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Nomenclature 

A Area [ft2] 

Cp Specific Heat [BTU/lbm-F] 

dh Hydraulic Diameter [ft] 

D Mass Diffusion [ft2/sec] 

Eu Euler Number 

f friction factor 

FL Fin Length 

FP Fin Pitch 

FT Fin Thickness 

g gravity [ft2/sec] 

G Mass Velocity 

h Convective Heat Transfer Coefficient [BTU/hr-ft2-oF] 

ID Inner Diameter [ft] 

k Mass Transfer Coefficient [lbm/hr-ft2-difference pv] 

p  Pressure [psia] 

L  Tube Length [ ft] 

    Mass Flowrate [lbm/hr] 

M Molar Mass [lbm/lbmol] 

N Number of Fins 

Nu  Nusselt Number 

OD Outer Diameter [ft] 

Pr  Prandtl Number 

Q  Heat Transfer [BTU/hr] 

Re  Reynolds Number 

SD Diagonal Tube Pitch [ft] 

SL Longitudinal Tube Pitch [ft] 

ST Transverse Tube Pitch [ft] 

T  Temperature [degree F] 

u velocity [ft/sec] 

X Quality of Condensible Vapor 

z Number of Rows 

 

α  void fraction, Thermal Diffusivity [ft2/sec] 

λ  Thermal Conductivity [BTU/hr-ft-F] 

η  Overall Surface Efficiency 

ηf  Fin Efficiency 

ρ Density [lbm/ft3] 

Φ Two Phase Multiplier 

 

SUBSCRIPTS 

a         air 

amb    ambient  

D        tube diameter 

Fr       frictional 

F        fin 

dg      dry gas 

g        flue gas 

i        inner, interfacial 

l        liquid 

lm     log mean difference 

lo      liquid only 

nc     noncondensible gases 

s       surface 

T      Total 

t       total 

v      vapor 

vo    vapor only 
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Abstract 

 It is becoming increasingly more important for some power plants to reduce water 

consumption rates.  By 2030, the demand for water consumption in certain regions of the United 

States will increase by as much as 119% over 2005 usage rates.  Engineers continue to improve 

the efficiencies of power plants to reduce water consumption rates.  But this dissertation presents 

a new way in which power plants can reduce water consumption rates.   

 One way to reduce a power plant‟s water consumption is to recover water vapor from the 

boiler flue gas.  In the present study, an air-cooled condenser was developed which cools flue gas 

and condenses water vapor from the flue gas.  The heat exchanger, modeled after typical air-

cooled condensers used for condensing steam in power plant cycles, is a cross-flow finned-tube 

arrangement with the flue gas flowing through the tubes and the cooling air flowing around the 

tubes.  At the exit of the heat exchanger, the condensed moisture from the flue gas would be 

collected and treated and then used in the plant to reduce the amount of water usually taken from 

rivers, lakes, or municipal systems. 

 The present study focused on developing a heat and mass transfer simulation which 

predicted heat transfer rates, water condensation rates, and associated costs of building and 

operating the system.  To validate the simulation, a prototype heat exchanger was fabricated and 

processed flue gas from an industrial boiler.  The performance of the prototype was compared 

with the predictions of the simulation.  The cost of the system was estimated using capital cost 

correlations for air-cooled condensers and calculating the operating costs and savings of the 

system using the performance results from the simulation.   

 Four specific applications of the condenser were investigated, two in which ambient air 

was used as the heat sink and two in which boiler combustion air was used as the heat sink.  The 

case studies showed that the ACC system could provide fuel savings up to 5,400 tons per year or 

up to 500 gpm of water.   
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Introduction 

The purpose of this research was to design an air-cooled condenser (ACC) for boiler flue 

gas in a coal-fired power plant.  Currently, such plants emit flue gas at temperatures above 300
o
F 

to avoid ductwork corrosion caused by condensing sulfuric acid.  Flue gas can have SO3 

concentrations of up to 35 ppm and, depending on the moisture content, sulfuric acid starts 

condensing at temperatures ranging from 225
o
F to 310

o
F.  By emitting flue gas at an elevated 

temperature, large amounts of water and energy are wasted.  The proposed ACC will recover 

water and low grade heat from flue gas. 

A typical flue gas flow rate in a power plant is 6,000,000 lbm/hr.  Depending on the coal, 

water moisture concentrations can range from 6 to 15 vol %, or 216,000 to 540,000 lbm/hr 

respectively.  If recovered, the water can be used to supply approximately 10 to 29 % (depending 

on fuel) of the makeup water used in an evaporative cooling tower [20]. 

Thermoelectric plants withdraw and consume substantial amounts of water for cooling.  

In 2005, U.S. coal-fired plants equipped with evaporative cooling towers consumed 2.4 billion 

gallons of water per day (BGD).  By 2030, it is estimated that the consumption rate will increase 

by 17 to 29%, depending on the technology employed.  This increase is a national average, but on 

a regional level the consumption will be lower in some areas and higher in others.  One study 

predicts coal-fired power plants in Florida and New York will increase their water consumption 

rates by 119 and 67% respectively [1]. 

Another factor affecting water usage in thermoelectric plants is CO2 mitigation.  

Retrofitting equipment to reduce carbon dioxide emissions will reduce the plant‟s efficiency and 

increase the plant‟s cooling needs.  Estimations by the National Energy Technology Laboratory 

predict that if all the new and existing pulverized coal plants with scrubbers and IGCC 

(gasification and combined cycle) were to deploy carbon capture technologies by 2030, the 

thermoelectric industry‟s water consumption rate would increase an additional 27 to 52%, 

depending on the configuration [1]. 
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 In contrast to typical power plant applications, the proposed air-cooled condenser will be 

used to condense moisture in flue gas rather than condensing pure steam in a steam condenser. 

The differences between flue gas moisture and steam required special design considerations 

which are addressed in the present work. 

 The first objective of the present study was to develop a model which simulated the heat 

and mass transfer processes in condensing flue gas.  Whereas steam is a single-component, 

condensible fluid, flue gas is a mixture of condensible and noncondensible gases.  Therefore, the 

simultaneous sensible and latent heat transfers were modeled.  The model was then validated with 

experimental measurements and used to design and optimize a system for a power plant. 

 Chapter 1 begins with a literature review of the current state-of-the-art.  Chapter 1 also 

discusses the differences between modeling a single component condensible gas and a mixture of 

condensible and noncondensible gases.  Chapter 1 also describes the pressure drop correlations 

and heat transfer correlations in the heat and mass transfer simulation, the major components of 

the economic model used to define the cost of the ACC, and the optimization technique. 

 Chapter 2 discusses the heat and mass transfer simulation developed in the present work.  

The details of the numerical procedure are described along with the algorithm to solve the 

governing equations.  Also discussed is how the optimization procedure was implemented. 

 Chapter 3 describes the experimental investigation performed in the present research.  

The experimental apparatus is discussed and detailed drawings are shown.  Also described in 

Chapter 3 are results of the experimental measurements.  The chapter is concluded by showing 

evidence that the heat and mass transfer simulation discussed in Chapter 2 is accurate. 

 Chapter 4 is a discussion of design choices which are most important to meet design 

objectives.  The experimental results and results from the heat and mass transfer simulation are 

used to support arguments.   

 Chapter 5 discusses the details of the calculation procedure to determine the size and cost 

of the ACC.  Parametric simulations are presented to show how each design choice affects the 
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size and cost of the ACC.  The final two sections of Chapter 5 discuss two applications for the 

ACC: with and without a wet flue gas desulphurization (FGD) system.  The geometry and process 

conditions of the ACC were optimal for each application. 

 The final chapter of the present study, Chapter 6, discusses the application of the ACC to 

pre-heat combustion air.  The calculation procedure is discussed, followed by the optimal 

geometry and process conditions.  The chapter concludes by providing an estimate for the fuel 

savings due to pre-heating combustion air. 

 Appendix A of the present study lists details of the experimental results not presented in 

Chapter 3.  Appendix B lists additional results from the optimization simulations discussed in 

Chapters 5 and 6.  Appendix C details the assumptions for the fuel savings calculations in 

Chapter 6. 

  



5 

 

1 Literature Review 

1.1 The State-of-the-Art in Flue Gas Condensers 

The Condensing Heat Exchanger Corporation (CHX) in partnership with Foster Wheeler 

Corporation and The Babcock and Wilcox Company developed a flue gas condensing heat 

exchanger with Teflon covered tubes [2-8].  The purpose of the Teflon covering on the tubes is to 

minimize potential failure due to corrosion; however its drawbacks are decreased thermal 

conductivity and increased manufacturing costs.  The Teflon covering on the tubes is 0.015 

inches thick and the Teflon covering on the shell walls of the heat exchanger is 0.06 inches thick.  

There are 110 documented installations of the CHX designed condensers but no heat and mass 

transfer performance tests are documented.   

The CHX heat exchanger is a shell-and-tube design.  Water flows on the tube-side and flue 

gas flows on the shell-side.  The tubes are approximately one inch in diameter, three feet long, 

and arranged in a staggered matrix.  The full-scale heat exchanger is assembled with a modular 

design and the desired surface area is obtained by stacking modules.  A demonstration test was 

carried out by Consolidated Edison at its 74
th
 Street station in New York City.  This heat 

exchanger processed 320,000 lbm/hr of flue gas.  At the time of publication in 1992, the 

economizer was expected to stay in service for 20 years.  The last published update in Butcher et 

al. in 1996 [6] states continued service with a heat rate improvement of 800 BTU/kWh 

To enhance the Teflon covered heat exchanger, the Integrated Flue Gas Treatment (IFGT) 

system was developed.  This system has four sections: In the first section, the flue gas flows 

downwards over a bank of tubes where sensible heat transfer occurs.  The second region is a U-

bend which redirects the flow upwards and the third region is a condenser where the flue gas 

flows around another bank of chilled tubes.  Water condenses from the flue gas and falls into a 

collection basin.  In this third region a reagent can be injected to further enhance condensation 

and also neutralize acid emissions.  The fourth region employs a mist eliminator to recover the 

entrained liquid from the flue gas. 
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A demonstration project of the IFGT system determined particulate capture efficiencies, 

SO2 removal efficiencies, mercury reduction, and tube wear.  The IFGT system processed 25,000 

lbm/hr flue gas from an oil-fired unit.  Sulfur dioxide removal efficiency was 98%, sulfur trioxide 

removal efficiency was over 65%, and mercury removal efficiency was 50%.  Results from other 

tests can be found in Butcher et al. [6] where conditions were changed to observe the effects of 

fuels, loading conditions, and spray reagents. 

A long term test to determine the durability of the Teflon tubes was performed in 1996 

[7].  This long term test subjected the tubes to 750 SCFM at 300
o
F continuously for 260 days, and 

there was a 20 minute tube wash every 8 hours.  Measured results showed no significant 

degradation of the Teflon coating.  Microscopic degradation was measured on some tubes and the 

authors reported it was negligible and should cause no problems in extended operations.  The life 

of the tubes was expected to be greater than 10 years.  The IFGT system was patented in 1996 by 

the Babcock and Wilcox Company [8] and continues to be sold by it. 

North Atlantic Technologies [9-10] developed a flue gas condensing heat exchanger for 

an industrial boiler.  The heat exchanger was a plate-type configuration like what is shown in 

Figure 1.1.  The plates were coated with a porcelain enamel to resist corrosion.  While this 

application may work for an industrial boiler, which produces approximately 20,000 lbm/hr of 

flue gas, porcelain enameled plates are impractical for a heat exchanger that has to process 

approximately 6,000,000 lbm/hr of flue gas. 
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Figure 1.1 - Plate-type heat exchanger. 

CON-X [12] developed a direct contact heat exchanger where water is sprayed directly onto 

the hot flue gas to saturate and cool the flue gas, and then collect condensed water.  The largest 

application of this design was on a flue gas stream of 35,000 lbm/hr.  Svedberg [11] also 

proposed a direct cooler for recovering waste heat from flue gas.  His approach injects a 

hygroscopic fluid to absorb the water vapors from the flue gas.  No pilot scale systems have been 

developed.  In the CON-X design, the amount of water recovered from the flue gas depends on 

the exit temperature of the flue gas, and to have an exiting flue gas moisture concentration of four 

percent would require the exiting flue gas temperature be 84
o
F.  For Svedburg‟s design, the 

effectiveness of the hygroscopic fluid could improve water recovery efficiency.   

The Energy Research Center investigated water-cooled shell-and-tube type heat 

exchangers for condensing moisture from flue gas [13,14,20].  The study involved testing pilot 

scale bare tube and fin tube heat exchangers on flue gas streams from fuel oil, natural gas, and 

coal.  The experiments were used to validate an analytical model developed to simulate the shell-

and-tube heat exchangers.  The agreement between the simulation and experiments was good, and 

the investigation of a full-scale design is in progress. 
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Investigations were done to integrate the heat recovery system into the plant [20].  The heat 

exchanger system was analyzed for a power plant with a cold side ESP, but without an FGD.  

Cooling water availability is limited to the boiler feed-water taken from the discharge of the main 

steam condenser, which presents a limitation.  In a typical power plant, the ratio of the mass flow 

rates of flue gas to cooling water is 2:1.  It was found that when using water-cooled heat 

exchangers, only a small part of the captured latent heat can be utilized for preheating feed water.  

Additional heat sinks are needed for maximum water recovery from the flue gas. 

1.2 Comparison between Dry Steam Condensers and Dry Flue Gas Condensers 

In power plant applications, air-cooled heat exchangers are typically used as condensers.  

A schematic of a dry direct steam condenser system is shown in Figure 1.2.  This condenser 

design has an A-frame construction with forced air cooling.  The largest example of a dry direct 

air-cooled steam condenser is the Matimba Plant, in the Republic of South Africa [15].  The 

power plant has six units at 665 MW, and each unit has 384 heat exchanger tube bundles for 

cooling.  Each bundle is almost 10 feet wide and roughly 32 feet long with two rows of 

galvanized plate fin elliptical tubes.  In total the plant has 2304 tube bundles.  The tube bundles 

are arranged in an A-frame configuration, similar to that shown in Figure 1.2. 

 

 

Figure 1.2 – Dry direct steam air-cooled condenser system. 
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The size of a dry, direct air-cooled steam condenser for a 600 MW power plant was 

calculated using a heat exchanger handbook [21-22].  For condensing steam at 93
o
F with cooling 

air entering at 75
o
F, the necessary surface area of the condenser is approximately 1,600,000 ft

2
.  

As shown in Chapter 5 and 6 the flue gas air-cooled condenser for the same power plant would 

have approximately 60,000 to 200,000 of surface area.  The flue gas condenser is approximately 

1/8
th
 the size.   

A dry, direct air-cooled steam condenser performs total condensation of the steam and purges 

trapped noncondensible gases that enter the flow upstream due to leakage.  The presence of 

noncondensible gases creates a resistance to latent heat transfer which adversely affects the 

performance of the steam condenser.  A study by Stewart et al. [19] showed how noncondensible 

gases can greatly affect the heat transfer performance.  Noncondensible gases exist because of 

leakage in steam condensers and therefore it is difficult to quantify their presence in the flow, so 

noncondensibles are typically ignored during engineering calculations.  However, in a flue gas 

condenser, where noncondensible gases would make up approximately 90% of the gas, the effects 

must be simulated.   

Figure 1.3 shows the case of a flue gas condenser where the flow is a mixture of condensible 

and noncondensible gases.  The figure shows that in order for condensation to occur the vapor 

must diffuse from the bulk flow through the noncondensible gases, towards the condensate 

interface.  Simulating this phenomenon is the main challenge with designing an air-cooled 

condenser (ACC) for flue gas because heat transfer handbooks [22-24] provide methods for rating 

and sizing pure substance condensers, but they do not provide methods to rate flue gas 

condensers. 
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Figure 1.3 - Condensation in the presence of noncondensible gases 

The earliest attempt to quantify the effect of noncondensible gases was by Colburn et al. and 

Chilton et al. [16-18,45], and they developed a heat and mass transfer analogy for condensing 

vapors in the presence of noncondensible gases.  They also developed an analytical expression 

that must be satisfied at each point in a condenser.  Webb and Wanniarachi [25] developed an 

iterative solution technique to solve the expression.  Analytical modeling was performed by Jeong 

et al. [13-14] using this iterative procedure and Jeong et al. conducted experiments to validate the 

analytical model for external flow.  In the present study an internal flow was investigated. 

 

1.3 Heat and Mass Transfer Analogy 

The methodology to calculate the condensation rate of a condensible vapor from a mixture of 

condensible and noncondensible gases was developed for steady diffusion of a single vapor 

through a non-diffusing gas.  A relationship exists between mass transfer and heat transfer, and 
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the mass transfer coefficient can be calculated based on the heat transfer coefficient.  The mass 

transfer coefficient    is Equation 1.1 [25]. 

    
      

              
 (1.1) 

 
    

              

   
        

        
 

 
(1.2) 

    
  

  
 (1.3) 

An approximation used in this calculation is that the diffusion coefficient of water vapor 

through flue gas Dg behaves like water vapor through air.  This approximation was used by 

Osakabe [26] and Jeong et al. [13-14].   

The driving potential for mass transfer was the gradient of the vapor partial pressure 

between the bulk flow and the tube wall (or condensate interface).  The condensation rate 

(Equation 1.4) was calculated using this gradient, and then the latent heat (Equation 1.5) was 

calculated based on the condensation rate. 

                         (1.4) 

              (1.5) 

 

The relationship developed by Colburn and Hougen that must be satisfied everywhere in 

the condenser quantified conservation of energy for both sensible and latent heat.  Shown as 

Equation 1.6, it states that the sensible and latent energy transferred from the flue gas must be the 

same as the sensible energy absorbed by the coolant.  To apply Equation 1.6 to a heat exchanger 

required a stepwise calculation procedure because the quantity                was not constant 

in the regions of the heat exchanger where condensation occurred. 

 

                                               (1.6) 
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 The property values of the flue gas were determined using the law of mixtures for the 

molecular weight and specific heat, density using the ideal gas law, and diffusion properties from 

the method developed by Wilke [59-60] and Bird et al. [48].  The method of Wilke and Bird et 

al., is shown in Equation 1.7, it was developed for multi-component mixtures of polyatomic non-

polar molecules.  Equation 1.7 is theoretically for mixtures of non-polar molecules, and flue gas 

is a mixture of non-polar and polar molecules, but it was used in this study because comparisons 

performed by Wilke showed the average deviation between the calculations and experimental 

measurements to be approximately 4 percent for mixtures containing non-polar polyatomic gases.   
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The Nusselt number for the gas side, hg was taken from Gnielinski [27] for internal, fully-

developed turbulent flow. 

 

      
                 

                       
 

(1.8)              

                

 

An empirical correlation (Equation 1.9) to account for entrance effects was developed by 

by Al-Arabi [28] for a sharp-edged inlet and turbulent flow.  For long tubes, the entrance effects 

become negligible. 
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  (1.9) 

 

The friction factor (Equation 1.10) for turbulent flow in smooth tubes was taken from Munson 

[29]. 

                     (1.10) 

 

The gas side heat transfer coefficient was calculated using Equation 1.11. 

    
      

  
 (1.11) 

 

The heat transfer coefficient for the air side was calculated using bare tube bundle correlations 

and accounting for fins by calculating a fin efficiency.  The Nusselt number for flow in a 

staggered bare tube bundle was found in Incropera [39].  Constants for the correlation are listed in  

Table 1.2.  Row correction factors to account for the rows prior to the fully developed region are 

listed in Table 1.1. 

           
                     

    
 

(1.12) 
                     

            

                

 

Table 1.1 - Row correction factors for air-side heat transfer coefficient. 

Row # 1 2 3 4 5 6 7 8 9 

Aligned 

Tubes 
0.7 0.8 0.86 0.9 0.92 0.95 0.97 0.98 0.99 

Staggered 

Tubes 
0.64 0.76 0.84 0.89 0.92 0.95 0.97 0.98 0.99 
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Table 1.2 - Constants for Equation 1.12. 

Configuration ReE,max C m 

Aligned              10
3
-2*10

5
 0.27 0.63 

Staggered           10
3
-2*10

5
            

    0.6 

Staggered           10
3
-2*10

5
 0.40 0.60 

* for            heat transfer is inefficient and aligned tubes should not be used. 

 

The heat transfer coefficient for the bare tube bundle was calculated with Equation 1.13. 

      
      

  
 (1.13) 

 

The fin efficiency was defined as the ratio of the actual heat transfer rate to the heat transfer rate 

if the entire fin were at the base temperature Ts.  The base temperature    is the temperature at the 

location where the fin is attached to the tube.  The theoretical fin efficiency for annular fins is 

Equation 1.14, taken from Incropera [39]. 

    
   

     
    

  

                               

                               
 

(1.14) 

                 

where I0 and K0 are modified, zero-order Bessel functions of the first and second kind, and I1 and 

K1 are modified, first-order Bessel functions of the first and second kind,   refers to the inner 

radius of the fin and     refers to the summation of the outer radius of the fin and half the fin 

thickness.  An overall surface efficiency    was calculated using Equation 1.15 to account for the 

number of fins on the tube and the spacing between them.  

      
   

  

       (1.15) 
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where N is the total number of fins,    is the surface area of one fin,    is the total exterior 

surface area of the tube including the fins.  Newton‟s law of cooling applied to the air side 

(Equation 1.16) has the term    to account for the overall surface efficiency.   

 

                 (1.16) 

 

Another approach to predicting the heat transfer coefficient is to use empirical data.  

Experimental bare tube data and finned tube data can be found in Zhukauskas and Ulinskas [46] 

and Stasiulevicius and Skrinska [34].  Correlated data from Mirkovic [30] and Ganguli [31] can 

be used employing the row correction function from Gionollio and Cuti [32].  If the air-side 

Reynolds number is below 18000, the correlations for finned-tubes developed by Briggs and 

Young [33] apply. 

 

1.4 Fluid Pressure Losses in the Heat Exchanger 

The pressure drop associated with air flowing around staggered finned tube bundles was 

investigated by Stasiulevicius and Skrinska [34].  They measured pressure losses for 24 finned 

tube bundles and correlated the data for the Euler number.  All measured values were within 20% 

of the equation and the empirical correlations are Equations 1.17 and 1.18. 
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The range of geometries of the tube bundles used in Stasiulevicius and Skrinska‟s experiments 

are listed in [34]. 

 

Table 1.3 - Range of design parameters for the fin tube bundles used in the experiments of Stasiulevicius and 

Skrinska’s.   

Dimensionless Variable Minimum Experimental Value Maximum Experimental Value 

      2.2 4.1 

      1.3 2.1 

      0.125 0.5 

      0.125 0.28 

 

To determine the pressure loss of the flue gas in an ACC, the flow must be defined as 

single-phase or two-phase. For a single-phase flow inside a circular pipe, the integral momentum 

balance written over the cross-sectional area of a pipe like the element in Figure 1.4 is Equation 

1.19 [61]. 

        
  

  
    

 

          
 

  
 

  
    

 

                
 

 (1.19) 

 

 

Figure 1.4 - Differential element for Equation 1.19. 
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where p is the pressure at a given point in the cross-section at axial position z, τo is the wall shear 

stress at a point around the periphery surface S, and G, u, and ρ are the local mass flux, velocity 

and density of the fluid respectively.  θ is the angle of inclination of the channel from the 

horizontal and A is the channel cross-sectional area.  For a circular tube, uniform density and 

uniform velocity across the cross-section, it follows that: 

  
  

  
 

 

 
    

  

  
        (1.20) 

 

The three right-hand-side terms in Equation 1.20 represent the pressure drop associated 

with friction, acceleration, and gravity respectively.  Assuming constant flow velocity in the axial 

direction and neglecting gravity, the pressure drop due to the wall shear stress can be determined 

using Equation 1.21, and the friction factor using Equation 1.22. [61]. 

 
  

  
         

 

  

   

 
 (1.21) 

                     (1.22) 

 

 Treating the gas as a two-phase fluid, the integral momentum balance written over the 

differential element in Figure 1.4 is Equation 1.23. 

 

       
  

  
    

 

  

        
 

  
 

  
           

 

                
 

 

(1.23) 

 

where the subscripts L and g denote the liquid and gas phases.  The right-hand side terms 

correspond to shear stress, acceleration, and gravitational effects respectively.  Evaluating 

Equation 1.23 for a circular tube with uniform density and velocity across the cross section, and 

employing the two-phase multiplier    
  on the shear stress term, results in Equation 1.24. 
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  (1.24) 

 

The two-phase multiplier    
  method was proposed by Lockhart and Martinelli [37] as a 

way of determining the friction pressure loss of a two-phase flow using empirical data.  The 

method utilizes a generalized correlation which covers all combinations of laminar and turbulent 

regimes for both the liquid and gas phases.  The method covers all flow regimes and two-phase 

flow patterns, but the method does not apply when the flow pattern changes along the tube length.  

For example, this method does not apply to a slug flow because a slug flow is alternating sections 

of liquid and large pockets of vapor.  But it is applicable to a whispy flow or annular flow, in 

which the flow pattern is the same at all cross sections [37].  The two phase multiplier is a ratio of 

the frictional pressure loss to the frictional pressure loss if the fluid were single-phase. 

    
   

         

         
  (1.25) 

 

In Equation 1.25,           is the actual pressure gradient in the tube and           is the 

fictitious single-phase pressure gradient if the flow were just liquid.            can be evaluated 

using Equation 1.21, or by using the Blasius correlation (Equations 1.26 and 1.27) for turbulent, 

single-phase flow in round tubes. 

   
  

  
 

  
 

      

    
 (1.26) 

              
      (1.27) 

 

Kroger, Carey, and Kolev [15,36,38] all recommend using the same correlation for 

calculating the two-phase multiplier    
 , Equation 1.28.  The equation correlates 25,000 

experimental data points within 30-40%.  It is valid for vertical and horizontal, single-component, 

and two-component two-phase flows. 
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(1.28)                
  

  
  

   

   
  

                    
  

  
 

    

 
  

  
 

    

   
  

  
 

   

 

    
  

     
 (1.29) 

    
    

  
 (1.30) 

              
      (1.31) 

 

There is an additional pressure loss of the flue gas associated with the gas entering and 

exiting the tubes.  Assuming that the tubes are connected to manifolds where the tubes have 

sharp-edged inlets and exits and the flow in the manifolds flows horizontal (see Figure 2.1) the 

inlet and exit pressure losses are Equation 1.32 and 1.33 [43]. 

Inlet             
   

 
 (1.32) 

Exit           
   

 
 (1.33) 

 

1.5 Economic model for air-cooled heat exchanger 

The economic model has two applications in this research.  The model was used to 

estimate how much the heat exchanger would cost, and it was used for a functional relationship to 

compare heat exchanger size and performance.  It was used to optimize the heat exchanger 

design.  One important aspect of this research was utilizing a cost function to optimize the 

geometry of the heat exchanger and the economic model developed here made that possible.  The 
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second important contribution of the economic model was to estimate what the cost of the ACC 

would be.  The economic model is a combination of capital cost, operating costs, and operating 

savings.  This section discusses each component.   

The final function developed in this economic model is a combination of capital cost, 

operating costs, and operating savings.  Minimizing the function leads to minimizing capital cost, 

minimizing operating costs and maximizing operating savings.  This is the most important aspect 

of the economic model, having a function to minimize which leads to an ACC with desirable 

performance. 

The economic model predicts the absolute cost of the system.  One must keep in mind that 

the correlations used to estimate the capital costs were derived from data on actual costs of ACCs.  

However, the authors [62-64] state the correlations are order of magnitude estimates and should 

be used as preliminary estimates.  These estimates are the first step in determining the cost of a 

large heat exchanger, and the next step is to hire a company which specializes in providing quotes 

for large heat exchangers.  Even with the uncertainty in the cost estimates, the economic model 

provides a good estimate of the cost as well as establishes the relationship between heat transfer, 

pressure loss, and surface area necessary to optimize the overall design.  To further improve this 

technique, one could use the same methodology established here with their own capital cost 

function. 

 The capital cost of the heat exchanger was calculated in the present study using an order 

of magnitude estimate based on surface area.  Smith [62] provides an estimate for fob („fob‟ 

implies free-on-board which means the manufacturer pays for loading charges, but not shipping 

and installation).  Clerk [63] provides a “field-erect” cost for air-cooled heat exchangers also 

based on the interior surface area of the tubes.  In addition, Clerk showed the uninstalled costs to 

be separated into five major components and these are listed in Table 1.4.   
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Table 1.4 - Cost fractions of a typical un-installed air cooler [63]. 

Bundle 45% 

Heaters 12% 

Fans and Motors 19 % 

Louvers 12 % 

Steel structures, stairways, ladders etc… 12 % 

Total 100 % 

 

Clerk then estimated the erection costs to be an additional 20% of the fob cost.  Guthrie [64] 

provides an estimate for capital cost based on interior surface area of the tubes which includes: 

 Tube bundle 

 Fan and motor 

 Casing, structure 

 Stairways etc… 

 Field erection 

 Subcontractor indirect costs 

These three sources have in common that the cost was estimated with a power-law function based 

on the interior surface area of the tubes, like Equation 1.34.  In Equation 1.34 and the estimates 

by Clerk, Smith, and Guthrie, there are factors    that account for changes from the nominal 

design (e.g. different materials, operating pressures, tube lengths etc…). 

                        

 

   

  (1.34) 

 

In Equation 1.34, A is a constant, n is the size exponential factor 0.8, and f is the factor accounting 

for different tube materials, tube lengths, operating pressures, etc… 

When optimizing heat exchanger designs, order of magnitude estimates for cost are 

frequently used.  Such estimates are typically power-law relationships based on surface area, 
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because they lend themselves to being optimized.  Simply, to minimize Equation 1.34, one must 

minimize the surface area.  There are many studies that investigate optimizing heat exchangers 

[50-58].  These studies all used a power-law relationship that estimated cost based on surface 

area.  [50,51,54-58] investigated shell-and-tube exchangers,  [52] investigated a plate-type heat 

exchanger, and [53] used the correlation by Smith [62] to estimate the cost of an ACC. 

The power-law relationships for capital cost were published in years passed, therefore to 

calculate the present value of the cost, indexes were taken out of Chemical Engineering.  

Equation 1.35 shows how the index values were applied.   

The capital cost was calculated on an annual basis to compare with annual operating costs.  

Equation 1.36 was used to calculate an annualized cost over n years at a fixed interest rate of i.   

 

                                             
                 

                 
 (1.35) 

 

 

                                        
       

        
 (1.36) 

 

 The operating costs of the heat exchanger were assumed to be the cost of operating the 

cooling air fans and the additional load on the flue gas fan.  The power supplied to the fans was 

calculated using the isentropic relationship shown in Equation 1.37, taken from the Babcock and 

Wilcox handbook [65].   

 

        
                   

  
 (1.37) 
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where k is the compressibility factor, V is the volumetric flow rate, ηf is the fan efficiency (0.875 

in the present study), and γ is 1.4 for air.  The operating cost was determined assuming the plant 

operated 7000 hours per year and the cost of electricity for the plant was five cents per kilowatt-

hour.   

                                     
 

     
     

   

  
 (1.38) 

 

 An additional operating cost not addressed in this present study was the cost associated 

with treatment of the water recovered from the flue gas.  Before the water can be used in other 

equipments, it must be treated.  These costs were yet to be determined. 

 The operating savings of the air-cooled heat exchanger was the reduction in water 

consumption of the plant.  The value of the water would be determined by what the power plant 

pays for water.  Assuming the plant operates for 7000 hours per year, the annual operating 

savings would be determined using Equation 1.39.  For the simulations, water was estimated to 

cost $1.50 per 1000 gallons. 

                                    
   

  
 

    

    
 (1.39) 

 

 Another opportunity to reduce plant operating costs is to use the recovered energy to pre-

heat combustion air.  The operating savings in this case would include fuel savings.  This is 

further discussed in Chapter 6. 

 The net annual cost of the ACC was calculated using Equation 1.40.  This equation was 

used to optimize the design of the ACC.  The net annual cost relates the heat and mass transfer 
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performance, pressure drop performance, and size of the ACC.  The optimization seeks to 

minimize this function. 

 
                                                   

                   
(1.40) 

 

 

1.6 Optimization Techniques for Heat Exchangers 

Two types of optimization procedures were reviewed in detail for this application, 

genetic algorithms and the Nelder-Mead method.  Ultimately the Nelder-Mead method was 

chosen for its more methodical approach and explicit algorithm. 

The Nelder-Mead optimization is an algorithm which minimizes a real-valued function.  It 

minimizes a function of n real variables using only the function values, no derivative information.  

It directly searches for a minimum using a simplex, which is a geometric figure consisting of 

vertexes that number one more than the number of dimensions.  For example, a simplex in a one-

dimensional space is shown in Figure 1.5.  There is one function variable x shown on the 

abscissa, the ordinate is the function value at x.  It is a one-dimensional function and therefore the 

simplex is a line with two vertexes.  Likewise, a two-dimensional simplex can be visualized as a 

triangle on top of a landscape.  For each iteration of the optimization the function value of each 

vertex is compared and the vertex having the largest function value is replaced by a new vertex 

having a lower function value.  The algorithm stops when a minimum is converged upon. 
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Figure 1.5 - Example of a general 1-Dimensional simplex on a function f. 

For example, consider in Figure 1.6 the two-dimensional landscape in which the minimum of 

the function is at the origin of the space.  The concentric circles in the figure are paths of constant 

function values, with larger circles having larger function values.  The simplex has been 

arbitrarily placed away from the minimum.  Evaluating the function at each vertex using the x 

and y coordinates of the three vertices, V1, V2, and V3, indicates that V2 has the highest function 

value.  To replace V2 with a more optimal value, the Nelder-Mead algorithm calls for a reflection 

of the simplex.  The reflection is performed using the known x and y values of V1, V2, and V3.  

The result of the reflection is shown in Figure 1.7.   
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Figure 1.6 – Initial simplex for a 2-dimensional landscape. Concentric circles denote paths of constant 

function values.. 
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Figure 1.7 – Reflected simplex for a 2-dimensional landscape. Concentric circles denote paths of constant 

function values.. 

 After reflecting the V2 vertex, evaluation reveals that V2 is a new minimum.  Therefore 

in an effort to converge on the minimum quickly, this reflection is expanded and the simplex 

becomes a different size, shown in Figure 1.8.  With each iteration, the simplex “walks” in the 

direction towards the minimum until a criterion is satisfied. 
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Figure 1.8 - Expanded simplex for a 2-Dimensional landscape.  Concentric circles denote paths of constant 

function values. 

 

In total, there are four different operations for the simplex: reflection, expansion, 

contraction, and shrinkage, and there are four scalar parameters that characterize these operations.  

The standard choice of the parameters was taken from Lagarias [41] as: 

 ρ = 1 (reflection coefficient) 

 χ  = 2 (expansion coefficient) 

 γ = ½ (contraction coefficient) 

 σ = ½ (shrinkage coefficient) 

The following page discusses one iteration of the algorithm. 
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1. Order the n+1 vertices to satisfy                       

2. Reflection: Compute the reflection point    using Equation 1.41 

                  (1.41) 

 

where       
  

 
    is the centroid of the n best points (all vertices except for     . 

Evaluate the function          

if          accept the reflected point and terminate the iteration. 

3. Expand: If      , calculate the expansion point    according to Equation 1.42 

                    (1.42) 

  

evaluate the function          

 if       accept    and terminate the iteration, otherwise accept    and terminate the 

iteration. 

4. Contraction: If       perform a contraction between    and the better of      and   . 

4a. If            perform an outside contraction according to Equation 1.43 

                     (1.43) 

 

evaluate           .  If        accept     and terminate the iteration, otherwise go to step 

5 and perform a shrink. 

4b. If         perform an inside contraction according to Equation 1.44. 

                   (1.44) 

 

evaluate           .  If          accept     and terminate the iteration, otherwise go 

to step 5 and perform a shrink. 

 

5. Shrink: Evaluate f at the n points according to Equation 1.45 
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                (1.45) 

  

where          .  The vertices of the simplex for the next iteration consist of 

            . 

To start the iteration, an initial simplex was defined.  Walters [42] discusses multiple 

methods for determining the initial simplex, and the tilted initial simplex method was used for the 

simulations in this research.   
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2 Simulation 

A major component of this dissertation was to develop a simulation to predict the 

performance of the air-cooled condenser (ACC).  The condenser geometry was discretized and, 

using MATLAB, governing equations for heat transfer, mass transfer, and pressure loss were 

solved.  The simulations modeled different diameter tubes, different fin pitch, length, and 

thickness, and various transverse tube spacing.  It also modeled different inlet flue gas 

temperatures, inlet cooling air temperatures, inlet moisture concentrations, and flue gas and 

cooling air flow rates.   

The simulation was validated using the experimental measurements which are described in 

Chapter 3.  Following the validation, the simulation was used to size a full-scale air-cooled 

condenser for a power plant.  The cost model and optimization technique described in the 

Literature Review were used to design the full-scale ACC.  

This chapter discusses the structure of the simulation, first describing the discretization of 

the geometry and the algorithm for the heat and mass transfer calculations.  Then important 

assumptions are discussed.  The chapter ends with a description of how the Nelder-Mead 

optimization method was incorporated into the simulation.  

2.1 Numerical Procedure for the Simulation 

The first step for the simulation was choosing the domain.  The air-cooled condenser is 

shown in Figure 2.1 and Figure 2.2.  Figure 2.1 shows a 3-Dimensional view of what an ACC 

could look like.  It is an A-frame construction with a forced-draft fan configuration.  The flue gas 

is distributed to the tube bundles with a manifold which acts as the top support of the tube 

bundles.  Collection manifolds at the exits of the tubes separates the water and flue gas, and in 

between these collection basins is the cooling air fan.  Figure 2.2 shows an end view of an ACC 

with one row of tubes.  The simulation was developed for the general case which can simulate 

any number of tube rows. 
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Figure 2.1 - Schematic of full-scale air-cooled with multiple tube bundles each having one row of tubes. 

 

Figure 2.2 - End view of air-cooled condenser with a tube bundle having 1 row of tubes. 
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In the simulation every tube in the tube bundles was not simulated.  Due to the symmetry 

of the system, only one column of tubes was simulated.  A general configuration of one tube 

bundle of the system is shown in Figure 2.3.  It was assumed a tube bundle will have many 

columns and the end-effects of the cooling air flowing around the outer columns were negligible.  

Figure 2.4 shows the column of tubes that was modeled in the simulation. 

 

Figure 2.3 - General configuration of one tube bundle having three rows. 
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Figure 2.4 - Top view of tube bundle showing the column of tubes that was modeled in the simulation. 

 

The simulation employed 1-Dimensional analytical computations to calculate the axial 

temperature distributions of the flue gas, cooling air, and tube wall surface.  In addition, the flue 

gas moisture concentration distribution was solved for by calculating the water vapor 

condensation rate.  These four distributions were calculated along the axial direction of the tubes 

using Equations 2.1 through 2.3. 

The initial conditions were the inlet flue gas temperature, inlet cooling air temperature, 

inlet flue gas moisture concentration and inlet flue gas and cooling air flow rates.  Figure 2.5 

shows the tubes from the hashed region in Figure 2.4 with the initial conditions, which are 

summarized in Table 2.1.  Table 2.2 shows the four variables in the simulation. 
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Figure 2.5 – Tubes simulated by the heat and mass transfer simulation. 

 

Table 2.1 - Initial conditions for heat and mass transfer simulation. 

Initial Condition 

Inlet Flue Gas Temperature Tfg 

Inlet Flue Gas Moisture 

Concentration 
yH2O 

Inlet Cooling Air Temperature Ta 

Flue Gas Flow Rate     

Cooling Air Flow Rate      
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Table 2.2 - Unknowns for heat and mass transfer simulation. 

Variables in Heat and Mass Transfer Simulation 

Flue Gas Temperature Tfg 

Cooling Air Temperature Ta 

Tube Wall Surface Temperature Ts 

Flue Gas Moisture Concentration yH2O 

 

 If there was no condensation of water vapor, there would have been only 3 variables to 

solve for, Tfg, Ta, and Ts, and it would have been a trivial problem.  But because of condensation 

there was one more variable than governing equations and an iterative procedure was used to find 

the solution.  The governing equations used to model the ACC are Equations 2.1 through 2.3. 

 

                                               (2.1) 

                                      (2.2) 

                                      (2.3) 

 

 Equation 2.1 was described in the Literature Review (Equation 1.6), which was derived 

by Colburn et al. [16-18] to be the expression that must be satisfied everywhere in a heat 

exchanger where condensation occurred in the presence of noncondensible gases.  Equations 2.2 

and 2.3 are conservation of sensible energy for the flue gas and cooling air, and were derived by 

reducing the Energy Equation (Equation 2.4) applied to the control volumes shown in Figure 2.6.  

The eliminated terms in Equation 2.4 were due to the system being steady, neglecting velocity 

effects and gravitational effects, and no external work   
  being done to the system. 

                   
  

   
 

  

  
    

               
  

   
 

  

  
   

  

  
 

    
 (2.4) 
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Figure 2.6 - Control volumes for flue gas (Equation 2.2) and cooling air (Equation 2.3) for the energy equation. 

 

Because of condensation, heat exchanger analysis methods such as LMTD and ε-NTU were 

not applicable.  A stepwise calculation procedure was necessary because in Equation 2.1 the 

driving potential for condensation                changed as condensation occured.  

Discretization and stepwise calculations were recommended by Webb et al. [25] and shown by 

Jeong et al. [13-14] to accurately model condensation of water vapor from flue gas.  The 

computational domain for the air-cooled condenser developed in this study is depicted by the 

two-dimensional matrix in Figure 2.7 along with the physical representation of one matrix 

element. 
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Figure 2.7 - 2-D matrix representation of discretized heat exchanger tubes and physical representation of one 

matrix element. 

 

The algorithm of the heat and mass transfer code developed for this research is shown in 

Figure 2.8.  The simulation began with the user inputting the initial conditions, and assuming a 

tube wall surface temperature,    distribution for each tube (A uniform distribution was used that 

was equal to the dew point temperature of the flue gas.).  Then the heat exchanger was discretized 

into an n x m matrix to look like Figure 2.7.  The simulation started the stepwise calculation with 

element (1,1).  The fluid properties, heat and mass transfer coefficients, and flow parameters were 

calculated using the assumed value of Ts and the initial conditions.  These property values and 

heat and mass transfer coefficients were then used to recalculate a value of Ts using the Colburn 

Hougen Equation (Equation 2.1).  Then Equations 2.2 and 2.3 were used to calculate the 

temperatures    
     

 and   
     

.  The pressure drops of the flue gas and cooling air were also 

calculated for cell (1,1).   
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Figure 2.8 - Algorithm of heat and mass transfer simulation. 



40 

 

This completed the first element, and the procedure was repeated for elements (2,1), 

(3,1),…(n,1).  That completed the first iteration of the first tube, and these are the first estimates 

of the distributions           , and moisture concentration     .  The second iteration used the 

calculated Ts values from the first iteration to recalculate the distributions of            , and 

    .  The third iteration used Ts values from the second iteration, etc.  To determine when the 

solution was found, the distributions of Ts and Tg for subsequent iterations were compared using 

the convergence criterion in Equation 2.5.   

 

           
        

       

 

   

 (2.5) 

 

where   is the iteration variable,   is the flue gas temperature or tube surface temperature,       is 

the element, and n is the total number of elements for 1 tube.  Equation 2.5 states that, the average 

temperature change of each element experiences a change in subsequent iterations of less than 

0.01 
o
F. 

The solution for each downstream tube is calculated in the same way, with the incoming 

cooling air temperature distribution for each tube was taken as the exiting values from the 

upstream tube. 

 The appropriate size of the elements in Figure 2.7 was determined using a sensitivity 

analysis.  The step size was decreased in subsequent simulations and the results compared.  Table 

2.3 lists the conditions for the simulations for the sensitivity tests and Figure 2.9 and Figure 2.10 

show the results which indicate that a step size equivalent to an order of magnitude less than the 

inner tube diameter was appropriate.  This ensured accurate results while not compromising 

computing time.   
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Table 2.3 - Process conditions for one set of simulations to determine appropriate length of a control 

volume. 

Process Condition Value 

Tube Inner Diameter [in] 3 

Tube Outer Diameter [in] 0.625 

Tube Length [ft] 10 

Fin Thickness [in] 0.03125 

Fin Pitch [in] 0.25 

Fin Length [in] 0.5 

Flue Gas Velocity [ft/sec] 28 

Inlet Flue Gas Temperature [F] 150 

Cooling Air Velocity [ft/sec] 25 

Inlet Cooling Air Temperature [F] 70 

Inlet Flue Gas Moisture Concentration [% wet] 10.7 

 

 

Figure 2.9 - Effect of control volume size on heat and mass transfer solution for decrease in flue gas 

temperature through tubes with and without fins. 
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Figure 2.10 - Effect of control volume size on heat and mass transfer solution for condensation efficiency of 

heat exchangers with and without fins. 

*Condensation Efficiency is defined as the ratio of the amount of vapor condensed in the heat 

exchanger to the amount of vapor entering the heat exchanger, Equation 2.6. 

   
               

      

 (2.6) 

 

2.2 Heat and Mass Transfer Model Assumptions 

2.2.1 Neglecting the Heat Transfer Resistance of the Tube Wall 

The heat and mass transfer simulation assumed the resistance to heat transfer of 

conduction through the wall was much less than the resistances due to convection, and therefore 

the tube wall could be neglected.  The equations to calculate resistances for convection and 

conduction through a circular tube wall are Equation 2.7 and 2.8, and Figure 2.11 shows the 

resistances to the flue gas and cooling air.  Table 2.4 lists the calculated values of resistances for 

two cases, one with high flue gas and cooling air velocity and one case with low velocities.  This 

shows the range of probable resistances.  Table 2.5 tabulates the process conditions for the 
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calculations.  The heat transfer resistance of the tube wall was much less than the contribution 

from convection, and the tube wall was neglected in the simulation. 

             
 

  
 (2.7) 

                                 
   

  
    

    
 (2.8) 

 

 

Figure 2.11 - Heat transfer resistances between flue gas and cooling air. 

 

Table 2.4 - Resistances to heat transfer between flue gas and cooling air. 

  
Resistance to Heat Transfer 

[hr-F/BTU] 

  
Cooling Air 

Ra 

Tube Wall 

Rs 

Flue Gas 

Rg 

Resistance to Heat Transfer 

Case I 
3.77E-02 6.42E-04 8.18E-01 

Resistance to Heat Transfer 

Case II 
1.64E-02 6.42E-04 1.12E-01 
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Table 2.5 - Case studies for calculating heat transfer resistances. 

Case I Case II 

Flue Gas Velocity [ft/sec] 10 Flue Gas Velocity [ft/sec] 60 

Cooling Air Velocity [ft/sec] 7.5 Cooling Air Velocity [ft/sec] 30 

Flue Gas Temperature [
o
F] 135 Flue Gas Temperature [

o
F] 135 

Cooling Air Temperature [
o
F] 75 Cooling Air Temperature [

o
F] 75 

Outside Tube Diameter [in] 1.25 Outside Tube Diameter [in] 1.25 

Inside Tube Diameter [in] 1.125 Inside Tube Diameter [in] 1.125 

Tube Length [in] 36 Tube Length [in] 36 

 

 

2.2.2 Neglecting the Presence of the Liquid-Film 

It was assumed that a continuous liquid film did not exist on the interior walls of the air-

cooled condenser (ACC).  Rather, a rivulet type of flow existed and had negligible effects on the 

thermodynamics and hydrodynamics of the system.  The flue gas entered the ACC as a single-

phase fluid and condensation began at the point where the tube wall surface temperature was less 

than the flue gas dew point temperature.  At this location condensation occurred on the tube 

walls.  However, these few droplets of condensation were not enough to form a liquid film.  The 

droplets coalesced to form streams which flowed down the tube walls.  After a critical flow rate, 

the streams then formed a continuous film.  It was assumed that this critical flow rate would never 

exist in the ACC and as a result, it was assumed that a continuous film would never exist. 

Experiments were performed to support the assumption that a liquid film did not form.  

The objective was to quantify liquid and gas flow rates that sustained a continuous liquid film.  
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These results were used to determine if the full-scale ACC would have a continuous liquid film 

on the interior walls of the tubes.  The experimental apparatus built for this experiment is shown 

in Figure 2.12 and Figure 2.13 and consists of two acrylic tubes connected with a plenum.  A 

compressed air-line supplied a gas flow through the tubes and the plenum was filled with liquid 

that was injected onto the interior walls of the acrylic tube.  The gas and liquid flow rates were 

measured when a continuous liquid film was observed. 

 

 

Figure 2.12 – Expanded view of experimental apparatus used to observe liquid film behavior. 
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Figure 2.13 - Detailed design of experimental apparatus to observe liquid film behavior. 

 

Figure 2.14 shows the gas Reynolds numbers (Equation 2.9) and the liquid film Reynolds 

numbers (Equation 2.10) that sustained a continuous liquid film.  The results showed there was a 

strong dependence between the two.  A larger gas flow rate through the tube required a smaller 

liquid film flow rate, and when the gas flow rate was reduced more liquid was necessary to 

sustain a continuous film. 

    
    

 
 (2.9) 

        
         

    
 (2.10) 
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Figure 2.14 - Minimal conditions to sustain a continuous liquid film on the interior wall of a tube. 

 

To show that the flue gas Reynolds number and liquid film Reynolds number in the ACC 

were less than the required values to form a liquid film, data from the ACC experiments and full-

scale simulations were compared to Figure 2.14.  In Figure 2.15, data from the full-scale 

simulation in the present study is plotted along with data from the experimental investigation 

described in Chapter 3.  These results indicate that it is likely the flow conditions in the ACC 

would not sustain a continuous liquid film on the interior walls of the heat exchanger tubes and 

because of these results the simulation in the present study does not account for a liquid film. 
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Figure 2.15 – Liquid film Reynolds numbers for the full scale ACC and laboratory scale ACC which show that a 

continuous film will not exist in the ACC. 

 

Figure 2.16 shows the partial pressure and temperature distributions of the flue gas for 

the cases with and without a liquid film.  In the case with a liquid film, the heat and mass transfer 

model would have an additional temperature to solve for, the temperature of the interface 

between the condensate film and the flue gas,   .  In addition, including the condensate film 

would require simulating the heat transfer resistance of the condensate film.   

Also shown in Figure 2.16 are the partial pressure distributions of the noncondensible 

gases     and vapor   .  Depending on which model is used, the partial pressure of vapor where 

condensation occurs would be dependent on the temperature of the condensate interface or tube 

wall,    and    respectively.   
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Figure 2.16 - Distributions of partial pressures and temperature of flue gas inside the heat exchanger tubes for 

the cases with and without a liquid film. 

It was shown that the resistance to   heat transfer of the tube wall was negligible compared 

to the resistances due to convection, thus the temperature of the tube wall on the interior is the 

same as the exterior.  And it was also shown in Figure 2.15 that it can not be proven that a liquid 

film exists on the interior tube walls.  Therefore, the overall temperature distribution across a heat 

exchanger tube in the present study was assumed to be as depicted in Figure 2.17. 

 

Figure 2.17 - Overall temperature distribution across the heat exchanger tube in the ACC. 
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The simulation used the single-phase flow model to estimate the pressure losses of the flue 

gas.  Calculations were done to compare the pressure losses calculated with the single-phase and 

two-phase models discussed in the Literature Review.  Figure 2.18 shows the results.  The 

process conditions for these comparisons are listed in Table 2.6.  The two-phase model predicted 

on averaged a 63 percent greater pressure loss.  However, there was not enough evidence to 

suggest that the two-phase model was more appropriate, considering that the flue gas entered the 

ACC as a single phase fluid and at the exit of the heat exchanger the volume percent of the flue 

gas was 99.9 percent gas when 50 percent of the water vapor condensed.  A conservative estimate 

could be that the actual pressure loss was somewhere between the single-phase and two-phase 

flow pressure loss estimates.  

 

 

Figure 2.18 - Comparison between single-phase and two-phase pressure loss models for the flue gas flow. 
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Table 2.6 - Process conditions and tube geometry for simulations that compared the single-phase and two-phase 

pressure loss models. 

Inlet Flue Gas Temp [
o
F[ 135 

Inlet Moisture Concentration [% wet-basis] 11% 

Tube Diameter [in] 4 

Tube Length [ft] 40 

 

 

2.3 Comparing the Results of the Simulation with Data from the Literature 

Prior to simulating the experimental apparatus and designing the full-scale ACC, data from 

the literature was used to validate as much of the simulation as possible.  In the literature there 

was experimental data about heat transfer for air-cooled, finned-tube heat exchangers.  In 

addition, results from a computational fluid dynamics study were available. 

 The relevant experimental data was found in Stasiulevicius and Skrinska [34].  They 

experimentally determined the mean Nusselt Number between the tube wall and the cooling air in 

rows 1 and 5 of a tube bundle by installing calorimeters.  The experiments were conducted while 

keeping the tube wall temperature constant.  In the present study, the simulation modeled the tube 

geometries of Stasiulevicius and Skrinska‟s experiments with the same process conditions as their 

experiments, including constant tube wall temperature.  The mean Nusselt numbers determined in 

the simulation were compared with the experimental measurements and the results are shown in 

Figure 2.19 and Figure 2.20.  In all but two tests for row 1, the experimental measurements of 

Stasiulevicius and Skrinska agreed with the calculated average heat transfer coefficients of the 

simulation. 

 These results indicated that the heat transfer simulation of the present study predicted the 

experimentally measured heat transfer coefficients between the tube wall and air to within 20 

percent. 
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Figure 2.19 - Comparison of heat transfer simulation with published experimental data. 

 

Figure 2.20 - Comparison of heat transfer simulation with published experimental data. 
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Computational Fluid Dynamic (CFD) software was used by Dunbar [66] to investigate the 

heat transfer and pressure loss associated with finned tubes.  The CFD simulations were for air 

flowing around 1 steel finned tube.  The base of the tube was at a constant temperature, and the 

simulation calculated the conductive heat transfer through the fin and the convective heat transfer 

from the tube and fin to the air.  The simulation also calculated the pressure drop of the air 

flowing around the finned tube.  

 For the comparison, the heat transfer simulation in the present study modeled the tube 

geometry and process conditions of the CFD simulations.  This comparison neglected the 

condensation aspect of the simulation and focused on the air-side.  This was done using a 

constant tube wall surface temperature.  The purpose was to show the heat transfer correlations 

and pressure drop correlations used in the present study were valid.  Figure 2.21 shows the heat 

transfer per unit length of tube from both the CFD simulation and the heat transfer simulations.  

The average difference between the CFD results and heat transfer simulation was approximately 

4%. 
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Figure 2.21 - Comparison of CFD results with heat transfer simulation. 

 

 The pressure loss of the air flowing around the finned tube is compared in Figure 2.22, 

which indicates agreement within 22 %.  From these comparisons of the experimental data and 

CFD simulations it was concluded that the heat transfer simulation is using reliable correlations to 

determine heat transfer between the tube wall and cooling air and the pressure loss of the cooling 

air.  The validation of the gas-side heat transfer and mass transfer is discussed Chapter 3. 
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Figure 2.22 - Comparison of CFD results with heat and mass transfer simulation. 

  

2.4 Incorporating the Nelder-Mead Optimization into the Simulation 

Recall from Section 1.6 that the Nelder-Mead method is a simplex method where the 

simplex has vertices that number one more than the number of variables in the objective function.  

Book-keeping for the optimization was done using a matrix where columns represented function 

variables and rows represented vertices, like what is shown in Figure 2.23.  The example in 

Figure 2.23 shows the ACC being optimized for two variables, fin pitch and fin length, and 

therefore there are three vertices, labeled V1, V2, and V3.  To plot the simplex, each row of the 

matrix represents a vertex.  The final column of each row was the function value, net annualized 

cost.  The net annualized cost was found by inputting the fin pitch and fin length values into the 

simulation. 
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Net Annualized 

Cost 

   MATRIX(1,1) MATRIX(1,2) MATRIX (1,3) 

   MATRIX(2,1) MATRIX(2,2) MATRIX(2,3) 

   MATRIX(3,1) MATRIX(3,2) MATRIX(3,3) 

Figure 2.23 - Matrix representation of simplex used in the optimization. 

 

To show the process of optimizing the ACC, an example is discussed where two design 

variables were optimized, fin pitch and fin length.  This example was for the lab-scale air-cooled 

condenser described in Chapter 3 and the process conditions and tube geometry are listed in 

Table 2.7.  The initial simplex‟s matrix representation is in Figure 2.24 and is graphically shown 

in Figure 2.25.  The domain for this optimization was: 

 Fin Pitch: 0.2 – 1.0 inch 

 Fin Length: 0.25 – 1.0 inch 

 

Table 2.7 - Process conditions for example optimization. 

Upstream Air Velocity [ft/sec] 18 

Pressure [ATM] 1 

Gas Temp [
o
F] 135 

Gas Velocity [ft/sec] 40 

Gas Moisture Concentration [wet %] 10 

   

Heat Exchanger Tube Diameter [inches] 1.25 

Tube Wall Thickness [inches] 0.0625 

Tube Length [ft] 3 

Heat Exchanger Tubes 3 

Tube Rows  1 

Fin Thickness [inch] 0.125 
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Fin Length Fin Pitch Net Annual Cost 

   0.25 0.2 $144.27 

   0.35 0.2 $143.16 

   0.30 1.0 $146.49 

Figure 2.24 - Matrix representation of initial simplex for example optimization. 

 

Figure 2.25 - Initial simplex for example optimization. 

 Comparing the net annualized costs of the three vertexes in Figure 2.24 and Figure 2.25, 

indicates    was the most expensive.  Therefore    was replaced according to the Nelder-Mead 

algorithm, and the the simplex matrix is shown in Figure 2.26 and shown graphically in Figure 

2.27. 

 
Fin Length Fin Pitch Net Annual Cost 

   0.25 0.20 $144.27 

   0.35 0.20 $143.16 

   0.30 0.60 $145.96 

Figure 2.26 - Matrix representation of second simplex for example optimization. 
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Figure 2.27 - Second simplex for example optimization. 

 The algorithm was repeated until the minimum was found.  Figure 2.28 shows the final 

simplex matrix, which has the optimal fin pitch and fin length values.  The net annualized cost 

was approximately $139, compared with the initial $143 to $146.  This optimization was 

completed in 36 iterations, and Figure 2.29 shows the path that the simplex traversed to reach the 

minimum.  In this example, the optimal design was one with a small fin pitch and large fin length. 

 

 
Fin Length Fin Pitch Net Annual Cost 

   0.998689 0.202635 139.11 

   0.995036 0.202305 139.12 

   0.994994 0.201086 139.10 

Figure 2.28 - Matrix representation of the final simplex for the example optimization. 
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Figure 2.29 - The 36 simplexes calculated to determine the optimal fin pitch and fin length. 

 

 Figure 2.30 shows the fin length and fin pitch domain with contours for the net 

annualized cost.  The lines in the graph represent constant net annualized cost.  It is seen that the 

minimum cost was on the lower right side of the graph, with a fin length of 1 inch and fin pitch of 

0.2 inches, and the net annualized cost increased as fin length decreased and fin pitch increased. 
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Figure 2.30 - Cost contours of the fin pitch and fin length domain. 

 

 When optimizing the full-scale heat exchanger, the variables did not have the same units 

because the optimizations included geometry variables and velocity variables.  Therefore the 

simplexes were built using normalized values of the variables, which ranged from 0 to 1.  The 

normalized values were based on the domain of each variable.  For example, when the flue gas 

domain for the optimization was between 7.5 ft/sec and 70 ft/sec, the velocity was normalized 

with respect to 62.5 ft/sec. 
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3 Experimental Investigation 

3.1 Overview of Experimental Apparatus 

A lab-scale air-cooled condenser (ACC) was fabricated and installed in Lehigh 

University‟s heating, ventilation, and cooling powerhouse, and processed a slip stream of flue gas 

from an industrial boiler.  The boiler was a Babcock and Wilcox design which burned natural gas, 

and had a 40,000 lbm/hr steam capacity.  The slip stream was extracted from the boiler 

downstream of the economizer, and then flowed through two water-cooled heat exchangers to 

lower its temperature to the desired value (between 100 and 150
o
F) before entering the ACC.  

The water-cooled heat exchangers and ACC comprise the main components of the experimental 

apparatus (Figure 3.1). 

 

Figure 3.1 - Schematic of Experimental Apparatus 

 The design of the air-cooled condenser (ACC) is shown in Figure 3.2 and Figure 3.3.  

The respective drawings show the side-view and top-view.  In Figure 3.2, the air flowed left to 

right through the rectangular duct, and the flue gas entered from the top and flowed vertically 

downward through small diameter tubes.  At the flue gas exit, there was additional ductwork to 

separate the condensate from the flue gas. 
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 The air duct was designed to minimize pressure loss.  The inlet region had a curved 

leading edge with a radius of 2 inches, which reduced the dynamic pressure loss coefficient from 

0.5 to approximately 0.05.  The exit diffuser had a vertical contraction of approximately 5
o
 and a 

horizontal expansion of approximately 10
o
.  Designing the inlet and exit regions in such a way 

allowed for greater air velocities through the tube bundle.  The ID fan was placed downstream of 

the tube bundle at the diffuser exit because an induced draft design creates a more organized flow 

structure in the duct compared to a forced draft design. 

 

 

Figure 3.2 – Side view of ACC 

 

 Seen also in Figure 3.2 and Figure 3.3 are the ¼ inch aluminum honeycomb, the 

temperature measurement locations (denoted by T), the ports for measuring air velocity profiles, 

and the tube bundle.  

 



63 

 

 

Figure 3.3 - Top view of ACC 

 

The dimensions of the air-cooled condenser are listed in Table 3.1 and shown in Figure 

3.4.  The finned tubes were fabricated from stainless steel and the fin attachment method used 

was a brazing method.  Five finned tubes were installed in the ACC but the two outer tubes did 

not process flue gas.  The purpose of the two outer tubes was to maintain the appropriate air flow 

structure around the tubes that processed flue gas.  Figure 3.5 shows a schematic of the entire 

apparatus and photographs of the apparatus are shown in Figure 3.6 through Figure 3.9. 
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Table 3.1 - Geometric Characteristics of ACC. 

TUBE DIMENSION FIN DIMENSION SURFACE DIMENSION 

Tube ID 1.125 in Fin Spacing 0.2 in Gas-Side Surface Area 2.64 ft
2 

Tube OD 1.25 in Fin Length 1/2 in Air-Side Surface Area 23.8ft
2 

Tube Length 3 feet Fin Thickness 0.0625 in  
 

Wall Thickness 0.065 in     

Number of Tubes 3     

Transverse Tube 

Spacing 
2.25 in     

Diagonal Tube 

Spacing 
2.25 in     

Duct Width 11.375 in     

 

 

 

 

Figure 3.4 - Schematic of tube bundle dimensions. 
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Figure 3.5 - Schematic of experimental setup including water-cooled and air-cooled heat exchangers 
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Figure 3.6 - Photograph of experimental apparatus in Lehigh University laboratory 
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Figure 3.7 - Inlet region of the ACC showing the inlet nozzle and aluminum honeycomb. 
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Figure 3.8 - Finned tube bundle in the main test section, along with the three pitot tubes used to measure the air-

flow rate across the duct cross-section. 
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Figure 3.9 - Cooling air fan at the exit of the duct. 

 

The instrumentation is described in Table 3.2.  The apparatus was instrumented to collect 

data that was used to calculate an energy balance for each heat exchanger.  The instruments 

selected measured temperatures, flow rates, and condensation rates for each heat exchanger over 

a recorded period of time.  Data acquisition software tabulated the temperature values of the 

thermocouples, and the flow rates were recorded periodically throughout the experiments.  The 

condensation rate was determined following each experiment. 
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Table 3.2 - Instrumentation for Lab-scale Air-Cooled Condenser Experiment 

MEASURED 

VARIABLE 
METHOD INSTRUMENTS 

Flue gas 

temperature 
Single-point bulk flow measurement Thermocouple 

Air temperature 3-point profile Thermocouple 

Water temperature Single-point measurement Thermocouple 

Tube wall 

temperature 

Single point measurement 

Stagnation Point 

Cement-on surface 

thermocouple 

Flue gas velocity 
Single-point measurement  

(at center of circular 3-inch diameter tube) 
S-probe 

Air velocity 
12-point profile across 11.25‟‟ rectangular 

duct 
Pitot-tube 

Water flow rate Two flow meters placed in series Rotameter 

Water vapor 

condensation rate 
Collection basin Scale 

Flue gas moisture 

content 
Wet-bulb/controlled condensation method 

Thermocouple/EPA 

Method 8. 

 

The experiments were conducted when the heat exchangers reached steady thermal 

operating conditions.  The range of process conditions for the air-cooled condenser (ACC) is 

listed in Table 3.3, and details of each test date and test process condition are tabulated in the 

Appendix. 

Table 3.3 - Range of Process Conditions for ACC Experiments 

PROCESS CONDITION RANGE UNIT 

 MIN MAX  

Inlet Flue Gas Temperature 105 152 
o
F 

Flue Gas Velocity 26 72 ft/sec 

Flue Gas Reynolds Number 13000 35000  

Inlet Air Temperature 55 68 
o
F 

Air Velocity between Tubes 19 37 ft/sec 

Air Reynolds Number 16000 24000  
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3.2 Experimental Results 

A total of 35 experiments was carried out to observe the effects of varying the process 

conditions listed in Table 3.3.  This section presents parametric tests that show how those process 

conditions affected the performance of the air-cooled condenser (ACC).  Additional test results 

and those described in this chapter are tabulated in the Appendix. 

3.2.1 Water-Cooled and Air-Cooled Heat Exchanger System 

In the test shown in Figure 3.10, the abscissa is cumulative heat transfer surface area and 

the ordinate axis is temperature.  The first heat exchanger, which was water-cooled, had 17.5 ft
2
 

of tube surface area, the second water-cooled heat exchanger had 12.5 ft
2
 of tube surface area, and 

the air-cooled heat exchanger had 2.6 ft
2
 of surface area (23.8 ft

2
 including the fins).  This graph 

shows the temperature measurements of the working fluids and tube wall surfaces for each heat 

exchanger.   

The flue gas entered the first water-cooled heat exchanger at 330
o
F and exited the second 

water-cooled heat exchanger at 132
o
F before entering the ACC.  In the ACC, the flue gas was 

cooled to 112
o
F.  Cooling water entered the counter-flow, water-cooled heat exchangers at 104

o
F 

and exited at 122
o
F.  Cooling air entered the ACC at 63

o
F and exited at 66

o
F.  The temperatures 

of the tube walls are also shown in the figure.  The results indicate that the temperature of the 

tubes in the water-cooled heat exchangers were much the same as the cooling water inside the 

tubes.  This was because the heat transfer coefficient on the water-side was much larger than on 

the gas-side.  The main resistance to heat transfer in the water-cooled heat exchangers was due to 

the characteristics of the flue gas flow.  In the ACC, the tube wall temperature was close to the 

mean temperature of the flue-gas and cooling air temperatures. 
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Figure 3.10 - Temperature distribution for water-cooled and air-cooled heat exchangers.  Symbols denote 

measurement locations. 
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It is well known that when the temperature of the heat exchanger tubes is less than the 

water vapor dew point of the flue gas, water vapor will condense onto the tubes.  The dew point 

temperature of the flue gas is also shown in Figure 3.10, and Figure 3.11 shows that water 

condensed from the flue gas in the heat exchangers where the tube wall temperature was below 

the dew point. In this test, this was the case for all three heat exchangers. 

 

Figure 3.11 - Condensation rate of water vapor in each heat exchanger. 

Figure 3.12 shows a curve fit of experimental data of the water vapor concentration of the 

flue gas as it flowed through the heat exchanger system.  The flue gas moisture concentration at 

the exit of the system was determined by measuring the wet bulb and dry bulb temperatures 

downstream of the ACC and determining the specific humidity from an ASHRAE handbook.  

Then, the flue gas moisture concentration at the inlet of each heat exchanger was determined by 

adding the amount of water condensed and collected in each heat exchanger to the water vapor 

flow rate in the flue gas.  The equations are 3.1 through 3.4.  In this test, the moisture 

concentration was 13.3 percent at the inlet and 8.3 percent at the exit.  The water capture 

efficiency/condensation efficiency η of this test, defined in Equation 3.5 was 41.2%. 
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                    (3.1) 

                                     (3.2) 

                                      (3.3) 

                                      (3.4) 

 

   
            

                 
 (3.5) 

 

 

Figure 3.12 – Experimental measurements and curve fit of moisture concentration of the flue gas. 

 

The flue gas exited at 112
o
F with a water vapor concentration of 8.3 percent.  At this 

temperature and moisture concentration there is potential to cool the flue gas to a lower 

temperature and recover additional quantities of water to improve the water capture efficiency.  

This would require additional surface area. 
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The energy balances of the heat exchangers from this test are shown in Table 3.4.  These 

quantities were calculated using Equation 3.6 through 3.10 and the measured temperatures.  Qair 

is inferred from Qgas(latent) and Qgas(sensible) because the temperature of the air exiting the ACC was 

not measured.   

 

Table 3.4 - Energy Transfer Rates for test-1020t3. 

[BTU/hr] 

(test1020t3) 
Heat Exchanger 1 Heat Exchanger 2 ACC 

Q gas (sensible) 6469 1267 751 

Q gas (latent) 1283 1181 2656 

Q air - - 3407 (est.) 

Q water 5147 2045 - 

Qdifference -2605 -402 N/A 

 

 

                                               (3.6) 

                               (3.7) 

                                    (3.8) 

                                              (3.9) 

                                                  (3.10) 

 

 For more information on parametric tests of the water cooled heat exchangers, see Jeong 

et al. [13-14].  Additional data can also be found in the Appendix.  The remainder of this chapter 

will focus on the performance of the air-cooled condenser.   
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A note on measuring temperature during the experiments.  Of the measured temperature 

values shown in Figure 3.10, three were estimated using heat transfer calculations because of 

uncertainty in their measurements.   These were tube wall temperatures in the water-cooled heat 

exchangers and the exit air temperature of the ACC.  The measurements of the tube wall 

temperatures in the water-cooled heat exchangers could not be made because the ½ inch diameter 

tubes had too much curvature and would not permit cement-on-surface thermocouples to adhere 

to the tubes.  Concerning the exit air temperature of the ACC, the purpose of the measurement 

was to calculate an energy balance for the ACC, which required that a temperature difference be 

measured.  However the thermocouples used for the temperature measurements had an 

uncertainty of 2
o
F, which translated to a 2.8

o
F uncertainty in the temperature difference.  This 

uncertainty was calculated using Equation 3.11 and Equation 3.12.  Since the expected 

temperature increase of the air in the ACC was roughly 3 to 4 degrees, the measurement would be 

meaningless. 

                  (3.11) 

         
     

      
       

 

  
     

        
         

 

 (3.12) 
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3.2.2 Experimental Parametric Tests of the Air-Cooled Condenser 

Tests were carried out in which the temperature of the flue gas entering the air-cooled 

condenser was varied.  In one particular set of tests the inlet flue gas temperature ranged from 

105
o
F to 140

o
F, which affected the moisture concentration because some water vapor condensed 

out in the water-cooled heat exchangers and this amount varied based on the temperature.  The 

flue gas temperatures and moisture concentrations entering the ACC during this test are listed in 

Table 3.5, along with the measured change of flue gas temperature, change of inlet air 

temperature, flue gas velocity, air velocity, and water condensation rate. 

 

Table 3.5 - Process conditions for a parametric test of inlet flue gas temperature. 

Test Name 1108t3 1015t3 1020t3 1013t1 

Inlet Flue Gas Temperature  

[
o
F] 

104.3 119.3 132.2 138.5 

Inlet Flue Gas Moisture  

[% wet-basis] 
6 10 11 12.7 

Water Condensation  rate in the ACC 

[lbm/hr] 
1.42 2.6 2.55 3.5 

Decrease in Flue Gas Temperature in 

the ACC [
o
F] 

15.8 13.1 20.3 22.8 

Inlet Cooling Air Temperature to the 

ACC [
o
F] 

55.1 59.5 62.7 55.8 

Cooling Air Velocity in the ACC 

[ft/sec] 
24.6 23 22.5 25.9 

Flue Gas Velocity in the ACC 

[ft/sec] 
24.1 27.5 28.4 27.9 

Heat Transfer Rate in the ACC 

(sensible + latent) 

[BTU/hr] 

2006 3213 3407 4483 
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 From this set of tests it was observed that changing the temperature of the flue gas 

entering the ACC had a significant impact on heat transfer rates.  This was due to variations in the 

mean temperature difference between the cooling air and flue gas and as well as the moisture 

concentration of the flue gas.  Figure 3.13 shows the increase in heat transfer rate.  Figure 3.14 

shows the condensation efficiency, and it was relatively constant.  Figure 3.15 shows the 

condensation rate and it was greater in tests with higher inlet flue gas moisture concentrations.  

 

 

Figure 3.13 - Heat transfer rate versus inlet flue gas temperature (experimental data and curve fit). 
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Figure 3.14 - Condensation efficiency versus inlet flue gas temperature (experimental data and curve fit). 

 

 

Figure 3.15 - Condensation rate versus inlet flue gas moisture concentration (experimental data and curve fit). 
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 Additional parametric tests to study the effects of inlet flue gas temperature showed 

similar trends.  In Figure 3.16 and Figure 3.17, it is seen that with increasing inlet flue gas 

temperature and inlet moisture concentration, the ACC condensed larger quantities of water and 

there was a larger decrease in flue gas temperature.  Further details of these experiments can be 

found in the Appendix. 

 

 

Figure 3.16 - Measured condensation rate for various inlet flue gas temperatures and moisture concentrations. 
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Figure 3.17 - Change in temperature for various inlet flue gas temperatures and moisture concentrations. 

It was expected that a lower tube wall temperature would strengthen the mechanisms for 

condensation.  This was tested in experiment by increasing the velocity of the cooling air and 

Table 3.6 shows process conditions and experimental measurements for tests conducted to study 

the effects of cooling air velocity. 

Table 3.6 - Parametric test for cooling air velocity. 

Test Name 1112t1 1013t1 1106t2 1104t1 

Inlet Flue Gas Temperature to the ACC [
o
F] 136.4 138.5 138.2 136.2 

Maximum Cooling Air Velocity Around the Tubes in 

the ACC [ft/sec] 
23.9 25.9 31.1 34.7 

Inlet Flue Gas Moisture Concentration in the ACC 

(    
  [% wet-basis] 

12.7 12.7 13.3 13.5 

Water Condensation Rate in the ACC 

[lbm/hr] 
2.97 3.5 3.9 4.24 

Average Tube Wall Surface Temperature of the 

Thermocouples shows in Figure 3.15. [
o
F] 

98.5 95.2 95 91.1 
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The tube wall temperature was measured at two locations along the length of the tubes.  

The cement-on-surface thermocouples were placed on the ACC tubes at locations shown in 

Figure 3.18 and Figure 3.19.  The heat exchanger tubes were 36 inches long and one 

thermocouple was placed 12 inches from the top of the tube and another thermocouple was 

placed 24 inches from the top of the tube.  The average of the measured values is what is listed in 

Table 3.6.  Figure 3.20 shows measurements of the tube wall temperature for increased cooling 

air velocities.  As was expected, the increased cooling air velocity decreased the tube wall 

temperature.  Figure 3.21 shows the increase in condensation efficiency. 

 

Figure 3.18 – Axial location of thermocouples that measured temperature of the tube wall surface. 
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Figure 3.19 - Schematic of which tubes in the bundle measured temperature of the tube wall surface. 

 

 

Figure 3.20 - Tube wall temperature versus cooling air velocity (experimental data and curve fit). 
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Figure 3.21 - Condensation efficiency for various tube wall temperatures (experimental data and curve fit). 
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Figure 3.22 - Experimental measurements of condensation efficiency versus flue gas velocity. 

 

Figure 3.23 - Experimental measurements of condensation rate versus flue gas velocity. 
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Figure 3.24 - Heat transfer rate calculated from experimental measurements versus flue gas velocity. 
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Figure 3.25 - Condensation efficiency for increasing cooling air and flue gas velocities. 

 

-  

Figure 3.26 - Condensation rate for increasing cooling air and flue gas velocities. 
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Figure 3.27 - Heat transfer rate for increasing cooling air and flue gas velocities. 
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calculated temperature distributions are compared to experimentally measured temperatures.  

Further validation is completed by comparing condensation rates and heat transfer rates. 

Beginning with the temperature distribution comparisons, Table 3.8 shows the process 

conditions for a test with a relatively low flue gas velocity of 28.4 ft/sec and Figure 3.28 shows 

the temperature distributions for one of the tubes in the heat exchanger during the test.  Also in 

the figure is the tube orientation corresponding to the abscissa in the graph (in the heat exchanger 

the tubes are oriented vertically).  There are four lines on the graph in Figure 3.28 corresponding 

to the flue gas temperature, tube wall surface temperature, and inlet and exit air temperature.  The 

lines show theoretical calculations and the markers symbolize experimental measurements.  

During experiment the inlet cooling air temperature was not always uniform across the cross-

section and that is why in Figure 3.28 the air temperature was 59
o
F at the top of the cross-section 

and 66
o
F at the bottom. 

Table 3.8 also compares the values for the decrease in flue gas temperature determined in 

experiment and the simulation.  The simulation predicted an 18.5
o
F decrease, and the 

experimental measurement was a 20.2
o
F decrease in flue gas temperature.  Given that the 

experimental uncertainty in the measurement of the temperature difference of the flue gas was 

2.8
o
F (discussed in the section on page 71), the simulation accurately predicted the temperature 

decrease of the flue gas.  The measured rate of condensation during the experiment was 2.55 

lbm/hr, while the simulation predicted 2.75 lbm/hr.  The difference being 0.2 lbm/hr, or 7.8%.  
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Table 3.8 - Process conditions and performance results for test 1020t3 

Test Name 1020t3 

 
Experimental Simulation 

Flue Gas Velocity in Tubes [ft/sec] 28.4 

Cooling Air Velocity between Tubes [ft/sec] 22.5 

Average Inlet Cooling Air Temperature [
o
F] 62.5 

Average Exit Cooling Air Temperature [
o
F] - 66.1 

Inlet Moisture Concentration [% wet basis] 11.0% 11.0% 

Gas-side Surface Area [ft
2
] 2.64 

Air-side Surface Area [ft
2
] 23.8 

Condensation Rate [lbm/hr] 2.55 2.75 

Decrease in Flue Gas Temperature [
o
F] 20.2 18.5 
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Figure 3.28 - Temperature distributions for one tube of the ACC during test 1020t3. 
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In another test the flue gas velocity was 50 ft/sec.  Table 3.9 shows the process conditions 

and performance results, and Figure 3.29 displays the temperature distributions for one of the 

tubes in the ACC.  The simulation predicted a 16.5
o
F decrease, and the experimental 

measurement was 19.1
o
F, an under prediction of 13.6%.  The measured condensation rate and 

predicted condensation rate differed by 17%.  The surface temperature measurements agree with 

the predicted values from the model, as shown in Figure 3.29. 

 

Table 3.9 – Process conditions and performance results for test 1020t2. 

Test Name 1020t2 

 
Experimental Simulation 

Flue Gas Velocity in Tubes [ft/sec] 50.4 

Cooling Air Velocity between Tubes [ft/sec] 22.5 

Average Inlet Cooling Air Temperature [
o
F] 58.7 

Average Exit Cooling Air Temperature [
o
F] - 63.8 

Inlet Moisture Concentration [% wet basis] 12.00% 12.00% 

Gas-side Surface Area [ft
2
] 2.64 

Air-side Surface Area [ft
2
] 23.8 

Condensation Rate [lbm/hr] 3.48 4.06 

Decrease in Flue Gas Temperature [
o
F] 19.1 16.5 
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Figure 3.29 - Temperature distributions for one tube of the ACC during test 1020t2.  
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It was observed that as the flue gas velocity was further increased, the model was less 

accurate at predicting the heat and mass transfer performance of the heat exchanger.  Around 70 

ft/sec, the model over predicted latent heat transfer and under predicted sensible heat transfer.  

Table 3.10 shows a test with a flue gas velocity of 72 feet per second and the differences between 

the model‟s predictions and the experimental measurements were 41% for latent heat transfer and 

25% for sensible heat transfer.  It was expected that uncertainty in the mass transfer coefficient 

caused the discrepancy and this is discussed in the following paragraph. 

 

Table 3.10 - Process conditions and performance results for test 1027t1. 

Test Name 1027t1 

 
Experimental Simulation 

Flue Gas Velocity in Tubes [ft/sec] 72 

Cooling Air Velocity between Tubes [ft/sec] 29.2 

Average Inlet Cooling Air Temperature [
o
F] 65.8 

Average Exit Cooling Air Temperature [
o
F] - 70 

Inlet Moisture Concentration [% wet basis] 11.70% 11.70% 

Gas-side Surface Area [ft
2
] 2.64 

Air-side Surface Area [ft
2
] 23.8 

Condensation Rate [lbm/hr] 3.13 4.06 

Decrease in Flue Gas Temperature [
o
F] 18.9 14.2 
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Figure 3.30 - Temperature distributions for one tube of the ACC during test 1027t1.  
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 In the examples in this section where flue gas velocity was 50 and 72 ft/sec, it was seen 

that as the flue gas velocity was increased, the simulation became less precise at predicting the 

heat and mass transfer measurements.  The suspicion was that the mass transfer coefficient was 

less accurate as the flue gas velocity was increased.  As described in Chapter 2, which discusses 

the simulation, the diffusion coefficient used in the calculation for water vapor through flue gas 

was approximated assuming it behaves like water vapor through air.  To test the sensitivity of the 

mass transfer coefficient it was reduced by 20 percent, 30 percent, 40 percent, and 50 percent and 

then calculating the heat and mass transfer rates.   

 Table 3.11 lists simulations for the case in Figure 3.29, which the flue gas velocity was 

approximately 50 feet per second.  The first column shows the measured decrease in flue gas 

temperature and the measured condensation rate.  The second column named „Simulation‟ is the 

calculated mass transfer coefficient kg and calculated heat and mass transfer performance ΔT and 

    .  The remaining columns show calculations for the cases where the mass transfer coefficient 

was decreased by 20 percent, 30 percent, 40 percent, and 50 percent, respectively.  The 

simulation originally predicted temperature decreases and condensation rates to within 14 percent 

and 17 percent respectively, and by lowering the mass transfer coefficient by 30 percent, the 

agreement for the temperature decrease and condensation rate becomes 5% and 0.8% 

respectively.   

 

Table 3.11 - Effects of decreasing the mass transfer coefficient for flue gas velocity of 50 ft/sec (Test1020T2). 

 
Experiment Simulation kg= kg*0.8 kg= kg*0.7 kg= kg*0.6 kg= kg*0.5 

kg - 2.47 1.96 1.71 1.46 1.22 

ΔT-gas 

[
o
F] 

19 16.5 17.5 18.1 18.8 19.6 

     

[lbm/hr] 
3.48 4.05 3.69 3.45 3.18 2.85 
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 The same analysis was performed for the case when the flue gas velocity was 72 feet per 

second, and the results shown in Table 3.12 indicate that when the mass transfer coefficient was 

decreased by 40 percent the decrease in flue gas temperature and condensation rate agreed with 

the experimental measurements by 16 percent and 5 percent, respectively.  This is in comparison 

to the original simulations in which the agreement was 25 percent for the temperature decrease 

and 41 percent for the condensation rate. 

 

Table 3.12 - Effects of decreasing the mass transfer coefficient for flue gas velocity of 72 ft/sec (Test1020T2). 

 Experiment Simulation kg= kg*0.8 kg= kg*0.7 kg= kg*0.6 kg= kg*0.5 

kg - 3.3 2.62 2.28 1.95 1.62 

ΔT-gas 

[
o
F] 

18.9 14.1 14.8 15.2 15.8 16.4 

     

[lbm/hr] 
3.13 4.11 3.78 3.57 3.3 3 

 

The following three figures compare measurements from all 35 experiments.  Figure 3.31 

shows the decrease in flue gas temperature across the air-cooled condenser.  The abscissa is the 

measured flue gas temperature drop and the ordinate is the calculated decrease in flue gas 

temperature.  A straight line with a slope of 1 indicates perfect agreement between the 

calculations and the experiment.  The figure shows that the simulation predicted the temperature 

decrease within 20 percent. 
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Figure 3.31 - Accuracy of simulation for calculating decrease in flue gas temperature in the ACC. 
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Figure 3.32 - Accuracy of simulation for predicting tube wall temperature of the ACC. 
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Figure 3.33 - Accuracy of simulation for predicting condensation rate of water vapor in the ACC. 
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The moisture concentration was initially determined by placing a wet and dry bulb 

thermometer at the exit of the ACC where the flue gas temperature was between 80
o
F and 120

o
F.  

To determine the moisture concentration upstream of the heat exchangers, the volume of water 

collected from each condensing heat exchanger was added to the volume of moisture in the flue 

gas.  An example of the values measured in experiment and used to calculate the moisture 

concentrations are provided in Table 3.13.   

Table 3.13 - Values used to calculate the moisture concentration of the flue gas. 

 

 
0208t1 0208t2 

Measured 
Wet Bulb Temp 

[degree Fahrenheit] 
115.3 113.4 

Measured 
Dry Bulb Temp 

[degree Fahrenheit] 
119.6 119.6 

Calculated 
Specific Humidity 

[lbm H2O / lbm dry gas] 
0.069 0.064 

 
Molar Mass of Flue Gas 30 30 

 
Molar Mass of Water 18 18 

Calculated 
Moisture Concentration at Exit 

[% molar dry basis] 
11.5 10.7 

Measured 
Flue Gas Flow rate 

[lbm/hr] 
184 188 

Calculated 
Vapor Flow rate at Exit 

[lbm/hr] 
12.7 12.0 

Measured 
Condensation Rate in ACC 

[lbm/hr] 
3.12 3.16 

Measured 
Condensation Rate in HX2 

[lbm/hr] 
4.55 6.16 

Measured 
Condensation Rate in HX1 

[lbm/hr] 
0 0 

Calculated 
Vapor Flow rate at Inlet 

[lbm/hr] 
20.4 21.4 

Calculated 
Moisture Concentration at Inlet 

[% molar wet basis] 
16.6 17.0 
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While this method is reliable, the unusually high moisture concentrations it estimated were 

cause for concern.  To check these results a controlled condensation method was used to 

determine the moisture concentration of the flue gas.  The method used was modeled after EPA 

Method 8, and a schematic is shown in Figure 3.34.  The method was to bubble a known amount 

of flue gas through impingers that were filled with water and then the moisture in the flue gas 

condensed into the water filled impingers.  The weight of the impingers was measured before and 

after the test and the difference was the amount of moisture in the flue gas. 

 

Figure 3.34 - Controlled condensation method used to determine the moisture concentration of the flue gas. 

 

The controlled condensation method was used in the two tests shown in Table 3.13, and the 

results are provided in Table 3.14.  The results indicate that the moisture concentration of the flue 

gas was higher than what is theoretically calculated, and is accurately predicted using the wet 

bulb and dry bulb thermometer.  Investigations were performed to confirm that the water-cooled 
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heat exchangers were not leaking.  It was suspected that a steam leak near the port for the flue gas 

stream caused the excessive moisture concentrations.  

 

Table 3.14 - Controlled condensation method to determine flue gas moisture concentration. 

  
0208t1 0208t2 

Measured 
Impinger 1 Before Test 

[grams] 
660.6 860.3 

Measured 
Impinger 2 Before Test 

[grams] 
735 735.9 

Measured 
Impinger 3 Before Test 

[grams] 
639.8 643.6 

Measured 
Impinger 1 After Test 

[grams] 
707.9 863.2 

Measured 
Impinger 2 After Test 

[grams] 
735.7 779.2 

Measured 
Impinger 3 After Test 

[grams] 
643.6 645.2 

Measured 
Moisture Captured 

[grams] 
51.8 47.8 

Measured 
Flue Gas Flow rate through CCM 

[scfh] 
6.03 6.52 

Measured 
Test Duration 

[minutes] 
145 120 

Measured 
Gas Temperature exiting CCM 

[degree F] 
65.7 68.2 

Calculated 
Moisture Concentration Assuming Gas is Saturated 

at Gas Temperature exiting CCM 
18.7 19.5 

Calculated 
Moisture Concentration Assuming Gas is Dry 

when Exiting CCM. 
16.5 17.1 
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4 Choosing Process Conditions to Meet Performance Objectives 

The purpose of a flue gas condenser can be to recover water and/or recover low-grade heat.  

This chapter discusses the process conditions which promote greater rates of water recovery and 

greater rates of heat transfer.  Presented are experimental data, computer simulations, and heat 

and mass transfer theory to aid the discussion about the effects of the process conditions. 

4.1 Effects of Inlet Flue Gas Temperature and Inlet Moisture Concentration 

It was shown in Figure 3.15 that increasing the inlet flue gas temperature and inlet 

moisture concentration increased the water condensation rate.  Equations 4.1 through 4.4 are the 

theoretical mass transfer equations to calculate condensation rate.  In Equation 4.1 the driving 

potential for condensation is the difference in vapor partial pressures between the bulk flow and 

tube wall (or condensate interface if there is a liquid film).  These equations indicate that a higher 

moisture concentration      will yield increased rates of condensation, which was observed in 

experiments. 

                                       (4.1) 

                                             (4.2) 

             
 (4.3) 

    
      

             
 (4.4) 

 

 Using Equations 4.1 through 4.4, calculated condensation rates and experimental 

measurements show that increasing the inlet moisture concentration increases the condensation 

rates.  The parametric test listed in Table 4.1 is discussed here with a physical explanation for the 

performance observed.  The table provides information about the tests including the mass transfer 

coefficient from Equation 4.4 and the difference in vapor partial pressures between the bulk flow 

and the condensate interface               .  For an explanation of Equations 4.1 though 4.4, 

refer back to the Literature Review. 
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Figure 4.1 shows the condensation rate along with the inlet moisture concentration of the flue gas. 

 

Figure 4.1 - Condensation rate versus inlet flue gas temperature for various inlet moisture concentrations. 

The data shows that with increased inlet flue gas temperature the mass transfer coefficient 

was relatively constant, and the increased condensation rates were due to the increased difference 

in vapor partial pressures               . 

Table 4.1 – Parameters affecting condensation rates for a series of tests with varying inlet flue gas 

temperatures and inlet moisture concentrations. 

Test Name 1108t3 1015t3 1020t3 1013t1 

Inlet Gas Temperature [
o
F] 104.3 119.3 132.2 138.5 

Inlet Flue Gas Moisture Concentration yH2O 

[percent wet-basis] 
6 10 11 12.7 

Water Condensation Rate in the ACC [lbm/hr] 1.42 2.6 2.55 3.5 

Mass Transfer Coefficient kg [lbm/hr-ft
2
-psi] 1.4 1.57 1.58 1.54 

(Pv,bulk – Pv,i) [psia] 0.0471 0.663 0.8675 1.217 
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Figure 4.2 shows the sensible and latent heat transfer rates.  Both components increase 

with increasing flue gas temperature and moisture concentration because the driving potentials 

        and                increased.  The respective heat transfer equations are shown 

below. 

                       (4.5) 

                               (4.6) 

 

 

Figure 4.2 - Sensible and latent heat transfer rates for a parametric test with increasing inlet flue gas 

temperature and moisture concentration. 

To observe the effects of just the inlet flue gas temperature the simulation was used and the 

inlet moisture concentration was kept constant and the inlet flue gas temperature was increased.  

The process conditions for these simulations were the average of the tests listed in Table 4.1 but 

with a constant inlet moisture concentration of 6 percent. Shown in Figure 4.3 are simulation 
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results that show the condensation rate slightly decreased with increased inlet flue gas 

temperature.   

 

Figure 4.3 – Theoretical predictions for condensation rate versus inlet flue gas temperature. 

The explanation for the reduced condensation rates is buried in the complex coupling of 

sensible and latent heat transfer from flue gas.  The Colburn-Hougen equation, explained in 

Chapter 1 and shown again in Equation 4.7 shows that a balance exists between the sensible and 

latent heat transfer rates.  Raising Tg caused an increased portion of the total heat transfer to be in 

form of sensible energy, which decreased the condensation rate.  This decrease in latent heat 

transfer rates and increase in sensible heat transfer rates is shown in Figure 4.4. 

 

                                               (4.7) 

 

 

0 

1 

2 

3 

4 

100 110 120 130 140 150 

C
o
n

d
en

sa
ti

o
n

 R
a

te
 [

lb
m

/h
r]

 

Inlet Flue Gas Temperature [oF] 

constant inlet moisture 

concentration of 6% 



108 

 

 

Figure 4.4 – Sensible and latent heat transfer rates for a parametric test with increasing inlet flue gas 

temperatures. 

 

The explanation for the decreased latent heat transfer rates and increased sensible heat 

transfer rates is the slight increase in tube wall temperature.  Tube wall temperature affects the 

condensation potential               , and water condensation rates.  Figure 4.5 shows the slight 

increase in tube wall temperature, and Figure 4.6 shows the decrease in the condensation potential 

              . 

To determine whether altering a process condition will increase water condensation rates, 

one needs to understand how the process condition affects the wall temperature.  The benefit to 

processing a flue gas with a higher inlet temperature is to recover more energy and not more 

water. 
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Figure 4.5 – Theoretical predictions for tube wall temperature versus inlet flue gas temperature. 

 

 

Figure 4.6 – Theoretical predictions for vapor partial pressure versus inlet flue gas temperature. 
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4.2 Effect of Cooling Air Temperature 

Another approach to increase the efficiency of the heat exchanger is to lower the 

temperature of the cooling air.  Decreasing the cooling air temperature creates a larger 

temperature difference between the heat exchanger tubes and the cooling air          , which 

increases heat transfer (see Equation 4.8).   

                 (4.8) 

 

The following two figures show that the ACC will be more effective when installed at a 

location where the air is cool (Table 4.2 shows the process conditions for these simulations).  

Figure 4.7 shows results from the heat and mass transfer simulation for situations involving 

colder inlet cooling air, and Figure 4.8 shows how the average temperature of the tube wall 

changed for different inlet cooling air temperatures. 

 

Table 4.2 - Process conditions for simulations that vary inlet cooling air temperature. 

Process Conditions 

Inlet Flue Gas Temperature [
o
F] 146.4 

Flue Gas Velocity [ft/sec] 30 

Moisture Concentration [percent wet-basis] 13 

Cooling Air Velocity [ft/sec] 30 
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Figure 4.7 – Theoretical predictions for condensation efficiency versus inlet cooling air temperature. 

 

Figure 4.8 – Theoretical predictions for tube wall temperature versus inlet cooling air temperature. 
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Referring back to Equations 4.1 through 4.4, which describe the vapor condensation 

process, it was easily seen that lowering the tube wall temperature increased the driving potential 

for condensation.  Figure 4.9 shows the increase in                with lower inlet cooling air 

temperature.  This is because      is the saturation pressure at the tube wall temperature, which 

was proportional to inlet cooling air temperature.  The figure also shows the calculated mass 

transfer coefficient.  It can be concluded that lowering the inlet cooling air temperature has a 

positive effect on the heat exchanger‟s performance.  The increase in heat transfer rate for this 

parametric test is shown in Figure 4.10. 

 

 

Figure 4.9 – Theoretical predictions for mass transfer coefficient and condensation potential versus inlet cooling 

air temperature. 
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Figure 4.10 – Theoretical predictions for heat Transfer rate versus inlet cooling air temperature. 

 

4.3 Effect of Flue Gas Velocity 

Equations 4.1 to 4.4 suggest that increasing the mass transfer coefficient kg will increase 

the rate of condensation.  However, since    is analogous to the heat transfer coefficient, 

increasing    would ultimately require process conditions that increase the heat transfer 

coefficient.  This was tested by increasing the gas-side velocity.  The experiment shown in Table 

4.3 was a case where flue gas velocity was increased while all other process conditions were held 

constant, and the results indicate that increasing velocity does not necessarily mean higher rates 

of water recovery. 

 The primary effects listed in Table 4.3 were a relatively constant rate of water recovery 

but a decrease in condensation efficiency.  Also, a larger flue gas velocity means the heat 

exchanger would be smaller because each tube would process more flue gas and Figure 4.11 

shows that more heat is recovered as the velocity was increased. 
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 Figure 4.12 shows the increase in heat and mass transfer coefficients for the flue gas.  

One would expect the heat and mass transfer rates to both increase, but Figure 4.13 shows 

 

Table 4.3 - Data from a parametric test of flue gas velocity. 

Test Name 1013t1 1013t2 1013t3 1020t2 1020t1 

Flue Gas Velocity [ft/sec] 27.9 38.6 44.5 50.4 59.7 

Inlet Gas Temperature [
o
F] 138.5 139.6 144 140.7 142.3 

Inlet Flue Gas Moisture 

Concentration [% wet-basis] 
12.7 12.2 12.4 12 11.2 

Incoming Vapor Flow rate 

[lbm/hr] 
11.1 14.7 17.1 18.6 20.4 

Water Condensation Rate [lbm/hr] 3.5 3.42 3.53 3.48 3.67 

Condensation Efficiency [%] 31.9 23.6 21.0 19.0 18.3 

Mass Transfer Coefficient kg 

[lbm/hr-ft
2
-psia] 

1.27 1.46 1.67 1.65 1.99 

Gas-side HTC [BTU/hr-ft
2
-

o
F] 7.69 9.95 11.1 12.2 13.9 

Air-side HTC [BTU/hr-ft
2
-

o
F] 10.2 10.2 10.2 9.42 9.45 

(Pv,bulk – Pv,i) [psia] 1.04 0.89 0.80 0.80 0.70 
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Figure 4.11 – Mass flow rate per unit of surface area versus flue gas velocity (experimental data and curve fit). 

 

Figure 4.12 - Heat and mass transfer coefficients for various flue gas velocities 
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Figure 4.13 shows the mass transfer coefficient and vapor partial pressure difference 

from Equation 4.1.  As the flue gas velocity was increased, the condensation efficiency of the 

ACC decreases because the driving potential for condensation                 decreased.  These 

results underscore the importance of the tube wall temperature in characterizing the performance 

of the ACC.  The data points in Figure 4.13 were obtained using experimental measurements.   

 

 

Figure 4.13 - Mass transfer coefficient and condensation potential versus flue gas velocity (experimental data 

and curve fit). 
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4.4 Effect of Cooling Air Velocity 

The heat and mass transfer simulation was used to determine condensation efficiency when 

cooling air velocity ranged between 5 and 60 ft/sec.  The process conditions used were similar to 

the experimental conditions described in Chapter 3 and were: 

 Inlet flue gas temperature: 137.3 
o
F 

 Flue gas velocity: 29.8 ft/sec 

 Inlet moisture concentration: 13.1% 

 Inlet cooling air temperature: 58.6 
o
F 

It is shown in Figure 4.14 and Figure 4.15 that cooling air velocity and again, tube wall 

temperature, have a substantial impact on condensation efficiency.  Referring back to Equations 

4.1 to 4.4, the reason was the lower tube wall temperature decreased the partial pressure of vapor 

at the tube wall/condensate interface which increased the driving potential for condensation.   

 

Figure 4.14 – Theoretical predictions for condensation efficiency versus cooling air velocity. 
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Figure 4.15 – Theoretical predictions for tube wall temperature versus cooling air velocity. 
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how kg and hg are related and Figure 4.17 shows the slight decrease in the heat transfer 

coefficient, and this decrease was attributed to changing fluid properties due to changes in 

temperature.   
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transfer rate, and this is shown with results from the simulation in Figure 4.18.  Ultimately, 
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Figure 4.16 – Theoretical predictions for mass transfer coefficient and condensation potential versus cooling air 

velocity 

 

Figure 4.17 – Theoretical predictions for heat transfer coefficient variation for various cooling air velocity. 
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Figure 4.18 – Theoretical predictions for heat transfer rate versus cooling air velocity. 

 

What has been discovered and shown up to this point is the importance of the tube wall 

temperature in affecting the performance of the ACC.  Each process condition affects the tube 

wall temperature in a different way and it depends on the purpose of the ACC to choose the best 

process conditions. 

4.5 Combined Effect of Increased Cooling Air Velocity and Flue Gas Velocity 

The following parametric test listed in Table 4.4 is one where both the gas-side and air-side 

velocities were increased.  Figure 4.19 shows the flue gas and cooling air velocities for this 

parametric test, and Figure 4.20 shows how this affected the heat transfer coefficients for each 

test. 
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Table 4.4 - Data from a parametric test of both cooling air velocity and flue gas velocity. 

Test Name 1112t1 1013t2 1106t1 1104t4 

Inlet Gas Temperature [
o
F] 136.4 139.6 141.7 141.7 

Flue Gas Flow rate [lbm/hr] 151.2 184.8 196.7 233.4 

Flue Gas Velocity [ft/sec] 30.9 38.6 41 48.1 

Incoming Vapor Flow rate [lbm/hr] 12.5 14.7 16.8 17.3 

Flue Gas Moisture Concentration [% wet-basis] 12.7 12.2 13.2 11.5 

Water Condensation Rate [lbm/hr] 2.97 3.42 4.03 4.11 

Mass Transfer Coefficient [lbm/hr-ft
2
-psia] 1.69 2 2.11 2.35 

Gas-side HTC [BTU/hr-ft
2
-

o
F] 8.52 9.95 10.5 11.9 

Air-side HTC [BTU/hr-ft
2
-

o
F] 9.7 10.2 11.4 12.2 

(Pv,bulk – Pv,i) [psia] 0.697 0.655 0.775 0.702 

Condensation Efficiency [%] 24.1 23.6 24.4 24.3 

 

 

Figure 4.19 - Process conditions for parametric test for increasing both flue gas and air side velocities. 
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Figure 4.20 - Heat transfer coefficients as cooling air velocity and flue gas velocity were increased. 
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Figure 4.21 - Mass transfer coefficient and condensation potential for tests with varied cooling air and flue gas 

velocities (experimental data and curve fit). 
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transfer.  Equation 4.9 is Newton‟s law of cooling which describes the sensible heat transfer on 
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increased heat transfer. 

                (4.9) 

 

The surface area can be increased on the air-side by adding more fins.  The next graph 

shows how the condensation efficiency changes due to the addition of more fins.  This increase in 
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due to adding more fins, and   shows how increasing the air-side surface area decreased the 

average tube wall temperature.   

The process conditions for these experiments are listed in Table 4.5. 

 

Table 4.5 - Process conditions for simulations that varied fin pitch. 

Process Conditions 

Inlet Flue Gas Temperature [
o
F] 146.4 

Flue Gas Velocity [ft/sec] 30 

Moisture Concentration [percent wet-basis] 13 

Cooling Air Velocity [ft/sec] 30 

 

 

 

Figure 4.22 – Theoretical predictions for condensation efficiency versus fin pitch. 
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Figure 4.23 – Theoretical predictions for average tube wall temperature versus fin pitch. 
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5 Design of a Full-Scale Air-Cooled Condenser 

The heat and mass transfer simulation described in Chapter 2 was used to size an air-

cooled condenser for a power plant.  This chapter describes the methodology to determine the 

size and cost of the full-scale ACC.  Also discussed are the effects design variables have on the 

size and cost of the ACC. 

The configuration of the flue gas air-cooled condenser was modeled after a type of air-

cooled steam condensers shown in Figure 5.1.  These steam condensers have an A-frame 

construction in which the steam is distributed to the tubes by a header and cooled as it flows 

downward through the tubes.  These systems have a modular design and each module consists of 

tube banks, a fan, and headers and piping.  Because the system has a modular design, different 

sized systems are built by combining modules.  These systems work well as steam condensers in 

power plants [44] and this was the configuration considered for the flue gas air-cooled condenser.   

 

 

 

Figure 5.1 - Typical air-cooled steam condenser. 

The entire flue gas cooling system consisted of water-cooled and air-cooled condensers, 

as shown in Figure 5.2.  The flue gas was first cooled in the water-cooled condenser then it 
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flowed through the air-cooled condenser where the majority of the water recovery occurred.  

Details of the water-cooled condenser can found in Jeong et al. [13-14]. 

As mentioned, air-cooled condensers are typically a modular design, where a complete 

system consisted of multiple modules of the same design.  Figure 5.3 shows a system which had 

four modules.  The number of modules depended on the flue gas flow rate, the available space to 

build the ACC, and the flue gas and cooling air temperatures.  The factors that affected the size of 

each module were process conditions and tube and fin geometries, and these design choices are 

discussed in this chapter.   
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Figure 5.2 - Large scale design configuration of water-cooled and air-cooled flue gas condensers. 
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Figure 5.3 - Modular design of the air-cooled condenser. 
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Section 5.1 discusses the calculation procedure for the size and cost of a full-scale ACC.  

Section 5.2 describes parametric studies for the design factors, and Section 5.3 discusses the 

optimal designs. 

 

5.1 Calculation Procedure to Determine the Size and Cost of an Air-Cooled Condenser 

The heat and mass transfer simulation described in Chapter 2 simulated a single column of 

tubes.  The size of the ACC was determined by calculating how many columns were necessary to 

process a specific flue gas load.   

To size an ACC, the designer must choose the flue gas velocity and tube diameter.  The 

flue gas flow rate for each tube can be calculated using Equation 5.1. 

                                    (5.1) 

 

where                is the flow cross sectional area of one heat exchanger tube.  The number of 

tubes for the ACC system can be calculated with Equation 5.2. 

       
         

               
  (5.2) 

 

By choosing the tube diameter and flue gas velocity, one can estimate how many tubes will be 

necessary for the heat exchanger.  A typical 550 MW power plant has a flue gas flow rate of 

approximately 5,500,000 lbm/hr and Figure 5.4 shows the number of tubes needed to process the 

flue gas depending on flue gas velocity (inner tube diameter of 4 inches).   
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Figure 5.4 - Number of tubes in ACC for different flue gas velocities. 

As shown in Figure 5.3, the tubes are placed in bundles, which are installed in modules.  In 

Figure 5.3, each module hosts two tube bundles.  The number of tube bundles can be determined 

by estimating the width of a bundle, choosing the transverse tube spacing, and the number of 

rows of tubes.  For example, Table 5.1 is one possible layout of an ACC.  Figure 5.5 and Figure 

5.6 indicate what is a module, bundle, and tube row to correspond with Table 5.1. 

Table 5.1 - Example configuration of a full-scale ACC. 

Flue Gas Flow rate 5,500,000 lbm/hr 

Flue Gas Velocity 40 ft/sec 

Outer Tube Diameter / Fin Length 4 inches / 1 inch 

Number of Tubes 4800 

Transverse Tube Spacing [St] 

(                         ) 
6 inches 

Bundle Width 20 feet 

Tubes per Row in a Bundle 40 

Number of Tube Rows per Bundle 4 

Number of Tubes per Bundle 160 

Number of Tube Bundles 30 
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Figure 5.5 - Schematic of 1 module of the ACC which has 2 tube bundles and 1 row of tubes in each bundle. 

 

 

Figure 5.6 - Top view of a tube bundle which has 3 rows of tubes. 
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As shown in the Literature Review, the capital cost of the ACC was determined from Guthrie 

[64] using the gas-side surface area of the ACC.  The following calculation procedure estimates 

the net annual cost of the ACC. 

1. Calculate the number of tubes necessary to process the flue gas using Equation 5.2. 

2. Calculate the length of tube necessary to condense the desired amount of water. 

3. Calculate the surface are of the ACC using the tube and fin geometry. 

4. Calculate installed capital cost of the ACC using the capital cost correlations from 

Gurthrie [64], or an alternative cost correlation from Smith [62] or Clerk [63].  Guthrie‟s 

is Equation 5.3. 

                                        (5.3) 

 

5. Use Chemical Engineering indexes to determine the present value of the installed cost. 

 

 

                       

                          
                

                 
 

(5.4) 

 

6. Determine the annualized installed capital cost of the ACC using Equation 5.5. 

                              
       

        
 (5.5) 

 

7. Determine the annual operating costs of the ACC by assuming the contributions are from 

powering the air-side fans and the additional loads on the flue gas fans.  The isentropic 

relation was used to calculate the fan power (Equation 5.6).  Then it was assumed that the 

cost of electricity was $0.05 per kilowatt-hour, and the plant operated for 7000 hours per 

year.  The annual operating cost to operate the air-side fan and gas-side fan were 

calculated using Equation 5.7. 
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 (5.7) 

 

8. The annual savings due to recovering water were calculated from the water condensation 

rate and the fuel savings rate.  In the simulations it was assumed that water cost $1.50 per 

1000 gallons and fuel cost $50 per ton. 

                                    
   

  
 

     

            
 (5.8a) 

                                      
   

  
 

   

   
 (5.8b) 

 

9. The net annual cost of the air-cooled condenser was calculated using Equation 5.9. 

 

 

               

                                          

                   

(5.9) 

 

5.2 Parametric Study for the Design of the Air-Cooled Condenser 

The process conditions and tube and fin geometry design choices are listed in Table 5.2.  

This section discusses how each affects the size and cost of the ACC.  This information was 

generated using the heat and mass transfer simulation and parametrically varying the parameters 

in Table 5.2.  
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Table 5.2 - Factors included in the parametric studies of ACC design. 

Design Parameters 

Flue Gas Velocity Fin Pitch Tube Diameter 

Flue Gas Temperature Fin Length Transverse Tube Spacing 

Cooling Air Velocity Fin Thickness Number of Tube Rows 

Cooling Air Temperature - - 

 

For the simulations in this section, the flue gas flow rate and moisture concentration are 

listed in Table 5.3.  The flue gas flow rate is typical for power plants in the 600 MW range and 

the moisture level of flue gas can range from 6 to 15 volume percent depending on the coal rank.  

In experiments performed at power plants by Jeong et al. it was not uncommon to have moisture 

concentrations of 11 percent.  An 11 percent moisture concentration translates to approximately 

400,000 lbm/hr of water vapor for a typical 600 MW power plant. 

 

Table 5.3 - Flue gas flow rate for parametric simulations. 

Flue gas flow rate [lbm/hr] 6,000,000 

Moisture concentration [% wet basis] 11 

Moisture flow rate [lbm/hr] 400,000 

 

Table 5.4 provides the nominal values for these simulations.  The length of the heat 

exchanger tubes was determined by the condensation efficiency.  The tubes were the necessary 

length to condense 50% of the incoming water vapor, or approximately 200,000 lbm/hr.  The 

50% value for condensation efficiency can be any value, depending on the desired water 

recovery.  There was no particular reason for 50% in this study. 
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Table 5.4 – Nominal conditions for full-scale simulations. 

Inlet Flue Gas Temperature [
o
F] 135

o
F 

Flue Gas Velocity [ft/sec] 40 

Inlet Cooling Air Temperature [
o
F] 75

o
F 

Air Velocity between Tubes [ft/sec] 30 

Condensation Efficiency (see Equation 2.6) 50% 

Number of tube rows in heat exchanger banks 

(See Figure 5.6) 
3 

Tube Inner Diameter [inches] 4 

Tube Outer Diameter [inches] 4.4 

Fin Pitch [inches] 0.25 

Fin Length [inches] 1.0 

Fin Thickness [inches] 0.0625 

Transverse Tube Spacing [inches] 6.4 

 

 

Tube diameter was the first parameter that was varied and Figure 5.7 shows how changing 

the tube diameter had an effect on how long the tube must be to condense 50 percent of the water 

vapor from the flue gas.  The figure shows it is impractical to design an ACC with a tube 

diameter greater than four inches (for the conditions in Table 5.4) because the tubes would be 

over 35 feet long.   

In Figure 5.8 the gas-side surface area is plotted against increasing inner tube diameter.  The 

graph shows that for these particular process conditions the surface area ranges from roughly 

130,000 ft
2
 to 300,000ft

2
.  The heat exchanger condensed 50% of the moisture, which is 200,000 

lbm/hr.  At $1.50 per 1000 gallons of water, the water savings were $242,000.  The operating 

costs and annualized net annual costs varied with tube diameter and this is shown in Figure 5.9. 

The three costs, annualized capital cost, operating costs, and annual savings are summed and 

plotted in Figure 5.10. 
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Figure 5.7 – Length of heat exchanger tubes versus inner tube diameter for flue gas inlet temperature of 135oF. 

 

 

Figure 5.8 – Gas-side surface area versus inner tube diameter for flue gas inlet temperature of 135oF. 
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Figure 5.9 – Annual costs of ACC versus inner tube diameter for inlet flue gas temperature of 135oF. 

 

Figure 5.10 – Net annualized cost versus inner tube diameter for flue gas inlet temperature of 135oF. 
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Even though the net annual cost is the least with a large tube diameter, an additional 

constraint is the length of tubing that can be manufactured and installed into a power plant 

system.  An inner tube diameter between two inches and four inches has reasonable performance 

and has short tubes. 

The next design factors that were varied were transverse tube spacing, fin pitch, and fin 

length.  Figure 5.12 through Figure 5.15 shows how increasing the transverse tube spacing 

affected the size and cost of the ACC.  In the figures, the abscissa on the graphs is a transverse 

tube spacing factor     defined in Figure 5.11 and Equation 5.10. 

 

                (5.10) 

 

Figure 5.11 – Transverse tube spacing of the heat exchanger tube bundle. 
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In the simulations, the cooling air velocity was constant and increased transverse tube 

spacing increased the cooling air flow rate.  According to Equation 5.11, a larger mass flow rate 

of cooling air decreased the temperature change from row to row.   

                 (5.11) 

 

The thermodynamic effects of transverse tube spacing were small.  There was a six 

percent decrease in the necessary tube length (Figure 5.13).  However, the operating costs of the 

ACC increased substantially due to the increased cooling air flow rate that was required to fill the 

spaces between the tubes to maintain the same velocity.  In summary, the least expensive design 

was the most compact arrangement where            

 

Figure 5.12 – Length of heat exchanger tubes versus transverse tube spacing for inlet flue gas temperature of 

135oF. 
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Figure 5.13 – Gas-side surface area versus transverse tube spacing for inlet flue gas temperature of 135oF. 

 

 

Figure 5.14 – Net annual cost versus transverse tube spacing for inlet flue gas temperature of 135oF. 
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Figure 5.15 – Annualized costs of ACC versus transverse tube spacing for inlet flue gas temperature of 135oF. 
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Figure 5.16 – Length of heat exchanger tubes versus fin length for inlet flue gas temperature of 135oF. 

 

Figure 5.17 – Surface area versus fin length for inlet flue gas temperature of 135oF. 
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Figure 5.18 – Net annual cost versus fin length for inlet flue gas temperature of 135oF. 

 

 

Figure 5.19 – Annualized costs of the ACC versus fin length for inlet flue gas temperature of 135oF. 
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 Changing the fin pitch had a substantial impact on the ACC‟s performance and the effects 

on size and cost are shown in Figure 5.20 through Figure 5.23.  For a fin pitch of 0.20 inches, the 

tubes were 28 feet long, and when fin pitch was 1 inch and 3 inches, the required tube length 

increased to 45 feet and 76 feet respectively.  Such tube lengths are impractical even though 

Figure 5.22 indicates that the net annual cost was less.   

The heat exchanger condensed 50% of the moisture, which is 200,000 lbm/hr.  At $1.50 

per 1000 gallons of water, the water savings were $242,000.  The operating costs and annualized 

net annual costs varied with tube diameter and this is shown in Figure 5.23. The three costs, 

annualized capital cost, operating costs, and annual savings are summed and plotted in Figure 

5.22. 

 

 

Figure 5.20 – Length of heat exchanger tubes versus fin pitch for inlet flue gas temperature of 135oF. 
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Figure 5.21 – Heat exchanger surface area versus fin pitch for inlet flue gas temperature of 135oF. 

 

 

Figure 5.22 – Net annual cost of ACC versus fin pitch for inlet flue gas temperature of 135oF. 
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Figure 5.23 – Annualized costs of ACC versus fin pitch for inlet flue gas temperature of 135oF. 
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Figure 5.24 – Length of heat exchanger tubes versus fin thickness for inlet flue gas temperature of 135oF. 

 

Figure 5.25 – Net annual cost versus fin pitch for inlet flue gas temperature of 135oF. 
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Figure 5.26 – Annualized costs of the ACC versus fin thickness for inlet flue gas temperature of 135oF. 
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The effects on cost are seen in Figure 5.29 and Figure 5.30.  Figure 5.29 shows the net 

annualized cost of the ACC, which accounts for the savings associated with recovering water and 

the operating costs and capital cost of the ACC shown in Figure 5.30.  In this case the results 

indicated that specifying a higher flue gas velocity would lead to lower annual costs of the ACC. 

 

Figure 5.27 – Length of heat exchanger tubes versus flue gas velocity for inlet flue gas temperature of 135oF. 
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Figure 5.28 – Gas-side surface area versus flue gas velocity for inlet flue gas temperature of 135oF. 

 

Figure 5.29 – Net annual cost versus flue gas velocity for inlet flue gas temperature of 135oF. 
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Figure 5.30 – Annualized costs for the ACC versus flue gas velocity for inlet flue gas temperature of/ 135oF. 
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Figure 5.31 – Length of heat exchanger tubes versus cooling air velocity for inlet flue gas temperature of 135oF. 

  

 

Figure 5.32 – Gas-side surface area versus cooling air velocity for inlet flue gas temperature of 135oF. 

0 

20 

40 

60 

80 

100 

0 20 40 60 

L
en

g
th

 o
f 

T
u

b
es

 i
n

 A
C

C
 [

ft
] 

Cooling Air Velocity [ft/sec] 

0.0E+00 

1.0E+05 

2.0E+05 

3.0E+05 

4.0E+05 

5.0E+05 

0 20 40 60 

G
a
s-

S
id

e 
S

u
rf

a
ce

 A
re

a
 [

ft
2

] 

Cooling Air Velocity [ft/sec] 



154 

 

 

Figure 5.33 – Net annual cost versus cooling air velocity for inlet flue gas temperature of 135oF. 

 

Figure 5.34 – Annualized costs versus cooling air velocity for inlet flue gas temperature of 135oF. 
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Figure 5.35 through Figure 5.38 shows how inlet flue gas temperature affected size and 

cost of the ACC.  The effects, also discussed in Chapters 3 and 4, were that inlet flue gas 

temperature had little impact on water condensation rate.  Comparing the heat transfer resistances 

on the gas-side and the air-side, the gas-side has a higher resistance, and so changing the flue gas 

temperature had a relatively small affect on the tube wall temperature.  And, since condensation 

rate is driven by tube wall temperature, the performance of the ACC has a weak dependence on 

inlet flue gas temperature.  (When reviewing the experimental results discussed in Chapter 3, it is 

important to consider the variations in moisture concentrations because moisture concentration 

greatly affects condensation rate.) 

Figure 5.35 shows the length of the tubes in the ACC, and Figure 5.36 shows the surface 

area of the ACC.  The net annual cost in Figure 5.37 is the sum of the estimated savings due to 

recovering water and the operating costs and capital cost of the ACC shown in Figure 5.38. 

 

Figure 5.35 – Length of heat exchanger tubes versus inlet flue gas temperature. 
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Figure 5.36 – Gas-side surface area versus inlet flue gas temperature. 

 

 

Figure 5.37 – Net annual cost versus inlet flue gas temperature. 

 

0.0E+00 

1.0E+05 

2.0E+05 

3.0E+05 

4.0E+05 

5.0E+05 

100 120 140 160 180 200 

G
a

s-
S

id
e 

S
u

rf
a

ce
 A

re
a

 [
ft

2
] 

Inlet Flue Gas Temperature [oF] 

0.0E+00 

1.0E+06 

2.0E+06 

3.0E+06 

100 120 140 160 180 200 

N
et

 A
n

n
u

a
l 

C
o
st

 [
$
] 

Inlet Flue Gas Temperature [oF] 



157 

 

 

Figure 5.38 – Annualized costs for the ACC versus inlet flue gas temperature. 

The next parameter that was varied was inlet cooling air temperature.  The decreased 
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Figure 5.39 – Length of heat exchanger tubes versus inlet air temperature for inlet flue gas temperature of 

135oF. 

 

 

Figure 5.40 – Gas-side surface area versus inlet air temperature for inlet flue gas temperature of 135oF. 
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Figure 5.41 – Net annual cost versus inlet air temperature for inlet flue gas temperature of 135oF. 

 

 

Figure 5.42 – Annualized costs of ACC versus inlet air temperature for inlet flue gas temperature of 135oF. 
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 The last parameter varied was the number of tube rows in the direction of the cooling air 

flow.  Figure 5.43 shows that increasing the number of tube rows increased the length of the 

ACC.  This was due to the increase in cooling air temperature in subsequent rows, which reduced 

the mean temperature difference.   

The effect on net annual cost is shown in Figure 5.45, which is the sum of the estimated 

savings due to recovering water and the operating costs and capital cost shown in Figure 5.46.  

Increasing the number of tube rows from 1 to 10 increased the capital cost by 20 percent and the 

annual operating cost by 30 percent.  Five rows compared to one row increased the capital cost by 

7 percent and the annual operating costs by 10 percent.  The benefit to having more rows is less 

tube bundles and a more compact heat exchanger 

 

 

Figure 5.43 – Length of heat exchanger tubes versus number of tube rows for inlet flue gas temperature of 

135oF. 
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Figure 5.44 – Gas-side surface area versus number of tube rows for inlet flue gas temperature of 135oF. 

 

 

Figure 5.45 – Net annual cost versus number of tube rows for inlet flue gas temperature of 135oF. 
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Figure 5.46 – Annualized capital costs versus number of tube rows for inlet flue gas temperature of 135oF. 
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5.3 Optimal Design of the Flue Gas Air-Cooled Condenser for the Case with no Flue Gas 

Desulfurization System 

The Nelder-Mead method described in the Literature Review was used to optimize the full-

scale design.  The purpose of the optimization was to determine values for design variables which 

minimized the annualized cost of the air-cooled condenser.  To reiterate what was described in 

Chapters 1 and 2, the function that was minimized was Equation 5.12.   

 

 
                                                   

                   
(5.12) 

 

 Section 5.3.1 discusses the progression of finding an optimal design.  First just the 

geometry was optimized, then the flow rates were optimized, and finally the geometry and flow 

rates were optimized simultaneously.  This shows that the latter procedure of optimizing all 

variables simultaneously provided the least expensive design. 

 Section 5.3.2 discusses tube row effects because tube rows were not included as an 

optimization variable.  The Nelder-Mead method required all variables be continuous, and tube 

rows was a discreet parameter in the simulation. 

 Sections 5.3.3 and 5.3.4 discuss the effects of the inlet flue gas temperature and inlet 

cooling air temperature. 

5.3.1 Optimal Design Values of the Parametric Simulations 

Process conditions for the ACC are listed in Table 5.5, these process conditions mirror 

those of Table 5.4 because this optimization sought the best design choices for the parametric 

tests presented in Section 5.2, with the exception of the number of tube rows.  Tube rows was 

changed to 2 to shorten the duration of the simulations. 
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Table 5.5 – Process conditions used for the optimization of the parametric simulations in section 5.2. 

Inlet Flue Gas Temperature [
o
F] 135

o
F 

Inlet Moisture Concentration [wet vol %] 11.0  

Flue Gas Velocity [ft/sec] 40 

Inlet Cooling Air Temperature [
o
F] 75

o
F 

Air Velocity between Tubes [ft/sec] 30 

Condensation Efficiency (Equation 2.6) 50% 

Number of tube rows in heat exchanger banks 2 

 

The parameters that were varied were tube diameter, fin spacing, fin length, and fin 

thickness.  Tube rows was not included because the Nelder-Mead technique requires the variables 

be continuous.  The cooling air and flue gas velocity were considered following the first 

optimization of the geometry.  The ranges of the parameters for the optimization are listed in 

Table 5.6.  These ranges were in part determined by Equations 1.17 and 1.18, to avoid singularity.  

(In general these ranges are selected by the designer and can be any value which keeps the 

governing equations from becoming singular or applying to conditions outside the recommended 

ranges for heat transfer correlations, mass transfer correlations, etc…) 

It was assumed that the transverse tube spacing of the tubes    must be as small as 

possible.  The tube spacing was calculated according to the diagram in Figure 5.11, in which the 

tube spacing is equal to the tube diameter plus the length of the fins.  This constraint was imposed 

because the heat exchanger was expected to have approximately 10,000 tubes and it will need to 

be as compact as possible.  The longitudinal tube spacing was set equal to the transverse tube 

spacing.  Moreover, the parametric simulations for transverse tube spacing showed that it was 

more efficient for the tubes to be close-packed (See Figure 5.14).  



165 

 

The optimization began by building the initial simplex of the Nelder-Mead method.  

Table 5.6 lists the variables that were optimized along with the ranges during the optimization.  

Table 5.7 lists the information to build the initial simplex.  The column labeled Starting Value 

was the guessed heat exchanger design.  The column labeled Si in Table 5.7 was the parameter 

used to build the remaining vertices of the initial simplex.  The tilted initial simplex method of 

Walters [42] utilized the guessed heat exchanger design and the parameter Si to build the entire 

initial simplex, shown in matrix form in Table 5.8. 

 

Table 5.6 – Range of variables for the optimization of the parametric simulations from section 5.2. 

Parameter Minimum Maximum 

Tube Diameter [inches] 1.75 6 

Fin Spacing [inches] 0.20 1.0 

Fin Length [inches] 0.25 1.25 

Fin Thickness [inches] 0.0625 0.125 

 

  

Table 5.7 – Parameters to build the initial simplex for the optimization. 

 
Starting Values 

Si from 

[42] 

Optimization Parameters Normalized 
Actual 

[inches]  

Fin Pitch  0.1 0.28 0.125 

Fin Length  0.5 0.625 -0.2 

Inner Tube Diameter  0.2 2.6 0.25 

Fin Thickness  0.25 0.0781 0.5 

Net Annual Cost $778,529 
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Table 5.8 – Initial simplex for optimization of four geometric parameters. 

  

Fin Pitch 

(normalized) 

Fin Length 

(normalized) 

Inner Tube 

Diameter 

(normalized) 

Fin 

Thickness 

(normalized) 

Net Annual 

Cost 

(normalized) 

Vertex 1 0.1 0.5 0.2 0.25 $778,529 

Vertex 2 0.2207 0.4482 0.2647 0.3794 $883,279 

Vertex 3 0.1295 0.3114 0.2589 0.3679 $843,284 

Vertex 4 0.1273 0.4563 0.4314 0.3593 $838,239 

Vertex 5 0.1256 0.459 0.2512 0.706 $781,654 

 

The results of the optimization are listed in Table 5.9 and the details of the final simplex are 

listed in Table 5.10.  The optimal design values had an annual operating cost that was 

approximately $175,000 less than the initial guess.  The repeated values in Table 5.10 indicate 

convergence. 

Table 5.9 – Results of the optimal tube geometry for the parametric simulations from section 5.2. 

 
Design Values 

Optimization Parameters Guess Optimal 

Fin Pitch [inches] 0.28 0.2056 

Fin Length [inches] 0.625 0.34638 

Inner Tube Diameter [inches] 2.6 1.86433 

Fin Thickness [inches] 0.07813 0.125 

Cost $778,529 $601,940 

 

Table 5.10 – Final simplex of the optimization. 

  

Fin Pitch 

(normalized) 

Fin Length 

(normalized) 

Inner Tube 

Diameter 

(normalized) 

Fin 

Thickness 

(normalized) 

Net Annual 

Cost 

(normalized) 

Vertex 1 0.007 0.771 0.0269 1.000 $601,939.15 

Vertex 2 0.007 0.771 0.0269 1.000 $601,939.15 

Vertex 3 0.007 0.771 0.0269 1.000 $601,939.15 

Vertex 4 0.007 0.771 0.0269 1.000 $601,939.15 

Vertex 5 0.007 0.771 0.0269 1.000 $601,939.15 
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 The details of the optimal heat exchanger design are listed in Table 5.11.  The 

condensation efficiency of the heat exchanger was 48% which resulted in a condensation rate of 

approximately 192,000 lbm/hr, or 383 GPM.  In this design, the length of the heat exchanger 

tubes was 13.6 feet.  An interesting conclusion from the optimization was that the simulation 

converged to a relatively small tube diameter.  Recall from Figure 5.9 that as the tube diameter 

becomes large the capital costs because increasingly large, and as the tube diameter approaches 

very small values, the operating costs increase due to large fluid pressure drops. 

 Also listed in Table 5.11 are the costs associated with the ACC.  The estimated field-

erected capital cost was 6.7 million.  The estimate was calculated using the correlation of Guthrie 

[64] and it included all costs associated with fabrication and installation.  The annualized capital 

cost based on a 20 year repayment at a five percent fixed interest rate was $540,000.  The costs to 

operate the cooling air fans and the additional load on the flue gas fan was $303,000 per year, and 

the estimated annual savings due to condensing water was $242,000 at $1.50 per 1000 gallons of 

water.  The net annual cost of this design was $602,000.  To break even with this design, water 

would need to be valued at $5.25 per 1000 gallons.  A discussion about the cost of water is in 

Section 5.4.2. 
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Table 5.11 – Details of the optimal tube geometry for the parametric simulations from section 5.2. 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 72,128,375 

Flue Gas Velocity [ft/sec] 36.9 

Cooling Air Velocity [ft/sec] 30.4 

 
Inlet Flue Gas Temperature [

o
F] 135 

Inlet Moisture Concentration [% vol wet] 11.0 

Inlet Cooling Air Temperature [
o
F] 75 

 
Tube Inner Diameter [inch] 1.86 

Tube Thickness [inch] 0.2 

Fin Length [inches] 0.35 

Fin Pitch [inches] 0.206 

Fin Thickness [inches] 0.125 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 2.96 

Longitudinal Tube Spacing [inches] 2.96 

Tube Length [ft] 13.6 

Number of Tubes 32,970 

 
Gas-side Surface Area [ft

2
] 218,742 

Air-side Surface Area [ft
2
] 2,598,804 

 
Field Erected Capital Cost $6,742,011 

Annualized Capital Cost $540,996 

Annualized Operating Cost $303,281 

Estimated Annual Savings due to Water Recovery 

(water costs estimated as $1.50 per 1000 gallons) 
$242,338 

Net Annualized Cost [20 yrs @ 5%] $601,939 

 
PERFORMANCE 

Sensible Heat Transfer [BTU/hr] 52,091,510 

Latent Heat Transfer [BTU/hr] 200,311,307 

Condensation Rate [lbm/hr] 192,526 

Condensation Efficiency 48% 
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 Next, the flue gas velocity and cooling air velocity were optimized.  In this optimization, 

geometry was fixed and flue gas and cooling air velocities were optimized for the ranges listed in 

Table 5.12. 

Table 5.12 - Range of velocities for optimizing the cooling air and flue gas velocities for the parametric 

simulations in section 5.2. 

 Range  

Parameter Min Max Fixed 

Flue Gas Velocity [ft/sec] 7.5 80  

Cooling Air Velocity [ft/sec] 7.5 50  

Fin Pitch [inch]   0.206 

Fin Length [inch]   0.35 

Inner Tube Diameter [inch]   1.86 

Fin Thickness [inch]   0.125 

 

The results of the optimization are shown in Table 5.13.  The net annualized cost of the ACC 

decreased by $110,000 compared to the design listed in Figure 5.10.   

 

Table 5.13 - Optimal flue gas and cooling air velocities for the parametric simulations in section 5.2 (50% 

condensation efficiency). 

 
Simulation Values 

Optimization Parameters Guess Optimal 

Gas Velocity [ft/sec] 58.25 43.76 

Air Velocity [ft/sec] 20.25 18.32 

Net annualized Cost $529,268 $491,525 

 

The last step was to optimize the system for both the geometry and the process conditions 

simultaneously.  The details of the optimizations are listed in Appendix B, and summarized in 
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Table 5.14.  The optimal design corresponded to a net annual cost of $307,000, compared to the 

first guess which corresponded to a net annual cost of $779,000. 

Table 5.14 - Final optimization of the ACC with an inlet flue gas temperature of 135oF and inlet cooling air 

temperature of 75oF (50% condensation efficiency). 

  Range Design Values 

Optimization Parameters Min Max Guess ACC-1 

Gas Velocity [ft/sec] 7.5 80 43.76 49.9 

Air Velocity [ft/sec] 7.5 50 18.32 7.5 

Fin Pitch [inch] 0.2 1.0 0.206 0.20 

Fin Length [inch] 0 1.25 0.35 1.25 

Inner Tube Diameter [inch] 1.75 6 1.86 1.75 

Fin Thickness [inch] 0.0625 0.125 0.125 0.109 

Cost 
  

$491,525 $306,748 

  

The details of the optimal design are listed in Table 5.15.  The field-erected capital cost 

was estimated to be $5,287,000, using Guthrie‟s estimate for stainless steel air-cooled condensers.  

The annual operating costs were estimated to be $119,000 and the estimated savings due to water 

recovery were $237,000, assuming water costs $1.50 per 1000 gallons.  Assuming the capital cost 

is paid off over a period of 20 years with a 5 percent fixed interest rate, the net annual cost of the 

ACC would be $307,000.   

In this design the tubes were 11.7 feet long.  As a comparison, ACCs used for condensing 

steam can have tubes up to 30 feet long.  There is potential for the tubes to be longer than 11.7 

feet and the ACC would then condense more water vapor. 
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Table 5.15 - Details of optimal design of the ACC for an inlet flue gas temperature of 135oF and inlet cooling air 

temperature of 75oF (further details listed in the appendix). 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 53,638,732 

 Inlet Flue Gas Temperature [
o
F] 135 

Inlet Moisture Concentration [% vol wet] 11.0 

Inlet Cooling Air Temperature [
o
F] 75 

 Tube Inner Diameter [inches] 1.75 

Tube Thickness [inches] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.109 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Tube Length [ft] 11.7 

Number of Tubes 30,000 

 Gas-side Surface Area [ft
2
] 161,416 

Air-side Surface Area [ft
2
] 8,404,383 

 Field Erected Capital Cost $5,286,886 

Annualized Capital Cost $424,233 

Annualized Operating Cost $118,771 

Estimated Annual Savings due to water recovery $236,256 

Net Annualized Cost [20 yrs @ 5%] $306,749 

 PERFORMANCE 

Sensible Heat Transfer [BTU/hr] 50,670,814 

Latent Heat Transfer [BTU/hr] 195,779,374 

Condensation Rate [lbm/hr] 187,691 

Condensation Efficiency 47% 
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 One design choice left out of the optimization was the number of tube rows.  Figure 5.47 

shows how this affects the net annual cost, and while one tube row was the least expensive, a heat 

exchanger that is only one row would require an impractical amount of space.  Choosing the 

appropriate number of tube rows is specific to each application and the choice should be made 

based on factors associated with installation and how much space is available. 

Increasing the number of tube rows increased the cost due to two factors, the additional 

pressure drop and the additional surface area.  The additional pressure drop was due to more tube 

rows and longer tubes, and the additional surface area was necessary because the overall 

temperature difference between the flue gas and cooling air decreased in subsequent rows.  The 

next section discusses optimizing the ACC with different numbers of tube rows. 

 

Figure 5.47 - Net annual cost of optimal ACC with increased tube rows. 
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with multiple rows of tubes have an optimal design different than an air-cooled condenser with 

one row of tubes? 

The process conditions for this investigation were 

 Inlet Air Temperature: 75
o
F 

 Inlet Flue Gas Temperature: 135
o
F 

 Inlet Flue Gas Moisture Concentration: 11 percent (wet-basis) 

The optimal designs for the four cases are summarized in Table 5.16, and additional 

details are provided in Appendix B.2.  The results indicated that the designs were the same with 

the exception of increased cooling air velocity for ACCs with more tube rows.  In addition, ACCs 

with more tube rows required longer tubes to maintain condensation efficiency (see Figure 5.43). 

Table 5.16 - Optimal design of the ACC with different number of tube rows (50% condensation efficiency). 

  
ROWS-

Case I 

ROWS-

Case II 

ROWS-

Case III 

ROWS-

Case IV 

  2 4 6 8 

Flue Gas Velocity [ft/sec] 49.9 44 49.7 49 

Cooling Air Velocity [ft/sec] 7.5 8.8 9.5 9.4 

Fin Pitch [inch] 0.2 0.2 0.2 0.2 

Fin Length [inch] 1.25 1.18 1.25 1.25 

Inner Tube Diameter [inch] 1.75 1.77 1.75 1.75 

Fin Thickness [inch] 0.109 0.104 0.108 0.107 

Tube Length [ft] 12 14.3 17.7 22.4 

Gas-side Surface Area [ft
2
] 157,134 203,798 226,432 289,243 

Net Annual Cost $307,000 $415,000 $537,000 $726,000 

 

The difference in net annual costs is significant between a design that has 2 rows of tubes 

and one that has 8 rows.  This design choice must be made according to the specific application 

and depends on how large or compact of an ACC is desired.  An ACC with two rows of tubes 
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will require much more space than an ACC with eight rows of tubes. Table 5.17 shows the frontal 

area of the four designs listed in Table 5.16.  The heat exchanger height and width are measured 

according to Table 5.17.  The calculations show that it may be necessary to have many rows in 

order to package the heat exchanger within a practical amount of space.  

 

Figure 5.48 - ACC Dimensions. 

Table 5.17 - Frontal area of an ACC with increasing numbers of tube rows (see Figure 5.49). 

Rows St 

Heat Exchanger 

Tube Length 

[ft] 

Number 

of  

Tubes 

Number 

of Tube 

Columns 

Heat Exchanger  

Frontal Area 

(Width * 

Height) 

Heat Exchanger 

Width 

[ft] 

2 4.65 12 30,000 15,000 69750 2906 

4 4.54 14.3 30,000 7,500 40576 1419 

6 4.65 17.7 30,000 5,000 34294 969 

8 4.64 22.4 30,000 3,750 32480 725 
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Figure 5.49 - Tube bundle schematic showing 3 tube rows and 5 tube bundles. 

 

5.3.3 Effect of Inlet Cooling Air Temperature on the Optimal Design 

The inlet flue gas temperature was held constant at 135
o
F for subsequent optimizations in 

which the inlet cooling air temperature was 40
o
F, 60

o
F, 75

o
F, and 90

o
F.  The ACC was optimized 

for the process conditions listed below. 

 Flue Gas Flow Rate: 6,000,000 lbm/hr 

 Inlet Flue Gas Temperature: 135
o
F 

 11 Percent Moisture Concentration 

 Two tube rows in each bundle 

 Minimum Transverse and Longitudinal Tube Spacing 

 The range for the six variables being optimized is listed in Table 5.18. 
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Table 5.18 - Range of variables for the optimization simulations of the ACC for the cases in section 0 and section 

5.3.4. 

 
Minimum Maximum 

Flue gas velocity [ft/sec] 7.5 80 

Air velocity [ft/sec] 7.5 50 

Fin pitch [inch] 0.20 1.0 

Fin length [inch] 0.05 1.25 

Inner tube diameter [inch] 1.75 6.0 

Fin thickness [inch] 0.0625 0.125 

Tube length 
Determined by how long the tube must be 

to condense 50 percent of the water vapor 

 

 The results from the optimizations are summarized in Table 5.19, and details are in 

Appendix B.3.  Notable conclusions from the optimizations were the increase in net annual cost 

and the increase in the required tube length for cases with higher inlet cooling air temperatures.  

Power plants in warmer climates will need ACCs with longer tubes.  It is important to notice the 

fact that a different inlet cooling air temperature does not change the optimal design choices for 

the geometry of the fins or the diameter of the tubes.  The details of each of the four heat 

exchanger designs along with the details of the net annual cost can be found in Appendix B.3. 
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Table 5.19 - Summary of results from optimization of the ACC for various inlet cooling air temperatures (50% 

condensation efficiency). 

  

AIR-Case 

I 

AIR-Case 

II 

AIR-Case 

III 

AIR-Case 

IV 

Inlet cooling air 

temperature [
o
F] 

Fixed 40 60 75 90 

Flue gas velocity  

[ft/sec] 
Optimal 48 53 50 48 

Cooling air velocity  

[ft/sec] 
Optimal 7.5 7.5 7.5 7.9 

Fin pitch [inch] Optimal 0.20 0.20 0.20 0.20 

Fin length [inch] Optimal 1.23 1.25 1.25 1.25 

Inner tube 

diameter [inch] 
Optimal 1.75 1.75 1.75 1.75 

Fin thickness [inch] Optimal 0.122 0.121 0.109 0.115 

Tube length [ft] Calculated 6.9 8.8 11.7 22.4 

Net annual cost Calculated $125,764 $193,458 $306,748 $732,000 

 

 

5.3.4 Effect of Inlet Flue Gas Temperature on the Optimal Design 

The temperature of the flue gas entering the ACC will be determined by the design of the 

water-cooled condenser upstream of the ACC.  Figure 5.2 shows the overall flue gas cooling 

system which consists of the water-cooled heat exchanger followed by the air-cooled heat 

exchanger.  The capacity at which the water-cooled heat exchanger can cool the flue gas will 

determine the inlet flue gas temperature to the ACC.  Therefore, it was of interest to investigate 

the effect of inlet flue gas temperature on the optimal tube geometry and fluid velocities. 

The process conditions for the optimization simulations are listed in Table 5.20, and the 

ranges for the variables during the optimization were the same as what is listed in Table 5.18. 
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Table 5.20 - Process conditions for optimization simulations for ACCs with various inlet flue gas temperatures 

(50% condensation efficiency). 

 
FG-

Case I 

FG-Case 

II 

FG-Case 

III 

FG-Case 

IV 

FG-Case 

V 

Inlet Flue Gas Temperature [
o
F] 135 150 175 200 225 

Inlet Cooling Air Temperature [
o
F] 75 75 75 75 75 

Inlet Flue Gas Moisture 

Concentration (wet-basis) 
11 % 11 % 11 % 11 % 11 % 

  

The details of the optimizations are tabulated in Appendix B.4 and summarized in Table 5.21.  

The results indicated that increasing the inlet flue gas temperature from 135
o
F to 200

o
F had very 

little effect on the overall performance and size of the ACC.  The surface area requirements 

increased slightly with increased inlet flue gas temperature but the amount was relatively small.  

This net annual cost of the ACC with varying inlet flue gas temperatures remains relatively 

constant. 

 

Table 5.21 - Summary of results for the optimal design of the ACC with increasing inlet flue gas temperature 

(50% condensation efficiency). 

 Test name 
NominalTfg

1d 

NominalTfg

2d 

NominalTfg

3c 

NominalTfg

4b 

NominalTfg

4b 

  FG-Case I FG-Case II FG-Case III FG-Case IV FG-Case V 

Inlet Flue Gas Temperature 

[
o
F] 

135 150 175 200 225 

Flue gas velocity [ft/sec] 51 50 51 55 50 

Cooling air velocity [ft/sec] 7.8 7.7 7.6 8.0 7.9 

Fin pitch [inch] 0.20 0.20 0.20 0.20 0.20 

Fin length [inch] 1.25 1.25 1.25 1.25 1.25 

Inner tube diameter [inch] 1.75 1.75 1.75 1.75 1.76 

Fin thickness [inch] 0.112 0.111 0.111 0.121 0.112 

Surface Area [ft
2
] 158,472 165,867 175,747 177,019 196,499 

Tube length [ft] 11.8 11.9 12.2 12.7 12.6 

Net annual cost $306,641 $320,045 $342,666 $364,298 $388,339 



179 

 

 

 The recurring result from the optimization simulations were that a small tube diameter 

with close-packed fins was optimal.  A benefit of such a design was that the heat exchanger tubes 

were relatively short.  Recall from Section 5.2 and Figure 5.7 that larger tube diameters required 

the heat exchanger tubes to be longer to maintain 50 percent condensation efficiency.  Ultimately, 

small diameter tubes resulted in an ACC that was less expensive and more compact.  A 

discussion of the heat transfer and pressure drop is after the following two figures. 

Simulations were carried out to show the lower limit of inner tube diameter.  Figure 5.50 

shows the net annual cost of the ACC when the inner tube diameter of the design “FG-Case I” 

from Table 5.21 was varied.  There was a minimum when the inner tube diameter was 

approximately 1.50 inches.  Figure 5.51 separates the net annual cost into its components, annual 

operating costs, capital cost, and estimated savings due to water recovery.  During the 

optimization simulations, the inner tube diameter was limited to a minimum of 1.75 inches.  This 

minimum was to avoid singularity in Equations 1.17 and 1.18. 

 

Figure 5.50 - Parametric simulation for FG-Case I from Table 5.21. 
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Figure 5.51 - Parametric simulation for FG-Case I from Figure 5.20. 

 Increasing the tube diameter had the effect of decreasing the heat transfer coefficients for 

both the gas side and the air side.  The respective heat transfer coefficients for the simulations 

shown in Figure 5.50 and Figure 5.51 is in Figure 5.52.  With increasing tube diameter, the heat 

transfer coefficient does decrease.  For turbulent flow, the heat transfer coefficient is proportional 

to the tube diameter as         (seen from Equations 1.12 and 1.13).   
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Figure 5.52 - Heat transfer coefficients for increasing tube diameter. 

 The pressure drop of both the cooling air and flue gas is affected by a change in tube 

diameter.  Equation 1.21 shows the pressure gradient of the flue gas inside the tubes, and the 

pressure gradient increases with decreasing tube diameter.  This is shown in Figure 5.53.  

However, decreasing the tube diameter also means that the tubes can be shorter and still condense 

the same quantity of water.  Figure 5.54 shows the tube length to condense 50% of the water 

vapor.  A 1 inch diameter tube requires much less tubing than a 6 inch diameter tube.  Therefore, 

even though the pressure gradient is larger for a small diameter tube, the tubes are much shorter, 

and the two effects counteract.  Figure 5.55 shows the overall pressure drop in inches of water. 
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Figure 5.53 - Pressure gradient of flue gas for various tube diameters. 

 

 

Figure 5.54 - Tube length necessary to condense 50% of the water vapor. 
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Figure 5.55 - Pressure drop of the cooling air and flue gas for the ACC when 50% of the water is condensed. 
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5.4 Optimal Design of the Flue Gas Air-Cooled Condenser for the Case with a Flue Gas 

Desulfurization System 

Section 5.3 discussed optimizing the flue gas condenser for the case in which the flue gas 

enters the air-cooled condenser (ACC) with a moisture concentration of 11 percent.  Another 

case, which is described in this section, is where the flue gas enters the ACC saturated with water 

vapor.  Such a case exists when there is a wet flue gas desulfurization (FGD) system to remove 

SO2 from the flue gas.  In an FGD system, the flue gas is scrubbed with a slurry mixture of 

limestone and water and when the flue gas exits the FGD system it is saturated with water at a 

temperature of approximately 135
o
F.  After exiting the wet FGD system, the flue gas would be 

processed by a series of flue gas condensers to recover water vapor and energy. 

The complete flue gas condenser system is shown conceptually in Figure 5.56.  First the 

flue gas flows through a water-cooled heat exchanger, then is processed by the ACC.  The 

proposed configuration of the heat exchangers is shown in Figure 5.57.  Boiler feed-water is used 

as the coolant for the water cooled heat exchanger and ambient air is used as the coolant for the 

ACC.  An analysis of the water-cooled condensers using the model developed by Jeong et al. [13-

14] showed that the water cooled condenser could cool the flue gas from 135
o
F to 128

o
F.  For the 

present study, the flue gas was assumed to be saturated at 128
o
F when entering the ACC. 

 

Figure 5.56 - Conceptual design of water-cooled and air-cooled heat exchanger system 
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Figure 5.57 - Proposed design of water-cooled and air-cooled heat exchanger system when a wet FGD system is 

installed 

 

The design discussed in this section utilized the cost calculation procedure presented in 

Section 5.1.  One optimization simulation studied in the present research had the process 

conditions listed below. 
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 Inlet Flue Gas Temperature: 128
o
F 

 Inlet Flue Gas Moisture Concentration: 14.4% (saturated on a wet-basis) 

 Inlet Cooling Air Temperature: 75
o
F 

 Flue Gas Flow Rate: 6,000,000 lbm/hr 

 Desired Condensation Efficiency - approximately 55 percent. 

Recall that the optimization simulation required the user to select a desired condensation 

efficiency to determine how long the tubes must be. This was discussed in Section 5.1   

The results from this optimization are summarized in Table 5.22.  The geometry of the 

tubes was the same as the case with no wet FGD scrubber (described in Section 5.3), which is a 

small diameter tube with small spacing between fins.  The cooling air velocity was approximately 

8 ft/sec and the flue gas velocity was 46 ft/sec, which are comparable velocities to the case with 

no wet FGD system.   

The cost of this ACC, also tabulated in Table 5.22, does not include potential water 

treatment costs.   The net annual cost for this design was estimated to be $241,000 when water is 

valued at $1.50 per 1000 gallons. 

In the next discussion in Section 5.4.1, the desired condensation efficiency was varied to 

determine how the condensation efficiency affected the optimal design 
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Table 5.22 - Optimal ACC when there is a wet FGD system. Additional details in the Appendix. 

Test name: Nominal128_saturated_60d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 63,700,259 

Flue Gas Velocity [ft/sec] 46.2 

Cooling Air Velocity [ft/sec] 7.8 

 

Inlet Flue Gas Temperature [oF] 128 

Inlet Cooling Air Temperature [oF] 75 

 

Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inch] 1.25 

Fin Pitch [inch] 0.2 

Fin Thickness [inch] 0.11 

Number of Tube Rows 2 

Transverse Tube Spacing [inch] 4.65 

Longitudinal Tube Spacing [inch] 4.65 

Number of Tubes 29000 

Tube Length [ft] 14.2 

Gas-side Surface Area [ft2] 190,136 

Air-side Surface Area [ft2] 9,899,044 

 

Field Erected Capital Cost $6,026,921 

Annualized Capital Cost for 20 years repayment at 5% interest. $483,616 

Annualized Operating Cost $135,538 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $378,408 

Net Annualized Cost [20 yrs @ 5%] $240,746 

 

Sensible Heat Transfer [BTU/hr] 44,181,735 

Latent Heat Transfer [BTU/hr] 312,946,275 

Condensation Rate [lbm/hr] 300,623 

Condensation Efficiency 56% 
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5.4.1 Effect of Changing the Desired Condensation Efficiency 

In the optimization simulations the size of the air-cooled condenser (ACC) was 

determined by how much surface area was required to condense a certain quantity of water vapor.  

Increasing the required condensation efficiency of the ACC required more surface area, and this 

section discusses the effects on cost.  Process conditions for optimization simulations to 

determine the effect of varying the condensation efficiency were: 

 Inlet Flue Gas Temperature – 128
o
F 

 Inlet Flue Gas Moisture Concentration – 14.4% (saturated on a wet-basis) 

 Inlet Cooling Air Temperatures – two cases: 75
o
F and 60

o
F 

The optimal designs of the ACC for this application are listed in Table 5.23 and Table 

5.24, with details in Appendix B.5.  The two tables correspond to inlet cooling air temperatures of 

75
o
F and 60

o
F respectively.  In the tables, each column represents different condensation 

efficiencies.  For example, the first column, which the desired condensation efficiency was 23 

percent, was the least expensive design, and as the desired condensation efficiency was increased, 

so was the net annual cost.   

Figure 5.58 shows how it becomes increasingly more expensive to recover larger quantities 

of water vapor from the flue gas.  To increase condensation efficiency over 60 percent required 

substantial increases in net annual cost.  For example, increasing the condensation efficiency 

from 60 percent to 70 percent required doubling the net annual cost of the ACC when the inlet 

cooling air temperature was 75
o
F.  Figure 5.59 plots the corresponding condensation rates.  

Nonetheless, this design, which corresponds to a 600 MW power plant, can recover up to 400,000 

lbm/hr (800 GPM) or water vapor. 

Figure 5.60 shows the total heat transfer to the cooling air.  This information is useful 

should the energy recovered be used in another process in the power plant (e.g. pre-heating 

combustion air).  In addition, the graph shows that a lower inlet cooling air temperature 

substantially reduced the cost of recovering the energy.  
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Table 5.23 – Summary of results for the optimal design of the ACC with the inlet flue gas in a saturated state 

and inlet cooling air temperature of 75oF.  Additional information found in Appendix  

 Test Name 75_25d 75_40d 75_50d 75_60d 75_69d 75_75a 

Condensation Efficiency 22.6% 36.7% 46.2% 56.4% 66.3% 73.2% 

Inlet Flue Gas Moisture  

Concentration [wet-basis] 
14.4% 14.4% 14.4% 14.4% 14.4% 14.4% 

Exit Flue Gas Moisture  

Concentration [wet-basis] 
11.60% 9.67% 8.34% 6.86% 5.39% 4.33% 

Flue Gas Velocity [ft/sec] 39 43 50.7 50.4 45.3 53.2 

Cooling Air Velocity [ft/sec] 9.4 9 8.2 7.6 7.8 7.5 

Fin Pitch [inch] 0.2 0.2 0.2 0.2 0.2 0.2 

Fin Length [inch] 1.25 1.25 1.25 1.25 1.25 1.25 

Inner Tube Diameter [inch] 1.75 1.75 1.75 1.75 1.75 1.75 

Fin Thickness [inch] 0.099 0.111 0.114 0.110 0.110 0.117 

Gas-Side Surface Area [ft
2
] 50,087 94,705 130,636 190,136 271,240 354,471 

Tube Length [ft] 3 6.3 9.8 14.2 20.2 27.9 

Total Heat Transfer to  

Cooling Air [MBTU/hr] 
141 230 291 357 423 470 

Net Annual Cost $67,892 $113,574 $162,861 $240,746 $404,031 $647,151 
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Table 5.24 - Summary of results for the optimal design of the ACC with the inlet flue gas in a saturated state and 

inlet cooling air temperature of 60oF 

 Test Name 60_25c 60_40d 60_50d 60_60a 60_69a 60_75c 

Condensation Efficiency 23.1% 37.1% 47.0% 56.6% 66.3% 72.8% 

Inlet Flue Gas Moisture  

Concentration [wet-basis] 
14.4% 14.4% 14.4% 14.4% 14.4% 14.4% 

Exit Flue Gas Moisture  

Concentration [wet-basis] 
11.5% 9.63% 8.23% 6.84% 5.40% 4.40% 

Flue Gas Velocity [ft/sec] 37.8 43.6 46 46 47.6 45 

Cooling Air Velocity [ft/sec] 9 8.6 8.2 7.8 8.2 7.7 

Fin Pitch [inch] 0.2 0.2 0.2 0.2 0.2 0.2 

Fin Length [inch] 1.25 1.25 1.25 1.25 1.25 1.25 

Inner Tube Diameter [inch] 1.75 1.75 1.75 1.75 1.75 1.75 

Fin Thickness [inch] 0.0973 0.111 0.111 0.119 0.115 0.109 

Gas-Side Surface Area [ft
2
] 42,867 77,000 107,895 148,238 194,333 251,996 

Tube Length [ft] 2.5 5.3 7.9 11 15.2 19 

Total Heat Transfer to  

Cooling Air [MBTU/hr] 
147 237 301 365 430 475 

Net Annual Cost $37,593 $60,075 $87,321 $129,745 $198,949 $300,223 
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Figure 5.58 – Net annual cost versus condensation efficiency for the case with a saturated flue gas. 

 

 

Figure 5.59 – Net annual cost versus condensation rate for the case with a saturated flue gas. 
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Figure 5.60 - Heat transfer to cooling air versus net annual cost for the case with a saturated flue gas. 
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Table 5.25 - Heat exchanger designs to study effects of water costs (taken from Appendix B.5 for the cases with a 

condensation efficiency of approximately 60 perecnt). 

Inlet Cooling Air Temperature [
o
F] 60 75 

Flue Gas Flow Rate [lbm/hr] 6,000,000 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 532,881 

Cooling Air Flow Rate [lbm/hr] 49,252,766 63,700,259 

Flue Gas Velocity [ft/sec] 46.0 46.2 

Cooling Air Velocity [ft/sec] 7.8 7.8 

  
Inlet Flue Gas Temperature [

o
F] 128 128 

Inlet Cooling Air Temperature [
o
F] 60 75 

  
Tube Inner Diameter [inch] 1.75 1.75 

Tube Thickness [inch] 0.2 0.2 

Fin Length 1.25. 1.25 

Fin Pitch [inch] 0.2 0.2 

Fin Thickness [inch] 0.119 0.11 

Number of Tube Rows 2 2 

Transverse Tube Spacing [inch] 4.65 4.65 

Longitudinal Tube Spacing [inch] 4.65 4.65 

Number of Tubes 29,000 29,000 

Tube Length [ft] 11.0 14.2 

Gas-side Surface Area [ft
2
] 148,238 190,136 

Air-side Surface Area [ft
2
] 7,749,020 9,899,044 

  
  

Field Erected Capital Cost $4,938,680 $6,026,921 

Annualized Capital Cost $396,292 $483,616 

Annualized Operating Cost $113,375 $135,538 

Estimated Annual Savings if Water Costs @ $1.50 per 1000 gallon $379,922 $378,408 

Net Annualized Cost [20 yrs @ 5%] $129,745 $240,746 

  
  

Sensible Heat Transfer [BTU/hr] 49,215,407 44,181,735 

Latent Heat Transfer [BTU/hr] 315,866,487 312,946,275 

Condensation Rate [lbm/hr] 301,826 300,623 

Condensation Efficiency 57% 56% 

 

 Table 5.25 lists the estimated annual savings by recovering water at $1.50 per 1000 

gallons.  If the cost of water was a different rate, this would affect the net annualized cost of the 
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ACC.  Figure 5.61 shows how the net annualized cost varied based on what water is worth.  

However, an additional cost associated with recovering water that was not assessed in this model 

was water treatment costs.  

 

Figure 5.61 - Net annual cost of the ACC for increased values of water recovery. 
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Table 5.26 - Costs associated with operating the ACC for cases when water is increasingly expensive (inlet 

cooling air temperature of 60oF). 

 Test Name 60_25c 60_40d 60_50d 60_60a 60_69a 60_75c 

Condensation  

Efficiency [%] 
23.1 37.1 47 56.6 66.3 72.8 

Condensation Rate  

[lbm/hr] 
123,022 197,726 250,598 301,826 353,090 387,808 

Inlet Water Vapor  

Flow Rate [lbm/hr] 
533,000 533,000 533,000 533,000 533,000 533,000 

Annual Savings in 

Water Recovery at 

$0.0 per 1000 

Gallons 

$0 $0 $0 $0 $0 $0 

Annual Savings in 

Water Recovery at 

$0.50 per 1000 

Gallons 

$51,618 $82,962 $105,146 $126,641 $148,150 $162,717 

Annual Savings in 

Water Recovery at 

$1.00 per 1000 

Gallons 

$103,236 $165,925 $210,293 $253,282 $296,301 $325,435 

Annual Savings in 

Water Recovery at 

$1.50 per 1000 

Gallons 

$154,854 $248,887 $315,439 $379,922 $444,451 $488,152 

Annual Savings in 

Water Recovery at 

$2.00 per 1000 

Gallons 

$206,471 $331,849 $420,586 $506,563 $592,601 $650,869 

Annual Savings in 

Water Recovery at 

$3.00 per 1000 

Gallons 

$309,707 $497,774 $630,879 $759,845 $888,902 $976,304 

Annual Savings in 

Water Recovery at 

$5.00 per 1000 

Gallons 

$516,178 $829,623 $1,051,465 $1,266,408 $1,481,503 $1,627,173 

Annual Savings in 

Water Recovery at 

$10.00 per 1000 

Gallons 

$1,032,357 $1,659,246 $2,102,929 $2,532,816 $2,963,005 $3,254,346 

Annualized Capital 

Cost over 20 years 
$146,874 $234,661 $307,361 $396,292 $492,136 $628,255 

Operating Costs of 

the Flue Gas and 

Cooling Air Fans 

$45,572 $74,301 $95,399 $129,745 $151,263 $160,120 
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Table 5.27 - Costs associated with operating the ACC for cases when water is increasingly expensive (inlet 

cooling air temperature of 75oF). 

 Test Name 75_25 75_40 75_50 75_60 75_69 75_75 

Condensation  

Efficiency [%] 
22.6 36.7 46.2 56.4 66.3 73.2 

Condensation Rate  

[lbm/hr] 
120,403 195,603 246,150 300,623 353,251 390,086 

Inlet Water Vapor  

Flow Rate [lbm/hr] 
533,000 533,000 533,000 533,000 533,000 533,000 

Annual Savings in 

Water Recovery at 

$0.0 per 1000 

Gallons 

$0 $0 $0 $0 $0 $0 

Annual Savings in 

Water Recovery at 

$0.50 per 1000 

Gallons 

$50,519 $82,072 $103,280 $126,136 $148,218 $163,673 

Annual Savings in 

Water Recovery at 

$1.00 per 1000 

Gallons 

$101,038 $164,143 $206,560 $252,272 $296,436 $327,346 

Annual Savings in 

Water Recovery at 

$1.50 per 1000 

Gallons 

$151,557 $246,215 $309,840 $378,408 $444,653 $491,019 

Annual Savings in 

Water Recovery at 

$2.00 per 1000 

Gallons 

$202,076 $328,286 $413,121 $504,544 $592,871 $654,693 

Annual Savings in 

Water Recovery at 

$3.00 per 1000 

Gallons 

$303,114 $492,429 $619,681 $756,816 $889,307 $982,039 

Annual Savings in 

Water Recovery at 

$5.00 per 1000 

Gallons 

$505,190 $820,715 $1,032,801 $1,261,360 $1,482,178 $1,636,731 

Annual Savings in 

Water Recovery at 

$10.00 per 1000 

Gallons 

$1,010,379 $1,641,431 $2,065,603 $2,522,721 $2,964,356 $3,273,463 

Annualized Capital 

Cost over 20 years 
$166,352 $276,915 $358,177 $483,616 $676,304 $901,165 

Operating Costs of 

the Flue Gas and 

Cooling Air Fan 

$53,097 $82,873 $114,525 $135,538 $172,380 $237,003 
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6 Design of a Full Scale Flue Gas Air-Heater 

This chapter discusses the application of the air-cooled condenser pre-heating boiler 

combustion air.  The efficiency of a boiler is affected by the inlet temperature of the combustion 

air, and an increase in the inlet temperature of the combustion air would positively affect the 

efficiency of the boiler and subsequently the heat rate of the power plant.   

The proposed configuration is shown in Figure 6.1 and Figure 6.2.  The flue gas flows 

first through a water-cooled condenser to pre-heat boiler feed water then enters the air heater to 

pre-heat combustion air.  In the air heater the flue gas flows inside vertical tubes and combustion 

air flows through a duct around the tubes.  Since moisture is condensing from the flue gas into a 

collection basin, flue gas will flow downward through the tubes to prevent the possibility of slug 

or churn flow.  To offset the imbalance in heat transfer coefficients between the combustion air 

and flue gas, the circular tubes will have fins on the air side.  The air heater would be placed 

downstream of any baghouse, ESP, FGD system, and water-cooled flue gas condenser, and the 

state of the flue gas would be dependent on which of these systems are installed.   

Section 6.1 discusses the calculation procedure to determine the size and cost of the air 

heater and Section 6.2 discusses two different case studies, each with a different inlet flue gas 

temperature.  Detailed results from the optimizations in Section 6.2 can be found in Appendix 

B.6.  Section 6.3 discusses the reduction in fuel consumption due to incorporating the air heater 

into a power plant. 
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Figure 6.1 - Side view of flue gas condensing system when the combustion air is pre-heated. 
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Figure 6.2 - Isometric view of flue gas condensing system when combustion air is pre-heated. 
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6.1 Calculation Procedure to Determine the Size and Cost of the Air Heater 

The size of the air heater was determined by the tube geometry and combustion air velocity.  

Equations 6.1 and 6.2 show how the cross sectional area and duct width were calculated.    

         
     

        
 (6.1) 

             
       

           
 (6.2) 

            
       

           
 (6.3) 

 

where         is the cross sectional area of the duct carrying the combustion air. 

The number of rows in the air heater was determined using the heat and mass transfer 

simulation described in Chapter 2, employing the condition that the number of tube rows in the 

direction of the air flow was the necessary amount to increase the combustion air temperature to 

the desired value.  As a result, all of the flue gas is not processed.  In some cases, only 25 or 40 

percent of the flue gas would be necessary.  The benefit of this is a smaller and less expensive 

system.  The total flue gas flow rate of the ACC was calculated after determining the number of 

tubes and flow rate of flue gas through each tube. 

The configuration of the air heater was inline finned tubes as opposed to the ACC 

described in Chapter 5, which had staggered fin tubes.  The air heater had more rows of tubes 

than the design proposed in Chapter 5, and according to experiments performed by Zhukauskus, 

the ratio of heat transfer to pressure drop for inline configurations is higher than staggered 

configurations for bundles that have more than 10 rows of tubes [47].   

The heat transfer correlations used for the combustion air side were Equations 6.4 and 

6.5, dependent on air-side Reynolds number. 
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where         is the fully developed Nusselt number, film refers to evaluating the properties at 

the film temperature, which is the average of the air and tube surface temperatures, mean refers to 

evaluating the property at the average of the inlet and exit air temperatures, and „s’ corresponds to 

the property being evaluated at the tube surface temperature,    and    refer to the transverse and 

longitudinal tube spacing respectively.  The correction for bundles with less than 16 rows was 

given by Equation 6.6 using the correction factors in Table 6.1, where NL is the number of rows. 

              (6.6) 

 

Table 6.1 – Correction factors C2 for Nusselt Numbers when there are less than 17 rows of tubes. 

    

NL 1 2 3 4 5 7 10 13 16 

Aligned Tubes 0.7 0.8 0.86 0.9 0.92 0.95 0.97 0.98 0.99 

Staggered Tubes 0.64 0.76 0.84 0.89 0.92 0.95 0.97 0.98 0.99 

 

The heat transfer coefficient for the air-side is Equation 6.7. 

    
     

 
 (6.7) 

 

The fins were accounted for by determining the fin efficiency (Equation 6.8) [39]. 
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 (6.8) 

 

where I0 and K0 are modified, zero-order Bessel functions of the first and second kind, and I1 and 

K1 are modified, first-order Bessel functions of the first and second kind,   refers to the inner 

radius of the fin and     refers to the summation of the outer radius of the fin and half the fin 

thickness.  The overall surface efficiency    was calculated using Equation 6.9 to account for the 

number of fins on the tube and the spacing between them.   

      
   

  

       (6.9) 

 

where N is the total number of fins,    is the surface area of one fin,    is the total exterior 

surface area of the tube including the fins.  The overall heat transfer is Equation 6.10. 

 

                 (6.10) 

 

where At is the combined surface area of the tube and fins, and this is how the air-side heat 

transfer is calculated.   

 The method to calculate the air-side pressure loss for the air heater was estimated using 

Equation 6.11 because pressure-drop correlations for inline finned tubes were not available in the 

literature or in heat transfer handbooks.  It was assumed the flow structure differences between 

bare tube bundles and finned tube bundles were equally proportional for the cases with fins and 

without fins. (See Equation 6.11) 

                               
               

                
  (6.11) 
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The three terms              ,                , and                  correspond to the pressure 

loss for heat exchanger tube bundles of inline bare tubes, staggered finned tubes, and staggered 

bare tubes, respectively. 

The terms               and                  were calculated using Equation 6.12, which 

was developed by Zhukauskus [46-47]. 

        
     

 

 
   (6.12) 

 

where    is the number of tube rows, f and χ were the friction factor and tube correction factor, 

respectively, and these values were plotted in [46-47].   

The term                 in Equation 6.11 was calculated using Equation 6.13.  It was 

experimentally determined by Stasiulevičius and Skrinska [34]. 

 

 
  

     
  

             
   

       

 
  
   

    

 
  
   

   

   
  
   

   
  (6.12) 

 

The correlations and procedure to calculate the flue gas heat transfer and pressure loss 

were the same as what was described in Section 5.1, and the cost of the air heater was estimated 

using the method described in Section 5.1.  However, unlike the calculation procedure in Section 

5.1, the length of the tubes is fixed and does not change during the optimization.  Recall that in 

Section 5.1 the tube length was decided by the primary objective of those simulations, which was 

to condense 50 percent of the water vapor.  The primary objective for the air heater optimization 

is to increase the combustion air temperature the desired amount.  Therefore the tube lengths are 

fixed and the number of rows of tubes in the direction of the air flow is the variable.  The 

simulation of the air heater performs a check after each row to determine if the combustion air is 

the desired value. 
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6.2 Optimal Design of a Combustion Air Heater (ACC) for the case with a wet flue gas 

desulphurization system 

The case studies described in this section had the process conditions listed in Table 6.2, 

and represent a typical 600 MW power plant that has a wet flue gas desulphurization system 

(FGD).  Air first passed through the FD fan before entering the ACC.  The inlet cooling air 

temperature to the ACC, which was combustion air, was 80
o
F and the optimization was 

performed to find an ACC design that increased the combustion air temperature to about 3
o
F less 

than the temperature of the flue gas entering the air-cooled condenser (ACC).  Since the design 

was a single-pass, cross-flow configuration with cooling air flowing around the tubes (see Figure 

6.2), there were only as many rows as necessary to increase the combustion air temperature to the 

desired value (tube rows was defined in Figure 5.49).   

 

Table 6.2 – Process conditions and fixed design choices for the optimization of the flue gas condenser that 

preheats combustion air. 

 

Case I 

(with water-cooled 

condenser) 

Case II 

(w/o water-cooled 

condenser) 

Combustion Air Flow Rate [lbm/hr] 5,300,000 5,300,000 

Inlet Flue Gas Temperature to ACC [
o
F] 128 135 

Inlet Cooling Air Temperature to ACC [
o
F]  80 80 

Inlet Flue Gas Moisture Concentration [ % 

wet basis ] 
14.4 17.4 

Tube Length [ft] 30 30 

Target Exit Cooling Air Temperature [
o
F] 125 132 

 

The variables that were optimized in case 1 and case 2 are listed in Table 6.3.  The inlet 

flue gas temperature for the two cases was 128
o
F and 135

o
F.  It was expected that the actual 

temperature of the flue gas exiting a wet FGD would be 135
o
F.  Case 1 represents the case shown 

in Figure 6.1 and Figure 6.2.  Case 2 is without the water-cooled condenser and the flue gas 
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would directly enter the ACC after exiting the wet FGD.  In both cases, the desired temperature 

of the air exiting the ACC was 3
o
F less than the temperature of the flue gas entering the ACC.   

The results from the optimizations of cases 1 and 2 are listed in Table 6.3.  More details 

of the designs and optimizations are listed in Table 6.5 and Table 6.6 and in Appendix B.6.  The 

flue gas velocity of roughly 50 feet per second was expected.  50 ft/sec was the flue gas velocity 

seen in the optimizations presented in Chapter 5.  This value of 50 feet per second was a balance 

between heat transfer and pressure drop.  The cooling air velocity was 8.3 and 12.9 ft/sec 

respectively for the two cases.  These velocities also correspond to values determined in Chapter 

5.   

Where the two designs cases 1 and 2 differ with those discussed Chapter 5 was the tube 

diameter.  In Chapter 5 the resultant tube geometry determined by the optimization was the 

smallest possible tube diameter because the small diameter increased rates of condensation and 

condensation was the primary objective.  For the air heater the primary objective was heating the 

air and the net cost of the ACC that heated the air most did not always correspond to the smallest 

tube diameter.  This is seen in Table 6.3.  The remaining optimal variables, fin pitch, fin length, 

and fin thickness were as expected and matched with the designs discussed in Chapter 5. 

Also shown in Table 6.3 is the amount of flue gas that was processed.  In both cases, all 

of the flue gas was not utilized.  For case 1 the flue gas flow rate was 1,545,000 lbm/hr and for 

case 2 the flue gas flow rate was 1,824,000 lbm/hr.  In both cases, the cooling air flow rate was 

5,300,000 lbm/hr.  The reason that only a fraction of the flue gas was processed is because the 

heat capacity of the flue gas relatively larger due to the flue gas being saturated with moisture.   
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Table 6.3 – Optimized design values for the cases when the ACC is used to pre heat combustion air. 

Variable Case I Case II 

Flue Gas Velocity [ft/sec] 49.5 52.7 

Cooling Air Velocity [ft/sec] 8.3 12.9 

Fin Pitch [inches] 0.20 0.20 

Fin Length [inches] 1.25 1.25 

Inner Tube Diameter [inches] 2.33 3.54 

Fin Thickness [inches] 0.113 0.125 

Flue Gas Flow Rate [lbm/hr] 1,545,000 1,824,000 

Surface Area [ft
2
] 80,955 58,023 

Net Annual Cost $ 267,933 $ 201,000 

 

 

Further details of the optimal designs for case 1 and case 2 are listed in Table 6.5 and 

Table 6.6.  In the tables, it is seen that a fraction of the flue gas was processed in the ACC.  

Approximately 30 percent of the flue gas was necessary to pre-heat the combustion air for case 1 

and 25 percent for case 2.  By only processing a fraction of the total flue gas, the heat exchanger 

could be smaller which would reduce capital investment.  The surface area for the two heat 

exchangers was 81,000 ft
2
 for case 1 and 58,000 for case 2, compared to approximately 200,000 

ft
2
 for the designs presented in Chapter 5.  The reason for case 2 having less surface area than 

case 1 is that case 2 had larger amounts of latent energy in the flue gas (the flue gas is saturated 

with water vapor at 135
o
F compared to 128

o
F), and thus it was a more effective heat exchanger.  

In addition, because case 2 had less surface area, its net cost was less than case 1. 
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The following section, Section 6.3, discusses the effect on fuel consumption from 

increasing the temperature of the entering combustion air.  Recall that the primary objective of 

the ACC in this section was to increase the temperature of the combustion air.  The secondary 

objective was to recover water.  Table 6.4 lists the estimated savings due to decreasing fuel 

consumption (calculations outlined in Section 6.3) and recovering water.  The cost of coal was 

estimated at $50 dollars per ton. 

 

Table 6.4 - Cost savings associated with using the ACC to pre-heat combustion air. 

 Case I Case II 

Annual Cost Savings due to decreased Fuel 

Consumption 
$234,000 $270,000 

Annual Cost Savings due to Recovering 

Water at $1.50 per 1000 gallons 
$ 62,300 $ 73,750 
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Table 6.5 - Optimal design of the flue gas condenser used to pre-heat combustion air (for the case with an inlet 

flue gas temperature of 128oF). 

optimalAPH_125d 

Flue Gas Flow Rate [ lbm / hr ] 1,545,807 

Vapor Flow Rate [ lbm / hr ] 139,751 

Cooling Air Flow Rate [ lbm / hr ] 5,300,000 

Flue Gas Velocity [ft/sec] 47.2 

Cooling Air Velocity [ft/sec] 8.7 

  

Inlet Flue Gas Temperature [ oF ] 128 

Exit Flue Gas Temperature [oF] 113 

Inlet Cooling Air Temperature [ oF ] 80 

Exit Cooling Air Temperature [oF[ 125 

  Inlet Moisture Concentration [% wet basis] 14.4 

Exit Moisture Concentration [% wet basis] 9.8 

  

Tube Inner Diameter [inches] 2.33 

Tube Thickness [inches] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.113 

Number of Tube Rows in the direction of the Air Flow 5 

Transverse Tube Spacing [inches] 5.23 

Longitudinal Tube Spacing [inches] 5.23 

Number of Tubes 4425 

Tube Length [ft] 30 

Gas-Side Surface Area [ft2] 80,955 

Air-Side Surface Area [ft2] 1,873,582 

  Air-Side Fan Power [kW]  10.8 

Additional Gas-Side Fan Power [kW] 89 

  

Field Erected Capital Cost $3,500,531 

Annualized Capital Cost $280,892 

Annualized Operating Cost $49,372 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $62,331 

Estimated Annual Fuel Savings @ $50 per ton $234,000 

Net Annualized Cost [20 yrs @ 5%] $33,933 

  

Sensible Heat Transfer [BTU/hr] 6,177,588 

Latent Heat Transfer [BTU/hr] 51,127,139 

Condensation Rate [ lbm / hr ] 49,518 

Condensation Efficiency of Processed Glue Gas 35% 

Condensation Efficiency of Total Flue Gas 9.6% 
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Table 6.6 – Optimal design of the flue gas condenser used to pre-heat combustion air (for the case with an 

inlet flue gas temperature of 135oF). 

optimalAPH_135a 

Flue Gas Flow Rate [lbm/hr] 1,823,864 

Vapor Flow Rate [lbm/hr] 201,994 

Cooling Air Flow Rate [lbm/hr] 5,300,000 

Flue Gas Velocity [ft/sec] 52.7 

Cooling Air Velocity [ft/sec] 12.9 

  

Inlet Flue Gas Temperature [
o
F] 135 

Exit Flue Gas Temperature [
o
F] 123 

Inlet Cooling Air Temperature [F] 80 

Exit Cooling Air Temperature [
o
F] 132 

  Inlet Moisture Concentration [% wet basis] 17.4 

Exit Moisture Concentration [% wet basis] 13.0 

  
Tube Inner Diameter [inch] 3.54 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.125 

Number of Tube Rows in the direction of the Air Flow 3 

Transverse Tube Spacing [inches] 6.43 

Longitudinal Tube Spacing [inches] 6.43 

Number of Tubes 2088 

Tube Length [ft] 30 

Gas-side Surface Area [ft
2
] 58,023 

Air-side Surface Area [ft
2
] 1,149,016 

  Air-Side Fan Power [kW] 16.3 

Gas-Side Fan Power [kW] 90.4 

  

Field Erected Capital Cost $2,681,759 

Annualized Capital Cost $215,191 

Annualized Operating Cost  $60,003 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $73,747 

Estimated Annual Savings in Fuel @ $50 per ton $270,000 

Net Annualized Cost [20 yrs @ 5%]  -$32,553 

  
Sensible Heat Transfer [BTU/hr] 5,892,501 

Latent Heat Transfer [BTU/hr] 60,299,506 

Condensation Rate [lbm/hr] 58,587 

Condensation Efficiency of Processed Flue Gas 29% 

Condensation Efficiency of Total Flue Gas 9.3% 
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6.3 Effect on Fuel Consumption due to the ACC Pre-Heating Combustion Air 

In contrast to the designs presented in Chapter 5, the design presented in this chapter 

utilized the recovered energy to heat combustion air.  This would improve the boiler efficiency 

because less fuel energy will be spent to heat the combustion air.  Currently, large high 

temperature Ljungstrom type air pre-heaters exist in power plants to increase combustion air 

temperature to roughly 500 to 600
o
F.  In the present study, an additional air pre-heater is 

proposed to operate as a low-temperature air-heater, pre-heating the combustion before it enters 

the main, Ljungstrom type air pre-heater.   

This section begins by describing the main, high-temperature air pre-heater and typical 

inlet and outlet temperatures.  Then the effect the air-heater of the present study is discussed, and 

finally results are presented to show how fuel consumption is affected. 

Temperatures typical of a main air pre-heater are given in Figure 6.3.  These temperatures 

were obtained from previous tests at power plants involving main APHs.  The 80
o
F inlet 

temperature can vary depending on the situation.  The air-heater of the present study would affect 

the temperature of the combustion air entering the main air pre-heater (labeled 80
o
F in Figure 

6.3), and Figure 6.4 shows the proposed design of a configuration with both air heaters.   

 

Figure 6.3 – Example of temperatures of a high temperature air pre-heater. 
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Figure 6.4 - Conceptual integration of the air heater developed in the current study. 
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The effect the air-heater developed in the present study had on fuel consumption was 

determined using the control volume defined in Figure 6.5.  Calculations were carried out for 

cases with and without the presence of the air-heater.  Within Figure 6.5 the temperature labeled 

“Air To Main APH” is the temperature exiting the ACC of the present study.  This temperature 

and the temperature of the flue gas exiting the boiler, which was taken as 660
o
F, was used to 

determine the temperature labeled “Gas Exiting Main APH” in Figure 6.5.  Since the water and 

steam flow rates do not change, the coal flow rate was then readily calculated. 

 

-

 

Figure 6.5 - Control volume of the boiler and main air pre-heater which was used to calculate the change in fuel 

consumption. 

 

With the air-cooled condenser (ACC) incorporated into system as an air heater, the 

temperature of the combustion air entering the main air pre-heater  is the temperature of the air 

exiting the air-heater.  The flue gas temperature exiting the main air pre-heater was calculated 
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with an ε-NTU analysis of the main air pre-heater.  The effectiveness ε of the main APH shown 

in Figure 6.3 was calculated to be 0.74.  The temperature values in the figure were taken from 

data obtained from a coal fired power plant. 

 The air cooled condenser was capable of increasing the combustion air from 80 to 125
o
F 

in Case I and from 80 to 132
o
F in Case II.  This was shown in Section 6.2.  Increasing the inlet 

temperature of the combustion air alters the exiting temperatures from the main APH and these 

changes are tabulated in Table 6.7.  The results for Case I were the air entering the boiler 

increased by 12 degrees and the flue gas temperature exiting the main air pre-heater increased 29 

degrees (see Figure 6.6).  For Case II, the air entering the boiler increased by 14 degrees and the 

flue gas temperature exiting the main air pre-heater increased by 33 degrees. 

 

Table 6.7 - Inlet and exit temperatures of the main APH when the ACC is used to pre-heat combustion air. 

 

Without ACC as 

an 

Air Pre-Heater 

With ACC as  

Air-Heater  

(Case I) 

(Figure 6.6) 

With ACC as  

Air-Heater  

(Case II) 

Flue Gas Flow Rate [lbm/hr] 6,000,000 6,000,000 6,000,000 

Cooling Air Flow Rate [lbm/hr] 5,540,000 5,540,000 5,540,000 

Gas Inlet [
o
F] 660 660 660 

Gas Exit [
o
F] 290 319 323 

Air Inlet [
o
F] 80 125 132 

Air Exit [
o
F] 506 518 520 

Heat Exchanger Effectiveness* 0.74 0.74 0.74 

*                 
 

    
 

                        

                      
 [39] 
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Figure 6.6 - Inlet and exit temperatures of main air pre-heater when the ACC is used as an air-heater developed 

in the present study is incorporated into the power plant (Case I). 

 

 The net energy added to the control volume shown in Figure 6.5 was calculated using the 

values in Table 6.7.  There was a “loss” and a “credit” associated with incorporating the ACC as 

an air heater, and on a unit hour basis, the loss and credit were calculated using Equations 6.13 

through 6.15. 

Credit                                     (6.13) 

Loss                                       (6.14) 

Net                       (6.15) 

 

The values for the specific heats in Equations 6.13 and 6.14 were obtained from the simulations 

and based on the composition of the flue gas and for air the specific heat was taken from a 

reference book.  The effect preheating combustion air had on fuel consumption was found using 

the higher heating value of coal, which can typically be 12,000 BTU/lbm (see Equation 6.16). 
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 (6.16) 

 

The fuel flow rate was approximately 460,000 lbm/hr (calculated in Appendix C), and Table 6.8 

shows the reductions in fuel for the two cases.  Note, these annual reductions reflect a power 

plant in operation for 7000 hours per year and other assumptions listed in Appendix C.   

 

Table 6.8 - Reduction in fuel consumption due to incorporating the ACC as a combustion air pre-heater. 

Case I 

(ΔT Combustion Air: 

45
o
F) 

4,680 tons/yr 0.29 % $234,000 

Case II 

(ΔT Combustion Air: 

52
o
F) 

5,400 tons/yr 0.34 % $270,000 

 

In case 1, the reduction in fuel flow consumption was approximately 4,680 tons per year, or 

0.29%.  At $50 per ton, the fuel savings were $234,000.  If the temperature of the combustion air 

entering the main APH were further increased, as in case 2, the fuel saved increased to 0.34% or 

$270,000 per year.  There was a linear relationship between the temperature exiting the ACC and 

decrease in fuel consumption.  Figure 6.7 and Figure 6.8 show this relationship.  The calculations 

in the figures were an extension of the calculations in Table 6.8.   
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Figure 6.7 - Fuel savings as a function of increased combustion air temperature.  (Base combustion air inlet 

temperature was 80oF.) 

 

 

Figure 6.8 - Fuel savings as a function of increased combustion air temperature.  (Base combustion air inlet 

temperature was 80oF.) 
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7 Concluding Remarks: Cost-Benefit Analysis 

The applications of the ACC developed in the present study are categorized into four cases.  

Case 1 involves the ACC processing flue gas using ambient air as the heat sink, and Case 2 

involves the ACC processing flue gas downstream of a wet FGD using ambient air as the heat 

sink.  Case 3 involves using the ACC as a combustion air heater and processing flue gas 

downstream of a wet FGD and boiler feedwater heater which processes flue gas.  Case 4 involves 

using the ACC as a combustion air heater and processing flue gas downstream of a wet FGD, no 

boiler feedwater heater.   

Cases 1 and 2 were discussed in Chapter 5 and Cases 3 and 4 were discussed in Chapter 6.  

The cases differ in their primary objective, which for Cases 1 and 2 is to recover water and for 

Cases 3 and 4 is to increase the combustion air temperature. 

Case 1: Case 1 processes a flue gas just downstream of a baghouse or ESP.  The idea behind 

Case 1 is to recover water from flue gas then treat the water so it can be used as makeup water for 

a cooling tower.  The water condensed from the flue gas is acidic and should be treated.  The 

costs associated with the treatment process have not been included in the analysis.  This 

application of the ACC is beneficial to a plant in a dry region where it is difficult to procure 

necessary amounts of water to meet the plant‟s needs.   

Case 2: The objectives are the same as Case 1 but for a power plant that a wet FGD system.  

The ACC would be installed downstream of the FGD and process a low temperature, high 

moisture concentration flue gas.  The objective is to recover water that can be used as cooling 

tower makeup water.  Compared to Case 1, the flue gas temperature is 97 degrees cooler and the 

system is smaller because less sensible heat is recovered.  Case 2 condenses more water than 

Case 1 and it is less expensive to build and operate. 

Case 3: In this case, shown in Figure 6.1 and Figure 6.2, the ACC is used to heat 

combustion air, and this limits the flow rate of cooling air.  In this design the primary objective is 

to increase the temperature of the combustion air to approximately 3 degrees less than the 



218 

 

incoming flue gas.  For a power plant with a wet FGD system the flue gas can exit the wet FGD 

at 135
o
F and then be cooled to 128

o
F using boiler feedwater.  After the flue gas exits the boiler 

feedwater heater it would enter the ACC and heat the combustion air from 80
o
F to 125

o
F.  In Case 

3, only 25 percent of the flue gas is necessary to preheat the air, allowing for a smaller heat 

exchanger. 

Case 4: In contrast to Case 3, there is no boiler feedwater heater after the wet FGD.  In this 

case, the flue gas enters the ACC at 135
o
F and saturated.  The combustion air temperature 

increases from 80 to 132
o
F and this results in a fuel savings that are estimated at $234,000 per 

year.  Combined with the estimated savings due to recovering water and neglecting costs 

associated with treating the condensed water, there is a net benefit to installing the ACC. 

Table 7.1 summarizes the four cases‟ cost-to-benefit.  Values used for key parameters 

include 20 year equipment life, 5 percent annual interest rate, electrical power at $50/MWhr, 

water at $1.50/1000 gallons, and fuel at $50/ton.   

These results suggest that in some cases incorporating the ACC into a power plant can 

provide a net benefit, including financial savings and reduced consumption of water and fuel.  In 

addition, stack emissions including mercury, and sulfuric, hydrochloric, and nitric acid emissions 

would be reduced and there may be a cost/credit associated with the emission reductions.   

In conclusion, using an air-cooled condenser to condense boiler flue gas will address some 

increasing concerns about generating power from coal.  The amount of water that a power plant 

consumes to meet daily cooling needs would be reduced, in some cases the amount of fuel 

necessary to maintain gross power generation can be reduced, and stack emissions can be 

reduced.  The study presented in this dissertation showed that designs can be optimized 

depending on the primary objective of the ACC and in doing so the costs of building and 

operating the ACC are manageable and in some cases the power plant can realize a net financial 

benefit. 
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Table 7.1 - Summary of ACC designs. 

Parameter Case 1 Case 2 Case 3 Case 4 

Tfg,in [
o
F] 225 128 128 135 

Tfg,out [
o
F] 123.8 105.4 113 123 

Tair, in [
o
F] 75.0 75.0 80.0 80 

Tair, out [
o
F] 96.5 101 125 132 

Inlet H2O Concentration [%] 11 14.4 14.4 17.4 

Flue Gas Flow Rate [Million lbm/hr] 6.0 6.0 1.5 1.8 

Cooling Air Flow Rate [Million lbm/hr] 67.2 46.5 5.3 5.3 

Condensation Rate [Million lbm/hr] 0.185 0.246 0.049 0.059 

Condensation Efficiency of Processed Flue Gas [%] 46 46 35 29 

Condensation Efficiency of Total Flue Gas Flow [%] 46 46 9.3 9.6 

Heat Transfer Rate [Million BTU/hr] 343 290 57 66 

Power Consumption of Gas and Air Fans[kW] 370 280 99.8 106 

Gas-Side Surface Area [ft
2
] 197,000 130,000 81,000 58,000 

Installed Cost [$ Million] 6.1 4.4 3.5 2.6 

Annualized Installed Cost [$ Million / year] 0.496 0.358 0.281 0.215 

Annual Operating Cost [$ Million / year] 0.125 0.114 0.049 0.060 

Estimated Savings in Water Recovery [$ Million /year] 0.233 0.309 0.062 0.073 

Estimated Fuel Savings [$ Million / year] - - 0.234 0.270 

Estimated Net Annual Cost [$ Million / year] 0.388 0.162 0.033 -0.032 

 

 

  



220 

 

8 References Cited 

[1] –“Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements: 2009 Update,” 

DOE/NETL Report 400/2009/1339, September 30, 2009 

[2] - Cho, S.M., Dietz, D., Kandis, M., Carbonara, J., Heaphy, J., Kressner, A., Carrigan, J., Heat Rate Improvement 

with Condensing Heat Exchangers, International Exhibition & Conference for the Power Generation Industries, 

Fossil Plant Retrofit & Repowering and Fossil Plant Performance Improvemen, 11-12 (1992) 448 – 463 

[3] - Johnson, D.W., DiVitto, J.G., Rakocy, M.E., Condensing Heat Exchangers for Maximum Boiler Efficiency, 

ASME Power Division,Heat Exchanger Technologies for the Global Environment, 25 (1994)  127-130 

[4] - Johnson, D.W., Rowley, D.R., Schulze, K.H., Carrigan, J.F., Integrated Flue Gas Treatment and Heat Recovery 

Using a Condensing Heat Exchanger. Proceedings of the American Power Conference, 56:2 (1994) 965-970 

[5] - Smith, Peter V., Bailey, Ralph T., Johnson, Dennis W., Testing Condensing Heat Exchangers for Energy 

Efficiency and Pollution Control. Proceedings of the Air & Waste Management Association’s Annual Meeting 

& Exhibition, (1996) 

[6] - Butcher, Thomas A; Litzke, Wai Lin; Schulze, Karl; Bailey Ralph; Condensing Economizers for Efficiency 

Improvement and Emissions Control in Industrial Boilers. Conference: Combustion Canada 1996, DOE 

Contract Number: AC02-76CH00016, Report Numbers: BNL--62939; CONF-9606183 --1 

[7] - Kudlac, G.A., Multiple Pollutant Removal Using The Condensing Heat Exchanger – Task 3 Topical Report: Long 

Term Wear Tests, DOE/PC/95255--T6-Add.2 

[8] – Johnson, Dennis W., Schulze, Karl H., “Two Stage Downflow Flue Gas Treatment Condensing Heat Exchanger.” 

Patent 5,510,087. 23 April 1996. 

[9] - Hossfeld, Lawrence M., Hawkins, David J., A Cost-Effective Technology for Flue Gas Condensation Heat 

Recovery. American Society of Mechanical Engineers (paper), Jt. ASME/IEEE Power Generation Conference., 

Milwaukee, WI, USA, 1985 

[10] - Dinulescu, Mircea, Combustion Air Preheating For Refinery Heaters Using Plate-Type Heat Exchangers. Energy 

Progress, 8:2 (1988) 103-108 

[11] - Svedberg, Gunnar, Advanced heat recovery from flue gases, Fernwärme international – FWI, Jg. 15 (1986) 128-

132 

[12] - Thorn, William F., Waste heat Recovery From Stacks Using Direct-Contact Condensing heat Exchange. Official 

proceedings, annual conference of the International District Heating and Cooling Association, 76 (1985) 431-

466 



221 

 

[13] – Jeong, Kwangkook, Condensation of Water Vapor and Sulfuric Acid in Boiler Flue Gas, Ph.D. Dissertation, 

Lehigh 2009 

[14] – Jeong, K., Kessen, M., Bilirgen, H., Levy, E., Analytical Modeling of water condensation in condensing heat 

exchanger,  Int. J. Heat and Mass Transfer, accepted but not yet published 

[15] – Kroger, Detlev G., Air-Cooled Heat Exchangers and Cooling Towers, PennWell, 2004 

[16] – Colburn, Allan P., Relation between Mass Transfer (Absorption) and Fluid Friction, Industrial and Engineering 

Chemistry, 22:9 (1930) 967-970 

[17] – Chilton, T.H., Colburn, A.P., du Pont, E.I., Mass Transfer (Absorption) Coefficients, Industrial and Engineering 

Chemistry, 26:11 (1934) 1183-1187 

[18] – Colburn, A.P., du Pont, E.I., Design of Cooler condensers for Mixtures of Vapors with Noncondensing Gases, 

26:11 (1934) 1178-1185 

[19] – Stewart, Paul B., Clayton, James L., Loya, Benigno, Hurd, Stanley E., Condensing Heat Transfer in Steam –Air 

Mixtures in Turbulent Flow, I&EC Process Design and Development, 3:1 (1964) 48-54 

[20] – Levy, E., Bilirgen, H., Jeong, K., Kessen, M., Samuelson, C., Whitcombe, C., Recovery of Water From Boiler 

Flue Gas: Final Technical Report DOE Award Number DE-FC26-06NT42727 (2008) 

[21] – Paikert, P., 3.8: Air-Cooled Heat Exchangers. In Heat Exchanger Design Handbook, Hemisphere Publishing 

Company, 1983 

[22] – Mueller, A.C. 3.4: Condensers. In Heat Exchanger Design Handbook, Hemisphere Publishing Company, 1983 

[23] – Bejan, Adrian, Kraus, Allan D., (Eds.), Heat Transfer Handbook, New Jersey, John Wiley & Sons, Inc., 2003. 

[24] – Rohsenow, Warren M., Hartnett, James P., Cho, Young I., (Eds.)., Handbook of Heat Transfer, New York, 

McGraw-Hill, 1998. 

[25] – Webb, Ralph L., Wanniarachchi, A.S., The Effect of Noncondensible Gases in Water Chiller Condensers – 

Literature Survey and Theoretical Predictions, ASHRAE Trans, 1980. 

[26] – Osakabe, Masahiro, Yagi, Kiyoyuki, Itoh, Tsugue, Ohmasa, Kunimitsu, Condensation Heat Transfer on Tubes in 

Actual Flue Gas, Heat Transfer – Asian Research, 32:2 (2003) 153-166. 

[27] – Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. 

Eng., 16 (1976) 359-368. 

[28] – Al-Arabi, M., Turbulent Heat Transfer in the Entrance Region of a Tube, Heat Transfer Engineering, 3:3-4 

(1981) 76-83. 

[29] – Munson, B.R., Young, D.A., Okiishi, T.H., Fundamentals of Fluid Mechanics, John Wiley & Sons, 2002. 



222 

 

[30] – Mirkovic, Z., Heat Transfer and Flow Resistance Correlation for helically Finned and Staggered Tube Banks in 

Crossflow, in heat Exchanger: Design and Theory Source Book, eds. N.H.Afgan and E.U. Schlunder, McGraw 

Hill,1974, 559-584. 

[31] – Ganguli, A., Tung, S.S., Taborek, J., Parametric Study of Air-cooled Heat Exchanger Finned Tube Geometry, 

AIChE Symposium Series, 81:245 (1985) 122-128. 

[32] – Gianolio, E., Cuti, F., Heat Transfer Coefficienct and Pressure Drops for Air Coolers with Different Numbers of 

Rows Under Induced and Forced Draft, Heat Transfer Engineering, 3:1 (1981) 38-47. 

[33] – Briggs, D.E., Young, E.H., Convection Heat Transfer and Pressure Drop of Air Flowing Across Triangular Pitch 

Banks of Finned Tubes, Chemical Engineering Progress Symposium Series, 59:41 (1963) 1-10. 

[34] – Stasiulevicius, J., Skrinska, A., Heat Transfer of Finned Tube Bundles in Crossflow, Eds. A. Zhukauskas and G. 

Hewitt, Washington, Hemisphere Publishing Corporation, 1988. 

[35] – Robinson, K.K., Briggs, D.E., Pressure Drop of Air Flowing across Triangular Pitch Banks of Finned Tubes, 

Chemicacl Engineering Progress Symposium Series, 62:64 (1966) 177-182. 

[36] – Carey, V.P., Liquid-Vapor Phase-Change Phenomena, Hemisphere Publishing Corporation, 1992. 

[37] – Lockhart, R.W., Martinelli, R.C., Proposed correlation of data for isothermal two-phase, two-component flow in 

pipes, Chemical Engineering Progress, 45:1 (1949) 39-48. 

[38] – Kolev, N,. Multiphase Flow Dynamics 2: Mechanical and Thermal Interactions, Springer, 2002. 

[39] – Incropera, F.P., DeWitt, D.P., Introduction to Heat Transfer 4th ed., John Wiley and Sons, 2002. 

[40] – Nelder, J.A., Mead, R., A Simplex Method for Function Minimization, Computer Journal, 7 (1965) 308-313. 

[41] – Lagarias, J., Reeds, J. A., Wright, M. H., Wright P.E., Convergence Properties of the Nelder-Mead Simplex 

Method in Low Dimensions, SIAM Journal of Optimization, 9:1 (1998) 112-147. 

[42] – Walters, F.H., Parker, L.R. Jr., Morgan, S.L., Deming, S.N., Sequential Simplex Optimization, CRC Press, 1991. 

[43] – Idelchik, I.E., Handbook of Hydraulic Resistance 3rd ed., Jaico Publishing House, 2003. 

[44] - Wurtz, W., Peltier, R., Air-cooled condensers eliminate plant water use, Power, September 15, 2008. 

[45] - Colburn, A.P., Hougen, O.A., Studies in Heat Transmission, Industrial and Engineering Chemistry, 22:5 (1930) 

522-524. 

[46] - Zhukauskas, A., Ulinskas, R., Heat Transfer in Tube Banks in Crossflow, Washington, Hemisphere Publishing 

Corporation, 1988. 

[47] - Zhukauskas, A., Heat Transfer from Tubes in Crossflow, Advances in Heat Transfer, 8 (1972) 93-160. 

[48] - Bird, R B., Stewart, W. E., Lightfoot, E.N., Transport Phenomena, J. Wiley, 1962. 



223 

 

[49] - ASME PTC 4-2008, Fired Steam Generators Performance Test Codes, The American Society of Mechanical 

Engineers, New York, 2009. 

[50] – Wildi-Tremblay, P., Gosselin, L., “Minimizing shell-and-tube heat exchanger cost with genetic algorithms and 

considering maintenance”, International Journal of Energy Research, 31 (2007) 867 – 885. 

[51] – Allen, B., Gosselin, L., “Optimal geometry and flow arrangement for minimizing the cost of shell-and-tube 

condensers”, International Journal of Energy Research, 32 (2008) 958 – 969. 

[52] – Xie, G.N., Sunden, B., Wang, Q.W., “Optimization of compact heat exchangers by a genetic algorithm”, Applied 

Thermal Engineering, 28 (2008) 895 – 906. 

[53] – Doodman, A.R., Fesanghary, M., Hosseini, R., “A robust stochastic approach for design optimization of air 

cooled heat exchangers”, Applied Energy, 86 (2009) 1240 – 1245. 

[54] – Caputo, A.C., Pelagagge, P.M., Salini, P., “Heat exchanger design based on economic optimization”, Applied 

Thermal Engineering, 28 (2008) 1151 – 1159. 

[55] – Selbas, R., Kizilkan, O., Reppich, M., “A new design approach for shell-and-tube heat exchangers using genetic 

algorithms from economic point of view”, Chemical Engineering and Processing, 45 (2006) 268 – 275. 

[56] – Ponce-Ortega, J.M., Serna-Gonzalez, M., Jimenez-Gutierrez, A., “Use of genetic algorithms for the optimal 

design of shell-and-tube heat exchangers”, Applied Thermal Engineering, 29 (2009) 203 – 209. 

[57] – Patel, V.K., Rao, R.V., “Design optimization of shell-and-tube heat exchanger using particle swarm optimization 

technique”, Applied Thermal Engineering, 30 (2010) 1417 – 1425. 

[58] – Ozcelik, Y., “Exergetic optimization of shell-and-tube heat exchangers using a genetic based algorithm”, 

Applied Thermal Engineering, 27 (2007) 1849 – 1856. 

 [59] - Wilke, C.R., A Viscosity Equation for Gas Mixtures, The Journal of Chemical Physics, 18:4 (1950) 517-519. 

[60] - Wilke, C.R., Diffusional Properties of Multicomponent Gases, Chemical Engineering Progress, 46:2 (1950) 95-

104. 

 [61] – Hewitt, G.F., Hall-Taylor, N.S., Annular Two-Phase Flow, Pergamon Press, 1970. 

[62] – Smith, R., Chemical Process, John Wiley and Sons, 2005. 

[63] – Clerk, J., “Costs of Air vs. Water Cooling”, Modern Cost Engineering Techniques, McGraw-Hill, 1970. 

[64] – Guthrie, K.M., “Capital Cost Estimating”, Modern Cost Engineering Techniques, McGraw-Hill, 1970. 

[65] – Steam, Babcock and Wilcox Handbook, 2002. 

[66] – Dunbar, Stephen, Experimental and Numerical Studied of Condensing Heat Exchangers used in Flue Gas water 

Recovery Systems, M.S. Thesis, Lehigh University, 2010.

 



224 

 

Appendix A 

The data listed in Appendix A is from the research discussed in Chapter 3.  Table A1 lists 

measured data for water-cooled and air-cooled condenser experiments.  Each row the table 

represents a different experiment having different process conditions.  Table A2 compares the 

experimental measurements with the heat and mass transfer simulation developed in the present 

study.  Each experiment was simulated using the heat and mass transfer simulation to validate the 

simulation by showing agreement. 
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TABLE A1 - Measured data for water-cooled and air-cooled condenser experiments. 

   FLOW CONDENSATE MOISTURE TEMPERATURE MEASUREMENTS 

    lbm/hr ft/sec lbm/hr % % wet-basis degree Fahrenheit 

Date # 
Flue 

Gas 
Water 

Max Air 

Velocity 
WCC* ACC* 

Recovery 

Efficiency 

Inlet 

to WCC 
Exit 

Inlet to 

WCC 

Exit of 

WCC 
Inlet to ACC Exit of ACC 

Water 

In 

Water 

Exit 

Air 

Inlet 

10/11/2010 1 180 367 23.5 1.35 2.56 21.6 15.6 12.6 317 153 146.8 127.5 130 111 79.4 

10/11/2010 2 210 403 23.5 2.43 2.7 24.1 15.7 12.4 311 159 152.7 130.3 126 107 76.5 

10/13/2010 1 135 333 26.2 0.53 3.5 35.0 13.2 9 245 146 138.5 115.7 127 118 55.8 

10/13/2010 2 187 372 26.2 1.71 3.42 31.7 13.5 9.6 255 143 139.6 118.9 123 109 59.3 

10/13/2010 3 213 354 26.2 1.85 3.53 28.8 13.6 10.1 260 145 144 122.6 124 108 62.6 

10/15/2010 1 212 648 23.2 5.87 3.43 45.8 14.8 8.6 268 143 133.1 114.6 105 88 56.8 

10/15/2010 2 211 669 23.2 8.43 2.56 56.6 14.3 6.7 270 123 120.3 105.7 110 88 58.2 

10/15/2010 3 139 421 23.2 3.48 2.6 50.2 13.5 7.2 248 122 119.3 106.2 123 106 59.5 

10/20/2010 1 292 582 22.7 8.29 3.67 42.3 15.1 9.3 282 155 142.3 121.5 115 89 55 

10/20/2010 2 243 404 22.7 4.36 3.48 34.5 14.5 10 274 152 140.7 121.6 124 101 58.7 

10/20/2010 3 140 404 22.7 2.39 2.55 41.2 13.3 8.3 330 140 132.2 111.9 122 104 62.7 

10/20/2010 4 185 367 22.7 1.28 3.24 26.7 14.2 10.8 378 159 147.2 123.3 137 111 64.5 

10/22/2010 1 150 360 31.4 1.35 3.25 38.0 12.5 8.1 405 138 131.6 111.6 136 114 58.3 

10/22/2010 2 146 786 31.4 5.98 1.32 65.2 11.9 4.5 359 109 105.5 91.3 99 83 58.8 

10/22/2010 3 145 488 31.4 3.28 2.51 49.5 12.6 6.8 346 125 120 102.7 117 99 59.7 

*WCC: water-cooled condenser*ACC: air-cooled condenser  

2
2
5
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TABLE A1 continued - Measured data for water-cooled and air-cooled condenser experiments. 

    FLOW CONDENSATE MOISTURE TEMPERATURE MEASUREMENTS 

    lbm/hr ft/sec lbm/hr % % wet-basis degree Fahrenheit 

Date # 
Flue 

Gas 

Cooling 

Water 

Max 

Air 

Velocity 

WCC ACC 
Recovery 

Efficiency 

Inlet 

to 

WCC 

Exit 

Inlet 

to 

WCC 

Exit 

of 

WCC 

Inlet 

to 

ACC 

Exit 

of 

ACC 

Water 

In 

Water 

Exit 

Air 

Inlet 

10/27/2010 1 354 705 29.5 13.83 3.13 43.5 17 10.4 267 148 142.1 123.2 118 83 65.8 

10/27/2010 2 314 391 29.5 5.74 3.8 32.1 14.6 10.4 266 146 140.6 123.3 128 99 66 

10/27/2010 3 283 658 29.5 5.34 3.1 34.4 13.4 9.2 309 147 141.4 120.6 115 86 63.5 

10/27/2010 4 248 425 29.5 3.56 4.09 31.0 15.4 11.2 325 151 144.2 123.6 132 102 61.6 

10/31/2010 1 145 532 36.2 6 2.07 65.6 13.2 4.9 242 107 105.7 93.6 103 88 56.7 

10/31/2010 2 147 373 36.2 3.3 3.02 50.6 13.2 7 248 125 120 104.6 121 106 55.6 

10/31/2010 3 146 364 36.2 2.12 3.45 45.7 13.1 7.6 375 134 127 107.8 130 108 54.1 

11/4/2010 1 146 361 35 2.27 4.25 44.4 15.6 9.3 385 144 136.2 114.3 138 114 56.4 

11/4/2010 2 145 429 35 3.4 3.44 49.2 14.8 8.1 371 139 131.9 109.5 128 106 58.6 

11/4/2010 3 186 367 35 2.68 4.8 39.4 15.8 10.2 377 149 142 119 139 110 58.4 

11/4/2010 4 243 554 35 9.11 4.11 50.8 16.6 8.9 334 147 141.7 118.4 122 91 58 

11/4/2010 5 284 745 35 11.69 3.97 52.9 16.1 8.3 324 148 142.6 119 113 83 57.1 

11/6/2010 1 201 423 30.9 4.18 4.03 39.7 16 10.3 396 150 141.7 118.7 133 101 59.3 

11/6/2010 2 147 362 30.9 2.8 3.9 44.4 15.9 9.5 377 145 138.2 115.6 135 106 58.8 

11/8/2010 1 189 345 26.4 1.25 4.4 29.4 15.8 11.7 400 154 145.9 122.7 145 114 55.7 

 

 

 

2
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TABLE A1 continued - Measured data for water-cooled and air-cooled condenser experiments. 

    FLOW CONDENSATE MOISTURE TEMPERATURE MEASUREMENTS 

    lbm/hr ft/sec lbm/hr % % wet-basis degree Fahrenheit 

Date # 
Flue 

Gas 

Cooling 

Water 

Max 

Air 

Velocity 

WCC ACC 
Recovery 

Efficiency 

Inlet 

to 

WCC 

Exit 

Inlet 

to 

WCC 

Exit 

of 

WCC 

Inlet 

to 

ACC 

Exit 

of 

ACC 

Water 

In 

Water 

Exit 

Air 

Inlet 

11/8/2010 2 131 630 26.4 6.9 1.42 72.3 13.7 4.2 357 108 104.3 88.5 106 86 55.1 

11/8/2010 3 130 507 18.8 6.26 1.6 68.3 13.7 4.7 325 110 106.5 91.7 108 88 55 

11/8/2010 4 133 388 18.8 3.6 2.52 52.3 13.6 7 358 127 121.2 104.5 120 101 57.6 

11/8/2010 5 129 348 18.8 1.66 3.16 41.2 14 8.8 410 137 129.5 112.5 137 113 59.4 

11/12/2010 1 153 358 23.9 1.6 2.97 32.9 14.1 9.9 410 148 136.4 117.7 135 109 61.8 

11/12/2010 2 203 489 23.9 3.83 2.28 33.4 14 9.8 391 151 140.1 118.5 115 90 67.4 

11/12/2010 3 252 574 23.9 6.1 2.14 34.5 14.8 10.2 329 147 140.8 121.1 112 87 68.7 

11/12/2010 4 302 591 23.9 8.76 2.53 39.8 14.6 9.4 292 142 139.6 120.9 114 85 63.9 

 

  

 

2
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TABLE A2 – Comparisons of the experimental measurements with the heat and mass transfer simulation developed in the present study. 

 
  

Water Recovery Rate in ACC Decrease in Flue Gas Temp Surface Temperature [F] 

Date Temp Gas lbm/hr degree Fahrenheit 12'' 24'' 12'' 24'' 

 
F ft/sec Exp Sim Diff Exp Sim Diff Simulation Experiment 

10/11/2010 146.8 38.7 2.56 3.26 -0.272 19.4 15.1 0.219 113.3 110.0 111.1 108.7 

10/11/2010 152.7 45.2 2.7 3.39 -0.255 22.4 17.1 0.235 113.2 110.0 111.7 109.3 

10/13/2010 138.5 27.9 3.5 3.58 -0.023 22.8 21.9 0.04 92.9 86.6 99.2 91.2 

10/13/2010 139.6 38.5 3.42 3.86 -0.129 20.8 18.6 0.106 98.8 93.5 101.6 95.8 

10/13/2010 144 44.5 3.53 3.92 -0.11 21.4 18.1 0.156 102.9 98.4 105.0 100.6 

10/15/2010 133.1 43.1 3.43 3.63 -0.056 18.5 16.6 0.102 95.6 91.4 96.7 93.5 

10/15/2010 120.3 41.2 2.56 2.67 -0.046 14.5 14.4 0.011 88.3 84.5 90.3 87.5 

10/15/2010 119.3 27.5 2.6 2.61 -0.002 13 15.3 -0.177 87.8 83.3 91.0 86.3 

10/20/2010 142.3 59.7 3.67 4.12 -0.122 20.8 17.2 0.174 101.0 96.8 100.7 97.5 

10/20/2010 140.7 50.4 3.48 4.06 -0.165 19.1 16.5 0.135 102.2 98.2 102.5 99.0 

10/20/2010 132.2 28.4 2.55 2.75 -0.079 20.2 18.5 0.087 93.3 88.9 96.8 91.8 

10/20/2010 147.2 39.3 3.24 3.73 -0.151 23.9 19 0.206 104.6 100.6 105.1 101.1 

10/22/2010 131.6 30.3 3.25 3.31 -0.018 20 19.4 0.031 90.6 85.2 95.3 88.2 

10/22/2010 105.5 27.3 1.32 1.41 -0.072 14.3 14.6 -0.025 74.9 71.5 80.1 75.3 

10/22/2010 120 28.4 2.51 2.55 -0.016 17.3 16.6 0.039 85.0 81.0 89.4 84.2 
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TABLE A2 continued - Comparisons of the experimental measurements with the heat and mass transfer simulation developed in the present study. 

      Water Recovery Rate in ACC Decrease in Flue Gas Temp Surface Temperature [F] 

Date Temp Gas lbm/hr degree Fahrenheit 12'' 24'' 12'' 24'' 

 
F ft/sec Exp Sim Diff Exp Sim Diff Simulation Experiment 

10/27/2010 142.1 72 3.13 4.06 -0.297 18.9 14.2 0.25 106.2 103.8 103.9 102.8 

10/27/2010 140.6 65.4 3.8 4.19 -0.102 17.3 13.8 0.204 106.5 103.9 104.5 102.7 

10/27/2010 141.4 58.6 3.1 3.66 -0.181 20.8 16.6 0.201 101.0 98.1 99.4 97.3 

10/27/2010 144.2 52.1 4.09 4.7 -0.15 20.6 16.3 0.211 105.6 102.3 101.5 99.4 

10/31/2010 105.7 27.1 2.07 1.94 0.063 12.1 14.4 -0.187 76.0 72.0 82.1 76.5 

10/31/2010 120 28.8 3.02 3.01 0.003 15.4 17.4 -0.131 83.3 78.7 90.0 83.6 

10/31/2010 127 29 3.45 3.4 0.015 19.1 19.7 -0.027 85.2 80.2 92.3 85.4 

11/4/2010 136.2 29.2 4.25 4.15 0.024 21.9 20.3 0.072 94.7 86.8 95.5 86.7 

11/4/2010 131.9 28.6 3.44 3.33 0.033 22.4 19.6 0.122 92.6 85.6 92.0 82.8 

11/4/2010 142 37.9 4.8 4.66 0.028 23 18.8 0.184 102.1 95.6 99.7 92.4 

11/4/2010 141.7 48.1 4.11 4.16 -0.013 23.3 18.7 0.196 99.4 93.8 96.3 91.5 

11/4/2010 142.6 56.2 3.97 3.97 0.001 23.6 18.9 0.197 97.9 93.3 95.1 91.1 

11/6/2010 141.7 41 4.03 4.32 -0.071 22.9 17.9 0.22 102.1 98.0 101.5 95.7 

11/6/2010 138.2 29.5 3.9 3.83 0.017 22.6 19.6 0.134 97.3 92.7 99.3 92.6 

11/8/2010 145.9 40.1 4.4 4.88 -0.108 23.1 18.6 0.198 104.9 100.0 103.7 98.9 
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TABLE A2 continued - Comparisons of the experimental measurements with the heat and mass transfer simulation developed in the present study. 

      Water Recovery Rate in ACC Decrease in Flue Gas Temp Surface Temperature [F] 

Date Temp Gas lbm/hr degree Fahrenheit 12'' 24'' 12'' 24'' 

  F ft/sec Exp Sim Diff Exp Sim Diff Simulation Experiment 

11/8/2010 104.3 24.1 1.42 1.35 0.048 15.8 15.4 0.024 73.7 69.4 75.9 69.8 

11/8/2010 106.5 25.1 1.6 1.51 0.054 14.8 15.2 -0.023 76.4 72.0 79.3 72.8 

11/8/2010 121.2 26.3 2.52 2.43 0.036 16.6 16.4 0.015 88.0 83.7 91.0 83.9 

11/8/2010 129.5 26.4 3.16 3.04 0.036 17 16.8 0.016 95.4 91.2 99.0 91.8 

11/12/2010 136.4 30.9 2.97 3.53 -0.189 18.7 17.8 0.044 99.2 93.7 102.5 94.6 

 

 

2
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Appendix B – Optimization Simulations for the Case with no Wet FGD Scrubber 

This section of the Appendix discusses the optimizations presented in Chapter 5.  Multiple 

optimizations were carried out for each case to build confidence in the results.  As discussed in 

the Literature Review, the Nelder-Mead method is susceptible to converging to a local minimum 

and the way to ensure the optimization located a global minimum is through repeated trials using 

different simplexes. 

Appendix B.1 - Details of the Optimizations of the Parametric Tests Discussed in 

Section 5.3.1. 

These four tables list the optimization simulations which led to the results listed in Table 

5.15.  Each table corresponds to an optimization simulation which began with a different initial 

simplex.  For each simulation, the columns labeled” Starting Value” list the details of a first heat 

exchanger design, which corresponds to one vertex of the simplex.  The entire simplex was built 

using the values listed in the column “Starting Values” and the parameter Si, which is the last 

column of the Table.  Si is the parameter used by Walters [42] to build initial simplexes. 

The second and third columns list the domain of each variable during the optimization.  

For the “Starting Value” and “Optimal Value”, there are “Normalized” and “Actual” values.  

These correspond to the dimensionless and absolute values of the variables.  Recall from Section 

2.4, the variables were normalized during the optimization to remove the units from the 

optimization equations. 

test name: NominalALL1a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           161,416   

Tube Length           11.7   

Gas Velocity 7.5 80.0 0.500 43.8 0.584 49.9 0.125 

Air Velocity 7.5 50.0 0.255 18.3 0.001 7.5 -0.125 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.05 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.25 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 0.9 

Fin Thickness 0.063 0.125 1.000 0.125 0.749 0.109 -0.1 

Net Annual Cost     $476,078 $306,748   



232 

 

test name: NominalALL2a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           194,978   

Tube Length           12.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.501 43.9 0.25 

Air Velocity 7.5 50.0 0.255 18.3 0.063 10.2 0.25 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.5 

Fin Length 0.00 1.25 0.277 0.35 0.596 0.75 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.003 1.76 0.125 

Fin Thickness 0.063 0.125 1.000 0.125 0.056 0.066 -0.5 

Net Annual Cost     $476,078 $364,417   

 

test name: NominalALL4a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           162,212   

Tube Length           11.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.590 50.2 -0.5 

Air Velocity 7.5 50.0 0.255 18.3 0.003 7.6 0.5 

Fin Pitch 0.20 1.00 0.007 0.21 0.007 0.21 0.5 

Fin Length 0.00 1.25 0.277 0.35 0.999 1.25 0.5 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 1.000 0.125 0.629 0.102 -0.5 

Net Annual Cost     $476,078 $310,776   

 

 

test name: NominalALL5a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           185,583   

Tube Length           12.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.473 41.8 -0.133 

Air Velocity 7.5 50.0 0.255 18.3 0.038 9.1 0.133 

Fin Pitch 0.20 1.00 0.007 0.21 0.021 0.22 0.133 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.25 0.133 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.058 1.99 0.133 

Fin Thickness 0.063 0.125 1.000 0.125 1.000 0.125 -0.133 

Net Annual Cost     $476,078 $335,280   
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Appendix B.2 - Effect the Number of Tube Rows has on the Optimal Design 

This section details the optimization simulations of the ACC described in Section 5.3.2, 

which discussed row effects.  Two optimizations were carried out for each case with two, four, 

six, and eight tube rows.  In each case the optimization converged to very similar design choices 

and process conditions.   

Each table represents one optimization simulation.  The variables optimized are listed in 

the Table and the range of each variable is given in the second and third columns.  The columns 

labeled “Starting Value” list the variables used as the initial guess, which was one vertex of the 

initial simplex.  The column labeled “Si” is the parameter assigned to each variable which built 

the remaining vertexes of the simplex using the Tilted Initial Simplex Method described in 

Walters [42].  The columns labeled “Optimal Value” list the values of the optimal heat exchanger 

design.  Under the headings “Starting Value” and “Optimal Value”, there are “Normalized” and 

“Actual” values.  These correspond to the dimensionless and absolute values of the variables, 

respectively.  Recall from Section 2.4, the variables were normalized during the optimization to 

remove the units from the optimization equations.   

Appendix B.2.1 - Two Tube Rows 

Test name: OptimalALL1a 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           161,416   

Tube Length [ft]           11.7   

Gas Velocity 7.5 80.0 0.500 43.8 0.584 49.9 0.125 

Air Velocity 7.5 50.0 0.255 18.3 0.001 7.5 -0.125 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.05 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.25 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 0.9 

Fin Thickness 0.063 0.125 1.000 0.125 0.749 0.109 -0.1 

Net Annual Cost     $476,078 $306,748   
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Test name: NominalALL2r_2 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           157,134   

Tube Length [ft]           12.0   

Gas Velocity 7.5 80.0 0.500 43.8 0.561 48.2 -0.1 

Air Velocity 7.5 50.0 0.255 18.3 0.012 8.0 -0.1 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.1 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.24 0.4 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 0.1 

Fin Thickness 0.063 0.125 1.000 0.125 0.712 0.107 -0.25 

Net Annual Cost     $476,078 $308,323   

 

The details of the optimal ACC having two tube rows are: 

OptimalALL1a 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 53,638,732 

Flue Gas Velocity [ft/sec] 46.1 

Cooling Air Velocity [ft/sec] 7.7 

 
Inlet Flue Gas Temperature [F] 135 

Exit Flue Gas Temperature [F] 101.7 

Inlet Cooling Air Temperature [F] 75 

Exit Cooling Air Temperature [F] 94.1 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.109 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30,000 

Tube Length 12 

Gas-side Surface Area [ft2] 161,416 

Air-side Surface Area [ft2] 8,404,383 

 
Field Erected Capital Cost $5,286,886 

Annualized Capital Cost $424,233 

Annualized Operating Cost $118,771 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $236,256 

Net Annualized Cost [20 yrs @ 5%] $306,749 

Gas-Side Fan Power [kW] 233 

Air-Side Fan Power [kW] 55 

 
Sensible Heat Transfer [BTU/hr] 50,670,814 

Latent Heat Transfer [BTU/hr] 195,779,374 

Condensation Rate [lbm/hr] 187,691 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.2.2 - Four Tube Rows 

Test name: NominalALL4r 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Gas-side Surface Area 

     
241,468 

 
Tube Length [ft] 

     
17.6 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.585 49.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.75 

Fin Thickness 0.063 0.125 0.749 0.109 0.749 0.109 -0.5 

Net Annual Cost 
  

$498,092 $497,999 
 

 

 

 

Test name: NominalALL4r_2 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           203,798   

Tube Length [ft]           14.3   

Gas Velocity 7.5 80.0 0.584 49.9 0.503 44.0 0.1 

Air Velocity 7.5 50.0 0.001 7.5 0.031 8.8 -0.4 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 -0.4 

Fin Length 0.00 1.25 1.000 1.25 0.944 1.18 0.4 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.005 1.77 -0.4 

Fin Thickness 0.063 0.125 0.749 0.109 0.664 0.104 0.25 

Net Annual Cost     $498,092 $414,488   
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The details of the optimal ACC having four tube rows are: 

 

NominalAll4r_2 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 36,268,379 

Flue Gas Velocity [ft/sec] 44.0 

Cooling Air Velocity [ft/sec] 8.8 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 101.5 

Exit Cooling Air Temperature [F] 102.9 

 Tube Inner Diameter [inch] 1.77 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.18 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.104 

Number of Tube Rows 4 

Transverse Tube Spacing [inches] 4.54 

Longitudinal Tube Spacing [inches] 4.54 

Number of Tubes 30000 

Tube Length [ft] 14.3 

Gas-side Surface Area [ft2] 203,798 

Air-side Surface Area [ft2] 9,805,690 

 Field Erected Capital Cost $6,370,924 

Annualized Capital Cost $511,219 

Annualized Operating Cost $135,567 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $232,299 

Net Annualized Cost [20 yrs @ 5%] $414,488 

Gas-Side Fan Power [kW] 240 

Air-Side Fan Power [kW] 93 

 Sensible Heat Transfer [BTU/hr] 51,030,259 

Latent Heat Transfer [BTU/hr] 192,166,206 

Condensation Rate [lbm/hr] 184,548 

Condensation Efficiency 46% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.3 
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Appendix B.2.3 - Six Tube Rows 

Test name: NominalALL6r 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           241,983   

Tube Length [ft]           17.5   

Gas Velocity 7.5 80.0 0.584 49.9 0.581 49.6 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.012 8.0 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.979 1.22 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.75 

Fin Thickness 0.063 0.125 0.749 0.109 0.693 0.106 -0.5 

Cost     $538,679 $537,233   

 

 

 

Test name: NominalALL6r_2 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           226,432   

Tube Length [ft]           17.7   

Gas Velocity 7.5 80.0 0.584 49.9 0.582 49.7 0.1 

Air Velocity 7.5 50.0 0.001 7.5 0.045 9.5 -0.4 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 -0.4 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.749 0.109 0.728 0.108 0.25 

Cost     $538,679 $536,853   
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The details of the optimal ACC having six tube rows are: 

 

 

NominalAll6r_2 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 36,239,875 

Flue Gas Velocity [ft/sec] 49.7 

Cooling Air Velocity [ft/sec] 9.5 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 100.7 

Exit Cooling Air Temperature [F] 108.4 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.108 

Number of Tube Rows 6 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 17.7 

Gas-side Surface Area [ft2] 52,151,492 

Air-side Surface Area [ft2] 190,804,257 

 Field Erected Capital Cost $7,079,873 

Annualized Capital Cost $568,107 

Annualized Operating Cost $199,623 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $230,877 

Net Annualized Cost [20 yrs @ 5%] $536,853 

Gas-Side Fan Power [kW] 346 

Air-Side Fan Power [kW] 147 

 Sensible Heat Transfer [BTU/hr] 52,151,492 

Latent Heat Transfer [BTU/hr] 190,804,257 

Condensation Rate [lbm/hr] 183,418 

Condensation Efficiency 45% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.3 
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Appendix B.2.4 - Eight Tube Rows 

 

Test name: NominalALL8r 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           308,993   

Tube Length [ft]           21.9   

Gas Velocity 7.5 80.0 0.584 49.9 0.568 48.7 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.005 7.7 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.997 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.75 

Fin Thickness 0.063 0.125 0.749 0.109 0.731 0.108 -0.5 

Cost     $731,148 $726,919   

 

 

 

Test name: NominalALL8r_2 

  Range Starting Value Optimal Value Si 

 

Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           289,243   

Tube Length [ft]           22.4   

Gas Velocity 7.5 80.0 0.584 49.9 0.572 49.0 0.1 

Air Velocity 7.5 50.0 0.001 7.5 0.045 9.4 -0.4 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 -0.4 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.749 0.109 0.712 0.107 0.25 

Cost     $731,148 $726,390   
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The details of the optimal ACC having eight tube rows are: 

 

NominalAll8r_2 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 28,413,286 

Flue Gas Velocity [ft/sec] 49.0 

Cooling Air Velocity [ft/sec] 9.4 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 98.9 

Exit Cooling Air Temperature [F] 111.7 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.107 

Number of Tube Rows 8 

Transverse Tube Spacing [inches] 4.64 

Longitudinal Tube Spacing [inches] 4.64 

Number of Tubes 30000 

Tube Length [ft] 22.4 

Gas-side Surface Area [ft2] 289,243 

Air-side Surface Area [ft2] 14,980,590 

 Field Erected Capital Cost $9,103,401 

Annualized Capital Cost $730,480 

Annualized Operating Cost $237,154 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $233,063 

Net Annualized Cost [20 yrs @ 5%] $726,390 

Gas-Side Fan Power [kW] 398 

Air-Side Fan Power [kW] 175 

 Sensible Heat Transfer [BTU/hr] 54,791,629 

Latent Heat Transfer [BTU/hr] 195,889,856 

Condensation Rate [lbm/hr] 188,405 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.3 – Effect of Inlet Cooling Air Temperature on the Optimal Design 

This section details the optimization simulations of the ACC described in Section 0, 

which discusses inlet cooling air effects.  Four optimizations were carried out for each case with 

inlet cooling air temperatures of 40
o
F, 60

o
F, 75

o
F, and 90

o
F.  In each case the optimization 

converged to similar design choices and process conditions.   

Each table represents one optimization simulation.  The variables optimized are listed in 

the Table and the range of each variable is given in the second and third columns.  The columns 

labeled “Starting Value” list the variables used as the initial guess, which was one vertex of the 

initial simplex.  The column labeled “Si” is the parameter assigned to each variable which built 

the remaining vertexes of the simplex using the Tilted Initial Simplex Method described in 

Walters [42].  The columns labeled “Optimal Value” list the values of the optimal heat exchanger 

design.  Under the headings “Starting Value” and “Optimal Value”, there are “Normalized” and 

“Actual” values.  These correspond to the dimensionless and absolute values of the variables, 

respectively.  Recall from Section 2.4, the variables were normalized during the optimization to 

remove the units from the optimization equations.   
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Appendix B.3.1 – Inlet Cooling Air Temperature: 40
o
F 

The following tables are the four optimization simulations performed with an inlet 

cooling air temperature of 40
o
F, and the details of the ACC‟s design for the best of the four 

optimizations follows. 

Test name: NominalALL5c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           98,332   

Tube Length           7.1   

Gas Velocity 7.5 80.0 0.621 52.5 0.577 49.3 0.125 

Air Velocity 7.5 50.0 0.000 7.5 0.000 7.5 0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.947 1.18 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.003 1.76 0.125 

Fin Thickness 0.063 0.125 0.941 0.121 0.699 0.106 -0.125 

Net Annual Cost     $193,109 $127,300   

 

Test name: NominalALL6c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           93,086   

Tube Length           7.1   

Gas Velocity 7.5 80.0 0.621 52.5 0.627 52.9 -0.5 

Air Velocity 7.5 50.0 0.000 7.5 0.032 8.8 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.930 1.16 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.941 0.121 0.849 0.116 -0.5 

Net Annual Cost     $193,109 $129,276   

 

Test name: NominalALL7c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           96,274   

Tube Length           7.4   

Gas Velocity 7.5 80.0 0.500 43.8 0.620 52.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.012 8.0 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.009 0.21 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.856 1.07 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.001 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.277 0.080 -0.125 

Net Annual Cost     $469,928 $133,108   
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Test name: NominalALL8c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           99,289   

Tube Length           6.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.556 47.8 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.001 7.5 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.987 1.23 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.957 0.122 0.4 

Net Annual Cost     $469,928 $125,764   

 

The details of the optimal ACC having an inlet cooling air temperature of 40
o
F are: 

NominalAll8c 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 33,289,734 

Flue Gas Velocity [ft/sec] 44.0 

Cooling Air Velocity [ft/sec] 7.8 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 40 

Exit Flue Gas Temperature [F] 97.2 

Exit Cooling Air Temperature [F] 72.7 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.23 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 122 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.62 

Longitudinal Tube Spacing [inches] 4.62 

Number of Tubes 31000 

Tube Length [ft] 6.9 

Gas-side Surface Area [ft2] 99,289 

Air-side Surface Area [ft2] 5,111,628 

 Field Erected Capital Cost $3,583,961 

Annualized Capital Cost $287,586 

Annualized Operating Cost $80,997 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $242,819 

Net Annualized Cost [20 yrs @ 5%] $125,765 

Gas-Side Fan Power [kW] 165 

Air-Side Fan Power [kW] 42 

 Sensible Heat Transfer [BTU/hr] 57,612,908 

Latent Heat Transfer [BTU/hr] 203,959,346 

Condensation Rate [lbm/hr] 192,905 

Condensation Efficiency 48% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.1 
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Appendix B.3.2 - Inlet Cooling Air Temperature: 60
o
F 

The following tables are the 4 optimization simulations performed with an inlet cooling 

air temperature of 60
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

Test name: NominalALL5b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           127,936   

Tube Length           8.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.527 45.7 0.125 

Air Velocity 7.5 50.0 0.255 18.3 0.000 7.5 -0.125 

Fin Pitch 0.20 1.00 0.007 0.21 0.015 0.21 0.05 

Fin Length 0.00 1.25 0.277 0.35 0.994 1.24 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 1 

Fin Thickness 0.063 0.125 1.000 0.125 0.778 0.111 -0.1 

Net Annual Cost     $306,401 $196,723   

 

Test name: NominalALL6b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           123,966   

Tube Length           9.1   

Gas Velocity 7.5 80.0 0.473 41.8 0.559 48.0 0.5 

Air Velocity 7.5 50.0 0.038 9.1 0.000 7.5 0.5 

Fin Pitch 0.20 1.00 0.021 0.22 0.003 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.058 1.99 0.019 1.83 0.5 

Fin Thickness 0.063 0.125 1.000 0.125 0.798 0.112 -0.5 

Net Annual Cost     $216,010 $196,910   

 

Test name: NominalALL7b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           120,506   

Tube Length           9.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.623 52.7 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.062 10.1 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.806 1.01 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.412 0.088 -0.125 

Net Annual Cost     $693,968 $207,000   
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Test name: NominalALL8b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           115,194   

Tube Length           8.8   

Gas Velocity 7.5 80.0 0.500 43.8 0.621 52.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.941 0.121 0.4 

Net Annual Cost     $693,968 $193,458   

 

The details of the optimal ACC having an inlet cooling air temperature of 60
o
F are: 

NominalAll8b 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 37,625,756 

Flue Gas Velocity [ft/sec] 48.6 

Cooling Air Velocity [ft/sec] 7.7 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 101.1 

Exit Cooling Air Temperature [F] 87.5 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.121 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 8.8 

Gas-side Surface Area [ft2] 115,194 

Air-side Surface Area [ft2] 6,014,738 

 Field Erected Capital Cost $4,036,337 

Annualized Capital Cost $323,886 

Annualized Operating Cost $106,162 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $236,590 

Net Annualized Cost [20 yrs @ 5%] $193,458 

Gas-Side Fan Power [kW] 222 

Air-Side Fan Power [kW] 39 

 Sensible Heat Transfer [BTU/hr] 51,681,997 

Latent Heat Transfer [BTU/hr] 197,045,865 

Condensation Rate [lbm/hr] 187,957 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.3.3 – Inlet Cooling Air Temperature: 75
o
F 

The following tables are the 4 optimization simulations performed with an inlet cooling 

air temperature of 75
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

Test name: NominalALL1a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           161,416   

Tube Length           11.7   

Gas Velocity 7.5 80.0 0.500 43.8 0.584 49.9 0.125 

Air Velocity 7.5 50.0 0.255 18.3 0.001 7.5 -0.125 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.05 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.25 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 1 

Fin Thickness 0.063 0.125 1.000 0.125 0.749 0.109 -0.1 

Net Annual Cost     $476,078 $306,748   

 

Test name: NominalALL2a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           194,978   

Tube Length           12.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.501 43.9 0.25 

Air Velocity 7.5 50.0 0.255 18.3 0.063 10.2 0.25 

Fin Pitch 0.20 1.00 0.007 0.21 0.000 0.20 0.5 

Fin Length 0.00 1.25 0.277 0.35 0.596 0.75 0.15 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.003 1.76 0.125 

Fin Thickness 0.063 0.125 1.000 0.125 0.056 0.066 -0.5 

Net Annual Cost     $476,078 $364,417   

 

Test name: NominalALL4a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           162,212   

Tube Length           11.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.590 50.2 -0.5 

Air Velocity 7.5 50.0 0.255 18.3 0.003 7.6 0.5 

Fin Pitch 0.20 1.00 0.007 0.21 0.007 0.21 0.5 

Fin Length 0.00 1.25 0.277 0.35 0.999 1.25 0.5 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 1.000 0.125 0.629 0.102 -0.5 

Net Annual Cost     $476,078 $310,776   
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Test name: NominalALL5a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           185,583   

Tube Length           12.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.473 41.8 -0.133 

Air Velocity 7.5 50.0 0.255 18.3 0.038 9.1 0.133 

Fin Pitch 0.20 1.00 0.007 0.21 0.021 0.22 0.133 

Fin Length 0.00 1.25 0.277 0.35 1.000 1.25 0.133 

Inner Tube Diameter 1.75 6.00 0.027 1.86 0.058 1.99 0.133 

Fin Thickness 0.063 0.125 1.000 0.125 1.000 0.125 -0.133 

Net Annual Cost     $476,078 $335,280   

 

The details of the optimal ACC having an inlet cooling air temperature of 75
o
F are: 

OptimalALL1a 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 53,638,732 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 101.7 

Exit Cooling Air Temperature [F] 94.1 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.109 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 11.7 

Gas-side Surface Area [ft2] 161,416 

Air-side Surface Area [ft2] 8,404,383 

 Field Erected Capital Cost $5,286,886 

Annualized Capital Cost $424,233 

Annualized Operating Cost $118,771 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $236,256 

Net Annualized Cost [20 yrs @ 5%] $306,749 

Gas-Side Fan Power [kW] 233 

Air-Side Fan Power [kW] 55 

 Sensible Heat Transfer [BTU/hr] 50,670,814 

Latent Heat Transfer [BTU/hr] 195,779,374 

Condensation Rate [lbm/hr] 187,691 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.3.4 - Inlet Cooling Air Temperature: 90
o
F 

The following tables are the 4 optimization simulations performed with an inlet cooling 

air temperature of 90
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

Test name: NominalALL5d_2 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           331,780   

Tube Length           21.4   

Gas Velocity 7.5 80.0 0.6 52.5 0.5 44.2 0.1 

Air Velocity 7.5 50.0 0.0 7.5 0.0 8.4 0.1 

Fin Pitch 0.20 1.00 0.50 0.60 0.00 0.20 0.13 

Fin Length 0.00 1.25 1.00 1.25 0.98 1.23 -0.13 

Inner Tube Diameter 1.75 6.00 0.00 1.75 0.00 1.75 0.13 

Fin Thickness 0.063 0.125 0.941 0.121 0.975 0.123 -0.125 

Net Annual Cost     $1,184,809 $733,028   

 

Test name: NominalALL6d_2 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           317,747   

Tube Length           22.4   

Gas Velocity 7.5 80.0 0.6 52.5 0.6 48.3 -0.5 

Air Velocity 7.5 50.0 0.0 7.5 0.0 7.9 0.5 

Fin Pitch 0.20 1.00 0.50 0.60 0.00 0.20 0.50 

Fin Length 0.00 1.25 1.00 1.25 1.00 1.25 -0.50 

Inner Tube Diameter 1.75 6.00 0.00 1.75 0.00 1.75 0.50 

Fin Thickness 0.063 0.125 0.941 0.121 0.836 0.115 -0.500 

Net Annual Cost     $1,184,809 $732,000   

 

Test name: NominalALL7d_2 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           259,434   

Tube Length           27.7   

Gas Velocity 7.5 80.0 0.5 43.8 0.9 72.7 0.1 

Air Velocity 7.5 50.0 0.5 28.8 0.0 7.8 -0.1 

Fin Pitch 0.20 1.00 0.50 0.60 0.00 0.20 -0.13 

Fin Length 0.00 1.25 0.50 0.63 1.00 1.24 0.13 

Inner Tube Diameter 1.75 6.00 0.50 3.88 0.00 1.77 -0.13 

Fin Thickness 0.063 0.125 0.500 0.094 0.785 0.112 0.125 

Net Annual Cost     $2,065,606 $824,839   

 

  



249 

 

Test name: NominalALL8d_2 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           297,940   

Tube Length           23.4   

Gas Velocity 7.5 80.0 0.5 43.8 0.6 53.9 0.1 

Air Velocity 7.5 50.0 0.5 28.8 0.0 8.3 -0.4 

Fin Pitch 0.20 1.00 0.50 0.60 0.00 0.20 -0.40 

Fin Length 0.00 1.25 0.50 0.63 1.00 1.24 0.40 

Inner Tube Diameter 1.75 6.00 0.50 3.88 0.00 1.75 -0.40 

Fin Thickness 0.063 0.125 0.500 0.094 0.849 0.116 0.400 

Net Annual Cost     $2,065,606 $736,307   

 

The details of the optimal ACC having an inlet cooling air temperature of 90
o
F are: 

NominalAll6d_2 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 403,720 

Cooling Air Flow Rate [lbm/hr] 106,294,869 

Flue Gas Velocity [ft/sec] 44.2 

Cooling Air Velocity [ft/sec] 8.0 

 Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 90 

Exit Flue Gas Temperature [F] 99.5 

Exit Cooling Air Temperature [F] 99.9 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.115 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 31000 

Tube Length [ft] 22.4 

Gas-side Surface Area [ft2] 317,747 

Air-side Surface Area [ft2] 1,648,941 

 Field Erected Capital Cost $9,814,342 

Annualized Capital Cost $787,528 

Annualized Operating Cost $186,226 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $241,754 

Net Annualized Cost [20 yrs @ 5%] $732,001 

Gas-Side Fan Power [kW] 331 

Air-Side Fan Power [kW] 136 

 Sensible Heat Transfer [BTU/hr] 53,838,611 

Latent Heat Transfer [BTU/hr] 199,365,760 

Condensation Rate [lbm/hr] 192,059 

Condensation Efficiency 48% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.1 
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Appendix B.4 - Effect of Inlet Flue Gas Temperature on the Optimal Design 

The following sections tabulate the optimization results and initial simplexes for the 

simulations discussed in Section 5.3.4, which discussed inlet flue gas temperature effects.  Four 

inlet flue gas temperatures were investigated: 135
o
F, 150

o
F, 175

o
F, 200

o
F, and 225

o
F. 

Each table represents one optimization simulation.  The variables optimized are listed in 

the Table and the range of each variable is given in the second and third columns.  The columns 

labeled “Starting Value” list the variables used as the initial guess, which was one vertex of the 

initial simplex.  The column labeled “Si” is the parameter assigned to each variable which built 

the remaining vertexes of the simplex using the Tilted Initial Simplex Method described in 

Walters [42].  The columns labeled “Optimal Value” list the values of the optimal heat exchanger 

design.  Under the headings “Starting Value” and “Optimal Value”, there are “Normalized” and 

“Actual” values.  These correspond to the dimensionless and absolute values of the variables, 

respectively.  Recall from Section 2.4, the variables were normalized during the optimization to 

remove the units from the optimization equations.   
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Appendix B.4.1 - Inlet Flue Gas Temperature: 135
o
F 

The following tables are the 4 optimization simulations performed with an inlet flue gas 

temperature of 135
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

Test name: NominalTfg1a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           157,276   

Tube Length           12   

Gas Velocity 7.5 80.0 0.500 43.8 0.620 52.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.001 7.6 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.986 1.23 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.842 0.115 0.4 

Net Annual Cost     $1,026,852 $308,419   

 

Test name: NominalTfg1b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           161,005   

Tube Length           12   

Gas Velocity 7.5 80.0 0.500 43.8 0.599 50.9 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.002 7.6 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.011 0.21 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.001 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.856 0.116 0.125 

Net Annual Cost     $1,026,852 $310,612   

 

Test name: NominalTfg1c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           161,342   

Tube Length           11.7   

Gas Velocity 7.5 80.0 0.584 49.9 0.585 49.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.768 0.110 -0.5 

Net Annual Cost     $308,376 $306,652   
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Test name NominalTfg1d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           158,472   

Tube Length           11.8   

Gas Velocity 7.5 80.0 0.584 49.9 0.602 51.1 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.006 7.8 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.789 0.112 0.125 

Net Annual Cost     $308,377 $306,641   

 

Test name: NominalTfg1c 

Flue Gas Flow rate [lbm/hr] 6,000,000 

Vapor Flow rate [lbm/hr] 403,720 

Cooling Air Flow rate [lbm/hr] 53,372,673 

Flue Gas Velocity [ft/sec] 46.1 

Cooling Air Velocity [ft/sec] 7.7 

 
Inlet Flue Gas Temperature [F] 135 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 101.7 

Exit Cooling Air Temperature [F] 94.2 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.11 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 11.7 

Gas-side Surface Area [ft2] 161,342 

Air-side Surface Area [ft2] 8,402,692 

 
Field Erected Capital Cost $5,284,960 

Annualized Capital Cost $424,079 

Annualized Operating Cost $118,717 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $236,144 

Net Annualized Cost [20 yrs @ 5%] $306,652 

Gas-Side Fan Power [kW] 235 

Air-Side Fan Power [kW] 55 

 
Sensible Heat Transfer [BTU/hr] 50,649,913 

Latent Heat Transfer [BTU/hr] 195,685,511 

Condensation Rate [lbm/hr] 187,603 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.4.2 - Inlet Flue Gas Temperature: 150
o
F 

The following tables are the 4 optimization simulations performed with an inlet flue gas 

temperature of 150
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

 

Test name: NominalTfg2a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           160,195   

Tube Length           12.1   

Gas Velocity 7.5 80.0 0.500 43.8 0.629 53.1 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.011 7.9 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.871 0.117 0.4 

Net Annual Cost     1,079,520 320,199   

 

Test name: NominalTfg2b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           143,362   

Tube Length           13   

Gas Velocity 7.5 80.0 0.500 43.8 0.774 63.6 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.029 8.7 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.004 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.998 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.002 1.76 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.844 0.115 0 

Net Annual Cost     $1,079,520 $337,348   

 

Test name: NominalTfg2c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           167,415   

Tube Length           11.9   

Gas Velocity 7.5 80.0 0.584 49.9 0.585 49.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.749 0.109 -1 

Net Annual Cost     $320,388 $320,317   
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Test name: NominalTfg2d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           165,867   

Tube Length           11.9   

Gas Velocity 7.5 80.0 0.584 49.9 0.591 50.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.006 7.7 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.778 0.111 0.125 

Net Annual Cost     $320,388 $320,045   

 

Test name: NominalTfg2d 
Flue Gas Flow rate [lbm/hr] 6,000,000 

Vapor Flow rate [lbm/hr] 403,720 

Cooling Air Flow rate [lbm/hr] 56,361,486 

Flue Gas Velocity [ft/sec] 46.1 

Cooling Air Velocity [ft/sec] 7.9 

 
Inlet Flue Gas Temperature [F] 150 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 106.2 

Exit Cooling Air Temperature [F] 94.3 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.111 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 11.9 

Gas-side Surface Area [ft2] 165,867 

Air-side Surface Area [ft2] 8,630,426 

 
Field Erected Capital Cost $5,403,208 

Annualized Capital Cost $433,567 

Annualized Operating Cost $122,386 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $235,909 

Net Annualized Cost [20 yrs @ 5%] $320,045 

Gas-Side Fan Power [kW] 233 

Air-Side Fan Power [kW] 72 

 
Sensible Heat Transfer [BTU/hr] 66,786,347 

Latent Heat Transfer [BTU/hr] 195,477,668 

Condensation Rate [lbm/hr] 187,416 

Condensation Efficiency 46% 

Inlet//Exit Moisture Concentration [F] 11/6.2 
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Appendix B.4.3 – Inlet Flue Gas Temperature: 175
o
F 

The following tables are the 4 optimization simulations performed with an inlet flue gas 

temperature of 175
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

 

Test name: NominalTfg3a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           168,608   

Tube Length           12.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.648 54.4 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.010 7.9 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.002 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.985 1.23 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.999 0.125 0.4 

Net Annual Cost     $1,161,755 $344,372   

 

Test name: NominalTfg3b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           172,491   

Tube Length           12.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.614 52.0 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.013 8.1 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.004 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.850 0.116 0.125 

Net Annual Cost     $1,161,755 $343,635   

 

Test name: NominalTfg3c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           175,747   

Tube Length           12.2   

Gas Velocity 7.5 80.0 0.584 49.9 0.596 50.7 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.003 7.6 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.781 0.111 -0.5 

Net Annual Cost     $344,546 $342,666   

 

  



256 

 

Test name: NominalTfg3d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           176,657   

Tube Length           12.2   

Gas Velocity 7.5 80.0 0.584 49.9 0.592 50.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.000 7.5 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.759 0.110 0.125 

Net Annual Cost     $344,546 $342,908   

 

Test name: NominalTfg3c 

Flue Gas Flow rate [lbm/hr] 6,000,000 

Vapor Flow rate [lbm/hr] 403,720 

Cooling Air Flow rate [lbm/hr] 58,683,398 

Flue Gas Velocity [ft/sec] 45.6 

Cooling Air Velocity [ft/sec] 7.8 

 
Inlet Flue Gas Temperature [F] 175 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 113.7 

Exit Cooling Air Temperature [F] 95.4 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.111 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 31000 

Tube Length [ft] 12.2 

Gas-side Surface Area [ft2] 175,747 

Air-side Surface Area [ft2] 9,140,335 

 
Field Erected Capital Cost $5,659,168 

Annualized Capital Cost $454,106 

Annualized Operating Cost $122,996 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $234,436 

Net Annualized Cost [20 yrs @ 5%] $342,666 

Gas-Side Fan Power [kW] 228 

Air-Side Fan Power [kW] 75 

 
Sensible Heat Transfer [BTU/hr] 93,944,326 

Latent Heat Transfer [BTU/hr] 194,206,831 

Condensation Rate [lbm/hr] 186,246 

Condensation Efficiency 46% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.2 
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Appendix B.4.4 – Inlet Flue Gas Temperature: 200
o
F 

The following tables are the 4 optimization simulations performed with an inlet flue gas 

temperature of 200
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

 

Test name: NominalTfg4a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           179,157   

Tube Length           13.4   

Gas Velocity 7.5 80.0 0.500 43.8 0.644 54.2 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.023 8.5 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.020 1.83 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.988 0.124 0.4 

Net Annual Cost     $1,246,022 $368,726   

 

Test name: NominalTfg4b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           177,019   

Tube Length           12.7   

Gas Velocity 7.5 80.0 0.500 43.8 0.649 54.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.012 8.0 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.001 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.929 0.121 0.125 

Net Annual Cost     $1,246,022 $364,298   

 

Test name: NominalTfg4c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           186,510   

Tube Length           12.4   

Gas Velocity 7.5 80.0 0.584 49.9 0.594 50.6 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.002 7.6 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.771 0.111 -0.5 

Net Annual Cost     $367,341 $365,370   
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Test name: NominalTfg4d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Gas-side Surface Area           187,092   

Tube Length           12.4   

Gas Velocity 7.5 80.0 0.584 49.9 0.592 50.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.756 0.110 0.125 

Net Annual Cost     $367,340 $365,680   

 

Test name: NominalTfg4b 

Flue Gas Flow rate [lbm/hr] 6,000,000 

Vapor Flow rate [lbm/hr] 403,720 

Cooling Air Flow rate [lbm/hr] 60,140,506 

Flue Gas Velocity [ft/sec] 48.3 

Cooling Air Velocity [ft/sec] 8.2 

 
Inlet Flue Gas Temperature [F] 200 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 121 

Exit Cooling Air Temperature [F] 96.7 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.121 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 12.7 

Gas-side Surface Area [ft2] 177,019 

Air-side Surface Area [ft2] 9,257,933 

 
Field Erected Capital Cost $5,691,934 

Annualized Capital Cost $456,735 

Annualized Operating Cost $140,205 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $232,642 

Net Annualized Cost [20 yrs @ 5%] $364,298 

Gas-Side Fan Power [kW] 255 

Air-Side Fan Power [kW] 77 

 
Sensible Heat Transfer [BTU/hr] 121,610,715 

Latent Heat Transfer [BTU/hr] 192,668,389 

Condensation Rate [lbm/hr] 184,821 

Condensation Efficiency 46% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.3 
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Appendix B.4.5 – Inlet Flue Gas Temperature: 225
o
F 

The following tables are the 4 optimization simulations performed with an inlet flue gas 

temperature of 225
o
F, and the details of the ACC‟s design for the best of the four optimizations. 

Test name: NominalTfg225a 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
179,157 

 
Tube Length 

     
13.4 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.639 53.8 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.027 8.6 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.002 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.965 1.21 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.4 

Net Annual Cost 
  

$1,331,823 $389,146 
 

 

Test name: NominalTfg225b 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
177,019 

 
Tube Length 

     
12.7 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.686 57.2 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.029 8.7 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.002 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.919 0.120 0.125 

Net Annual Cost 
  

$1,331,823 $388,761 
 

 

Test name: NominalTfg4c 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
186,510 

 
Tube Length 

     
12.4 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.585 49.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.748 0.109 -0.5 

Net Annual Cost 
  

$388,645 $388,486 
 

 

  



260 

 

Test name: NominalTfg4d 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
196,499 

 
Tube Length 

     
12.6 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.592 50.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.009 7.9 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.002 1.76 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.788 0.112 0.125 

Net Annual Cost 
  

$388,645 $388,339 
 

 

 

Test name: OptimalTfg_225d 

Flue Gas Flow rate [lbm/hr] 6,000,000 

Vapor Flow rate [lbm/hr] 403,720 

Cooling Air Flow rate [lbm/hr] 67,243,928 

Flue Gas Velocity [ft/sec] 44.0 

Cooling Air Velocity [ft/sec] 8.0 

 
Inlet Flue Gas Temperature [F] 225 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 123.8 

Exit Cooling Air Temperature [F] 96.5 

 
Tube Inner Diameter [inch] 1.76 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.112 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 34000 

Tube Length [ft] 12.6 

Gas-side Surface Area [ft2] 196,499 

Air-side Surface Area [ft2] 10,183,960 

 
Field Erected Capital Cost $6,187,726 

Annualized Capital Cost $496,519 

Annualized Operating Cost $125,168 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $233,348 

Net Annualized Cost [20 yrs @ 5%] $388,339 

Gas-Side Fan Power [kW] 281 

Air-Side Fan Power [kW] 89 

 
Sensible Heat Transfer [BTU/hr] 149,564,528 

Latent Heat Transfer [BTU/hr] 193,267,297 

Condensation Rate [lbm/hr] 185,381 

Condensation Efficiency 46% 

Inlet/Exit Moisture Concentration [% wet-basis] 11/6.1 
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Appendix B.5 – Details of the Optimization Simulations for the Cases that Included a 

Wet FGD System 

Appendix B.5 tabulate the optimization results and initial simplexes for the simulations 

discussed in Section 5.4.1, which discussed the effects of increasing the condensation efficiency. 

Each table represents one optimization simulation.  The variables optimized are listed in 

the table and the range of each variable is given in the second and third columns.  The columns 

labeled “Starting Value” list the variables used as the initial guess, which was one vertex of the 

initial simplex.  The column labeled “Si” is the parameter assigned to each variable which built 

the remaining vertexes of the simplex using the Tilted Initial Simplex Method described in 

Walters [42].  The columns labeled “Optimal Value” list the values of the optimal heat exchanger 

design.  Under the headings “Starting Value” and “Optimal Value”, there are “Normalized” and 

“Actual” values.  These correspond to the dimensionless and absolute values of the variables, 

respectively.  Recall from Section 2.4, the variables were normalized during the optimization to 

remove the units from the optimization equations.   

Appendix B.5.1 – Inlet Flue Gas Temperature of 128
o
F and 25 Percent Condensation 

Efficiency in the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: Nominal128_25a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           45,162   

Tube Length           3.1   

Gas Velocity 7.5 80.0 0.500 43.8 0.530 45.9 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.089 11.3 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.4 

Net Annual Cost   $298,225 $71,986   
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Test name: Nominal128_25b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           56,223   

Tube Length           8.2   

Gas Velocity 7.5 80.0 0.500 43.8 0.551 47.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.202 16.1 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.998 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.448 3.65 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.503 0.094 0.125 

Net Annual Cost   $298,225 $109,290   

 

Test name: Nominal128_25c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           50,224   

Tube Length           3   

Gas Velocity 7.5 80.0 0.584 49.9 0.453 40.3 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.045 9.4 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.619 0.101 -0.5 

Net Annual Cost   $81,148 $68,050   

 

Test name: Nominal128_25d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           50,087   

Tube Length           3   

Gas Velocity 7.5 80.0 0.584 49.9 0.454 40.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.038 9.1 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.586 0.099 0.125 

Net Annual Cost   $81,148 $67,892   
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Test name: Nominal128_25d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 20,884,768 

Flue Gas Velocity [ft/sec] 39.0 

Cooling Air Velocity [ft/sec] 9.4 

  

Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 116.5 

Exit Cooling Air Temperature [F] 95.1 

  

Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.099 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 37000 

Tube Length [ft] 3 

Gas-side Surface Area [ft2] 50,087 

Air-side Surface Area [ft2] 2,597,166 

  

Field Erected Capital Cost $2,073,117 

Annualized Capital Cost $166,352 

Annualized Operating Cost $53,097 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $53,097 

Net Annualized Cost [20 yrs @ 5%] $67,892 

Gas-Side Fan Power [kW] 84 

Air-Side Fan Power [kW] 27 

  

Sensible Heat Transfer [BTU/hr] 15,932,526 

Latent Heat Transfer [BTU/hr] 125,116,670 

Condensation Rate [lbm/hr] 120,403 

Condensation Efficiency 23% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/11.5 
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Appendix B.5.2 – Inlet Flue Gas Temperature of 128
o
F and 40 Percent Condensation 

Efficiency in the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

 

Test name: Nominal128_40a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           90,523   

Tube Length           7.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.596 50.7 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.608 33.3 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.994 1.24 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.044 1.94 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.4 

Net Annual Cost   $570,133 $123,197   

 

Test name: Nominal128_40b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           88,167   

Tube Length           7.4   

Gas Velocity 7.5 80.0 0.500 43.8 0.677 56.6 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.106 12.0 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.724 0.90 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.781 0.111 0.125 

Net Annual Cost   $570,133 $143,057   

 

Test name: Nominal128_40c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           91,882   

Tube Length           6.6   

Gas Velocity 7.5 80.0 0.584 49.9 0.572 48.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.015 8.1 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.001 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.834 0.115 -0.5 

Net Annual Cost   $119,228 $116,372   
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Test name: Nominal128_40d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           94,705   

Tube Length           6.3   

Gas Velocity 7.5 80.0 0.584 49.9 0.523 45.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.029 8.7 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.784 0.111 0.125 

Net Annual Cost   $119,228 $113,574   

 

Test name: Nominal128_40d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 36,241,187 

Flue Gas Velocity [ft/sec] 43.0 

Cooling Air Velocity [ft/sec] 9.0 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 108.6 

Exit Cooling Air Temperature [F] 93.9 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.111 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 33000 

Tube Length [ft] 6.3 

Gas-side Surface Area [ft2] 94,705 

Air-side Surface Area [ft2] 4,930,719 

 
Field Erected Capital Cost $3,450,974 

Annualized Capital Cost $276,915 

Annualized Operating Cost $82,873 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $246,215 

Net Annualized Cost [20 yrs @ 5%] $113,574 

Gas-Side Fan Power [kW] 143 

Air-Side Fan Power [kW] 37 

 
Sensible Heat Transfer [BTU/hr] 26,941,208 

Latent Heat Transfer [BTU/hr] 203,435,198 

Condensation Rate [lbm/hr] 195,603 

Condensation Efficiency 37% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/9.6 
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Appendix B.5.3 – Inlet Flue Gas Temperature of 128
o
F and 50% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: Nominal128_saturated 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
127,494 

 
Tube Length 

     
9.9 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.613 52.0 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.040 9.2 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.006 1.78 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.908 0.119 0.4 

Net Annual Cost 
 

$778,637 $164,734 
 

 

Test name: Nominal128_saturated_b 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
133,000 

 
Tube Length 

     
9.9 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.583 49.8 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.017 8.2 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.006 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.004 1.77 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.923 0.120 0.125 

Net Annual Cost 
 

$778,637 $164,593 
 

 

Test name: Nominal128_saturated_c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           134,048   

Tube Length           9.8   

Gas Velocity 7.5 80.0 0.584 49.9 0.578 49.4 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.003 7.6 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.001 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.759 0.110 -0.5 

Net Annual Cost   $164,159 $163,543   
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Test name: Nominal128_saturated_d 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
130,636 

 
Tube Length 

     
9.8 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.596 50.7 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.017 8.2 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.831 0.114 0.125 

Net Annual Cost 
 

$164,160 $162,861 
 

 

Test name: Nominal128_saturated_d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 46,479,753 

Flue Gas Velocity [ft/sec] 47.3 

Cooling Air Velocity [ft/sec] 8.4 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 105.4 

Exit Cooling Air Temperature [F] 101 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.114 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 9.8 

Gas-side Surface Area [ft2] 130,636 

Air-side Surface Area [ft2] 6,800,863 

 
Field Erected Capital Cost $4,463,680 

Annualized Capital Cost $358,177 

Annualized Operating Cost $114,525 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $309,840 

Net Annualized Cost [20 yrs @ 5%] $162,862 

Gas-Side Fan Power [kW] 220 

Air-Side Fan Power [kW] 60 

 
Sensible Heat Transfer [BTU/hr] 34,739,873 

Latent Heat Transfer [BTU/hr] 256,059,554 

Condensation Rate [lbm/hr] 246,150 

Condensation Efficiency 46% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/8.3 
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Appendix B.5.4 – Inlet Flue Gas Temperature of 128
o
F and 60% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

 

Test name: Nominal128_saturated_60a 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
193,783 

 
Tube Length 

     
14.2 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.579 49.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.999 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.002 1.76 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.801 0.113 0.4 

Net Annual Cost 
 

$1,058,680 $241,259 
 

 

Test name: Nominal128_saturated_60b 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
178,832 

 
Tube Length 

     
15.9 

 
Gas Velocity 7.5 80.0 0.500 43.8 0.712 59.1 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.025 8.6 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.902 1.13 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.009 1.79 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.346 0.084 0.125 

Net Annual Cost 
 

$1,058,680 $264,253 
 

 

Test name: Nominal128_saturated_60c 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
190,362 

 
Tube Length 

     
14.1 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.591 50.3 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.003 7.6 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.760 0.110 -0.5 

Net Annual Cost 
 

$241,873 $240,946 
 

  



269 

 

Test name: Nominal128_saturated_60d 

 
Range Starting Value Optimal Value Si 

 
Min Max Normalized Actual Normalized Actual 

 
Surface Area 

     
190,136 

 
Tube Length 

     
14.2 

 
Gas Velocity 7.5 80.0 0.584 49.9 0.592 50.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.003 7.6 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.757 0.110 0.125 

Net Annual Cost 
 

$241,873 $240,746 
 

 

Test name: Nominal128_saturated_60d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 63,700,259 

Flue Gas Velocity [ft/sec] 46.2 

Cooling Air Velocity [ft/sec] 7.8 

 Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 98.8 

Exit Cooling Air Temperature [F] 98.3 

 Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.11 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 14.2 

Gas-side Surface Area [ft2] 190,136 

Air-side Surface Area [ft2] 9,899,044 

 Field Erected Capital Cost $6,026,921 

Annualized Capital Cost $483,616 

Annualized Operating Cost $135,538 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $378,408 

Net Annualized Cost [20 yrs @ 5%] $240,746 

Gas-Side Fan Power [kW] 262 

Air-Side Fan Power [kW] 82 

 Sensible Heat Transfer [BTU/hr] 44,181,735 

Latent Heat Transfer [BTU/hr] 312,946,275 

Condensation Rate [lbm/hr] 300,623 

Condensation Efficiency 56% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/6.9 
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Appendix B.5.5 – Inlet Flue Gas Temperature of 128
o
F and 70% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: Nominal128_saturated_69a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           263,812   

Tube Length           20.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.617 52.2 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.019 8.3 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.987 1.23 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.829 0.114 0.4 

Net Annual Cost   $1,464,009 $405,546   

 

Test name: Nominal128_saturated_69b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           263,271   

Tube Length           22.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.689 57.4 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.047 0.24 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.999 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.870 0.117 0.125 

Net Annual Cost   $1,464,009 $446,627   

 

Test name: Nominal128_saturated_69c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           272,946   

Tube Length           20.2   

Gas Velocity 7.5 80.0 0.584 49.9 0.588 50.1 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.6 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.749 0.109 -0.5 

Net Annual Cost   $405,740 $404,209   
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Test name: Nominal128_saturated_69d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           271,240   

Tube Length           20.2   

Gas Velocity 7.5 80.0 0.584 49.9 0.593 50.5 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.005 7.7 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.758 0.110 0.125 

Net Annual Cost   $405,740 $404,031   

 

Test name: Nominal128_saturated_69d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 92,016,091 

Flue Gas Velocity [ft/sec] 45.3 

Cooling Air Velocity [ft/sec] 7.8 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 91.3 

Exit Cooling Air Temperature [F] 94.1 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.11 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 20.2 

Gas-side Surface Area [ft2] 271,240 

Air-side Surface Area [ft2] 14,125,836 

 
Field Erected Capital Cost $8,428,241 

Annualized Capital Cost $676,304 

Annualized Operating Cost $172,380 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $444,653 

Net Annualized Cost [20 yrs @ 5%] $404,031 

Gas-Side Fan Power [kW] 324 

Air-Side Fan Power [kW] 118 

 
Sensible Heat Transfer [BTU/hr] 54,633,017 

Latent Heat Transfer [BTU/hr] 368,071,326 

Condensation Rate [lbm/hr] 353,251 

Condensation Efficiency 66% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/5.4 
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Appendix B.5.6 - Inlet Flue Gas Temperature of 128
o
F and 75% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: Nominal128_saturated_75a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           354,471   

Tube Length           27.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.631 53.2 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.015 8.1 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.882 0.118 0.4 

Net Annual Cost   $1,944,311 $647,151   

 

Test name: Nominal128_saturated_75b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           343,261   

Tube Length           31.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.748 61.7 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.049 0.24 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.997 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.890 0.118 0.125 

Net Annual Cost   $1,944,311 $697,310   

 

Test name: Nominal128_saturated_75c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           361,542   

Tube Length           27.5   

Gas Velocity 7.5 80.0 0.584 49.9 0.607 51.5 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.018 8.3 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.003 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.995 1.24 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 1.000 0.125 -0.5 

Net Annual Cost   $651,923 $649,366   
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Test name: Nominal128_saturated_75d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           372,247   

Tube Length           27.4   

Gas Velocity 7.5 80.0 0.584 49.8 0.585 49.9 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.6 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.750 0.109 0.125 

Net Annual Cost   $651,923 $651,486   

 

Test name: Nominal128_saturated_75a 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 123,503,334 

Flue Gas Velocity [ft/sec] 46.8 

Cooling Air Velocity [ft/sec] 8.3 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 75 

Exit Flue Gas Temperature [F] 85.3 

Exit Cooling Air Temperature [F] 90.8 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.118 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 28000 

Tube Length [ft] 27.9 

Gas-side Surface Area [ft2] 354,471 

Air-side Surface Area [ft2] 18,517,992 

 
Field Erected Capital Cost $11,230,508 

Annualized Capital Cost $901,165 

Annualized Operating Cost $237,003 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $491,020 

Net Annualized Cost [20 yrs @ 5%] $647,148 

Gas-Side Fan Power [kW] 440 

Air-Side Fan Power [kW] 158 

 
Sensible Heat Transfer [BTU/hr] 62,959,491 

Latent Heat Transfer [BTU/hr] 406,686,130 

Condensation Rate [lbm/hr] 390,086 

Condensation Efficiency 73% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/4.3 
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Appendix B.5.7 – Inlet Flue Gas Temperature of 128
o
F and 25% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: 60_25a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           38,655   

Tube Length           2.6   

Gas Velocity 7.5 80.0 0.500 43.8 0.531 46.0 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.107 12.0 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.908 1.14 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.4 

Net Annual Cost   $211,756 $44,487   

 

Test name: 60_25b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           44,303   

Tube Length           2.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.419 37.8 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.068 10.4 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.911 1.14 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.002 1.76 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.172 0.073 0.125 

Net Annual Cost   $211,756 $40,612   

 

Test name: 60_25c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           42,867   

Tube Length           2.5   

Gas Velocity 7.5 80.0 0.584 49.9 0.437 39.2 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.027 8.7 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.996 1.24 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.557 0.097 -0.5 

Net Annual Cost   $49,777 $37,593   
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Test name: 60_25d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           43,232   

Tube Length           2.5   

Gas Velocity 7.5 80.0 0.584 49.9 0.433 38.9 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.037 9.1 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.792 0.112 0.125 

Net Annual Cost   $49,777 $37,596   

 

Test name: 60_saturated_25c 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 17,456,910 

Flue Gas Velocity [ft/sec] 37.8 

Cooling Air Velocity [ft/sec] 9.0 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 116.7 

Exit Cooling Air Temperature [F] 94.9 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.09734 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 37,000 

Tube Length [ft] 2.5 

Gas-side Surface Area [ft2] 42,867 

Air-side Surface Area [ft2] 2,208,438 

 
Field Erected Capital Cost $1,830,375 

Annualized Capital Cost $146,874 

Annualized Operating Cost $45,572 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $154,853 

Net Annualized Cost [20 yrs @ 5%] $37,593 

Gas-Side Fan Power [kW] 86 

Air-Side Fan Power [kW] 27 

 
Sensible Heat Transfer [BTU/hr] 18,157,076 

Latent Heat Transfer [BTU/hr] 128,483,817 

Condensation Rate [lbm/hr] 123,022 

Condensation Efficiency 23% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/11.5 
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Appendix B.5.8 - Inlet Flue Gas Temperature of 128
o
F and 40% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

 

Test name: 60_40a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           78,318   

Tube Length           6.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.549 47.3 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.063 10.2 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.063 2.02 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.659 0.104 0.4 

Net Annual Cost   $381,563 $69,243   

 

Test name: 60_40b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           74,749   

Tube Length           5.3   

Gas Velocity 7.5 80.0 0.500 43.8 0.563 48.3 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.046 9.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.953 1.19 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.001 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.947 0.122 0.125 

Net Annual Cost   $381,563 $62,556   

 

Test name: 60_40c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           80,128   

Tube Length           5.3   

Gas Velocity 7.5 80.0 0.584 49.9 0.518 45.0 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.007 7.8 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.984 1.23 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.004 1.77 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.582 0.099 -0.5 

Net Annual Cost   $64,517 $61,559   
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Test name: 60_40d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           77,000   

Tube Length           5.3   

Gas Velocity 7.5 80.0 0.584 49.9 0.534 46.2 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.020 8.4 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.768 0.111 0.125 

Net Annual Cost   $64,517 $60,075   

 

Test name: 60_saturated_40d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 29,058,730 

Flue Gas Velocity [ft/sec] 43.6 

Cooling Air Velocity [ft/sec] 8.6 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 108.6 

Exit Cooling Air Temperature [F] 93.9 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.111 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 32000 

Tube Length [ft] 5.3 

Gas-side Surface Area [ft2] 77,000 

Air-side Surface Area [ft2] 4,011,053 

 
Field Erected Capital Cost $2,924,394 

Annualized Capital Cost $234,661 

Annualized Operating Cost $74,301 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $248,887 

Net Annualized Cost [20 yrs @ 5%] $60,075 

Gas-Side Fan Power [kW] 143 

Air-Side Fan Power [kW] 37 

 
Sensible Heat Transfer [BTU/hr] 30,279,631 

Latent Heat Transfer [BTU/hr] 206,681,937 

Condensation Rate [lbm/hr] 197,726 

Condensation Efficiency 37% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/9.6 
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Appendix B.5.9 – Inlet Flue Gas Temperature of 128
o
F and 50% Condensation Efficiency in 

the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: 60_saturated 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           107,671   

Tube Length           7.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.580 49.6 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.009 7.9 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.801 0.113 0.4 

Net Annual Cost   $549,740 $87,231   

 

Test name: 60_saturated_b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           98,011   

Tube Length           8.1   

Gas Velocity 7.5 80.0 0.500 43.8 0.668 56.0 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.077 10.8 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 0.906 1.13 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.125 

Net Annual Cost   $549,740 $97,627   

 

Test name: 60_saturated_c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           107,059   

Tube Length           7.9   

Gas Velocity 7.5 80.0 0.584 49.9 0.584 49.8 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.749 0.109 -0.5 

Net Annual Cost   $87,379 $87,380   
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Test name: 60_saturated_d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           107,895   

Tube Length           7.9   

Gas Velocity 7.5 80.0 0.584 49.9 0.578 49.4 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.009 7.9 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.001 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.781 0.111 0.125 

Net Annual Cost   $87,380 $86,600   

 

 

Test name: 60_saturated_50d 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 38,351,833 

Flue Gas Velocity [ft/sec] 46.0 

Cooling Air Velocity [ft/sec] 8.2 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 102.3 

Exit Cooling Air Temperature [F] 92.7 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.111 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 30000 

Tube Length [ft] 7.9 

Gas-side Surface Area [ft2] 107,895 

Air-side Surface Area [ft2] 5,616,079 

 
Field Erected Capital Cost $3,830,396 

Annualized Capital Cost $307,361 

Annualized Operating Cost $95,399 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $315,439 

Net Annual Cost $95,400 

Gas-Side Fan Power [kW] 188 

Air-Side Fan Power [kW] 49 

 
Sensible Heat Transfer [BTU/hr] 39,429,414 

Latent Heat Transfer [BTU/hr] 262,061,802 

Condensation Rate [lbm/hr] 250,598 

Condensation Efficiency 47% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/8.2 
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Appendix B.5.10 - Inlet Flue Gas Temperature of 128
o
F and 60% Condensation Efficiency 

in the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

 

Test name: 60_saturated_60a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           148,238   

Tube Length           11   

Gas Velocity 7.5 80.0 0.500 43.8 0.591 50.3 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.002 7.6 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.907 0.119 0.4 

Net Annual Cost   $731,121 $129,745   

 

Test name: 60_saturated_60b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           150,407   

Tube Length           16   

Gas Velocity 7.5 80.0 0.500 43.8 0.649 54.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.072 10.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.133 2.32 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.791 0.112 0.125 

Net Annual Cost   $731,121 $159,952   

 

Test name: 60_saturated_60c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           149,420   

Tube Length           11   

Gas Velocity 7.5 80.0 0.584 49.9 0.585 49.9 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.000 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.747 0.109 -0.5 

Net Annual Cost   $130,375 $130,199   
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Test name: 60_saturated_60d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           147,681   

Tube Length           11   

Gas Velocity 7.5 80.0 0.584 49.9 0.593 50.5 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.007 7.8 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.784 0.112 0.125 

Net Annual Cost   $130,375 $130,005   

 

Test name: 60_saturated_60a 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 49,252,766 

Flue Gas Velocity [ft/sec] 46.0 

Cooling Air Velocity [ft/sec] 7.8 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 95.5 

Exit Cooling Air Temperature [F] 90.8 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.119 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 11 

Gas-side Surface Area [ft2] 148,238 

Air-side Surface Area [ft2] 7,749,020 

  
 

Field Erected Capital Cost $4,938,680 

Annualized Capital Cost $396,292 

Annualized Operating Cost $113,375 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $379,922 

Net Annualized Cost [20 yrs @ 5%] $129,745 

Gas-Side Fan Power [kW] 225 

Air-Side Fan Power [kW] 63 

  
 

Sensible Heat Transfer [BTU/hr] 49,215,407 

Latent Heat Transfer [BTU/hr] 315,866,487 

Condensation Rate [lbm/hr] 301,826 

Condensation Efficiency 57% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/6.8 
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Appendix B.5.11 - Inlet Flue Gas Temperature of 128
o
F and 70% Condensation Efficiency 

in the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: 60_saturated_69a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           194,333   

Tube Length           15.2   

Gas Velocity 7.5 80.0 0.500 43.8 0.629 53.1 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.010 7.9 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.847 0.115 0.4 

Net Annual Cost   $967,725 $198,949   

 

Test name: 60_saturated_69b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           198,034   

Tube Length           16.2   

Gas Velocity 7.5 80.0 0.500 43.8 0.661 55.4 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.057 0.25 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.862 0.116 0.125 

Net Annual Cost   $967,725 $217,732   

 

Test name: 60_saturated_69c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           203,659   

Tube Length           15   

Gas Velocity 7.5 80.0 0.584 49.9 0.586 50.0 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.000 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.990 1.24 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.723 0.108 -0.5 

Net Annual Cost   $201,288 $200,605   
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Test name: 60_saturated_69d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           197,648   

Tube Length           15.1   

Gas Velocity 7.5 80.0 0.584 49.9 0.610 51.7 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.011 8.0 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.795 0.112 0.125 

Net Annual Cost   $201,288 $199,949   

 

Test name: 60_saturated_69a 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 68,582,018 

Flue Gas Velocity [ft/sec] 47.6 

Cooling Air Velocity [ft/sec] 8.2 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 87.6 

Exit Cooling Air Temperature [F] 86.1 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.115 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 28000 

Tube Length [ft] 15.2 

Gas-side Surface Area [ft2] 194,333 

Air-side Surface Area [ft2] 10,143,477 

 
Field Erected Capital Cost $6,133,105 

Annualized Capital Cost $492,136 

Annualized Operating Cost $151,263 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $444,450 

Net Annualized Cost [20 yrs @ 5%] $198,949 

Gas-Side Fan Power [kW] 296 

Air-Side Fan Power [kW] 88 

 
Sensible Heat Transfer [BTU/hr] 60,261,723 

Latent Heat Transfer [BTU/hr] 369,883,698 

Condensation Rate [lbm/hr] 353,090 

Condensation Efficiency 66% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/5.4 
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Appendix B.5.12 – Inlet Flue Gas Temperature of 128
o
F and 75% Condensation Efficiency 

in the ACC 

The following tables list the values of the variables included in the optimization 

simulations for the cases when there was an FGD system.  The last table in the section lists the 

details for the best of the four optimizations.   

Test name: 60_saturated_75a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           239,351   

Tube Length           19.5   

Gas Velocity 7.5 80.0 0.500 43.8 0.657 55.1 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.014 8.1 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.965 1.21 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.001 1.75 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 1.000 0.125 0.4 

Net Annual Cost   $1,197,668 $302,149   

 

Test name: 60_saturated_75b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           250,727   

Tube Length           20.1   

Gas Velocity 7.5 80.0 0.500 43.8 0.644 54.2 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.000 7.5 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.054 0.24 -0.125 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.000 1.75 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.871 0.117 0.125 

Net Annual Cost   $1,197,668 $324,796   

 

Test name: 60_saturated_75c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           251,996   

Tube Length           19   

Gas Velocity 7.5 80.0 0.584 49.9 0.600 51.0 -0.5 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.5 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.5 

Fin Length 0.00 1.25 1.000 1.25 0.998 1.25 -0.5 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.5 

Fin Thickness 0.063 0.125 0.749 0.109 0.743 0.109 -0.5 

Net Annual Cost   $301,487 $300,223   
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Test name: 60_saturated_75d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           253,486   

Tube Length           18.9   

Gas Velocity 7.5 80.0 0.584 49.8 0.593 50.5 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.001 7.5 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.000 1.75 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.749 0.109 0.125 

Net Annual Cost   $301,487 $300,524   

 

Test name: 60_saturated_75c 

Flue Gas Flow Rate [lbm/hr] 6,000,000 

Vapor Flow Rate [lbm/hr] 532,881 

Cooling Air Flow Rate [lbm/hr] 85,963,979 

Flue Gas Velocity [ft/sec] 45.0 

Cooling Air Velocity [ft/sec] 7.7 

 
Inlet Flue Gas Temperature [F] 128 

Inlet Cooling Air Temperature [F] 60 

Exit Flue Gas Temperature [F] 81.6 

Exit Cooling Air Temperature [F] 83 

 
Tube Inner Diameter [inch] 1.75 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.109 

Number of Tube Rows 2 

Transverse Tube Spacing [inches] 4.65 

Longitudinal Tube Spacing [inches] 4.65 

Number of Tubes 29000 

Tube Length [ft] 19 

Gas-side Surface Area [ft2] 251,996 

Air-side Surface Area [ft2] 13,084,190 

 
Field Erected Capital Cost $7,829,443 

Annualized Capital Cost $628,255 

Annualized Operating Cost $160,120 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $488,152 

Net Annualized Cost [20 yrs @ 5%] $300,223 

Gas-Side Fan Power [kW] 309 

Air-Side Fan Power [kW] 88 

 
Sensible Heat Transfer [BTU/hr] 68,535,549 

Latent Heat Transfer [BTU/hr] 406,516,098 

Condensation Rate [lbm/hr] 387,808 

Condensation Efficiency 73% 

Inlet/Exit Moisture Concentration [% wet-basis] 14.4/4.4 
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Appendix B.6 - Details of the Optimization Simulations for the Cases in which the ACC 

was used to Pre-Heat Combustion Air. 

Appendix B.6 tabulates the optimization results and initial simplexes for the simulations 

discussed in Section 6.2, which discussed the effects of using the ACC to pre-heat combustion 

air.  In these designs, there was also a wet flue gas desulphurization system.  The inlet flue gas 

temperatures studied were 128
o
F and 135

o
F.  In both cases, the flue gas was saturated with water 

vapor. 

Each table in this section of the appendix represents one optimization simulation.  The 

variables optimized are listed in the table and the range of each variable is given in the second 

and third columns.  The columns labeled “Starting Value” list the variables used as the initial 

guess, which was one vertex of the initial simplex.  The column labeled “Si” is the parameter 

assigned to each variable which built the remaining vertexes of the simplex using the Tilted 

Initial Simplex Method described in Walters [42].  The columns labeled “Optimal Value” list the 

values of the optimal heat exchanger design.  Under the headings “Starting Value” and “Optimal 

Value”, there are “Normalized” and “Actual” values.  These correspond to the dimensionless and 

absolute values of the variables, respectively.  Recall from Section 2.4, the variables were 

normalized during the optimization to remove the units from the optimization equations.   

Appendix B.6.1 – Increasing the Combustion Air Temperature from 80 to 125 
o
F when the 

Inlet Flue Gas Temperature is 128
o
F. 

The following tables list the values of the variables included in the optimization 

simulations for the cases when the combustion air temperature was increased from 80
o
F to 125

o
F 

that entered the ACC at 128
o
F and saturated.  The last table in the section lists the details for the 

best of the four optimizations. 
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optimalAPH_125a 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           75,094   

Tube Length           30   

Delta T Combustion Air           45   

Gas Velocity 7.5 80.0 0.500 43.8 0.651 54.7 0.4 

Air Velocity 7.5 50.0 0.500 28.8 0.128 12.9 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.002 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 1.000 1.25 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.220 2.68 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.659 0.104 0.4 

Net Annual Cost   $802,986 $274,394   

 

optimalAPH_125b 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           93,156   

Tube Length           30   

Delta T Combustion Air           45   

Gas Velocity 7.5 80.0 0.500 43.8 0.442 39.5 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.135 13.2 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 0.125 

Fin Length 0.00 1.25 0.500 0.63 0.793 0.99 -0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.723 4.82 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.233 0.077 0.125 

Net Annual Cost   $802,986 $304,486   

 

optimalAPH_125c 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           81,300   

Tube Length           30   

Delta T Combustion Air           45   

Gas Velocity 7.5 80.0 0.584 49.8 0.684 57.1 0.125 

Air Velocity 7.5 50.0 0.001 7.5 0.024 8.5 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.017 0.21 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.999 1.25 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.044 1.94 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.724 0.108 0.125 

Net Annual Cost   $295,265 $281,120   
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optimalAPH_125d 

  Range Starting Value Optimal Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           80,955   

Tube Length           30   

Delta T Combustion Air           45   

Gas Velocity 7.5 80.0 0.584 49.8 0.580 49.5 -0.4 

Air Velocity 7.5 50.0 0.001 7.5 0.019 8.3 0.4 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.4 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.4 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.136 2.33 0.4 

Fin Thickness 0.063 0.125 0.749 0.109 0.801 0.113 -0.4 

Net Annual Cost   $295,266 $267,933   

 

optimalAPH_125d 

Flue Gas Flow Rate [ lbm / hr ] 1,545,807 

Vapor Flow Rate [ lbm / hr ] 139,751 

Cooling Air Flow Rate [ lbm / hr ] 5,300,000 

Flue Gas Velocity [ft/sec] 47.2 

Cooling Air Velocity [ft/sec] 8.7 

  

Inlet Flue Gas Temperature [ oF ] 128 

Exit Flue Gas Temperature [oF] 113 

Inlet Cooling Air Temperature [ oF ] 80 

Exit Cooling Air Temperature [oF[ 125 

  Inlet Moisture Concentration [% wet basis] 14.4 

Exit Moisture Concentration [% wet basis] 9.8 

  

Tube Inner Diameter [inches] 2.33 

Tube Thickness [inches] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.113 

Number of Tube Rows in the direction of the Air Flow 5 

Transverse Tube Spacing [inches] 5.23 

Longitudinal Tube Spacing [inches] 5.23 

Number of Tubes 4425 

Tube Length [ft] 30 

Gas-Side Surface Area [ft2] 80,955 

Air-Side Surface Area [ft2] 1,873,582 

  Air-Side Fan Power [kW]  10.8 

Additional Gas-Side Fan Power [kW] 89 

  

Field Erected Capital Cost $3,500,531 

Annualized Capital Cost $280,892 

Annualized Operating Cost $49,372 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $62,331 

Estimated Annual Fuel Savings @ $50 per ton $234,000 

Net Annualized Cost [20 yrs @ 5%] $33,933 

  

Sensible Heat Transfer [BTU/hr] 6,177,588 

Latent Heat Transfer [BTU/hr] 51,127,139 

Condensation Rate [ lbm / hr ] 49,518 

Condensation Efficiency of Processed Glue Gas 35% 

Condensation Efficiency of Total Flue Gas 9.6% 
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Appendix B.6.2 – Increasing the Combustion Air Temperature from 80 to 132
o
F when the 

Inlet Flue Gas Temperature is 135
o
F. 

The following tables list the values of the variables included in the optimization 

simulations for the cases when the combustion air temperature was increased from 80
o
F to 132

o
F 

with a flue gas that entered the ACC at 135
o
F and saturated. The last table in the section lists the 

details for the best of the four optimizations. 

optimalAPH_135a 

  Range Starting Value Optimized Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           58,023   

Tube Length           30   

Delta T Combustion Air           51.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.652 54.8 0.4 

Air Velocity 7.5 50.0 0.500 28.8 0.113 12.3 -0.4 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 -0.4 

Fin Length 0.00 1.25 0.500 0.63 0.996 1.24 0.4 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.421 3.54 -0.4 

Fin Thickness 0.063 0.125 0.500 0.094 0.999 0.125 0.4 

Net Annual Cost   $797,070 $201,447   

 

optimalAPH_135b 

  Range Starting Value Optimized Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           87,619   

Tube Length           30   

Delta T Combustion Air           51.9   

Gas Velocity 7.5 80.0 0.500 43.8 0.374 34.6 0.125 

Air Velocity 7.5 50.0 0.500 28.8 0.068 10.4 -0.125 

Fin Pitch 0.20 1.00 0.500 0.60 0.000 0.20 0.125 

Fin Length 0.00 1.25 0.500 0.63 0.680 0.85 -0.125 

Inner Tube Diameter 1.75 6.00 0.500 3.88 0.447 3.65 -0.125 

Fin Thickness 0.063 0.125 0.500 0.094 0.803 0.113 0.125 

Net Annual Cost   $797,070 $253,890   

 

optimalAPH_135c 

  Range Starting Value Optimized Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area            69,923   

Tube Length           30   

Delta T Combustion Air            51.9   

Gas Velocity 7.5 80.0 0.584 49.8 0.712 59.1 0.125 

Air Velocity 7.5 50.0 0.068 10.4 0.092 11.4 0.125 

Fin Pitch 0.20 1.00 0.000 0.20 0.001 0.20 0.125 

Fin Length 0.00 1.25 1.000 1.25 0.956 1.20 -0.125 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.043 1.93 0.125 

Fin Thickness 0.063 0.125 0.749 0.109 0.780 0.111 0.125 

Net Annual Cost   $270,018 $246,519   
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optimalAPH_135d 

  Range Starting Value Optimized Value Si 

  Min Max Normalized Actual Normalized Actual   

Surface Area           81,012   

Tube Length           30   

Delta T Combustion Air           51.9   

Gas Velocity 7.5 80.0 0.584 49.8 0.558 48.0 -0.4 

Air Velocity 7.5 50.0 0.001 7.5 0.013 8.0 0.4 

Fin Pitch 0.20 1.00 0.000 0.20 0.000 0.20 0.4 

Fin Length 0.00 1.25 1.000 1.25 1.000 1.25 -0.4 

Inner Tube Diameter 1.75 6.00 0.000 1.75 0.051 1.96 0.4 

Fin Thickness 0.063 0.125 0.749 0.109 0.743 0.109 -0.4 

Net Annual Cost   $281,983 $250,573   

 

 

optimalAPH_135a 

Flue Gas Flow Rate [lbm/hr] 1,823,864 

Vapor Flow Rate [lbm/hr] 201,994 

Cooling Air Flow Rate [lbm/hr] 5,300,000 

Flue Gas Velocity [ft/sec] 52.7 

Cooling Air Velocity [ft/sec] 12.9 

  

Inlet Flue Gas Temperature [oF] 135 

Exit Flue Gas Temperature [oF] 123 

Inlet Cooling Air Temperature [F] 80 

Exit Cooling Air Temperature [oF] 132 

  Inlet Moisture Concentration [% wet basis] 17.4 

Exit Moisture Concentration [% wet basis] 13.0 

  

Tube Inner Diameter [inch] 3.54 

Tube Thickness [inch] 0.2 

Fin Length [inches] 1.25 

Fin Pitch [inches] 0.2 

Fin Thickness [inches] 0.125 

Number of Tube Rows in the direction of the Air Flow 3 

Transverse Tube Spacing [inches] 6.43 

Longitudinal Tube Spacing [inches] 6.43 

Number of Tubes 2088 

Tube Length [ft] 30 

Gas-side Surface Area [ft2] 58,023 

Air-side Surface Area [ft2] 1,149,016 

  Air-Side Fan Power [kW] 16.3 

Gas-Side Fan Power [kW] 90.4 

  

Field Erected Capital Cost $2,681,759 

Annualized Capital Cost $215,191 

Annualized Operating Cost $60,003 

Estimated Annual Savings in Water Costs @ $1.50 per 1000 gallon $73,747 

Estimated Annual Savings in Fuel @ $50 per ton $270,000 

Net Annualized Cost [20 yrs @ 5%] -$32,553 

  
Sensible Heat Transfer [BTU/hr] 5,892,501 

Latent Heat Transfer [BTU/hr] 60,299,506 

Condensation Rate [lbm/hr] 58,587 

Condensation Efficiency of Processed Flue Gas 29% 

Condensation Efficiency of Total Flue Gas 9.3% 
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Appendix C – Calculation of Fuel Consumption Rate for a 600 MW Power Plant. (Used in 

Section 6.3) 

 This Appendix describes how the fuel flow rate used in Section 6.3 was calculated.  

Equation C.1 is net unit heat rate. 

                    
    

  
 

  

      
  (C.1) 

 

where Pg is the gross power generated by the plant, Pss is the station servicve power.  The 

difference between Pg and Pss is the net power sent to the grid (see Equation (C.2)).  For a 600 

MW power plant, Pnet is 600 MW. 

             (C.2) 

 

In Equation C.1, ηB is the boiler efficiency, and HRTC is the turbine cycle heat rate.  Another way 

to calculate net unit heat rate is with Equation C.3. 

                    
              

      
 (C.3) 

 

where        is the flow rate of coal into the boiler, and HHVfuel is the higher heating value of the 

coal, and Pg and Pss are gross power generated and station service power. 

Equations C.1 and C.3 were used to determine the fuel flow rate for a 600 MW power 

plant using assumed values for boiler efficiency, turbine cycle heat rate, higher heating value of 

coal, and flue gas flow rate.  See values listed in Table C.1. 
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Table C.1 – Assumed values used in the calculation of the fuel flow rate for a 600 MW power plant. 

Net Power Generated Pnet 600 MW 

Boiler Efficiency ηB 88 % 

Turbine Cycle Heat Rate HRTC 7650 BTU/kW-hr 

Higher Heating Value of Coal HHVfuel 12,000 BTU/lbm 

Flue Gas Flow Rate 6*10
6
 lbm/hr 

       0.06 

 

Using the values in Table C.1, the performance characteristics of the power plant are: 

 Net Unit Heat Rate: 9215 BTU/kW-hr 

 Fuel Flow Rate of Coal: 460,000 lbm/hr 
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