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ABSTRACT 

The ongoing suspension boat project at Lehigh University Composites Lab presents new 

challenges for design since a suspension boat will encounter entirely different loads than 

a conventional boat. High strength yet low weight are as always of major importance.  

 

The suspension boat presently under consideration consists of four sponsons connected to 

a center hull, or fuselage. An FEA study of the composite fuselage was conducted. Crash 

loads were applied as evenly distributed pressures over parts of the top of the cockpit. 

Suspension loads were applied at discrete points on the fuselage, where the suspension 

components will be mounted, and inertia relief calculations were performed. Masses 

representing occupants, engine etc were included in the model. The fuselage is built of 

carbon fiber reinforced epoxy skins on foam core sandwich. Different carbon fiber ply 

layups and foam core thicknesses were studied. A satisfactory layup scheme was 

achieved for the fuselage.  
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1. INTRODUCTION 

 Background 

Lehigh University Composites Lab has been developing a suspension boat capable of 

running stably and smoothly on off-shore water at high speed [1-4]. The unconventional 

suspension systems introduced some unique challenges into the design process of this 

speed boat. Unlike a traditional boat that takes the loads from water at its bottom through 

slamming, the suspension boat would take large loads through the suspension systems 

which are mounted to the fuselage. The fuselage of the suspension boat must be strong 

enough to withstand the suspension loads, it should maintain structural integrity in a 

crash in order to protect the pilots, and last but not the least, the total mass of the fuselage 

should be as low as possible. 

 

 

Figure 1.1-1:  A CAD illustration of the fuselage equipped with suspension systems (the 

fuselage has the correct shape whereas the four sponsons are only place holders)  

 

The fuselage is made of sandwich composites with Carbon Fiber Reinforced Plastics 

(CFRP) skins and a closed-cell PVC foam core, and the window panels would be made of 

Polycarbonate (PC) because of its optic properties, its impact resistance and its relatively 

low density. 
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Prior to this study, the external composite structure of the fuselage was already built with 

a layup that showed excellent strength in the four-point bending test used as a cockpit 

safety benchmark by UIM. The sizes and locations of the internal bulkheads and frames 

were also determined by functional and utility requirements, but the layups of the 

bulkheads and frames as well as the window panel thicknesses needed to be determined. 

Thus the main goal of this study was to: 

 

 develop feasible layups of the internal bulkheads and frames 

 perform a study on the thicknesses of the window panels 

 estimate deformations and stresses in the fuselage when subjected to various loads  

 

 

Figure 1.1-2: Fuselage structure built prior to this study 

 

 Overview of the FEA-based Analyses  

The Finite Element Analysis (FEA) approach suits this design problem well because it 

allows for thorough examinations of the structural behaviors of the suspension boat 

fuselage under various loads without the risk of damaging a prototype or the need to 

modify it. The FEA approach also puts significant challenges onto the shoulders of the 

practitioners: the finite element model and boundary conditions must be accurate enough 

to capture the physics, yet they must also be of relatively low computational cost in order 

to allow for rapid changes in the design. 
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For the above reason the fuselage was modeled with layered linear shear-deformable 

shell elements (Ansys SHELL181) and meshed from a simplified CAD geometry. Linear 

elastic static analyses with Inertia Relief were performed to mimic the loads the fuselage 

would encounter during high speed operation, as well as in a crash. In Inertia Relief 

calculations, rigid body translational and rotational accelerations are calculated to balance 

externally applied forces. Forces balancing these accelerations are calculated for all 

elements and added to the external forces. A static analysis is then performed. The static 

analysis requires boundary conditions that eliminate rigid body translations and rotations. 

There will be no reactions at the nodes where these boundary conditions are applied. It 

should be noted that these boundary conditions are used only to obtain a unique solution 

and have nothing to do with the actual motion of the structure. See Ansys manual [5,6].  

 

The first step of the FEA-based analyses was to come up with a group of incrementally 

reinforced layup or thickness options for each of the bulkheads, frames, and window 

panels. The PC window panels would have the thicknesses 12.7 mm or 15.9 mm (1/2" 

and 5/8", respectively). The core material of the internal bulkheads and frames would be 

Divinycell H80 and the thickness would be either 10mm or 15mm. The transverse 

bulkheads and cockpit frames would have (45, -45, 0, 90)m skin layups, and the 

longitudinal bulkheads would have skin layups of (45, -45)n because their main task was 

to provide torsional stiffness and strength; m and n are integers. 

 

If a bulkhead, frame or window panel met the strength requirements for most of its 

elements but had very large strains on relatively small areas, then the layup or thickness 

would still be considered satisfactory. Local stresses will be dealt with by adding local 

reinforcements when the boat is built.  

 

A very simple optimization was performed to gain a viable layup and thickness design 

with low weight by using a Python script. This script scanned through a number of 

(laminate and core) thicknesses of each bulkhead, frame, and window panel. 
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Figure 1.2-1: A process flow diagram of the Python script to find a viable design with 

low weight 

 

 

2. METHODOLOGY 

 Materials and Their Properties  

In Finite Element Analyses the CFRP laminates were modeled as layups of unidirectional 

(UD) plies of an orthotropic CFRP material. The material properties of a single UD 

CFRP ply are given in Table 2.1-1. They were obtained from Table 10.2.4.1 of 

Composite Materials Handbook Volume 3. (MIL-HDBK-17-3F) [7]. 
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Unidirectional Carbon Fiber Reinforced Polymer (UD CFRP) 

Material Property Value 

E1 113.6 GPa 

E2 9.65 GPa 

E3 9.65 GPa 

12 0.334 

13 0.328 

23 0.540 

G12 6.0 GPa 

G13 6.0 GPa 

G23 3.1 GPa 

ρ 1530 kg/m3 

Table 2.1-1: Material properties of UD CFRP 

 

Closed-cell PVC foams from Diab were chosen as the core materials for the sandwich. 

The heavier-duty Diab HM130 would be used for the construction of the external 

structure and the lighter-duty Diab H80 was chosen for the internal bulkheads and frames. 

The cores were modeled as linear elastic isotropic materials and their properties are 

shown in Table 2.1-2 and Table 2.1-3. The density, shear modulus and shear strength are 

taken from Diab’s datasheets [8]. A Poisson’s ratio of 0.32 was used for both cores and 

Young's modulus was calculated from shear modulus and Poisson ration assuming 

isotropy (E=2(1+)G). Real foams are not perfectly isotropic so these values differ 

slightly from those given by Diab; however, the most important properties (shear 

modulus and shear strength) are the same and the influence of the other properties are 

expected to be of less importance. The critical shear strain was calculated as cr /G. This 

is significantly less that the failure strains of real foams, which exhibit considerable non-

linear deformation similar to yielding before final failure.  
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Diab HM130 Foam  

Material Property Value 

E1 132 MPa 

12 0.32 

ρ 130 kg/m^3 

G 50 MPa 

cr  2.2 MPa (Nominal) 

1.9 MPa (Minimum) 

γcr 4.4% (Nominal) 

3.8% (Minimum) 

Table 2.1-2: Material properties of Diab HM130 foam 

 

Diab H80 Foam  

Material Property Value 

E1 71.28 MPa 

12 0.32 

ρ 80 kg/m^3 

G 27 MPa 

cr  1.15 MPa (Nominal) 

0.95 MPa (Minimum) 

γcr 4.3% (Nominal) 

3.5% (Minimum) 

Table 2.1-3: Material properties of Diab H80 foam 

 

Polycarbonate (PC) was the material of choice for the window. PC is viscoelastic in 

nature, but since we are only interested in its pre-failure behaviors under relatively high 

strain rates it was assumed that a linear elastic time-independent material model would 

give satisfactory results. See [9] for properties of PC. The following properties were used:  
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Polycarbonate (PC) 

Material Property Value 

E1 2.35 GPa 

12 0.38 

ρ 1200 kg/m^3 

i
cr 8% 

iii
cr -8% 

Table 2.1-4: Material properties of polycarbonate 

 Post-Process and Failure Criteria 

In this study the failure of the sandwich was assumed to be caused by excessive tensile or 

compressive strain in the thin CFRP skins or excessive out-of-plane shear strain in the 

foam cores. The failure of the PC was also assumed to be caused by excessive tensile or 

compressive strain. The customized post-process to evaluate these failure criteria was 

made by a Python script. 

 

I. Failure criteria for CFRP skins 

For each of the UD CFRP plies, the maximum principal strain and the minimum principal 

strain were evaluated. If the maximum principal strain was higher than 1.2% or the 

minimum principal strain lower than -0.7%, then the CFRP was assumed to fail. 

 

Since each UD CFRP ply was very thin compared to the core, the change of strain 

through the thickness of a ply could be neglected, so for each of the UD CFRP plies only 

the strains at the ply mid-plane were evaluated. For every element, the maximum value of 

maximum principal strains and the minimum value of minimum principal strains through 

all UD CFRP plies were then calculated and used in the contour plots. 
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II. Failure criteria for foam cores 

For both H80 and HM130, it was assumed that the maximum out-of-plane shear strain 

that they could take is 4%. This value was based on the minimum and nominal critical 

shear strains calculated as cr /G (see Table 2.1-2 and Table 2.1-3) and assuming linear 

elastic behavior up to failure. 

 

If γ13 and γ23 are the out-of-plane shear strains at a point in the sandwich core, it is easy to 

show that the maximum out-of-plane shear strain is 2

23

2

13   .  

 

Because the foam cores were much thicker than a UD CFRP ply, the change of strain 

through the thickness of a foam core could not be neglected. At the top-plane, the mid-

plane and the bottom-plane, the maximum out-of-plane shear strains were first calculated 

as 2

23

2

13   from γ13 and γ23, then for every element the maximum value of the (absolute 

value of the) three maximum out-of-plane shear strains was calculated and used for the 

contour plotting.  

 

III. Failure criteria for PC 

PC was assumed to allow 8% maximum principal strain and -8% minimum principal 

strain before failure, see Table 2.1-4.  

 

The strain changes through the thickness of the window panels and therefore for every 

element the maximum and minimum principal strains at the top-plane, the mid-plane and 

the bottom-planes were evaluated. From these three locations the most severe principal 

strains were extracted and used in the contour plots that follow.  

 

 Comparison with a Four-Point Bend Experiment   

Lehigh University Composites Lab had conducted four-point bend tests on specimens 

with the layup of the cockpit of the actual Suspension Boat being built. These tests are 

required by UIM, an international governing body of powerboat racing. The specimens 
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must meet stiffness and strength requirements under four-point bending [10]. Results of 

this experiment were presently used to check whether the layered linear shear-deformable 

FE shell elements and the selected material properties were capable of predicting the 

experimental deflection and strength. 

 

The cockpit specimen measured 800 mm in length and 100 mm in width, it had an 

asymmetrical sandwich composite layup with a thicker CFRP skin on the outside and a 

thinner CFRP skin on the inside. The layup is shown in the table below. The reference 

direction, which the 0° fibers align to, is the x-axis (in red) shown in Figure 2.3-1.  

 

 

Figure 2.3-1: A sketch of the cockpit specimen and the four-point bending setup 
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Outside 

Material Angle  Thickness 

UD CFRP 45° 0.1515 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 0° 0.189 mm 

UD CFRP 90° 0.189 mm 

UD CFRP 45° 0.1515 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 0° 0.292 mm 

HM130 isotropic 15 mm 

UD CFRP 0° 0.292 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 45° 0.1515 mm 

UD CFRP 90° 0.189 mm 

UD CFRP 0° 0.189 mm 

Inside 

Table 2.3-1: Layup of the cockpit panel test specimen 

 

The UIM four-point bending procedure set 500 mm between the outer roller supports, 

and 167mm between the inner roller supports, where the loads were applied and the 

deflections were measured. According to the UIM rule books, the specimens should not 

fail and should deflect no more than 25 mm under a 3000 N load [10]. 

 

In the tests at Lehigh Composites Lab, three specimens were tested with the thicker 

outside skin in compression, and two specimens were tested with the thinner inside skin 

in compression. The specimens deflected 9.46mm under a 3000 N load and started to 

exhibit non-linear deformation at roughly 6000N before ultimate failure at roughly 

7000N. The results were: 
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 No specimen deflected more than 10 mm with 3000 N applied.  

 The three specimens with the outer skin in compression failed at:  

o Specimen 1: max load 7047 N at 29 mm deflection (specimen taken from edge 

of panel),   

o Specimen 2: max load 7089 N at 29 mm deflection,   

o Specimen 3: max load 7211 N at 31 mm deflection,   

 while the two specimens with the inner skin in compression failed at:  

o Specimen 4: max load 7067 N at 27 mm deflection,   

o Specimen 5: max load 6521 N at 23 mm deflection (specimen taken from edge 

of panel).  

 All specimens exhibited substantial non-linear deformation, similar to yielding, 

before final failure. 

 

 

Figure 2.3-2: Deflections of the cockpit specimens tested with UIM procedure 

(Courtesy of Prof. Grenestedt at Lehigh Composites Lab) 
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In the validation FEA case, the outer supports were modeled with constrained 

displacements, and the inner supports were modeled with evenly distributed line pressure 

over the two lines of the inner supports, as outlined in Table 2.3-1. The mesh was 

uniform and mesh dependence studies with the element size of 20 mm, 10 mm and 5 mm 

were conducted. Below are a sketch and table showing the boundary conditions for the 

FEA. 

 

 

Figure 2.3-3: A sketch of the boundary conditions of the four-point bending case 

 

Description of the geometry Description of the boundary conditions 

Point A Ux = 0 

Uy = 0 

Point B Ux = 0 

Two yellow lines marked with 

C  
Uz = 0 

Two red lines marked with D Evenly distributed line pressure along the 

negative z-axis, with the total force 3000 N or 

6000 N, and the thicker outside skin under 

compression 

 

Note: This table uses Figure 2.3-3 as the reference for the geometry and 

coordinate system. 

Table 2.3-2: Description of the boundary conditions of the four-point bending case 

 

 

Figure 2.3-4: A sketch of the uniform mesh, element size = 10 mm  
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I. Comparison of the deflections under a 3000N load  

From the table below, we can see that the deflection under a 3000 N load was captured 

very well by FEA for all three mesh resolutions when we compare the FEA results to the 

experimental data. There was a small difference between the max deflection and min 

deflection probed at the inner supports in the FEA case, this was expected due to the out-

of-plane warp caused by anticlastic bending, and even the coarsest mesh which had only 

5 rows of elements y-axis wise was able to capture this behavior with good accuracy.  

 

 Min Deflection Max Deflection 

FEA, element size = 20 mm 9.45 mm 9.55 mm 

FEA, element size = 10 mm 9.46 mm 9.56 mm 

FEA, element size = 5 mm 9.46 mm 9.56 mm 

Experiment 9.46 mm 

Table 2.3-3: Comparison of deflections of a cockpit panel specimen under a 3000 N load 

and different element sizes 

 

II. Core failure under a 6000 N load 

The specimens all started to exhibit substantial non-linear deformation at roughly 6000 N, 

presumably due to (shear) yielding of the foam core.  

 

With the total load P = 6000 N, the core thickness d = 15 mm and the width of the 

specimen w = 100 mm, the shear stress in the core is approximately 2 MPa which is near 

the published shear strength of H130. 

 

As indicated in Figure 2.3-5, the FEA also predicted the maximum out-of-plane shear 

strain of core that caused the core failure in experiments at 6000 N quite well.  

 

 

Figure 2.3-5: Maximum out-of-plane shear strain of core at 6000 N 
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 Geometry and Finite Element Mesh of the Suspension Boat Fuselage  

The CAD model of the suspension boat fuselage measures 6.53 m in length, 1.48 m in 

height, and 1.07 m in width. It is composed of surfaces that represent the external 

structure of the hull, cockpit, hatches and windows, the internal bulkheads and frames. 

Many minor features such as fillets and sharp corners were removed or simplified before 

the mesh was generated in Ansys Mechanical. The coordinate system shown in the 

sketches below aligns with the principal axes of the boat: the x-axis is parallel with the 

boat lateral axis, the y-axis is parallel with the boat vertical axis, and the z-axis is parallel 

with the boat longitudinal axis. Throughout the thesis this coordinate system was used. 

 

 

Figure 2.4-1: Simplified CAD model with the window panels (front & sides) and the 

cockpit hatches (top) highlighted in green 
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Figure 2.4-2: Internal structure of the simplified CAD model 

 

The Finite Element mesh of the fuselage is mostly composed of quadrilateral elements 

with a few triangular elements as fillers. The total element count is 41562 and the 

element quality is excellent everywhere. All narrow areas such as the cockpit frames, 

lower ring-shaped and stripe-shaped bulkhead panels have a mesh resolution of about 5 

rows of elements.  

 

 

Figure 2.4-3: Mesh of the external structure of the fuselage 
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Figure 2.4-4: Mesh of the internal structure of the fuselage 

 

 

Figure 2.4-5: Close-up look of the mesh  

 

 Sandwich Composite Layups and Window Panel Thicknesses 

I. Window panel thicknesses 

The window panels need to have adequate strength to protect the pilots in a crash. The 

proposed thickness options were 12.7mm (1/2”) and 15.9mm (5/8”). As shown in the 

results in section 3.1, the window panels do not need to be any thicker. 
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Figure 2.5-1: Window panels highlighted in blue 

 

II. Layups of the external composites structure 

Prior to this FEA study the external composite structure of the fuselage had been built. 

The bottom of the hull has a 19mm thick HM130 core while the rest of the external 

composite structure including the hatches has a 15mm thick HM130 core. The bottom of 

the boat will be subjected to slamming loads hence a thicker core is needed. To mimic the 

effect that the two hatches are not bonded to the main body of fuselage, the hatches were 

surrounded by fairly thin (5 mm) flanges that have low bending stiffness. Below is a table 

showing the layups of the external composite structure of the fuselage. The reference 

direction, which is the direction of a zero degree fiber, is defined as the projection of the 

z-axis (boat longitudinal axis) onto the elements.  

 

 

Figure 2.5-2: Close-up look of the element reference directions at the front end of the 

fuselage 
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Figure 2.5-3: The bottom of fuselage where the core thickness is 19mm,  

highlighted in blue 

 

 

 

Figure 2.5-4: The hatch edges where the core thickness is 5 mm 

 (same layup of skins as the rest of the external composites structure) 
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Outside 

Material Angle  Thickness 

UD CFRP 45° 0.1515 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 0° 0.189 mm 

UD CFRP 90° 0.189 mm 

UD CFRP 45° 0.1515 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 0° 0.292 mm 

 

HM130  

 

 

isotropic  

 

         If bottom:                        19 mm 

         If edges of the hatches:   5mm 

         Otherwise:                      15 mm 

UD CFRP 0° 0.292 mm 

UD CFRP -45° 0.1515 mm 

UD CFRP 45° 0.1515 mm 

UD CFRP 90° 0.189 mm 

UD CFRP 0° 0.189 mm 

Inside 

Table 2.5-1: Layup of the external sandwich composite structure of the fuselage 

 

 

III. Layups of the cockpit frames and transverse bulkheads 

For defining the skin layups of the transverse bulkheads and frames, the projections of 

the y-axis (boat vertical axis) was used as the reference direction. The proposed skin 

layup options were in the form of (45, -45, 0, 90)m, where m is a positive. The thickness 

of a 45° or -45° ply is 0.1515 mm, and the thickness of a 0° or 90° ply is 0.189mm.  

 

For thinner skin laminates, such as (45, -45, 0, 90) and (45, -45, 0, 90)2, the proposed 

thickness of the H80 core was 10mm. For thicker skin laminates, (45, -45, 0, 90)3 and (45, 

-45, 0, 90)4, the proposed thickness of the H80 core was 15mm. This was due to the 

consideration that a bulkhead or frame requiring thicker and stronger skins could also 

benefit from more bending stiffness and to resist buckling. As we can see later in section 
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3.1, a pair of (45, -45, 0, 90)4 skins and a 15mm H80 core was the strongest layup needed 

in the fuselage. 

 

 

Figure 2.5-5: Close-up look of the element reference directions at a frame 

 

 

Layups of the longitudinal bulkheads 

The projections of the z-axis (boat longitudinal axis) was used as the reference direction 

for defining the skin layups of the longitudinal bulkheads. The proposed skin layup was 

in the form (45, -45)n, where n is a positive integer. The thickness of a 45° or -45° ply is 

0.1515 mm. The proposed H80 core thickness was 10mm. As seen in section 3.1, a pair 

of (45, -45)2 skins and a 10mm H80 core was the strongest layup we would need for the 

longitudinal bulkheads. 
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Figure 2.5-6: Close-up look of the element reference directions at a longitudinal bulkhead 

 

 Mass Distribution for the Inertia Relief FEA 

The Inertia Relief approach required a mass distribution to capture the inertia behaviors 

of the boat, the pilots, the engine, etc. Besides the mass defined by the sandwich structure 

and window panels in Section 2.6, the following mass was added: 

 

 414 kg of evenly distributed mass (per area) to all the surfaces representing 

sandwich composites. This additional mass was to account for the painting, 

various hardware, equipment, etc.   

 150 kg of evenly distributed mass each to the two lower bulkheads where the two 

pilots sit, shown in the sketches below. This corresponds to the mass of the person, 

his or her safety gear, the seat and its mounting hardware.  

 280 kg of evenly distributed mass to the location where the engine is mounted, 

shown in the sketches below.  
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Figure 2.6-1: 414 kg of mass added to the all the sandwich surfaces colored in red. 

Surfaces representing window panels were left out 

 

 

 

Figure 2.6-2: 150 kg of mass added to the bulkhead where the front pilot sits, 

 highlighted in red 
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Figure 2.6-3: 150 kg of mass added to the bulkhead where the rear pilot sits, 

highlighted in red 

 

 

 

Figure 2.6-4: 280 kg of mass added to the surface where the engine is mounted, 

highlighted in red 
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 Crash Scenario – Front under Hydrodynamic Load 

The cockpit has to be sufficiently strong to maintain structural integrity and ensure the 

survival of the pilots in the case of a crash. The first crash scenario studied was when the 

front of the cockpit hits the water, sketched in the figure below. 

 

 

Figure 2.7-1: The front of the cockpit hitting the water 

 

In the corresponding linear static FEA study, a uniform pressure of 1.25 MPa, which is 

the dynamic pressure at 50 m/s, was applied to the front of the cockpit. The Inertia Relief 

option was enabled with just enough fixed displacements applied preventing rigid body 

motion.  

 

 

Figure 2.7-2: Hydrodynamic pressure applied normal to the surfaces of the front of the 

cockpit, highlighted in red 
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 Crash Scenario – Top under Hydrodynamic Load 

Another crash scenario is when the top of the cockpit lands on the water as outlined in 

Figure 2.8-1. In a linear static FEA, a uniform hydrodynamic pressure of 1.25 MPa was 

applied onto the top surfaces of the cockpit, as shown in the figures below. The Inertia 

Relief option was enabled with just enough fixed displacements applied preventing rigid 

body motion.  

 

 

Figure 2.8-1: The top of the cockpit hitting the water 

 

 

 

Figure 2.8-2: Hydrodynamic pressure normal to the surfaces applied to the top of the 

cockpit, highlighted in red 
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 Side Window Panels under Hydrodynamic Loads 

This section investigates if the side window panels could survive the hydrodynamic loads.  

As shown in Figure 2.9-2, in this FEA the window panels on the right side including the 

right half of the front window screen were loaded with the hydrodynamic load of 1.25 

MPa. The Inertia Relief option was enabled with just enough fixed displacements applied 

preventing rigid body motion.  

 

 

Figure 2.9-1: Hydrodynamic pressure applied normal to the right side window panels, 

highlighted in red 

 

 Operating at High Speed in High Waves – Loads from the Suspension 

System  

I. Methodology of determining the loads on fuselage 

Other major load cases for the suspension boat come from operating at high speed in high 

waves. While the loads from waves would primarily be applied to the bottom of a boat of 

conventional design, the suspension boat fuselage would mostly take the quite 

concentrated loads through the suspension system. An examination of the cases where the 

boat was operating at high speed in high waves was necessary.  

 

The loads on the fuselage in this FEA study were loosely based on sea trials of the 

Numerette, a heavily instrumented 9 m long high-speed hybrid steel/composite boat 

designed and built at Lehigh University Composites Lab. In the Numerette, vertical 

accelerations of 10 g is common, 15 g is not uncommon, and 20+ g has occasionally 
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occurred [11,12]. The plan is to adjust the speed of the suspension boat to avoid 

surpassing 10 g vertical and 20 g transverse accelerations. Seven loading cases were 

devised. These are believed to reasonably well represent some of the highest loads that 

are expected during operation at high speeds. Four of these load cases assumed a total 

load equivalent to 10 g vertical acceleration, and three of them assumed a total load 

equivalent to 20 g horizontal transverse acceleration. The vertical cases assumed half of 

the load of the horizontal cases. This is because the suspension would reduce the vertical 

load significantly. However, depending on springs and compression dampings the forces 

could still be substantial. 

 

For each of the seven load cases, a load calculator written in APDL (Ansys Parametric 

Design Language) was used to calculate the loads on the fuselage from assumed loads on 

the sponsons. In this APDL code, the suspension systems and sponsons were modeled as 

rigid links that allowed no deformation but free rotations and translations. The hardpoints 

where the suspensions are mounted to the fuselage were locked in all three transitional 

directions, the assumed loads on sponsons were applied at the connection points between 

the suspensions and sponsons, and then the reaction forces at the hardpoints were 

calculated. 

 

Figure 2.10-1 shows the left front suspension and sponson modeled in APDL. Nodes 1, 2, 

3, 5, 6, and 7 are the hardpoints. Nodes 4, 11, and 12 are where the left front suspension 

components connect to the left front sponson. Figure 2.10-2 shows the left rear 

suspension and sponson modeled in APDL. Nodes 101, 102, 103, 105, and 106 are 

hardpoints. Nodes 104, 110, and 111 are where the left rear suspension connects to the 

left rear sponson. A Mathematica code showed that both of the systems are statically 

determinate with unique solutions. 
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Figure 2.10-1: Left front suspension and sponson modeled as rigid links. The link 

between nodes 8 and 12 represents the shock absorber.  

 

 

Figure 2.10-2: Left rear suspension and sponson modeled as rigid links. The link between 

nodes 107 and 111 represents the shock absorber.  

 

 

The connection points between the suspensions and the sponsons were labeled in Figure 

2.10-3. The hardpoints were labeled in Figure 2.10-4, 2.10-5, 2.10-6, and 2.10-7. The 

remaining of Section 2.10 uses the labels for defining the load cases. 
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Figure 2.10-3: The points that connect the sponsons and the suspension systems,  

circled and labeled 

 

 

Figure 2.10-4: Left front hardpoints, circled and labeled 
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Figure 2.10-5: Left rear hardpoints, circled and labeled 

 

 

Figure 2.10-6: Right front hardpoints, circled and labeled  

 

 

Figure 2.10-7: Right rear hardpoints, circled and labeled 
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II. Load Case 1: all four sponsons land on water, vertical loads only 

This load case corresponds to the boat hitting a wave with all four sponsons at high speed. 

The total vertical load is 118000 N (10 g and total mass 1180 kg). 

 

 

Figure 2.10-8: Illustration of Load Case 1 (the shock absorbers, which are assumed rigid 

for this load case, are not shown)  

 

Load Case 1: vertical loads on all four sponsons 

 X-component of load Y-component of load Z-component of load 

LF-1 0 9545 N 0 

LF-2 0 10000 N 0 

LF-3 0 10000 N 0 

LR-1 0 9545 N 0 

LR-2 0 10000 N 0 

LR-3 0 10000 N 0 

RF-1 0 9545 N 0 

RF-2 0 10000 N 0 

RF-3 0 10000 N 0 

RR-1 0 9545 N 0 

RR-2 0 10000 N 0 

RR-3 0 10000 N 0 

Table 2.10-1: Loads on sponsons for Load Case 1 
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Load Case 1: vertical loads on all four sponsons 

 X-component of load Y-component of load Z-component of load 

L-A 23101 N -5528.5 N 20473 N 

L-B -51567 N 15776 N -75994 N 

L-C 30623 N -379.7 N 56955 N 

L-D -57932 N 3305.5 N 66759 N 

L-E -3119.1 N -7000.1 N -8918.8 N 

L-F 58895 N 23372 N -59276 N 

L-G -1419.8 N 1225.7 N 2324.4 N 

L-H -15726 N 6481.3 N 13379 N 

L-I 12016 N 3049.5 N 2033 N 

L-J -23819 N -5162.6 N -7275.2 N 

L-K 28948 N 23951 N -10461 N 

R-A -23101 N -5528.5 N 20473 N 

R-B 51567 N 15776 N -75994 N 

R-C -30623 N -379.7 N 56955 N 

R-D 57932 N 3305.5 N 66759 N 

R-E 3119.1 N -7000.1 N -8918.8 N 

R-F -58895 N 23372 N -59276 N 

R-G 1419.8 N 1225.7 N 2324.4 N 

R-H 15726 N 6481.3 N 13379 N 

R-I -12016 N 3049.5 N 2033 N 

R-J 23819 N -5162.6 N -7275.2 N 

R-K -28948 N 23951 N -10461 N 

Table 2.10-2: Loads on fuselage for Load Case 1  
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III. Load Case 2: two front sponsons land on water, vertical loads only  

This load case correspond to the boat hitting a wave with the two front sponsons at high 

speed. The total vertical load is 118000 N (10 g and total mass 1180 kg). 

 

 

Figure 2.10-9: Illustration of Load Case 2 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 2: vertical loads on the two front sponsons 

 X-component of load Y-component of load Z-component of load 

LF-1 0 19090 N 0 

LF-2 0 20000 N 0 

LF-3 0 20000 N 0 

LR-1 0 0 0 

LR-2 0 0 0 

LR-3 0 0 0 

RF-1 0 19090 N 0 

RF-2 0 20000 N 0 

RF-3 0 20000 N 0 

RR-1 0 0 0 

RR-2 0 0 0 

RR-3 0 0 0 

Table 2.10-3: Loads on sponsons for Load Case 2 
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Load Case 2: vertical loads on the two front sponsons 
 X-component of load Y-component of load Z-component of load 

L-A 46201 N -11057 N 40947 N 

L-B -103130 N 31553 N -151990 N 

L-C 61246 N -759.4 N 113910 N 

L-D -115860 N 6611 N 133520 N 

L-E -6238.2 N -14000 N -17838 N 

L-F 117790 N 46743 N -118550 N 

L-G 0 0 0 

L-H 0 0 0 

L-I 0 0 0 

L-J 0 0 0 

L-K 0 0 0 

R-A -46201 N -11057 N 40947 N 

R-B 103130 N 31553 N -151990 N 

R-C -61246 N -759.4 N 113910 N 

R-D 115860 N 6611 N 133520 N 

R-E 6238.2 N -14000 N -17838 N 

R-F -117790 N 46743 N -118550 N 

R-G 0 0 0 

R-H 0 0 0 

R-I 0 0 0 

R-J 0 0 0 

R-K 0 0 0 

Table 2.10-4: Loads on fuselage for Load Case 2 
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IV. Load Case 3:  two rear sponsons land on water, vertical loads only  

This load case corresponds to the boat hitting a wave with the two rear sponsons at high 

speed. The total vertical load is 118000 N (10 g and total mass 1180 kg). 

 

 

Figure 2.10-10: Illustration of Load Case 3 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 3: vertical loads on the two rear sponsons 

 X-component of load Y-component of load Z-component of load 

LF-1 0 0 0 

LF-2 0 0 0 

LF-3 0 0 0 

LR-1 0 19090 N 0 

LR-2 0 20000 N 0 

LR-3 0 20000 N 0 

RF-1 0 0 0 

RF-2 0 0 0 

RF-3 0 0 0 

RR-1 0 19090 N 0 

RR-2 0 20000 N 0 

RR-3 0 20000 N 0 

Table 2.10-5: Loads on sponsons for Load Case 3 
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Load Case 3: vertical loads on the two rear sponsons 

 X-component of load Y-component of load Z-component of load 

L-A 0 0 0 

L-B 0 0 0 

L-C 0 0 0 

L-D 0 0 0 

L-E 0 0 0 

L-F 0 0 0 

L-G -2839.7 N 2451.3 N 4648.7 N 

L-H -31451 N 12963 N 26757 N 

L-I 24032 N 6099.1 N 4066.1 N 

L-J -47638 N -10325 N -14550 N 

L-K 57897 N 47902 N -20922 N 

R-A 0 0 0 

R-B 0 0 0 

R-C 0 0 0 

R-D 0 0 0 

R-E 0 0 0 

R-F 0 0 0 

R-G 2839.7 N 2451.3 N 4648.7 N 

R-H 31451 N 12963 N 26757 N 

R-I -24032 N 6099.1 N 4066.1 N 

R-J 47638 N -10325 N -14550 N 

R-K -57897 N 47902 N -20922 N 

Table 2.10-6: Loads on fuselage for Load Case 3 
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V. Load Case 4: left front and right rear sponsons land on water, vertical 

loads only  

This load case corresponds to the boat hitting a wave with the left front and the right rear 

sponsons at high speed. The total vertical load is 118000 N (10 g and total mass 1180 kg).  

 

 

Figure 2.10-11: Illustration of Load Case 4 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 4: vertical loads on the left front and right rear sponsons 

 X-component of load Y-component of load Z-component of load 

LF-1 0 19090 N 0 

LF-2 0 20000 N 0 

LF-3 0 20000 N 0 

LR-1 0 0 0 

LR-2 0 0 0 

LR-3 0 0 0 

RF-1 0 0 0 

RF-2 0 0 0 

RF-3 0 0 0 

RR-1 0 19090 N 0 

RR-2 0 20000 N 0 

RR-3 0 20000 N 0 

Table 2.10-7: Loads on sponsons for Load Case 4 
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Load Case 4: vertical loads on the left front and right rear sponsons 

 X-component of load Y-component of load Z-component of load 

L-A 46201 N -11057 N 40947 N 

L-B -103130 N 31553 N -151990 N 

L-C 61246 N -759.4 N 113910 N 

L-D -115860 N 6611 N 133520 N 

L-E -6238.2 N -14000 N -17838 N 

L-F 117790 N 46743 N -118550 N 

L-G 0 0 0 

L-H 0 0 0 

L-I 0 0 0 

L-J 0 0 0 

L-K 0 0 0 

R-A 0 0 0 

R-B 0 0 0 

R-C 0 0 0 

R-D 0 0 0 

R-E 0 0 0 

R-F 0 0 0 

R-G 2839.7 N 2451.3 N 4648.7 N 

R-H 31451 N 12963 N 26757 N 

R-I -24032 N 6099.1 N 4066.1 N 

R-J 47638 N -10325 N -14550 N 

R-K -57897 N 47902 N -20922 N 

Table 2.10-8: Loads on fuselage for Load Case 4 
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VI. Load Case 5: two left sponsons land on water, horizontal loads only  

This load case corresponds for example to the boat yawing and hitting a wave with the 

two left sponsons at high speed. The total horizontal load is 236000 N (20 g and total 

mass 1180 kg).  

 

 

Figure 2.10-12: Illustration of Load Case 5 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 5: horizontal loads on the two left sponsons 

 X-component of load Y-component of load Z-component of load 

LF-1 0 0 0 

LF-2 -59090 N 0 0 

LF-3 -59090 N 0 0 

LR-1 0 0 0 

LR-2 -59090 N 0 0 

LR-3 -59090 N 0 0 

RF-1 0 0 0 

RF-2 0 0 0 

RF-3 0 0 0 

RR-1 0 0 0 

RR-2 0 0 0 

RR-3 0 0 0 

Table 2.10-9: Loads on sponsons for Load Case 5 
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Load Case 5: horizontal loads on the two left sponsons 

 X-component of load Y-component of load Z-component of load 

L-A -119500 N 28599 N -105910 N 

L-B 94198 N -28819 N 138820 N 

L-C -17694 N 219.39 N -32908 N 

L-D 390500 N -22281 N -450000 N 

L-E -186850 N 132930 N 169370 N 

L-F -278830 N -110650 N 280630 N 

L-G -5380.6 N 4644.8 N 8808.4 N 

L-H 55660 N -6203.8 N -141720 N 

L-I -32258 N -8186.8 N -5457.9 N 

L-J -54595 N 77264 N 108880 N 

L-K -81606 N -67519 N 29489 N 

R-A 0 0 0 

R-B 0 0 0 

R-C 0 0 0 

R-D 0 0 0 

R-E 0 0 0 

R-F 0 0 0 

R-G 0 0 0 

R-H 0 0 0 

R-I 0 0 0 

R-J 0 0 0 

R-K 0 0 0 

Table 2.10-10: Loads on fuselage for Load Case 5 
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VII. Load Case 6: the left front sponson lands on water, horizontal loads only 

This load case corresponds to the boat hitting a wave horizontally with the left front 

sponson at high speed. The total horizontal load is 236000 N (20 g and total mass 1180 

kg).  

  

 

Figure 2.10-13: Illustration of Load Case 6 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 6: horizontal loads on the left front sponson 

 X-component of load Y-component of load Z-component of load 

LF-1 0 0 0 

LF-2 -118180 N 0 0 

LF-3 -118180 N 0 0 

LR-1 0 0 0 

LR-2 0 0 0 

LR-3 0 0 0 

RF-1 0 0 0 

RF-2 0 0 0 

RF-3 0 0 0 

RR-1 0 0 0 

RR-2 0 0 0 

RR-3 0 0 0 

Table 2.10-11: Loads on sponsons for Load Case 6  
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Load Case 6: horizontal loads on the left front sponson 

 X-component of load Y-component of load Z-component of load 

L-A -239000 N 57199 N -211820 N 

L-B 188400 N -57638 N 277640 N 

L-C -35387 N 438.77 N -65816 N 

L-D 781000 N -44563 N -900000 N 

L-E -373710 N 265860 N 338730 N 

L-F -557660 N -221300 N 561270 N 

L-G 0 0 0 

L-H 0 0 0 

L-I 0 0 0 

L-J 0 0 0 

L-K 0 0 0 

R-A 0 0 0 

R-B 0 0 0 

R-C 0 0 0 

R-D 0 0 0 

R-E 0 0 0 

R-F 0 0 0 

R-G 0 0 0 

R-H 0 0 0 

R-I 0 0 0 

R-J 0 0 0 

R-K 0 0 0 

Table 2.10-12: Loads on fuselage for Load Case 6  
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VIII. Load Case 7: the left rear sponson lands on water, horizontal loads only 

This load case corresponds to the boat hitting a wave horizontally with the left rear 

sponson at high speed. The total horizontal load is 236000 N (20 g and total mass 1180 

kg). 

 

 

Figure 2.10-14: Illustration of Load Case 7 (the shock absorbers, which are assumed rigid 

for this load case, are not shown) 

 

Load Case 7: horizontal loads on the left rear sponson 

 X-component of load Y-component of load Z-component of load 

LF-1 0 0 0 

LF-2 0 0 0 

LF-3 0 0 0 

LR-1 0 0 0 

LR-2 -118180 N 0 0 

LR-3 -118180 N 0 0 

RF-1 0 0 0 

RF-2 0 0 0 

RF-3 0 0 0 

RR-1 0 0 0 

RR-2 0 0 0 

RR-3 0 0 0 

Table 2.10-13: Loads on sponsons for Load Case 7  
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Load Case 7: horizontal loads on the left rear sponson 

 X-component of load Y-component of load Z-component of load 

L-A 0 0 0 

L-B 0 0 0 

L-C 0 0 0 

L-D 0 0 0 

L-E 0 0 0 

L-F 0 0 0 

L-G -10761 N 9289.5 N 17617 N 

L-H 111320 N -12408 N -283450 N 

L-I -64516 N -16374 N -10916 N 

L-J -109190 N 154530 N 217770 N 

L-K -163210 N -135040 N 58979 N 

R-A 0 0 0 

R-B 0 0 0 

R-C 0 0 0 

R-D 0 0 0 

R-E 0 0 0 

R-F 0 0 0 

R-G 0 0 0 

R-H 0 0 0 

R-I 0 0 0 

R-J 0 0 0 

R-K 0 0 0 

Table 2.10-14: Loads on fuselage for Load Case 7 
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3. RESULTS AND OBSERVATIONS 

 A Viable Design of Bulkhead/Frame Layups and Window Panel 

Thicknesses 

The final layup determined by the FEA-based analyses is shown in the figures below. 

The strain contour plots shown in the following sections are based on this layup. 

 

I. Window panel thicknesses 

 

Figure 3.1-1: 12.7 mm PC window panels highlighted in purple 

 

 

Figure 3.1-2: 15.9 mm PC window panels highlighted in purple 
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II. Layups of the cockpit frames and transverse bulkheads 

 

Figure 3.1-3: Bulkheads and frames with (45, -45, 0, 90) skins on each side of a 10mm 

H80 core highlighted in purple 

 

 

 

Figure 3.1-4: Bulkheads and frames with (45, -45, 0, 90)2 skins on each side of a 10mm 

H80 core highlighted in purple 
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Figure 3.1-5: Bulkheads and frames with (45, -45, 0, 90)4 skins on each side of a 15mm 

H80 core highlighted in purple 

 

 

III. Layups of the longitudinal bulkheads 

 

Figure 3.1-6: Longitudinal bulkheads with (45, -45) skins on each side of a 10mm H80 

core highlighted in purple 
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Figure 3.1-7: Longitudinal bulkheads with (45, -45)2 skins on each side of a 10mm H80 

core highlighted in purple 

 

 Results for Crash Scenario – Front under Hydrodynamic Load 

The internal bulkheads and frames as well as the front window panels were overall strong 

enough to withstand the loads in this crash scenario. Some grey spots (excessive 

compression) shown in Figure 3.2-1 may need some further reinforcements. 

 

The strain contour plots for the external composite structure, however, suggest that the 

composite structure at the front end of cockpit needs some serious reinforcement. Figure 

3.2-5 and Figure 3.2-6 indicates that even the CFRP compressive strains at elements 

relatively far away from sharp corners substantially exceeded the failure criteria. Figure 

3.2-7 and Figure 3.2-8 also suggests severe risk of core failure at the same areas. 
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I. Contour plots for the internal structure: 

 

Figure 3.2-1: Maximum principal strains of CFRP, internal structure,  

front under hydrodynamic load  

 

 

Figure 3.2-2: Minimum principal strains of CFRP, internal structure, 

front under hydrodynamic load  
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Figure 3.2-3: Out-of-plane shear strains of cores, internal structure, 

front under hydrodynamic load  
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II. Contour plots for the external composite structure: 

 

 

Figure 3.2-4: Maximum principal strains of CFRP, external composite structure,  

front under hydrodynamic load  
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Figure 3.2-5: Minimum principal strains of CFRP, external composite structure,  

front under hydrodynamic load, very large strains shown in grey  
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Figure 3.2-6: Minimum principal strains of CFRP, external composite structure,  

front under hydrodynamic load, showing the full spectrum of values  
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Figure 3.2-7: Out-of-plane shear strains of cores, external composite structure,  

front under hydrodynamic load, very large strains shown in violet  
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Figure 3.2-8: Out-of-plane shear strains of cores, external composite structure,  

front under hydrodynamic load, showing the full spectrum of values  
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III. Contour plots for the front PC window panels: 

 

 

Figure 3.2-9: Maximum principal strains of PC, front under hydrodynamic load 
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Figure 3.2-10: Minimum principal strains of PC, front under hydrodynamic load 

 

 Results for Crash Scenario –Top under Hydrodynamic Load 

For the internal bulkheads and frames, the small violet spots (excessive tension) in Figure 

3.3-1 and grey spots (excessive compression) in Figure 3.3-2 indicate that local 

reinforcements might be needed. More importantly, Figure 3.3-2 shows significant grey 

areas where the longitudinal shear panels join the transverse bulkheads, this suggests that 

the shear panels at these locations were also taking the vertical loads transferred through 

the neighboring transverse bulkheads so the future task on reinforcing these areas must 

take this as well as the complex structure of the actual joints of composite panels into 

account. Figure 3.3-2 also shows a large grey area on the lower part of the transverse 

bulkhead where the second pilot would sit. This area will be constructed differently for 

the real boat, with discrete attachments to an off-the-shelf commercial racing seat.  

 

Judging from Figure 3.3-5 and Figure 3.3-6, the outside skin of the top of the cockpit, 

which was in compression in this case, needs to be reinforced with some extra plies of 

CFRP. Figure 3.3-7 and Figure 3.3-8 also suggest that local reinforcements at the 
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locations where the cockpit frames join the cockpit external structure would be necessary 

to prevent core failure. 

 

I. Contour plots for the internal composite structure: 

 

Figure 3.3-1: Maximum principal strains of CFRP, internal structure,  

top under hydrodynamic load 
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Figure 3.3-2: Minimum principal strains of CFRP, internal structure, 

top under hydrodynamic load 

 

 

Figure 3.3-3: Out-of-plane shear strains of cores, internal structure, 

top under hydrodynamic load 
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II. Contour plots for the external composite structure: 

 

Figure 3.3-4: Maximum principal strains of CFRP, external composite structure,  

top under hydrodynamic load 

 

 



 

 

62 

 

 

Figure 3.3-5: Minimum principal strains of CFRP, external composite structure,  

top under hydrodynamic load, very large strains shown in grey. The high compression 

strains occur in the outer skin of the sandwich.  
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Figure 3.3-6: Minimum principal strains of CFRP, external composite structure,  

top under hydrodynamic load, showing the full spectrum of values 
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Figure 3.3-7: Out-of-plane shear strains of cores, external composite structure,  

top under hydrodynamic load, very large strains shown in violet 
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Figure 3.3-8: Out-of-plane shear strains of cores, external composite structure,  

top under hydrodynamic load, showing the full spectrum of values 
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 Results for Side Window Panels under Hydrodynamic Load Case 

The side PC window panels have enough strength to survive the loads in this case. 

 

 

Figure 3.4-1: Maximum principal strains of PC,  

right side window panels under hydrodynamic load 

 

 

Figure 3.4-2: Minimum principal strains of PC,  

right side window panels under hydrodynamic load 

 



 

 

67 

 

 Results for Suspension-Introduced Loading Cases 

The internal bulkheads and frames overall had adequate strength to withstand the loads in 

the seven cases. Several spots showing in grey (excessive compression) or violet 

(excessive tension) were identified and they will be locally reinforced when the boat is 

built. 

 

Due to the lack of local reinforcement at the neighborhoods of the hardpoints in this FE 

shell element model, local strains were very high on the external composite structure at 

those areas. The severity of the strains at these areas provide insight into where local 

reinforcements should be and how strong they need to be to withstand the loads. 

 

I. Contour plots for Load Case 1: all four sponsons taking vertical loads 

 

Figure 3.5-1: Front view of maximum principal strains of CFRP,  

external composite structure 
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Figure 3.5-2: Rear view of maximum principal strains of CFRP,  

external composite structure 
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Figure 3.5-3: Front view of maximum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-4: Rear view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-5: Front view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-6: Rear view of minimum principal strains of CFRP,  

external composite structure 
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Figure 3.5-7: Front view of minimum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-8: Rear view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-9: Front view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-10: Rear view of out-of-plane shear strains of cores,  

external composite structure 
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Figure 3.5-11: Front view of out-of-plane shear strains of cores,  

internal composite structure 

 

 

Figure 3.5-12: Rear view of out-of-plane shear strains of cores,  

internal composite structure 
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II. Contour plots for Load Case 2: two front sponsons taking vertical loads 

 

Figure 3.5-13: Front view of maximum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-14: Front view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-15: Front view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-16: Front view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-17: Front view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-18: Front view of out-of-plane shear strains of cores,  

internal composite structure 
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III. Contour plots for Load Case 3: two rear sponsons taking vertical loads 

 

Figure 3.5-19: Rear view of maximum principal strains of CFRP,  

external composite structure 

\ 

 

Figure 3.5-20: Rear view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-21: Rear view of minimum principal strains of CFRP,  

external composite structure 

 

 

 

Figure 3.5-22: Rear view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-23: Rear view of out-of-plane shear strains of cores,  

external composite structure 

 

 

 

Figure 3.5-24: Rear view of out-of-plane shear strains of cores,  

internal composite structure 
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IV. Contour plots for Load Case 4: left front and right rear sponsons taking 

vertical loads 

 

Figure 3.5-25: Front view of maximum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-26: Rear view of maximum principal strains of CFRP,  

external composite structure 
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Figure 3.5-27: Front view of maximum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-28: Rear view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-29: Front view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-30: Rear view of minimum principal strains of CFRP,  

external composite structure 
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Figure 3.5-31: Front view of minimum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-32: Rear view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-33: Front view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-34: Rear view of out-of-plane shear strains of cores,  

external composite structure 
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Figure 3.5-35: Front view of out-of-plane shear strains of cores,  

internal composite structure 

 

 

Figure 3.5-36: Rear view of out-of-plane shear strains of cores,  

internal composite structure 
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V. Contour plots for Load Case 5: two left sponsons taking horizontal loads 

 

Figure 3.5-37: Front view of maximum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-38: Rear view of maximum principal strains of CFRP,  

external composite structure 
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Figure 3.5-39: Front view of maximum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-40: Rear view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-41: Front view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-42: Rear view of minimum principal strains of CFRP,  

external composite structure 
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Figure 3.5-43: Front view of minimum principal strains of CFRP,  

internal composite structure 

 

 

Figure 3.5-44: Rear view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-45: Front view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-46: Rear view of out-of-plane shear strains of cores,  

external composite structure 
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Figure 3.5-47: Front view of out-of-plane shear strains of cores,  

internal composite structure 

 

 

Figure 3.5-48: Rear view of out-of-plane shear strains of cores,  

internal composite structure 
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VI. Contour plots for Load Case 6: left front sponson taking horizontal loads 

 

Figure 3.5-49: Front view of maximum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-50: Front view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-51: Front view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-52: Front view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-53: Front view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-54: Front view of out-of-plane shear strains of cores,  

internal composite structure 
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VII. Contour plots for Load Case 7: left rear sponson taking horizontal loads 

 

Figure 3.5-55: Rear view of maximum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-56: Rear view of maximum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-57: Rear view of minimum principal strains of CFRP,  

external composite structure 

 

 

Figure 3.5-58: Rear view of minimum principal strains of CFRP,  

internal composite structure 
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Figure 3.5-59: Rear view of out-of-plane shear strains of cores,  

external composite structure 

 

 

Figure 3.5-60: Rear view of out-of-plane shear strains of cores,  

internal composite structure 
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4. CONCLUSION AND FUTURE WORK 

A finite element model of the center fuselage including internal structure of the 

suspension boat was made. Ten different load cases, representing both crashes and high 

speed normal operation were analyzed. The layup of all internal structure was determined 

iteratively, resulting in a relatively lightweight design that more or less fulfilled all 

strength requirements. There were some high stress areas, which will be locally 

reinforced during the manufacturing of the boat.  

 

Regarding future work, it would be beneficial to perform buckling analyses of the 

complete structure. Local stress concentrations etc are not worth analyzing numerically as 

strength predictions of finite element analyses of complex geometry composites in 

general are not very good, and very computationally expensive. Sound judgement of 

experienced engineers during the manufacturing is far superior at this time.  
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