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Abstract

Additive manufacturing represents a relatively newly developed technology with many rapidly
changing innovations . One of the most important processes in additive manufacturing is 3D
printing. For a couple of decades, polymers have dominated the materials used in 3D printing. In
the last few years, 3D printing of metals has had a high impact on interest in this technology. One
3D printing process that uses metals is Wire Arc Additive Manufacturing (WAAM). This technique
has some technical obstacles that may detract from its use in commercial applications. One of the
crucial issues concerns the control of residual stresses and related distortions. The evolution of
residual stresses can theoretically be simulated by using computational software for the WAAM
process, in a manner similar to welding process modeling, using nonlinear finite element codes
such as ABAQUS, ANSYS, SYSWELD, etc. This study focuses on using SYSWELD to model the

WAAM process.

In this thesis, the key reference problem is the simulation of the WAAM process for a vertical 3D
printed plate. This “reference” problem was chosen because =WAAM printed plates have been
fabricated at Lehigh University and thus, comparisons can easily be made between simulations
and experimental measurements. The simulated WAAM parts examined in the study compare
two types of steel alloys: 1) austenitic stainless-steel grade 316L and, 2) Low carbon steel
S355J2G3. The residual stress components of particular interest were determined to be: 1)
Longitudinal stresses across the width of the plate and, 2) the maximum principle stress. The
distortion of the WAAM plate after the metal deposition processes are complete illustrate the
difficulty in maintaining dimensional tolerances. The simulation process predicts higher residual
stresses and lower distortion for the low carbon steel alloy, when compared with the austenitic

stainless steel.



Chapter 1 introduction

Additive Manufacturing

3D-printing is a trending method of manufacturing that presents researchers with a myriad of
promising outcomes as well as challenges. 3D-printing has gained enormous attention recently
and is perhaps the break-through technology of this manufacturing era —just as the steam engine
and combustion engine once were. 3D-printing is also known as additive processes, or additive
manufacturing [1]. The Principle of Additive manufacturing starts many years ago when mankind
started to build houses, for example building walls uses additive manufacturing in large scale
using stacked blocks. The wide difference in the materials used in additive manufacturing, or
building, and the variety of designs and properties of the materials, made it hard to precisely
define 3-D printing, at least until 3D CAD was developed. Powerful 3D CAD software now makes it

easy to build a shape for virtually any desired shape and specified material properties [2].

History

The history of additive manufacturing is not new; in fact, the concept of additive manufacturing
started by using photo sculpture back in the 1860s, which was further developed later [3]. It
started with the concept of building layer by layer in the early of 1900’s , “back to Peacock for his
patented laminated horse shoes in 1902” [4]. About a quarter a century later, Baker patented
“The use of an electric arc as a heat source to generate 3D objects depositing molten metal in
superimposed layers” in 1926 Figure 1.1[5]. He used a new technique to build a 3D object , which
had not yet been employed, by using welding processes [6]. So, this attempt could be considered
as the oldest attempt to use welding technology in additive manufacturing, which is known later

as Wire Arc Additive Manufacturing WAAM.



Figure 1.1 : Baker’s models in 1926 using molten metal [5].

After 25 years in 1951, a new technique was patented “Photo-glyph recording” technique[3]. In
1952, Kojima indicated the importance of layer-by-layer processes, and in the next 30 years,
many patents were filed related to 3D printing processes by using layer-by-layer techniques. The
more modern patents and new research were based on the 1950s’ principle[4] of 3D-printing. In
the 1960s, and after, many attempts were made to use a laser to solidify specific points on a
polymer sheet, these attempts were not used until they were developed with other techniques.
Later in 1987, Stereolithography (SL) for 3D was established, which used a laser to solidify thin

layers of light-sensitive ultraviolet liquid polymer[7].

Definition

ASTM defines additive manufacturing as the “process of joining materials to make parts from 3D
model data, usually layer upon layer, in contrast to subtractive manufacturing and formative
manufacturing methodologies” [8]. This definition makes the concept of additive manufacturing
very broad, so as to include many processes, not just 3D printing. Also ASTM “specifies other
commonly used synonyms for AM (additive manufacturing) including additive fabrication,
additive processes, additive techniques, additive layer manufacturing, layer manufacturing, and

freeform fabrication” [9].



Importance and Promise able Future

In recent years, AM has received considerable attention from many institutions and research
centers around the world. One of the best aspects of AM is the potential for zero waste during
the manufacturing process, which will likely reduce costs [10]. Traditional manufacturing
processes for complex parts can often be quite expensive and may not offer efficient solutions for
the manufacturing of complex shapes. AM potentially offers an inexpensive solution for complex
manufacturing problems [11]. Another crucial point is AM has the ability to repair and fix broken
parts. Furthermore, it has the ability to collaborate with conventional manufacturing
processes[12]. AM has another advantage that distinguishes it from other manufacturing
processes, which is the ability to deal with most kinds of materials: polymeric materials,
composites, ceramics, and metals. Of course, traditional manufacturing processes will never be
completely displaced by AM, but for a large class of applications AM may provide the most

effective manufacturing solution [13].

Cost and mass production are very important in nearly all industries. AM offers a sort of balance
between cost and mass production. On the other hand, traditional manufacturing has an inverse
relationship between cost and volume, which makes traditional methods much cheaper than AM
Figure 1.2 when a large number of identical components are being produced. In contrast,
complexity of the product often makes traditional manufacturing more expensive than AM Figure

1.3 [12].
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Figure 1.3 :Relationship between the cost and design complexity for AM and traditional ways[12].

Throughout the last thirty years, AM research has grown exponentially. Nowadays, AM is the
subject of, or included in a variety of, research topics [4]. AM has huge economic impacts as well;
Wholers report [14] mentioned that the AM market could reach S7 billion by 2019. In the past,

AM has had a high growth rate of approximately 26% [9], also AM is expected to grow



continuously through the years. AM is sometimes called the “third industrial revolution”, because
industries and factories are starting to use AM in the manufacturing of their products on a large
scale. Some AM techniques are available commercially, such as 3D by laser or electron beam
deposition. But some additive processes are still not commercially available, e.g.,, WAAM (Wire
Arc Additive Manufacturing), which still has some technical challenges such as residual stresses,
deformation, microstructure grain, and low quality of surface finishing. These challenges directly
related to the enormous heat input [15] associated with an electrical arc. One may also consider
the protection of the existing patents and trademarks as obstacles for some of the additive

technologies to be commercially available [16].

Overview 3-D Printing

3D printing, or AM, provides the user more freedom to fulfil the desire of the consumers in many
aspects of the manufacturing process, such as volume, cost, weight, design, and properties[17].
3D printing in a simple definition is a way of joining many elements by using heat source to melt
and join. 3D printing has different techniques, which depend on the heat source, feeding
technique, and feed material. Most feeding systems use blown powder, powder bed, and the
wire feed techniques, and the heat source is typically a laser, electron beam, or electric arc [10].
However, other techniques also exist, such as selective laser sintering, direct metal deposition,
electron beam freeform fabrication, shape deposition manufacturing, wire and arc additive
manufacturing (WAAM), etc.[18].ASME includes many types in their classification for AM
technologies. ASME has created seven categories for the types of AM using metal and other
materials : (1) material extrusion, (2) powder bed fusion, (3) vat photopolymerization, (4)
material jetting, (5) binder jetting, (6) sheet lamination, and (7) directed energy deposition[3].
Concerning metal applications, directed energy deposition can be divided into two subcategories

of feeding, powder and wire. The wire feeding system could be used with a different heat source,
6



but the simplest system uses an electric arc heat source and is designated WAAM. WAAM is
efficient for large size components. Also, it is considered the lowest cost and safest method with
a high metal deposition rate. As a comparison, WAAM can attain deposition rates of 50-130
gram/minute, whereas powder-based systems can only offer 2-10 gram/minute. WAAM s
essentially a multi-pass welding process, utilizing one of the most common welding techniques,
i.e.,, GMAW (Gas Metal Arc Welding) [15]. For metal applications, titanium and its alloys, steel,
aluminum, and nickel alloys are typically used in WAAM processes. Despite the benefits of AM,
some of the techniques have defects and issues, such as the residual stress and the surface
finishing. This leads to poor quality of the mechanical properties of the desired product[14].
Overall, AM is a manufacturing process that uses continuous heat input localized to a specific
feeding material to change its matter from solid to liquid for a specific size in the melted pool. In

order to be solidified in a certain shape that makes the final design of the deposited layers[19].

Polymers are the most dominant materials used in AM, because of their low melting point and
high viscosity, which assists with the layer-by-layer deposition process. However, the metal AM

developed techniques increase the portion of metal AM application in the market.[17].

Metal 3-D Printing

This thesis focuses on metal AM, especially on WAAM. As mentioned previously, metal AM can be
divided into two categories and each category has three main sections. The two categories are
the feeding system and the second is the heat source. The sections of the feeding systems are
powder bed, powder blown, and wire. And the heat sources are laser, electron beam, and electric
arc. Electric arc AM is the main subject in this research. The performance of metal printers is
based on the final products’ residual stresses, distortion, microstructure, and mechanical

properties [20]. Also, the feeding systems have been divided into two main types, direct and



indirect deposition systems. The direct deposition system melts all the particles to obtain the final

design, while indirect systems use a binder to join particles [21].

The deposition efficiency of wire-based AM is higher than other types, for example wire based
AM deposition efficiency can approach 90%, while in powder-laser is around 40%[22]. That gives
some credit for wire feed systems. deposition efficiency is calculated by the amount of metal is

used vs the amount of metal is remain after the processes.

Powder Bed

Powder bed uses a container full of powder that allows the heat source to melt layer by layer.
Between two layers, the container moves down to allow for an out slide to feed more powder

[23]. This yields a new powder layer above the old melted one as shown in Figure 1.4.
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Figure 1.4 :diagram shows powder bed with laser[24]

Powder bed uses either a laser or electron beam as a heat source, because of their accuracy and
precision. However, powder bed is best suited for small-sized products, since the size depends on
the container itself [10] and because the deposition rate is low for this technique. The larger
commercial size powder bed-based AM is around 0.16 m*® with deposition rate of 0.2
kilogram/hour[22]. Powder bed processes utilize several deposition techniques, which include

ALM (Additive Layer Manufacturing) , SLM (Selective laser melting) , DMLS (direct metal laser

8



sintering) , DMLM (Direct metal laser melting) [25]. Some of these processes, e.g., LM (Selective
laser melting), have issues with the fast cooling rate, which cause distortion in the final product

[26].

Powder blown

Powder blown was used as a welding manufacturing process even before its application in AM.
This process uses a nozzle to blow powder to a certain area where the heat source focuses on

this area, so that the heat melts the powder as shown in Figure 1.5.

Deposition Nozzle
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Figure 1.5 :diagram for powder blown system with laser heat input [27]

As in powder bed, blown powder has different techniques such as DLMD (Direct Laser Metal

Deposition), LMD (Laser Metal Deposition), LENS (Laser Engineered Net Shaping) [25].

Wire Feed

The third AM metal feeding system is wire feed, which is considered the most efficient system in
terms of materials usage. Moreover, it is considered the cleaner and safer for the environment in
addition to the low cost [28]. Of course, the wire feeding system is not a hazard to the
atmosphere, in contrast to powder processes [29]. The wire feed system as shown in Figure 1.6
uses the same principle as the powder blown system, i.e., the feeding materials are blown or

deposited by the feeder in the interest area where is the heat is applied [30].
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Figure 1.6 : diagram of wire feed system with electron beam heat source[31]

There is plenty of research that has studied wire feeding systems in welding processes. But AM
uses this process repetitively many times in one product, and this is the primary difference
between welding processes and AM. The AM deposition process is simply a multi-pass welding
process. In contrast to the previously discussed AM processes, wire feeding systems have the
lowest accuracy because the diameter of the wires are larger than the size of the powder in other
processes, so it is hard to build a very intricate product using a wire feeding system[19].Heat

source power types

AM uses a variety of heat sources and joining processes to build a product. However, metal-
based AM typically uses a laser for the heat source, as well as an electron beam or electric arc.

Each one of these is used in certain applications, depending on the desired product.

Laser AM is most popular and can be used for the three aforementioned feeding types. In
addition, laser processes have a high accuracy, around 20 um, which gives it an advantage [32].
On the other hand, laser AM has a fast cooling rate, which can introduce defects in the final
product [33]. Furthermore, laser AM has poor energy efficiency compared to other processes,

around 5% [34].
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The fundamental principle behind electron beam AM is that an electron beam ,i.e., a stream of
electron, passes through the feeding materials. Electron beam AM is more efficient in energy
term than laser AM, around 20%. On the other hand, it has disadvantages that make the process
cost more, e.g., electron beam AM requires a vacuum environment. Although, some consider this

to be an suitable for aerospace applications since the vacuum environment is already exist [34].

Electric arc systems also use the same principle as electron beam AM, but there is a slight
difference between the electric arc and the electron beam AM regarding the lower energy
density heat source. This difference makes the melting rate lower than electron beam and laser
systems [35]. The energy efficiency of the electric arc in certain circumstances can be as much as
90%, as in gas metal arc welding (GMAW) or gas tungsten arc welding (GTAW) processes. Further,
electric arc AM is capable of handling large-sized products[28]. Electric arc and wire feeder AM
can be combined, which is called WAAM. WAAM has a high deposition rate, lower system and

material costs, and a lower probability of oxide contamination [34] [36].

WAAM

WAAM (Wire Arc Additive Manufacturing) offers a promising area for research and has many
advantages. WAAM is often favored over electron beam and laser systems. The main reasons for
this are the cost, the vacuum environment, easier operation, and non-reflectivity problems [37].
The most frequently employed techniques used in WAAM are Gas Metal-Arc Welding (GMAW)
and Gas Tungsten-Arc Welding (GTAW). These methods have a high deposition rate and the
ability to build large and small products, up to few meters[38]. Further, compared to traditional
manufacturing processes, these methods efficiently use raw materials[11]. Unfortunately, it is
generally conceded that WAAM processes can introduce enormous residual thermal stresses;

which is usually not the case in powder bed systems [39]. WAAM is based on the welding process.
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However, automation of the WAAM process is what has significantly increased printed product
quality. Figure 1.7 illustrates two diagrams of GTAW and GMAW. Both processes use electric arcs
that are created by applying an electric potential between the base metal and the welding
electrode; in GTAW the electrode is non-consumable, while in GMAW the electrode is the
feeding material. The melting pool is protected by an inert shielding gas. The processes are
operated by a robot, so the feeding rate and heat input are systematically controlled and there is

a high deposition rate — up to 10 kg/h [40].

| Tungsten Electrode

Shielding Gas Nozzle

Contact Tube

Consumable

Shielding Gas

Figure 1.7 :diagrams describe GMAW (left) and GTAW(right) welding processes[41]

WAAM has not received the same attention as other AM technologies, because of the unresolved
technical problems described in this chapter. Further, it is important to mention that WAAM has
poor accuracy around 0.2 mm vs £0.04 mm for powder based, one of the reason is the size of
the melting pool , and high distortion effects that render WAAM unacceptable for many

manufacturers [30].

WAAM is a type of welding process, so the parameters relevant to the welding process are

equivalent.
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The most important parameters are the arc voltage, arc current, shielding gas, nozzle-base
distance, travel speed, feeding speed, and wire diameter. These parameters effect the weld bead
geometry, resultant distortion, and resultant residual stress[42]. For example, variation in the
distance between the nozzle and the base leads to poor shielding quality and introduces
deposition defects, or creates a spatter areas on the product [43]. In addition, the high deposition
rate leads to a thicker bead, which affects the microstructure grain patterns growth, since the

thicker bead needs more time to solidification processes[44].

Advantages

WAAM impacts the environment by 70% less than traditional machining impacts on the
environment such as raw material extraction issues, recycling ability[9]. WAAM has the potential
to be a non-waste technique through development of the process toward ready-to-use products,
especially for mechanical properties and surface finishing [37]. In addition, WAAM is an easy
system to build and supply.. Considering costs, a WAAM system is still one of the cheapest AM
technologies. Moreover, WAAM is suitable for building small or large sized products with medium
complexity[42]. In certain situations, a thermal gradient causes a tendency towards anisotropic

material properties [45].

Disadvantages

Despite its advantages, WAAM is considered to be an unsuitable technology for some
applications. Since the diameter of the wire is large compared to powder systems, the accuracy
of WAAM is lower than powder (+0.2 m-wire, +0.04 mm-powder). For complex products, WAAM
may not a great choice for manufacturing [42]. WAAM has a high heat input with thermal
concentrations in certain areas, which leads to deformations and may cause cracks. This is due

to thermal gradient effects [46]. WAAM works using the same principles as EB, where electrons
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are transferred to the work area. However, WAAM has a lower energy density than EB or laser
AM with a slower rate of transferring. This causes larger melting pools than in other AM
processes and techniques. The melting pool for WAAM is affected by fluid flow effects, which
controls the shape of the melt pool and initiates its penetration. These considerations must be

accounted for in order to obtain good surface finish and uneven ends of the final geometry [35].

Applications

WAAM machines are currently not commercially available because of the shortcomings described
above[18]. Nevertheless, WAAM is greatly developing in aerospace, biomedical, automotive, and
energy applications [32] [21]. Also for printed parts, there some companies has successfully
printed a verified and tested parts by using WAAM , such as Damen Shipyards who announce a

3D printed boat propeller as appear in Figure 1.8 [47].

Figure 1.8 Ship propeller has been made by Damen Shipyards[47]

Metal 3-D Printing Issues and Challenges

In order for AM to be widely implemented in society, it must meet the expectations of the
consumer and stand up against economic barriers. Unfortunately, there are obstacles preventing
AM from replacing traditional manufacturing processes. Many of these problems are related to a
lack of fusion, porosity, vaporization, mechanical properties, grain structure, surface finish,
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deformation, residual stress, cracking, and uneven geometry.[10] Some of these issues are the

result of thermal effects, which could be solved by a heat treatment [9].

Porosity is a common defect in welding processes, including WAAM. Porosity refers to any
unwanted cavity inside the work piece. Typically, these unwanted porous defects are caused by
gas trapped inside the work piece during the welding process that is unable to escape prior to
solidification. Poor control of the shielding gas often results in unwanted porous defects. Other
reasons for such defects are raw material impurities and insufficient flow rates. Regularly, cavities
occur near the edges of the molten tracks. As porosity increases, material properties such as
ductility, strength, and stiffness decrease[8] [48]. Figure 1.9 illustrates a porous area, whose

defects formed during the welding process for an aluminum alloy involving only a single pass.

Figure 1.9 :Porosity defects for an aluminum alloy[49]

The quality of the weld bead profile is a common controllable issue, caused by three main factors:
humping, undercutting, unsymmetrical beads. Humping refers to an uneven bead profile in the
direction of the welder, which causes ups and downs on the layer. Undercutting and
unsymmetrical beads refer to the bead located in an undesired position or having an undesired

shape. Undercutting occurs between the two different layers, or the base, while unsymmetrical
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bead occurs for a single bead. These issues are usually caused by a high travel speed and with an
uncontrolled deposition. As a result, any missed spot will affect subsequent layers, which results
in defects in the final desired product[48] [50]. With GMAW, the profile assumed at both ends of
a square plate, built by AM, assume a different shape than the middle of the plate. This is caused
by the shape and depth of the weld penetration, which causes differences in the thermal
distribution, which in turn leads to sloping at the end and humping at the start [15]. Figure 1.10
shows the unbalanced endings, which are created by thermal distribution and surface tension

effects.

Figure 1.10 :a plate AM based, start(right), end (left) [43]

Grain structures contribute in the cracking behavior in the work piece, which are dictated by the
thermal distribution while cooling. Shrinking leads to crack formation at the grain level.
Furthermore, shrinking occurs when high thermal gradients are present, which leads to a high
cooling or heating rate. Generally, materials with low ductility are the first to exhibit cracking.
Chemical degradation and oxidation are two more minor issues relevant to AM for metal

applications because they are easily controllable, [8].
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Deformations and distortions are very common issues in welding. Thermal gradients cause
deformations that eventually may lead to cracking. We know from the basic principles of thermal
expansion that most materials shrink upon cooling and expand upon heating. So, when these
cases happen at a certain spot, then distortion occurs at this location due to differences in the
local thermal stresses. Figure 1.11 shows a concaved work piece. Clamping temporarily stops

deformations, but heat treatment is required for a more complete solution[8].

Figure 1.11 :3D printed work piece is concaved[41]

Poor surface finishing is a concern for most AM technologies. Usually powder feeding systems are
concerned with the coarse surface; while in wire feed systems the surface is fine. Interestingly,
the sides form a sort of sinusoidal surface, like what happened in the side of the shown piece in
Figure 1.10. Moreover, coarse surface could happen in WAAM if the shielding gas is inadequate
or welding parameters are inappropriate. Usually, the solution for a good quality surface finish
requires traditional machining processes[8]. Figure 1.12 shows undesirable and uneven sides of

an AM work piece, i.e., it needs further processing prior to its use.

Figure 1.12 :Poor profile caused by uneven bead[13]
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Of critical concern in WAAM are the welding residual stresses, which are associated with
distortions in the finished work piece. Throughout AM, the first layers are reheated several times,
due to the heat of subsequent bead layers. This induces a thermal cycle for each layer, which
ends on the final layer or by steady cooling rate[51]. WAAM, as mentioned, is a high heat input
process, which makes the affected zone large and may lead to shrinking in the affected areas. If
the thermal gradients are large enough, and the workpiece is sufficiently constrained, the
residual stresses will be high. In some cases, the internal stresses are relieved when the work
piece is unclamped. Usually, the largest residual stresses arise in the direction of the
deposition[50]. There are two residual stress states of particular interest. The first is the residual
stress state immediately after the manufacturing process is finished, but before the part has
completely cooled The second residual stress state is the final state after the work piece has

been cleaned up and cooled [34].

Experimental Processes

CAD technologies have revolutionized manufacturing at large, and is responsible for the accuracy
of AM. The first step is product design using CAD software. Then the design transforms to an
acceptable file for the various slicing software such as STL files or G-code files to be rendered as
2D layers [52] [53]. After that, slicing software slices the design into special properties for the
layers (layer dimensions, slice thickness, etc.) [39]. Then, using the new layer shapes, the
software creates path trajectories (such as raster, zigzag, contours, etc. ) to build each layer by
using the digital information[18]. And the final step is a robot follows the paths and prints [37]. In
WAAM systems, usually GTAW and GMAW are used so any system must contain (CAD software,
slicing software, path software or tool, deposition controller (robot with multi-degree of
freedom), heat source, materials supply) [37]. Typically, the controller regulates the power and

heat input such that the process results in the deposited layers exhibit the desired material
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properties. The travel speed and the distance between the nozzle and the substrate can also be
controlled to obtain the desired final product. In many applications of 3D printing of metal
materials, there are two types of area characterizing the work piece: the total area and the
effective area. The effective area is the desire area, while the rest of the total area must be
removed to clean the effective one. For certain cases, 90% of total area is the effective area,
while the remaining surface material must be removed. As shown in Figure 1.13 the substrate

and the first few layers are removed intentionally to obtain the desired surface finish[12].
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Figure 1.13 :A diagram shows the effective area as part of the total area[12].



Simulation Software

Recently, software has made it easier to simulate many AM processes by using numerical
analyses based finite elements methods (FEM). Many approximations are made to model the real
physical system, of course[54]. For welding manufacturing processes, common software packages
are SYSWELD, ABAQUS, and ANSYS. SYSWELD is a specialty heat treatment and welding process
software that uses numerical analyses such as FEM, to simulate the actual process at a relatively
high level, up to three spatial dimensions[55]. “SYSWELD can obtain: temperature fields and
thermal fluxes, phase proportions, hardness, distortions, residual stresses, and plastic strains
distributions” [56]. Since AM is based on a well-known welding process, we can use these
commercially available software packages to model and simulate AM processes in order to study
mechanical properties. AM requires control of process parameters more than traditional
processes[3]. Using such software in order to predict residual stresses and deformations saves
time and money. The degree of accuracy predicted by the software is closely related to the
computational time required, but generally speaking all of the aforementioned software
packages yield reasonable results[6]. Figure 1.14 shows the actual and the predicated shape for a
t-tube joint obtained from SYSWELD after a welding and loading process [57]. The accuracy of the
SYSWELD software for estimating post-weld stresses and distortion is generally considered to be

quite good.

Figure 1.14 :A comparison between experimental (left), and computational (right) [57]
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Residual Stresses Curing Researches

Lehigh University has WAAM capabilities and is being used for research studies in this AM
technology. Haden and others said, “The 3D metal WAAM printer at Lehigh University is currently
configured with a Millermatic 250 gas metal arc welder (Miller Electric Manufacturing Co.) and a
roughly 0.53m Cartesian gantry positioning system (Macron Dynamics, Inc. and Parker Origa OSP-
E25). The welding nozzle position is determined from CNC commands derived from a computer
aided design (CAD) rendition of the desired part. The part is converted using open source
software Slic3r engine (slic3r.org) to GCODE which dictates motion commands to the
microcontroller.” [58]. The two biggest challenges for Lehigh University and others in the field are
the residual stresses and distortions obtained from WAAM processes. These two challenges are

present due to the large thermal gradients present during the WAAM process.

In the past, thermal simulated models for arc welding did not consider convection heat transfer
as a main part of the cooling rate for welding processes, despite its huge importance in arc
welding processes, especially in the melting pool [59]. However, the available FEM software
packages simulate the welding process with accurate results; so large heat input with high
thermal gradients produce high residual stress and distortion [60] [61] [62]. Since deposition
layers are cyclically reheated, some research aims at fixing the sequences of this process by using
adjacent droplets numerical models and to simulate the real physics of welding, which is the
metal contact to the base as drops[63] [64] [65]. Additionally, the substrate conducts heat, so the
shape and condition of the substrate will have significant effects on the performance of the layers
deposited and the resulting surfaces. Any defect in deposition will be magnified during deposition
of the subsequent layer[15]. Many studies have focused on the thermally-driven residual stresses
and distortions, although geometric simple differences between the simulated and real part does

not considered [66].
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One study revealed that the last few layers of any AM deposition process have high hardness
because they experienced less cyclic reheating[67]. It was determined, the residual stresses
effect of the final deposited layer does not exceed five layers. It is proposed that the thermal
cycling results in softening and annealing for nearest layers [67] [58]. Thermal recycling is the

reason for the high residual stress and deformation in AM [68].

In order to mitigate these undesired outcomes, there are three stages of processing: pre-
processing, online processing, and post-processing. The best strategy for reducing the distortion
is by using clamping and building strategies, while online strategy (rolling) has a high impact on

residual stress.[69] [70] [71] [6] [48].

Some research examined pre-bending as a way to reduce residual stresses and distortions in
welding processes[72] as well as to reduce thermal and mechanical tensioning [73] [74] [75] [76].
Optimized deposition sequences are also used to reduced distortion in welding [77] [78] [79] and
AM [80] [81] [82] [11]. Others researched have reported achieving zero net distortion by
preheating the weld area prior to deposition[83]. Other researchers have reported similarly —
preheating the substrate alone reduces distortion in AM processes [84] [85]. Further, heating the

substrate prior to deposition decreases residual stresses[11].

Since multi-pass welding is almost identical to WAAM, it is probably acceptable to use mitigation
processes from welding in WAAM processes, and reducing the heat input is a significant factor in
reducing deformation in multi-pass welding processes[86]. Also, mechanical constraints have the
ability to change the final deformation[87] . Moreover, surface quality could be changed by
reducing the heat power input or increasing the velocity of the deposition. [13]. Welding
processes employ many technigues to control heat input through the introduction of a double

heat source ( electrode ) [88] [89] [90] [91]. Cooling the layers to 50°C after each depositing
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process significantly reduces residual stresses after the clamps are removed, the cooling process

could be better controlled by introducing a waiting time between layer deposition [6].

One of the way to reduce residual stresses online is by using induction heating as a second heat
source to follow the deposition process [92]. A high pressure rolling line is also a successful way
to reduce residual stresses [10]. Since one of the reason for the residual stresses is the grain
structure [12], the rolling enhances grain refinement. Rolling reduces enormously the peak of
longitudinal residual stresses [69]. For different metals, path tracks have been studied and the
effect of reduction in residual stress and deformation has been demonstrated[81] [93]. It has
been reported that one way to reduce residual stresses is through layer deposition in reverse
directions, which refers to the high heat diffusion[94] [95] [20]. In order to reduce residual
stresses and deformations, one solution is to deposit continuously without any period of cooling
time [96], [97]. However, this method leads to high heat input in some locations that induces
poor surface quality [98]. It has been shown with different materials that incorporating time
delays between layer deposition allows for better cooling of the layers, which reduces distortions
and residual stresses[84] [99] [100]. Introducing time delays between layer depositions changes
the microstructure significantly  [101] [102]. A study showed the effect of controlling
temperature through the use of an infrared thermometer on the mechanical properties and
surface quality[103]. Other researchers used a passive vision sensor system to control deposition
process parameters in order to obtain the desired surface qualities[104] [105]. Others tried to
increase GMAW AM accuracy by controlling the deposition process factors in an automated

weld-based rapid prototyping (RP) system [106] [107].

In order to improve surface finish, some researchers combine AM processes with traditional

milling processes [108]. “Bai et al. (2013) [109]developed electromagnetically confined weld-
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based additive manufacturing to build overhanging structures or tilt structures at a large slant

angle.”

Thesis Statement

Residual stresses play a huge role in creating the defects and the distortions that have been
observed during the 3-D printing process. It would be very useful if residual stress can be
accurately predicted in order to prevent or reduce the effects of these stresses. Since WAAM
uses arc welding for printing, it is obvious that simulation software for welding processes could
accurately simulate WAAM. Lehigh has made many samples using an experimental WAAM
machine, so in this research, one model will be studied and simulated using SYSWELD; the goal is
to observe the residual stress and the distortion of 3D printed plates by using simulation software
(SYSWELD). The materials used in this research are: 1) austenitic stainless steel 316L and, 2) low

alloy carbon steel S355J2G3.
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Chapter 2 Simulation setup

Experiment

Lehigh has made many 3D printing samples of WAAM using the machine which was previously
described, one of them was done by Prof. Haden, Gordon and their group. Gordon has made and
tested a 3D printed 304 stainless steel plates for Fatigue crack growth and Microstructural
characterization. Also, he repeated the tests after heat treatment. For fatigue test, he took
samples from horizontal and vertical orientation[110]. As shown in the picture below Figure 2.1,
this is the 3D printed part of the sample using welding process as WAAM. Also, it is clear the

distortion of the base metal is due to the stress of the printed part.

Figure 2.1 : The experiment sample after it cooled

Additionally, some milling and cutting are done on 3D printed part to get the fine area. Figure2.2
shows the length with both sides; from this figure, it is clear the distortion of the base plate
released some of the residual stress after it was cut from the substrate. Figure 2.3 shows the two
ends of the printed part, they are cut from the original part because they have higher rate of

distortion as appear

Figure 2.2 : The experiment sample after machining
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Figure 2.3 : Two ends of the real sample (start welding, right) (end welding, left)

This sample was printed with the welding parameters, as shown below in Table 2.1

Table 2.1 welding parameters for AM in Lehigh Lab

Wire feed rate voltage Substrate Type welding speed Wire Type Shielding Gas

9.3 mm/s 22V Stainless Steel 2.54 mm/s ER308L 90% He, 7.5%
Grade 304 Ar, 2.5% C02

Number of layers  Layer length  Layer Height  Layer Thickness Substrate Dimension

38 Layers 670 mm 1.778 mm 6.35mm 5X101 X762 mm

Figure 2.4 shows the cross section of the beginning cut. It is clear from the figure the cutting
process does not leave any impression of layers on the cross section of the sample. The height of
the sample is around 95 mm. and the width around 0.39 inch = 9.9mm (which are the extreme

parameters of the sample).

Figure 2.4 : Dimensions of the cross section (height on left and width on right)
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Since the goal is to perform a welding simulation process, it is important to observe the shape of
each layer by conducting electric etching process. Before drawing the shape of layers into the
simulation software, the part of interest needs to be suitable for photographing by cutting the
appropriate part, as seen in Figure 2.5 with red lines. After the cutting process and before the

etching process, it needs to be mounted, grinded and polished.

Figure 2.5 : Section of the intent cut for displaying the microstructure

Figure2.6 shows the cut piece after conducting the electric etching process, electric etching
process demands to put the piece inside an acid and contact the ends of the piece by an electric
circuit, and the original one, which is done for make the microstructure features clearer. The left

side of Figure 2.6 shows the mounted pieces cut in half to fit into the mold.

Figure 2.6 : The cut pieces with the left original piece
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Checking the dimensions again for the etched parts Figure 2.7.

Figure 2.7 : Three pictures showing the dimensions of the printed layer.

Figure 2.8 shows the cut piece (cross section cut) under two different light degrees for showing

some features for the layers. These pictures have been taken by using a canon camera 600d.

Figure 2.8 : Two different colored images for the microstructure printed part
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Mathematical Molding

For heat input

Vi s
Heat I t=—— Watt l
eat Inpu S n ats * —— Joule/s

V = Electric Voltage (Volt)
I = Electric Current (Amp)

S = TorchVelocity (mm/s)

n = ef ficiency

For this sample, the voltage used was 20V, and the current varied depending on the process of
welding (average currents are around 77 Amp). The torch velocity was 2.54 mm/s. If we consider
the efficiency of the welding heat input to be 0.8, the heat input required for the simulation
processes was found to be around 480 Joule/s. By using Smart Weld, Smart Weld is a software
was created based on a scientific data in order to help engineers to determine the welding
parameters before starting the actual processes, we can get the shape and the dimension of the
penetration area. Figure 2.9 shows the result for the given parameters (speed, depth and type of
metal) then Smart Weld has been developed depending on experiment test. Smart Weld gives
the input power as 1231 Watts (which is voltage multiplied by the current and efficiency of the
processes). After dividing it by the speed, it gives 473 Joule/s, which is almost as the same as the

calculated power.

'Bia38 WOTN TRMDIrenY (499 C)

Figure 2.9 : Smart Weld screenshot shows the parameters of the welding processes
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Simulation

In order to know the mechanical properties for this sample or a portion of it, it is efficient to use
some of the capable software: one of them is SYSWELD. In this case, the sample has been
developed using approximate dimensions to make the processes easy. By using SYSWELD, the
simulate design has been made According to the real design (as shown in Figure 2.10) and by
using the following dimensions: length, width, and height. In Figure 2.10 the red rectangles

represent rigid clamps, which prevent the sample from moving in the Z-axis direction.

X =800 mm for substrate, 700 mm for the welding passes, and the longest distance is 800 mm

Y = 100 mm for substrate, 10 mm for the welding passes, and the longest distance is 100 mm

Z =5 mm for substrate, 85 mm for the welding passes, and the longest distance is 90 mm

For a single bead, length is 700 mm, width is 10 mm, and height is 2mm

Figure 2.10 : The simulated sample constructed using SYSWELD

30



Figure 2.11 compares the actual measured cross-sectional area with the cross sectional area used

in the finite element simulation.

Figure 2.11 : Comparison between the shape of layers (real, left; simulated, right)

Before proceeding with the main model calculation, the simulation process needed some tests to
validate the model setup — These tests are as follows: Heat test, Path test, Mesh test, Penetration
test, and Clamping test — The purpose of the Heat test was to observe the behavior of
temperature around the test model. As the full computational process took considerable time, it
was effective to decrease the time by one half by taking advantage of symmetry. The heat
behavior looked symmetric around the path of the power source. So, the test may have
decreased the time to half of the original time. Furthermore, the Heat test could show the
temperature behavior for each layer; so, nodes were chosen on top of layers for showing their
behavior.. The Path test was used for showing the effect of the deposition direction during the
process. The third test was the Mesh refinement test: the test displayed the effect of the number
of elements (mesh) on the result. From the result, the number of elements were chosen in
accordance with reasonable match on the result. The fourth test was the Penetration test: in this
test, the melting pool dimensions were found to be different in three cases. This had been done

because SYSWELD gives the choice to setup the dimensions of the penetration size; also, the arc
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welding processes have different arc shapes depending on the welding parameters, which
effected the melt pool size and shape. So, the purpose was to look at the heat effects of the
different penetration dimensions on the layers. Ideally, the shape of the melted layers had to be
as close as possible to the final layer shapes observed in the actual welding process — as shown in
Figure 2.11. The real sample had the fluid effect on the melting part. So, the purpose of the
penetration test was to look at the shape of the melting pool during computational process and
to try to simulate as same as possible of the actual shape. The Clamping test was the last test: this
test was conducted to test the computational process on two models. One was half the other
model, the half is on X-axis that makes positive Y-axis is symmetric of negative Y-axis. Since the
mechanical properties were symmetric around the X-axis and Y-axis, they may be used in saving
time to compute the half model instead of the whole model. So, several conditions were
established to get the matched results between the two models. In summary, integrating these
tests allowed the main model to give the most accurate results possible for the existing

conditions.
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Heat test

Before the simulated real sample was processed, simulation processes needed to be tested for
validating its reality. In addition, for that, it was great to have a coherent picture about the
running processes of SYSWELD. The first test was the heat distribution test between two samples
(seen in Figure 2.13) that were made from the main sample on Figure 2.12. So, the test was
conducted using a base metal with 3 layers in the middle. The first run was made for the whole
sample and the second run was made by a half of the complete sample was created by a
symmetric plane of the sample into the middle of Y-axis, which left one part of the positive Y-axis

and decreased the power into half as shown on Figure 2.12.

A

Figure 2.12 : The main (complete) sample on left, and the half sample on right

After running the two tests, cross section was made into the middle of X-axis to show the

temperature distribution.

Figure 2.13 : Test result for the complete sample on the left and the half sample on the right
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So, the main point was that heat was equally distributed and symmetric around the weld line, as
shown in Figure 2.13 and Figure 2.14, and showed the cross-section on Y-axis for the whole
sample and the half-running sample. It was clear from these two figures that the heat distributed
was similar between the running tests, which gave the opportunity to run the samples faster

because of the smaller sample size; besides, the result was found to be the same in both cases.

Figure 2.14 : Temperature distribution contours for two samples (complete, left; half, right)

The second Heat test was on the seven layers for half sample since the result was concluded and
reasonable for the half sample. The sample geometry is shown on Figure 2.15; the cross section
of the right side of the sample was insulated for the heat transfer in such a way that the

boundaries looked like a complete sample.

LARIZE BASE NORMAL
= = 792 1 1000 DOOROE

Figure 2.15 : The used half sample in the next tests
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For understanding the temperature behavior, seven nodes were selected in the beginning — for
each pass (layer) —on the meeting point between the heat source and melting metal. In the first
attempt, the heat was found to be constant for each layer, which meant that it remained 240
Joules/s; the original power was found to be 480 Watts after the efficiency was calculated, and
240 Watts after it decreased to half, since the used geometry is half of the main geometry (with
480 Watts). Figure 2.16 shows temperature profiles for the seven passes. It is clear here that the
peak temperature increased as the next layer started to build. The difference between the
highest and the lowest temperature was around 600° Celsius, which was huge for a metal with a
melting point of 1400 ° Celsius: This made the previous layer melt completely.
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Figure 2.16 : Temperature profiles for heat constant and series deposition timing

So, in order to decrease that big difference, two different techniques had been used. The first
trick was to cool down the sample with time gaps between the deposition of the layers, and the
second one was decreasing the power for some simple relation rule. Figure 2.17 shows the

temperature profiles for the time gaps case. From the curves, the difference between the highest
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and the lowest peak temperature was found to be around 200 ° Celsius. This was a great

technigue to reduce the peak temperature, but it needed long time to build the whole sample.
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Figure 2.17 : Temperature behavior for the seven layers with time gaps between them

The second technique was to use the law

OT layer,

NP layery,4 = OP layer"W
n+

NP = new power rate for the desired layer (n + 1)

OP = old power of the last layer(n)before the deisred one(n + 1)

OT = old peak Temp. for layer (n) or the melting temp. for the metal

By using this approximated relation, the new power rate was found as: 333, 304, 279, 268, 268,
263, 274 Joule/s, with n=0.8, from layers 1 to 7 respectively. So, the result was as expected
(shown in Figure 2.18). The difference between the highest and the lowest peak temperatures
had decreased, and the peak temperature also decreased for each pass after another, which
made this way appropriate for saving time with suitable heat input.
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Figure 2.18 : Temperature behaviors for the seven layers with new proposed heat input

Another way of controlling the peak temperature was by decreasing the heat sink or the big

consumption, which in our case was the substrate. So, the base metal had

been designed to fit

the width of layers and the longer length as shown in Figure 2.19. Temperature profiles (shown in

Figure 2.20) showed quite a change in the difference between the highest and the lowest

temperatures as 650° Celsius, but it was not that efficient for heat transfer.
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Figure 2.19 : The used half sample in the next test with a small base
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Figure 2.20 : Temperature behaviors for the seven layers with small bases

Another trick was preheating the substrate for a certain temperature to equalize the
temperature between the base and the layers. It showed a lower difference than the last trick,
but it had a disadvantage: it needed to modify the power to lower rates, since the base was

already heated up. The result is shown in Figure 2.21
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Figure 2.21 : Temperature behaviors for the seven layers after the base was heated up
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Path test

One of the parameters for manufacturing by AM processes is the deposition path. As, common
welding machines use a single torch, so for printing a plate requires two schemes paths. The first
path was to start from one side and stop at the other, then return to the beginning to build the
next layer. This is forward deposition. The second path was to start at the beginning and not stop
at the second side; instead, continue to build the second layer from the other side, to the end,

and back forward, as shown in the figure below Figure 2.22.

Back - Forward Forward

> 4th Layer
g < 3rd Layer
<J

puz

> 2ndiayer

IstLayer
Start

AAAY

Figure 2.22 : The schemes description for forward path and back forward

So, for this case, the samples had five layers each and they underwent thermal and mechanical
tests. For the heat distribution overall, both the ways had diffused the same amount of heat on
the samples; cross section in the middle of the samples shows the identical temperature

contours, as seen in Figure 2.23.

Figure 2.23 : Temperature contours for forward path (left) and back forward (right)
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Also, the temperature profiles for certain nodes correlated to the heat input paths. These nodes
have the same locations on both samples, the nodes located on the top of each start for each
layer on forward path; so, they have the same Y and X coordinates, but changing Z coordinates.
For the forward path, the result was same as that observed in the Heat test (see Figure 2.24). But,
the more interesting is the back forward path, as seen in Figure 2.25 the layers had higher
temperature than that’s in the forward path. In both paths, the peak temperature was found to
be around 2500 ° Celsius; but, forward path took five layers to reach it, while back forward path
took two layers. So, that gave an idea about the heat around the ends, which was hotter on the
end for forward and have the same for the both ends in back forward. For the timing condition,
the deposition did not stop at any point between the start and end, which meant there was no
time for cooling down the whole sample. The figure below for forward deposition path shows
how the peak temperature increased by 500 ° Celsius between the first and the last layer, and by

almost +100° Celsius for each layer.
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Figure 2.24 : Temperature profiles for forward path deposition
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From the figure shown below the back forward deposition path — it was clear there was a high
difference between the first node and the second. But, it also had a disadvantage: early
deposition. SYSWELD needed to identify each filler material for each welded path. The filling
materials were deposited part, not as continues deposition processes, and that can be observed
by the temperature increase for the second node (second layer-green curve) at a time of 25
seconds. The node was deposited but not applied to the heat; instead, it was affected by the last
layer temperature. So, it worked as a small heat sink for the previous layers. It could be
considered as the preheat process, but the difference between preheating and this case was
small in terms of the peak temperature, the region would melt, and the properties would be

constructed again.
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Figure 2.25 : Temperature profiles for back forward path deposition

Both paths have surface tension effects on the ends. Figure 2.26 shows the deformation caused
by the heat on the end of forward path and the start has less deformation. The start also has
lesser deformation than the middle. These were also comparisons made between the experiment

of the actual sample and the simulated one.
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Figure 2.26 : Distortion after printing (real, bottom; simulated, top) for forward path

Figure 2.27 shows the deformed ends for both back forward path and the actual sample. In
contrast to the forward path, both endings have been deformed by the heat input, since the peak

temperature occurred at the ends, as described on the temperature profiles in Figure 2.25

Figure 2.27 : Distortion after printing (real, bottom; simulate, top) for back forward path

These two techniques deform the ending in non-useful way, so it made the endings as non-active
area. Figure 2.28 shows 3D contours for the oxx residual stress for the working pieces. Parts A and
B show the outer part: they were almost equal in terms of stress. But, Parts C and D show the
inside of the pieces, which were insulated thermally with some difference between these paths.
The red region is tension (positive stress) and the blue region is compression (negative stress).
Parts E and F show the clear difference between these paths by these cross-section contours. At
the least, the similarity between them were the regions remaining in their position of comparison
or tension but with difference in the values. In conclusion, these two paths had almost the same
properties with trivial difference in the middle area, while the ends had the noticeable

deformation difference.
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Figure 2.28 : Stress axx contours for forward (left) and back forward (right)
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Mesh test

Mesh test was important for result reliance; so, a single weld bead was tested thermally and
mechanically. Also, the number of elements for the same sample was doubled: the less mesh
sample had 7400 elements and the other sample had 14800 elements for the same dimensions.
In Figure 2.29, the temperature disruptions were identical for both the samples at the same time

(at 21 seconds). This made use of the less mesh sample more useful than the higher one in terms

of thermal changes, because it needed lower time as well.

Figure 2.29 : Thermal contours for 7400 elements (left) and for 14800 elements (right)

The second aspect was the mechanical contours, as shown in Figure 2.30, for oxx residual stress.
Similar to the thermal aspect, the contours looked identical in both mesh tests for 7400 and
14800 elements. So, that gave the less mesh elements the preference for time saving in the

computational processes.

Figure 2.30 : oxx stress contours for 7400 elements (left) and for 14800 elements (right)
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Moreover, for accuracy purposes, curves show a clearer picture of the relation between these
two tests. Six node lines had been selected on the same position for both sample tests: three
along X-axis (left, right, and wire) and three along Y-axis (front, rear, and middle), as seen in

Figure 2.31.
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Figure 2.31 : Six lines on the work pieces for testing the mesh

Figure 2.32 shows oxx residual stress for the middle line. The profiles take the expected curves
from welding process for single bead. At the center is the highest value, while it decreases from
the center. The aim was to look at the similarity in the curves for 7400 and 14800 elements mesh
tests. And, the highest difference between these two curves was found to be almost less than

0.01%, which made it easier to trust the less mesh sample for certain level of accuracy.
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Figure 2.32 : oxx residual stress for the middle profiles in both the cases (7400 and 14800)

The second two test lines were placed on the wire for self-welding Figure 2.33. For the same

curves, the oy residual stress behavior was reasonable as the expected stress fo

pass, and the same for both cases with the error less than 1% in certain areas.
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Figure 2.33 : oyyresidual stress for the wire profiles in both the cases (7400 and 14800)

100

By looking at the oxx residual stress contours above in Figure2.30, both the left and right sides

have the same behavior in terms of stress. Figure 2.34 shows the oxx residual stress for four lines,
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taken from two positions of the two samples: left and right line for samples with 7400 elements

and left and right line for samples with 14800 elements. Thus, the four lines have the same

behavior.
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Figure 2.34 : oxx residual stress for the right and left profiles in both the cases (7400 and 14800)

In addition, these four lines, shown in Figure 2.31, were tests for oxx residual stress. To make sure

even the other mechanical aspects had the same similarities, these four lines tested with oxx

residual stress. For the same result Figure 2.35, the four lines had the same curvature for left and

right lines in both the cases.
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Figure 2.35 : oxx residual stress for the right and left profiles in both the cases (7400 and14800)

So, for all the previous lines the mesh size does not make difference to the importance of the
mesh size; but, for front and rear lines from the samples they were found to be different. Figure
2.36 shows many unfitting areas for both cases: for the front lines, in the middle the behavior

(sign) were the same. But, at the ends, the values did not follow at all.

LONGITUDINAL RESIDUAL STRESS XX

42
.= FRONT STRESSES (X 200
35
281
EZ‘\
£
[
0w
w
& 1af
w
7t
Fa i
--.-..,__ - . _.4"’"
0 = = — -
7 : L . ‘
0 20 40 B0 80 100

NODE ID

Figure 2.36 oxx residual stress for the front profiles in both cases (7400 and 14800)

Also Figure 2.37 shows rear lines oxx residual stress. These curves, as seen in B part of the figure,
do not fit in most of the profiles, except in the middle, which is has the same sign, but different
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values. And by looking to the original mesh in Figure 2.30, it was noticeable that the size of
elements got bigger at the ends, unlikely to the middle. As a conclusion, the size of the elements
was important to a certain level, and t no matter the size, the result would be identical. Also, for
the least affected areas from the heat, the results were not accurate. For research purposes, AM
simulation needed smaller mesh size on the active and interest area, at least a couple of

millimeters for an edge.
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Figure 2.37 oxx residual stress for the rear profiles in both the cases (7400 and 14800)
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Penetration test

For the simulation processes, the parameters of the melting pool and power parameters had
been grabbed from Smart Weld. But, SYSWELD had the opportunity to fix the melting pool shape.
AM needed that because the layer was not shaped as the regular melting pool in any welding
processes. So, in order to look at the effects of these estimated dimensions for the melting pool
on SYSWELD, three shapes were tested. The shape parameter is described in Figure 2.38 for the
melting pool, and in Figure 2.39 A, the three-dimension parameters are shown as regular and
large regular. The last shape was created to fit the layer (proposed) for all these shapes: the
depth (penetration) was constant and the parameters were the width and the length. Figure 2.39

B, C, and D are the side views for the three shapes (back, left, and right).

Weddng dreton

Figure 2.38 : The estimated dimension for the arc of welding from SYSWELD
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Figure 2.39 : The shape of the estimated arc of the welding

Therefore, the best way to judge was to draw the thermal contours at the 21°* second. These
images had been captured for the processes of the deposition of a third layer with different
shapes for the estimated melting pool with same temperature color bar scale. Figure 2.40 A
shows the right side for the melting pool, and it seemed the shapes were similar for the highest
temperature and the heat regions. Figure 2.40 B shows slight difference on the front regions. The
proposed shape received more sudden heat than other. Figure 2.40 C shows the cross section of
the middle of the samples with the same estimated penetration depth. But, the simulated shapes
were different among these three. On the large regular and the proposed shapes, the re-melting

areas were bigger than the regular shape; besides that, all the top surfaces of the previous layer
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were re-melting, which was not the case. Figure 2.11 shows that the re-melting area is in the
middle of the previous layer surface, and Figure 2.40 C (regular) shows the simulated re-melting
similar area to the actual one. As a conclusion, the more realistic melting pool for the simulated
process was the regular even if the shape of the welding bead was different from the regular

welding processes.
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Figure 2.40 : Thermal contours from different sides for three estimated arc dimensions
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Clamping test

As the previous Heat test proved that there was no difference if the sample was computed by the
half or not, the temperature distribution around the sample was symmetric around the
symmetric plane if the heat boundary conditions remained appropriate conditions. And, the
purpose of that was to decrease the running time for computational processes. So, it was
required to do the same for the residual stress, as they were interest areas for the research. This
could be considered as the clamping effect or the clamping test for the AM for few layer
depositions. The test had two samples: one was the complete sample and the second was half of
it. The second sample was half of the complete one — at the middle of the large one — one of the
tests was created from symmetric plane through the sample on the X axis; all the samples were
tested for showing the oxx residual stress contours. Figure .2.41 A shows the symmetric plane of
sample around X-axis and the complete one. Figure 2.41 B) shows the complete sample with
three layers for decreasing the time of computation. Also Figure. 2.42 shows (in red) the clamping

element for the first next tests.

NG

Figure 2.41: The complete sample(right) and the half sample (left)
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Figure 2.42 : The clamping condition for the whole sample.

The test was conducted when the clamping held the sample in one dimension (Z-axis): this axis
was fixed. That meant the clamping elements were prevented from moving in this direction,
which made them resistant to changes from neighboring elements. The half sample had another
clamping condition: it was symmetrical assumption on the cross section cut. So, the cross section

was fixed on moving Y axis

Figure. 2.43 shows the color scale for the residual stress, besides the used unit for the stresses on
the test samples.
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Figure 2.43 : Color scale for the stress
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A Half B Complete

C Half D Complete

E Half F Complete

Figure 2.44 : Isometric oxx residual stress contours for reqular clamping (fixed X, Y, and Z)

Figures 2.44 A, C, and E illustrate isometric contours for the oxx residual stress for the half sample

and Figures 2.44 B, D, and F show the same result for the complete sample.

It is clear Figures 2.44 A, C, and E look like Figures 2.44 B, D, and F. Moreover, the complete
sample was symmetric thermally and mechanically, as shown in the Mesh test (see Figures 2.29-
36), also it was efficient to create a symmetric plane which divided the sample into two parts
around the deposition direction to reduce the computation time because the number of
elements was reduced to half. Furthermore, the affected factor, which was the welding heat, was
on the center of the sample, and the heat contours were symmetric because there were other

factors to change the distribution. The clamping effects were as much as the heat source effects
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on the mechanical properties. So, knowing the right boundary condition and the state of the
models before and after made it easy to create less computational processes: in this case, the
boundary conditions were two main conditions thermal and mechanical conditions. For the
thermal making, the cross-section symmetric plane was insulated, while for the mechanical, the
cross section symmetric plane was fixed for the symmetric axis. Moreover, Figure 2.45 shows the
result of this test for the displacement on Z-axis. In addition, Figure 2.45 A similar to Figure 2.45
B, they were the same and there was no difference between the complete and the half sample in
terms of stress and displacement. For sure, there may have been a slight difference but, overall, it

looked the same

A Half B Complete

Figure 2.45 : Isometric oxx residual stress contours for fixed X-axis clamping condition
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Chapter 3 Results

The models in Figure 2.1 and Figure 2.7 were formulated using two different materials with the

welding parameters given in table 3.1. The purpose was to study the residual stress and distortion

of this WAAM printed part as shown in Figure 2.1 using two different materials.

Table 3.1 WAAM simulation processes parameters in SYSWELD

Wire Type

welding speed

austenitic stainless-steel grade 316L

Low carbon steel S355J2G3 2.5 mm/s

Layers, Number length width

Thickness | Substrate Dimension | AMP | voltage

38 Layers 700 mm 8 mm

2.4 mm 5X 100 X 800 mm 70 22V

Results for austenitic stainless-steel grade 316L at heat input 325 J/mm

The first simulation process was for austenitic stainless-steel grade 316L, which has specifications

as below in Table 3.2 and mechanical properties as in Table 3.3.

Table 3.2 : Chemical composition of austenitic stainless-steel grade 316L from “ESI Group” software database

Element

C Cr Mn

Mo Ni

P S Si

%

0.03 17 2

2.5 12

0.045 0.03 0.75

Table 3.3 : ASTM Mechanical Properties of Austenitic stainless-steel grade 316L

Element Tensile strength (min) Yield strength (min) Hardness (max)
ksi MPa ksi MPa Brinell Rockwell
316L
70 485 25 170 217 95
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As the process was simulation welding, all the elements on the model would have to meet the
melting temperature; in order to simulate the real processes as much as we can. For that, a set of

nodes around a chosen layer have been selected Figure 3.1.

x

L

Figure 3.1 : Locations of interest nodes around a layer

Figure 3.2 shows the middle nodes temperature curves for layers 5,16,28, and 37. Knowing that
the melting point is between 1371-1400°C, the middle node melts twice during the process; for
example, the first melting time when the Layer 2 is formed and the second melting time when
the layer_3 is deposited. Moreover, This case of melting the center of two layers describes what

happens, as shown in Figure 2.11, when the real layer does not only have one, but two concave

shapes.
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Figure 3.2 : Temperature behavior of Middle nodes for 316L, heat input 325 J/mm of Layers 5,16,28, and 37
58



For the middle nodes from figures 3.2, the peak temperature reaches 1700°C. This is because
these nodes are under the heat source directly. Also, these nodes re-melt again with the next
layer. The re-melting temperature reaches 1500°C, which is higher than the melting point. But for
the third cycle the temperature reaches 1050°C for the center nodes, which is lower than the

melting point by more than approximately 200°C.

Figure 3.3 shows the thermal curves pertaining to side-touch nodes for layers 5, 16, 28, and 37.
For the side-touch node, which is the side-node farther from the middle node and has contact to
the layers before and after it, this node melts twice, too. For e.g. one from layer 6 and the other
from layer 7 deposits. But this particular node has a lower temperature from that of the middle
nodes, since the middle nodes are closer to the heat source. In addition, these thermal cycles
make the joining processes efficient on AM. But when the heat input is 325 J/mm, the simulation
process indicates one full melting cycle. This means that this particular node at this power melted
once at the first deposit. But when the latter layer deposited, it did not reach the melting-point

temperature; which was approximately 1385°C.
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Figure 3.3 : Temperature behavior of side-touch nodes for 3161, heat input 325 J/mm of Layers 5,16,28, and 37
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From figures 3.2 and 3.3, the thermal effect of the 25™ layer or any layer beyond the first layer
did not exceed 50°C. This meant that the WAAM processes are repeated after 25 layers This also
meant that the layers repeat the same pattern of the first group of 25 layers. Also, the

mechanical properties would not be affected by the heat directly but by the thermal and

mechanical impact of the active layers.

The rest of the nodes, as shown in Figure 3.4, are those on the sides of layers 5, 16, 28 and 37.
These have to be melted once for the same deposited layer. But, if they melt above the
threshold, it will cause worse surface finishing. But, for these heat input parameters the peak of
side nodes did not meet the melting temperatures, so it would cause un-melting nodes on the
simulation, In the next section, a different heat input was simulated in order to see the effect of
melting temperature for the nodes. From the previous figures 3.2 to 3.4, it seemed the peak

temperature of a single layer decreased as an exponential function.
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Figure 3.4 : Temperature behavior of side nodes for 316L, heat input 325 J/mm of layers 5,16,28, and 37
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oxx- Residual Stress result of austenitic stainless-steel grade 316L at heat input 325 J/mm

Residual stress can change the shape of the part or its mechanical properties. For 3D printing
WAAM, residual stresses are considered higher than that of other manufacturing processes. This
was because of the effect of periodic welding heat on the part. This research focuses on two
types of residual stresses - 1) Longitudinal and 2) Maximum principle stresses, the longitudinal
stress is present to show the stress created in the same direction of the deposition processes,
while the maximum is chosen in order to show the other types of stress effects in total. Also, all
the results are taken after the sample cooled for 1500 seconds after completion of the welding,

i.e., the sample cooled to room temperature.

Figure 3.5 shows oxx-Residual stresses (Longitudinal) for a cross section on the middle of the
sample. The maximum oxx-residual stress is 361.26 MPa in tension and the minimum is -291.118
MPa in compression. The contour shows three main regions of residual stress. The first region is
in the top region of the part, which is around the last 8 layers. The stress in this region is in a state
of tension. The second region is between the 5 Layer and the 30™ layer and is in compression.
The third region comprises the layers around the base, which is in in tension. The right and left
sides seem to have lower stresses compared with the regions in the middle. Also, it seems the
clamping conditions made an alteration to the residual stresses because the values of the residual
stresses in all the regions had a pattern that changes around the clamps either increase in the

stress value or decrease .
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Figure 3.5 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm X-Z plane -cross section view

1

Figure 3.6 shows the other side of figure 3.5. In this figure, the effects of clamp places are clearer
than those in the last figure 3.5. Also, the regions are in the same state from the outside the
pieces and the inside part of the symmetric plane. Furthermore, the base plate is in Compression.

At the corners of the base, the stresses tend to be around a zero-stress situation since they are

the farthest points from the direct heat effected region.
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Figure 3.6 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm X-Z plane view
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Figures 3.7 and 3.8 show the same results as in figures 3.5 and 3.6, with an isometric view.
These two figures show the effects of the clamps clearer than the last two figures 3.5 and 3.6,
especially at the center of the base. Figure 3.8 shows the different regions of the stresses
around the base. At the end and the start points of printing, the stress switches from
compression to tension. The displacements of the z axis around the end and the start points are

the highest among the base.
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Figure 3.8 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm Isometric view
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Figure 3.9 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm Y-Z plane -cross section view

Figure 3.9 shows a cross section on the middle of the sample, as figure 3.5 is viewed from a
different angle. From this side, the distortion is clear. It seems that the ends are higher than the
center, also they have the lowest stress value. While comparing 3.9 with figure 3.10, the stresses’
regions in figure 3.10 had a smaller area than the regions in figure 3.9. which means that the

stresses inside the sample are in an ‘intense’ state.
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Figure 3.10 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm Y-Z plane view
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Figure 3.11 is an isometric view with slices selected parts and gives more insight into what
happens inside the simulated part. It also shows the effects of the base on the printed part. It
seems the base is in tension, with the printed part leads to different distortion shapes, if the
printed part is cut from the base. In addition, the ends of printing part are not in the same

pattern as the middle part. It is also clear here that the parts inside have much higher stresses

than the parts outside.
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Figure 3.11 oxx -Longitudinal Residual stress of 3D printed 316L at heat input 325 J/mm Isometric-section-sliced parts
view
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First principle Residual Stress result of austenitic stainless-steel grade 316L with heat

input 325 J/mm

The maximum principle residual stress gives a more general picture of the residual stress state
than the contour plots of the oxx residual stress. As shown in figure 3.12, the contour is a cross
section of the sample on the middle on the center line of the X axis. In this figure it appears that
the first principle residual stress makes a “frame” around the sample and is very useful for
determining the dimension of the frame in order to predict the actual stress distribution.. From
figures 3.12 and 3.13, it is clear that the maximum stress value is 463.876 MPa in tension and
the minimum is -83.1905 MPa in compression. It can also be observed from figures 3.12 and
3.13, that the stress divides the sample into two regions - the frame in tension and the active

area in low compression, relatively. And that is applied on the both the contours, inside and

outside.
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Figure 3.12 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm X-Z plane -cross section view
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Figure 3.13 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm X-Z plane view

The figures 3.14 and 3.15 show the isometric views for the sample. These two figures show the
base of the printing in low stresses, which means the stress averages are low on the base as

compared to the frame of the printed part.
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Figure 3.14 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm Isometric-cross section view
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Figure 3.15 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm Isometric view

In figures 3.16 and 3.17, the distortion is clear, but there is a unique occurrence between the
layers. It seems that the layers inside are in compression mode while the areas between them
are in tension mode. However, both these stresses are low as compared to the frame stresses

around the active area.
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Figure 3.16 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm Y-Z plane -cross section view
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Figure 3.17 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm Y-Z plane view

Figure 3.18 shows the sliced parts of the sample. In this figure the active area which has the lower
first principle residual stress has a clear dimension and a clear edge for the cutting processes
after printing. It could be because the stress frame has a certain level of layers, which for any 3D

printing process has to be considered as a waste section.
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Figure 3.18 First Principal Residual stress of 3D printed 316L at heat input 325 J/mm Isometric-section-sliced view
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Figures 3.19 shows the displacements on the Z-axis as curves for layers 3-14-25-36. These curves

go below zero, the reason for which is the last free clamps, which distort the sample as if in a
69



vacuum, without limits. The highest displacement is around 15 cm at the beginning of the 3D
printing. Also, the lowest distortion is between the center and the ends. From this figure it
appears that the clamps affect the distortion in a destructive manner for the clamp at the
center. But it could perhaps be good for other clamping conditions. The highest displacement
point relative to the length of the sample is around 2%, a high undesirable value, as a

benchmark for good tolerance demands in the industry.
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Figure 3.19 Displacements curves for Layers 3-14-25-36 of 316L , heat input 325 /mm after printing

70



Results of austenitic stainless-steel grade 316L at heat input 345 J/mm

As illustrated in the previous section, the heat input was 325 J/mm. For some nodes it does not
meet the melting temperature. So, this case uses a higher heat input, which was determined by
testing different heat inputs. Figure 3.20 shows the middle nodes’ temperature curve for the
same parameters in the last section but with heat input as 345 J/m. These temperature curves
reach the melting temperature point twice. For the third cycle it reaches 1200°C. But this is a
pattern different from the previous section. In this case (345 J/mm) the peak temperature for

the first 16 layers is lower than the previous layers by about 200 degrees Celsius.
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Figure 3.20 Temperature behavior of Middle nodes for 3161, heat input 345 J/mm of Layers 5,16,28, and 37

Figure 3.21 shows the temperature curves for the side-touch nodes, with the heat input as 345
J/mm. The problem of nodes with non-meeting melting temperature is thus resolved. All the side-
touch nodes reach the melting-point temperature twice in this case, just as expected in the lab

experiment.
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Figure 3.21 Temperature behavior of side-touch nodes for 3161, heat input 345 J/mm of Layers 5,16,28, and 37

The last temperature case is that of side nodes as in figure 3.22, which must melt at least once.
In this case, with the new heat input, the peak temperature for these nodes reaches the melting
point. For the second cycle, the temperature is lower than the melting temperature by around

200 degrees Celsius, as observed for each node.
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Figure 3.22 Temperature behavior of side nodes for 3161, heat input 345 J/mm of layers 5,16,28, and 37
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oxx - Residual Stress result of austenitic stainless-steel grade 316L at heat input 345 J/mm

The main objective for repeating these simulations with different heat inputs was to observe the
difference between the residual stresses of the sample nodes, whether they meet the melting-
point temperature or not. For exhibiting oxx residual stress, it would suffice to present the last
three figures of the previous section. Comparing information between figure sets 3.9, 3.10, 3.11
and 3.23, 3.24, 3.25, it seems they are similar in terms of contours and regions. Therefore, for
oxx residual stress the melting-point temperature does not affect the final result of the stress, as

long as the peak temperature of the nodes reaches near the melting-point temperature.
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Figure 3.23 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 345 J/mm Y-Z plane -cross section view
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Figure 3.24 oxx - Longitudinal Residual stress of 3D printed 316L at heat input 345 J/mm Y-Z plane view
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Figure 3.25 oxx -Longitudinal Residual stress of 3D printed 316L at heat input 345 J/mm Isometric-section-sliced view
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First principle Residual Stress result of austenitic stainless-steel grade 316L at heat input

345 J/mm

Also, for first principle residual stresses, it does not need to compare each aspect. It is enough to
compare three figures between these cases with different heat input. Comparing figure sets
3.16, 3.17, 3.18 and 3.26, 3.27, 3.28, they look similar as well. So as in oxx stress, the First

principle does not alter much across different heat inputs.
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Figure 3.26 First Principal Residual stress of 3D printed 316L at heat input 345 J/mm Y-Z plane -cross section view
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Figure 3.27 First Principal Residual stress of 3D printed 316L at heat input 345 J/mm Y-Z plane view
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Figure 3.28 First Principal Residual stress of 3D printed 316L at heat input 345 J/mm Isometric-section-sliced view

In addition to the above comparisons, between figure 3.23 and figure 3.28, it is observed that, in
general, the displacement curves’ shapes are the same. However, there is a difference at node
ID 150. The concave of the case with heat input 345 J/mm is slightly lower than the case where
the heat input is 325 J/mm. The reason could be the increase in heat input. However, they

follow the same pattern, as seen in the graphs.
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Figure 3.29 Displacements curves for Layers 3-14-25-36 of 316L , heat input 345 /mm after printing
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Results for Low carbon steel S355J2G3 at heat input 405 J/mm

The third case is that of a 3D printing simulation process for the same parameters as in the first
case and as shown in table 3.1. This is with a different material - Low Carbon Steel S355J2G3.
This material melts around 1500°C, so it needs a higher heat input, the appropriate heat input
value for this case is 405 J/mm. Table 3.4 shows the chemical composition of Low Carbon Steel
S355J2G3, as it is used in the simulation software SYSWELD. Also, it has the mechanical

properties shown in Table 3.5.

Table 3.4 : Chemical composition of Low carbon steel $355J2G3 from ESI database

Element C Mn P S Si

% 0.18 1.6 0.035 0.035 0.55

Table 3.5 : Mechanical Properties of Low carbon steel S$355J2G3

Element Tensile strength, min Yield strength, min Hardness, max
ksi MPa ksi MPa Brinell Rockwell
S355J2G3
98 680 50 345 187 90

For the same procedure, the nodes described in figure 3.1 have a temperature description for
the layers. Figure 3.30 shows the temperature behavior of the middle nodes for layers 5,16,28,
and 37 in this case. As the material melts around 1500°C, the peak temperature of the layers
exceeds 2200°C and in the second cycle it reaches 1800°C, both of which are above the melting
point. But for the third cycle, the temperature of the middle nodes for all layers reach 1250°C,
which is below the melting point. This is the objective for re-melting the center of the layers for

combining any two layers.
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Temperture of selected nades VS Time , for $355 P_405
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Figure 3.30 Temperature behavior of Middle nodes for S355, heat input 405 J/mm of Layers 5,16,28, and 37
Figure 3.31 describes the temperature for the side-touch nodes, as described in the earlier
figure 3.1. These nodes must reach the melting point twice as the middle nodes but with a lower
temperature rate. The curves in figure 3.31 are represented for layers 5, 16, 28 and 37. These
nodes reach 1700°C for the first deposit and 1500°C for the second deposit. This means that the
nodes melted twice. But for the third cycle all the layers do not exceed 1050°C, which is below

the melting point.
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Figure 3.31 Temperature behavior of side-touch nodes for S355, heat input 405 J/mm of Layers 5,16,28, and 37
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In contrast to the middle and side-touch nodes, side nodes must melt once. If the side nodes
melt again, it means that the heat input is too high, and which makes the layers to not fit into
each other. Figure 3.32 describes the temperature of these nodes for the selected layers - 5, 16,
28, and 37. All these layers exceed the melting point by a 100 degree Celsius. But for the second
cycle none of the layers go beyond 1150°C, which is below the melting point by 300 degree

Celsius.
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Figure 3.32 Temperature behavior of side nodes for S355, heat input 405 J/mm of layers 5,16,28, and 37
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oxx - Residual Stress result of Low carbon steel S355J2G3 at heat input 405 J/mm

The most important residual stresses in any welding processes are the longitudinal residual
stress which is oxx residual stress in this case. So, the first result of this case is for oxx residual
stress. Figure 3.33 shows a color contour plot that describes the distribution of the oxx residual
stress around the sample. In figure 3.33 the stress has a more complex distribution than in the
case of stainless steel 316L. The maximum residual stress is 593.29 in tension and the minimum
is -545.052. In compression, these values are higher than the yielding stress. This figure below
shows the symmetric plane of the middle, around the X-axis. The last three deposited layers of
the sample have stress in comparison, while the layers underneath them are in tension. That
happens directly without any gradual changes in the stress values. The most dominant stress
type is tension with a small area of compression on the sides. Also, there is a hump on the
center which may be caused by the clamps because the clamps prevent the printed part from
distortion, which is to stress. In fact, after cooling, when the clamps are removed the stresses

could not change the shape of the sample, thereby, turning to residual stresses.
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Figure 3.33 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm X-Z plane -cross section view
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Figure 3.34 shows different dominant stress types from outside the sample, this side of the
sample on the figure generally in compression state. Also, it has the last three deposited layers,
but with a sharp little gradual transformation between compression and tension states. The

effect of the clamps still exists on this side as well.
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Figure 3.34 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm X-Z plane view
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Figure 3.35 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric-cross section view
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Figures 3.35 and 3.36 are isometric views for the sample, from these figures it is clear that the
start and the end of the printing (welding) path have the most effects on the base. The base
generally in compression state, which makes sense; because the melting layers shrink and grab
the sides of the base with it. While the ends of the base are in a low value of stresses comparing

to the center of it.
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Figure 3.36 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric view
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Figures 3.37 and 3.38 describe the plane Z-Y with little of rotation. For the same data oxx
residual stress, these figures describe clearly how the tension stresses grow up from outside of
the plate to inside it; while the last three layers are in different pattern. Also, these figures show
the displacements of the base and the plate as one curve; which is not the case in the sample of

316L. Furthermore, the range of the distortion is lower than the sample of 316L.
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Figure 3.37 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm Y-Z plane -cross section view
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Figure 3.38 oxx- Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm Y-Z plane view
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Figure 3.39 is a sliced parts of the isometric view of the oxx residual stress. It seems that the
residual stresses inside the cuts are not encompassing the four regions. The contact area
between the base and the printed part is in tension, while the second region is in compression
and the third region is in tension below the last three layers. The last three layers have a pattern
that is different from the others. So, it may be the same as in 316L for the divided regions

pattern, but with different range of stress value.
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Figure 3.39 oxx-Longitudinal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric-section-sliced view

[

[

84



First principle Residual Stress result of Low carbon steel S355J2G3 at heat input 405

J/mm

Figure 3.40 is a contour representing the First principle residual stress for internal face from the
cross section at the center of the sample. In this figure the stresses are divided into three
regions. The last three layers, as in oxx residual stress, have the lowest rate as compared to other
regions. The second region is a frame surrounding the center with tension stresses and it gets
high at the origin because of the clamps. The third region is the center which is in between
tension and compression states. The maximum stress point is 593.291, in tension, and the

minimum is -208.029, in compression.
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Figure 3.40 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm X-Z plane -cross section view
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Figure 3.41 describes the external face of the sample which is the opposite face of figure 3.40.
Figure 3.41 has the same divided regions, but with different dimensions. Moreover, the stress

rate of the internal face is in contrast to the external face. In other words, the external surface
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of the sample has the First principle residual stress in low compression, while the inside of the

printed part is in tension state.
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Figure 3.41 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm X-Z plane view

Figure 3.42 and 3.43 are isometric views of the same sample. In these two figures, the base area
around the printed part is in tension, while the rest of the base area is in low compression,

except the ends of the base, which have a combined stress.
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Figure 3.42 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric-cross section view
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Figure 3.43 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric view

Figures 3.44 and 3.45 show the last three layers clearly in a different pattern, as what happens
in longitudinal stress. Also, in these two figures, the boundaries of any layer are in a state
different from the layer itself. This may be because of the re-melting processes during printing.

Also, it is observed that the ends of the printed part are in complete tension state.

L38 V2 5 PB50_2 HALF_80_700S355
NGDE - Sfress_NOD First Princ
Min = -208.028 &l Nods 91081
Mt = 593,291 ot Notle 79057

1186 / 12000000000

150.00000
130:00000
11000000
90.00000
T0.00000
_ 5000000
— 3000000
— 10.00000
-10,00000
-30.00000
-50.03000
-70.00000
-80.00000
-110.00000
-130.00000
-150.00000
z

¥ o

Figure 3.44 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm Y-Z plane -cross section view
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Figure 3.45 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm Y-Z plane view

Figure 3.46 is a sliced parts of the sample. It shows how the stresses transform from the outside
of the surface to the inside. Also, it shows how the base holds the printed part using tension
stress. In fact, the ends of the printed part are in complete tension stress state. So, the frame is

not a rectangular but resembles that of sunglasses, somewhat.
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Figure 3.46 First Principal Residual stress of 3D printed S355 at heat input 405 J/mm Isometric-sectioncut-sliced view
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Figure 3.47 has curves of Z-axis displacement of selected layers 3-14-25-36. These curves take an
arc shape with little distortion in the middle. The sample moves to the negative Z-axis, which is
practically impossible, since in real life there would be some support, for e.g. a table holding it.
But in simulation processes, the clamps are free after the 3D printing processes is over, which is
the cause for the negative sign. If this is factored, the maximum displacement would be around

8 cm, which is 1% of the total sample length.
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Figure 3.47 Displacements curves for Layers 3-14-25-36 of S355, heat input 405 /mm after printing
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Discussion

These results are made to compare between the residual stresses behaviors of two types of
materials. In this case, they were - Austenitic stainless-steel grade 316L and Low carbon steel
S355J2G3. These will be tested and validated subsequently with reference to an experimental
sample in the future. There are two individuals’ sections — one for austenitic stainless-steel

grade 316L and the other for Low carbon steel S355J2G3.

In this study, there were two result sections for the austenitic stainless-steel grade 316L - one
had heat input rate of 325 J/mm and the other one had 345 J/mm. For lower heat input, the
sample nodes did not meet the melting temperature in certain cases, for e.g. the side nodes.
Therefore, for these two results, the temperature of the nodes did not affect the final residual
stress result so long as the temperature of the nodes reach close to a difference of less than
almost200 degree Celsius. In general, the result looks similar but are really not identical; In fact,

for the maximum and the minimum temperatures, they appear the same.

In conclusion, the methodology of employing the Welding heat input law or using Smart Weld
software are very useful means to predict the appropriate heat input required to produce an

explainable result for evidencing residual stresses.

So, the comparison is between two results, instead of three, since the heat input does not
impact the result. In general, the stainless-steel result depicts the effect of lower longitudinal
and first principle residual stress more, as compared to carbon steel. Though in both materials
the residual stress types exceed the yielding strength, they do not suffice the tensile strength

parameters.

For the longitudinal residual stress, in this case oxx residual stress being the longitudinal, the

stainless-steel result has more compression stress while the carbon steel was observed to be in
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complex distribution between the inside and outside surfaces. But in general, tension areas are
on the top and on the bottom of the printed part for both materials. On the other side,
compression area is the central area of the printed part. Furthermore, the clamps on Y-axis and
zero X-axis increase the rate of the tension stresses of the printed part, which is parallel to these
clamps. So, for oxx residual stresses, the tension stress is focused around the base and the top of
the printed part for both materials. In contrast, the middle area is in compression. In addition,
the inside surface of the printed part tends to have the opposite properties of the stresses type
of the outside surface. Also, the clamps must be tested for other conditions in order to identify

their effects on residual stresses.

The second kind of stress, namely the First principle residual stresses, shows lesser complexity
among the oxx residual stresses. For this kind of stress, the colorful contours show two different
clear areas. One is a frame around the second which is usually in a high rate of tension stress,
while the second area is one which appears to be of compression stress type with a low rate, as
compared to the frame area. In comparison with the yield strength, the frame area is in a state
close to the yielding strength. The internal area, which is surrounded by the frame area, has a
very low value relative to the yielding strength. As a conclusion, for 3D printing using WAAM,
the active useful area is surrounded by a frame of high residual stress area. So, it is useful to
predict the stress distribution by employing simulation processes before the actual printing and
machining processes. For both kinds of stresses, the base holds the printed part by tension

residual stresses which increase the tension area inside the printed part.

Also, it has to be mentioned that the last three layers of the carbon steel sample have different

stress types from the area below them.
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The last point is that of the Z-axis displacement in both cases. For stainless steel the distortion is
higher than that in carbon steel. In stainless steel it may reach twice the displacement of carbon
steel, after the cooling processes. They are both distorted at the ends of the printing path, which
is understandable, since the ends are held by the center area of the printed part. Also, stainless
steel has a concave area in the middle of the sample, while in the carbon steel sample, this area

looks like an arc.

For the computation time for the simulation processes in SYSWELD with a workstation has 16
GB as RAM and around 600 GB as storages, each case took at least 5 days to simulate the 3D
printing processes as WAAM; and for the memory requirements, it needs more than 400 GB for
the data and the result. For more accuracy by using finer mesh size, the requirements should be

higher than the mentioned numbers.

Bottom line is that while the austenitic stainless-steel grade 316L sample has lower longitudinal
and first principle residual stresses, low carbon steel S355J2G3 sample has higher longitudinal
and first principle residual stresses. In addition, the austenitic stainless-steel grade 316L sample
has higher Z-axis displacement, while low carbon steel S355J2G3 sample has the lower Z-axis

displacement.
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Chapter 4 Conclusion and future work

WAAM 3D printing is one of the promising technologies of the future. For reducing expenses
related to such printing, simulation processes are a very effective in predicting the properties of
the printed parts after the entire process is done. WAAM is considered as one of the lower

priced 3D printers for metals.

It should, however, be noted that before fully trusting this above-mentioned simulation
processes, the methodology should undergo several tests as mentioned in the second chapter -
Heat test, Path test, Mesh test, Penetration test, and Clamping test. These tests determine the
appropriate conditions to be employed in the simulation processes. SYSWELD is a commercial
welding simulation software and has one of the higher computational ability among software
packages used for welding. Since WAAM is essentially a welding process, adopting SYSWELD in

3D printing is highly recommended.

A 3D printed plate has been printed in Lehigh 3D lab and tested for fatigue. Therefore, in this
thesis, for most of the parameters of this experimental sample, a simulation sample has been
subject to comprehensive tests. The test results should be applicable to and the sample would
represent a range of many similar materials. One of the main objectives of this thesis is to show
the residual stresses types in color contour plots for comprehensiveness and clarity. As
mentioned earlier, the simulation samples used were austenitic stainless-steel grade 316L and

Low carbon steel $355J2G3 as materials for the 3D printing processes.

The primary result is to demonstrate Longitudinal residual stress (oxx) and First principle residual
stresses. The main outcome for longitudinal residual stress (oxx) is that the austenitic stainless-
steel grade 316L sample has lower rate than Low carbon steel S355J2G3, and in both cases there
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are three main areas of stress types. The top and the bottom areas are in the same residual
stress type, and the middle area contrasts with these areas. In both the materials’ samples, the

residual stress exceeds the yielding strength, but not tensile strength.

A main finding for the First principle residual stresses is that in both samples, for the materials,
namely austenitic stainless-steel grade 316L and Low carbon steel S355J2G3, the residual stress
made a frame of tension stress around the middle area. This meant that the boundaries of the
plate have a different residual stress type than the middle area. As in the longitudinal residual
stress, the First principle residual stress exceeds the yielding strength in certain spots. Also, it is

higher in Low carbon steel S355J2G3 than in austenitic stainless-steel grade 316L.

Lastly, the Z-axis displacement is high in the austenitic stainless-steel grade 316L sample and it is
low in other sample of Low carbon steel $355J2G3. The main reason for this is that the ductility
of stainless steel is higher than that of carbon steel. This allows the residual stress to deform the

samples.

The next step for this research is to validate and verify the simulation sample with an
experimental sample for the identical properties of WAAM. This would contribute, in great
measure, a high trust factor in the simulation exercise. Also, based on observations from the
simulation sample, the residual stresses were very high; this provides a great opportunity to
look for a solution to reduce them by using heat treatment or modifying welding parameters.
And for effecting physical changes, the dimension of the base could change the value of the
residual stresses. Besides the exhibited and proven effects of the clamps, other clamping

conditions could also alter the behavior of residual stresses.
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