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ABSTRACT 

 In this study, a computational and experimental effort was carried out to 

qualitatively understand the weld pool shape, distortion and residual stress for 

continuous laser welding and manual pulsed gas metal arc welding. For all the welding 

simulations given in this dissertation, a welding specific finite element package, 

SYSWELD, is used. This research focuses on the welding behavior observed in light-

weight metal structures known as the tailor-welded blanks, TWBs. They are a 

combination of two or more metal sheets with different thickness and/or different 

materials that are welded together in a single plane prior to forming, e.g., stamping. 

They made from the low carbon steel. As laser welding experiment results show, the 

weld pool shape at the top and bottom surface, is strongly influenced by surface tension, 

giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a 

new volumetric heat source model was developed to predict the transient temperature 

profile and weld pool shape, including the effect of surface tension. Tailor welded 

blanks with different thicknesses were examined in the laser welding process. All major 

physical phenomena such as thermal conduction, heat radiation and convection heat 

losses are taken into account in the model development as well as temperature-

dependant thermal and mechanical material properties. The model is validated for the 

case of butt joint welding of cold rolled steel sheets. The results of the numerical 

simulations provide temperature distributions representing the shape of the molten pool, 

distortion and residual stress with varying laser beam power and welding speed. It is 

demonstrated that the finite element simulation results are in good agreement with the 
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experiment results. This includes the weld pool shape and sheet metal distortion. While 

there is no experimental data to compare directly with residual stress results, the 

distorted shape provides an indirect measure of the welding residual stresses.  

 The welding details such as clamping, butt joint configuration, material, sample 

thickness are similar for both the laser welding process and the manual pulsed GTAW 

process. Also as same metallurgical investigation, the weld pool shape displays wider 

full penetration without the effect of surface tension. The double ellipsoid volumetric 

heat source is applied in the finite element simulation to determine the temperature 

distribution, distortion and residual stress. The simulation results are compared with the 

experimental results and show good agreement. In addition, the results from the laser 

welding process are compared to the equivalent results from the GTAW process in the 

order to better understand the fundamental differences between these two welding 

processes.   
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CHAPTER 1 

Introduction 

 During the past two decades fuel conservation and safety mandates along with 

environmental concerns have prompted the automotive industry to design lighter cars 

for reduced fuel consumption while improving the overall structure of their vehicles for 

occupant safety. Therefore, the concept of combining various steel options using 

welding processes into a welded blank was developed to enable product and 

manufacturing engineers to "tailor" the blank so that steel’s best properties were located 

precisely within the part they were needed. 

1.1 Tailor-Welded blank 

 

Use of the tailor-welded blank (TWB) continues to grow in the automotive 

industry. TWB consists of two or more metal sheets that have been welded together in a 

single plane prior to subsequent forming. With variable-thickness blanks, produced by 

welding together different sheet-stock combinations in specific regions, it is possible to 

make finished parts with a desirable variation in properties such as strength and 

corrosion resistance. It's common for TWBs to be composed of different sheets of 

different thickness, with different strength and material properties. This allows the use 

of thicker or stronger materials in the critical regions of a component, so as to increase 

the local stiffness, while thinner or lighter materials are used in other regions to reduce 

overall component weight. 



 

4 

 

 Fig. 1.1 presents a few characteristic examples of TWBs fabricated using 

different methods. Examples A-D shows TWBs of different shapes, different 

thicknesses and different materials. Example E shows a typical weld between two metal 

sheets with different thicknesses. Example F-H shows a welding of different materials. 

This study focuses on the D and E case. 

 

Figure 1.1 A few characteristic examples of tailored blanks and profiles. 

[J. Tusek et al. / J of Mat Pro Tech 119 (2001)] 

 

In the automotive industry, steel tailor-welded blanks are used to provide 

optimum strength using the least amount of material possible for specific points on a 

vehicle. The major application is with steel TWB sheet for automotive components such 

as body side frames, door inner panels, motor compartment rails, center pillar inner 

panels, and wheelhouse/shock tower panels. Fig. 1.2 displays two steel TWBs which are 
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closely examined in this study: 1. rear door inner reinforcement beam (no.9) and 2. 

front door inner reinforcement beam (no.12). TWB is used in the floor assembly (Fig. 

1.3).  

 

Figure 1.2 View of automotive TWB application 

[United Coil Center Limited, UCC] 
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Figure 1.3 Floor panels. 

[United Coil Center Limited, UCC] 

 

1.2 Welding Simulation 

 

As mention, there are many processes to assembly TWB. In the automotive 

industry, the laser welding process is the dominant TWB welding technology. The laser 

welding process is used for combining two or more metal sheets that have been welded 

together in a single plane prior to forming. Most of the tailor-welded blanks are welded 

using a laser beam heat source, especially Nd:YAG and CO2 lasers [1]. The laser 

welding process, compared with the conventional welding processes (GMA, TIG etc.), 
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is an efficient joining technology for lightweight structures, because of its low localized 

energy input resulting in low distortion, deep penetration, high strength of the joint, and 

high processing speeds. Recently, a wide range of research activity has been undertaken 

in the area of laser beam delivery systems. Huntington and Eagar studied laser light 

absorption on aluminum and aluminum alloys [2]. Laser welding of aluminum alloys 

has been applied in various industrial applications [3, 4, 5, 6]. MIG welding and laser 

welding were used for joining austenitic stainless steel with ferrite non-stainless steel 

[1]. However, Tusek et al states that the tailed blanks of high-alloy stainless steel cannot 

be welded to low-alloy ferrite steel, without the addition of a filler material. The 

mechanical performance of the weld in TWB is tested [7].  

During the welding process, the flow of molten metal is unstable and complex, 

which has a significant effect on the shape of weld pool controlled by the plasma drag 

force, electromagnetic force (Lorentz force), buoyancy force, and surface tension [8]. 

The influence of the heat flow and the fluid flow in the transient development of the 

weld pool during gas tungsten arc and laser beam welding with the independent 

temperature coefficient of surface tension was studied in [9]. The heat transfer and fluid 

flow in the weld pool are controlled by surface tension gradient, causing the molten 

metal to be drawn along the surface from the region of lower surface tension to that of 

higher surface tension. For pure metal and alloys, the temperature coefficient of surface 

tension,  
  

  
   is negative. In cases where the surface tension temperature coefficient is 

negative, the flow field is radially outward at the weld pool surface. As a result, both 
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top and bottom weld pool surfaces are widely deformed, giving it a characteristic 

hourglass shape [35].    

The finite element simulation of the temperature profiles and weld pool shapes 

vary according to the models of the laser beam. Sometime the existing models, or heat 

source equations, are not available to predict the weld pool shape from those effects, 

especially surface tension. There are various volumetric heat sources. Probably the most 

used three dimensional heat source definition is Goldak’s heat source [10]. Since all 

parameters are defined on the surface, it is difficult to use Goldak’s double elliptic heat 

source for deep penetration. Another form of the volumetric heat source is the conical 

heat source model which is specially designed for laser and electron beam welding. 

Sometimes a heat source composed of two different models is also used. However, 

determining the shape of the weld pool, in cases where the effect of surface tension is 

difficult to simulate, is generally not feasible based on first principles alone. 

Attentively, empirical models have been developed. A power distribution function was 

created by superimposing a spherical and a conical heat source in order to simulate this 

behavior [11 - 12]. The prediction of the hourglass shape observed in Fig.1.5 for the 

weld pool is still limited. An objective of this study was to develop a new volumetric 

heat source model to predict the dimension of hourglass-like weld pool shapes for the 

laser welding of the sheet metal blanks.  

During the laser welding process, the local temperature developed from the laser 

beam consists of a rapid heating and subsequent cooling phase, which generates 
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residual stresses and distortions in a structure. Masubuchi discussed the various types of 

welding-induced distortions and residual stresses [13]. The distortion causes problems 

in the assembly process as well as the product quality. The residual stress field is an 

important welding artifact as it may directly affect the mechanical behavior of the 

structure in several ways. In some cases, this may cause unexpected failure in the 

structure. The finite element method (FEM) can be used to simulate the laser welding 

process and predict the final distortions and residual stresses in steel plate butt joints [14 

- 15]. Distortion and residual stress investigations of laser welding for aluminum alloys 

has been reported previously [16]. An uncoupled thermo-mechanical analysis was 

performed to predict the distortions and residual stresses for a single-pass fusion welded 

thin test plate [17]. However, there is very limited published literature describing the 

prediction and measurement of distortion and residual stress in very thin sheets in 

particular. In this study, for lightweight structures, whose thickness is less than 1.2 mm. 

distortion predictions are of particular interest.   

 

Figure 1.4 The velocity distribution in weld pool due to the surface tension [35]. 



 

10 

 

 

 

Figure 1.5 The hourglass shape of the weld pool for different thickness. [1] 
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CHAPTER 2 

Fundamental 

 This chapter briefly describes the fundamentals of the welding processes, type of 

joints, fluid flow in weld pool, and materials using in the study. 

2.1 Laser Welding  

 The word LASER stands for ‘Light Amplification by Stimulated Emission of 

Radiation’. By the amplification of light in a resonator, a beam of coherent light with a 

high energy density was generated. This laser beam can be used in a lot of different 

ways like cutting, heat treatment, measuring, and welding.  

 In laser welding, a laser beam is focused on a workpiece where the absorption of 

the radiation leads to a local heating and fusion of the workpiece. In general, there are 

two different basic methods that should be distinguished: conduction welding and 

keyhole or penetration welding. The main difference between these modes is that the 

surface of the weld pool remains unbroken for the conduction welding process, i.e., the 

laser radiation does not penetrate into the material being welded. As a result, conduction 

welds are less susceptible to gas entrapment during the welding process. In keyhole 

welding, when the laser intensity is higher than approximately 10
6
 W/cm

2
 the weld pool 

opens and forms a narrow slot or keyhole so that the laser beam can enter the weld pool. 

The result is that the laser beam not only melts, but also evaporates, the material. The 

schematic sketches of these two welding modes are shown in Fig. 2.1.  
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Figure 2.1 Comparison of conduction and keyhole welding [19] 

 

 As stated above, the keyhole formation basically depends on the heat source 

intensity, the wavelength, and, in the case of non-normal incidence on the polarization 

of the laser beam and the thermal properties of the workpiece.  

2.2 Gas Tungsten Arc Welding 

 Gas tungsten arc welding (GTAW), commonly call TIG (tungsten inert gas), is 

an arc welding process whose heat source is an electric arc established between a non-

consumable tungsten electrode and the metals, as shown in Fig. 2.2. The electrode and 

the weld are protected by a shielding gas, and filler metal may or may not be used.   

~10
3
-10

5
 

W/cm
2 

~ >10
5
 W/cm

2 
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Figure 2.2 Gas tungsten arc welding. [20] 

 

 GTAW is suitable for joining butt joints of thin sheets by fusion alone because 

its limited heat inputs.  

2.3 Types of joints  

 Fig. 2.3 shows the basic welding joint designs: the butt, lap, tee, corner and edge 

joints. The butt joint is designated for welding tailor blanks. Therefore, the butt joint is 

the primary considered in this study.  
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Figure 2.3 Five basic types of welding joint designs. [21] 

 

2.4 Fluid flow in weld pool 

 

 The driving forces for fluid flow in the weld pool includes the buoyancy force, 

the electromagnetic force (Lorentz force), surface tension force (Marangoni 

convection), and the arc plasma shear stress as shown in Fig. 2.4. Note that the Lorentz 

force is absent in laser welding but otherwise the basic heat transfer and fluid flow 

mechanisms are similar for both welding processes.  
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Figure 2.4 The driving forces for weld pool convection [20] 

 

 For the thin metal sheet, the real weld pool geometry for the laser welding is not 

a simple shape. For full penetration weld, the surface tension effect makes the weld pool 

wider at the top and bottom surfaces. During the welding process, the surface tension of 

the liquid metal decreases with increasing temperature. The hotter liquid metal with the 

lower surface tension is pulled outward by the cooler liquid metal with the higher 

surface tension. As a result, the liquid metal from the center flows to the edge and 

returns to below the pool surface, resulting in a wider weld pool. Shear stress induced 

by the surface tension gradient is also called thermocapillary convection or Marangoni 
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convection. Pitscheneder et al. [22] calculated Marangoni convection in stationary steel 

weld pools for a laser power of 5200 W. R. Rai et al. [23] developed and tested a 

computationally efficient heat-transfer and fluid-flow model considering recoil 

pressure, gravitational force, and surface tension of key hole mode laser welding that 

can be applied to both partial and full penetration welds taking into account convective 

heat transfer in the weld pool. The most important pressure terms at the keyhole wall 

are evaluated for the Nd:YAG laser welding process of thin aluminum (AA5182) and 

mild steel (DC04) sheets [24]. The result showed that the surface tension pressure term 

becomes dominant and causes keyhole elongation, eventually resulting in holes when 

the plate thickness is comparable to the keyhole diameter.  

2.5 Materials 

 

 The materials used for this study were a cold roll steel sheet and a galvannealed 

steel sheet. The galvannealed steel is the result from the combined process of 

galvanizing and annealing. The grade of material for both steels defined by the Japan 

Iron and Steel Federation Standard and equivalent to the Japan Industrial Standard was 

shown in the table 2-1. Their chemical composition is reported in Table 2-2.  

Table 2.1 Materials:  

Cold Roll Steel Sheet, CR                       Standard Equivalent to  

JSC270F JFS  

SP121BQ  JIS NO. G3141 

Galvannealed Steel Sheet, GA   

JAC270F JFS  

SP783-590BQ  JIS NO. G3302 

JAC270FNN JFS  
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Remark: JFS = The Japan Iron and Steel Federation Standard 

               JIS = Japanese Industrial Standards 

 

Table 2.2 Chemical composition of cold roll steel and galvannealed steel, wt.% 

Material Chemical Composition 

C Si Mn P S Fe 

JSC270F 0.001 0.01 0.1 0.02 0.006 Bal. 

SP121BQ 0.001 0.01 0.23 0.02 0.008 Bal. 

JAC270F 0.001 0.01 0.15 0.012 0.006 Bal. 

JAC270FNN 0.002 0.01 0.13 0.01 0.006 Bal. 

SP783-590BQ 0.085 0.44 1.97 0.015 0.002 Bal. 

 

In SYSWELD material database, there are some available low carbon steel alloys. 

Those materials are equivalent to Material Database that is available in SYSWELD as 

following.  

Cold Roll Steel (JSC270F and SP121BQ) = DC04 (EN10130, EURONORM) 

Galvannealed Steel Sheet (SP785-590BQ) = TRIP700 (EN10338, EURONORM) 

The carbon content for the cold rolled steel is very low, less than 0.1 weight percent 

carbon as well as the content of sulfur and of phosphorus. Consequently, the low carbon 

steel displays good weldability, meaning that they can be generally welded.  
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2.6 Heat Transfer Analysis 

 

 To determine the thermal fields during the welding process, the equation of 

energy conservation is required. The heat transfer of laser beam welding is usually 

calculated by applying classical heat conduction theory. The thermal analysis is 

conducted using temperature dependent thermal material properties [25]. The governing 

partial differential equation for the transient heat conduction is 
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where ρ is the density (kg/m
3
), Cp is the specific heat (J/K), ν is the welding speed, T is 

the temperature (
o
K), t is the time (s), k is the thermal conductivity(W/mK) , and Q is 

the volumetric heat source term which varies with beam power and absorption 

efficiency (W/m
3
). All of these quantities are strong functions of temperature and 

possibly other welding variables.  

             The significant factors affecting heat conduction and thermal analysis are the 

heat input rate, boundary and initial conditions. In order to solve the differential 

equation, the boundary conditions also need to be specified. A portion of the energy is 

lost by convection and radiation. The heat lost is usually described mathematically by

    

 
)( 0TThq convconv                                           (2.2) 
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)( 4

0

4 TTqrad                                                 (2.3) 

where hconv is the convection coefficient (W/m
2
K), T and T0 are the plate and ambient 

temperatures (K), respectively, σ is the Stefan-Boltzman constant, and ε is the heat 

emissivity.  

In the case where the specimen contacts the metal support base plate, the heat loss from 

the bottom surface is particular the heat conduction lost from the work to the support.  

    
lTTkq Scond /)( 
                                               (2.4)

 

where hcond (k/l) is the conduction coefficient (W/m
2
K), TS and T are the temperature of 

the support and test plate temperatures (K), respectively and l
 
is the length of weld line 

(mm).  

2.7 Effects of Welding 

 Distortion and residual stress closely related phenomena are two major effects 

after welding.  

2.7.1 Types of Distortion  

 In a thermal cycle, heating and cooling, thermal strains occur in the weld metal 

and base metal regions near the weld. The strains produced during welding are 

accompanied by plastic deformation. The stresses resulting from these strains produce 

internal forces that cause bending, bucking, and rotation. It is these displacements that 

are called distortion. 
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The basic types of distortion for a rectangular plate with a centric joining weld 

are presented in Fig. 2.5. These dimensional changes are classified by their appearance 

as follows: 

a. Angular deformation. A non-uniform thermal distribution in the thickness direction 

causes angular change close to the weld line. 

b. Transverse deformation. Shrinkage perpendicular to the weld line.  

c. Longitudinal deformation. Shrinkage in the direction of the weld line.  

d. Bending deformation. Distortion in a plane through the weld line and perpendicular 

to the plane. 

 

Figure 2.5 Basic types of distortion [13] 
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2.7.2 Residual stress 

 

Residual stresses occur when a material is subjected to a non-uniform 

temperature change associated with the welding thermal stresses. During the welding 

process a local area is heated up rapidly with high thermal gradients. The thermal 

gradients cause the localized expansion, but the expansion is restrained by the 

surrounding colder and stronger material. When the finished weldment cools, some 

areas cool and contract more rapidly than others, leaving residual stresses. Fig. 2.6 

shows a typical distribution of residual stress in a weld. For long continuous welds, the 

significant stresses are those parallel to the welding direction, designated σx, which are 

usually called the longitudinal stresses, and those transverse to σx, designated σy, which 

are called the transverse stresses. Tensile stresses are produced in the weldment and 

adjacent to weldment, and compressive stresses are produced in the areas a certain 

distance from the weld.  

                       

        a. Longitudinal residual stress        b. Transverse residual stress 

Figure 2.6 Typical distributions of residual stresses in a weld. [20] 

x 

x  

y y 
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CHAPTER 3 

Experiment 

 This chapter describes the experimental methods and measurement techniques 

used in this study.  

3.1 Welding Processes 

In this study, the metal sheets were welded with the same and different materials 

as well as the different welding parameters and the welding processes. The base metals 

are different in terms of coatings or grades e.g. cold roll steel (CR) and galvannealed 

steel (GA), thickness e.g. 0.64 mm. and 1.2 mm, and welding process e.g. laser welding 

(L) and TIG welding (T). The laser-welded metal sheets are classified into two different 

combinations according to the grade of material. One is SM (same material) joining two 

base metals with the same material and the other is DM (different material) joining two 

base metals with the different material. 

 3.1.1 Laser Welding Process 

            A butt joint was welded using a 3 kW Oyabe Seiki Model: TRUMPF 

HAAS HLD3006 (Fig.3.1) Nd:YAG CW laser welding system with a 3.23 mm focal 

length and 8 m/min welding speed. The focus was on the top surface of the butt welded 

specimens refer to Fig.3.1. The laser welding machine specifications are shown in 

Table. 3.1. All welded specimens were fabricated with two thin sheets in the different 

thickness (0.65mm/1.2mm.). Fig. 3.2 schematically shows the clamping situation in the 



 

23 

 

experiments. The thin sheets were clamped tightly with a magnetic clamping system so 

that no movement during the welding process was allowed. During the experiments, 

power and welding speed were recorded.  A sample laser welding specimen is shown in 

Fig. 3.3. Table 3.2 summarizes the welding parameters for the laser welded specimens.  

 

 
Figure 3.1 Oyabe SeiKi semi auto welding laser. 

[http://www.ucc.co.th/index_w.html] 
 

Table 3.1 Laser machine specification 

Capacity Range 

Thickness 0.5 mm. - 2.8 mm. 

Width 300 mm. - 1500 mm.  

Length 150 mm. - 1800 mm. 

Cycle time 28 Sec / 1 Panel 

Welding speed (Max) 120 m. / min (x-axis welding direction) 

Power 3000 W.  

 

http://www.ucc.co.th/index_w.html
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Figure 3.2 Schematic clamping situation for laser welding experiments. 

 

Table 3.2 Welding parameters for laser welding process 

 

Group Specimen 

No. 

 Power 

(W) 

Welding Speed 

(m/min) 

A ASML1 0.64t-CR/1.2t-CR 

(JSC270F/JSC270F) 

2,858 8 

 ADML1 0.64t-CR/1.2t-GA 

(JSC270F/JAC270F) 

2,858 8 

 ASML2 0.64t-GA/1.2t-GA 

(JAC270F/JAC270F) 

2,858 8 

B BSML1 0.64t-CR/1.2t-CR 

(JSC270F/JSC270F) 

3,000 8 

 BDML1 0.64t-CR/1.2t-GA 

(SP121BQ/SP783-590BQ) 

3,000 8 

 BSML2 0.64t-GA/1.2t-GA 

(JAC270FNN/JAC270FNN) 

3,000 8 
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After the laser welding processes, the samples from the United Coil Center 

Limited, Thailand, were shipped by Air mail to Lehigh University for study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Sample of laser welding specimen for GA joining 

 

 

 3.1.2 Gas Tungsten Arc Welding Process 

 For the TIG welding, the specimens were manually welded by a Miller 

Syncrowave-250 ac/dc welding power supply (Fig. 3.4). An inert gas, 100% Argon was 

used as the shielding gas. The TIG welding machine specifications are shown in Fig. 

3.5. The materials and thickness of samples were the same as those used in the laser 

welding experiment. The thin sheets were clamped with a C-clamp as shown in Fig. 3.6. 

The TIG welding was performed for comparison with the laser beam welding.  
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Figure 3.4 TIG welding machine 

 

 

Figure 3.5 TIG welding machine specification  
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Figure 3.6 Schematic clamping situations for TIG welding experiments. 

 

Table 3.3 Welding parameters for TIG welding process 

 

Group Specimen No.  Volt 

(V) 

Current 

(A) 

Welding 

Speed  

(mm/s) 

A ASMT1 0.64t-CR/1.2t-CR 

(JSC270F/JSC270F) 

10 15 1.07 

 ASMT2 0.64t-GA/1.2t-GA 

(JAC270F/JAC270F) 

10 15 0.86 

B BSMT1 0.64t-CR/1.2t-CR 

(JSC270F/JSC270F) 

8 20 1.13 

 BSMT2 0.64t-GA/1.2t-GA 

(JAC270F/JAC270F) 

8 25 0.95 

 BSMT3 0.64t-GA/1.2t-GA 

(JAC270F/JAC270F) 

8 25 1.28 
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3.2 Distortion Measurement 

Following the welding experiments, a height gauge was used to determine the 

height h as shown in Fig. 3.7. Due to the relatively small angle (θ), the deflection at the 

center of the welding line (z) is approximately as h/2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Schematic image of measuring the deflection in the weld joint. 

 

3.3 Tensile Testing 

Tensile tests were performed to determine the strength of the welds. Transverse 

samples (weld line perpendicular to the direction of application of load) were cut from 

representative welds (start, center, and end of the welding line) using a water-jet cutter 

to obtain tensile specimens. These same samples were also used for metallurgical 

analysis and hardness tests (Fig. 3.8). The normal tensile test specimen has 60 mm 

h 

w 

z 

h 

θ 

θ/2 
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length of reduced section and 20 mm width specified by AWS B4.0 for uniaxial tensile 

tests. The dimension of a tensile specimen is shown in Fig. 3.9 - 3.10.  

The base metal (thinner sheet) and weld metal tests were performed on a tensile 

testing machine with a crosshead speed of 5 mm/s in accordance with the requirements 

of ASTM E8. The results of both tests were compared. The direction of the applied load 

was perpendicular to the weld line and will be referred to as a transverse specimen. 

Transverse tests were used to ensure that the weld does not crack before the failure 

occurs in the thinner material due to deformation. In the transverse tests, the thickness 

of the thinner side was taken as the initial thickness for calculation of the cross-section 

area as the fracture was expected on the thinner side. Each specimen was pulled to 

failure in the MTI Phoenix tensile machine. Fig. 3.11 displays a specimen in the tensile 

machine during testing. 

 

 

 

 

 

 

Figure 3.8 The locations were selected to investigation for tensile test                                 

metallurgical analysis and hardness test 

 

un-weld base 

metal sheet for 

tensile test 

laser-weld 

metal sheet for 

tensile test 

laser-weld 

metal sheet for 

metallurgical 

analysis and 

hardness test 
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Figure 3.9 Tensile strength test specimen and test method [37] 

 

 

 

Figure 3.10 Dimension of tensile specimen 

Unit: mm. 

1.2 0.64 

20 
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Figure 3.11 Tensile testing machine 

 

 

3.4 Metallurgical Characterization 

 After welding, the specimens were cut on their cross-sectional area to reveal 

microstructure observations. The cut sample was mounted with resin and then polished 

using 320, 400, and 600 sand papers, followed by a 6 μm diamond suspension, a 3 μm 

alumina suspension and finished with a 0.5 μm alumina suspension to a mirror like 

surface finish to observe the microstructure across the weld.   

Etching with 2% nital solution (2% nitric, solvent of alcohol) was used to reveal 

the weld microstructures, which proximately display the weld pool shape. 

Microstructures of the joints were examined using Pax-it software in conjunction with 
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optical microscopy to capture and measure the weld pool's shape and dimension. Some 

etched specimens for metallurgical analysis are shown in Fig. 3.12. The weld profile 

was examined at 5 x magnification to check the weld penetration and measure the weld 

pool dimensions. Microstructural details were observed at a higher magnification, e.g., 

50x.  

 

            Figure 3.12 Metallurgical analysis specimens 

 

3.5 Micro Hardness Testing  

 Microhardness tests were performed on the etched specimens. Hardness testing 

was carried out using a Leco Model M-400 microhardness unit with a 100g-200g load 

(Fig. 3.13). Hardness was measured at the center of the fusion zone and across the heat-

affected zone (HAZ) into the base metal to estimate local mechanical properties.  
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Figure 3.13 Microhardness machine  
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CHAPTER 4 

Numerical Simulation 

During the last decades developments in welding simulation have lead to more 

realistic welding models, from simple 2D to more and more complex 3D models. In this 

chapter, the theory of the finite element analysis techniques used in welding is 

reviewed.  

4.1 Finite Element Analysis of Welding 

 Finite element analysis (FEA) has been used by many authors to perform 

welding simulations to predict weld pool shape in different types of joints and materials 

[26 - 27]. Due to the complexity of welding processes, prediction of temperature 

distribution, distortion and residual stress are very difficult. Therefore, modeling of the 

welding process must be included for such effects and moving heat sources.   

 For the simulation of the temperature distribution, the commercial welding FEA 

package SYSWELD was employed [18]. In Fig. 4.1, a schematic diagram depicts the 

procedure to calculate the heat fluxes for FE transient thermal analysis of the welding 

process. The geometry of the butt weld joint is generated from SYSWELD software and 

defined material properties supplied with the software, welding process with heat source 

parameters, and thermal boundary condition while the maximum heat intensity 

calculated from Maple software [38], is added in SYSWELD at welding process 

section. The nodal values calculated during thermal analysis were used as a predefined 
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field for mechanical analysis in order to determine the distortions and residual stress 

state induced by welding.  

 

Figure 4.1 Schematic diagram of calculate the heat fluxes 

 

     4.1.1 Finite Element Meshes  

 In this work, the type of welding joint of interest is the butt joint. The butt joint 

welding simulation models the joining of two thin sheets with different thicknesses and 

materials. The weld zone is modeled as a solid deformable body in the finite element 

simulation with the same properties as the parent sheets. The geometry of the weld 

structure was modeled using the pre-processor of the SYSWELD code. The size of the 

simulated thin sheet is 50 mm x 20 mm, with two different values for the sheet 

thickness, 0.64 mm and 1.2 mm, respectively. The dimensions of the butt joint are 

depicted in Fig. 4.2. Three dimensional volume elements having eight nodes and three 

degrees of freedom per node were utilized. The model depicted in Fig.4.2 consisted of 
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51,138 nodes and 77,624 elements as shown in Fig. 4.3. The accuracy of the finite-

element method depends upon the density of the mesh. The temperature around the 

laser beam is higher than the boiling point of the material, and it drops sharply in 

regions away from the molten pool. Therefore, a fine mesh is required in the area along 

the weld line and a coarse mesh is located away from the weld line (Fig.4.3).  

 

 

 

 

 

 

Figure 4.2 Butt-joint sheet dimensions 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Butt-joint finite element mesh 
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 4.1.2 Heat Source Models 

The heat source model plays an important role in achieving the precise 

application of heat flux, which helps to accurately predict the required weld pool shapes 

and desired thermal histories. The heat source can be applied on the surface as a 

Gaussian power distributed thermal energy density and a volume such as a conical and 

ellipsoid heat source (Fig. 4.4). To be even more realistic heat source can be combined. 

A heat source in the shape of a double ellipsoid is appropriate for the simulation of TIG 

welding processes, whereas a conical source is more appropriate for laser beam and 

electron beam welding processes [18].  

 

 

 

Figure 4.4 a. Gaussian distributed thermal energy density b. Conical volumetric 

heat source c. Double Ellipsoid volumetric heat source 

 

 In some cases, the selection of an appropriate model is not obvious. Although a 

conical heat source may be used for simulation of the full penetration laser welding 

process, it does not reflect the action of surface tension on both the top and bottom weld 

pool surface, so it is not suitable for modeling hourglass-like weld pool shape.  
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  4.1.2.1 Hourglass Heat Source 

  During the welding process, the flow of molten metal is unstable and 

complex. It is known that the distribution of pressure and shear force from the effect of 

surface tension at the both the top and bottom weld pool surface cause the hourglass 

shape. The existing heat source models cannot predict the weld pool shape from these 

effects, especially that of surface tension. Thus, the heat source model is developed to 

fix this problem called the hourglass heat source. The three-dimensional hourglass heat 

source is a volumetric heat source that best simulates the heat source distribution along 

the workpiece thickness when full penetration welds are considered in the thin metal 

sheets. As shown in Fig. 4.5, the heat intensity region begins at the top surface of 

workpiece and decreases to the minimum at a core (transition point) of hourglass shape 

inside of the workpiece, and increases again after towards the bottom surface of the 

workpiece. Along the thickness of the workpiece, the diameter of the heat density 

distribution region is modeled as linearly decreasing and increasing, respectively. But 

the heat density at the central axis (z-direction) is kept constant. At any plane 

perpendicular to the z-axis, the heat intensity is distributed in a Gaussian form. Thus, 

the three-dimensional hourglass heat source used in this study is the addition of two 

Gaussian heat sources with different distribution parameters and the same central 

maximum values of heat density along the workpiece thickness. In this way, the heating 

action of the laser beam through thin sheet metal workpieces is best simulated. 
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Figure 4.5 hourglass heat source 

 

At any plane perpendicular to the z-axis, the heat intensity distribution may be 

written as [39] 

           

 (4.1) 

 

where    is given as  

for          

           

 (4.2) 

             

           

 (4.3) 

 

  is the source intensity,    is the maximum heat intensity,    is the (x,y) parameter of 
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curve in the core plane at  =  , and    is the (x,y) parameter of Gaussian curve in the 

upper plane at  =  , 

 The parameters of the heat sources are adjusted in a way that the result is 

approximately the shape of the molten zone measured in from the experimental results. 

The sample values used in this study are given in Table 4.1.  

Table 4.1 Value of the hourglass parameters used for simulation  

Parameter 

 

   

(W/mm
3
) 

   

(mm) 

   

(mm) 

   

(mm) 

   

(mm) 

   

(mm) 

   

(mm) 

Value 10230 0.4 0.1 0.34 0 -0.5 -0.9 

 Note; the minus sign of    and    is due to the presence of the support the top surface, 

during welding. 

The power intensity,    is calculated with  

           

 (4.4) 

 

where   is the thermal efficiency, P is the laser power,    and    are      
  

  
   for the 

upper cone and the lower cone, respectively, a FORTRAN function of the x-y-z 

coordinate of conical source with a Gaussian power density distribution in the range of 

   -   , and     -    , respectively,    and    are the volume of upper and lower conical 

source, respectively. The complete derivation is shown in Appendix.  
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  4.1.2.2   Double Ellipsoid Heat Source 

 For the arc welding heat source, a 3D double ellipsoidal heat source 

developed by Goldak is often used in arc welding simulation [10]. The heat source 

model has proven to be more stable and accurate than a point or a line heat source 

model, especially for welding with moving heat source. [28] The total heating rate ( , 

power) from the arc welding torch is simply expressed as 

                 

 (4.5) 

where   is the arc welding efficiency, which depends on the metal,    and   are applied 

voltage and current given as 8-10V and 20-25A. For low carbon steel arc welding, the 

arc efficiency measured as a function of welding current shows little variation over the 

current range tested. The arc efficiency is assumed to be 70% for carbon steel [30]. In 

this research all welding parameters were predetermined as given in Table 4.2, and the 

residual stresses and welding distortions were computed numerically as an output of the 

simulation. 

The 3D double ellipsoidal heat equation is a well-known numerical heat input 

model for arc welding in computer-based simulation [30]. The geometrical shape of the 

weld pool has two individual one-half ellipsoids, and is described in Fig. 4.6. The feed 

wire is assumed to be completely molten by the fusion of metal due to the applied heat 

input. The heat input source induces the temperature to rise over the liquidus point, and 

the molten beads are expected to be in the fusion zone (FZ). Similar to the FZ, the 
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partially melted zone (PMZ) is located outside the FZ as the temperature falls. The 

PMZ is defined by the temperature distribution that is above the solidus, but below the 

liquidus point [31]. 

                               

                   

Figure 4.6 3D Double Ellipsoidal Moving Heat Source [30] 

The melt pool shape is dependent on welding parameters: intensity of heat input, 

and welding speed. In the TIG welding process, Goldak’s double-ellipsoid heat source 

model [28] is adopted to calculate volumetric heat flux distributions as heat input 

around the welding pool. The heat source distribution consists of two different ellipses: 

one in the front quadrant and the other in the rear quadrant of the heat source. The total 

power densities from both    and     describing heat flux distributions inside the front 

and rear quadrant of the heat source can be expressed as [28]: 
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   (4.5) 

 

           

 (4.6) 

where   is the power density [W/mm
3
].                are Goldak’s parameters 

related to the shape and the fraction of the molten zone [mm].    stands for the frontal 

distance from the center of the melt pool;    is the rear portion along the welding 

direction. The determination of the length    is related to the welding velocity; a longer 

   is given for a faster velocity.         reflect half of the width and depth in the melt 

pool.           are Goldak’s fraction parameters of power sent from the heat source 

center to the front and to the rear in the molten zone, with          [82].         are 

horizontal and vertical locations of the moving heat source in Cartesian coordinates.  

 The transformation relating the fixed (x,y,z) and moving coordinate system 

(x,ξ,z) is: 

                    

 (4.7) 

where   is the location of the moving heat source along the welding line.   is the time at 

which a point is at the center of the moving heat source. ν is the welding speed. The 

shape of the melt pool is usually obtained through experiments; however, in this 
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simulation, Goldak’s parameters are the main factors deciding the dimension and shape 

of the melt pool. The coordinate transformation, Eq.4.7, can be substituted into Eq. 4.5, 

combined with Eq. 4.6.  

 

           

 (4.8) 

 

Table 4.2 TIG welding parameter 

 

 

 

Definition of double ellipsoid heat source parameters used in the calculation is shown in 

Table 4.3.  

Table 4.3 Value of the double-ellipsoidal parameters used for simulations  

Parameter 

 

P 

(W) 

    

(mm) 

   

(mm) 

  

(mm) 

  

(mm) 

   

(mm) 

   

(mm) 

Value 170 2.25 3.75 1.5 1.5 0.6 1.4 

  

 4.1.3 Boundary Conditions 

 During the welding process, the specimen was subjected to both thermal and 

mechanical boundary conditions. The suitable boundary conditions, representative of 

actual experimental conditions bring more accuracy to the computational results.  

Parameters Welding Speed Length of Weld Voltage Current 

[Unit] [mm/s] [mm] [V] [A] 

Values 0.9-1.3 170 8-10 20-25 
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  4.1.3.1 Thermal Boundary Conditions 

  On the boundary of the simulation model should be satisfied. In this 

study, three types of thermal boundaries were considered. A schematic representation of 

the thermal boundary conditions is shown in Fig. 4.7. Free convection and radiation are 

presented at the surfaces where the surface is exposed to the atmosphere. Thermal 

conductance is present at the interface of the sample and the base support as well as the 

edge of the sample.  

Type A: 

 

 

 

 

 

Type B: 

 

 

 

 

Type C: 

 

 

 

Figure 4.7 Schematic representation of thermal boundary conditions 

20 mm 

convection + radiation 

convection + radiation 

conduction 

8 mm 

convection + radiation 

convection + radiation 

conduction 
conduction 

convection + radiation 
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The surfaces of the model exposed to the environment were subjected to 

convection and radiation heat loss (convective coefficient of 25 W/m
2
K), while the 

surfaces that contact the support base plate were subjected to conduction loss with a 

thermal conductivity coefficient of 58 W/m-K. The initial ambient temperature was 

assumed to be 20 
o
C.  

  4.1.3.2 Mechanical Boundary Condition 

  The clamped boundary condition is the main variable for determining the 

correct residual stresses and distortion. The specified mechanical boundary conditions 

must in all cases be sufficient to prevent rigid body motion of the model. Two sheet 

metal halves were "rigidly" clamp down along longitudinal direction far from the weld 

line of 10 mm (weld line to front edge of clamping) using magnetic clamp system for 

the laser welding case. All the three translational degrees of motion were set to zero, to 

simulate rigid clamping. The zones where the clamping tools were actually applied in 

the experiments were fixed with rigid constraints. Fig. 4.8 depicts the specified zero 

displacement conditions for the butt joint weld simulations.  

 In the real welding process, the clamping tools were released after welding. 

Therefore, the mechanical simulation also calculated the displacement and stresses after 

cooling and unclamping. For unclamping, only rigid body motions are applied. The part 

is "clamped" in a statically determinate manner. To block rigid body motion three nodes 

are clamped perpendicular to the plane (UZ). Two of these nodes need additional 

clamping in order to prevent the rotation around an axis perpendicular to the plane 
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(UY). One of these nodes needs another additional clamping in order to prevent the 

translation along the axis perpendicular to the plane (UX). The mechanical constraint 

for the unclamping condition is shown in Fig. 4.9.  

 

 

 

Figure 4.8 Mechanical constraints for butt joint 
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Figure 4.9 Mechanical constraints in case of unclamping 

 

4.2 Material Properties 

 The material properties were considered to be functions of temperature. The 

thermal and mechanical material properties of low carbon steel DC04 and TRIP700 

with varying temperature dependent properties are presented in Fig. 4.10 - 4.13 [29], 

respectively. The melting temperature of DC04 and TRIP700 is 1505 
o
C.  

 



 

49 

 

 
 

Figure 4.10 Temperature dependent thermal properties for DC04 

 

 

 
 

 

Figure 4.11 Temperature dependent mechanical properties for DC04 
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Figure 4.12 Temperature dependent thermal properties for TRIP-700 

 

 

 
 

 

Figure 4.13 Temperature dependent mechanical properties for TRIP-700 
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CHAPTER 5 

Laser Welding Simulation Results 

 In this chapter two main results, laser welding experimental and simulation 

results, are described and compared.  

5.1 Laser Welding Experimental Results 

Visual investigations, tensile tests, and hardness tests were carried out to 

evaluate the performance and mechanical properties of the weld. 

5.1.1 Visual investigation 

Fig. 5.1 – 5.6 shows the top and bottom views of the laser-welded butt joints 

obtained in the experiments. At the bottom view the weldment can be observed. There 

was no spatter and porosity from welding with the laser welding process. The weld 

shape is narrow and smooth and the width of weldment is approximately 1 mm. The 

welding area (dark area) of the uncoated sheet (cold roll steel without zinc coating) is 

wider than the coated sheet (galvannealed steel). A sound weld with complete 

penetration was achieved without any spatter or porosity.  
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  a) Top surface     b) Bottom surface 

Figure 5.1 The laser butt joint for ASML1 

       

   a) Top surface    b) Bottom surface 

Figure 5.2 The laser butt joint for ADML1 

       

   a) Top surface    b) Bottom surface 

Figure 5.3 The laser butt joint for ASML2 
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  a) Top surface    b) Bottom surface 

Figure 5.4 The laser butt joint for BSML1 

         

  a) Top surface    b) Bottom surface 

Figure 5.5 The laser butt joint for BDML1 

         

  a) Top surface      b) Bottom surface 

Figure 5.6 The laser butt joint for BSML2 
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      5.1.2 Tensile Stress Test 

 The uniaxial tensile tests were performed on the base metal sheet (i.e. thinner 

base metal sheet) and laser-welded metal sheet until fracture occurred.  

 Images of tensile specimens before testing compared to after testing are shown 

in Fig. 5.7. The fracture of the base metal specimens occurred at the center, whereas the 

laser-welded metal specimens had fracture occur near the center of the thinner side, 

within the gauge length in all cases (Fig. 5.8). Both the base metal and the laser-welded 

metal specimen show a ductile shear failure mode where the fracture surfaces are 

inclined at 45
o
. The deformation can be considered to be under plane stress loading 

conditions, since the thickness of the specimen is much less than the width. This form 

of ductile fracture occurs in stages that initiate after necking begins, where small 

microvoids form in the interior of the material and enlarge to form a crack continuing to 

grow and spreads laterally towards the edges of the specimen. Finally, crack 

propagation is rapid along a surface that makes about a 45
o
 degree angle with the 

surface. Noticeably, the crack did not initiate at the weld zone when it is deformed in 

tension. Table 5.1 lists the mechanical properties in the tensile testing of the un-welded 

metal sheet (base metal) and the laser-welded metal sheet. The tensile strength of the 

laser-welded sheet specimens are higher than the mean value of those of un-welded 

sheet specimens. All laser-welded specimens have higher UTS compared to the base 

metal due to the presence of weld. Hence, the true stress-strain curves of as-welded 

sheet specimens are higher than those of the base metal sheet specimens.  
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The tension load and displacement curves obtained from the experiments for the 

un-welded specimens and laser-welded specimens are shown in Fig. 5.9. The ductility 

of coated sheet (galvannealed sheet) is observed to be higher. The comparison of tensile 

strengths, is shown in the graph shown in Fig. 5.10 between the laser-welded specimens 

and the base metal specimens. The tensile results of the additional laser-welded 

specimens were shown in Fig. 5.11.  
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   a. Before testing   b. After testing 

Figure 5.7 Comparison of the tensile specimens before and after testing 

BSML1 

BDML1 

BSML2 
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Figure 5.8 Failure location of the tensile test specimens   

 

Table 5.1 Tensile test of the sheet specimens 

Specimen No. Cross-section area 

(mm
2
) 

Ultimate Tensile 

(N) 

Tensile Strength 

(N/mm
2
) 

1-Base Metal 12.76 4122 323.00 

   ASML1 12.71 4358 342.87 

2-Base Metal 12.70 4230 332.97 

   ASML1 12.74 4318 338.87 

3-Base Metal 12.80 4237 331.02 

  ASML1 12.74 4304 337.94 

4-Base Metal 12.73 4141 325.30 

  ADML1 12.66 4201 331.85 

5-Base Metal 12.70 4116 323.99 

   ADML1 12.72 4212 331.05 

6-Base Metal 12.77 4188 327.84 

   ADML1 12.74 4302 337.61 
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7-Base Metal 12.70 3900 306.99 

  ASML2 12.72 3976 312.66 

8-Base Metal 12.81 3862 301.57 

  ASML2 12.80 3966 309.84 

9-Base Metal 12.73 3915 307.55 

   ASML2 12.76 4099 321.36 

10-BSML1 12.71 3811 299.77 

11-BSML1 12.76 3825 299.78 

12-BSML1 12.76 3814 298.86 

13-BSML1 12.74 3835 300.91 

14-BDML1 12.73 4260 334.72 

15-BDML1 12.76 4271 334.68 

16-BDML1 12.76 4280 335.39 

17-BDML1 12.78 4264 333.70 

18-BSML2 12.74 3642 285.77 

19-BSML2 12.79 3623 283.15 

20-BSML2 12.78 3681 288.08 

21-BSML2 12.71 3651 287.18 
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  a. The base metal    b. The laser-welded metal 

Figure 5.9 Tension load-displacement curves (a) the base metal, (b) the laser-

welded metal 

Coated sheet 
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The mechanical properties of cold-roll steel sheet are higher than the 

galvannealed steel sheet as a result of the fact that tensile strength of CR is higher than 

GA.  

 

Figure 5.10 Tensile strength of the base metal and the laser-welded metal in group 

A experiments. 

 

 

Figure 5.11 Tensile strength of the laser-welded metal in group B experiments. 
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      5.1.3 Metallurgical Analysis  

 In the welding of unequal thickness steel sheets, the irradiation from the laser 

beam heat source is directed towards the uneven joint interface. Some portion of the 

melted thicker sheet will flow to the top of the thinner one, which leads to the formation 

of an inclined layer (Fig. 5.12). Although no specific thermal data was recorded from 

the experimental setup, the size and shape of this sort of weld pool was observed with 

metallurgical analysis.   

The microstructures of the three zones (base metal, HAZ and fusion) are shown 

in Fig. 5.13. Here the fusion zone is defined as the region in which the weld metal and 

base metal are fused together and HAZ is the region adjacent to the weld, where the 

mechanical properties and/or microstructure have been altered by the heat of welding. 

Fig. 5.13 shows the cross section microstructures of TWB (ASML1) from the butt joint 

laser welding process. The images in Fig. 5.13 are from locations at start point, middle 

point, and end point. Interestingly, the butt joint becomes misaligned at the middle point 

and end point due to thermal expansion of the thin metal sheets. In some experimental 

results, the thick metal sheet moved up higher than the thin metal sheet as shown in Fig. 

5.14. The reason is that the welded sheets were prone to buckling, since the welding 

length of the metal sheet is very high. Full penetration welds, with slight porosity was 

observed.   

Ferrite and a mix of some bainite is observed in the fusion zone. The light region is 

ferrite, while the dark region is bainite (Fig. 5.15). Bainite formation is due to the rapid 
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heating and cooling rates in laser welding. Similar micro-structural features are 

observed in the coated (galvanized steel) and uncoated (cold roll steel) combination. 

The weld pool shape and microstructure for group B with power of 3,000 W using 

different combinations are shown in Fig. 5.16 - 5.18. The micrograph at higher 

magnification for BDML1 (SP121BQ/SP783-590BQ) displays martensite structure due 

to rapid cooling (Fig. 5.19).   

The values for the weld pool dimension from the experiments are shown in Fig. 

5.20. Table 5.2 summarized the weld pool shape measurements. These measurements 

were used to specify values for the hourglass heat source parameters during the welding 

simulation.  

 

 

 

 

 

 

 

 

Figure 5.12 Metal compensation of butt welding on unequal thickness sheets. 
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Figure 5.13 Microstructure of laser welding of ASML1 at different location: (a) 

Start point, (b) Middle point (c) End point 

(a) Start point 

(b) Middle point 

(c) End point 
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Figure 5.14 Microstructure of laser welding of ADML1 at end point. 
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Figure 5.15 Micrographs showing typical weld metal microstructures in weld 

metal for ADML1 at middle point: A, Ferrite; B, Bainite.  
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Figure 5.16 Microstructure of laser welding of BSML1 
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Figure 5.17 Microstructure of laser welding of BDML1 

 

 

Figure 5.18 Microstructure of laser welding of BSML2 
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Figure 5.19 Micrographs showing typical weld metal microstructures in weld 

metal for ADML1: A, Ferrite; B, Martensite.  
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        ASML1     ADML1 

   

        BSML1      BSML2 

Figure 5.20 Weld pool shape measurement  

Table 5.2 Weld measurements for experimental samples 

Specimen 

No. 

  

(W) 

    

(mm) 

     

(mm) 

       

(mm) 

ASML1 2,858 0.742 0.502 0.898 

ADML1 2,858 0.813 0.522 0.700 

BSML1 3,000 0.736 0.586 0.873 

BSML2 3,000 0.724 0.622 0.765 

0.742 

0.502 

0.898 

0.813 

0.522 

0.700 

0.736 

0.586 

0.724 

0.622 

0.873 0.765 
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      5.1.4 Hardness Test  

 Hardness testing was carried out on a Leco Model M-400 microhardness unit 

using a 100g-200g load. Hardness was measured at the center of the fusion zone and 

across the heat-affected zone (HAZ) into the base metal (Fig. 5.21).  

    

      (a) ASML1 (CR/CR)     (b) ADML1 (GA/CR) 

Figure 5.21 The location of the two hardness scans (center and bottom): a) 

hardness profiles (HV) of unequal thickness carbon steel sheet using a 100g load. 

b) hardness profiles of carbon/galvanized steel weld combination using a 200g 

load. 

 

Fig. 5.22 - 5.23 shows the measured line and the hardness profiles across the 

weld zone and the heat-affected zone (HAZ) as well as the base metal. The 

microhardness values are a function of the distance from the weld centerline. It clearly 

shows the increased hardness in the weld region compared to the base metal. The 

hardness of the base metal is less than 150 Hv, whereas the maximum hardness of the 

fusion zone is 184-240 Hv. In the fusion zone, the weld has a higher hardness value 

than that of the base metal due to the fast cooling that occurs in the bainite structure. 

Internal stresses also develop due to a combination of thermal stresses and clamping 
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boundary conditions for the samples in the fixture. The clamp fixtures restrict the sheet 

metal samples from expanding freely during welding, in addition to preventing out-of-

plane distortion during cooling. The increase of hardness is relative to the fusion zone. 

Since the width of the fusion zone along the bottom line is wider than at the centerline, 

the range of the maximum hardness along the bottom line is covered more than the 

centerline. The average weld hardness is approximately 200 Hv, which indicates that 

the weld zone still has sufficient ductility as also observed in the tensile properties.   

 

 

Figure 5.22 Microhardness profile of a welded joint between unequal thickness 

carbon steel sheet. 
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Figure 5.23 Microhardness profile of a welded joint between galvanized steel and 

carbon steel. 

 

5.2 Laser Welding Simulation Results 

 Using the geometry, the mesh and the heat flux models described in the previous 

chapters and the geometrical parameters for the weld pool that were measured from the 

metallographic investigation, the welding process on butt-joint with different thickness 

was simulated.  

      5.2.1 Thermal Results 

 In this particular study, the thermal results are the basic for weld pool shape 

comparison between the simulation results and the experimental results. The size and 

shape of the weld pool from the metallurgical results is used to compare with the 

thermal results.  
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 Fig. 5.24 shows the temperature distribution when the welding torch passes the 

center position at the coordinate of y = 25 mm in the welding direction for the power of 

2858 W and the welding speed of 8 m/min.  

 

Figure 5.24 Distribution of the surface temperature of the low carbon steel sheet at 

t = 0.18s.  

 In Fig. 5.25, the temperature evolution on the top surface along weld line at the 

starting node, middle node and last node, during the laser welding process are depicted. 

It can be observed that the heating is very steep, leading to local heating, while the 

cooling process is relatively fast due to the convection and radiation heat transfer. The 

process takes about 2s to reach to ambient temperature.  
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Figure 5. 25 Temperature evolution on the top surface at start node, middle node 

and last node. 

 

 The temperature distribution in the cross-section perpendicular to the welding 

direction is presented in Fig 5.26. The molten zone is sized to emulate the molten zone 

produced by the actual laser welding process. The red area represents the melted 

material in the weld pool with a temperature higher than 1505 
o
C (melting point). The 

very high temperature gradients in the vicinity of the weld line close to the upper 

surface of the molten zone may be clearly observed. The welding pool shape on the top 

and bottom surface is wider than that on the middle planes.  
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Figure 5.26 The temperature distribution in the cross-section perpendicular to the 

welding direction. 

 

 Transient temperature distributions develop during the laser beam pass at the 

mid section of the workpiece as shown in Fig. 5.27. The size of the molten zone, or 

weld pool shape behind the laser source increases after passing of the laser source. At 

this time the keyhole shape and size are considered fixed. After that the molten pool 

size decreased during cooling process and solidification. Fig. 5.28 compares the 

experimental and simulated weld pool shape for ASML1, BSML1, and BDML1. The 

comparison of the weld pool shape indicates that the simulated weld pool shape is close 

to the measured experimental weld pool shape. Therefore, the simulated weld pool 

shapes verify the correct implementation of the heat source model. Similarly, the overall 
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simulated thermal fields seem to be reasonable enough to proceed further with the 

mechanical analysis.   

 

  

   (a)            (b) 

  

   (c)           (d) 

Figure 5.27 Transient temperature distribution at mid section of the workpiece 

during welding process, at (a) t ~ 0.188s, (b) t ~ 0.192s, (c) t ~ 0.195s and (d) t ~ 

0.199s 
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(a) ASML1 

     

(b) BSML1 

      

(c) BDML1 

Figure 5.28 Comparison of weld pool shape: (a) ASML1, (b) BSML1, and (c) 

BDML1 
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        5.2.1.1 Effect of welding speed 

  In order to study the influence of the welding speed on the weld pool 

shape, three trial tests were conducted where the welding speed was varied in the range 

of 7 - 9 m/min in increasing of 1 m/min with the laser power constant at 2,858 W. The 

effect of the welding speed on the weld pool shape at the middle of the joint is 

illustrated in Fig. 5.29 - 5.31. It is observed that the width of the weld pool size 

decreases with increases in the welding speed. In addition, the peak temperature 

decreases for higher welding speeds, from 4,138 to 3,855 
o
C as the welding speed 

changes from 7 to 9 m/min.  

 

 

Figure 5.29 Temperature distribution at mid section of the workpiece for welding 

speed of 7 m/min 



 

79 

 

 

Figure 5. 30 Temperature distribution at mid section of the workpiece for welding 

speed of 8 m/min 

 

Figure 5. 31 Temperature distribution at mid section of the workpiece for welding 

speed of 9 m/min 
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        5.2.1.2 Effect of laser power 

  In this study the laser power used was between 2,858 W and 3,000 W, 

with a constant welding speed of 8 m/min. The effect of the laser power on the weld 

pool shape at the middle of the joint is illustrated in Fig. 5.32 - 5.34. It is observed 

that the width of the weld pool size increases with increasing the laser power.  In 

addition, the peak temperature increases for higher laser power from 3,842 to 4,023 
o
C, 

as the laser power changes from 2,858 to 3,000 W.   

 

Figure 5. 32 Temperature distribution at mid section of the workpiece for laser 

power of 2,700 W 
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Figure 5.33 Temperature distribution at mid section of the workpiece for laser 

power of 2,858 W 

 

 

Figure 5.34 Temperature distribution at mid section of the workpiece for laser 

power of 3,000 W 
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     5.2.2 Mechanical Results 

  Welding induced residual stresses and distortion are among the most studied 

subjects for welded structures. A structural analysis was performed to calculate the 

distortion and residual stress induced during welding, for appropriate boundary 

conditions, using SYSWELD. The basis of stress and distortion analysis is the 

temperature field during welding. The thermal results were used to calculate mechanical 

results in both distortion and stress.  

        5.2.2.1 Distortion Analysis 

         Distortion simulations of all experimental configurations were performed. 

The simulation of the butt joint was completed in two steps. First, the laser weld torch 

moved from t=0 to t=5s with clamping, where the weld torch was stepped forward from 

start to end of the weld line. Second, the clamping was released and cooling. This step 

consisted of a transient analysis from t=5s to the final time of t=500s. The results giving 

the displacements after cooling and unclamping for different welding speeds and laser 

power are shown in Figs. 5.35 - 5.37. The contours in these figures represent the z-

direction displacement.  
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Figure 5.35  Distortion for welding speed 7 m/min. 

 

Figure 5.36 Distortion for welding speed 8 m/min. 
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Figure 5.37 Distortion for welding speed 9 m/min. 

 

 The effect of laser power with constant welding speed of 8 m/min on the 

distortion of a laser welded joint is shown in Figs. 5.38 - 5.40. The higher magnitude for 

the displacement profile at the end of welding is shown in Fig. 5.41. The displacements 

are magnified 5 times in these figures to make them clearly visible. From all the figures, 

both longitudinal bending and transverse bending are generated in the butt welded joint.  
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Figure 5.38 Distortion for laser power of 2,700 W 

 

Figure 5.39 Distortion for laser power of 2,858 W 
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Figure 5.40 Distortion for laser power of 3,000 W 

 

Figure 5.41 Higher magnification for deformation of thin sheet for laser power of 

3,000 W. 
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    Some of the distortion results for the cross section near the end point are shown 

in Fig.5.42. This figure displays the whole distortion of the butt joint. Greater 

distortions occur in the thinner sheets. The deflection of the thinner sheet is greater than 

the thicker sheet, due to the lower bending stiffness of the thin sheet metal. The 

distorted shape was compared between experiment and simulation at the middle point of 

the model as shown in Fig. 5.43. Comparison between the finite element predictions and 

the average measured distortions for the ASML1 case are shown in Fig. 5.44. Due to the 

different thicknesses of the specimens, the displacement values are given on both sides 

of the joint. It is observed that the maximum displacement occurs towards the center 

plane of the sheets. In addition, the displacement values of the thin metal sheet are 

higher than that of the thick metal sheet. It is clear that the model can accurately predict 

the distortions of the welded parts. Even though the distortions evaluated using the 

model are very close to the experimental measurements. Another factor, the shipping of 

the samples from the company that performed the welding to Lehigh University might 

have altered the real distortion. Fig. 5.45 shows the effect of the welding speed on 

several of angular distortions. Higher welding speeds cause a reduction in the angular 

distortion. Fig. 5.46 shows the effect of the laser power on several angular distortions. 

Higher laser power causes an increase in the angular distortion, as a result of a larger 

amount of heat energy input delivered into the sheet during the welding process.  
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Figure 5.42 The cross section distortion at the middle point for ASML1 simulation 

 

 

 

 

      

Figure 5.43 Comparison of distortion shape between experiment and simulation 
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Figure 5.44 Comparison of distortion between simulation and experiment results 

for ASML1  

 

Figure 5.45 Angular distortion under various welding speed  
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Figure 5.46 Angular distortion under various laser power 

 

         5.2.2.2 Stress Analysis 

  As welding involves localized heating of the sheet, it induces highly non-

homogeneous stresses during its application. The stresses created in the weld during the 

welding process are due to the expansion of material that occurs during the heating of 

the welded metal sheet. This is followed by non-uniform contraction during cooling. 

Furthermore, the mechanical constraint of the metal sheet by the clamp fixture will 

cause additional stress. Having obtained good agreement between experimental and 

simulated temperatures and displacement results, residual stresses can now be predicted. 

The distribution of transverse (sigma11) and longitudinal (sigma22) residual stresses on 

the surface after cooling and unclamping for different welding speeds and laser power 

are shown in Fig. 5.47. The distribution of the von Mises stress in several cross sections 

after cooling at 500s is shown in Fig. 5.48. The stresses are given in MPa in this figure. 
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Predicted residual stresses at the mid-length of the weld for different condition are 

shown in Fig. 5.49 - 5.53. Since there are unequal sheet thicknesses, the expansion of 

the thinner sheet is higher than the thicker sheet due to greater accumulated heat. When 

the thinner sheet expands, the thicker sheet tries to maintain its original shape. 

Therefore, the tension stress occurs at the thinner sheet while the compressive stress 

occurs at the thicker sheet. For the expansion of both thicknesses along the y-axis, the 

metal sheet can expand in both the positive y-axis (ending edge) and negative (starting 

edge). The tensile stress distributes along the middle welding section along the y-axis, 

but reduces to compressive stress at the free surfaces of the starting and ending edges of 

the weld line. The material in the weld experiences significant longitudinal tensile 

stresses because when the weld contracts during cooling, the clamping of the base sheet 

to the weld to maintain the original length causes the weld to be plastically deformed. 

The longitudinal stress of 456 MPa in the weld is much higher than the transverse stress 

of 140 MPa for welding speed of 8 m/min.   
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a) Transverse stress    b) Longitudinal stress  

Figure 5.47 The distribution of transverse and longitudinal residual stresses on the 

surface 

 

 

 

Figure 5.48 Distribution of the von Mises stress in several cross sections 
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    (a) Transverse residual stress 

 

(b) Longitudinal residual stress 

Figure 5.49 Predicted stress at mid-length of weld for welding speed of 7 m/min 
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(a) Transverse residual stress 

 

(b) Longitudinal residual stress 

Figure 5.50 Predicted stress at mid-length of weld for welding speed of 8 m/min. 
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(a) Transverse residual stress 

 

(b) Longitudinal residual stress 

Figure 5.51 Predicted stress at mid-length of weld for welding speed of 9 m/min. 
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(a) Transverse residual stress 

 

(b) Longitudinal residual stress 

Figure 5.52 Predicted stress at mid-length of weld for Laser power of 2,700 W. 
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(a) Transverse residual stress 

 

(b) Longitudinal residual stress 

Figure 5.53 Predicted stress at mid-length of weld for Laser power of 3,000 W. 
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 Fig. 5.54 - 5.55  shows the distribution of transverse and longitudinal residual 

stress on the top surface for three different welding speeds at the middle section of the 

plate length (y = 25 mm), respectively. This graph is given the residual stresses 

distribution along the x-axis. The tensile stresses are presented near the welding bead in 

both transverse and longitudinal stresses. For the transverse residual stress in the welded 

area, the tensile stresses increase as the laser welding speed increases. For longitudinal 

residual stress, increasing the welding speed results in increased peak stresses forming 

at the weld center. The former may be due to the reduction in heat input that 

accompanies an increase in welding speed. This would result in a reduction in the width 

of the high temperature zone. The latter could be a result of the increased thermal 

gradients during the higher speed welding.    

 

 

Figure 5.54 The effect of welding speed on transverse residual stresses 
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Figure 5.55 The effect of welding speed on longitudinal residual stresses 

 

 Figs. 5.54 - 5.55 show the distribution of the transverse (sigma 11) and 

longitudinal (sigma 22) residual stresses at the top surface, for three different laser 

powers. The plots are for the middle section of the plate length (y = 25 mm). This graph 

is given the residual stresses distribution along the x-axis. In the welded area, the tensile 

stresses decrease as the laser power increases. The possible reason is that higher laser 

power leads to plastic deformation and it contributes to relaxation of the thermo-

mechanical stresses.   
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Figure 5.56 The effect of laser power on transverse residual stresses 

 

 

 

Figure 5.57 The effect of laser power on longitudinal residual stresses 
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 5.2.3 Effect of boundary conditions on the laser welding results of thin metal 

sheets 

             5.2.3.1 Effect of heat loss  

  The simulated results of the temperature distribution for the different 

thermal boundary conditions are shown in Fig. 5.56. The maximum temperatures in all 

cases occur when the heat source has moved to the middle of sheet and the 

displacement values after cooling were summarized in the Table 5.3. The results show 

that the maximum temperature and displacement values are closely related due to 

analysis in the small area. In addition, the area of the heat source is very small, therefore 

the heat loss is not too different. In the case of conduction heat loss through the bottom 

surface, the heat loss is lower than the convection loss as a result the maximum 

temperature appears that case.  
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a) Type A (conv-rad bc at all surface) b) Type B(conv-rad bc at top and air-gap surface)   

 

  c) Type C (conv-rad bc. at top surface and cond bc at bottom surface)  

Figure 5.58 Temperature distribution for difference thermal boundary conditions 

Table 5.3 Temperature and displacement for difference thermal boundary 

condition. 

Type of boundary 

condition 

            

(
o
C) 

             

(mm) 

Type A 4,322.59 0.0798 

Type B 4,422.67 0.0824 

Type C 4,422.83 0.0828 
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  5.2.3.2 Effect of clamping constraints  

  The influence of the external structural restraints, i.e., the fixtures, 

influences the residual stress and distortion. Three separate cases were studied. Case 1: 

As in the actual experiment the magnetic clamping was maintained the part completely 

cooled. Case 2: as the clamping was released after welding and cooling. Case 3: there 

was no clamping system during welding which was called unclamped condition. The 

simulated results of the deflection distribution for the different mechanical boundary 

conditions are shown in Fig. 5.59. It can be observed that substantial longitudinal 

bending and transverse bending are produced after welding in both cases. The final 

distortions are different, depending on the mechanical boundary conditions. In the first 

case, with rigid constraint at all clamping zone, the maximum bending is at the center 

area of the weld line and there is no longitudinal and transverse shrinkage due to the 

tight clamping and large sample size. The unclamping after welding (case 2) is shown 

in Fig. 5.59b. The deformation is highest at the end of the weld-line. Also there are 

longitudinal and transverse shrinkage and higher bending along the Y-direction in the 

thin metal sheet when compared to the thick metal sheet. In the case of unclamping 

(case 3), the deflection is highest at the corner of the specimen (Fig. 5.59c).  Distortions 

in the Z-direction are shown in Fig. 5.60. In the case with rigid constraint, the distortion 

shape was a convex-like shape due to the restricted shrinkage. Longitudinal bending 

displacement (Z-Y plane view) is produced in cases with releasing clamping and 

unclamping, which was a concave-like shape. Predicted residual stresses for the 
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different mechanical boundary conditions were compared. The maximum residual 

stresses were produced in the rigid constraint case.   

           

    a) Case 1: Rigid constraint all edges 

        

b) Case 2: Unclamping after welding                               

               

     c) Case 3: Unclamping  

Figure 5.59 Deflection distribution for difference mechanical boundary conditions 
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 a) Case 1: Rigid constraint  

 b) Case 2: Unclamping after welding 

 c) Case 3: Unclamping  

Figure 5.60 Defection distribution in z-direction 
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    a) Case 1: Rigid constraint  

  

    b) Case 2: Unclamping after welding 

  

    c) Case 3: Unclamping  

Figure 5.61 Predicted residual contour for difference mechanical boundary 

conditions 
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5.4 Summary 

 For butt joint laser welding of thin metal sheets with different thicknesses, the 

experimental samples contained a sound weld without spatter and full penetration was 

achieved. The performance tests of the laser-welded sheet specimens were comparable 

to the base metal sheet. From the metallurgical analysis the full penetration weld pool 

shape presented an hourglass-like shape due to surface tension effects on the top and 

bottom of the thin sheet. Weld zone microstructure indicated ferrite mix with bainite for 

the low carbon steel, while martensite microstructure was observed at the carbon steel, 

contained with higher carbon element, due to rapid cooling rate.  

  The heat source development with a double conical heat source, i.e. an 

hourglass heat source, was applied within the SYSWELD code. Comparisons of the 

weld pool shape from the finite element simulation with the experimental results are in 

good agreement. The width of the weld pool decreased with increasing welding speed, 

because the laser power density applied to the metal sheet is reduced with increasing 

welding speed. The weld pool dimension is larger with increasing laser power, due to an 

increase in the laser power density. The effect of thermal boundary conditions, the heat 

loss, the surface convection, radiation and conduction, have little effect on the fusion 

zone boundary and distortion.   

  Zinc vaporizes at a temperature of 1180 K, whereas steel starts to melt at 1505 

K. Because of this huge difference, problems occur during the laser welding of 

galvanized steels, especially when welding lap joints refer to Fig. 2.3. This problem is 
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less important in butt joint welds so the effect of zinc evaporation was neglected in this 

study.  

 Referring to the results of distribution of transverse and longitudinal residual 

stresses, it can be seen that the material in the weld is plastically deformed at elevated 

temperatures and significant tensile stress arise along the length of the sheet. The 

transverse shrinkage is mainly a result of the thermal strains during expansion and 

contraction during the welding process. 

 Due to the different thickness sheets, the distribution of temperature, 

deformation and residual stress are asymmetric. The good agreement between the 

experimental results and simulation results suggests that the model can be used as a tool 

for parametric examination of the laser welding process, which will lead to optimized 

values of the welding parameters.  
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CHAPTER 6 

Gas Tungsten Arc Welding Results  

 In this chapter, GTAW experimental and simulation results, are described as 

well as comparison with laser welding results.  

6.1 GTAW Experimental Results 

The visual investigation, tensile tests, and hardness tests were carried out to 

evaluate performance and mechanical properties of the weld. 

6.1.1 Visual investigation 

       Fig. 6.1 - 6.2 shows the top and bottom views of the TIG-welded butt joints 

obtained in experiments. There was no splatter and porosity from welding with the 

GTAW welding process. A sound weld with complete penetration was achieved and 

continuous without the presence of spatter or porosity.  

   

  a) Top surface     b) Bottom surface 

Figure 6.1 The TIG butt joint for ASMT1 
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  a) Top surface     b) Bottom surface 

Figure 6.2 The TIG butt joint for ASMT 

         

  a) Top surface     b) Bottom surface 

Figure 6.3 The TIG butt joint for BSMT1 

      

  a) Top surface     b) Bottom surface 

Figure 6.4The TIG butt joint for BSML 
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6.1.2 Tensile Stress Test 

 Uniaxial tensile tests were conducted on the TIG-welded metal sheet until 

fracture occurred. The tensile specimens before testing compared to after testing are 

shown in Fig. 6.5. Some specimens fractured at the welded area, whereas other 

specimens fractured in the thinner sheet metal. Table 6.1 shows the mechanical 

properties obtained from the tensile tests of the TIG-welded metal sheet, which is 

plotted in Fig. 6.6. 
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  a. Before testing     b. After testing 

Figure 6.5 Comparison of the tensile specimens before and after testing 

 

ASMT1 

ASMT1 

ASMT2 
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Table 6.1 Tensile test of the sheet specimens 

Specimen 

No. 

Cross-section area 

(mm
2
) 

Ultimate Tensile 

(N) 

Tensile Strength 

(N/mm
2
) 

1-ASMT1 12.79 4226.12 330.33 

2-ASMT2 12.79 3881.16 303.37 

3-BSMT1 13.24 4213.48 318.38 

4-BSMT1 13.25 4219.18 318.48 

5-BSMT2 13.27 3971.80 299.23 

6-BSMT3 13.22 3957.68 299.32 

 

 

 

Figure 6.6 Tensile strength of the TIG-welded metal 
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6.1.3 Metallurgical Analysis   

 Some locations from the TIG-welded samples were selected to analyze 

microstructure and weld pool shape. Fig. 6.7 shows the microstructure and weld pool 

shape after welding using the manual TIG welding process. As shown in these figure, 

defects, misalignment and undercuts, were observed. The same sample is shown at a 

higher magnification in the Fig.6.8. In these figures, coarse grains were observed in the 

fusion zone. Fig. 6.9 - 6.10 shows the microstructure and weld pool shape of BSMT1 

and BSMT2 specimens, respectively. In these figures, full penetration without defects 

was observed. Welding on the bottom side of the group A specimens to eliminate the 

undercut defect was performed as shown in Fig. 6.11. Heating on the bottom side 

results in a distorted welded area. For the FZ, the fine grain microstructures of bainite 

appeared in the thin sheet due to the higher cooling rate, whereas the coarse gain ferrite 

is observed at the thick sheet as shown in Fig. 6.12.     
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      a) ASMT1 

 

      b) ASMT2 

Figure 6.7 The weld pool geometry from TIG welding process 

 

Figure 6.8 Higher magnification 10x of ASMT1 at A area in Fig. 6.7a 

A 
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Figure 6.9 The weld pool geometry of BSMT1 in different locations.  

 

 

 

Figure 6.10 The weld pool geometry of BSMT2 
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Figure 6.11 ASMT2 with welding two sides  

 

 

     

  a) Thin sheet     b) Thick sheet 

Figure 6.12 Microstructure of welding area in; a) thin sheet b) thick sheet 
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6.1.4 Hardness Test  

 Hardness testing was carried out using a Leco Model M-400 microhardness unit 

with a 100g-200g load, the same as the laser-welded specimens. Hardness was 

measured over the fusion zone, the heat-affected zone (HAZ) and the base metal (Fig. 

6.13). Fig. 6.14 - 6.15 shows the measured line and the hardness profiles across the 

weld zone and the heat-affected zone (HAZ) as well as the base metal. The 

microhardness values are a function of the distance from the weld centerline. The 

hardness of the base metal is less than 120 Hv, whereas the maximum hardness of the 

fusion zone is 121-165 Hv. The hardness values of each weld region are affected by its 

chemical composition and microstructure. In the fusion zone, the weld in the thin sheet 

has a higher hardness value than that of the thick sheet due to the fast cooling.  

 

     

 

 

 

Figure 6.13 The location of the hardness scans of unequal thickness TIG-welded 

specimen using a 200g load. 

 



 

119 

 

 

 

Figure 6.14 Microhardness profile of a welded joint between unequal thickness 

carbon steel sheet. 

 

 

 

Figure 6.15 Microhardness profile of a welded joint. 
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6.2 TIG Welding Simulation Results 

 Using the geometry, the mesh and the heat flux models described in previous 

chapters and the geometrical parameters of the weld pool that were measured from the 

metallographic investigation, the TIG welding process on butt-joint welds with different 

thickness sheets was simulated.  

6.2.1 Thermal Results 

 In this particular study, the thermal results are used to compare the weld pool 

shape between the simulation results and the experimental results. The size and shape of 

the weld pool from the metallurgical results was used to compare with the thermal 

results.  

 Fig. 6.15 shows the temperature distribution when the welding torch passes the 

center position at the coordinate of y = 25 mm in the welding direction.  

 

Figure 6-15 Distribution of the surface temperature of the low carbon steel sheet at 

t = 20.8s.  
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 In Fig. 6.16, the temperature evolution on the top surface along weld line at the 

starting node, middle node and last node, during the laser welding process are 

illustrated. It can be observed that heating is very steep, leading to local heating, while 

the cooling process is relatively fast due to the convection and radiation heat transfer.  

 

 

Figure 6.16 Temperature evolution on the top surface at start node, middle node 

and last node. 
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 The temperature distribution in the cross-section perpendicular to the welding 

direction is presented to compare with TIG weld experiment. Fig. 6.17 compares the 

TIG weld pool shape between experiment and simulation result for BSMT1.  

 

Figure 6.17 Comparison of TIG weld pool distance between experiment and 

simulation. 

 

6.2.2 Mechanical results 

 Distortion and residual stresses in the TIG welding samples was also 

determined. C-shaped clamps were used and released after welding. Since the 

parameters for TIG welding; including power, welding speed and clamping conditions 

were different from laser welding, the mechanical results, as expected, were different.   
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  6.2.2.1 Distortion analysis 

  The results of displacement after cooling and unclamping for different 

cases in TIG welding are shown in Fig. 6.18. The contours of the results represent the 

normal displacement, the magnitude of the displacement vector (Fig. 6.18a). The finite 

element predictions were compared with the average measured distortions for BSMT1 

case as shown in Fig. 6.19.  

  a. Normal displacement

   b. z-axis displacement 

Figure 6.18 Normal displacement and z-axis displacement of TIG welding at 500 

seconds 
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Figure 6.19 Comparison of distortion between simulation and experiment results 

for BSMT1 

 

  6.2.2.2 Stress analysis 

  The distribution of transverse (sigma11) and longitudinal (sigma22) 

residual stresses on the surface after cooling and with unclamping, is shown in Fig. 

6.20. Stress concentrations occurred at the locations that were fixed due to wide range 

of heat transfer distribution.  

 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0 2 4 6 8 10 

Exp Sim 

Deflection (mm.) 

Distance (mm.) 



 

125 

 

  

     

a) Transverse stress    b) Longitudinal stress  

Figure 6.20 The distribution of transverse and longitudinal residual stresses on the 

surface 
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6.3 Comparative evaluation of TIG welding and laser welding 

 The fundamentally different welding methods in TIG welding and laser welding 

were used for butt joint welding of different thickness metal sheets. The laser process 

allows much higher power density and welding speed than the TIG process. In the 

present study, the laser welding speed was around 8 m/min, whereas the TIG welding 

speed was approximately 100 times lower, at around 0.1 m/min. The characteristics of 

both methods are discussed, focusing on the influence of each welding parameter.  

 6.3.1 Weld bead formation and its mechanical properties  

 Fig. 6.21 shows the top surfaces for both laser welding and TIG welding. For the 

laser welding, the weldseam surface is smoother and narrower. Cross-sections of laser 

and TIG welds are shown in Fig. 6.22. It can clearly be seen that the weld bead width 

produced with TIG welding is wider than laser welding. The microstructure for laser 

welding is finer than TIG welding, due to the higher cooling rate in laser welding. Since 

laser welding has a much higher energy density compared with TIG welding, it melts 

the metal in a shorter period of time and the melted metal can rapidly then solidify. In 

addition, the HAZ in laser welding is much smaller than that in the TIG welding 

sample. Because of the rapid solidification rate in laser welding, the grains do not have 

sufficient time to merge and coarsen. In the HAZ near the base metal, equiaxed grains 

were formed. The granular grains grew along the radial direction because the thermal 

gradient along this direction. Table 6.2 compares aspect ratio (weld penetration/width) 

between laser welding and TIG welding. Laser welding compared with TIG welding 
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produced higher aspect ratio (deep penetration/width of weld bead) due to the high 

energy density of the laser welding processing.  

                    

Figure 6.21 Weld top surface obtained using laser and TIG welding 

 

 

 a) 

 

Figure 6.22 Weld cross-section a) both laser and b) TIG welding 
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Table 6.2 Weld bead aspect ratio 

Welding process Aspect ratio (d/w) 

Laser  0.68 

TIG 0.1 

 

The transverse distribution of hardness across the weld produced with laser 

welding is higher than TIG welding due to the higher cooling rate in the laser welding 

(Fig.6.23). For tensile tests, some of the TIG-welded specimens failed at the weld due to 

weld defects such as lack of fusion and mismatch. With the failure occurring at the 

thinner sheet for both welding processes, there was no significant difference in 

mechanical strength.  

 

Figure 6.23 Comparison of hardness between the laser welding and the TIG 

welding 
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 6.3.2 Cooling rate 

 The amount of heat input per unit length of the laser welding of 21.5 J/mm is 

lower than the TIG welding of 141.6 J/mm. The cooling rate of the laser welding is 

higher than the TIG welding due to lower amount of heat input per unit length of the 

laser welding. Fig. 6.24 shows the cooling rate comparison between the laser welding 

and the TIG welding.  

 

      

a) The laser welding    b) The TIG welding 

Figure 6.24 Cooling rate comparison 

 

 6.3.2 Amount of distortion of welded joint 

 A comparison of the distortion for the two welding methods is shown in Fig. 

6.25. The amount of distortion in laser welding is one third of that in TIG welding. A 

comparison of the amount of distortion for the two welding methods at 20 mm from 

weld line is in shown in Fig. 6.26. Welding locally heats the steel sheets and the 
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adjacent cold metal restrains the heated material.  This generates stresses greater than 

the yield stress, causing permanent distortion of the component. The TIG welding 

provides the higher heat input when compared with the laser welding. Consequently, the 

width of the tensile stress region is greater than from the laser welding, which explains 

the greater distortion with the TIG welding.  

 

 a) 

 b) 

Figure 6.25 Distortion in a) laser and b) TIG welding 
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Figure 6.26 Amount of distortion at 20 mm from weld line 

 

 6.3.3 Amount of residual stress 

 A comparison of the predicted residual stresses for the two welding methods is 

shown in Fig. 6.27. The thermal contraction of the weld metal and the adjacent base 

metal are restrained by the areas farther away from the weld metal. Consequently, after 

cooling, residual tensile stresses exist in the weld metal and the adjacent base metal, 

while residual compressive stresses exist in the areas farther away from the weld metal. 

The amount of residual stress in the welding zone is largely produced from laser 

welding process when compared with TIG welding process due to higher intensity 

power. On the other hand the amount of residual stress at the edge from TIG welding is 

higher than in laser welding due to larger fusion zone (wider weld pool).  
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Figure 6.27 Amount of residual stress at middle of weld line 

 

6.4 Summary 

 Due to the different thicknesses of the welded metal sheets, the distribution of 

temperature and residual stress are asymmetric.  

 Referring to the results showing the distribution of transverse and longitudinal 

residual stresses in Fig. 6.20., it can be seen that the material in the weld is plastically 

deformed at elevated temperatures and significant tensile stresses develop along the 

length of the sheet. In other areas of the welded sheet, the residual stresses are much 

a) Laser welding 

b) TIG welding 
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lower than the material yield strength. This indicates that the transverse shrinkage is 

mainly a result of the thermal strains during expansion and contraction during the 

welding process.  

 Laser welding compared with TIG welding produced higher aspect ratio and 

finer grains due to the high energy density of these processing. Laser welds were shown 

to be equal to, or better in quality than TIG joints on tensile strength test.  
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CHAPTER 7 

Conclusions 

 The present work compares both experiment and simulation of welding for 

tailor welded blanks using laser welding and gas tungsten arc welding. A three-

dimensional finite element model was developed to simulate these welding processes 

and predict the final distortions and residual stresses for a butt joint welded specimen. 

The finite element calculations were performed using the SYSWELD FEM code, which 

takes into account thermal and mechanical behavior. A number of welding experiments 

were conducted to verify the modeling results.  

The developed welding model has the advantage as it is independent of any 

parameter. Simulation results can also help researchers in enhancing their ability to 

choose proper welding process parameters. This research deals with the subject of 

temperature distributions, residual stresses, and residual deformations during and after 

welding. This research also is useful for design, analysis, test and production engineers.  

7.1 Laser and TIG welding process 

This research effort was successful in applying two very different heat source 

models for the different welding processes of interest.   

The finite element models for laser welding included a new heat source model, 

the hourglass heat source that can be used to predict the weld pool shape that results 

from tension effects on the top and bottom surfaces of butt welded joints in thin sheets.  
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 For the TIG welding, the finite element method utilized a double ellipsoid heat 

source, that can be used to predict the weld pool shape, distortion and residual stress for 

butt welded joints in thin sheets.  

 This research achieved a suitable picture of welding behavior for both laser and 

TIG welding, to generate a high performance of welded thin metal sheet with a full 

penetration of weld pool.  

 The objective of this research is to study a computational and experimental 

effort to qualitatively understand the weld pool shape, distortion and residual stress for 

continuous laser welding and manual pulsed gas metal arc welding of TWBs. 

7.2 Comparison of Laser and TIG welding  

 Sound welds without major defects and full penetration can be produced via 

laser welding. High performance of welding products can find in the laser weld metal 

sheet as a result of tensile testing. Laser welding can produce weld beads having high 

aspect ratio (penetration/width) due to the high energy density. The Nd:YAG laser 

produces the finer weld microstructure, whereas TIG with Ar gas shielding produces the 

coarser microstructure. This is due to the different energy density and hence different 

cooling rates. The fine weld microstructure led to increased microhardness values.  

7.3 Recommendations for Future Work 

 This work is the first in the available literature to consider the hourglass weld 

pool shape that takes into account the surface tension developed by the laser heat source 
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on the top and bottom surfaces of the thin metal sheets. Based on the experience gained 

in this research, the following recommendations for future work are suggested.  

More experimental data is needed to validate the developed model. The various 

power and welding speed should be investigated the effect of the surface tension to 

study hourglass weld pool shape behavior. Likewise, the measurements of the residual 

stress should be carried out to compare with the simulation results.  

Different of material such as aluminum and stainless steel and dimensions such 

as thickness should also be studied. Here the simple butt joint was considered. More 

complicated geometry such as lap joint, T-joint and structure should be investigated and 

simulated.  

 In this study, the simulations used only heat transfer equations with the 

hourglass heat source to fit the weld pool shape. However, during the welding process, 

the flow of molten metal is unstable and complex. The effects of fluid flow should be 

studied. Details concerning fluid flow in the melt pool, the fluid equations should be 

incorporated.  

 The greatest limitation in modeling a large structure is computation time and 

storage requirement. In order to get more accurate results, the use of plate and shell 

elements might be considered, which would reduce solution times and storage 

requirements without a painful loss of accuracy.  
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 Continuous cooling transformation (CCT)  behavior affects the transient state of 

material properties employed in a numerical simulation, having a direct influence on the 

developing stress states. The   CCT   diagrams are constructed from transformation data 

contained in the SYSWELD database. 
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APPENDIX A 

Heat Intensity Equation 

 

Derivation for Heat Intensity Distribution Equations 

The heat intensity distribution is 

               
  

  
                                                    (1) 

The thermal energy conservation is 
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Three-Dimensional Conical Heat Source (TDC) 
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The distribution parameter can be expressed as 
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or 
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Substituting (5) into (3)  

         
     

 

 
   

         
   

Rearrange  
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where             

Finally, substituting (6) into (1) 
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APPENDIX B 

Laser Welding Butt Joint Source Code 

Listed here is the main input file with hour glass model for butt weld joint using 

laser welding process.  

1. HT.DAT 
NAME LASERWELDING_MESH_ 

SEARCH DATA 1000 ASCII 

DEFINITION 

 3D Metal Sheet Laser Welding Butt Joint with Velocity 8 m/min 

OPTION THERMAL METALLURGY SPATIAL 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

  ELEMENTS GROUPS $PART$ / MATE 1  

MEDIUM 

  WELDLINE / GROUPS $L244$ REFERENCE $L245$ ELEMENTS $FE$ START 

$FN$ ARRIVAL-- 

 $LN$ VELOCITY 133 TINF 0 MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ$ RETURN 

CONSTRAINTS 

  ELEMENTS GROUPS $CONV&RAD$ / KT 1 VARIABLE 1 

  ELEMENTS GROUPS $COND$ / KT 1 VARIABLE 2 

LOAD 1 

 ELEMENTS GROUPS $CONV&RAD$ / TT 20. 

 ELEMENTS GROUPS $COND$ / TT 20. 

 ELEMENTS GROUPS $PART$ / QR 1 VARIABLE -10000 TRAJECTORY 1 
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TABLE 

 1 / FORTRAN 

      function f(t) 

C  radiative losses : f = sig * e * (t + to)(t**2 + to**2) 

      e = 0.8 

      sig = 5.67*-8 

      to = 20. 

      to = 20. + 273.15 

      t1  = t + 273.15 

      a = t1 * t1 

      b = to * to 

      c = a + b 

      d = t1 + to 

      d = d * c 

      d = d * e 

      d = d * sig 

C  convective losses = 25 W/m2 

      f = d + 25. 

C  change to W/mm2 

      d = 1*-6 

      f = f * d 

C 

      return 

      END 

 2 / FORTRAN 

      function f(t) 
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C  conduction losses : f = k * (t - to) / L 

      k = 58 

      L = 0.1 

      to = 20. + 273.15 

      t1  = t + 273.15 

      a = t1 - to 

      a = a * k 

      a = d / L 

C  change to W/mm2 

      d = 1*-6 

      f = a * d 

C 

      return 

      END 

 10000 /  FORTRAN 

      FUNCTION F(X) 

C   F   = Q0 * exp( - R^2 / R0^2 ) with 

C   R^2 = ( XX-X0 )^2 + ( YY-Y0-VY*T )^2 

C   R0  = RE - ( RE-RI )*( ZE-ZZ+Z0 )/( ZE-ZI ) 

C   IF R0 < RI , R0 = 0. and return 

C   IF R0 > RE , R0 = 0. and return 

C 

      DIMENSION X(4) 

C Input 

      XX = X(1)   ; X Coordinate 

      YY = X(2)   ; Y Coordinate 
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      ZZ = X(3)   ; Z Coordinate 

      TT = X(4)   ; Time 

C Variables 

      Q0 = 10230   ; Maximal source intensity 40% 

      RE = 0.4    ; Gaussian parameter 

      RI = 0.1    ; Gaussian parameter 

      ZE = 0.0    ; Upper plan 

      ZI = -0.5   ; Lower plan 

      M1 = -1 

C R^2 computation 

     DE    = ZZ - ZE 

     DI    = ZZ - ZI 

     A1    = XX * XX 

     A2    = YY * YY 

     R2    = A1 + A2 

     A3 = DI * DI 

     IF( ZZ .LT. ZI ) R2 = R2 

C R0^2 computation 

     A1    = RE - RI 

     A2    = ZE - ZI 

     A3    = ZE - ZZ 

     R0    = A3 / A2 

     R0    = R0 * A1 

     R0    = RE - R0 

     RII   = RI + RI 

     IF( ZZ .LT. ZI ) R0 = RII - R0 
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     R02   = R0 * R0 

C F computation 

     IF( R2 .GT. R02 ) RETURN       

     A1    = R2 / R02 

     A2    = M1 * A1                    

     A2    = EXP( A2 )                  

     F     = Q0 * A2 

C 

      RETURN 

      END 

RETURN 

NAME V8_ 

SAVE DATA 1000 

MEDIUM 

EXTRACT MEDIUM  
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2. MECH.DAT 
NAME LASERWELDING_MESH_ 

SEARCH DATA 1000 ASCII 

DEFINITION 

 3D Metal Sheet Laser Welding Butt Joint with Velocity 8 m/min 

OPTION THREEDIMENSIONAL THERMOELASTICITY 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

 ELEMENTS GROUPS $PART$ / E -10000 NU -10001 YIELD -10002 LX -10003 LY 

-10003 - 

 LZ -10003 SLOPE -10004 MODEL 3 PHAS 6 AUST 6 TF 1300 KY 0  

MEDIUM 

 WELDLINE / GROUPS $L244$ REFERENCE $L245$ ELEMENTS $FE$ START 

$FN$ ARRIVAL-- 

 $LN$ VELOCITY 133 TINF 0 MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ$ RETURN 

CONSTRAINTS 

 NODES GROUPS $FIX$ / UX UY UZ 

LOAD 

1 NOTHING 

TABLE 

 10000 / -10005  -10006 -10005 -10005 -10005 -10005 

 10001 / 1   20 0.33  1500 0.33 

 10002 / -10007  -10008 -10009 -10010  -10011 -10012 

 10003 / -10013  -10014  -10013  -10013  -10013  -10015 

 10004 / -10016 -10017 

 10005 / 1  20 210000  200 200000 400 175000 600 135000 800 78000 1000 15000 1100 7000 1200 

3000 1300 1000 1500 1000  
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 10006 / 1   20 1000    1505 1000   

 10007 / 1   20 234  100 180  200 139  300 110  400 89   500 70  600  57   700 40  800 25  900 14  1000 
10  1100 5  1200 5  1300 5  1450 5 

 10008 / 1   20 141  100 108  200 83   300 66   400 53   500 42  600 34  700 24  800 16  900 14  1000 10  

1100 5  1200 5  1300 5  1450 5 

 10009 / 1   20 600  100 575  200 544  300 505  400 466  500 402  600 305  700 188 800 100 900 14  
1000 10  1100 5  1200 5  1300 5  1450 5 

 10010 / 1   20 380  100 339  200 297  300 256  400 214  500 173  600 132  700 90  800 63  900 14  1000 

10  1100 5  1200 5  1300 5  1450 5 

 10011 / 1   20 380  100 339  200 297  300 256  400 214  500 173  600 132  700 90  800 63  900 14  1000 
10  1100 5  1200 5  1300 5  1450 5 

 10012 / 1   20 141  100 108  200 83  300 66  400 53   500 42   600 34 700 24  800 16  900 14  1000 10  

1100 5  1200 5  1300 5  1450 5 

 10013 / 1   25 0  200 0.002363  400 0.005329  600 0.008573  1000 0.0152 1200 0.0188 

 10014 / 1   25 0  1200 0 

 10015 / 1   25 -0.00937  1200 0.0180 

 10016 / -10018  -10018 -10019 -10020 -10018 

 10017 / 7  20 10021  100 10022  200 10023  300 10024  400 10025  500 10026  600 10027  700 10028  

800 10029  1000 10030  1200 10031 

 10018 / 7  20 10032  100 10033  200 10034  300 10035  400 10036  500 10037  600 10038  700 10039  

800 10040  1000 10041  1300 10042 

 10019 / 7  20 10043  100 10044  200 10045  300 10046  400 10047  500 10048  600 10049  700 10050  

800 10051  900 10052  1000 10053  1100 10054  1200 10055  1300 10056 

RETURN 

NAME V8_ 

SAVE DATA 2000 

MEDIUM 

EXTRACT MEDIUM 
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3. METALURGICAL.DAT 
MATERIAL 1 PHASE 6 

KX(1) = KX(2) = KX(3) = KX(4) = KX(5)      = TABLE 103 

KX(6)                                           = TABLE 104 

C(1) = C(2) = C(3) = C(4) = C(5)           = TABLE 105 

C(6)                                              = TABLE 106 

RHO(1) = RHO(2) = RHO(3) = RHO(4) = RHO(5)  = TABLE 107 

RHO(6)                                        = TABLE 108 

REACTION 

 1 6 HEATING  PEQ table 10  TAU table 11  F table 12  

 2 6 HEATING  PEQ table 13  TAU table 14  F TABLE 15 

 6 1 COOLING  PEQ table 20  TAU table 21  F table 22 

 6 4 COOLING  PEQ table 30  TAU table 31  F table 32 

 6 3 COOLING  MS 475  KM 0.01428 

TABLES 

 10 / 1 730 0 870 1 

 11 / 1 700 1*6 710 1*3 730 5 870 1 1200 1 1250 5 1300 10 1400 1 1500 0.01 1550 

0.001 

 12 / 1 1 1 100 5 1000 30 2400 60 5000 100 10000 150 20000 250 50000 550 100000 

1000 

 13 / 1 995 0 1000 1 

 14 / 1 950 1*6 980 1*3 1000 1 1100 0.1 1300 0.05 1400 0.01 1500 0.01 1600 0.001 

 15 / 1 1 1 100 5 1000 30 2400 60 5000 100 10000 150 20000 250 50000 550 100000 

1000 

 20 / 1 589 0    590 1  620 1  860 0 

 21 / 1 589 1*6  590 1  620 1  700 1  780 10  860 100 

 22 / 1 -200 0.01  -100 0.14  -80 0.19  -40 0.26  -20 0.24  -12.5 0.21 -7 0.3 -5 0.7  -3.2 1  

-0.1 1 
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 30 / 1  479 0    480 1  595 0 

 31 / 1  479 1*6  480 1  625 1 

 32 / 1  -280 0.01  -250 0.2  -200 0.5  -100 2  -80 3  -40 5  -20 2.5  -12.5 2 -7 3  -5 10 

 103 / 1  20 0.068  200 0.059  400 0.047  600 0.036  800 0.029  900 0.027  1450 0.033 

 104 / 1  20 0.018  800 0.025  900 0.027  1450 0.033  1475 0.033 1500 0.033  1550 

0.033  1650 0.033  2500 0.033 

 105 / 1  0 430  100 500  200 550  300 580  400 610  500 650  600 710 700 790  800 

865  900 565  1440 630  2500 707 

 106 / 1  0 450  100 473  200 495  300 512  400 523  500 533  600 541 700 548  800 

556  900 565  1440 630  2500 707 

 107 / 1  0 7850*-9  200 7800*-9  400 7730*-9  600 7653*-9  700 7613*-9 1600 7190*-

9 

 108 / 1  0 8104*-9  800 7656*-9  900 7600*-9  1000 7548*-9  1200 7443*-9 1400 

7320*-9  1600 7190*-9  2500 6940*-9 

END 
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