plasma current.

Step 2: We next find a trajectory γ∗ satisfying (4.14), i.e.,

γ∗(1−γ∗) Pα
γ̊ (1− γ̊)

=Prad−POhm−Paux− LE +θ̂2
Er

τ scE
+Ėr

−KEẼ. (4.17)

Solving this equation yields

γ∗ (1− γ∗) =
γ̊ (1− γ̊)

Pα

[
θ̂2
Er

τ scE
+Prad−POhm−Paux

−LE +Ėr −KEẼ
]

= C, (4.18)

γ∗ =
1±
√

1− 4C

2
. (4.19)

Note that, if the value of Paux calculated in Step 1 is not saturated, then γ∗ = γr.

This can be shown by substituting (4.16) into (4.17). If C ≤ 0.25, the two resulting

solutions for γ∗ are real and we take the tritium-lean solution, such that γ∗ ≤ 0.5. If

C ≥ 0.25, even the optimal isotopic mix and maximum value of auxiliary heating will

not generate enough heating to satisfy f = 0, indicating that the requested operating

point may not be achievable for the amount of auxiliary heating power installed on

the device. Barring this situation, based on our choice of Paux and γ∗, we have that

f (n,E, nα, nI , γ
∗) = 0. (4.20)
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This allows us to write f = γ̂φγ where γ̂ = γ̊ − γ∗ and φγ is a continuous function.

Noting (4.9), (4.14), we can then write the dynamics of the energy perturbation as

˙̃E = −θ̂2
Ẽ

τ scE
−KEẼ + γ̂φγ, (4.21)

and the dynamics of γ̂ can be written as

˙̂γ = −θ̂6
γ̂

τ scE
+

2
[
u(γ∗) + (1− γ̊)SinjT − γ̊SinjD

]
n̊− 3̊nα − (ZI + 1) n̊I

. (4.22)

Step 3: Having selected Paux and γ∗ in the previous steps, we must next choose

SinjD and SinjT to ensure that Ẽ, γ̂, and ñ, which are governed by (4.21), (4.22), and

(4.11), are driven to zero. We consider the Lyapunov function V0 = Vn + VE,γ where

Vn = 1
2
ñ2 and VE,γ = 1

2
k1Ẽ

2 + 1
2
γ̂2. It can be shown that satisfying the conditions

2
(
SinjT + SinjD

)
=− v −Knñ+ ṅr, (4.23)

(1− γ̊)SinjT − γ̊SinjD =− n̊− 3̊nα − (ZI + 1) n̊I
2

×
(
k1Ẽφγ +Kγ γ̂

)
− u(γ∗), (4.24)

where Kn > 0 and Kγ > 0 results in

V̇n = −ñ2

(
−
(
θ̂5 − θ̂3

) (1− γ̊)

τ scE
−
(
θ̂4 − θ̂6

) γ̊

τ scE
+Kn

)
< 0, (4.25)

V̇E,γ = −k1θ̂2
Ẽ2

τ scE
− k1KEẼ

2 −
(

1

τT
+Kγ

)
γ̂2 < 0, (4.26)
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such that V̇0 < 0, guaranteeing asymptotic stability of the system. The conditions

(4.23) and (4.24) can be satisfied by choosing

SinjD =
n̊− 3̊nα − (ZI + 1) n̊I

2

(
k1Ẽφγ +Kγ γ̂

)
+ u(γ∗) + (1− γ̊)

(−v −Knñ+ ṅr

2

)
, (4.27)

SinjT =

(−v −Knñ+ ṅr

2

)
− SinjD . (4.28)

These values are subject to the constraints 0 ≤ SinjD ≤ Sinj,maxD and 0 ≤ SinjT ≤

Sinj,maxT . If one of the fueling actuators saturates, we cannot satisfy both conditions

of the control law, so we must choose to either control n̊ or γ̊. If we choose to

hold condition (4.24), the energy and tritium fraction subsystems will remain stable,

however, the density subsystem will no longer be controlled. This could potentially

lead to a violation of the density limit. To avoid this, we instead choose to maintain

control of the density by satisfying (4.23).

Because of fueling actuator saturation, it may be possible that V̇E,γ > 0, that

is, we may not be able to ensure stability of the burn condition with the previously

considered actuators. There are two possible situations to consider, either a thermal

quench or an excursion. If the system is experiencing a quench, the controller has

already increased auxiliary heating to its maximum, so the only alternative would be

to change the magnetic plasma parameters to improve energy confinement (see (2.19))

or to change the reference operating point to one that is achievable. If the system

is experiencing a thermal excursion, however, we can still use impurity injection to

stabilize the energy subsystem, despite the heating and fueling actuator saturation.

In these cases we enable the use of impurity injection by setting the flag Fimp = 1

and proceeding to Step 4.

Step 4: If Fimp = 1, we use the expression for radiation losses given in (2.12)
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to find an impurity density trajectory n∗I that satisfies condition (4.14). Defining the

error n̂I = n̊I − n∗I , we can write its dynamics as

˙̂nI = −θ̂7
n̂I
τ scE
− θ̂7

n∗I
τ scE

+ SinjI + SspI − ṅ∗I . (4.29)

Based on the choice of n∗I , we have that

f (n,E, nα, γ, n
∗
I) = 0, (4.30)

which allows us to write f = n̂IφI where φI is a continuous function. We can then

rewrite (4.9) as
˙̃E = −θ̂2

Ẽ

τ scE
−KEẼ + n̂IφI . (4.31)

We take as a Lyapunov function V1 = Vn + Vγ + VE,I where Vγ = 1
2
γ̂2 and VE,I =

1
2
k3Ẽ

2 + 1
2
n̂2
I . By satisfying

SinjI = −k3ẼφI + θ̂7
n∗I
τ scE
− SspI + ṅ∗I −KI n̂I , (4.32)

where KI > 0, the derivative of VE,I can be reduced to

V̇E,I = −k3θ̂2
Ẽ2

τ scE
− k3KEẼ

2 −KI n̂
2
I < 0. (4.33)

We modify the tritium fraction trajectory to γ∗ = γ∗(Step 2) − KS

´ t
t0
SinjI dt where

γ∗(Step 2) is the value of γ∗ calculated in Step 2, KS > 0, and t0 is the time at which

impurity injection was first engaged. This modification ensures that the tritium

fraction is, if possible, eventually reduced to such a level that impurity injection is

no longer needed, i.e., SinjI → 0. Once SinjI = 0, we disable impurity injection in
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subsequent executions of the algorithm by setting Fimp = 0. By satisfying

2
(
SinjT + SinjD

)
=− v −Knñ, (4.34)

(1− γ̊)SinjT − γ̊SinjD =− n̊− 3̊nα − (ZI + 1) n̊I
2

Kγ γ̂

− u(γ∗I ). (4.35)

We can ensure that V̇n < 0, V̇γ < 0, and therefore V̇1 < 0, guaranteeing stability of

the system. The conditions (4.34) and (4.35) can be satisfied by choosing

SinjD =
n̊− 3̊nα − (ZI + 1) n̊I

2
Kγ γ̂

+ u(γ∗) + (1− γ̊)

(−v −Knñ

2

)
, (4.36)

SinjT =

(−v −Knñ

2

)
− SinjD , (4.37)

which are again subject to saturation. If one of the fueling actuators saturates, we

again choose to hold (4.34) to ensure stability of the density.

4.2.2 Observer Design

The dynamics of the estimation error can be shown to be governed by

˙̌nα =− θ̃1
n̊α
τ scE
− θ1

ňα
τ scE

+ Lα, (4.38)

˙̌E =− θ̃2
E̊

τ scE
− θ2

Ě

τ scE
+ LE, (4.39)

˙̌nI =− θ̃7
n̊I
τ scE
− θ7

ňI
τ scE

+ LI , (4.40)

˙̌nD =− θ̃3
n̊D
τ scE
− θ3

ňD
τ scE

+ θ̃4
n̊T
τ scE

+ θ4
ňT
τ scE

+ LD, (4.41)

˙̌nT =θ̃5
n̊D
τ scE

+ θ5
ňD
τ scE
− θ̃6

n̊T
τ scE
− θ6

ňT
τ scE

+ LT , (4.42)
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or, in a more compact form,

˙̌x = Ax̌+ L+ ΦΘ,

where x̌ =
[
ňα, Ě, ňD, ňT , ňI

]T , L = [Lα, LE, LD, LT,LI ]
T , Θ =

[
θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6, θ̃7

]T
,

and

Φ = − 1

τ scE



n̊α 0 0 0 0 0 0

0 E̊ 0 0 0 0 0

0 0 n̊D −n̊T 0 0 0

0 0 0 0 −n̊D n̊T 0

0 0 0 0 0 0 n̊I


, (4.43)

A = − 1

τ scE



θ1 0 0 0 0

0 θ2 0 0 0

0 0 θ3 θ4 0

0 0 θ5 θ6 0

0 0 0 0 θ7


. (4.44)

We consider the Lyapunov function

V̌ =
1

2
x̌TQx̌+

1

2
žTKI ž, (4.45)

where ž is the integral of the output error, given by (4.6), and calculate the time

derivative of V̌ as
˙̌V = x̌T [QAx̌+QL+QΦΘ] + žTKI y̌. (4.46)

Noting that the output error can be written as

y̌ =
∂h

∂x

∣∣∣∣
x=x̊

x̌+H.O.T., (4.47)
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and that the scalar term žTKI y̌ is equivalent to y̌TKT
I ž, we can write

˙̌V = x̌TQ

[
Ax̌+ L+ ΦΘ +Q−1∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž

]
+ (H.O.T.)KT

I ž. (4.48)

By choosing

L = −Q−1∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž + A0

∂h

∂x

∣∣∣∣T
x=x̊

y̌

= −Q−1∂h

∂x

∣∣∣∣T
x=x̊

KT
I ž + A0

∂h

∂x

T
∣∣∣∣
x=x̊

(
∂h

∂x

∣∣∣∣
x=x̊

x̌+H.O.T.

)
, (4.49)

where A0 is a Hurwitz matrix, we have that

˙̌V =x̌TQ
[
Ax̌+ A0h

′(̊x)Th′(̊x)x̌+ ΦΘ
]

+QA0h
′(̊x)T (H.O.T ) + (H.O.T.)KT

I ž. (4.50)

If θ is known exactly, then Θ = 0 and we have that ˙̌V ≤ 0 for sufficiently small

state estimation errors or observer gains. It can also be shown that, the system is

ISS with respect to the parameter estimation errors, Θ, implying that the estimation

error x̌ will be bounded for bounded parameter estimation errors. Furthermore,

since ž is bounded and ž =
´ t

0
(ẙ − y) dτ , we can be sure that the estimated output

asymptotically converges to the measured output. This implies that, despite possible

uncertainty in the actual states of the system, as long as the references Er, γr, and

nr are chosen in such a way that the observed output tracks a desired reference, the

measured output will converge to the same reference.
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4.3 Adaptive Output Feedback

Because the closed loop output feedback system is ISS with respect to the uncertain

model parameters, the scheme can be augmented with an online estimation scheme

with parameter projection. To estimate the unknown parameters, a second observer

is constructed of the form

ṅobα =− θ̂1
nobα
τ scE

+ Sα, (4.51)

Ėob =− θ̂2
Eob

τ scE
+ Pα − Prad + Paux + POhm, (4.52)

ṅobI =− θ̂7
nobI
τ scE

+ SinjI + SspI , (4.53)

ṅobD =− θ̂3
nobD
τ scE

+ θ̂4
nobT
τ scE
− Sα + SinjD , (4.54)

ṅobT =θ̂5
nobD
τ scE
− θ̂6

nobT
τ scE
− Sα + SinjT . (4.55)

The dynamics of the observer error nobα − nα are given by

˙̃nobα =− θ1
ñobα
τ scE
− θ̃1

nobα
τ scE

, (4.56)

˙̃Eob =− θ2
Ẽob

τ scE
− θ̃2

Eob

τ scE
, (4.57)

˙̃nobI =− θ7
ñobI
τ scE
− θ̃7

nobI
τ scE

, (4.58)

˙̃nobD =− θ3
ñobD
τ scE

+ θ4
ñobT
τ scE
− θ̃3

nobD
τ scE

+ θ̃4
nobT
τ scE

, (4.59)

˙̃nobT =θ5
ñobD
τ scE
− θ6

ñobT
τ scE

+ θ̃5
nobD
τ scE
− θ̃6

nobT
τ scE

, (4.60)
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or in a more compact form ˙̃xob = Ax̃ob + ΦobΘ where x̃ob =
[
ñobα , Ẽ

ob, ñobI , ñ
ob
D , ñ

ob
t

]
and

Φob = − 1

τ scE



nobα 0 0 0 0 0 0

0 Eob 0 0 0 0 0

0 0 nobD −nobT 0 0 0

0 0 0 0 −nobD nobT 0

0 0 0 0 0 0 nobI


. (4.61)

We consider the Lyapunov function V ob = 1
2

(
x̃ob
)T
Qx̃ob + ΘTΓΘ. The derivative can

be calculated as

V̇ ob =
(
x̃ob
)T
QAx̃ob + ΘT

(
ΦTQT x̃ob + ΓΘ̇

)
, (4.62)

If the states were all measured, the observer error could be asymptotically stabilized

by choosing

Θ̇ = −Γ−1
(
Φob
)T
QT x̃ob. (4.63)

However, since the states are not measured, we must approximate the parameter

update law using the estimated states x̊. We note that x̃ob = xob − x = xob − x̊ + x̌,

and choose the parameter update law

Θ̇ = −Γ−1
(
Φob
)T
QT
(
xob − x̊

)
, (4.64)

resulting in

V̇ ob =
(
x̃ob
)T
QAx̃ob + ΘT

(
Φob
)T
QT x̌. (4.65)

This can be shown to be ISS with respect to the bounded uncertainties ΘT and x̌. If

x̌→ 0 (which can be guaranteed with a suitably chosen set of output measurements),

122



the second term vanishes and the observer error is rendered asymptotically stable.

Given persistent excitation of the references, the parameter estimation error Θ will

be driven to zero.

4.4 Online Operating Point Optimization

Noting that the nonlinear output feedback controller drives the states of the observer

to the reference r = [Er, nr, γr], and that, even in the presence of model uncertainty,

the proportional-integral observer guarantees convergence of the observer outputs to

the measured ones, the task remains to choose r such that the achieved outputs

are those desired by the operator. To this end, the reference optimization scheme

presented in Chapter 3 can be adapted to the output feedback case. We again consider

a convex cost function p(r, x, θ̂) where, in this case, x = [̊nα, n̊I ]
T . We again consider

the references to be constrained within a certain region of parameter space over which

the cost function is convex, guaranteeing a unique minimum. The update law for the

reference is again given by

ṙ = −
(
∂2p

∂r2

)−1 [
KRTO

∂p

∂r
+

∂2p

∂r∂x
ẋ+

∂2p

∂r∂θ̂

˙̂
θ

]
, (4.66)

where KRTO is a diagonal positive definite matrix. The update law drives ∂p
∂r

to 0,

i.e., r is driven toward the optimal x-dependent and θ̂-dependent set point, r∗.

4.5 Simulation Study

In this section, we show results from a simulation study of the proposed output

feedback burn control scheme. The nominal confinement scaling parameters were

taken to be k∗α = kD = kT = 3, and k∗I = 10. Zimp = 6. An installed ICRH heating
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Figure 4.1: Comparison of measured outputs to the values calculated from the states
of the observer during the output feedback simulation using the nominal model. The
desired tritium ratio, γ∗, is shown in (f).

power Pmax
ICRH = 20 MW was considered for feedback actuation, and the other sources

of power were held constant at Pcd = 53MW. The recycling model parameters used

were γPFC = 0.5, feff = 0.3, fref = 0.5, and Reff = 0.9.

4.5.1 Scenario 1

As a first test of the performance of the proposed output feedback control scheme, a

simulation was conducted using an observer and controller designed with the nom-

inal model. The initial conditions of the observer states were made to differ from

the initial conditions of the simulation states. Figure 4.1 compares the output mea-

surements during the simulation to the values calculated from the estimated states

predicted by the observer. The observed outputs converged to the measured values,
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Figure 4.2: Comparison of state estimations to actual values (a-d) and actuator tra-
jectories (e,f) during the output feedback simulation with the nominal model.

and indeed remained very close to the measured values throughout the simulation.

The states of the system are compared with the estimated states in Figures 4.2a-d.

As expected based on the exponential stability of the state estimation error dynamics

for the nominal system, the estimated states converged to the actual values over time.

Despite the absence of direct state measurements and uncertain initial conditions, the

proposed scheme was able to drive the energy, density, and tritium fraction to their

respective desired references, as shown in Figures 4.2a, 4.2b, and 4.1f. The feedback

controlled actuator trajectories, which were calculated based on the estimated states,

are shown in Figures 4.2e and 4.2f.
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Figure 4.3: Comparison of measured outputs to the values calculated from the states
of the observer during the output feedback simulation using the uncertain model. The
desired tritium ratio, γ∗, is shown in (f).
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Figure 4.4: Comparison of state estimations to actual values (a-d) and actuator tra-
jectories (e,f) during the output feedback simulation with the uncertain model.

4.5.2 Scenario 2

As a second test of the proposed scheme, the model parameters used in the controller

and observer design were significantly perturbed. The parameter estimates used in

the simulation were θ̂1 = 1.3θ1, θ̂2 = 1.3θ2, θ̂3 = 0.7θ3, θ̂4 = 1.3θ4, θ̂5 = 0.7θ5,

θ̂6 = 1.3θ6, θ̂7 = 1.1θ7. The initial conditions of the observer states were again made

to differ from the initial conditions of the simulation states. Figure 4.3 compares

the output measurements during the simulation to the values calculated from the

estimated states predicted by the observer. Despite the model uncertainty, the ob-

served outputs again converged to the measured values due to the presence of an

integral output injection term in the observer. The estimated states of the system,

compared with the estimated states in Figure 4.4a-d, also converged to the actual

values over time. Though the convergence of the actual and estimated states is not,
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Figure 4.5: Comparison of measured outputs to the values calculated from the states
of the observer during the output feedback online optimization simulation using the
uncertain model. The desired and controller requested tritium ratios, γp and γ∗,
respectively, are also shown in (f).

in general, guaranteed for an uncertain model, the set of diagnostics considered in

this work results in state convergence. The proposed scheme is again shown to be

able to drive energy, density, and tritium fraction states to their respective desired

references, as seen in Figures 4.4a, 4.4b, and 4.3f. Finally, the feedback controlled

actuator trajectories are shown in Figures 4.4e and 4.4f.

4.5.3 Scenario 3

In this simulation, online optimization of the reference r was used to minimize the cost

function p. The cost function parameters wT = 0.1, wPα = 1, wγ = 1, T p = 15 keV,

P p
α = 112 MW, and γp = 0.5 were used. The initial conditions of the observer states
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Figure 4.6: Comparison of state estimations to actual values (a-d) and actuator tra-
jectories (e,f) during the output feedback online optimization simulation using the
uncertain model.
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Figure 4.7: Achieved heat load in the constrained optimization simulation using adap-
tive output feedback compared with the limit.

were again made to differ from the initial conditions of the simulation states. Figure

4.5 compares the output measurements during the simulation to the values calculated

from the estimated states predicted by the observer. Due to the integral action of

the nonlinear proportional-integral observer, the observed outputs quickly converge

to the measured values. In addition, Figures 4.1a, 4.1c, and 4.1f show that the fusion

heating, plasma temperature, and tritium fraction converge to the desired values

specified in the cost function, (P p
α, T p, and γp) as a result of the online optimization

scheme. The states of the system are compared with the estimated states in Figure

4.6. The estimated states again converged to the actual values over time, and the

output feedback scheme was able to drive the energy, density, and tritium fraction to

their respective desired references. The optimization of the references Er and nr over

time is clear in Figures 4.6a and 4.6b. Finally, the feedback controlled actuators are

shown in Figures 4.6e and 4.6f.
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Figure 4.8: Comparison of measured outputs to the values calculated from the states
of the observer during the constrained optimization simulation using adaptive output
feedback. The desired and controller requested tritium ratios, γr and γ∗, respectively,
are also shown in (f).
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Figure 4.9: Comparison of state estimations to actual values (a,d) and actuator tra-
jectories (e,f) during the constrained optimization simulation using adaptive output
feedback.
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Figure 4.10: Comparison of estimated and nominal model parameters during the
constrained optimization simulation using adaptive output feedback.
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4.5.4 Scenario 4

In this simulation, the uncertain model parameters were estimated online using the

adaptive update law (4.64), and online optimization of the reference r was used to

minimize the cost function p. The cost function parameters wT = 0.1, wPα = 1,

wγ = 1, T p = 15 keV, P p
α = 112 MW, and γp = 0.5 were used. A constraint on the

maximum heat load to the divertor of Qmax
div = 160 MW was also considered. Note

that the uncertain parameter θ2 enters into the cost function through the calculation

of the divertor heat load, i.e., Qdiv = θ2E/τ
sc
E . Figure 4.7 shows that the controller

is able to respect the heat load constraint throughout the simulation by considering

the constraint in the online set point optimization scheme. Figures 4.8 compares

the output measurements during the simulation to the values calculated from the

estimated states predicted by the observer. The observed outputs converge to the

measured values, and indeed remain very close to the measured values throughout

the simulation. In addition, Figures 4.8a, c, and f show that the fusion heating,

plasma temperature, and tritium fraction converge to constant values close to the

desired values specified in the cost function, (P p
α, T p, and γp). Unlike the previous

scenario, the desired values are not achieved due to the presence of the constraint

on the divertor heat load. The online optimization instead drove the system to the

optimal feasible operating point. The states of the system are compared with the

estimated states in Figure 4.9. The estimated states converged to the actual values

over time, and the output feedback scheme successfully drove the energy, density, and

tritium fraction to their respective references. The optimization of the references Er

and nr over time is clear in Figures 4.9a and b. The feedback controlled actuators are

shown in Figures 4.9e and f. Finally, the estimated and nominal model parameters

are compared in Figure 4.10. Recall that the constraint on the heat load depends on

the parameter θ2, the estimate of which is shown to quickly converge to the nominal
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value in Figure 4.10b.

4.6 Conclusions

A nonlinear output feedback control scheme for tracking a desired burn condition

in tokamak fusion reactors has been presented. The proposed scheme utilizes a

nonlinear proportional-integral observer that guarantees that the observer estimates

converge to the actual values for the nominal system. When model uncertainty is

present, the state estimation errors are bounded and the predicted output converges

to the measured values. Through the use of adaptive parameter estimation and online

constrained optimization, the nonlinear output feedback controller is able drive the

burning plasma system to feasible operating point that optimizes a particular figure

of merit. A simulation study shows the effectiveness of the output feedback scheme,

even when significant initial estimation errors and model uncertainties are present.

135



Chapter 5

Study of Nonlinear Burn Control

Strategies Using METIS

5.1 Introduction

Thus far, the burn control strategies developed in this work have been tested by

simulating the closed loop system resulting from a feedback interconnection of the

controllers with the simplified burning plasma model used for control design. The use

of simplified models in simulation is useful for preliminary implementation testing and

controller tuning, since the simplified model can be simulated quite quickly. To some

degree, robustness of the control strategies to parametric model uncertainty, noise,

and disturbances can also be assessed using simplified models. However, in all control

engineering applications, it is critical to understand how control laws will affect (or

be affected by) the complex physical processes neglected by the design model. While

experimental implementation is the best test of controller performance, the expense of

fusion experiments and the potential for poorly performing controllers to trigger MHD

or thermal instabilities motivate an intermediate validation step in which control laws
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designed with simplified models are tested with increasingly complex simulation codes.

Complex integrated tokamak modeling codes seek to model the numerous physical

systems within a tokamak to either predict performance based on prescribed actu-

ators, or interpret the results of experiments through reconstruction of unmeasured

quantities of interest based on available measurements. These codes are typically

made up of smaller modules, each tailored to accurately model specific physical pro-

cesses. Examples of integrated modeling codes include PTRANSP [62], developed at

Princeton Plasma Physics Laboratory, and CRONOS [63], developed by the Commis-

sariat à l’Énergie Atomique (CEA) in France.

While very accurate integrated modeling codes can be useful tools for predicting

tokamak performance and making detailed analysis of experimental results, the com-

plexity of the codes leads to very long computation times. For certain purposes, in-

cluding conceptual feedback control design studies, the detailed and computationally

intensive calculations done in codes like PTRANSP and CRONOS are not necessary,

making simpler, faster running codes a desirable alternative. The METIS (Minute

Embedded Tokamak Integrated Simulator) code, developed by researchers at the

Commissariat à l’Énergie Atomique (CEA) in France, is an alternative simulation

tool that combines information from scaling laws and simplified models to quickly

predict the evolution of tokamak plasmas based on a set of prescribed input trajec-

tories. It is a tool in the CRONOS suite of simulation codes designed to enable fast

processing of experimental data for analysis of shots, preparation of experimental

scenarios and CRONOS simulations, and, in conjunction with Simulink, development

of feedback control schemes. In this chapter, a framework for testing burn control

strategies in METIS is presented and several simulation scenarios are shown that

demonstrate the potential effectiveness of the control schemes proposed in the previ-

ous chapters. This work represents the preliminary steps toward the rigorous testing
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and analysis of comprehensive burn control strategies required before implementation

in ITER experiments.

This chapter is organized as follows. In Section 5.2, the models used in the METIS

code are briefly described, while in Section 5.3 the framework used to implement and

simulate burn control strategies is discussed. The results of simulations using the

METIS simulation framework are presented in Section 5.4. Finally, conclusions are

given in Section 5.5.

5.2 Overview of METIS Calculations

A diagram of the coupling of the various modules of the METIS code is given in

Figure 5.1. The models used within each module are chosen to provide a suitable

trade-off between precision and computation time. In the following, a brief overview

of the various models is provided, focusing on the calculations that are relevant to

burn control studies.

5.2.1 Geometry and Magnetohydrodynamic Equilibrium

While full magnetic equilibrium calculations are used in CRONOS to describe the

geometry of the plasma, METIS uses a simplified description. The plasma is assumed

to be symmetric about the Z = Zref plane, where Z is the vertical axis of the tokamak,

and the last closed flux surface is described by time varying parameters, including

the minor radius, major radius, elongation, and triangularity. The complete MHD

equilibrium is calculated using Shafranov shift, ellipticity, and triangularity profiles,

determined from moment equations [64].

138



!"#$ %&'()*+,-./01.2(-34+*0'.+*-5

figure 1 : main connections and dependences between computing blocks in “zero1t.m” function.

In METIS, a  “waveform  relaxation” like algorithm is used  for the main convergence loop and all 
the PDEs  are solved by artificially separating time and space. Only the PDE for current diffusion is 
completely solved.

A METIS run begins by the initialisation of data structures (scalars and profiles). A first guess of 
the value is computed using very coarse approximations (see Section 3.20). This first guess allows 
to enter the main convergence loop. 

The main convergence loop of successive guesses consists of the simple damping equation :
!"!!"#" # $!"%!$!&#"%!" where n is the loop index, F(g) is the central METIS function and 

IRFM IRFM/SCCP/GSEM J.F. Artaud PHY/NTT-2008.001 #00 2008-01-21 9/104

Structure Service/Groupe Premier auteur Référence Indice Date mise à jour page

"
#$%&

!"#"$%&'("$)

'
#$%&()*+

!"#"$%&'("$)

,&-(*./010230/4(
)454*678(!-+

*++&,&-"./0
12,',&'3'&%

$/33*67(90::/8056(
!456/75)

"
;<=>?@

!"#"$%&'("$/8
/,("$'#9)

'
(;<=>?@)*A0+

!(-+,,/,2(&'+#)

"
@B>$-

!"#"$%&'("$/:;4)

'
@B>()*A0+

!"#"$%&'("$/:;4)

"
;C$-

!,("$'#9/$"<)

'
;C()*+

!"#"$%&'("$)

'
>$%&()*A0+

!"#"$%&'("$/:;4) #6*3DE(
)8FG106D(1GH(I(?-#+

-*6807E(I(F54J5807056()K
*::
+

!.2"='#9/>"(&+-/,("$'#9/$"<)

?
2
@?
'/
8/A2"&/2B(A"#92/!/

!,&"&'+#"-%/2CD"&'+#/8/#+-E"$',"&'+#)

"
L&

!,("$'#9/$"<)

'
(L&)*+

!"#"$%&'("$)

M*54*73E

"
!

%*:*3*6F*8

'
(%N-)*+

!4+,&/2B.-2,,'+#
+-/,("$'#9)

'
(B%#,)*+

!(+E.$2&2/
>+-ED$"&'+#)

'
($O$L?)*+

!,("$'#9/$"<)

F/33*67(85/3F*8

@56(106*G3(
F5/J106D

D*54*730FG1(
:GF7538

&*G7(
85/3F*8

06J/7

Figure 5.1: Schematic of the METIS code depicting the interconnection of modules.
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5.2.2 Power Sources and Sinks

For ITER, the auxiliary heating and current drive (H&CD) is provided by ion cy-

clotron and electron cyclotron radio frequency H&CD, as well as neutral beam H&CD.

For each source, the total heating and current drive efficiencies and spatial distribution

profiles are calculated separately in METIS based on different formulations chosen to

provide the best trade-off in terms of computational complexity and precision.

Fusion power calculations include the dominant DT reactions, the less significant

DD reactions within the plasma, as well as reactions involving the fast ions from

neutral beam injection. DT fusion calculations are based on the deuterium and

tritium density profiles, and the ion temperature profile, which is used to determine

the reactivity. Ohmic heating is also calculated based on the current density and

plasma resistivity.

Radiative power losses represent a major energy sink in tokamak discharges. In

METIS, the total line transition and thermal bremsstrahlung radiation are calculated

based on the temperature, density, and composition profiles of the plasma by using

the radiative collisional equilibrium [65]. The bremsstrahlung losses are calculated

using an expression given in [66], and the line radiation is inferred from the difference

between the total losses and the bremsstrahlung losses. Electron cyclotron radiative

losses are also calculated using a scaling law [67].

5.2.3 Kinetic Profiles

In METIS, the PDE describing the dynamics of the current profile, commonly referred

to as the magnetic diffusion equation, is solved using the Crank-Nicholson method on

a spatial grid of 21 points. The boundary conditions are given by a no-flux boundary

condition in the center of the plasma, and either prescribed plasma current, loop
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voltage, or edge flux. The resistivity and bootstrap current, both calculated using

the Sauter model [68], the auxiliary current drive sources, and geometric factors

calculated from the plasma equilibrium are combined with the boundary conditions

to calculate the current profile evolution.

The dynamics of the plasma stored energy are treated with a 0-D (volume aver-

aged) energy balance model that uses scaling laws to determine the energy confine-

ment. The line averaged density, tritium fraction, and effective atomic number, which

are time-varying inputs to the METIS code, are combined with peaking factor and

edge density scaling laws to determine the density profiles of each ion species (deu-

terium, tritium, alpha particles, and impurities). The ion and electron temperature

profiles are calculated by solving the steady-state temperature transport equations,

using the distributed heating sources and sinks (fusion, NBI, radiative losses, etc.),

with a no-flux boundary condition at the magnetic axis and the edge temperature

(calculated from scaling laws) as the outer boundary condition. The thermal con-

ductivities, κe and κi, are assumed to have fixed spatial profiles, and it is assumed

that κi = µe,iκe, where µe,i can be prescribed or obtained from scaling laws. The

magnitude of the thermal conductivity is iteratively changed until the calculated

temperature profiles result in a volume averaged stored energy matching the results

of the dynamic 0D stored energy calculation. Through additional scaling laws that

modify the confinement and shape of conductivity profiles, magnetohydrodynamic

(MHD) effects and internal transport barriers are approximately taken into account.

5.3 Burn Control Simulation Framework

The METIS code is typically run in an open loop mode, i.e., inputs are prescribed

prior to running the model. In order to test control laws and run in closed loop, the
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Figure 5.2: Framework used for simulating burn control algorithms with METIS.

METIS code has been embedded within a Simulink S-function block. At each time

step in a simulation, measured outputs from the METIS block are sent to blocks con-

taining feedback control laws, and the resulting actuator requests are subsequently

sent through input channels. These inputs are then used by the METIS model to

calculate the states of the burning plasma system at the next time step of the sim-

ulation. To test controller robustness, disturbances and noise can be added to the

measurements or actuator signals.

While the METIS code provides an integrated model of many of the physical pro-

cesses contributing to the evolution of tokamak plasma discharges, some processes

are not handled in a way that is appropriate for the study of burn control strate-

gies. For example, the plasma density, fuel composition, and effective atomic number

are considered inputs to the METIS model, while they are in reality dynamic states
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of the system governed by fueling, particle losses, and recycling. To overcome this

limitation, the particle balance model, described in Chapter 2, was implemented in

a Matlab S-function. The inputs to the function include the fueling rates, energy

confinement time, alpha-particle generation rate, and impurity injection rates. The

outputs of the density dynamic model, the effective atomic number, line averaged den-

sity, and isotopic mix, are then routed to the respective inputs of the METIS model.

The complete METIS simulation framework for burn control studies is depicted in

Figure 5.2.

5.4 Simulation Results

In this section, results of a simulation study using the METIS framework are pre-

sented.

5.4.1 Scenario 1

In this scenario, the adaptive controller with online optimization from Chapter 3 was

tested. The adaptive controller was activated near the start of the burn ramp-up,

t = 50s (pre-programmed actuator trajectories were used during the non-burning

early ramp-up phase of the discharge). Preprogrammed time-varying references Er

and nr were used from t = 50s to t = 100s, that is, no online optimization was

used. At t = 100s, the online optimization scheme was activated in order to move

the system to an operating point optimizing the cost function (3.47) with wPα = 1,

wT = 0.1, P p
α = 98MW , and T p = 13keV. The reference for the isotopic mix was held

fixed at γr = 0.5.

During the simulation, the volume averaged plasma parameters, including 〈Sα〉,

〈Pα〉, and 〈Prad〉, where 〈·〉 is used to distinguish the volume average from spatially
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Figure 5.3: Evolution of the plasma cross-sectional shape (a-c) and parameter profiles
(d-f) during Scenario 1.
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varying profiles, were assumed to be measured. As was done in the one-dimensional

simulations of the nonlinear controller proposed in Chapter 2 (see Section 2.6), a

slight modification to the calculation of γ∗ in Step 2 of the control scheme is made

to account for the effect of the spatial distribution of parameters. We define 〈γ〉 =

〈nT 〉/(〈nT 〉 + 〈nD〉) and write 〈Sα〉 = fγp 〈γ〉 (1− 〈γ〉) 〈nH〉2〈σv〉 (〈T 〉) where fγp is a

scale factor used to account for the effects of spatial profiles that is calculated in

real-time based on measurements of the volume averaged states and fusion heating.

The scale factor is then used to calculate

〈γ∗〉 (1− 〈γ∗〉) =

[
θ2
〈E〉r
τscE

+〈Prad〉−〈POhm〉−〈Paux〉+〈Ė〉r −KE〈Ẽ〉
]

Qαf
γ
p 〈γ〉 (1− 〈γ〉) 〈nH〉2〈σv〉 (〈T 〉)

= C, (5.1)

〈γ∗〉 =
1±
√

1− 4C

2
. (5.2)

A similar modification is made to calculate the required impurity density in Step 4.

Aside from these modifications and the notational change, i.e., the use of 〈·〉, the

control laws are unchanged. The peaking factors for the other measured plasma

parameters were also used in the online optimization scheme to calculate the optimal

operating point.

In Figures 5.3a-c, the poloidal cross-section of the plasma is compared at various

times during the controlled discharge. As the density and temperature were ramped

up, the shape changed slightly, however, it remained fairly constant for most of the

discharge. The spatial profiles of electron temperature Te, plasma density n, and

safety factor q (a quantity related to the current profile), are depicted in Figures

5.3d-f at various times during the simulation. The H-mode pedestal can be noted at

a normalized radius of 0.95 in Figures 5.3d and 5.3e. Note that the temperature and

density profiles changed significantly during the early part of the simulation (between

t = 50s and t = 70s, but the shape of the profiles did not change significantly after
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Figure 5.4: Closed loop evolution of (a) fusion heating, (b) temperature, (c) energy,
(d) density, (e) tritium fraction, (f) alpha-fraction, and impurity fraction, along with
closed loop response of (g) auxiliary heating and (h) fueling actuators during the
simulation of Scenario 1. The online optimization scheme was active during the
shaded time interval.
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t = 100s. Only a change in magnitude is seen between t = 100s and t = 200s. The

q profile, shown in Figure 5.3f, evolves at a much slower rate than the other kinetic

variables and did not reach a steady state during the simulation.

The output, state, and actuator trajectories during the simulation are compared

in Figure 5.4. Figures 5.4a and b show that between t = 50s and t = 100s, the

fusion power and temperature are ramped up, eventually exceeding the desired values

(recall that online optimization of the operating point was not active during this

time interval, i.e., a preprogrammed, non-optimal reference was being tracked by the

controller). At t = 100s, the online optimization scheme was activated and was able

to quickly drive the fusion heating and temperature toward the targets. The time-

varying pre-programmed references for energy and density can be noted between

t = 50s and t = 100s in Figures 5.4c and d. The references were tracked quite

well, though some tracking error can be noted as the adaptive parameter update

laws responded to the changing model parameter values. The adjustment of the

references Er and nr by the online optimization scheme can be seen after t = 100s.

The constant reference for the tritium fraction was regulated after initial tracking

errors due to parameter uncertainty, as seen in Figure 5.4e. The alpha particle and

impurity densities, shown in Figure 5.4f, settled to constant values over time. Finally,

the actuators, modified by the nonlinear controller to track the time-varying references

for energy, density, and tritium fraction, are shown in Figures 5.4g and h. It can be

noted that, to some degree, the energy tracking error during the ramp-up can be

attributed to saturation of the ICRH heating power.

The estimated model parameters are compared to the nominal values in Figure

5.5. Between roughly t = 50s and t = 100s, the parameter estimates changed over

time, eventually settling to a constant set of estimates. The estimates of θ1 and θ7

(Figure 5.5a and 5.5g, respectively) converged to their nominal values. The value
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Figure 5.5: Comparison of estimated and nominal model parameters during the
METIS simulation of Scenario 1.
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of θ2, shown in Figure 5.5b, did not quite converge to its nominal value. This is

because, while METIS considers the fact that not all power delivered by the various

heating sources is actually absorbed by the plasma, the model used for control design

assumes the sources to have unity efficiency. As was the case in previous simulations,

the remaining model parameters did not converge to the nominal values due to a lack

of sufficient excitation, however, this does not effect the tracking performance of the

adaptive control scheme.

5.4.2 Scenario 2

In this scenario, the output feedback controller from Chapter 4 was tested. The ob-

server was initiated at t = 50s with incorrect initial state estimates, as well as incor-

rect model parameters given by θ̂ = [1.05θ1, 0.92θ2, 1.1θ3, 0.95θ4, 0.95θ5, 1.1θ6, 0.95θ7].

A preprogrammed time-varying reference for the energy and density was used from

t = 50s to t = 100s, that is, no online optimization was used. At t = 100s, the on-

line optimization scheme was activated in order to drive the system to an operating

point optimizing the cost function (3.47) with wPα = 1, wT = 0.1, P p
α = 98MW , and

T p = 13keV. The reference for the isotopic mix was held fixed at γr = 0.5. Since the

output feedback scheme relies on knowledge of how the measured volume averaged

outputs depend on the volume averaged states of the system, the peaking factors

associated with each output are needed to account for the distributed nature of the

kinetic variables. However, since measurements of the volume averaged states were

considered to be unavailable in this test of the output feedback scheme, it was not

possible to calculate these peaking factors in real-time, as was possible in the previous

state feedback scenario. To overcome this issue for this preliminary test case, it is

assumed that the peaking factors are well-known ahead of time, or can be calculated

based on measured or estimated spatial distribution profile measurements.
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Figure 5.6: Evolution of the plasma cross-sectional shape (a-c) and parameter profiles
(d-f) during Scenario 2.
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In Figures 5.6a-c, the poloidal cross-section of the plasma is compared at various

times during Scenario 2. Again, the shape remained fairly constant for most of

the discharge. The spatial profiles of electron temperature Te and plasma density

n, depicted in Figures 5.6d and 5.6e at various times during the simulation, match

closely with those of the previous state feedback simulation. The q profile evolution,

shown in Figure 5.6f, is also quite similar to the previous scenario, though slight

differences in the evolution near the plasma center can be noted, which are a result

of differences in the transient response of the plasma temperature and density during

the two simulations.

Figure 5.7 compares the output measurements during the METIS simulation to

the values calculated from the estimated states predicted by the observer. Due to the

integral action of the nonlinear proportional-integral observer, the observed outputs

quickly converged to the measured values. In addition, Figures 5.7a and 5.7c show

that the fusion heating and plasma temperature converged to the desired values spec-

ified in the cost function, (P p
α and T p) as a result of the online optimization scheme.

The states of the system are compared with the estimated states in Figure 5.8. The

estimated states converged to the actual values over time, and the output feedback

scheme was able to drive the energy, density, and tritium fraction to their respective

desired references. The optimization of the references Er and nr over time can be

noted in Figures 5.8a and 5.8b. Finally, the feedback controlled actuator trajectories

are shown in Figures 5.8e and 5.8f.

5.5 Conclusions

A simulation framework for studying burn control algorithms that combines the

METIS integrated modeling code with a 0D density dynamics model and a customiz-
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Figure 5.7: Comparison of measured outputs to the values calculated from the states
of the observer during the online optimization METIS simulation using the uncertain
model. The desired and controller requested tritium ratios, γr and γ∗, respectively,
are also shown in (f).
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Figure 5.8: Comparison of states estimations to actual values (a,d) and actuator
trajectories (e,f) during the METIS simulation using output feedback.
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able controller block, has been implemented. The burn control schemes proposed in

the previous chapters have been simulated in this framework to study their robustness

to the increased complexity of the METIS model. The additional complexity of the

METIS model could be exploited in the future to perform a more comprehensive test

the designs, including analyzing performance during various experimental scenarios,

and studying the effects of imperfect measurements, noise, and disturbances. Ad-

ditionally, the additional complexity of the METIS code could enable study control

strategies designed to simultaneously regulate the burn condition and kinetic profiles.
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Chapter 6

Backstepping Control of Burning

Plasma Density and Temperature

Profiles

6.1 Introduction

In the previous several chapters, the problem of zero-dimensional burn condition con-

trol in ITER was studied in detail. This zero-dimensional approach to the problem

only modulates the bulk heating and fueling in response to volume averaged den-

sities and temperatures, and does not attempt to regulate the spatial distributions

of these quantities. However, the shape of the temperature and density profiles not

only directly affect the burn condition and particle/energy transport, but also af-

fects the evolution of the current profile, which in turn plays an important role in

achieving large fractions of non-inductively sustained current. The problem of profile

control differs from the zero-dimensional burn control problem due to the spatially

distributed, infinite-dimensional nature of the quantity being controlled. The system
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is severely underactuated, as only a finite number of available actuators, either dis-

tributed throughout the spatial domain or located at the boundary, are available for

control.

In this work, we apply the backstepping technique to the control of density and

temperature profiles in burning plasmas. Backstepping provides a systematic method

for designing control laws for PDE systems where actuation is applied at the bound-

ary and must be propagated through spatial dynamics. The method achieves stability

and performance improvement by using a feedback transformation to eliminate un-

desirable terms or to add missing terms, while leaving the system in a physically

relevant and familiar form. This enables physical intuition to be used to shape the

closed-loop response. The control gain is obtained by using a simple recursive numer-

ical calculation, which avoids the need to solve high-dimensional Riccati equations.

Furthermore, the approach can be used to handle time-varying model parameters and

nonlinear terms, like those arising in the burning plasma system.

In this work, we have taken a discretize-then-design approach to designing the

backstepping controller [69], rather than the design-then-discretize approach taken in

[70]. This results in a simple recursive formula for an approximation to the infinite

dimensional gain kernel that would be derived using the latter approach. The ap-

proximation, which holds for any finite spatial grid, can be improved through the use

of a fine grid. However, it has been seen that a controller designed on a coarse grid

(using a small number of measurements of the profile) can achieve satisfactory closed-

loop response when tested in simulations (with a much finer grid used for simulating

the PDE model) and experiments. We note that the discretize-then-design backstep-

ping technique has been applied to open-loop unstable nonlinear chemical reactions

in [71, 72] and has been applied to other tokamak control problems, specifically the

problem of kinetic profile control, in [36, 37, 73]. In this work, the backstepping
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technique is extended to include both boundary and distributed actuation, as well as

online disturbance estimation, improving system response, disturbance rejection, and

tracking performance.

The chapter is organized as follows. In Section 6.2 a one-dimensional burning

plasma model is introduced. The control objective and controller design are outlined

in Section 6.3 and Section 6.4, respectively. Simulation results showing successful

stabilization of an unstable set of equilibrium profiles are contained in Section 6.5.

Concluding remarks and a discussion of future work are given in Section 6.6.

6.2 One-Dimensional Burning Plasma Model

The one-dimensional burning plasma model must include the dynamics of the spatial

profiles of the density of α-particles, the deuterium-tritium fuel, as well as the spatial

profile of the energy in the system. The model used in this work is based on standard

1-D transport equations. To simplify presentation, we consider a constant diffusivity

and a negligible pinch velocity, however, the control approach could be extended to

account for these effects, as was done in [36]. The equations for particle densities and

plasma energy are

∂nα
∂t

=
1

r

∂

∂r
r

(
D
∂nα
∂r

)
+
(nDT

2

)2

〈σν〉, (6.1)

∂nDT
∂t

=
1

r

∂

∂r
r

(
D
∂nDT
∂r

)
− 2

(nDT
2

)2

〈σν〉+ SDT , (6.2)

∂E

∂t
=

1

r

∂

∂r
r

(
D
∂E

∂r

)
+Qα

(nDT
2

)2

〈σν〉 − Prad + Paux, (6.3)

where 〈σν〉 is the DT reactivity, SDT is the distributed DT fuel injection, and

Qα = 3.52 MeV is the alpha particle energy. Paux and Prad represent the distributed

auxiliary power and radiation losses, respectively. We consider the distributed actu-
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Figure 6.1: Distributed actuator deposition profiles used for simulations.

ators to be of the form

SDT = ufuel(t)ŜDT (r),

Paux = uaux(t)P̂aux(r),

i.e., they have fixed, spatial deposition profiles ŜDT (r) and P̂aux(r) and controllable

magnitudes ufuel(t) and uaux(t). The deposition profiles used in this work are shown

in Figure 6.1.

The DT reactivity 〈σν〉 is a highly nonlinear, positive, and bounded function of

the plasma temperature T and is calculated by

〈σν〉 = exp
( a1

T r
+ a2 + a3T + a4T

2 + a5T
3 + a6T

4
)
, (6.4)

where the parameters ai and r are taken from [43]. The plasma temperature is a

function of the energy and total plasma density, i.e., T = 2
3
E
n
, and the total plasma

density is given by the sum of ion and electron densities, ni and ne

ni = nDT + nα, (6.5)

ne = nDT + 2nα, (6.6)

n = ni + ne = 2nDT + 3nα, (6.7)

158



The radiation loss Prad considered in this work is given by

Prad = Pbrem = AbZeffn
2
e

√
T , (6.8)

where Ab = 5.5× 10−37 Wm3/
√
keV is the bremsstrahlung radiation coefficient, Zeff

is the effective atomic number, and ne is the electron density. Note that the control

design presented in this work could easily be extended to include other forms of

radiation losses and this choice of model is only used for simplification of presentation.

The effective atomic number is given by

Zeff =
∑
i

niZ
2
i

ne
=
nDT + 4nα

ne
. (6.9)

The following boundary conditions are used:

∂nα
∂r

∣∣∣∣
r=0

=
∂nDT
∂r

∣∣∣∣
r=0

=
∂E

∂r

∣∣∣∣
r=0

= 0, (6.10)

nα(a) =uα(t), (6.11)

nDT (a) =uDT (t), (6.12)

E(a) =uE(t), (6.13)

where uα(t), uDT (t), and uE(t) are considered actuators.

6.3 Control Objective

At equilibrium, the DT fuel, alpha particle, and energy densities are no longer chang-

ing with respect to time and the model simplifies to a set of ODEs with respect to
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the space coordinate, i.e.,

0 =
1

r

∂

∂r
r

(
D
∂n̄α
∂r

)
+ S̄α, (6.14)

0 =
1

r

∂

∂r
r

(
D
∂n̄DT
∂r

)
− 2S̄α + ūfuelŜDT , (6.15)

0 =
1

r

∂

∂r
r

(
D
∂Ē

∂r

)
+QαS̄α − P̄rad + ūauxP̂aux, (6.16)

where we have written the alpha particle generation as Sα =
(
nDT

2

)2 〈σν〉 and we use

upper bar notation to represent the equilibrium value of a variable. The equilibrium

profiles are determined by the equilibrium fueling, heating, and boundary conditions.

We consider perturbations in the profiles, i.e., nα(r, t) = n̄α(r)+ñα(r, t), nDT (r, t) =

n̄DT (r)+ñDT (r, t), E(r, t) = Ē(r)+Ẽ(r, t), Sα(r, t) = S̄α(r)+S̃α(r, t), and Prad(r, t) =

P̄rad(r)+P̃rad(r, t), and the presence of distributed feedback (ũfuel, ũaux) and constant

input disturbances (dDT , daux), i.e.,

SDT (r, t) = (ūfuel + ũfuel + dfuel) ŜDT (r),

Paux(r, t) = (ūaux + ũaux + daux) P̂aux(r).

We also consider boundary feedback (ũα, ũDT , ũE) and constant boundary distur-

bances (dα, dDT , dE). We first attempt to cancel the effect of the unknown distur-

bances by defining the feedback laws

ũα =vα − d̂α, ũDT = vDT − d̂DT , ũE =vE − d̂E,

ũfuel =vfuel − d̂fuel, ũaux = vaux − d̂aux,

where vα, vDT , vE, vfuel, and vaux are inputs to be defined later, and d̂α, d̂DT , d̂E, d̂fuel,

and d̂aux are estimates of the disturbances, which will be obtained from update laws,

160



also to be defined later. We define the disturbance estimation errors d̃α = dα − d̂α,

d̃DT = dDT − d̂DT , d̃E = dE − d̂E, d̃fuel = dfuel − d̂fuel, and d̃aux = daux − d̂aux. By

substituting (6.14), (6.15), and (6.16) into (6.1), (6.2), and (6.3), and taking into

account
1

r

∂

∂r

[
rD

∂(·)
∂r

]
=

∂

∂r

[
D
∂(·)
∂r

]
+

1

r
D
∂(·)
∂r

,

the dynamics of the deviation variables ñα(r, t), ñDT (r, t), and Ẽ(r, t) can be written

as

∂ñα
∂t

=D
∂2ñα
∂r2

+
1

r
D
∂ñα
∂r

+S̃α, (6.17)

∂ñDT
∂t

=D
∂2ñDT
∂r2

+
1

r
D
∂ñDT
∂r
−2S̃α+

(
vfuel+d̃DT

)
ŜDT , (6.18)

∂Ẽ

∂t
=D

∂2Ẽ

∂r2
+

1

r
D
∂Ẽ

∂r
+QαS̃α−P̃rad+

(
vaux+d̃aux

)
P̂aux, (6.19)

The boundary conditions are written as

∂ñα
∂r

∣∣∣∣
r=0

=
∂ñDT
∂r

∣∣∣∣
r=0

=
∂Ẽ

∂r

∣∣∣∣∣
r=0

=0, (6.20)

ñα(a) =vα(t) + d̃α, (6.21)

ñDT (a) =vDT (t) + d̃DT , (6.22)

Ẽ(a) =vE(t) + d̃E. (6.23)

The objective of the controller is to force ñα(r, t), ñDT (r, t) and Ẽ(r, t) to zero using

distributed actuators vfuel and vaux, and boundary actuators vα, vDT , and vE, while

accounting for the effect of disturbance estimation errors.
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Figure 6.2: Block diagram of simulation process.

6.4 Controller Design

A backstepping technique, like the one used in the previous chapter, is used to trans-

form the original system of equations into a particular target system. The target

system is rendered asymptotically stable through the choice of boundary conditions,

control laws for the distributed actuators, and update laws for the disturbance esti-

mations.

By defining h = 1
N
, where N is an integer, and using the notation xi(t) = x(ih, t),

i = 0, 1, ..., N , the discretized version of (6.17) - (6.19) can be written as

˙̃n
i

α =D
ñi+1
α − 2ñiα + ñi−1

α

h2
+
D

ih

ñi+1
α − ñiα
h

+ S̃iα, (6.24)

˙̃n
i

DT =D
ñi+1
DT − 2ñiDT + ñi−1

DT

h2
+
D

ih

ñi+1
DT − ñiDT

h

− 2S̃iα +
(
vfuel + d̃fuel

)
ŜiDT , (6.25)

˙̃E
i

=D
Ẽi+1−2Ẽi+Ẽi−1

h2
+
D

ih

Ẽi+1 − Ẽi

h

+QαS̃
i
α− P̃ i

rad +
(
vaux + d̃aux

)
P̂ i
aux, (6.26)
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with the boundary conditions written as

ñ1
α − ñ0

α

h
=
ñ1
DT − ñ0

DT

h
=
Ẽ1 − Ẽ0

h
= 0, (6.27)

ñNα =vα(t) + d̃α, (6.28)

ñNDT =vDT (t) + d̃DT , (6.29)

ẼN =vE(t) + d̃E. (6.30)

The following target system is considered

˙̃wi =D
w̃i+1 − 2w̃i + w̃i−1

h2
+

1

ih
D
w̃i+1 − w̃i

h
− Cww̃i

+
(
vfuel + d̃fuel

)
Ωi
fuel +

(
vaux + d̃aux

)
Ωi
aux, (6.31)

˙̃mi =D
m̃i+1 − 2m̃i + m̃i−1

h2
+

1

ih
D
m̃i+1 − m̃i

h
− Cmm̃i

+
(
vfuel + d̃fuel

)
Bi
fuel +

(
vaux + d̃aux

)
Bi
aux, (6.32)

˙̃f i =D
f̃ i+1 − 2f̃ i + f̃ i−1

h2
+

1

ih
D
f̃ i+1 − f̃ i

h
− Cf f̃ i

+
(
vfuel + d̃fuel

)
Aifuel +

(
vaux + d̃aux

)
Aiaux, (6.33)

where Cw, Cm, Cf > 0 and

Ωi
fuel = −

i−1∑
k=1

∂ωi−1

∂ñkDT
ŜkDT , Ωi

aux = −
i−1∑
k=1

∂ωi−1

∂Ẽk
P̂ k
aux,

Bi
fuel = ŜiDT −

i−1∑
k=1

∂βi−1

∂ñkDT
ŜkDT , Bi

aux = −
i−1∑
k=1

∂βi−1

∂Ẽk
P̂ k
aux,

Aifuel = −
i−1∑
k=1

∂αi−1

∂ñkDT
ŜkDT , Aiaux = P̂ i

aux −
i−1∑
k=1

∂αi−1

∂Ẽk
P̂ k
aux.
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We denote ω, β, and α as backstepping transformations of the form

w̃i=ñiα− ωi−1(Ẽ0, . . . , Ẽi−1, ñ0
DT , . . . , ñ

i−1
DT , ñ

0
α, . . . , ñ

i−1
α ),

m̃i=ñiDT− βi−1(Ẽ0, . . . , Ẽi−1, ñ0
DT , . . . , ñ

i−1
DT , ñ

0
α, . . . , ñ

i−1
α ),

f̃ i=Ẽi− αi−1(Ẽ0, . . . , Ẽi−1, ñ0
DT , . . . , ñ

i−1
DT , ñ

0
α, . . . , ñ

i−1
α ).

The boundary conditions of the target system are chosen as

w̃1 − w̃0

h
=
m̃1 − m̃0

h
=
f̃ 1 − f̃ 0

h
= 0, (6.34)

w̃N =d̃α, (6.35)

m̃N =d̃DT , (6.36)

f̃N =d̃E. (6.37)

The target system is chosen to maintain the parabolic character of the partial dif-

ferential equation (to keep the highest order derivatives), remove the problematic

nonlinear terms, and facilitate the combined use of distributed feedback and back-

stepping boundary feedback.

By subtracting (6.31) from (6.24), (6.32) from (6.25), and (6.33) from (6.26), the

expressions ω̇i−1 = ˙̃niα− ˙̃wi, β̇i−1 = ˙̃niDT − ˙̃mi, and α̇i−1 = ˙̃Ei− ˙̃f i are obtained, which

can be put in terms of ωk−1 = ñkα − w̃k, βk−1 = ñkDT − m̃k, and αk−1 = Ẽk − f̃k, for

k = i− 1, i, i+ 1 and rearranged to obtain

ωi =
1

D +D/i

[(
2D +

D

i
+ Cwh

2

)
ωi−1 −Dωi−2

− h2Cwñ
i
α + h2ω̇i−1 + h2

(
vfuel + d̃fuel

)
Ωi
fuel

+h2
(
vaux + d̃aux

)
Ωi
aux − h2S̃iα

]
, (6.38)
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βi =
1

D +D/i

[(
2D +

D

i
+ Cmh

2

)
βi−1 −Dβi−2

−h2Cmñ
i
DT + h2β̇i−1 + h2

(
vfuel + d̃fuel

)
Bi
fuel + 2h2S̃iα

−h2
(
vfuel + d̃fuel

)
ŜiDT + h2

(
vaux + d̃aux

)
Bi
aux

]
, (6.39)

αi =
1

D +D/i

[(
2D +

D

i
+ Cfh

2

)
αi−1 −Dαi−2 − h2Cf Ẽ

i

+h2α̇i−1 − h2QαS̃
i
α + h2P̃ i

rad − h2
(
vaux + d̃aux

)
P̂ i
aux

+h2
(
vfuel + d̃fuel

)
Aifuel + h2

(
vaux + d̃aux

)
Aiaux

]
, (6.40)

where ω0 = β0 = α0 = 0 and ẋi−1 (for x ∈ {ω, β, α}) is given by

ẋi−1 =
i−1∑
k=1

∂xi−1

∂ñkDT
˙̃nkDT +

i−1∑
k=1

∂xi−1

∂Ẽk

˙̃Ek +
i−1∑
k=1

∂xi−1

∂ñkα
˙̃nkα. (6.41)

Through its dependence on ˙̃nDT ,
˙̃E, and ˙̃nα, expression (6.41) depends on the to-be-

designed control laws vfuel and vaux, which will not in general be spatially causal and

would violate the strict-feedback structure required for backstepping. It also depends

on the terms d̃fuel and d̃aux, which are unknown. However, by our choice of target

system, the terms involving Ωi
fuel, Ωi

aux, Bi
fuel, Bi

aux, Aifuel, and Aiaux exactly remove

the undesirable terms from the recursive expressions (6.38), (6.39), and (8.17) upon

substitution, i.e.,

ωi =
1

D +D/i

[(
2D +

D

i
+ Cwh

2

)
ωi−1 −Dωi−2

− h2Cwñ
i
α + h2ω̇i−1

strict − h2S̃iα

]
,
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βi =
1

D +D/i

[(
2D +

D

i
+ Cmh

2

)
βi−1 −Dβi−2

−h2Cmñ
i
DT + h2β̇i−1

strict + 2h2S̃iα

]
,

αi =
1

D +D/i

[(
2D +

D

i
+ Cfh

2

)
αi−1 −Dαi−2 − h2Cf Ẽ

i

+h2α̇i−1
strict − h2QαS̃

i
α + h2P̃ i

rad

]
,

where the strict feedback terms ẋi−1
strict, (for x ∈ {ω, β, α}) are given by

ẋi−1
strict =

i−1∑
k=1

∂xi−1

∂ñkDT

[
D
ñk+1
DT − 2ñkDT + ñk−1

DT

h2
+
D

ih

ñk+1
DT − ñkDT

h

−2S̃kα

]
+

i−1∑
k=1

∂xi−1

∂ñkα
˙̃nkα +

i−1∑
k=1

∂xi−1

∂Ẽk

[
QαS̃

k
α− P̃ k

rad

+D
Ẽk+1−2Ẽk+Ẽk−1

h2
+
D

ih

Ẽk+1 − Ẽk

h

]
. (6.42)

Next, subtracting (6.35) from (6.28), (6.36) from (6.29), and (6.37) from (6.30), the

boundary control laws can be defined as

vα =ωN−1, vDT = βN−1, vE = αN−1. (6.43)

We design the control laws for the distributed actuators vfuel and vaux, as well as

the update laws for the disturbance estimations by considering the control Lyapunov
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function

V =
1

2

N−1∑
i=1

Qi
w

(
w̃i
)2

+
1

2

N−1∑
i=1

Qi
m

(
m̃i
)2

+
1

2

N−1∑
i=1

Qi
f

(
f̃ i
)2

+
d̃2
α

2kα
+

d̃2
DT

2kDT
+

d̃2
E

2kE
+

d̃2
fuel

2kfuel
+

d̃2
aux

2kaux
,

where Qi
w, Qi

m, Qi
f for i ∈ [1, N − 1] are positive definite weights, and kα, kDT , kE,

kfuel, and kaux are positive constants. We calculate its time derivative as

V̇ =
N−1∑
i=1

Qi
ww̃

i ˙̃wi +
N−1∑
i=1

Qi
mm̃

i ˙̃mi +
N−1∑
i=1

Qi
f f̃

i ˙̃f i

+
1

kα
d̃α

˙̃dα +
1

kDT
d̃DT

˙̃dDT +
1

kE
d̃E

˙̃dE

+
1

kfuel
d̃fuel

˙̃dfuel +
1

kaux
d̃aux

˙̃daux.

Noting the dynamic equations (6.31), (6.32), and (6.33), and the boundary conditions

(6.34), (6.35), (6.36), and (6.37), this can be written as

V̇ = −W TAwW −MTAmM − F TAfF + vfuelΦfuel + vauxΦaux

+ d̃fuel

[
Φfuel +

˙̃dfuel
kfuel

]
+ d̃aux

[
Φaux +

˙̃daux
kaux

]

+ d̃α

[
QN−1
w

D

h2

(
1 +

1

N − 1

)
w̃N−1 +

˙̃dα
kα

]

+ d̃DT

[
QN−1
m

D

h2

(
1 +

1

N − 1

)
m̃N−1 +

˙̃dDT
kDT

]

+ d̃E

[
QN−1
f

D

h2

(
1 +

1

N − 1

)
f̃N−1 +

˙̃dE
kE

]
, (6.44)

whereW = [w1, ..., wN−1]T ,M = [m1, ...,mN−1]T , F = [f 1, ..., fN−1]T are transformed
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measurements. The elements of the matrix Ak (where k ∈ {w,m, f}) are given by

Ai,i−1
k =−Qi

k

D

h2
, Ai,ik = Qi

k

[
D

h2

(
2 +

1

i

)
+ Ck

]
,

Ai,i+1
k =−Qi

k

D

h2

(
1 +

1

i

)
,

for 2, ..., i, ...N − 2, and by

A1,1
k =Q1

k

(
2
D

h2
+ Ck

)
, A1,2

k = −2Q1
k

D

h2
,

AN−1,N−1
k =QN−1

k

[
D

h2

(
2 +

1

N − 1

)
+ Ck

]
,

AN−1,N−2
k =−QN−1

k

D

h2
.

Given positive diffusivity D, the matrix Ak is positive definite. The nonlinear func-

tions Φfuel and Φaux are given by

Φfuel =
N−1∑
i=1

Qi
ww̃

iΩi
fuel +

N−1∑
i=1

Qi
mm̃

iAifuel +
N−1∑
i=1

Qi
f f̃

iBi
fuel,

Φaux =
N−1∑
i=1

Qi
ww̃

iΩi
aux +

N−1∑
i=1

Qi
mm̃

iAiaux +
N−1∑
i=1

Qi
f f̃

iBi
aux.

We take the control laws and update laws

vfuel = −CfuelΦfuel, vaux = −CauxΦaux, (6.45)

˙̂
dfuel = kfuelΦfuel,

˙̂
daux = kauxΦaux, (6.46)

˙̂
dα = kαQ

N−1
w

D

h2

(
1 +

1

N − 1

)
w̃N−1, (6.47)

˙̂
dDT = kDTQ

N−1
m

D

h2

(
1 +

1

N − 1

)
m̃N−1, (6.48)

˙̂
dE = kEQ

N−1
f

D

h2

(
1 +

1

N − 1

)
f̃N−1, (6.49)
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where Cfuel ≥ 0 and Caux ≥ 0, which, assuming constant disturbances, reduces (8.28)

to

V̇ =−W TAwW −MTAmM − F TAfF − CfuelΦ2
fuel − CauxΦ2

aux

≤−W TAwW −MTAmM − F TAfF.

Since Aw, Am, and Af are positive definite, we have that V̇ ≤ 0. Since V ≥ 0 and

V̈ is bounded, the conditions of Barbalat’s lemma are satisfied, and we have that

V̇ → 0. This implies that w̃, m̃, and f̃ are driven to zero, guaranteeing asymptotic

stability of the target system, and, consequently, ñα, ñDT , and Ẽ.

The control strategy is summarized in Figure 6.2. First, a desired set of equi-

librium profiles is determined. These profiles are then used as references by the

backstepping controller, which actuate the ion densities and energy at the plasma

edge, as well as the magnitudes of the distributed heating and fueling actuators to

achieve the desired profile shapes and spatial averages for the alpha particle, DT fuel,

and energy density.

6.5 Simulation Results

In the following, the discretized burning plasma system was simulated using an im-

plicit finite difference scheme with Nsim = 50, and the time step chosen to achieve

suitable accuracy. The results shown are for an equilibrium described by DE = 0.4,

DDT = 0.2, Dα = 0.13, ūaux = 3.8 × 104, ūfuel = 1.6 × 1019, ūα = 9.5 × 1017,

ūDT = 5.3 × 1019, and ūE = 2.0 × 105. Figure 6.3 shows that without feedback con-

trol, the chosen equilibrium of the simplified model is unstable. In this case, the initial

perturbations in the shape and magnitude cause a thermal excursion and the system

169



0 2 4 6 8 10

0

5

10
x 10

18

<
n

α
>

(#
/m

3
)

t(s)

0 2 4 6 8 10

0.9

1

1.1
x 10

20
<

n
D

T
>

(#
/m

3
)

t(s)

0 2 4 6 8 10

0

1

2
x 10

6

<
E

>
(J

/m
3
)

t(s)

Figure 6.3: Spatial averages of the open-loop (uncontrolled) profiles. The desired
equilibrium values are shown as red dotted lines. The solid blue lines show the
simulated evolution of the system.

comes to rest at a higher temperature equilibrium. As a first test of the feedback con-

troller, two closed loop simulations were run: one with boundary actuation only (i.e.,

Cfuel = Caux = 0), and one with simultaneous boundary and distributed actuation

(Qi
w = 10−36, Qi

m = 10−38, and Qi
f = 10−10 for 1, . . . , i, . . . N−1, Cfuel = 0.125×1038,

Caux = 0.1× 1010). Neither of these simulations included disturbances or disturbance

estimation. In both cases, the controller was designed using Ncontrol = 3, i.e., uti-

lizing two measurement points inside the plasma core, and Cw = Cm = Cf = 0.15.

Figure 6.4 shows the resulting profile evolutions. In both cases, the nonlinear con-

troller was able to stabilize the desired equilibrium, however, the use of distributed

actuation improved the response by adding more control authority in the interior of
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(a) Boundary feedback only.

(b) Simultaneous boundary and distributed feedback.

Figure 6.4: Profile error evolution for a simulation with boundary feedback only (a)
and one with simultaneous boundary and distributed feedback (b). Solid red lines
indicate the boundary actuation.
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Figure 6.5: Boundary actuation (a-c), distributed actuation (d,e), and l2 norm of
profile error (f), comparing a simulation with boundary actuation only (red, dashed)
to one employing simultaneous boundary and distributed actuation.
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Figure 6.6: Realized (controlled input + input disturbance) boundary actuation (a-c)
and distributed actuation (d,e), and the weighted norm of the profile error (f) during a
simulation without disturbance estimation (black, dash-dot) and one with disturbance
estimation (blue, solid). With disturbance estimation, the realized actuator values
converge to the reference values for the desired equilibrium (red, dashed), and the
profile error is driven to zero.
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the plasma. Figures 6.5a-e compare the boundary and distributed actuation during

the two simulations. By including distributed actuation, the amount of boundary

actuation needed to stabilize the system was reduced. The weighted norm of the

profile error

L =

√√√√N−1∑
i=1

[(
10−5Ẽi

)2

+ (10−18ñiα)2 + (10−19ñiDT )
2

]
h,

during both simulations is compared in Figure 6.5f, clearly showing that the pro-

file error was driven to zero much more quickly when distributed actuation was

added. To test disturbance rejection, a second set of simulations were run with

input disturbances dα = −0.2ūα, dDT = −0.2ūDT , dE = 0.2ūE, dfuel = −0.2ūfuel,

and daux = 0.2ūaux. The first simulation was run without online disturbance esti-

mation, while the estimation was active in the second simulation (kα = 1.2 × 1036,

kDT = 1.5 × 1038, kE = 1.2 × 1010, kfuel = 0.03 × 1010, and kaux = 0.06 × 1038).

Figures (6.6)a-e compare the realized (controlled actuation + input disturbance) val-

ues of nα(a) = uα + dα, nDT (a) = uDT + dDT , E(a) = uE + dE, distributed heating

uaux +daux, and distributed fueling ufuel +dfuel, respectively, to the values associated

with the desired equilibrium. Figure (6.6)f compares the weighted norm L for both

cases. In these figures, the red-dashed line represents the equilibrium value, while

the blue solid line and black dash-dot line represent the realized actuators during

the simulations with and without disturbance estimation, respectively. In the first

simulation, the system was stabilized by the feedback controller and the realized ac-

tuators converged to constant values, however, without estimation, a steady-state

profile error developed, as made clear in Figure (6.6)f. Through online estimation

of the disturbances in the second simulation, the controller was able to account for

the disturbances and drive the profile error to zero. Indeed, the realized actuators
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Figure 6.7: Initial (magenta, dashed), desired (red, circles), and final profiles, compar-
ing the results a simulation with disturbance estimation (blue, solid) to one without
(black, dotted). Note that the effect of input disturbances is removed at steady-state
with the online estimation active.

converged to the reference values associated with the desired equilibrium. Figure 6.7

shows the initial and desired profiles, and compares the final profiles obtained in the

two simulations. The steady-state profile error developed in the first simulation and

the recovery of the desired profiles in the simulation with disturbance estimation are

evident.

6.6 Conclusions

A non-linear feedback controller based on backstepping that achieves asymptotic sta-

bilization of the equilibrium ion and energy density profiles in a cylindrical burning

plasma has been designed. The controller uses actuation of the α-particle, energy,

and DT ion density at the plasma’s edge, as well as distributed heating and fueling

to stabilize the respective profiles. The resulting controller holds for any finite dis-

cretization in space of the original PDE model and the simulation in this work shows

that a controller using a very coarse discretization, successfully controls the density

profiles. The feasibility of controlling kinetic profiles in a burning plasma using a

combination of distributed and boundary feedback has been shown. However, more
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study will be necessary to find physical methods for the modulation of the kinetic

variables at the edge of the plasma, i.e. achieving the desired values of uα, uDT , and

uE. This will have to be done through modulation of the physical properties of the

plasma scrape-off layer (SOL) such as gas puffing, gas pumping, or impurity injec-

tion. Moving forward, model improvements will be made by including models for the

diffusivity and pinch velocity, as well as models of the SOL in order to apply more

realistic boundary conditions to the system.

Because burning plasma experiments on ITER are still years away, it is not possi-

ble to experimentally test the proposed profile control approach at this time. However,

the backstepping technique for PDE control design can be applied to the important

issue of current profile control, which is a new and active area of research at many

present-day tokamaks. In the following chapters, backstepping based control schemes

are designed, implemented, and experimentally tested on the DIII-D tokamak.
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Chapter 7

Backstepping Control of the Current

Profile in L-mode Discharges

7.1 Introduction

Among the major challenges for future fusion reactors is to achieve scenarios in which

a tokamak can operate with sufficiently long plasma discharges. It has been demon-

strated that setting up a suitable spatial distribution of the toroidal plasma current

can, in turn, enable certain advanced operating scenarios characterized by high fusion

gain and non-inductive sustainment of plasma current that could lead to steady-state

operation (see [33]). Typically, the spatial distribution of toroidal current is approx-

imated as a one-dimensional radial profile by assuming axisymmetry in the toroidal

coordinate and by averaging quantities over the poloidal magnetic flux surfaces, a set

of nested surfaces of constant poloidal magnetic flux as shown in the cutaway view of

the plasma inside the DIII-D tokamak in Figure 2. As part of the effort to identify

and achieve suitable profiles for advanced operating scenarios, active control of the

current profile or the safety factor profile, q, a related quantity defined as the number

177



Fig. 3. JET tokamak. (Image source: EFDA-JET)

means “toroidal chamber with magnetic coils”. The largest
tokamak in the world is the Joint European Torus (JET)
in Culham, England [8], shown in Fig. 3. The DIII-D [9]
tokamak, shown in Fig. 4, is one of roughly a dozen medium-
sized tokamaks around the world.
In the presence of a prescribed magnetic field, a charged

particle will describe a simple cyclotron gyration around the
magnetic field line. The dynamics of the charged particle is
determined by the Lorentz force,

m
dv

dt
= q(v × B), (4)

where m and q are the mass and charge of the particle
respectively, v is the particle velocity, and B is the magnetic
field. When the component of the velocity parallel to the
magnetic field, which is not affected by the Lorentz force, is
different from zero, the trajectory of the charged particle is a
helix. It is in this case that the particle would fall out the ends
of the magnetic field line, contrary to our desired to keep
them confined. To solve this, the tokamak uses field lines
bent into a torus so that there is no end. In a tokamak, the
toroidal magnetic field is produced by the so-called “toroidal
field” (TF) coils. Addition of a poloidal field generated
by the toroidal plasma current, which is necessary for the
existence of a magnetohydrodynamic (MHD) equilibrium
[10], produces a combined field in which the magnetic field
lines twist their way around the tokamak to form a helical
structure.
Fig. 5 shows an illustration of the coil distribution in the

JET tokamak. The toroidal component of the magnetic field,
used to confine the plasma within the torus, is generated
by large D-shaped coils (toroidal field coils) with copper
windings, which are equally spaced around the machine.
The primary winding (inner poloidal field coils) of the trans-
former, used to induce the plasma current which generates

Fig. 4. DIII-D tokamak. (Image source: General Atomics Fusion Education
Outreach)

the poloidal component of the field and heats the plasma, is
situated at the center of the machine. Coupling between the
primary winding and the toroidal plasma, acting as the single
turn secondary, is enhanced by the massive eight limbed
transformer core. Around the outside of the machine, but
within the confines of the transformer limbs, is the set of
field coils (outer poloidal field coils) used for positioning,
shaping and stabilizing the position of the plasma inside the
vessel. The plasma inside the torus essentially constitutes
a big fat wire, since it is made up of charged particles in
motion, i.e., it has a current. The large current carrying coils
on the outside of the torus push or pull against the plasma
based on a version of the basic principle of forces between
parallel conductors. If the currents are in the same direction,
the magnetic fields exert a force so as to push the wires
together. If the currents are in opposite directions, the force
exerted tends to push them apart.
The use of transformer action for producing the large

plasma current means that present tokamaks operate in a
pulsed mode. To be an economical viable source of energy,
tokamaks must operate in the future in truly steady-state
or at least with a succession of sufficiently long pulses.
Each one of these pulses is called discharge. Fig. 6 shows a
typical pulse, or discharge, in the DIII-D tokamak. To initiate
the discharge, hydrogen gas is puffed into the tokamak
vacuum vessel, the toroidal field coil current is brought up
early to create a steady state magnetic field to contain the
plasma when initially created, and the ohmic-heating/current-
drive poloidal field coil is brought to its maximum positive
current in preparation for pulse initiation. Then, the ohmic-
heating/current-drive poloidal field coil current is driven
down very quickly in order to produce a large electric field
within the torus. This electric field rips apart the neutral
gas atoms and produces the plasma. Thus, immediately after
plasma initiation, the ohmic heating/current drive poloidal

Figure 7.1: Illustration of the DIII-D tokamak. The toroidal field coils (cream col-
ored) and poloidal field coils (light blue) produce the magnetic field that confines the
plasma. The cross-section of the plasma within the machine is represented by a set
of magnetic flux contours.(Source: General Atomics Fusion Education Outreach)

of times a magnetic field line goes around the machine toroidal for each time it goes

around poloidally, has become an area of extensive research.

7.1.1 Prior Work

Most experiments in this area have thus far focused on the real-time feedback control

of scalar parameters characterizing some aspect of the current profile. In [74], feedback

control of q(0, t), the safety factor at the magnetic axis of the plasma, or qmin(t), the

minimum value of the safety factor profile, was achieved by modifying either ECH

(electron cyclotron heating) or NBI (neutral beam injection) on DIII-D. In [75], LHCD

(lower hybrid current drive) was used to control the internal inductance parameter,

li(t), a measure of the current profile shape, on Tore Supra. Both experiments used

simple non-model-based proportional control laws to modify single scalar parameters
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describing some characteristic of the current profile. Non-model based approaches to

real-time control of the current profile were also studied in [76, 77], and [78].

Though non-model-based techniques have had some success in manipulating single

scalar outputs, like li(t) or qmin(t), it will be critical to control the shape of the entire

current profile in order to achieve certain advanced tokamak operating scenarios.

The strong nonlinear coupling between magnetic and kinetic profiles and the high

dimensionality of this type of distributed control problem motivate the use of model-

based techniques that can exploit knowledge of the dynamic response of the system

to the available actuators within the controller design. Compared to non-model-

based approaches, model-based designs can achieve high levels of performance without

requiring significant amounts of experimental time for trial-and-error tuning. Work

on dynamic modeling of the current profile evolution has focused on either generating

models from experimental data or creating models motivated by a first-principles

description of the system.

Data-driven models have recently been used to design controllers for simultaneous

regulation of magnetic and kinetic plasma profiles around desired references during

the flat-top phase of a plasma discharge at JET [79, 80, 81], JT-60U, and DIII-D

[82, 83, 84]. In this approach, system identification techniques were used to develop

linear dynamic models of the plasma profile response to various actuators based on

data gathered during dedicated experiments. Because the resulting models are linear,

they are only valid close to the reference scenario used for identification. As a result,

controllers based on these models may perform poorly if the system states move far

from their respective reference values. Additional dedicated system identification

experiments must be carried out in order to apply this approach to new devices or to

different operating scenarios.

By designing controllers using a first-principles description of the current pro-
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file dynamics, the issues associated with identified models can be largely avoided.

In practice, it is typically necessary to simplify or approximate parts of the first-

principles description in order to facilitate control design, or to close the equations

of model with empirical expressions. If these approximations are made carefully, the

advantages of a first-principles based model based approach to control design can be

largely retained while the complexity of the model and control design can be greatly

reduced. To distinguish this simplified physics-based modeling approach from those

based entirely on first-principles or linear-data-driven approaches based entirely on

empirical data, we refer to the resulting simplified models as first-principles-driven,

control-oriented models. Use of a first-principles-driven model allows a control de-

sign to incorporate the nonlinear coupling of plasma parameters, potentially enabling

improved closed loop performance and allowing for operation over a wider range of

conditions than control schemes based on linear data-driven models. Additionally,

first-principles-driven controllers have the potential to be adapted to different scenar-

ios or devices without significant changes to the structure of the control law and while

avoiding the need for dedicated model identification experiments. Such models of the

evolution of the plasma magnetic flux have recently been developed in [85, 86, 87]. In

[88, 89], the model developed in [86] was used to calculate optimal feedforward actu-

ator trajectories for achieving a desired safety factor profile, using extremum-seeking

and nonlinear programming approaches, respectively. Some recent work on first-

principles-driven feedback control designs have been presented in [90, 91, 92, 93, 94].

In these results, robust, optimal, and sliding mode based feedback controllers were

developed and tested in simulations.
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7.1.2 Results of This Work

In this chapter, a first-principles-driven model-based current profile control algorithm

is designed for low-confinement mode discharges on DIII-D to be combined with feed-

forward actuator trajectories that can be calculated offline (as in [88, 89]) or based on

previous experimental results. The model-based feedback control law enables the ac-

tuator trajectories to be adjusted in real-time in order to reproduce profile evolutions

achieved in previous experiments or simulations despite perturbed initial conditions

or other disturbances. The controller is designed to track a reference trajectory of

the poloidal flux gradient profile θ, a quantity inversely related to the safety factor

profile. Because the plasma current in the L-mode discharges studied in this work is

primarily inductively driven, the most effective means of controlling the current pro-

file is through the boundary condition, which can be actuated through modulation

of the total plasma current. Boundary actuation will also be the primary actua-

tor for controlling current profile formation during the ramp-up and early flattop

phases of H-mode discharges, prior to the flattop phase, in which interior actuation

through non-inductive current drive becomes more significant and adds more degrees

of freedom for control. The design of a boundary feedback control law is therefore an

important step towards the design of a comprehensive current profile control strategy

for H-mode discharges. In this work, a boundary feedback control law is designed

by discretizing partial differential equation (PDE) describing the evolution of θ in

L-mode discharges on DIII-D in space using a finite difference method and applying

a backstepping design to obtain a transformation from the original system into an

asymptotically stable target system. The feedback term from the resulting control

law is added to the feedforward input trajectories and, through a nonlinear trans-

formation, references are obtained for the plasma current, non-inductive power, and

line-averaged density. These references are then sent to existing dedicated controllers

181



for the individual physical quantities.

Numerical simulations show that improved performance is achieved through the

use of the backstepping control scheme. However, because the resulting control law

only uses proportional feedback, the controller’s ability to reject disturbances is lim-

ited. To overcome this, we augment the backstepping control law with an adaptive

law that effectively adds integral action to the closed loop system. The resulting

control scheme takes the form of a proportional-integral controller coupled with non-

linear input transformation, with spatially-varying gains derived through the use of

backstepping and tuned through choice of design parameters in the target system.

Simulation results show that this approach can greatly improve the disturbance rejec-

tion capabilities of the closed loop system. As part of this work, a general framework

for implementing real-time feedforward control of magnetic and kinetic plasma pro-

files was implemented in the DIII-D Plasma Control System (PCS). The framework

was used to experimentally test the control design and demonstrate the feasibility of

the proposed current profile control scheme. These results are part of the first ex-

perimental campaign to perform model-based feedback control of the current profile

using the semi-empirical first-principles-driven modeling approach and represent the

first experimental implementation of a backstepping boundary control law in a toka-

mak. Results of our other approaches to first-principles-driven model-based feedback

control design for L-mode discharges that were tested during the same campaign can

be found in [95, 96].

The chapter is organized as follows. In Section 7.2, a PDE model for the current

profile evolution is introduced. The control objective is discussed in Section 7.3. In

Section 7.4, a backstepping feedback control law is presented and the stability of the

target system is shown. The addition of an adaptive law to improve upon distur-

bance rejection is also discussed. The real-time control algorithm and the simulation
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Figure 7.2: Illustration of the coordinates used in the current profile model.

framework are described in Section 7.5. The feedback control laws are studied in

simulations and experimentally tested in Sections 7.6 and 7.7, respectively. Finally,

conclusions and future work are stated in Section 7.8.

7.2 Current Profile Evolution Model

Figure 7.2 illustrates the coordinate system used in this work. We begin by taking

ρ as a coordinate indexing the magnetic surfaces within a poloidal cross-section of

the tokamak plasma. We choose the mean effective radius of the magnetic surface

as the variable ρ, i.e., πBφ,0ρ
2 = Φ, where Φ is the toroidal magnetic flux and Bφ,0

is the reference magnetic field at the geometric major radius R0 of the tokamak. By

normalizing the quantity by ρb, the mean effective minor radius of the last closed

magnetic surface, we obtain the coordinate ρ̂ = ρ/ρb. The safety factor, a quantity

related to the toroidal current density, is given by q (ρ, t) = −dΦ/dΨ(ρ, t), where Ψ

is the poloidal magnetic flux. By noting the constant relationship between ρ and Φ,
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i.e., πBφ,0ρ
2 = Φ, and the definition of ρb, this can be written as

q (ρ̂, t) = −Bφ,0ρ
2
b ρ̂

∂ψ/∂ρ̂
, (7.1)

where ψ is the poloidal stream function (Ψ = 2πψ). Since the safety factor depends

inversely on the spatial derivative of the poloidal flux, we define

θ (ρ̂, t) =
∂ψ

∂ρ̂
(ρ̂, t) , (7.2)

and take this quantity as the variable of interest to be controlled. This choice is

motivated by the straightforward derivation of a PDE for the dynamics of θ (ρ̂, t) ,

and is possible because any target for q (ρ̂, t) can be uniquely related to a target for

θ (ρ̂, t).

In order to obtain a PDE describing the evolution of θ (ρ̂, t) , we start from the

well known magnetic diffusion equation [97], which describes the poloidal magnetic

flux evolution. This equation is given by

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)

< j̄NI · B̄ >

Bφ,0

, (7.3)

where ψ represents the poloidal magnetic stream function, t is time, η is the plasma

resistivity, which is dependent on the electron temperature, Te, µ0 is the vacuum

permeability, j̄NI is the non-inductive current density, B̄ is the toroidal magnetic field,

and <> denotes the flux-surface average of a quantity. F̂ , Ĝ, and Ĥ are spatially

varying geometric factors of the reference magnetic equilibrium that are described in

[86]. These factors vary in time as the plasma shape evolves (especially during the

ramp-up phase), however, they are considered to be constant in this model. While the

proposed control method could accommodate time-varying model parameters, initial
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results indicate that it may not be necessary to include this increased complexity for

the purposes of control design. The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ

∣∣∣∣
ρ̂=1

Ĥ

∣∣∣∣
ρ̂=1

I(t), (7.4)

where I(t) is the total plasma current.

Based on experimental observations of the ramp-up phase in low-confinement

mode (L-mode) discharges in DIII-D, simplified scenario-oriented empirical models

for the electron temperature, non-inductive current density, and plasma resistivity

were identified [86]. The temperature and non-inductive current drive terms are

considered to have fixed spatial profiles with time-varying magnitudes that scale with

the values of physical actuators. The model for the electron temperature is given by

Te (ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√
Ptot(t)

n̄(t)
, (7.5)

where kTe is a constant, T profilee (ρ̂) is a reference profile, Ptot (t) is the total average

NBI power and n̄(t) is the line averaged plasma density. This scaling law can be

derived by considering an approximate steady-state energy balance, i.e., E
τE

= Ptot,

where E is the plasma stored energy, and the energy confinement time τE is considered

to be proportional to IP−0.5
tot , as suggested in [98]. The steady-state solution is used

because the energy time-scale is much shorter than the current diffusion time-scale.

The model for the non-inductive toroidal current density is given by

< j̄NI · B̄ >

Bφ,0

= kNIj
profile
NI (ρ̂)

I(t)1/2Ptot(t)
5/4

n̄(t)3/2
, (7.6)

where kNI is a constant and jprofileNI (ρ̂) is a reference profile for the non-inductive
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current deposition. This scaling is derived by considering the neutral beam current

drive to be proportional to PtotT
0.5n−1, which is a suitable approximation of the

formula given in [99] for parameters in DIII-D, and substituting the temperature

scaling (7.5). Since the plasma current is mainly driven by induction during L-mode

discharges, the effect of the self-generated non-inductive bootstrap current is neglected

in this model. The plasma resistivity η (Te) is given by

η (ρ̂, t) =
keffZeff

T
3/2
e (ρ̂, t)

, (7.7)

where keff is a constant. The effective atomic number of the plasma, Zeff , is consid-

ered to be constant in this model.

The models (7.5), (7.6), and (7.7) allow us to write the magnetic diffusion equation

(7.3) as
∂ψ

∂t
= f1 (ρ̂)u1(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂f4 (ρ̂)

∂ψ

∂ρ̂

)
+ f2 (ρ̂)u2(t), (7.8)

with boundary conditions given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −k3u3(t), (7.9)

where

f1 (ρ̂) =
keffZeff

k
3/2
Te
µ0ρ2

bF̂
2 (ρ̂)

(
T profilee (ρ̂)

)3/2
, (7.10)

f2 (ρ̂) =
keffZeffR0kNIĤ (ρ̂) jprofileNI (ρ̂)

k
3/2
Te

(
T profilee (ρ̂)

)3/2
, (7.11)

f4 (ρ̂) = F̂ (ρ̂) Ĝ (ρ̂) Ĥ (ρ̂) , k3 = µ0
2π

R0

Ĝ

∣∣
ρ̂=1

Ĥ

∣∣
ρ̂=1

, (7.12)

u1(t) =

(
n̄(t)

I(t)
√
Ptot(t)

)3/2

, u2(t) =

√
Ptot(t)

I(t)
, u3(t) = I(t). (7.13)
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Equation (7.8) admits diffusivity, interior, and boundary actuators u1, u2, and u3,

respectively, which each represent nonlinear combinations of the physical actuators,

I(t), Ptot(t), and n̄(t). Note that the controller proposed in this work will generate

waveforms for these physical actuators. These waveforms represent references to be

sent to existing dedicated controllers for each of the respective quantities.

We expand (7.8) with the chain rule to obtain

∂ψ

∂t
= f1u1(t)

1

ρ̂

(
ρ̂
∂ψ

∂ρ̂

∂f4

∂ρ̂
+ f4

∂ψ

∂ρ̂
+ ρ̂f4

∂2ψ

∂ρ̂2

)
+ f2u2(t). (7.14)

We then insert (7.2) into (7.14), resulting in

∂ψ

∂t
= f1u1

1

ρ̂
(ρ̂θf ′4 + f4θ + ρ̂f4θ

′) + f2u2, (7.15)

where (·)′ = ∂/∂ρ̂ and the dependencies on time and space have been dropped to

simplify the representation. By differentiating (7.15) with respect to ρ̂, the PDE

governing the evolution of θ (ρ̂, t) is found to be

∂θ

∂t
= h0u1θ

′′ + h1u1θ
′ + h2u1θ + h3u2, (7.16)

with boundary conditions:

θ

∣∣∣∣
ρ̂=0

= 0 θ

∣∣∣∣
ρ̂=1

= −k3u3 (7.17)
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and where h0, h1, h2, and h3 are spatially varying functions given by

h0 = f1f4, (7.18)

h1 = f ′1f4 + f1f4
1

ρ̂
+ 2f1f

′
4, (7.19)

h2 = f ′1f
′
4 + f ′1f4

1

ρ̂
+ f1f

′
4

1

ρ̂
,

−f1f4
1

ρ̂2
+ f1f

′′
4 , (7.20)

h3 = f ′2. (7.21)

7.3 Control Objective

Let uff (t) =
[
u1ff (t), u2ff (t), u3ff (t)

]
represent a set of feedforward control input

trajectories and θff (ρ̂, t) be the associated poloidal flux gradient profile evolution for

a nominal initial condition θff (ρ̂, 0). We note that the feedforward input and profile

trajectories could be chosen based on the results of experimental testing or from offline

optimization using the current profile evolution model, as was done in [88] and [89].

The nominal profile evolution satisfies

∂θff
∂t

= u1ff

(
h0θ

′′
ff + h1θ

′
ff + h2θff

)
+ h3u2ff , (7.22)

θff

∣∣∣∣
ρ̂=0

= 0, θff

∣∣∣∣
ρ̂=1

= −k3u3ff . (7.23)

Given errors in the initial conditions or other disturbances, the actual state will differ

from the desired target, i.e. θ(ρ̂, t) = θff (ρ̂, t) + θ̃(ρ̂, t), where θ̃ represents the error

between the achieved and desired profile. Since the feedforward inputs are calculated

offline, they cannot compensate for these deviations, so we consider the addition of
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feedback control to actively regulate the poloidal flux gradient profile around the

desired profile evolution. Because of the strong influence of the boundary actuator

on the dynamics of the system, we will consider the design of a feedback law for

the boundary control term u3, i.e., we write u3 = u3ff + u3fb . The incorporation of

interior feedback control, which may enable improvements in closed-loop response,

will be considered in future designs. The PDE (7.16) can then be written as

∂
(
θff + θ̃

)
∂t

=u1ff

[
h0

(
θ′′ff + θ̃′′

)
+ h1

(
θ′ff + θ̃′

)
+h2

(
θff + θ̃

)]
+ h3u2ff , (7.24)

with the boundary conditions (7.17) becoming

(
θff + θ̃

) ∣∣∣∣
ρ̂=0

= 0,
(
θff + θ̃

) ∣∣∣∣
ρ̂=1

= −k3

(
u3ff + u3fb

)
. (7.25)

Noting (7.22) and (7.23), these expressions can be reduced to

∂θ̃

∂t
= h0u1ff θ̃

′′ + h1u1ff θ̃
′ + h2u1ff θ̃, (7.26)

with boundary conditions

θ̃

∣∣∣∣
ρ̂=0

= 0, θ̃

∣∣∣∣
ρ̂=1

= −k3u3fb . (7.27)

The control design objective is then to force θ̃ to zero by augmenting the feedfor-

ward control trajectories with a boundary feedback term u3fb .
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Figure 7.3: Backstepping control technique.

7.4 Backstepping Boundary Controller

A backstepping technique is used to transform a spatially discretized form of the

original system of equations into an asymptotically stable target system. Then, by

applying the inverse of the transformation to the boundary condition of the target

system, a stabilizing boundary feedback law for the discretized model is found. The

technique is illustrated in Figure 7.3.

7.4.1 Controller Design

By defining h = 1
N
, where N is an integer, and using the notation xi(t) = x(ih, t),

the model (7.26) can be written as

˙̃θi =hi0u1ff

θ̃i+1 − 2θ̃i + θ̃i−1

h2
+ hi1u1ff

θ̃i+1 − θ̃i−1

2h

+ hi2u1ff θ̃
i, (7.28)

with boundary conditions (7.27) written

θ̃0 = 0,

θ̃N = −k3u3fb . (7.29)
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We choose the following asymptotically stable target system:

∂w̃

∂t
= h0u1ff w̃

′′ + h1u1ff w̃
′ + h2u1ff w̃ − Cw(ρ̂)u1ff w̃, (7.30)

with boundary conditions

w̃

∣∣∣∣
ρ̂=0

= 0, w̃

∣∣∣∣
ρ̂=1

= 0. (7.31)

The choice of target system is motivated by the need to maintain the parabolic char-

acter of the PDE (7.26) (to keep the highest order derivatives) while improving upon

the performance of the system. The design parameter Cw(ρ̂) > 0 is chosen based

on a trade-off between desired levels of robustness and performance and the physical

actuator limits and can be chosen to weight parts of the profile more than others.

The target system (7.30) can be spatially discretized as

˙̃wi =hi0u1ff

w̃i+1 − 2w̃i + w̃i−1

h2
+ hi1u1ff

w̃i+1 − w̃i−1

2h

+ hi2u1ff w̃
i − Ci

wu1ff w̃
i, (7.32)

with boundary conditions (7.31) written as

w̃0 = 0,

w̃N = 0. (7.33)

Next, a backstepping transformation is sought in the form

w̃i = θ̃i − αi−1
(
θ̃0, . . . , θ̃i−1

)
. (7.34)
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By subtracting (7.32) from (7.28), the expression α̇i−1 = ˙̃θi − ˙̃wi is obtained in terms

of αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, i.e.,

α̇i−1 =hi0u1ff

αi − 2αi−1 + αi−2

h2
+ hi1u1ff

αi − αi−2

2h

+ hi2u1ffα
i−1 + Ci

wu1ff θ̃
i − Ci

wu1ffα
i−1, (7.35)

which can be solved for αi to yield

αi =−
[

1
hi0
h2

+
hi1
2h

][(−2hi0
h2

+ hi2 − Ci
w

)
αi−1

+

(
hi0
h2
− hi1

2h

)
αi−2 − 1

u1ff

α̇i−1 + Ci
wθ̃

i

]
, (7.36)

where α0 = 0 and α̇i−1 is calculated as

α̇i−1 =
i−1∑
k=1

∂αi−1

∂θ̃k
˙̃θk, (7.37)

Next, subtracting (7.33) from (7.29) and putting the resulting expression in terms of

αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, the control law for u3fb can be defined as

u3fb = − 1

k3

αN−1. (7.38)

For any choice of grid size N , the control law (7.38) will be a time-invariant

linear combination of N − 1 measurements from the interior of the plasma. The

coefficients of this linear combination can be calculated ahead of time for a given set

of model parameters h0, h1, and h2, and are independent of the feedforward inputs

and trajectories. To aid in the recursive calculation of the coefficients, we define

Φ ∈ RN−1×N for which the elements of column i + 1 represent the coefficients of the
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θ̃ measurements used to evaluate αi, i.e.,

αi =
i∑

j=1

Φj,i+1θ̃
j, (7.39)

for 1 ≤ i ≤ N − 1. The first column (associated with i = 0) is all zeros since α0 = 0.

We note that we can then write

α̇i =
i∑

j=1

Φj,i+1
˙̃θj. (7.40)

We substitute (7.28) into this expression, yielding

α̇i

u1ff

=
i∑

j=1

Φj,i+1

[
hj0
θ̃j+1 − 2θ̃j + θ̃j−1

h2

+hj1
θ̃j+1 − θ̃j−1

2h
+ hj2θ̃

j

]
,

for 1 ≤ i ≤ N − 2 (we do not need to evaluate at N − 1 to calculate the control

law). This term is also a time invariant linear combination of measurements, so we

define a matrix Ψ ∈ RN−1×N for which the elements of column i + 1 represent the

measurement coefficients needed to evaluate α̇i

u1ff
, i.e.,

α̇i

u1ff

=
i+1∑
j=1

Ψj,i+1θ̃
j. (7.41)
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The first column of Ψ is all zeros since α̇0 = 0. We can then write (7.36) as

αi =
i∑

j=1

Φj,iθ̃
j =

−
[

1
hi0
h2

+
hi1
2h

][(−2hi0
h2

+ hi2 − Ci
w

) i−1∑
j=1

Φj,i−1θ̃
j

+

(
hi0
h2
− hi1

2h

) i−2∑
j=1

Φj,i−2θ̃
j −

i∑
j=1

Ψj,iθ̃
j + Ci

wθ̃
i

]
. (7.42)

Starting with α0 = 0 and α̇0 = 0, expressions (7.41) and (7.42) for i = 1, . . . , N can

be used to recursively fill the columns of Φ and Ψ. The control law (7.38) can then

be written in the explicit feedback form

u3fb = − 1

k3

N−1∑
j=1

Φj,N θ̃
j. (7.43)

The control law (7.43) allows us to calculate u3fb , which is then added to u3ff . The

new value of u3 is subsequently used with the feedforward trajectories u2 and u1 in

the nonlinear transformations

Ip = u3, (7.44)

Ptot = u2
3u

2
2ff
, (7.45)

n̄ = u
2/3
1ff
u2

3u2ff , (7.46)

to calculate the input requests Ip, Ptot, and n̄. In experimental testing, these requests

are then sent as references to the respective dedicated controllers on the DIII-D device.
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7.4.2 Stability of the Target System

In order to facilitate the proof of stability of the chosen target system, we first write the

discretized target system (7.32)-(7.33) as a matrix equation. By noting the boundary

conditions (7.31), and defining Cw as a square diagonal matrix populated with the

values of Ci
w for 1 ≤ i ≤ N − 1, the set of ODEs describing the target system can be

expressed as

β̇(t) = (M −Cw) β(t)u1ff (t), (7.47)

where β =
[
w̃1, . . . , w̃N−1

]T ∈ RN−2×1 is the value of w̃i at the interior nodes, and

the elements of the system matrix M ∈ RN−1×N−1 are defined as

M1,1 = h1
2 −

2h1
0

h2
, MN−1,N−1 = hN−1

2 − 2hN−1
0

h2
, (7.48)

M1,2 =
h1

0

h2
+
h1

1

2h
, MN−1,N−2 =

hN−1
0

h2
− hN−1

1

2h
, (7.49)

Mi,i−1 =
hi0
h2
− hi1

2h
, Mi,i = hi2 −

2hi0
h2

, (7.50)

Mi,i−1 =
hi0
h2

+
hi1
2h
, for 2 ≤ i ≤ (N − 2) . (7.51)

The remaining entries in the M matrix are all zero. Taking V = 1
2
βTΓβ as a

Lyapunov functional, where Γ is a positive definite matrix. We can compute the time

derivative as

V̇ = βTΓβ̇ = βTΓ (M −Cw)u1ff (t)β. (7.52)

Since u1ff (t) > 0 ∀t and Γ is positive definite, we have that (M −Cw) must be

negative definite to ensure that V̇ is negative definite for β 6= 0. For the model pa-

rameters used in this work, which are representative of a particular DIII-D discharge,

M is negative definite and, since Cw ≥ 0, we can be sure that the matrix (M −Cw)
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is negative definite. As a result, the discretized target system is asymptotically sta-

ble. It can be seen from this analysis how the choice of Cw can adjust the speed of

response of the system. A detailed study of the stability properties of the open loop

current profile dynamics can be found in [100].

7.4.3 Adaptive Law for Disturbance Rejection

The feedback law (7.43) is designed to improve upon the speed of response and sta-

bility properties of the current profile in the event of perturbed initial conditions.

In order to improve upon the disturbance rejection capabilities of the controller, we

augment the backstepping control law with an adaptive law that estimates a potential

input disturbance on u3 and effectively adds integral action to the closed loop system.

We consider the model (7.28) with the addition of a disturbance u3d at the boundary,

such that the boundary conditions (7.29) become

θ̃0 = 0

θ̃N = −k3

(
u3fb + u3d

)
(7.53)

We follow the same backstepping procedure as before to obtain the recursively

calculated transformation (2.3). If the disturbance were a known quantity, we could

find the control law for u3fb by subtracting (7.33) from (7.53) and putting the result

in terms of αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1. This would result in

u3fb = − 1

k3

αN−1 − u3d = − 1

k3

N−1∑
j=1

Φj,N θ̃
j − u3d , (7.54)

where the matrix Φ is found in the same way as shown in subsection 7.4-A. In practice,

the disturbance is unknown and the controller must make use of an estimate û3d , such

196



that the control law becomes

u3fb = − 1

k3

N−1∑
j=1

Φj,N θ̃
j − û3d . (7.55)

If we apply the transformation (2.3) and the control law (7.55), the disturbed system

is transformed to

˙̂wi = u1ff

(
hi0
ŵi+1 − 2ŵi + ŵi−1

h2
+ hi1

ŵi+1 − ŵi−1

2h

+hi2ŵ
i − Ci

wŵ
i
)
, (7.56)

with boundary conditions

ŵ0 = 0, (7.57)

ŵN = θ̃N − α̂N−1 = −k3

(
u3fb + u3d

)
+ k3

(
u3fb + û3d

)
= k3ũ3d , (7.58)

where ũ3d = û3d − u3d is the error in the estimate of the input disturbance. We now

look for an adaptive law for the estimate û3d that guarantees stability of the target

system.

We can write the achieved target system as a matrix equation. By noting the

boundary conditions (7.57) and (7.58), the set of ODEs describing the target system

can then be expressed as

β̇(t) = (M −Cw) β(t)u1ff (t) + Zu1ff (t)ũ3d , (7.59)
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where β, M , and Cw are defined as before. The vector Z is all zeros except

ZN−1 = k3

(
hN−1

0

h2
+
hN−1

1

2h

)
. (7.60)

We take

V =
1

2
βTΓβ +

C3

2
ũ2

3d
(7.61)

as a Lyapunov functional, where Γ is a positive definite matrix and C3 is a positive

constant. We can then compute the time derivative as

V̇ = βTΓβ̇ + C3ũ3d
˙̃u3d (7.62)

= βTΓ (M −Cw)u1ff (t)β + βTΓZu1ff (t)ũ3d (7.63)

+C3ũ3d
˙̃u3d (7.64)

= βTΓ (M −Cw)u1ff (t)β

+
(
βTΓZu1ff (t) + C3

˙̃u3d

)
ũ3d . (7.65)

If we assume a constant disturbance and take the adaptive law

˙̃u3d = ˙̂u3d − u̇3d = ˙̂u3d = −u1ff (t)

C3

βTΓZ, (7.66)

we obtain

V̇ = βTΓ (M −Cw)u1ff (t)β. (7.67)

As previously mentioned, M is negative definite for the model parameters used in

this work and, since, Cw ≥ 0, we can be sure that the matrix (M −Cw) is negative

definite. Since u1ff (t) > 0 ∀t, Γ is positive definite, and (7.61) is a function of β
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and ũ3d , V̇ is negative semidefinite. Given that u̇ff (t) is bounded, the conditions of

Barbalat’s lemma (see [51] p. 323) are satisfied and we can be sure that V̇ → 0 as

t → ∞, and, as a result, β → 0. It can be seen from this analysis how the choice of

Cw can adjust the speed of response of the system and C3 determines the speed of

adaptation.

We note that the matrix Φ can be used to write the vector of target system states,

β, in terms of the vector of measurements Θ = [θ̃1, . . . , θ̃N−1]T , i.e.,

β = Θ− ΦΘ = (I − Φ)Θ. (7.68)

This allows us to write the adaptive law as

˙̂u3d = −u1ff (t)

C3

ZTΓT (I − Φ) Θ. (7.69)

The adaptive law (7.69) combined with the control law (7.43) allows for the calculation

of the feedback term u3fb , which is then added to the feedforward term u3ff to obtain

u3. The inputs u1 and u2 are again kept at their feedforward values. These signals

are then used in the nonlinear transformations (7.44), (7.45), and (7.46) to obtain the

requests for Ip, Ptot, and n̄.

7.5 Controller Implementation in the DIII-D PCS

In this section, we present the real-time control algorithm implementation in the

DIII-D Plasma Control System (PCS) along with the simulation framework used to

test the controller and ensure the real-time algorithm was working correctly prior to

experiments.
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Figure 7.4: DIII-D PCS implementation of the magnetic profile control algorithm.
Note that the PCS code can either be connected to the DIII-D tokamak or, through
the simserver architecture, a Simulink model of the magnetic diffusion equation for
simulation tests.

7.5.1 Real-Time Algorithm

The real-time feedforward+feedback algorithm we have implemented in the DIII-D

PCS, depicted in Figure 7.4, is a general framework designed to enable testing of

a variety of control laws, and can be used to control several different profiles and

scalar quantities. Magnetic profiles that can be controlled include the safety factor,

q, the rotational transform, ι = 1/q, the poloidal magnetic flux, ψ, and the poloidal

flux gradient, θ. Available kinetic profiles include the electron temperature, the ion

temperature, and the toroidal rotation velocity. The framework can also be used to

control scalar quantities, including normalized plasma beta βN , the minimum q, or the

internal inductance of the plasma, li. The rtEFIT code [101], a real-time magnetic

equilibrium reconstruction code, and the real-time charge-exchange recombination

(rtCER) code [102] were interfaced with the algorithm to provide measurements of

magnetic and kinetic profiles on a grid of measurement points. Only the diagnostics
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from rtEFIT were needed for feedback in testing the controller presented in this

work. The real-time algorithm performs the necessary coordinate transformation

to construct the variable of interest θ(ρ̂) from the data provided by rtEFIT (the

plasma current I(t), the poloidal stream function at the magnetic axis ψaxis and

the plasma boundary ψbdry, and the safety factor q at 64 evenly spaced points in

the normalized flux spatial domain ψn = (ψ − ψaxis) / (ψbdry − ψaxis)). The profile

error θ̃ is then generated by comparing the measurements to the target profile θff .

The feedback portion of the algorithm is a discrete time state-space system with

a selectable sampling time. Based on the modulation rate of the MSE (motional

Stark effect) beam used to obtain q profile measurements in real-time, a sampling

time of 20ms was used in this work (the beam was on for 10 ms and off for 10 ms).

Taking the estimate of the input disturbance û3d as a controller state, the control laws

(7.43) and (7.69) were put into a state-space form and a discrete time approximation

with the appropriate sample time was generated. Within the PCS, the discrete state

space control law produces the output ufb, which is added to the feedforward signal,

uff , before being passed to the nonlinear transformations (7.44), (7.45), and (7.46).

The resulting outputs I(t), Ptot(t), and n̄(t) are then sent to existing, empirically

tuned single-input-single-output (SISO) control laws for the respective quantities.

For example, a proportional-integral-derivative (PID) loop is used to regulate the

plasma current to the desired waveform via actuation of the ohmic coil voltage and

measurements taken using a Rogowski loop. A separate PID controller is used to

regulate the density through gas injection. The beam power is regulated through pulse

width modulation of the power supplies for each neutral beam injector. While the

current and beam controllers are typically effective and respond to reference changes

at a time scale much faster than the current diffusion time-scale, the density response

can be slower, especially when being decreased. The experimental results presented
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in Section 7.7 reflect this description (see Figure 7.12). While this dynamic could be

accounted for in future controller designs, it is not directly accounted for in the present

design. Nevertheless, simulations and preliminary experimental results show that the

closed-loop system is robust to poor density control to some degree. We have also

included in the PCS framework the possibility of introducing artificial disturbances

for testing through the signal ud, and to specify target trajectories through the signal

θff .

7.5.2 Simserver Architecture

Prior to experimental testing, the control scheme proposed in this work was evalu-

ated through simulations using the simserver architecture, a simulation environment

that allows the DIII-D PCS to exchange data with a Matlab/Simulink model that

generates simulated diagnostics. This framework enables debugging of the real-time

feedback code as well as assessment of the effectiveness of control designs prior to

actual experiments [103]. After the simulation phase, the same PCS code used in the

simserver simulations was used to control the actual device.

To test the control scheme proposed in this work, a Simulink model of the magnetic

diffusion equation (7.3) was integrated into a simserver and the real-time implemen-

tation of the control algorithm was programmed into the PCS [104]. The Simulink

model was constructed by discretizing the magnetic diffusion equation in space and

was made to output the same set of measurements sent to the PCS by rtEFIT during

experiments.
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7.6 Simulation Results

In this section, we present results of the simulation study used to test and tune the

controller design and implementation prior to experimental testing. The simulations

presented here demonstrate the ability of the controller to track a desired profile

evolution despite disturbances and perturbed initial conditions.

7.6.1 Simulation of Static Controller

For the results presented in this subsection, as well as for the experimental results, we

used the static, non-adaptive control law (7.43) designed with Ci
w = 3.75× 10−16 for

1 ≤ i ≤ 5 and Ci
w = 7.5×10−16 for 6 ≤ i ≤ N where N = 10 (note that the simulation

model was discretized on a finer grid than that used for control). The elements of the

vector −Φj,N/k3, which represent the coefficients of the linear combination of profile

errors that generate the feedback control term u3fb , are shown in Figure 7.5.

As designed, the largest weight is placed on profile errors around j = 4, corre-

sponding to ρ̂ = 0.4. In this simulation study, we tested the ability of the feedback

controller to reject an artificially added input disturbance and to overcome errors in

the initial condition of the profile. First, a particular set of feedforward inputs uff
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Figure 7.6: Timeline depicting when the artificial disturbance and the feedback con-
troller are switched on and off during the closed loop simulation and the experimental
shot 146454.

was used in a feedforward only simulation to generate a target poloidal flux gradient

profile evolution θff . The simulation was run again with the addition of an input dis-

turbance of 0.1 MA (approximately 8%) to u3 from t = 0.5s to t = 2.5s. The feedback

controller was activated from t = 0.5s to t = 2.0s to test disturbance rejection and

switched off from t = 2.0s to t = 2.5s to observe how the profile would drift away from

the desired one under the influence of the uncontrolled input disturbance. Finally, at

t = 2.5s, the controller was turned back on and the input disturbance was removed to

see if the controller could recover the desired profile despite the profile error caused

by the uncontrolled drift. The time intervals for which the system is disturbed and

for which the feedback controller is turned on are summarized in Figure 7.6.

Time traces of q at several points along the profile are shown in Figure 7.7. The

results of the closed loop simulation are compared with the reference generated in

the feedforward simulation without the disturbance. A small error remained during

the disturbance rejection phase of the simulation (t = 0.5s to t = 2.0s). This can be

expected since there is no integral action in the static controller. The steady state

error could be made smaller by increasing the gain of the controller (through the

parameters Ci
w), however, this would increase the sensitivity of the closed loop system

to measurement noise. Subsequent simulation results will show that this problem can

be avoided by using the adaptive law (7.69). When the controller was turned off from
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Figure 7.7: Time traces of q at various points comparing the nominal feedforward
simulation (blue-solid) with the closed loop, disturbed simulation (red-dashed) using
the static control law. Note the effect of turning off the controller between t = 2.0s
and t = 2.5s (shaded regions on the plots).

t = 2.0s to t = 2.5s, the error caused by the boundary input disturbance (see Figure

7.7f) diffused in from the edge of the plasma over time, reaching at least as far as

ρ̂ = 0.5 before t = 2.5s (see Figure 7.7c). At t = 2.5s, the disturbance was removed

and the controller was turned back on. The controller increased the value of q at the

boundary (see Figure 7.7f) and the effect of this increase diffused inward over time,

causing the error initially present at t = 2.5s to be removed.

7.6.2 Simulation of Adaptive Controller

Here we present simulation results showing the improved disturbance rejection achieved

with the addition of the adaptive law (7.69). The controller was designed, as in the

previous case, using Ci
w = 3.75 × 10−16 for 1 ≤ i ≤ 5 and Ci

w = 7.5 × 10−16 for
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0s 1s 2s

Disturbance 2 on

Feedback on (during closed loop simulation)

Disturbance 1 on

3s 4s 5s

Figure 7.8: Timeline depicting when the artificial disturbance and the feedback con-
troller are switched on and off during the closed loop simulation and the experimental
shot 146454.

6 ≤ i ≤ N and with N = 10. For the adaptive law, we chose C3 = 1.5 × 10−15 and

Γ = I, where I is the identity matrix. The feedforward inputs used during the study

were the same as those used in the previous simulation and experiment. A distur-

bance in u3 of -0.1 MA (approximately -8%) was applied from 0.5s≤ t < 2.5s and a

-0.2 MA disturbance (approximately -17%) was applied from 2.5s≤ t ≤ 5.0s. In addi-

tion, an unmatched disturbance of +10% in both u1 and u2 was applied throughout

the discharge. A significant initial condition error was also imposed. Two simulation

cases were run: (1) feedforward only, (2) feedforward+feedback using the adaptive

law (7.69). The feedback controller was active throughout the second simulation. A

timeline for the simulations is given in Figure 7.8.

In Figure 7.9, the q and θ profiles achieved in each of the simulation cases are

compared with the target profiles at several times. The first three plots (Figures

8.3a-7.9c) show results during the first disturbance (+10% in u1 and u2, -0.1 MA

in u3), while Figures 8.3c-7.9f show results during the second disturbance (+10% in

u1 and u2, -0.2 MA in u3). The disturbances caused the open loop profiles to differ

significantly from the target profiles. On the other hand, the adaptive backstepping

controller was able to quickly reject the disturbances and match the target profile

after a short time, as visible in Figures 7.9c and 7.9f. Even with the presence of

unmatched disturbances, the controller was able to achieve excellent regulation of the
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Figure 7.9: Comparison of q and θ profiles at various times for the adaptive control
simulation. The open loop, feedforward only profiles (q: black, dashed, θ: black,
dash-dot) and closed loop profiles (q: red, solid, θ: red, dotted) are compared with
the desired target (q: blue diamond markers, θ: blue circular markers).

desired target profile. It is expected that adding feedback control laws for the interior

and diffusive actuators u1 and u2 could improve upon the results by adding extra

degrees of freedom to the control scheme.

7.7 Experimental Testing

The goal of the experiment presented here was to verify that the feedback controller

synthesized from a first principles based model of the poloidal flux profile evolution

is able to drive the poloidal flux gradient profile in the DIII-D device to a desired

target. While the feedback scheme could eventually be used to attempt to track

an arbitrarily chosen target, we began by testing the controller using a target that

is known to be achievable. We guaranteed the achievability of the target profile by
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Figure 7.10: Time traces of q at various points comparing the experimental results for
the reference shot 145477 (blue-solid) and the closed loop, disturbed shot 146454 (red-
dashed). Note the effect of turning off the controller during the interval 2.0s≤ t ≤ 2.5s
(shaded regions of plots).

generating it from the results of the open loop shot 145477 using the same feedforward

inputs as those used in the simulation study. The reference scenario was a double-null

plasma with a toroidal magnetic field of 1.85T, and flat-top values of Ip, n̄, and βN (a

normalized figure of merit for plasma performance) of 1.2 MA, 2×1019 m−3, and 0.8%,

respectively. The resulting θ profile was then used as the target for the closed loop

(feedforward+feedback) shot 146454. During shot 146454, we used the static control

law (7.43) designed with Ci
w = 3.75 × 10−16 for 1 ≤ i ≤ 5 and Ci

w = 7.5 × 10−16

for 6 ≤ i ≤ N where N = 10. Additionally, an input disturbance of 0.1 MA in the

reference for u3 was added from t = 0.5s to t = 2.5s. The feedback controller was

turned on from t = 0.5s to t = 2.0s to test disturbance rejection and switched off from

t = 2.0s to t = 2.5s to allow the θ profile to drift away from the desired one under the
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Figure 7.11: Comparison of experimentally achieved q and θ profiles at various times
for reference shot 145477 (q: blue diamond markers, θ, blue circular markers) and the
closed loop, disturbed shot 146454 (q: red-solid, θ: red-dashed). Partial disturbance
rejection is seen in (a), the effect of the uncontrolled disturbance can be noted in
(b), and the recovery of the target profile after the disturbance is removed and the
controller is turned back on can be observed in (c). The red shaded regions represent
the standard deviation of the measurements over a 0.25s window prior to the time
shown.

influence of the input disturbance. Finally, at t = 2.5s the controller was turned back

on and the input disturbance was removed to see if the controller could recover the

desired profile despite the error caused by the drift. This is the same scenario that

was used in the first simulation results.

Time traces of q at several points along the profile are given in Figure 7.10. The

results of the closed loop shot 146454 are compared with the reference generated in the

feedforward shot 145477. During the closed loop shot, there was an initial condition

error, which can most clearly be seen in Figures 7.10b and 7.10c, in addition to

the artificially applied input disturbance. Though the controller mostly rejected the

disturbance during the first phase (t = 0.5s to t = 2.0s), a small amount of error

remained at the end of the controlled interval (see Figure 7.10f). As was mentioned

before, this offset is because the backstepping controller is static, that is, it contains

only proportional feedback and no integral action. The offset could be reduced by

increasing the gain of the controller, however, this would increase the sensitivity
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Figure 7.12: Comparison of requested and achieved actuator values during the feed-
forward shot 145477 and the closed loop, disturbed shot 146454. During the closed
loop shot, the feedback control was turned off between t = 2.0s and t = 2.5s (shaded
regions of plots).

to noise and may cause the controller to be too aggressive. The addition of the

adaptive law (7.69), which will be tested in a future experimental campaign, should

improve upon the disturbance rejection and tracking capabilities of this scheme, as

was demonstrated in simulations. The error caused by the disturbance increased when

the controller was turned off, and the error diffused in from the edge of the plasma

throughout the brief uncontrolled drift phase (t = 2.0s to t = 2.5s), as can be seen

in Figures 7.10c-7.10f. Finally, once the disturbance was removed and the controller

was turned back on at t = 2.5s, the target values of q were quickly recovered.

In Figure 7.11, the q and θ profiles achieved in the closed loop, disturbed shot

146454 are compared with the desired reference profiles obtained from shot 145477 at

several times. Figure 7.11a shows that the controller partially rejected the disturbance

and achieved a profile close to the desired one shortly before it was turned off at

t = 2.0s. Figure 7.11b shows the error resulting from the disturbance after the brief

uncontrolled drift phase (t = 2.0s to t = 2.5s), while the successful recovery of the

desired profile after the controller was turned back on is clearly seen in Figure 7.11c.

The red shaded regions, which represent the standard deviation of the measurements

over a 0.25s window prior to the time shown, provide an indication of the measurement
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noise.

Finally, the actuator requests and achieved values are compared in Figure 7.12.

It should be noted that while the total plasma current and total power were tightly

controlled and the requests were reproduced quite well, the request for line averaged

density was often not achieved. This represented additional input disturbances aside

from the intentional one added to the feedforward input references.

7.8 Conclusions

We have presented a scheme for controlling the current profile in L-mode discharges

in DIII-D based on a dynamic model of the evolution of the poloidal magnetic flux

profile. By employing a backstepping control design technique, a transformation was

found from the spatially discretized system to an asymptotically stable target system,

along with a boundary feedback control law. The resulting control law is designed to

augment an arbitrary set of feedforward input trajectories. We have also presented

an adaptive law to add integral action to the control scheme. Through a nonlinear

transformation of the control inputs, the scheme provides stabilizing reference values

for the total plasma current, non-inductive power, and plasma density. A simulation

study shows the performance of the controller when initial conditions are perturbed

and the input is biased. Preliminary experimental results are also presented, showing

the controller to perform well despite the presence of additional disturbances caused

by the physical actuators and noisy real-time measurements of the θ profile. Exper-

imental testing of the adaptive scheme presented in this work will be carried out in

future campaigns.
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Chapter 8

Backstepping Control of the Current

Profile in H-mode Discharges

8.1 Introduction

In the previous chapter, a first-principles-driven control-oriented model for the current

profile evolution in L-mode discharges was used to design a backstepping boundary

feedback control law. The proposed scheme was shown, through simulations and

experimental results, to be capable of rejecting disturbances and regulating the cur-

rent profile around a desired trajectory. The bootstrap current, a self-generated,

non-inductive current source, was neglected in the model derivation, since L-mode

discharges typically have a small fraction of bootstrap current. In this work, an ex-

tension of the model that includes the bootstrap current and is therefore suitable for

H-mode discharges is used to develop a model-based controller for H-mode discharges

(a detailed description of the model development can be found in [105]). Building

upon the designs proposed in [106, 95], the PDE describing the current profile evolu-

tion is discretized in space using a finite difference method and a backstepping design
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is applied to obtain a transformation from the original system into a particular tar-

get system. The target system is rendered asymptotically stable by control laws for

the available distributed actuators, which complement the backstepping boundary

control law. Numerical simulations show the ability of the scheme to track target

profiles, and the disturbance rejection capability of the scheme is demonstrated in a

preliminary experiment on DIII-D.

This chapter is organized as follows. In Section 8.2, a first-principles-driven model

for the poloidal flux gradient profile evolution in H-mode discharges in DIII-D is

introduced. The objectives of the proposed control scheme are given in Section 8.3,

while the details of the design are presented in 8.4. In Section 8.5, the feedback

controller performance is tested through simulations, and in Section 8.6, the controller

is tested in a preliminary experiment in the DIII-D tokamak. Finally, concluding

remarks are given in Section 8.7.

8.2 Current Profile Evolution Model

To obtain a PDE describing the evolution of θ in H-mode discharges, we again start

from the well known magnetic diffusion equation [97],

∂ψ

∂t
=

η(Te)

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη(Te)

< j̄NI · B̄ >

Bφ,0

, (8.1)

which describes the poloidal magnetic flux evolution. The boundary conditions are

again given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ

∣∣∣∣
ρ̂=1

Ĥ

∣∣∣∣
ρ̂=1

I(t), (8.2)
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where I(t) is the total plasma current.

In order to arrive at a control-oriented model of the current profile evolution,

simplified empirical models of plasma parameters are used to capture the dominant

physics describing how the available actuators affect the system. In developing these

models, care was taken to ensure their applicability to high confinement mode (H-

mode) discharges in DIII-D. The model for the electron density is given by

ne (ρ̂, t) = nprofe (ρ̂)n̄(t), (8.3)

where nprofe (ρ̂) is a reference electron density profile and n̄(t) is the line averaged

density. The electron temperature is modeled as

Te (ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√
Ptot(t)

n̄(t)
, (8.4)

where kTe is a constant, T profilee (ρ̂) is a reference profile, Ptot (t) is the total average

NBI and gyrotron heating power. The model for the non-inductive toroidal current

density driven by each auxiliary source is given by

< j̄k · B̄ >

Bφ,0

= kkj
profile
k (ρ̂)

Te (ρ̂, t)Pk(t)

ne(ρ̂, t)
, (8.5)

where kk is a constant and jprofilek (ρ̂) is a reference profile for the non-inductive

current deposition for the k-th auxiliary source. In this work, we consider the total

gyrotron power (k = 2), the total on-axis beam power (k = 3), and the total off-axis

beam power (k = 4) as available auxiliary sources. The bootstrap current, a self-

generated non-inductive current source that arises due to gradients in the magnetic
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field strength and plasma pressure, is modeled as [68]

< j̄bs · B̄ >

Bφ,0

=
kJkeVR0

F̂

1

θ

[
2L31Te

∂ne
∂ρ̂

+ {2L31 + L32 + αL34}ne
∂Te
∂ρ̂

]
, (8.6)

where kJkeV = 1.602×10−16J/keV , and L31 (ρ̂), L32 (ρ̂), L34 (ρ̂), and α (ρ̂) depend on

the particular magnetic equilibrium and on the particle collisionality of the plasma.

The plasma resistivity, η (Te), is given by

η (ρ̂, t) =
keffZeff

T
3/2
e (ρ̂, t)

, (8.7)

where keff and Zeff are constants.

To obtain a PDE governing the evolution of θ(ρ̂, t), the empirical scaling models

for the temperature, resistivity, and current drive are substituted in (8.1), the result

is expanded with the chain rule and differentiated, yielding

∂θ

∂t
=

(
h1a

∂2θ

∂ρ̂2
+ h1b

∂θ

∂ρ̂
+ h1cθ

)
u1(t) +

4∑
k=2

hkuk(t)

+

(
1

θ

df5

dρ̂
+
f5

θ2

∂θ

∂ρ̂

)
u5(t), (8.8)

θ(0, t) =0, θ(1, t) = −k6u6(t), (8.9)

where h1a, h1b, and h1c , hk for k = 2, 3, 4, f5, and Dψ are functions of ρ̂, k6 is a

constant, and

u1(t) =

(
n̄

I(t)
√
Ptot(t)

)3/2

, uk(t) =
Pk(

Ip
√
Ptot
)1/2

n̄1/2
,

u5(t) =
n̄3/2(

I(t)
√
Ptot
)1/2

, u6(t) = I(t). (8.10)
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for k = 2, 3, 4. Equation (8.8) admits actuators u = [u1, . . . , u6], which each represent

nonlinear combinations of the physical actuators, I(t), n̄(t), and Pk(t) for k = 2, 3, 4.

The controller proposed in this work will generate waveforms for these physical actua-

tors. These waveforms represent references to be sent to existing dedicated controllers

for each of the respective quantities.

8.3 Control Objective

Let uff (t) =
[
u1ff (t), . . . , u6ff (t)

]
represent a set of feedforward control input tra-

jectories and θff (ρ̂, t) be the associated poloidal flux gradient profile evolution for a

nominal initial condition θff (ρ̂, 0). The nominal profile evolution satisfies

∂θff
∂t

=

(
h1a

∂2θff
∂ρ̂2

+ h1b
∂θff
∂ρ̂

+ h1cθff

)
u1ff (t)

+
4∑

k=2

hkukff (t) + g (θff )u5ff (t),

θff (0, t) = 0, θff (1, t) = −k6u6ff (t),

where g (θ) =
(

1
θ
df5
dρ̂

+ f5
θ2
∂θ
∂ρ̂

)
.

Given errors in the initial conditions or other disturbances, the actual state will

differ from the desired target, i.e. θ(ρ̂, t) = θff (ρ̂, t) + θ̃(ρ̂, t), where θ̃ represents

the error between the achieved and nominal profile. We consider u = uff + ufb + d

where the feedback control signals ufb(t) =
[
u1fb(t), . . . , u6fb(t)

]
are generated by a

to-be-designed control law and d = [d1, . . . , d6] represents a set of constant input
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disturbances. The dynamics of the deviations can then be written as

∂θ̃

∂t
=

(
h1a

∂2θ̃

∂ρ̂2
+ h1b

∂θ̃

∂ρ̂
+ h1cθ̃

)
u1ff + g̃u5ff

+

(
h1a

∂2θ

∂ρ̂2
+ h1b

∂θ

∂ρ̂
+ h1cθ

)(
u1fb + d1

)
+

4∑
k=2

hk
(
ukfb + dk

)
+ g

(
u5fb + d5

)
, (8.11)

θ̃(0, t) =0, θ̃(1, t) = −k6

(
u6fb + d6

)
(8.12)

where g̃ = g(θ)− g(θff ).

We first attempt to cancel the effect of the unknown disturbances by defining

the feedback laws ukfb = vk − d̂k, for k = 1, . . . , 6, where d̂k is an estimate of the

disturbances, and vk is a to-be-designed control signal, resulting in

∂θ̃

∂t
=

(
h1a

∂2θ̃

∂ρ̂2
+ h1b

∂θ̃

∂ρ̂
+ h1cθ̃

)
u1ff

+

(
h1a

∂2θ

∂ρ̂2
+ h1b

∂θ

∂ρ̂
+ h1cθ

)(
v1 + d̃1

)
+

4∑
k=2

hk

(
vk + d̃k

)
+ g

(
v5 + d̃5

)
+ ĝu5ff θ̃,

θ̃(0, t) =0, θ̃(1, t) = −k6

(
v6 + d̃6

)
.

where d̃k for k = 1, . . . , 6 is the disturbance estimation error. Note that, while the

proposed backstepping design can handle nonlinear terms, the term g̃ has been lin-

earized in this case, i.e., we take g̃ ≈ ĝθ̃ where ĝ = ∂g̃
∂θ

∣∣∣∣
θ=θff

, to simplify the design and

implementation of the controller in the DIII-D plasma control system (PCS), which

is currently set up to handle linear controller systems coupled with nonlinear trans-

formations, but not general nonlinear control laws. The objective of the controller is
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Figure 8.1: Schematic of the backstepping control design with boundary and dis-
tributed actuation augmented with disturbance estimation.

to force θ̃(ρ̂, t) to zero using distributed actuators vk ∀k ∈ [1, 5], and the boundary

actuator v6, while accounting for the effect of disturbance estimation errors.

8.4 Controller Design

8.4.1 Backstepping Transformation

Figure 8.1 illustrates the control design approach. A backstepping technique is used

to transform the original system into a particular target system. The target sys-

tem is then rendered asymptotically stable through the choice of design parameters,

boundary conditions, control laws for the distributed interior actuators, and update

laws for the disturbance estimations. The combined boundary+interior control law

is obtained using the inverse of the backstepping transformation.

By defining h = 1
N
, where N is an integer, and using the notation xi(t) = x(ih, t),
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i = 0, 1, ..., N , we discretize the system as

˙̃θi =

(
hi1a

θ̃i+1 − 2θ̃i + θ̃i−1

h2
+ hi1b

θ̃i+1 − θ̃i−1

2h

+hi1cθ̃
i
)
u1ff +

(
hi1a

θi+1 − 2θi + θi−1

h2

+hi1b
θi+1 − θi−1

2h
+ hi1cθ

i

)(
v1 + d̃1

)
+

4∑
k=2

hik

(
vk + d̃k

)
+ gi

(
v5 + d̃5

)
+ ĝiu5ff θ̃

i, (8.13)

with the boundary conditions written as

θ̃0 = 0, θ̃N = −k6

(
v6 + d̃6

)
. (8.14)

The following target system is considered:

˙̃wi =

(
hi1a

w̃i+1 − 2w̃i + w̃i−1

h2
+ hi1b

w̃i+1 − w̃i−1

2h

+hi1cw̃
i − C1w̃

i
)
u1ff + ĝiu5ff w̃

i + J i
(
v1 + d̃1

)
+

4∑
k=2

H i
k

(
vk + d̃k

)
+Gi

(
v5 + d̃5

)
, (8.15)

with the boundary conditions chosen to be

w̃0 = 0, w̃N = −k6d̃6, (8.16)
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and where

J i =

(
hi1a

θi+1 − 2θi + θi−1

h2
+ hi1b

θi+1 − θi−1

2h
+ hi1cθ

i

)
−

i−1∑
j=1

∂αi−1

∂θ̃j

(
hj1a

θj+1 − 2θj + θj−1

h2

+hj1b
θj+1 − θj−1

2h
+ hj1cθ

j

)
,

H i
k =hik −

i−1∑
j=1

∂αi−1

∂θ̃j
hjk, ∀k ∈ {2, 3, 4}

Gi =gi −
i−1∑
j=1

∂αi−1

∂θ̃j
gj.

The term α is a to-be-found backstepping transformation in the form

w̃i = θ̃i − αi−1
(
θ̃0, . . . , θ̃i−1

)
.

By subtracting (8.15) from (8.13), the expression α̇i−1 = ˙̃θi − ˙̃wi is obtained in terms

of αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, i.e.,

α̇i−1 =

(
hi1a

αi − 2αi−1 + αi−2

h2
+ hi1b

αi − αi−2

2h

+hi1cα
i−1 + C1w̃

i
)
u1ff +

(
hi1a

θi+1 − 2θi + θi−1

h2

+hi1b
θi+1 − θi−1

2h
+ hi1cθ

i − J i
)(

v1 + d̃1

)
+

4∑
k=2

(
hik −H i

k

) (
vk + d̃k

)
+
(
gi −Gi

) (
v5 + d̃5

)
+ u5ff ĝ

iαi−1,
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which can be solved for αi to yield

αi =
1

u1ff

(
hi1a
h2

+
hi1b
2h

)−1 [
−
(
hi1a
−2αi−1 + αi−2

h2

−hi1b
αi−2

2h
+ hi1cα

i−1 + C1w̃
i

)
u1ff + α̇i−1

−
(
hi1a

θi+1 − 2θi + θi−1

h2
+ hi1b

θi+1 − θi−1

2h

− hi1cθi − J i
) (
v1 + d̃1

)
−
(
gi −Gi

) (
v5 + d̃5

)
−

4∑
k=2

(
hik −H i

k

) (
vk + d̃k

)
− u5ff ĝ

iαi−1

]
, (8.17)

where α0 = 0 and α̇i−1 is calculated as

α̇i−1 =
i−1∑
k=1

(
∂αi−1

∂θ̃k
˙̃θk +

∂αi−1

∂θkff
θ̇kff

)
+

6∑
j=1

∂αi−1

∂ujff
u̇jff . (8.18)

Through its dependence on ˙̃θ, expression (7.37) depends on the to-be-designed

distributed control laws which will not in general be spatially causal and would vio-

late the strict-feedback structure required for backstepping. It also depends on the

disturbance terms, which are unknown. However, by our choice of target system,

the terms involving J i, H i
k, and Gi exactly remove the undesirable terms from the

recursive expression (8.17), upon substitution, i.e.,

αi =

(
hi1a
h2

+
hi1b
2h

)−1 [
−
(
hi1a
−2αi−1 + αi−2

h2

−hi1b
αi−2

2h
+ hi1cα

i−1 + C1θ̃
i − C1α

i−1

)
−u5ff

u1ff

ĝiαi−1 +
α̇i−1
strict

u1ff

]
, (8.19)
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where

α̇i−1
strict =

i−1∑
k=1

∂αi−1

∂θ̃k

[(
hi1a

θ̃k+1 − 2θ̃k + θ̃k−1

h2
+ hk1cθ̃

k

+hk1b
θ̃k+1 − θ̃k−1

2h

)
u1ff + ĝku5ff θ̃

k

]

+
6∑
j=1

∂αi−1

∂ujff
u̇jff +

i−1∑
k=1

∂αi−1

∂θkff
θ̇kff . (8.20)

Next, subtracting (8.16) from (8.14) and putting the resulting expression in terms of

αk−1 = θ̃k − w̃k, k = i− 1, i, i+ 1, the control law for v6 can be defined as

v6 = − 1

k6

αN−1. (8.21)

8.4.2 Stability of Target System

We design the control laws for the distributed actuators, as well as the update laws

for the disturbance estimations to stabilize the target system. We consider the control

Lyapunov function

V =
1

2

N−1∑
i=1

Qi
w

(
w̃i
)2

+
1

2

6∑
k=1

d̃2
k

Kk

,
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whereQi
w, for i ∈ [1, N−1] are positive definite weights, andKk are positive constants.

We calculate its time derivative as

V̇ =
N−1∑
i=1

Qi
ww̃

i ˙̃wi +
6∑

k=1

d̃k
˙̃dk

Kk

≤−W TAWWu1ff +
5∑

k=1

vkΘk +
5∑

k=1

d̃k

[
Θk +

˙̃dk
Kk

]

+ d̃6

[
−k17Q

N−1
w w̃N−1

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff +

˙̃d6

K6

]
, (8.22)

where

A1,1
W = −

{[
−2h1

1a

h2
+ h1

1c − C1

]
u1ff + u5ff ĝ

1

}
,

A1,2
W = −

[
h1

1a

h2
− h1

1b

h

]
u1ff ,

Ai,i−1
W = −

[
hi1a
h2

+
hi1b
h

]
u1ff ,

Ai,iW = −
{[
−2hi1a

h2
+ hi1c − C1

]
u1ff + u5ff ĝ

i

}
,

Ai,i+1
W = −

[
hi1a
h2
− hi1b

h

]
u1ff ,

AN−1,N−2
W = −

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff ,

AN−1,N−1
W = −

{[
−2hN−1

1a

h2
+ hN−1

1c − C1

]
u1ff + u5ff ĝ

N−1

}
,
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are the elements of the positive definite matrix AW , and

Θ1 =
N−1∑
i=1

Qi
ww̃

iJ i,

Θk =
N−1∑
i=1

Qi
ww̃

iH i
k, ∀k ∈ {2, 3, 4}

Θ5 =
N−1∑
i=1

Qi
ww̃

iGi,

are nonlinear, time-varying functions of the error measurements. We take the control

laws and update laws

v1 =− T1Θ1, (8.23)

vk =− TkΘk, ∀k ∈ {2, 3, 4} (8.24)

v5 =− T5Θ5, (8.25)

˙̂
dk =KkΘk, (8.26)

˙̂
d6 =−K6Q

N−1
w w̃N−1

[
hN−1

1a

h2
+
hN−1

1b

h

]
u1ff , (8.27)

where Tk ≥ 0 ∀k ∈ {1, 2, 3, 4, 5} are design constants. Assuming constant distur-

bances, this reduces (8.22) to

V̇ ≤ −W TAWW −
5∑

k=1

TkΘ
2
k. (8.28)

Since AW is positive definite, we have that V̇ ≤ 0. Since V ≥ 0 and V̈ is bounded, the

conditions of Barbalat’s lemma are satisfied, and we have that V̇ → 0. This implies

that w̃ is driven to zero, guaranteeing asymptotic stability of the target system,

and, consequently, θ̃. Note that the nonlinear control laws are linearized around the

feedforward trajectories for implementation in the PCS.
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8.4.3 Physical Actuator Requests

The nonlinear transformations (8.10), must be inverted to obtain references for the

physical actuators from the combined feedforward+feedback output of the controller.

However, because the output of the controller is u ∈ R6×1, whereas there are only five

physical actuators available, there is not, in general, a solution to the inverse trans-

formation. To overcome this, an additional actuator is required that provides heating

without driving current, allowing for Ptot to be independently modulated. On DIII-D,

this type of actuation could be achieved with a combination of co- and counter-current

beam injection that drives very little current, however, counter-current beams were

not used during the present experimental campaign. Instead, a weighted least squares

fit was used to find the the individual beam and gyrotron powers that would best

match the outputs of the controller.

The inverse nonlinear transformations between the controlled inputs (uk for k =

1, . . . , 6) and the physical actuators on DIII-D are

Ip = u6, Pec =
u2u5

u
2/3
1

, Pnbi,on =
u3u5

u
2/3
1

, Pnbi,off =
u4u5

u
2/3
1

,

Ptot =

(
u5

u1u6

)2

, un =
u5

u
1/3
1

. (8.29)

We consider a linear least squares problem of the form

β̂LS = arg min
β

(yLS −XLSβLS)T QLS (yLS −XLSβLS) ,
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where

yLS =



u2u5

u
2/3
1

u3u5

u
2/3
1

u4u5

u
2/3
1(
u5
u1u6

)2


, βLS =


Pec

Pnbion

Pnbioff

 , XLS =



1 0 0

0 1 0

0 0 1

1 1 1


,

and QLS is a diagonal weighting matrix included to weight the importance of each

element of the residual. This results in the solution

β̂LS =
[
(X ′LS)

T
X ′LS

]−1

(X ′)
T
y′LS, (8.30)

where

X ′LS = qLSXLS, y′LS = qLSy,

and qi,iLS =
√
Qi,i
LS. The references in the vector β̂LS can then be sent to the appropriate

physical actuators on DIII-D.

8.5 Simulation Results

In this section, we present results of the simulation study used to test and tune the

controller design and implementation prior to experimental testing.

8.5.1 Disturbance Rejection

In this simulation, one disturbance (d1 = d4 = −0.065, d6 = 0.1) was applied from

0.5s to 3.0s, and a different disturbance (d3 = d4 = −0.1, d5 = −0.25, d6 = 0.1 ) was

applied from 3.0s to the end of the simulation. The feedback controller was turned

on throughout the simulation. The time-varying controller matrices were updated
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Figure 8.2: Time traces of q at various points during the disturbance rejection sce-
nario, comparing the nominal feedforward simulation (blue, solid) with the closed
loop, disturbed simulation (red, dashed) and the open loop, disturbed simulation
(black, dash-dot).

every 500ms between 0.5s and 3.0s. An artificial noise signal was also added to the

measurements of θ. Time traces of q at various points are shown in Figure 8.2. The

controller was able to quickly reject the initial condition errors in the outer part of

the domain (Figure 8.2d, 8.2e, and 8.2f), while the interior part of the domain took

longer (around 2-3s) to achieve the desired target, due to the slower dynamics in the

interior region (Figure 8.2a, 8.2b, and 8.2c). Despite the change in the disturbance

at t = 3.0s, the controller was able to keep the profile very close to the desired

target throughout the remainder of the simulation. Figure 8.3 shows the q and θ

profiles at several times, showing that the closed loop response is improved from

the open loop case, most noticeably in Figure 8.3d. Figure 8.4 shows the actuator

trajectories during the simulation. The plasma current (Figure 8.4a), which represents

227



0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

q

ρ̂

 

 

θ
 (

W
b

/r
a

d
)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0
q Target
q Closed loop
q Open loop

θ Target
θ Closed loop
θ Open loop

(a) t = 1.5s

0 0.2 0.4 0.6 0.8 1
0

5

10

q

ρ̂

 

 

θ
 (

W
b

/r
a

d
)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

(b) t = 2.49s

0 0.2 0.4 0.6 0.8 1
0

5

10

q

ρ̂

 

 

θ
 (

W
b

/r
a

d
)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

(c) t = 3.5s

0 0.2 0.4 0.6 0.8 1
0

5

10

q

ρ̂

 

 

θ
 (

W
b

/r
a

d
)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

(d) t = 5.5s

Figure 8.3: Comparison of q and θ profiles at various times for the disturbance re-
jection scenario. The closed loop profiles (q: red solid, θ: red dashed) and open loop
profiles (q: black dotted, θ: black dash-dot) are compared with the desired targets
(q: blue, triangular markers, θ: blue, circular markers).

the boundary actuator, was modified significantly by the backstepping controller. It

can be noted that the controller increased the off-axis beam power while decreasing

the on-axis power during the first disturbance. In response to the second disturbance,

the EC (electron-cyclotron) power and off-axis beam power were increased until they

reached saturation (around t = 4s and t = 5s, respectively), as seen in Figures

8.4c and 8.4e. As the controller determined additional power was still necessary to

maintain the desired profile, the on-axis beam power (Figure 8.4d) was increased

around t = 5s. The diagnostic power, shown in Figure 8.4f, is a portion of the on-axis

beam power that is required to be held constant for current profile measurements

in experiments. It was therefore held constant throughout the simulation to better
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Figure 8.4: Plots of plasma current, density, EC power, on-axis beam power, off-
axis beam power, and diagnostic beam power during the disturbance rejection sce-
nario comparing the unsaturated requests during the closed loop simulation (magneta,
dash-dot), the saturated values (red, dashed) from the feedback controller, and the
open loop values (black, dash-dot). Shaded regions indicated time intervals during
which the feedback controller was turned off.

recreate the conditions of experiments.

8.5.2 Profile Reference Tracking

To test the target tracking capability of the control scheme, two input trajectories

Feedforward 1 and Feedforward 2 were used to generate two distinct target current

profile evolutions Target 1 and Target 2. During the closed loop simulation, Feed-

forward 1 was provided to the controller throughout the simulation. The initial

conditions were perturbed, and the controller target was changed from 1 to 2 at 2.5s.

The feedback controller was turned on throughout the simulation. The time-varying

controller matrices were again updated every 500ms between 0.5s and 3.0s. An ar-
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Figure 8.5: Time traces of q at various points during the target tracking scenario,
comparing Targets 1 and 2 (black, dash-dot and blue, solid, respectively) with the
closed loop simulation (red-dashed). The controller targets were switched at 2.5s
(indicated by the vertical orange dashed line).

tificial noise signal was also added to the measurements of θ. Time traces of q at

various points are shown in Figure 8.5, showing that the controller was able to reject

the initial condition errors (most noticeable in Figures 8.5a and 8.5b) and to achieve

Target 1 prior to 2.5s. After the target was switched, as indicated by the vertical

orange dashed line, the controller was able to move the profile to Target 2 by around

4.0s. Figure 8.6 shows the q and θ profiles at several times. Figures 8.6a and 8.6b

clearly show the controller achieved Target 1 by t = 2.5s, while Figures 8.6c and 8.6d

show progress toward and achievement of Target 2. Figure 8.7 shows the actuator

trajectories during the simulation. While the actuators remained fairly close to the

feedforward values during the first part of the discharge, since they only needed to be

modified to account for initial condition errors, increased feedback actuation can be
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Figure 8.6: Comparison of q and θ profiles at various times for the profile tracking
scenario. The closed loop profiles (q: red solid, θ: red dashed) are compared with
Target 1 (q: blue, circular markers, θ: blue, triangular markers) and Target 2 (q:
magenta, square markers, θ: magenta, diamond markers).

noted in the second phase (after t = 2.5s). The plasma current was increased, while

the density was reduced (Figures 8.7a and 8.7b, respectively). The EC power and

off-axis beam power (Figures 8.7c and 8.7e) are essentially turned off to achieve Tar-

get 2, while the on-axis power (Figure 8.7d) remains close to the feedforward value.

The diagnostic beam power was again kept constant in the simulation, as shown in

Figure 8.7f.
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Figure 8.7: Plots of plasma current, density, EC power, on-axis beam power, off-
axis beam power, and diagnostic beam power during the first target tracking scenario
comparing the feedforward values (blue solid) and the closed loop values (red dashed).

8.6 Experimental Results

In this section, we present preliminary experimental results showing the controller’s

performance on the DIII-D device. A target profile was generated based on the re-

sults of an open loop reference shot #150320. Again, no balanced beam was available

during this closed loop experiment, removing a degree of freedom. In addition, two

of the beams were needed for current profile diagnostics and were therefore unavail-

able for feedback. Furthermore, the gyrotrons, which were turned on at 2.5s in the

reference shot, were unavailable during the closed loop shot. This reduced the avail-

able current drive and heating, and contributed to increased MHD instabilities. The

increased MHD activity during the shot caused the shot to be terminated early at

3.7s. Additional artificial disturbances were also introduced in the feedforward beam
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Figure 8.8: Time traces of q at various points, comparing the closed loop (blue, solid)
with the target (red-dashed) during shot #154398.

power trajectories. Time traces of q at various locations are presented in Figure (8.8),

showing that, despite the disturbances, the controller was able to achieve fairly good

tracking of the desired target throughout the discharge. Figure (8.9) shows the q pro-

file at various times, along with a shaded region representing the standard deviation

of the measurements over a window of 0.25s prior to the displayed time. Figure (8.10)

compares the achieved, requested (output of the controller), and feedforward actuator

trajectories, showing the modification of the input trajectories by the controller. In

response to the disturbances, the density was reduced. Because the lack of EC power

reduced the amount of off-axis current drive, the controller responded by increasing

the off-axis beam power (until it hit saturation) and decreasing the on-axis beam

power. The plasma current began to oscillate around the desired reference, appar-

ently because the controller was amplifying the measurement noise, which was much
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Figure 8.9: Comparison of q profiles at various times during shot #154398. The closed
loop profiles (blue solid) are compared with the target (red, diamond markers). The
shaded regions represent the standard deviation of the measurements over a window
of 0.25s prior to the time shown.

larger in this experiment than expected. This will be addressed in future experiments

by reducing the gain K6.

8.7 Conclusions

We have presented simulation and preliminary experimental results showing the per-

formance of a backstepping boundary+interior current profile controller based on first-

principles-driven model of H-mode DIII-D discharges. By employing a backstepping

control design technique, a transformation was found from the spatially discretized

system to a particular target system. The target system was rendered asymptotically
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Figure 8.10: Plots of density, plasma current, on-axis beam power, and off-axis beam
power during shot #154398 comparing the feedforward values (red dashed) and the
closed loop values (blue solid). Values actually achieved by the physical actuators are
also shown (magenta dash-dot).

stable via the design of distributed feedback control laws and disturbance estimation

update laws. The resulting feedback controller is designed to augment an arbitrary

set of feedforward input trajectories. Through a nonlinear transformation of the

control inputs, the scheme provides stabilizing reference values for the total plasma

current, total EC power, on-axis NBI power, off-axis NBI power, and plasma density.

A simulation study showed the performance of the controller during tracking and

disturbance rejection scenarios. Promising preliminary experimental results demon-

strated the ability of the scheme to track a desired profile evolution despite significant

disturbances. Further experimental testing, using EC power and an implementation

of the full nonlinear controller, will be done in the future to better assess the perfor-

mance of the control scheme in a variety of scenarios, including disturbance rejection,
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and target tracking.
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Chapter 9

Conclusions and Future Work

This dissertation has focused on developing and studying nonlinear burn condition

and kinetic profile control strategies in tokamak fusion plasmas. In this final chapter,

we summarize the results of the work and briefly describe some areas that merit future

research.

9.1 Contributions

The contributions of this dissertation are:

1. Nonlinear model-based zero-dimensional burn control combining available ac-

tuation. The effect of the tritium ratio on the fusion heating power is exploited

to modulate plasma heating and control the temperature through isotopic fuel

tailoring. For scenarios in which the combined modulation of auxiliary power

and isotopic mix cannot achieve stability and performance requirements, impu-

rity injection is used as a back-up actuator. The controller synthesis is based

on the full nonlinear model, allowing the controller to deal with a larger set

of perturbations in initial conditions than linear model based controllers. The
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controller handles both thermal excursions and quenches and depends paramet-

rically on the equilibrium point, allowing it to be used to drive the system from

one equilibrium point to another.

2. Nonlinear adaptive burn control with online operating point optimization. While

many of the model parameters necessary for implementation of the proposed

nonlinear control scheme are either measured or can be calculated based on

first-principles equations or scaling laws, some parameters will be, in practice,

uncertain or unknown. A nonlinear adaptive control scheme is proposed to en-

sure that the burn condition reference is asymptotically stable despite model

uncertainty. In addition, an online optimization scheme is used which alters the

controller references in real-time to optimize a given figure of merit for reactor

performance.

3. Nonlinear output feedback based burn control. Due to the extreme conditions

in fusion reactors the diagnostic systems needed to provide the state measure-

ment necessary for implementation of the proposed control designs may not all

be available. To overcome this obstacle, an observer is used to estimate the

required states based on the available measurements. Due to the nonlinearity

of the burning plasma dynamics and, in general, the measured output map,

a nonlinear observer is proposed. The observer is augmented with an integral

term, resulting in a nonlinear proportional-integral observer, which guarantees

convergence of the predicted and measured outputs, despite model uncertainty.

The output feedback control design is coupled with adaptive parameter estima-

tion and operating point optimization to ensure desired reactor performance is

achieved.

4. Simulation framework for testing burn control strategies in METIS. The fast
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integrated modeling code METIS is coupled with a volume averaged model of

particle dynamics and a general feedback control block in Simulink, enabling the

simulation of various burn control strategies. With this tool burn control strate-

gies can be simulated in a wide-range of operating conditions and scenarios, and

their effect on other plasma parameters can be assessed.

5. Backstepping density and temperature profile control in burning plasmas. The

novel design is an extension of the backstepping technique for PDE systems that

allows for simultaneous boundary+interior feedback control design and incorpo-

rates adaptive disturbance estimation to improve system response. The result-

ing nonlinear controller is demonstrated in simulations to be able to stabilize a

set of unstable equilibrium profiles, even in the presence of input disturbances.

6. Backstepping current profile control in L- and H-mode discharges in DIII-D.

A set of nonlinear profile control strategies were developed, based on a first-

principles-driven model of the current profile dynamics. The approaches were

successfully demonstrated in simulations, as well as in experiments on DIII-D

as part of the first ever campaign to experimentally test first-principles-driven

model-based current profile control laws.

9.2 Future Work

While the simulation framework for testing burn control designs in METIS is a sig-

nificant step towards the development of controllers for ITER, a comprehensive study

of controllers under the complete range of expected operating conditions (including

potential fault scenarios, like the loss of certain diagnostics or actuators) should be

carried out. As much as possible, burn control designs should be tested experimen-

tally in existing devices. Although present-day tokamaks cannot actually achieve
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burning plasma conditions, through careful experimental design, the dynamics of

burning plasmas can be mimicked to some degree.

Though the feasibility of controlling kinetic profiles in a burning plasma using a

combination of distributed and boundary feedback was shown in Chapter 6, more

study will be necessary to find physical methods for the modulation of the kinetic

variables at the edge of the plasma, i.e. achieving the desired values of uα, uDT ,

and uE. This will have to be done through modulation of the physical properties

of the plasma scrape-off layer (SOL) such as gas puffing, gas pumping, or impurity

injection. Moving forward, model improvements will be made by including models

for the diffusivity and pinch velocity, as well as models of the SOL in order to apply

more realistic boundary conditions to the system.

The current profile control strategy developed in Chapters 7 and 8 will be tested

through additional experiments and extended to other tokamaks, including NSTX

at Princeton Plasma Physics Laboratory. Because of the coupling of the dynamics

of the current, density, and temperature profiles, as well as the fact that they share

many of the same actuators, the problem of integrating current profile control and

burn control strategies must also be explored.
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Appendix A

Particle Recycling Model Derivation

The following particle recycling model derivation is based on a similar model derived

in [41]. The particle balance for deuterium and tritium ions can then be written as

dnD
dt

= −nD
τD

+ feffS
R
D + SinjD , (A.1)

dnT
dt

= −nT
τT

+ feffS
R
T + SinjT , (A.2)

where SRD and SRT represent the total recycling fluxes from the plasma facing compo-

nents that reaches the plasma edge. The recycled flux satisfies

SRD = fref
nD
τD

+
(
1− γPFC

)
SPFC + fref (1− feff )SRD, (A.3)

SRT = fref
nT
τT

+ γPFCSPFC + fref (1− feff )SRT , (A.4)

where γPFC is the tritium fraction of the particle flux from the plasma facing com-

ponents, SPFC . The third term in each expression represents the recycled flux that

is screened by the plasma due to imperfect core fueling efficiency and subsequently

reflected by the surface. To avoid the need for a self-consistent model of wall implan-
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tation, diffusion, and re-emmission to obtain the desorbed flux SPFC , we simplify the

model by considering a recycling coefficient defined as the ratio of total recycling flux

to the total flux to the surface, i.e.

Reff =
SRD + SRT
SSD + SST

=
SR

SS
. (A.5)

Note that the recycling coefficient includes the effect of wall pumping and active

pumping. In order to incorporate the recycling coefficient into the model, we must

write an expression for the flux to the surface

SSD =
nD
τD

+ (1− feff )
(
1− γPFC

)
SPFC + fref (1− feff )SSD, (A.6)

SST =
nT
τT

+ (1− feff ) γPFCSPFC + fref (1− feff )SST , (A.7)

where the third term represents the surface flux that is reflected and subsequently

returned to the surface due to imperfect fueling efficiency. Since the recycling coeffi-

cient compares total hydrogen fluxes, not individual isotopes, we sum corresponding

equations to obtain

SR = fref

(
nD
τD

+
nT
τT

)
+ SPFC + fref (1− feff )SR, (A.8)

SS =
nD
τD

+
nT
τT

+ (1− feff )SPFC + fref (1− feff )SS. (A.9)

Using these expressions, we can solve to obtain

SPFC = SR [1− fref (1− feff )]− fref
(
nD
τD

+
nT
τT

)
, (A.10)

SS =

(
nD
τD

+
nT
τT

)
+ (1− feff )SR.
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From the definition of the recycling coefficient, we have that SS = SR/Reff . Substi-

tuting this definition and rearranging, we can obtain

SR =
Reff

1−Reff (1− feff )

(
nD
τD

+
nT
τT

)
. (A.11)

Substituting into (A.10) yields

SPFC =

[
(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)
. (A.12)

Solving (A.3) and (A.4) for SRD and SRT , respectively, and substituting (A.12) results

in

SRD =
1

1− fref (1− feff )

{
fref

nD
τD

+
(
1− γPFC

) [(1− fref (1− feff ))Reff

1−Reff (1− feff )
− r
](

nD
τD

+
nT
τT

)}
, (A.13)

SRT =
1

1− fref (1− feff )

{
fref

nT
τT

+γPFC
[

(1− fref (1− feff ))Reff

1−Reff (1− feff )
− fref

](
nD
τD

+
nT
τT

)}
. (A.14)
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Appendix B

Lyapunov Stability Basics

In this appendix we review the basics of Lyapunov stability theory, which is crucial

to the stability proof in this paper. Consider a nonlinear dynamic system of the form

ẋ = f(x, u), (B.1)

where x (state variable) and u (control input) are vector valued functions of time.

We seek a feedback control law of the form

u = k(x), (B.2)

to achieve a desired property, for example, stability of a certain equilibrium point. A

point x = xe is an equilibrium of the system when

f (xe, k (xe)) = 0.

With a shift of the system’s origin, i.e, x̃ = x − xe the equilibrium can be made to

occur at x̃ = 0. An equilibrium x̃ = 0 of (B.1) and (B.2) is globally asymptotically
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stable if there exists a continuously differentiable function V (x̃) such that

V (x) > 0 for all x 6= 0 and V (0) = 0,

V (x)→∞ as |x| → ∞,

V̇ =
dV

dx̃
f (x, k (x)) < 0 for all x̃ 6= 0.

For example, if we can find a quadratic Lyapunov function V = x̃TPx̃ with V̇ =

−x̃TQx̃, P , Q > 0, all of the conditions are satisfied and the equilibrium xe is asymp-

totically stable.

The problem of finding a Lyapunov function V (x), even for a system known to be

stable, can be very difficult in general. It is often even more difficult when we have

to find V (x) and the feedback law k(x) at the same time.

We note that for linear systems, other stability tests exist, for example, Routh-

Hurwitz. However, for nonlinear systems such as the one considered in this work,

some form of Lyapunov analysis is the only tool available. See [51] for a complete

approach to the Lyapunov stability theory.

259



Curriculum Vitae
Education

Lehigh University, Bethlehem, Pennsylvania

Ph.D., Mechanical Engineering. GPA: 3.95
December 2013

York College of Pennsylvania, York, Pennsylvania

B.S., Mechanical Engineering. Mathematics minor, Summa Cum Laude. GPA: 3.94
August 2009

Skills & Expertise
� Control Systems: Model-based control design · Optimization · Real-time software imple-

mentation
� Engineering : Complex system modeling and simulation · Machine design and computer

aided drafting · Manufacturing and part fabrication
� Software: Matlab · Simulink · Solidworks · AutoCAD · ANSYS · Word · PowerPoint ·

Excel · LATEX 2ε
� Programming and platforms: C/C++ · HTML · Windows · Macintosh · Unix

Research Experience
Lehigh University, Bethlehem, Pennsylvania

Research Assistant August 2010 – December 2013

� Created innovative control algorithms for stabilization and real-time optimization of the
power produced by nuclear fusion reactors, applying multivariable, adaptive nonlinear
techniques, and testing designs using Matlab/Simulink simulations of particle and energy
transport. Designs enable operation at economically attractive conditions that would
otherwise be unstable.

CEA Cadarache, Saint-Paul-lès-Durance, France

Visiting Researcher Spring 2012

� Tested approaches to stabilizing density and temperature in fusion plasmas using a pre-
dictive modeling code (implemented in Matlab/Simulink), and created new modules to
extend the existing simulation capabilities. Demonstrated robustness of designs to the
complex physics captured by the predictive code.

General Atomics, San Diego, California

Visiting Researcher Summer 2010 & 2011

� Designed and experimentally tested feedback control algorithms for the DIII-D nuclear
fusion reactor, demonstrating solutions that could facilitate more efficient and longer
duration operation. Tested controllers based on first-principles models as well as data-
driven models. Implemented a flexible framework for real-time control that has already
been utilized for several experimental campaigns.

Teaching Experience
Lehigh University, Bethlehem, Pennsylvania

Instructor Fall 2013

� Developed and facilitated a group project course (ENG-005) for over 100 engineering
freshman in which students designed and tested miniature wind turbines.

� Lectured and guided 30 students through tutorial sessions in a numerical methods course
(ME-196) covering Excel and Matlab.

260



Teaching Assistant Fall 2011, Fall 2012

� Assisted students during office hours and graded homework for undergraduate courses in
aerodynamics (50 students), control systems (50 students), and nuclear fusion (15 stu-
dents). Delivered lectures on nuclear fusion reactor confinement techniques and nonlinear
control design.

Graduate STEM Fellow in K-12 Education Fall 2009, Spring 2010

� Developed and taught an engineering curriculum for middle school (8 classes of 20-
30 students each week) including lessons on the design process, alternative energy, and
computer aided drafting. Encouraged students to pursue careers in science, and provided
lesson plans to teachers for subsequent school years.

Engineering Experience
Graham Packaging Corporation, York, Pennsylvania

Project Development Engineering Co-op Fall 2008

� Designed plant layouts (using AutoCAD), and analyzed process systems (chillers, air
handling units, etc.) for bottle production lines. Evaluated existing lines and identified
potential additions and modifications in plants across the country to make more efficient
use of capital equipment and space.

Komax Systems York, York, Pennsylvania

Process Engineering Co-op Spring 2008

� Experimentally identified the root cause of errors in solar panel manufacturing robots,
and investigated methods for improving the soldering process. Results contributed to
designs that kept product within tolerances while reducing solar cell breakage during
manufacturing.

BenCo Technology, LLC, Honey Brook, Pennsylvania

Mechanical Engineer/Drafter June 2004 - January 2008

� Modeled and designed hundreds of custom parts/assemblies for a sheet metal laser cut-
ting company, using SolidWorks and AutoCAD to generate flat patterns, as well as de-
tailed drawings for forming/welding/ assembly. Led projects from customer consultation
and design through pricing and production. Ensured final products met cost/performance
expectations.

York College of PA Formula SAE, York, Pennsylvania

Vehicle Suspension Designer June 2008 - June 2009

� Teamed with 15 student engineers to design and build a Formula-style race car. Led the
design/fabrication of the suspension (using SolidWorks for design and COSMOSWorks
to perform FEA analysis), improving upon previous designs to achieve better han-
dling/performance and reduced weight.

Honors and Awards
Lehigh University

� Rossin Doctoral Fellow, 2012
� RCEAS Fellowship, 2011

Institute of Electrical and Electronics Engineers

� Best Presentation in Session, 2012 American Controls Conference
� Finalist, Best Student Paper Award, 2012 American Controls Conference

National Science Foundation

� Graduate Research Fellowship Program Honorable Mention, 2010

261



� Graduate Research Fellowship Program Honorable Mention, 2011

York College of Pennsylvania

� Trustee (full-tuition) Scholarship, 2005-2009

Memberships & Certifications
Pennsylvania State Registration Board for Professional Engineers

� Engineer in Training, License Number: ET018342

Institute of Electrical and Electronics Engineers

� Control Systems Society · Technical Committee on Power Generation

Journal Articles

M. D. Boyer, E. Schuster, “Adaptive Nonlinear Control and Optimization of the Burn
Condition in ITER”, in preparation.

M. D. Boyer, E. Schuster, “Control of Density and Temperature Profiles in Burning Fusion
Plasmas via Backstepping Boundary and Interior Control”, in preparation.

M. D. Boyer and E. Schuster, “Nonlinear Burn Condition Control for ITER via Isotopic
Fuel Tailoring,” in preparation.

W. Shi, W. Wehner, J. E. Barton, Mark D. Boyer, E. Schuster, et al. “System Identifica-
tion and Robust Control of the Plasma Rotational Transform Profile and Normalized Beta
Dynamics for Advanced Tokamak Scenarios in DIII-D,” submitted to Nuclear Fusion.

M. D. Boyer, J. Barton, E. Schuster, M. L. Walker, T. C. Luce, et al., “Backstepping
Control of the Toroidal Plasma Current Profile in the DIII-D Tokamak,” accepted for pub-
lication in IEEE Transactions on Control Systems Technology, 2013.

M. D. Boyer, J. Barton, E. Schuster, T. C. Luce, J. R. Ferron, et al., “First-Principles-
Driven Model-Based Current Profile Control for the DIII-D Tokamak via LQI Optimal
Control,” Plasma Physics and Controlled Fusion, 2013.

D. Moreau, M. L. Walker, J. R. Ferron, F. Liu, E. Schuster, J. E. Barton, M. D. Boyer,
et al., “Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D
based on data-driven models,” Nuclear Fusion, 2013.

J. E. Barton, Mark D. Boyer, W. Shi, E. Schuster, T. C. Luce, et al., “Toroidal Current
Profile Control During Low Confinement Mode Plasma Discharges in DIII-D via First-
Principles-Driven Model-Based Robust Control Synthesis,” Nuclear Fusion, 2012.

Refereed Conference Proceedings

M. D. Boyer, J. Barton, W. Shi, W. Wehner, E. Schuster, J. Ferron, et al. “Simultaneous
Boundary and Distributed Feedback Control of the Current Profile and Stored Energy in
H-mode Discharges on DIII-D”, submitted to the 19th World Congress of the International
Federation of Automatic Control, Cape Town, South Africa, August 24-29, 2014.

M. D. Boyer, E. Schuster, “Nonlinear Burn Control in Tokamak Fusion Reactors via
Output Feedback”, submitted to the 19th World Congress of the International Federation
of Automatic Control, Cape Town, South Africa, August 24-29, 2014.

262



J. Barton, Mark D. Boyer, W.Shi, W. Wehner, E. Schuster, et al., “Experimental and
Simulation Testing of Physics-model-based Safety Factor Profile and Internal Energy Feed-
back Controllers in DIII-D Advanced Tokamak Scenarios”, submitted to the 19th World
Congress of the International Federation of Automatic Control, Cape Town, South Africa,
August 24-29, 2014.

M. D. Boyer, E. Schuster, “Burn Control in Fusion Reactors Using Simultaneous Boundary
and Distributed Actuation”, accepted, 52nd IEEE Conference on Decision and Control,
Florence, Italy, December 10-13, 2013.

W. Shi, J. Barton, W. Wehner, M. D. Boyer, et al., “First-principles-driven Control of
the Rotational Transform Profile in High Performance Discharges in the DIII-D Tokamak,”
accepted, 52nd IEEE Conference on Decision and Control, Florence, Italy, December 10-13,
2013.

M. D. Boyer and E. Schuster, “Nonlinear Control and Optimization of the Burn Condition
in Tokamak Nuclear Fusion Reactors,” 2013 American Controls Conference.

W. Shi, W. Wehner, J. Barton, M. D. Boyer, E. Schuster, et al., “PTRANSP Simulation
and Experimental Test of a Robust Current Profile and βN Controller for Off-Axis Current-
Drive Scenarios in the DIII-D Tokamak,” 2013 American Controls Conference.

M. D. Boyer, J. Barton, E. Schuster, and M. L. Walker, “Current Profile Tracking for
the DIII-D Tokamak via LQI Optimal Control,” 51st IEEE Conference on Decision and
Control, Maui, HI, USA, Dec. 2012.

W. Shi, W. Wehner, J. Barton, M. D. Boyer, E. Schuster, et al., “A Two-time-scale Model-
based Combined Magnetic and Kinetic Control System for Advanced Tokamak Scenarios
on DIII-D,” 51st IEEE Conference on Decision and Control, Maui, HI, USA, Dec. 10-13,
2012.

M. D. Boyer, J. Barton, E. Schuster, and M. L. Walker, “Backstepping Control of
the Plasma Current Profile in the DIII-D Tokamak,” 2012 American Control Conference,
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