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Abstract

The quad tiltrotor is a vertical take-off and landing UAV (Unmanned Aerial Vehi-

cle). It has four propellers, each of which is mounted on four separate gimbals. This

thesis presents an experimental design for the quad tiltrotor’s attitude controller.

First, we detailed the mechatronic system of the quad tiltrotor and assembled

the prototype. Then we derived the dynamic model using the Lagrangian method.

Next, we designed a PID controller for our prototype using the feedback linearization

method. Then we ran simulations. The results showed that our controller performed

well when it came to tracking and stability. We also implemented the controller

to the Pixhawk flight control board of our quad tiltrotor. Finally, we designed an

experiment to test our attitude controller. The results analysis, which was performed

with a MATLAB GUI that we developed, demonstrated that our design is practicable

and flexible.
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Chapter 1

Introduction

1.1 Background to Quadrotor

The quadrotor UAV (Unmanned Aerial Vehicle) is a vertical take-off and landing

aircraft with six degrees of freedom. The quadrotor can perform tasks that fixed-

wing aerial vehicles cannot: it can hover, fly with low speed, take off vertically, and

land and fly indoors. In general, the quadrotor has the advantages of simple structure

and control, the low requirement of manufacturing accuracy, reliable stability, and

weak gyroscopic effects [1], [2].

A common quadrotor model is equipped with two pairs of identical propellers.

One pair or propellers spins clockwise; the other pair spins counterclockwise [3]. The

force produced by the propellers is proportional to the square of the angular velocity

of the motors [4]. By changing the speed of each rotor, the quadrotor can generate

a desired total thrust, torque, or turning force. Since the quadrotor is structurally

symmetrical, there is no practical difference between the left and right. As such, the

vehicle has the logistical flexibility to take off in any direction.

The quadrotor has a highly coupled dynamic characteristic which means a change
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in one rotor speed will result in variations in three freedom degrees at least. For

example, reducing the rate of the right rotor will cause the quadrotor to roll right

because of the imbalance between the left and right lifts. Meanwhile, the quadrotor

will make a right yaw for the torque imbalance of two groups of rotors. Furthermore,

the rolling will cause the quadrotor to shift to the right because the direction of the

force of the quadrotor is now bottom-left. The yaw movement causes translation,

which changes the quadrotor’s direction of movement [5].

Figure 1.1: NASA’s lunar lander, “Surveyor.”

3



Figure 1.2: Our quad tiltrotor prototype.

1.2 Our Quad Tiltrotor Prototype

This thesis focuses on the “quad tiltrotor,” a quadrotor concept in which each pro-

peller has one more gimbal than is found on standard quadrotor propellers. A wider

variety of control strategies is available for the quad tiltrotor because the vectored

thrust of each propeller makes it possible to control the vehicle’s altitude and position

separately.

The structure of the quad tiltrotor that is discussed in this thesis was inspired

by NASA’s sixth lunar lander, “Surveyor-6,” which was a hopping spacecraft (Figure

1.1) [6]. Figure 1.2 shows our quad tiltrotor prototype. The actuators of our quad

tiltrotor are four rotors mounted on four single-axis gimbals whose angle is controlled

by a servo. Each rotor produces both a thrust and torque about its center of rotation,

as well as a drag force opposite to the vehicle’s direction of flight. If all propellers are

spinning at the same angular velocity but with different directions, with two rotating

clockwise and the other two rotating counterclockwise, the yaw angle can still be

changed.
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1.3 Mechatronics

Figure 1.3: Quad tiltrotor mechatronic system

As Figure 1.3 shows, our quad tiltrotor’s mechatronic system consists of commu-

nication modules, a flight controller board, actuators and power supplies. The com-

munications between an operator and our quad tiltrotor were conveyed by a remote

transmitter and an RC receiver. The remote transmitter produced control signals

and the RC receiver received the signals. We used the PX4 autopilot (Pixhawk) as

our flight control board. By making a real-time comparison of the current attitude

(that was detected by IMU (Inertial Measurement Unit) sensors) with the goal atti-

tude (determined by input signals), our Pixhawk can calculate the desired outputs to

control the actuators. The actuators include four motors and four servos. Our servos

are controlled by Pixhawk outputs directly while our motors need ESC (Electronic

Speed Control) to transform the PWM output signals to three-phase electric power

and drive them. To power the actuators and the Pixhawk board, we connect four

Lipo batteries in parallel using power distribution boards.
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1.4 Control Method

The quad tiltrotor has six state variables (three positions and three attitudes) and

eight control inputs (rotors speed and servos angle), which make it an over-actuated

system because the number of inputs exceeds the number of freedom degrees by two.

Designing the flight control system is difficult because the controller performance is

affected by the accuracy of the model and the accuracy of the sensors [7], [8], [9].

In recent years, many researchers have published articles on the quad tiltrotor

control problem. The normal movement of a quad tiltrotor includes attitude stabi-

lization and movement (posture and position) from one point to another. Many quad

tiltrotor control research papers have focused on the design and verification of the

attitude controller [10], [11], [12]. Most of the controllers have good simulation results

with the use of nonlinear control laws. However, the actual control performance is

often unsatisfactory because of the high dependence on model accuracy [13], [14].

Therefore, there is an urgent need for quad tiltrotor control system researchers to

develop a controller which not only controls the aircraft attitude accurately but also

offers strong anti-interference and environmental adaptability.

In this work, we used feedback linearization to transform our nonlinear system

into an equivalent linear system. In this way, we were able to develop a simple PID

controller to track the attitude references.

1.5 Control System Experiment for Education

Laboratory projects are essential for educating engineering majors about control sys-

tems. Developing and testing control algorithms helps students consolidate theoret-

ical knowledge and learn how to put that theory into practice [15], [16]. The quad

tiltrotor’s unstable dynamics and tight integration of control electronics make it a
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particularly attractive object for experimentation. While studying the quad tiltrotor,

students increase their proficiency in the design of control systems and the implemen-

tation of hardware systems [17].

In this work, we designed and tested an attitude controller for our quad tiltrotor,

which was fixed on a test stand. In the future, students can change the PID param-

eters of our controller and perform experiments to test the controller’s performance.

After the experiment, students can analyze the results by using the MATLAB GUI

that we designed.

1.6 Thesis Organization

This thesis is organized in the following way: Chapter 2 describes the quad tiltrotor’s

mechatronic system. Chapter 3 details the development of the quad tiltrotor’s dy-

namic models. Chapter 4 discusses the model-based control strategy and shows the

results of simulations ran in Matlab. Chapter 5 explores the possible implementations

of the controller. Chapter 6 details the process of our experiments and develops a

MATLAB GUI for result analysis. Chapter 7 concludes the thesis.
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Chapter 2

Mechatronic System

2.1 Communication Modules

Figure 2.1: The RC receiver and the remote transmitter.

We used a HITEC Aurora 9 transmitter [18] to control the movement of our

quad tiltrotor during the experiments. The Aurora 9 has a fully assignable control

switch, knob, stick and digital trims. In this work, we controlled throttle, pitch,

roll and yaw. Each of these control signals was mapped to transmitter sticks and to

the Optima 9 [19], which is a nine-channel 2.4 GHz receiver mounted on our quad
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tiltrotor. The signals received by the Optima 9 are PWM (Pulse Width Modulation),

but the Pixhawk can only identify PPM (Pulse Position Modulation) signals. So, we

used a jDrones V2.1 PPM-Sum encoder [20] to transform the PWM signals into PPM

signals.

2.2 Flight Control Board

Figure 2.2: The Pixhawk connector pins.

Pixhawk is an open source autopilot system that comes with built-in IMU sensors

including gyroscopes, accelerometers and pressure sensors [21]. The gyroscope, which

has excellent dynamic performance and resistance to external interference, can mea-

sure the rate of attitude angles. But the integration of errors will accumulate over

time due to the gyroscope drift. That is the reason why we need magnetometers and

accelerometers. The accelerometer has good low-frequency characteristics and can

measure acceleration accurately in static conditions. The magnetometer can measure

the Earth’s magnetic field. The changes over time in the measurements of the ac-

celerometer and the magnetometer are relatively small. However, they are sensitive

to external disturbances and can only get a 2-dimensional angular relationship [22].
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In our experiments, we adopted the algorithms found in [23] to fuse three kinds of

data, which enabled us to obtain credible attitude angles.

As Figure 2.2 [24] shows, we connected the main PWM OUT pins 1-4 to the ESCs

(Electronic Speed Controller), pins 5-8 to the servos and the PPM-SUM IN pins to

the PPM encoder. Once we combined the control signals from the communication

modules and the attitude data from the IMU sensors, the Pixhawk could calculate

the required PWM signals based on the developed control law and output them to

the servos and the ESCs.

2.3 Actuators

Our ten-kilogram quad tiltrotor prototype is outfitted with four AXI 4120/18 GOLD

LINE brushless motors [25] and four 15”×9.5” propellers, each of which has a max-

imum thrust of 40 Newtons. The thrust-to-weight ratio of our quad tiltrotor is 1.6.

The general ratio requirement for UAVs is 2 [26], [27], but because we fixed the quad

tiltrotor in a revolve test stand during our experiments, we don’t need such a high

thrust-to-weight ratio.

The angles of our HS-5685MH servos [28] range from -30 degrees to 30 degrees and

the maximum torque is 11.3 kg/cm. ESCs are responsible for spinning the motors

at the speed requested by the Pixhawk. For our motors’ ESCs, we used the Phoenix

ICE 50 [29], which has 34 volts max input and 5 amps output. The ESCs need to

be calibrated so that they know the minimum and maximum PWM values that the

flight controller will send.
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2.4 Power Supply

We connected four ZIPPY Flightmax 5S1P batteries [30] in parallel using the Hobby

King Quadcopter power distribution boards [31]. As the name suggests, power dis-

tribution boards distributed the power on our quad tiltrotor and gave us a tidy way

to connect our batteries with the ESCs. The capacity of the battery is 3000mAh

and the voltage is 18.5V. With the 20C discharge rate, each battery can output a

maximum current up to 60A for 3 minutes. So, our power supply has at least 12

minutes endurance.

While powering the Pixhawk, the Pixhawk power module will provide a steady

5V to the Pixhawk and enable the Pixhawk to measure the current and voltage of the

batteries. The operating voltage of our servos is 7.4V, so we used a BEC (Battery

Eliminator Circuit) to draw voltage from the motor batteries and drop the operating

voltage to a level that is suitable for our servos. For our BEC, we used the Castle

Creations CC Bec Pro [32]. Finally, we powered the ESCs directly from our batteries.

Figure 2.3 shows the wiring of our quad tiltrotor’s power supply.

Figure 2.3: The power supply of our quad tiltrotor.
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Chapter 3

Dynamic Model

In this chapter, we derive the dynamic equations for the quad tiltrotor in the Earth-

fixed frame using the method found in [33].

Figure 3.1: Force diagram of our quad tiltrotor.
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3.1 Rotation Matrix

There are two coordinate systems: the geography coordinate system (Earth Frame)

and the carrier coordinate system (Body Frame). The geography coordinate system

refers to the northeast day (ENU) coordinate system on Earth, while the carrier

coordinate system is our vehicle-fixed frame. When we control the quad tiltrotor, one

problem that concerns us is the change of the vehicle-fixed frame about the Earth-fixed

frame. So, we usually use the rotation matrix to transform the geography coordinate

system to the carrier coordinate system (as depicted in Figure 3.1). The position of

the vehicle is denoted by the 3D vector ξ = [x, y, z]T and the attitude is denoted by

η = [φ, θ, ϕ]T where [x, y, z] denotes the quad tiltrotor displacement in three axes and

[φ, θ, ϕ] denotes the roll, pitch and yaw angle of the quad tiltrotor.

Figure 3.2: Rotation for each axis.

First, we calculate the rotation matrix from the Earth-fixed frame to the vehicle-

fixed frame. Figure 3.2 shows the rotation sequence and each of them has its rotation

matrix given as follows:

Rx =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (3.1)

13



Ry =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (3.2)

Rz =


cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1

 (3.3)

Then we can get the transformation matrix

R = (RzRyRx)
−1

=


cosϕcosθ cosθsinϕ −sinθ

cosϕsinθsinφ− cosφsinϕ cosϕcosφ+ sinϕsinθsinφ cosθsinφ

sinϕsinφ+ cosϕcosφsinθ cosφsinϕsinθ − cosϕsinφ cosφcosθ


(3.4)

3.2 Motion Equations

Next, we define the generalized coordinates q = [ξ, η]T . So, the Lagrangian can be

defined as

L(q, q̇) = Ttrans + Trot − U (3.5)

where U = mgz is the gravitational energy, Ttrans = (
1

2
)mξ̇T ξ̇ is the translational

kinetic energy and Trot = (
1

2
)ωT Iω is the rotational kinetic energy. I is the moment

of inertia matrix of the quad tiltrotor which is assumed to keep only three principle

moments due to the symmetry of mass distribution, i.e.,

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (3.6)
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m is the mass of the quad tiltrotor. ω is the angular velocity of the quad tiltrotor

defined in the Earth-fixed frame. While the roll angle rate φ̇ is defined in the Earth-

fixed frame, the pitch angle rate θ̇ is defined in the vehicle-fixed frame, which is

obtained by rotating the Earth-fixed frame about the x axis by the roll angle φ. The

yaw angle rate ϕ̇ is defined in the vehicle-fixed frame, which is obtained by rotating

the Earth-fixed frame about the x axis by the roll angle φ and then the y axis by the

pitch angle θ. We derived the transformation matrix of the angular velocity using the

method found in [34]:

ω = φ̇


1

0

0

 + θ̇R−1
x


0

1

0

 + ϕ̇(RyRx)
−1


0

0

1

 =


φ̇− ϕ̇sinθ

θ̇cosφ+ ϕ̇sinφcosθ

−θ̇sinφ+ ϕ̇cosφcosθ

 = Wvη̇ (3.7)

So,

Wv =


1 0 −sinθ

0 cosφ sinφcosθ

0 −sinφ cosφcosθ

 (3.8)

Then we define J = J(η) = W T
v IWv to simplify the rotational kinetic energy Trot,

which makes Trot = (
1

2
)η̇TJη̇.

As for the force analysis, we define the external forces

F =


Fx

Fy

Fz

 =


f1x + f3x

f2y + f4y

f1z + f2z + f3z + f4z

 (3.9)

where fij are the thrust components generated by the motor i in the j axis, and

15



torques

τ =


τφ

τθ

τϕ

 =


(f1z − f3z)l

(f4z − f2z)l

(f3x − f1x)l + (f2y − f4y)l

 (3.10)

where l is the moment arm between opposing propellers and

f1x = f1sinα1, f1z = f1cosα1, f2y = f2sinα2, f2z = f2cosα2 (3.11)

f3x = f3sinα3, f3z = f3cosα3, f4y = f4sinα4, f4z = f4cosα4 (3.12)

and α1, α2, α3, α4 are the angles of each of the rotor gimbals.

Finally, we can write the Euler-Lagrange equation of our quad tiltdrotor

d

dt

∂L

∂q̇
− ∂L

∂q
=

Fξ
τ

 (3.13)

where Fξ = RF is the external force in the Earth-fixed frame.

Thus, we can get the dynamic equations of our quad tiltrotor

mξ̈ +


0

o

mg

 = RF (3.14)

Jη̈ + C(η, η̇)η̇ = τ (3.15)

where C(η, η̇) = J̇ − (1
2
)∂
η
(η̇TJ) is the Coriolis term. Let us rewrite the equations as

16



follows: 
ẍ

ÿ

z̈

 =
1

m
R


Fx

Fy

Fz

−


0

0

g

 (3.16)


φ̈

θ̈

ϕ̈

 = J−1(


τφ

τθ

τϕ

− C(η, η̇)


φ̇

θ̇

ϕ̇

) (3.17)
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Chapter 4

Control Scheme

4.1 Control Plant

In our control experiment, the control objective is the attitude of our quad tiltrotor

including roll, pitch and yaw angles. As we fixed the quad tiltrotor bottom to a

spherical bearing, we did not need to consider the displacement in the x, y and z

axes. So, we only kept (3.17) as the dynamic equation of our plant. By changing

the RPM of four motors and the angle of four servos, we could produce the required

torques to achieve the target attitude.

4.2 Feedback Linearization

The control plant of our quad tiltrotor is nonlinear and complex. To apply linear

control laws, we used the feedback linearization method found in [35] and [36] to

simplify our control model.

18



We applied the feedback linearizion control law


τφ

τθ

τϕ

 = J


rφ

rθ

rϕ

 + C(η, η̇)


φ̇

θ̇

ϕ̇

 (4.1)

to our control system. So, the system becomes


φ̈

θ̈

ϕ̈

 =


rφ

rθ

rϕ

 , (4.2)

where ra =


rφ

rθ

rϕ

 represents our virtual inputs.

4.3 Controller Design

Figure 4.1: The control system diagram.

As Figure 4.1 shows, we deployed the two-level controller found in [37] to generate

the desired outputs, which are the substitution inputs used in (4.1). The first level

calculates the angular velocity set points with a proportional controller and the second

19



level is a PID controller.

We designed our controller to track the attitude errors. Let us define the error

signals

ηe =


φe(t)

θe(t)

ϕe(t)

 =


φ(t)− φD(t)

θ(t)− θD(t)

ϕ(t)− ϕD(t)

 , (4.3)

where φD(t), θD(t) and ϕD(t) are functions of the desired attitude values, which vary

over time.

From many experiments, we can see that the response time of the pitch and roll

angles are almost two times faster than the response time of the yaw angle [38]. The

rotors only need to change speed a little bit to get enough torque for roll and pitch

movement. So, we control the yaw movement separately. We executed the pitch-roll

movement first and then the yaw movement [39].

Let us define the z-axis of the desired attitude as a vector zD and the current

z-axis z. They can be calculated by using a rotation matrix from

z = R(η)


0

0

1

 , zD = R(ηD)


0

0

1

 (4.4)

To make the zD and z coincide, we got the vector of rotation axis ze by calculating

the cross product of zD and z

ze = z × zD (4.5)

while the rotation angle κe is

κe = arccos
zDz

|zD||z|
(4.6)
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So, axis z needs to revolve around ze for κe degrees to achieve zD as the first step.

We multiply κe by ze to get the control inputs.

Ea = κeze =


Eaφ(t)

Eaθ(t)

Eaϕ(t)

 (4.7)

We keep the last two terms of Ea and replace the last with angle error ϕe. When

our controller takes Ea as the input, only the pitch and roll controller is doing tracking.

Then the yaw control will get involved. This decomposition decouples the controller

behaviors to fast response motion and slow response motion.

Then we rearrange the error terms. So the control inputs for our first level con-

troller are

Ea1 =


Eaφ(t)

Eaθ(t)

ϕe(t)

 (4.8)

We applied the control law

η̇D =


φ̇D(t)

θ̇D(t)

ϕ̇D(t)

 =


kφEaφ(t)

kθEaθ(t)

kϕϕe(t)

 , (4.9)

where kφ, kθ and kϕ are positive definite control gains.

Let us define the error of angular rates as

η̇e =


φ̇e(t)

θ̇e(t)

ϕ̇e(t)

 =


φ̇(t)− φ̇D(t)

θ̇(t)− θ̇D(t)

ϕ̇(t)− ϕ̇D(t)

 (4.10)
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The control law is as follows:

ra =


rφ

rθ

rϕ

 = Pa2


φ̇e(t)

θ̇e(t)

ϕ̇e(t)

 +Da


φ̈e(t)

θ̈e(t)

ϕ̈e(t)

 + Ia


φe(t)

θe(t)

ϕe(t)

 . (4.11)

4.4 Simulation

Table 4.1: Simulation Parameters.

Sampling time ∆t 1ms
Principle moments of inertia Ix 0.2kg •m2

Iy 0.2kg •m2

Iz 0.4kg •m2

Control gains kφ 30
kθ 30
kϕ 60
Pa 10
Ia 50
Da 50

We ran the simulation of the control model given in section 4.3 with MATLAB.

Since ηD is near to the origin, we could ignore the Coriolis Force item. So, we

simplified the dynamical model (3.17) as follows to reduce the computational expense

of the highly nonlinear (4.1).


φ̈

θ̈

ϕ̈

 = J−1


τφ

τθ

τϕ

 (4.12)
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Then the feedback linearizion control law becomes:


τφ

τθ

τϕ

 = J


rφ

rθ

rϕ

 (4.13)

Figures 4.2, 4.4 and 4.6 show the closed-loop initial perturbation rejection of the

attitude control system. Figures 4.8, 4.10 and 4.12 shows the closed-loop tracking

response of the attitude control system. Figures 4.3, 4.5, 4.7, 4.9, 4.11 and 4.13 shows

the torques we need to achieve the desired attitude. We can see that the response is

fast and the system is stable. The simulation parameters are laid out in table 4.1.
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Figure 4.2: The initial perturbation rejection of roll.
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Figure 4.3: The generated torque for rolling.
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Figure 4.4: The initial perturbation rejection of pitch.
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Figure 4.5: The generated torque for pitching.
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Figure 4.6: The initial perturbation rejection of yaw.
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Figure 4.7: The generated torque for yawing.
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Figure 4.8: The roll inputs and responses.
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Figure 4.9: The generated torque for rolling.
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Figure 4.10: The pitch inputs and responses.
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Figure 4.11: The generated torque for pitching.
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Figure 4.12: The yaw inputs and responses.

28



0 500 1000 1500 2000 2500 3000

t/ms

-25

-20

-15

-10

-5

0

5

10

15

20

25

T
or

qu
e 

N
/m

Figure 4.13: The generated torque for yawing.
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Chapter 5

Implementation

Figure 5.1: The block diagram of implementation.

5.1 Inputs Process

We use a transmitter with four sticks to control the quad tiltrotor in experiments

where the four inputs are defined as U1, U2, U3 and U4. In this study, U1 controls the

thrust; U2, U3 control the roll and pitch angles; and U4 controls the yaw angle rate.

First, we rescale the range of transmitters which means U1 ∈ [0, 1], U2 ∈ [−1, 1],
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U3 ∈ [−1, 1] and U4 ∈ [−1, 1]. Note that the thrust of a propeller is determined by

f =
1

2
ρCω2, (5.1)

where ρ is the air density, C is the lift coefficient of the propeller and ω is the angular

rate of the propeller [40]. We define the desired initial thrust generated by each

propeller as

f = ktU1, (5.2)

where kt is the coefficient of the thrust input U1. So, the initial angular rate of each

propeller is

ω = (
2kt
ρC

)
1
2U

1
2
1 (5.3)

When U1 > 0 and U2, U3, U4 = 0, the four motors will have the same rotation speed

in proportion to the radication of U1. Thus the attitude will not change, which means

our control system presented in Chapter 4 is independent of U1.

Then we can get the attitude set points and thrust value by inputs processes as

follows:

φD = kφU2 (5.4)

θD = kθU3 (5.5)

ϕ̇D = kϕU4 (5.6)

So, the desired yaw angle is

ϕD =

∫
kϕU4dt (5.7)

Since we calculated the attitude setpoints above, we can compute the desired

torque using the attitude controller derived in Chapter 4, combined with the actual
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attitude data.

5.2 Outputs Process

Using the attitude controller presented in Figure 4.1, we get the desired torques τϕ,

τθ and τφ. The next step is calculating the desired thrust of each propeller and the

desired angle of each gimbal. Let us define the thrust generated by each motor as

fi, i = 1, 2, 3, 4 and the angle of each servo as αj, j = 1, 2, 3, 4. To simplify the outputs

we define

α1 = −α3 (5.8)

α2 = −α4 (5.9)

|α1| = |α2| = |α3| = |α4| (5.10)

When we combine the initial thrust determined by U1 and the desired torques calcu-

lated by the attitude controller, we get the following outputs:

f1 = f +
τφ
l

(5.11)

f2 = f − τθ
l

(5.12)

f3 = f − τφ
l

(5.13)

f4 = f +
τθ
l

(5.14)

α1 = −arcsin τϕ
4fl

(5.15)

α2 = arcsin
τϕ
4fl

(5.16)

α3 = arcsin
τϕ
4fl

(5.17)
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α4 = −arcsin τϕ
4fl

(5.18)

Finally, because the pulse width is proportional to the radication of the thrusts

and the angles, we turned the eight outputs to PWM signals in order to control the

rotation speed of the motors and the angles of the servos using the code found in [41].
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Chapter 6

Experiments

Figure 6.1: The environment of our experiment.

6.1 Experiment Objective

We designed an experiment for our quad tiltrotor attitude controller that we pre-

sented in Chapter 4. We used the transmitter to input the reference roll, pitch and
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yaw angles of our quad tiltrotor. As we moved the transmitter sticks, our quad tiltro-

tor would reach the corresponding attitude by changing the rotation speed of the

propellers and the angles of the gimbals. The purpose of this experiment was to find

control parameters that would minimize the control errors and give students a better

understanding of PID controllers.

6.2 Experimental Procedure

The components of this experiment include a transmitter, our quad tiltrotor, a test

revolve stand (Figure 6.2) and ground control systems. First, we fixed our quadrotor

in a revolving stand with a spherical bearing. As the spherical bearing limited the

displacement of our quad tiltrotor in all directions, the quad tiltrotor could only

make angular rotations after we loosened the bolt. We also needed to make the quad

tiltrotor horizontal and have it face north in order to reset the three attitude angles

to zero.

Figure 6.2: The test stand.

Next, we connected the Pixhawk board to a computer with a USB cable. Then

we downloaded the firmware and calibrated the sensors and transmitters on Mission
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Planner. After that, we could write the control parameters into the Pixhawk as

Figure 6.3 shows. Details regarding the above operations can be found in [42].

Figure 6.3: The GUI of controller tuning.

Finally, we turned on the quad tiltrotor and the transmitter. Before changing the

attitude of our quad tiltrotor, we needed to move the throttle stick to the middle

position. As the four motors had the same rotation speed, the quad tiltrotor stayed

stable. Then we could move the roll, pitch and yaw stick to change the attitude of

our quad tiltrotor. Once we had finished recording our observations, we stopped the

propellers by moving the throttle stick to the lowest position.

6.3 Results Analysis

We carried out the experiments described in Section 6.2. Figure 6.4 shows the PID

parameters we used. The data of our quad tiltrotor state and transmitter inputs

during the experiment were stored in the Pixhawk board as flight logs. As Figure

6.5 shows, we designed a MATLAB GUI to refine and analyze the results. Our GUI
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could read the log files, plot the results and set the time span to display the plot in

different accuracies.

Figure 6.4: The PID parameters of attitude control system.

Figure 6.5: The Matlab GUI.

Figures 6.6 through 6.10 show the results of one example experiment. The plots

illustrate that our controller works well most of the time. But errors increased signif-

icantly around the peak values. That is because our quad tiltrotor cannot reach such

large attitude angles.
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Figure 6.6: The actual and desired roll angle of quad tiltrotor vary over time.

Figure 6.7: The control errors of roll angle.
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Figure 6.8: The actual and desired pitch angle of quad tiltrotor vary over time.

Figure 6.9: The control errors of pitch angle.
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Figure 6.10: The actual and desired yaw angle of quad tiltrotor vary over time.

Figure 6.11: The control errors of yaw angle.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis presents a quad tiltrotor design that can be used as a teaching instrument,

especially in control classes. The test stand increases the safety of the instruction and

allows students to pay full attention to the design of the attitude controller, which

is the most important part of the quad tiltrotor control system. Furthermore, the

control strategy has been proven efficient and will enable students to adjust the PID

parameters of the controller in a friendly interface. By controlling the pitch, roll and

yaw angle of this quadrotor separately, we make it possible to apply multiple control

methods for this sytem. The flight log GUI of our control system makes the result

analysis much easier.

7.2 Future Works

The next step of this project is to replace the Mission Planner GUI with one that

is simpler and more professional. Doing so will make it easier to modify control pa-

rameters and analyze results. Then we could propose other control strategies such as
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LQR and backstepping. Ultimately, we would do well to make a more comprehensive

evaluation of the attitude controller. For instance, we ought to take into considera-

tion the robustness of the controller. Future investigations like these will enhance the

practicability of the controller that we designed.
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