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Nomenclature

Dimensionless Numbers

Symbol Description Definition

ηp Propeller Efficiency

AR Aspect Ratio b2

S

CD Coefficient of Drag FD

qS

cd 2D Section Coeffi-

cient of Drag

FD

qc

CL Coefficient of Lift FL

qS

cl 2D Section Coeffi-

cient of Lift

FL

qc

e Oswald Efficiency

Factor

L/D Lift-to-Drag Ratio CL

CD

Re Reynolds Number ρV c
µ

Greek Symbols

Symbol Description Dimensions Units
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α Angle of Attack DEG

δ Boundary Layer

Height

L m

µ Viscosity ML−1t−1 Pa− s

φ Potential Function

ρ Density ML−3 kg/m3

Roman Symbols

Symbol Description Dimensions Units

b Wing Span L m

cp Specific Fuel Con-

sumption

L−2t2 g/kW − h

c Chord Length L m

L Drag Force MLt−1 N

E Endurance t s

L Lift Force MLt−1 N

R Range L m

S Wing Planform Area L2 m2

~V Velocity Vector Lt−1 m/s

V Velocity Magnitude Lt−1 m/s

u Velocity Component

in the X Direction

Lt−1 m/s

v Velocity Component

in the Y Direction

Lt−1 m/s
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w Velocity Component

in the Z Direction

Lt−1 m/s

vi



An Integrated Method for Airfoil Optimization Joshua B. Okrent

Abbreviations

CFD Computational Fluid Dynamics

CIA Centrial Intelligence Administration

GA Genetic Algorithim

NACA National Advisory Committee on Aeronautics

NASA National Air and Space Administration

NOAA National Oceanic and Atmospheric Administration

NS Navier-Stokes

UAV Unmanned Aerial Vehicle

UCAV Unmanned Combat Aerial Vehicle

VI Viscous Inviscid
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Abstract

Design exploration and optimization is a large part of the initial engineering and
design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes
solvers can be used. However this method can prove to be overwhelmingly time consuming
when performing an initial design sweep. Therefore, another evaluation method is needed to
provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid
method is used. This thesis proposes an integrated method for analyzing, evaluating, and
optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm
to find the optimal candidate. The method proposed is different from prior optimization
efforts in that it greatly broadens the design space, while allowing the optimization to search
for the best candidate that will meet multiple objectives over a characteristic mission profile
rather than over a single condition and single optimization parameter. The increased design
space is due to the use of multiple parametric airfoil families, namely the NACA 4 series,
CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with
these three families allowing for all possible configurations to be included. This inclusion of
multiple airfoil families addresses a possible criticism of prior optimization attempts since by
only focusing on one airfoil family, they were inherently limiting the number of possible airfoil
configurations. By using multiple parametric airfoils, it can be assumed that all reasonable
airfoil configurations are included in the analysis and optimization and that a global and not
local maximum is found. Additionally, the method used is amenable to customization to
suit any specific needs as well as including the effects of other physical phenomena or design
criteria and/or constraints.

This thesis found that an airfoil configuration that met multiple objectives could be
found for a given set of nominal operational conditions from a broad design space with the
use of minimal computational resources on both an absolute and relative scale to traditional
analysis techniques. Aerodynamicists, program managers, aircraft configuration specialist,
and anyone else in charge of aircraft configuration, design studies, and program level decisions
might find the evaluation and optimization method proposed of interest.
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Chapter 1

Introduction

1.1 Introduction

Unmanned aerial vehicles (UAV) have been developed and used for reconnaissance

and combat missions since the first World War. However, UAVs did not see any appreciable

use until the avionics (portmanteau of aviation and electronics) matured enough to meet

the requirements of such a demanding environment. Use of UAVs as combat reconnaissance

platforms began to steadily increase during the Vietnam War as the capabilities of the

avionics increased. This increase in use was also spurred in part, by the downing of the

previously thought untouchable U-2 Dragon Lady manned reconnaissance platform piloted

by Francis Gary Powers (Fig 1.1) on a CIA surveillance flight of the USSR.
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Figure 1.1: Francis G. Powers in Front of a U-2 Dragon Lady ([9])

In the modern era, UAVs are used widely among all branches of the armed forces,

intelligence agencies, federal, and local law enforcement agencies, as well as civilian agencies

such as NASA and NOAA for gathering atmospheric and other flight data. They can vary

in size and shape depending on the typical mission profile. Small UAVs such as Israel

Aerospace Industries (IAI) Bird Eye (shown in Fig. 1.2) product line are small enough to be

carried by an infantryman and are used for short distance reconnaissance of the battlefield.

Depending on the configuration IAI’s Bird Eye can weigh between 1.3 to 8.5 kg and stay

aloft for 1-2 hours at a range of up to 10 kilometers. Such small man-portable UAVs provide

real time information to the war fighter about the changing landscape of the battlefield that

traditional information sources cannot. It also gives the individual war fighter unit the ability

to gather information without needing the assistance of higher level units to give permission

and coordinate the use of larger UAV resources.

3
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Figure 1.2: Infantryman launches a BirdEye 400 UAV

On the other end of the scale are the larger and more well known UAVs colloquially

referred to as drones since most possess capabilities to operate autonomously (or semi-

autonomously) in addition to being operated by remotely located human pilots. One of the

most well known large scale UAVs is the General Atomics MQ-9 Reaper (shown in Fig 1.3,

is the successor to the smaller General Atomics MQ-1 Predator, and is occasionally termed

Predator B).

4
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Figure 1.3: An MQ-9 Reaper Taxis on an Airstrip

The MQ-9 is capable of high altitude, long endurance missions (HALE) and can

carry 15 times the amount of ordnance, and cruise at three times the speed of the MQ-1

Predator. With its increased range, operational ceiling, endurance, speed, and munitions

payload capability is the first large scale, true hunter-killer UAV, and is more aptly termed

an unmanned aerial combat vehicle (UCAV) given its increased war fighting capabilities.

UCAVs are increasingly being used in missions against soft targets (targets without the

ability to contest air superiority as they do not have any combat aircraft or any anti-aircraft

weapons capable of reaching the UCAV) such as ISIS, Al Qaeda, or other strategic targets

since they have a significantly lower operating cost than other aerial combat vehicles such

as the F-16 Fighting Falcon, F-18 Hornet (or Super Hornet variant), B-52, or A-10 Warthog

(shown in Fig. 1.4) [11].

5



An Integrated Method for Airfoil Optimization Joshua B. Okrent

(a) F-16 (b) F-18

(c) B-52 (d) A-10

Figure 1.4: Examples of Military Aircraft whose Missions are Increasingly Performed by
UAV/UCAVs

Without a doubt, use of UAVs and UCAVs will increase as they replace their

manned counterparts for missions with soft targets. As their role (and number of units built

and deployed) grows, so does the importance of optimizing the design of the UAV. What

performance parameter that is desired to be optimized is dependent on the mission that the

aircraft will be used for. Transport aircraft such as the C-5 or C-17 are designed to be able to

move a large payload a long distance at a fuel efficient pace, whereas air superiority fighters

like the F-15 Eagle or F-22 are optimized for speed and maneuverability among other things.

This research project will focus on selecting the optimum airfoil for use on a UAV that is

6
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nominally designed to be characteristic of the large scale HALE type UAV/UCAVs.

1.2 Objective

The objective of this study is to optimize an airfoil that is to be used for a long

range, long endurance unmanned aerial vehicle UAV application. Since a VI coupled solver

allows for an expedient and accurate solution, it is an excellent choice for an optimization

problem where the number of design cases analyzed can range from 1,500-5,000+. To achieve

the goal of being able to specify the best airfoil shape for a given aircraft design and set of

flight conditions, the following steps will be taken:

• Select a characteristic UAV design.

• Create a characteristic mission condition matrix.

• Weight each mission condition by its relative importance.

• Select performance parameter(s) to optimize.

• Select a VII coupling method.

• Select a parametric airfoil family (ex. NACA 4 Digit Series).

• Couple the genetic algorithm solver (MATLAB) with the VI solver.

• Perform optimization.

• Repeat optimization with different parametric airfoil family (ex. NACA 5 digit series).

• Select the optimal airfoil.

This research differs from prior work for several reasons. First, most optimization

work focuses on just one parametric airfoil family (ex. NACA 4 series) or even the more

limited case of starting from a single airfoil (ex. NACA2412) and moving outward in the

design space. Rather than be limited by a single parametric airfoil family, this work will use

three different airfoil families that cover almost all (reasonable) design possibilities.

7
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This change opens up a much larger design space allowing for the possibility of a

better candidate to be found. Other approaches are limited since they start with a more

limited pool of candidates. Another difference is the way the candidate airfoils are scored and

evaluated. In prior work, most optimization methods searched for the candidate airfoil that

provided the best lift-to-drag ratio for a given flight condition. For an airfoil that will be used

on an aircraft with a very specific use where one flight condition overwhelmingly dominates

all others, this single evaluation point approach works well. However, for any kind of aircraft

with a varied mission flight profile, this approach finds an optimal candidate for just a small

section of the expected flight conditions. This would be analogous to selecting a car based on

its gas mileage performance on the highway when you mostly do city driving. The selection

will still perform well, but it won’t necessarily be the optimal choice to minimize total gas

usage.

Additionally, the standard approach finds the optimal candidate based on one pa-

rameter only. When designing an airfoil or by extension an aircraft, there are many per-

formance characteristics that are of importance. A better approach would be to evaluate

each candidate airfoil with respect to several different performance characteristics that are

relevant to the typical mission. For example, when designing a transport aircraft, both the

fuel usage and maximum payload are of importance. Therefore, a more optimal design can

be found when evaluating a design and finding the best option that both minimizes fuel

usage and maximizes payload. For optimizations with multiple objectives, the optimiza-

tion on any one performance characteristic can come at the expense of another performance

characteristic.

It is up to the engineer to find the configuration that provides the best trade offs

between performance characteristics. The optimization method used in this paper will be

discussed in more detail in Chapter 2 and Chapter 3.

8
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1.3 Structure

Chapter 2 will discuss the problem in more detail and will define the constraints and

objectives. In addition, more information about UAVs will be provided.

Chapter 3 will discuss the method by which viscous and inviscid calculations are per-

formed. It will also briefly discuss the coupling methods available.

Chapter 4 will present the results and discussion of the optimization solution.

Chapter 5 will provide concluding remarks as well as suggestions for further work.

9



Chapter 2

Problem Definition

2.1 Optimization Problem

For this design problem, it is assumed that the layout and configuration of a large

scale high altitude, long endurance UAV has been determined from a list of mission require-

ments subject to structural and power plant constraints. Table 2.1 provides some nominal

size and weight information for the UAV (characteristic of the HALE class of UAV). From

this nominal aircraft configuration, it is up to the engineer to find the optimal airfoil that

can maximize the UAV’s performance. For this application, it is desired to optimize both

the UAV’s time on station (endurance), and it’s range, or more simply how far the UAV can

fly, and once it reaches its target, how long it can stay in the air.

10
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Variable Unit Value
Empty Weight kg 1247
Fuel Weight kg 1769

Max. Payload kg 1747
Max. Takeoff Weight kg 4763

Wingspan m 20
Chord m 1.22

Aspect Ratio N/A 12
Length m 11

Table 2.1: Preliminary Aircraft Configuration

Additionally, since the UAV must operate at more than one flight condition, the

optimal airfoil must be able to handle a variety of flight regimes and be able to perform.

To evaluate the airfoil, a matrix of characteristic flight conditions was created. Each flight

condition was weighted by the flight condition’s relative importance. Any airfoil performance

parameter is then defined as the weighted average of that parameter with respect to the

weights in Tables 2.2 and 2.3. The weights for one flight regime each sum to one. For

example, all of the condition weights in the cruise regime sum to one. In the next section,

the endurance and range for a given airfoil is calculated as well as how a multi-objective

optimization problem can be handled with a single objective function.

ID Mission Altitude. Velocity Mach Re Weight
Description (km) (m/s) No. (106)

1 Low Alt. Loiter 5 35 0.109 1.93 0.20
2 Medium Alt. Loiter 10 40 0.134 1.38 0.50
3 High Alt. Loiter 15 45 0.153 0.75 0.30

Table 2.2: Endurance Mission Flight Profiles and Relative Weighting

ID Mission Altitude. Velocity Mach Re Weight
Description (km) (m/s) No. (106)

1 Medium Alt. Cruise 10 110 0.367 3.81 0.60
2 High Alt. Cruise 15 110 0.373 1.84 0.40

Table 2.3: Cruise Mission Flight Profiles and Relative Weighting

11
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2.1.1 Airfoil Analysis

In this section, airfoil and wing performance parameters will be briefly reviewed.

It is assumed that the reader is already familiar with aerodynamics, thin airfoil theory, and

performance analysis of an aircraft.

An airfoil (Fig. 2.1 is a 2D shape that when extruded or swept through space,

forms a wing with finite span. A given airfoil has several performance properties associated

with it.

Figure 2.1: Airfoil with Lift and Drag Vectors

The two most important parameters are the non-dimensional lift and drag coeffi-

cients given in equations 2.1 and 2.2 respectively where l is the lifting force per unit span,

d is the drag force per unit span, ρ is the density, and V∞ is the free stream velocity. From

thin airfoil theory, a given airfoil’s cl and cd are a function of the angle of attack (α) of the

airfoil relative to the free stream. The lift and drag coefficients provide quantitative metrics

to measure an airfoil’s performance and allow easy performance comparison across a wide

swath of airfoil sizes and operating conditions.

12
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cl =
l

1
2
ρcV 2

(2.1)

cd =
d

1
2
ρcV 2

(2.2)

While these two parameters provide good information to characterize an airfoil,

they do not tell the whole picture when it comes to an actual wing of finite length. This is

due in part to the additional induced drag, as well as the reduction in total lift from wingtip

vortices (see Fig. 2.2).

Figure 2.2: Finite Wing with Wingtip Vortices and Elliptical Lift Distribution

Working under the assumption of an elliptical lift distribution, it is possible to find

the corrected lift and drag coefficients for a finite wing as shown in Equations 2.3 and 2.4.

CL =
L

1
2
ρSV 2

=
cl

1 + cl
1+πeAR

(2.3)

CD =
D

1
2
ρSV 2

= cd +
C2
L

πeAR
(2.4)

where S is the wing planform area, e is the non-dimensional Oswald efficiency

13
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number (usually 0.80-0.95) and AR is the wing aspect ratio defined as the ratio of the

square of the wingspan divided by the planform area. For a rectangular wing, the aspect

ratio is simply the wingspan divided by the chord length.

2.1.1.1 Performance Criteria

It is possible to achieve a good engineering approximation (usually within 10-20%)

of an aircraft’s endurance (E) and range (R) using the Breguet formula (equation 2.5 and

2.6 where cp is the specific fuel consumption, ηp is the propeller efficiency, ρ∞ is the free

stream density, S is the wing planform area, Wi is the initial weight of the aircraft, Wf is the

final weight of the aircraft, and CL and CD are the lift and drag coefficients respectively)[1].

E =
ηp
cp

C
3
2
L

CD

√
2ρS

(
1√
Wf

− 1√
Wi

)
(2.5)

R =
ηp
cp

CL
CD

ln
Wi

Wf

(2.6)

(2.7)

Since the design of the airfoil can only affect CL or CD,if an airfoil maximizes the

value of

C
3
2
L

CD

or

CL
CD

then for a given weight and power plant configuration, the endurance or range

14
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has been maximized. Since there are two competing objectives (maximize endurance and

maximize range) , a method to accommodate both goals must be used. One could perform

a multi-objective genetic algorithm based optimization, from which a candidate could be

selected from the set of generated airfoils on the Pareto front. A simpler method is to weight

each objective and then minimize the sum of the weighted objectives, which is the method

used in this research [3]. In more explicit mathematical terms:

minimize f =
N∑
i=1

wifi(x) (2.8)

subject to x ∈ Ω (2.9)

This approach requires some knowledge or assumptions about what the respective

weights should be [3] and the solution may or may not be strongly dependent on the weights

chosen. For this research, it will be assumed that 80% of the UAV’s flight time will be spent

in endurance mode, and 20% of the UAV’s flight time will be spent in cruise mode and the

objectives should be weighted accordingly, which gives the following objective function f

which is to be minimized.

minimize f =
4

5

(
NE∑
i=1

wE,i
C

3
2
L

CD

)−1
+

1

5

(
NR∑
i=1

wR,i
CL
CD

)−1
(2.10)

subject to x ∈ Ω (2.11)

where NE and NR are the number of endurance and range conditions to be eval-

uated and wE,i and wR,i are their associated condition weights from Table 2.2-2.3. In this

application, x is the vector of parameters that is used to define a given parametric airfoil
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family (ex. camber, location of camber maximum, and thickness for a NACA 4 series airfoil)

and Ω is the bounds on that set of parameters than give a valid airfoil.

2.2 Planned Research

2.2.1 Analysis

The airfoil shape in question will be analyzed using the coupled viscous-inviscid

code XFOIL. XFOIL will be treated like a black box function to which the airfoil shape and

flight conditions are passed to, and from which the sectional lift and drag coefficients will be

returned. Using equations 2.3, 2.4, and the values given in Table 2.1, the finite wing lift and

drag coefficients will be determined. Once the values of CL and CD are known,
C

3
2
L

CD
and CL

CD

can be found, and the airfoil can be scored using the objective function listed in Equations

2.10-2.11. Chapter 3 will briefly cover the basics of the viscous-inviscid calculations and

coupling method used by XFOIL in it’s calculation of cl and cd for an arbitrary airfoil shape.

2.2.2 Optimization

There are many ways to optimize a given problem. For example, a simple problem

that can be modeled using a parabolic equation can be minimized by simply finding the roots

of the function’s derivative. More complex problems, but ones that are still governed by clear

equations might be amenable to optimization through the use of Lagrange multipliers. Such

approaches do not work as well when applied to the design problem at hand, namely since

the equations that determine the airfoil’s performance as a function of airfoil geometry are

not that simple to solve. Additionally, since the method of solving those equations (XFOIL)

is treated as a black box function so any methods that involve determining gradients is not
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viable. For this reason, genetic algorithm optimization method was chosen.

A genetic algorithm is an optimization method that is appropriate for finding global

minima for constrained and unconstrained problems using a scoring and sorting method that

attempts to replicate an evolutionary process. A genetic algorithm is a good method for prob-

lems that are not appropriate for traditional optimization methods, including problems that

have objective functions that are non-linear, stochastic, non-differentiable, or discontinuous.

A general implementation of a genetic algorithm follows these steps [12]:

1. Generate (random) initial population based on vector of design parameters.

2. Compute the fitness score of each member of the population.

3. Select a certain subgroup of the population to become parents for the next generation

based on their fitness score.

4. Select a certain subgroup of the population (termed elites) to be passed directly to the

next generation based on their fitness score.

5. Produce children candidates from the parent candidates by:

(a) Mutating the design parameters of a single parent candidate using a random

number generator.

or

(b) Creating a linear combination of the design parameters of two parent candidates.

6. Combine the children candidates with the elite candidates to form the next generation.

7. Repeat the process until a convergence parameter is reach.

Individual implementations of a genetic algorithm can vary and the number of pa-

rameters used, the size of each population as well as number of elite, mutated, and crossover

children candidates can either hasten or slow convergence. For a graphical explanation of

how the next generation of candidates are created from the current one, see Figure 2.3. The

details and the exact implementation of a genetic algorithm implementation are outside the

scope of this research and will not be discussed.
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Figure 2.3: Generation of Next Generation from Current Candidates ([12])

The implementation of a genetic algorithm optimization method that was used for

this research was provided by Matlab via their optimization toolbox. Below is the general

work flow inside the objective function once a candidate airfoil has been passed to it for

scoring and evaluation:

1. Receive candidate airfoil information from genetic algorithm solver.

2. Compute the fitness score for the candidate (Equation 2.10).

(a) Pass the airfoil coordinates and flight conditions to XFOIL.

(b) Return cl and cd from XFOIL.

(c) Compute CL and CD from cl and cd.

(d) Repeat the process for each unique flight condition.

3. Return the inverse of the candidate’s fitness score.

Matlab’s genetic algorithm can only minimize a quantity, so to find the design

candidate that has the best (maximum) objective function score, the inverse of a candidate

airfoil’s score is returned to the GA solver. The solver then finds the set of airfoil parameters

that minimizes this quantity, which then maximizes the weighted objective function. .
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2.2.3 Candidate Airfoils

To use the genetic algorithm solver, an airfoil must be parametrized such that a

vector of parameters is enough to fully define it’s shape. To accomplish this goal, one must

need use a parametric airfoil. There are several different commonly used parametric airfoil

families that vary in their level of geometry control and complexity of implementation. Three

of these airfoil families were selected to provide a large possibility of options when searching

for the optimal configuration. The following sections will briefly discuss the three families of

parametric airfoils that were used for this research.

2.2.3.1 NACA 4 Digit

One of the most basic methods of airfoil parametrization is the NACA 4 digit

series of airfoils. Created by the National Advisory Committee for Aeronautics (NACA),

this family of airfoils requires only three parameters (maximum camber, maximum camber

location, and maximum thickness) to fully define the geometry. Traditionally these values

are provided as percentages that have been normalized to the chord length of the airfoil.

Additionally the values of the parameters drive the naming scheme of that airfoil itself.

For example, a NACA 2412 airfoil (shown in Fig. 2.4 has a maximum camber of 2% chord

located at 40% of the chord length and maximum airfoil thickness of 12% thickness. Usually,

the airfoil shapes were defined only for certain integer values (ex. increments of 10% for

maximum camber) but the equations that define the shape of the airfoil can accept any real

valued positive chord normalized value. For example, the governing equation can generate

an airfoil with a maximum camber of 23.67% located at 42.31% of the chord and normalized

thickness of 12.23%. This flexibility allows for a much larger design space than is normally

specified.
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Figure 2.4: NACA 2412 Airfoil in Normalized Coordinates

2.2.3.2 Class Shape Transformation

The class shape transformation (CST) method is a parametric method for gen-

eration airfoil geometry with a limited number of parameters. It utilizes a series of class

functions that are defined for certain geometries (round nose airfoils, low drag projectiles,

cone etc) as well as shape functions for each geometry type to generate airfoil coordinates.

The CST method was first presented by Brenda M. Kulfan while working for The Boeing

Company. It can be used to parametrically describe airfoils, nacelles, lifting bodies, chan-

nels, ducts, nozzles and more in both two and three dimensions [4]. This flexibility makes

it attractive for a large scale design optimization since a minimal number of parameters are

needed to fully define a large system.
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2.2.3.3 PARSEC

The third and final parametric geometry creation method used in this research is

the PARSEC method as defined by Sobieczky [21]. The PARSEC method uses 11 airfoil

parameters to fully define the airfoil geometry. These parameters are:

1. Leading edge radius.

2. Maximum height of the upper surface from the chord line.

3. X location of the maximum upper surface height.

4. Curvature at that location.

5. Maximum height of the lower surface from the chord line.

6. X location of the maximum lower surface height.

7. Curvature at that location.

8. Upper surface trailing edge angle.

9. Lower surface trailing edge angle.

10. Trailing edge thickness.

11. Trailing edge elevation.

The height of the airfoil surface is then given by equation 2.12.

y

c
=

6∑
n=1

an(~p)xn−0.5 (2.12)

where ~p is the vector containing the 11 governing parameters, an is the coefficients

determined for ~p. The value of an is determined by solving a set of linear equations. For

more information on how to find the values of the coefficients see Jung et al. [14].
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Chapter 3

Description of Analysis

3.1 Introduction

An engineer tasked with analyzing the flow of a fluid around a structure has a

number of tools at their disposable. The tool they choose can greatly influence both the

computational cost (man hours required to use the tool and/or monetary cost needed to

acquire the tool itself) and the accuracy of the result itself. The intelligent engineer should

choose the tool that meets the minimum solution accuracy requirement at the lowest com-

putational cost. For example, a complex flow such as that of an unsteady, turbulent thermal

fluid with volumetric heating through a nuclear reactor core might require a costly, but

more accurate and capable computational fluid dynamics (CFD) Navier-Stokes (NS) equa-

tions solver such as ANSYS FLUENT to provide accurate information. Acquisition costs of

the software alone are on the magnitude of $30,000. When one takes into account the cost

of training an engineer to use the tool as well as the time it takes to perform an analysis,

one would attempt to find another tool that can provide accurate engineering information

at a lower cost. For flows with simple geometry such as a flat plate or sphere, an engineer
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might defer to empirical correlations which can provide accurate information at cost that is

several orders of magnitude less.

For engineering flows where the wall geometry cannot be fully defined in terms of

a few characteristic dimensions (ex. a right cylinder needs only a diameter and length),

empirical correlations become less useful. For this case, a fully viscous flow solver can be

used, but the wall geometry and/or flow physics might be simple enough that a solution

may be found with a simplified method at a lower computational cost. For this kind of flow

regime, potential flow theory can provide good enough information to be able to characterize

the flow.

Since potential flow assumes the fluid is inviscid, solution information will not be as

accurate as information provided by a viscous NS solver especially in the vicinity of the wall.

This decrease in accuracy is due to the fact that when a fluid flow impinges on or contacts a

solid (or porous) surface, the component of the fluid velocity that is tangential to the surface

normal vector is reduced to the velocity of that surface. For stationary walls, this means

the tangential component of the velocity is reduced to zero. This phenomena is termed the

no slip condition and is a valid assumption in the majority of flows. The no-slip condition

causes a velocity gradient proportional to
√
Re in the direction normal to the wall surface,

where Re is the non-dimensional Reynolds number. Potential flow solvers do not account

for any disturbances caused by the boundary layer since they do not include viscosity. For

external aerodynamic flows, the Reynolds number is on the order of 105−107 making it large

enough to noticeably affect the difference between calculated and actual flow information.

For aerodynamic flows, this is especially important since the calculated drag on an airfoil

from potential flow is much lower than the actual drag found from experiments.

Using a viscous NS solver to resolve the boundary layer can be computationally

prohibitive especially if turbulence is present for large models. To properly resolve the

boundary layer in viscous NS solvers, the mesh near the wall needs to be discretized such
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that the element height measured normal to the wall surface must be quite small. This

mesh sizing requirement not only adds significant computational cost, it adds significant

time to the pre-processing step since special care must be taken to discretize the domain

near the wall. This step increases in complexity again when turbulence is discretized to be

modeled since the non-dimensional cell height y+ must be matched to the required y+ of

the turbulence model used. This matching process can take a few solution iterations before

inflation parameters that yield the desired y+ are found. Although a solution found with

a viscous NS solver (when setup correctly) will yield more accurate results, the added cost

again warrants caution, especially when a variety of geometries and design cases need to be

evaluated.

Thankfully, a method to include boundary layer effects in the computationally

inexpensive inviscid panel method exists. This method is termed the viscous-inviscid (VI)

coupling and relies on the integral boundary layer formulation pioneered by Prandtl and von

Karman.

This VI coupling provides a powerful tool that can accurately predict the aerody-

namic flows when compared to fully gridded viscous NS solver or laboratory experiments.

Implementations of a VI coupling code run in milliseconds on a modern computer which

is orders of magnitude faster than the run time of even a simple 2D airfoil in a viscous

NS solver. This speed and ease of use makes it ideal for preliminary design analysis and

optimization, especially once turbulence and compressibility effects are included.

This chapter will briefly discuss some of the common ways to solve the inviscid,

viscous, and coupled problem as well as provide some overview into the details of the solver

that was used (XFOIL).
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3.2 Inviscid Flow

For external flows that have a sufficiently large Reynolds number (Re > 100, 000),

it is a valid engineering approximation to assume that the flow outside of a small region

near the wall surface is inviscid. We then define a potential function φ(x, y, z) and stipulate

that it satisfies the requirements of conservation of mass and momentum. It is also assumed

that the flow is steady, inviscid, irrotational, and incompressible. We also define the velocity

components of ~V to be:

u =
∂φ

∂x
(3.1)

v =
∂φ

∂y
(3.2)

v =
∂φ

∂z
(3.3)

Since we have assumed that the flow is incompressible, the continuity equation is

reduced to:

∇ · ~V =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.4)

We then substitute our equations for the velocity components as functions of the

potential function into the continuity equation which yields the familiar Laplace equation.

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= ∇2φ = 0 (3.5)

It is more convenient to represent the flow with the potential function since φ
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contains all of the information necessary to specify u, v, or w. Additionally, we can represent

a variety of elementary flows with simple potential functions. Since the Laplace equation is

linear, any number of solutions can be superimposed to form a valid, but more complex flow

field.

Airfoils can be modeled and analyzed using just a few of the elementary potential

flows. In thin airfoil theory, an airfoil is modeled by placing a bound vortex sheet along

the mean camber line [15]. The vortex strength is then adjusted until the mean camber

line becomes a streamline of the flow. Applying the Kutta condition which stipulates that

the flow leaving the trailing edge must do so smoothly (γ(TE) = 0) which yields a unique

solution. The main focus of thin airfoil theory is to find a γ distribution that satisfies the

Kutta condition as well as the requirement the normal components of the uniform stream

velocity and induced velocity must sum to zero[15]. Analytical solutions for both symmetric

and cambered airfoils can be found once several geometric simplifications are made. For

more information on the mathematical steps see Kuethe and Chow.

3.2.1 Panel Method Implementation

Thin airfoil theory does not work well for thick, highly cambered, multi-part, or

arbitrary airfoil sections. To get around this issue, a source-panel method for solving the

potential flow is used. This method is similar to the bound vortex sheet method of thin

airfoil theory, however it also adds a source component to the airfoil. To begin with, the

airfoil geometry is approximated by N line segments called panels. Each panel is assigned a

fictitious source (q) and vortex (γ). The velocity potential function is created by superim-

posing the contributions from the free stream, source distribution, vortex distribution, which

gives Equation 3.6 as viewed by an observer located in the fluid [18]. By solving for each

panel’s source and vortex strength, the velocity potential function can be solved to provide
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the pressure distribution and section lift coefficients.

φ = V∞(x cosα + y sinα) +
N∑
j=1

∫
j

( qj
2π
lnr − γ

2π
θ
)
ds (3.6)

The velocity potential due to the source and vortex distribution is integrated over

the j-th panel element with length ds, where r is the distance between the element and

the observer, and θ is the angle r makes with the x axis. This value is then summed over

all of N panel elements. The following assumptions are made about the vortex and source

distributions.

1. Source strength is constant over each panel.

2. Each panel has a different source strength.

3. Vortex strength is constant and equal across all panels.

The j-th panel has its start point denoted by (xi, yi) and its endpoint denoted by

(xi+1, yi+1).Each panel has several important parameters used in calculating the strength of

the distributed sources and vortex. These parameters are the location of the panel midpoint

(Equation 3.7), it’s length (Equation 3.8), and angle of orientation (Equation 3.9 and 3.10).

(x̄j, ȳj) =
(xi + xi+1

2
,
yi + yi+1

2

)
(3.7)

`j =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (3.8)

sin θj =
yi+1 − yi

`j
(3.9)

cos θj =
xi+1 − xi

`j
(3.10)

The midpoint of the panel is termed the collocation or control node. This is where
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all of the sources and vortices are assumed to be acting on. Fig. 3.1 shows an example of

how an airfoil might be paneled as well as the location of its collocation nodes.

Figure 3.1: NACA 2412 Airfoil Discretized with 12 Panels

The no penetration condition enforced at the collocation point of each panel yields

the following set of equations:

N∑
j=1

qjAij + γAi,N+1 = bi for i = 1, ..., N (3.11)

where

Aij =
1

2π
sin(θi − θj) ln

(ri,j+1

rij

)
+

1

2π
βijcos(θi − θj) (3.12)

Ai,N+1 =
N∑
j=1

[
1

2π
cos(θi − θj) ln

(ri,j+1

rij

)
− 1

2π
βij sin(θi − θj)

]
(3.13)

bi = V∞ sin(θi − α) (3.14)
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Finally, the Kutta condition is enforced which allows for closure of the system of

equations.

N∑
j=1

qjAN+1,j + γAN+1,N+1 = bN+1 (3.15)

where

AN+1,j =
∑
k=1,N

[
1

2π
βkj sin(θk − θj)−

1

2π
cos(θk − θj) ln

(ri,j+1

rij

)]
(3.16)

AN+1,N+1 =
∑
k=1,N

N∑
j=1

[
1

2π
βkj cos(θk − θj)−

1

2π
sin(θk − θj) ln

(ri,j+1

rij

)]
(3.17)

bN+1 =− V∞ cos(θ1 − α)− V∞ cos(θN − α) (3.18)

The values of rij and βij can be found from Equations 3.19 and 3.20 respectively.

rij =
√

(x̄i − xj)2 + (ȳi − yj)2 (3.19)

βij =


atan2

[
(ȳi − yj+1)(x̄i − xj)− (x̄i − xj+1)(ȳi − yj),

(ȳi − yj+1)(ȳi − yj)− (x̄i − xj+1)(x̄i − xj))

]
i 6= j

π i = j

(3.20)

The function atan2(Y,X) is defined as the four quadrant inverse tangent that re-

turns values in the closed interval [−π, π] based on the values of Y and X. The four quadrant
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inverse tangent is used over the regular inverse tangent function so that the correct angle is

returned. Now that the full system of linear equations has been defined, the strength of the

fictitious distributed sources and vortex can be found. Once those are found it is possible

to find the value of the tangential velocities at each control point, and from there use the

Bernoulli equation to find the pressure distribution [17].

Vt,i =V∞ cos(θi − α)

+
N∑
j=1

qj
2π

[
βij sin(θi − θj)− cos(θi − θj) ln

(ri,j+1

rij

)]

+
γ

2π

N∑
j=1

[
sin(θi − θj) ln

(ri,j+1

rij

)
+ βij cos(θi − θj)

] (3.21)

p∞ +
1

2
ρV 2
∞ = pi +

1

2
ρV 2

t,i (3.22)

Cp,i = 1− (
Vt,i
V∞

)2 (3.23)

3.2.1.1 Panel Method Summary

Once implemented with a computer routine, the panel method provides a quick

and easy way to find the tangential velocity and pressure distributions over an airfoil of an

arbitrary shape, and from there the lift coefficients. Results converge fairly rapidly exhibiting

little change once the number of panels used exceeds approximately 60 [17]. Although the

process demonstrated above was only for the two dimensional case, the panel method can

be expanded to include three dimensions (example shown in Figure 3.2) and account for

compressibility effects as well. Some proprietary panel method implementations such as

Boeing’s PANAIR and Douglas’ HESS II code allow for curved panels, and non constant
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source and vortex terms [17]. For a more in depth comparison of different available panel

codes see Table 4-3 of [17].

Figure 3.2: 3D Paneling of Fighter Concept ([2])

The panel method produces inviscid solutions that closely match experimental re-

sults. This agreement, however rapidly deteriorates as the angle of attack of the airfoil

increases until the airfoil is fully stalled [17].The panel method cannot accurately predict

results from this flow regime, rather it will continue to predict a linear increase in lift.

Therefore, without any adulterations to the analysis process, one should take care to make

sure the conditions they are analyzing are within the valid limits of the panel method.When

one keeps the various restrictions of the panel method in mind, it still makes an attractive

high level analysis tool due to it’s ease of use, extreme speed, and relative accuracy.

3.3 Viscous Flow

For regions near the wall surface, the assumption of irrotational and inviscid flow

are no longer valid. For this reason, the viscous boundary layer equations need to be solved.

In this section, a method to solve for the flow in an incompressible laminar boundary layer

is presented.
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3.3.1 The Incompressible Boundary Layer

We start with the classical form of Prandtl’s boundary layer equation and the

reduced form of the continuity equation (equations 3.24 and 3.25). The subscripts 1 and 2

denote the coordinate parallel and normal to the wall surface respectively.

u1
∂u1
∂x1

+ u2
∂u1
∂x2

= −1

ρ

∂p

∂x1
+ ν

∂2u1
∂x22

(3.24)

∂u1
∂x1

+
∂u2
∂x2

= 0 (3.25)

We make the assumption that the pressure gradient can be found from the Bernoulli

equation and is given by:

∂p

∂x1
= −ρU∞

dU∞
dx1

(3.26)

We transform Prandtl’s boundary layer equation into an integral form by first

manipulating the second term of equation 3.24 and then substituting the continuity equation

to create the result shown in equation 3.27.

u2
∂u1
∂x2

=
∂

∂x2
(u1u2)− u1

∂u2
∂x2

=
∂

∂x2
(u1u2) + u1

∂u1
∂x1

(3.27)

Then equation 3.26 and 3.27 are substituted into equation 3.24 and by integrating

from x2 = 0 to x2 = δ where δ is the total boundary layer thickness, subject to the boundary

conditions x2 = 0, u1, u2 = 0 and u2 = δ, u1 = U∞(u1) [20]. This procedure yields an ordinary

differential equation, known as the Von Karman integral momentum equation.
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∫ δ

0

u12
∂u1
∂x1

dx2 +

∫ δ

0

∂

∂x2
(u1u2)dx2 =

∫ δ

0

U∞
dU∞
dx1

dx2 + ν

∫ δ

0

∂2u1
∂x22

dx2 (3.28)

To facilitate the evaluation of equation 3.28, we treat each term separately and

simplify their form.

∫ δ

0

2u1
∂u1
∂x1

dx2 =

∫ δ

0

∂(u21)

∂x1
dy (3.29)

∫ δ

0

∂

∂x2
(u1u2)dx2 = −U∞

∫ δ

0

∂u1
∂x1

(3.30)

∫ δ

0

∂2u1
∂x22

dx2 =
∂u1
∂x2

∣∣∣
x2=0

= −τw
ρ

(3.31)

Equations 3.29-3.31 are substituted back into equation 3.28 and then by making the

assumption that U∞ is not a function of x2 and using some tricks from calculus (integration

by parts and Leibniz’s rule) it is possible to rearrange the result such that is now of the form:

∂

∂x1

[
U2
∞

∫ δ

0

u1
U∞

(
1− u1

U∞

)
dx2

]
+ U∞

dU∞
dx1

∫ δ

0

(
1− u1

U∞

)
dx2 =

τw
ρ

(3.32)

By noticing that the integrand of the first term is the definition of θ, the momen-

tum thickness, and the integrand of the second term is equal to the definition of δ∗, the dis-

placement thickness, and by introducing another dimensionless shape parameter H = δ∗

θ
the

integral momentum equation can be reduced again to:
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dθ

dx1
+
(
H + 2

) θ

U∞

dU∞
dx1

=
Cf
2

(3.33)

Equation 3.33 represents the Von Karman momentum integral equation in differ-

ential form for incompressible flow and is an exact equation [20]. Solutions may be found by

assuming a similarity function for the velocity profile, or by using a velocity profile from an

inviscid panel method solution.

3.3.2 The Compressible Boundary Layer

The compressible boundary layer formulation in this section follows that of pre-

sented by Drela and Giles [8]. A similar approach that was used in the prior section was

used to derive the standard integral momentum and kinetic energy shape parameter equa-

tions that are shown below:

dθ

dx1
+
(

2 +H −M2
e

) θ

U∞

dU∞
dx1

=
Cf
2

(3.34)

θ
dH∗

dx1
+
(

2H∗∗ +H∗(1−H)
) θ

U∞

dU∞
dx1

= 2CDi −H∗
Cf
2

(3.35)

where Me is the Mach number at the edge of the boundary layer, and CDi is

the dissipation coefficient. The definitions of the dissipation coefficient, kinetic energy, and

density thickness for compressible flow are defined in a similar manner to their incompressible

counterparts [19].
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θ∗ =

∫ ∞
0

(
1−

( u1
U∞

)2) ρu1
ρU∞

dx2 (3.36)

δ∗∗ =

∫ ∞
0

(
1−

( ρ

ρ∞

)2) u1
U∞

dx2 (3.37)

CDi =
1

ρ∞U3
∞

∫ ∞
0

τ
∂u1
∂x2

dx2 (3.38)

The energy and density thickness shape parameters H∗ and H∗∗ are defined in a

similar manner as well.

H∗ =
θ∗

θ
(3.39)

H∗∗ =
δ∗∗

θ
(3.40)

To provide closure for equations 3.34 and 3.35 the following functional dependencies

are assumed.

H∗ = f(Hk,Me, Reθ) (3.41)

H∗∗ = f(Hk,Me) (3.42)

Cf = f(Hk,Me, Reθ) (3.43)

CDi = f(Hk,Me, Reθ) (3.44)
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The kinematic shape parameter Hk is defined as:

Hk =
H − 0.290M2

e

1 + 0.113M2
e

(3.45)

It is easy to see that for low speed subsonic flow, that Hk = H

3.3.2.1 Closure

Functional relationships for the additional parameters of Cf , CDi, and Hk are

needed to fully close the system. The following relationships from the Falkner-Skan one

parameter profiles for laminar closure [8].

Reθ
Cf
2

=


−0.067 + 0.01977 (7.4−Hk)

2

Hk−1
Hk ≤ 7.4

−0.067 + 0.022
(
1− 1.4

Hk−6

)2
Hk ≥ 7.4

(3.46)

Reθ
2CDi
H∗

=


0.207 + 0.00205

(
4−Hk

)5.5
Hk ≤ 4

0.207− 0.003 (Hk−4)2
(1+0.02(Hk−4)2)

Hk ≥ 4

(3.47)

H∗∗ =
( 0.064

Hk − 0.8
+ 0.251

)
M2

e (3.48)

Functional relationships for Cf , CDi, and Hk in transitional and turbulent flow

are more involved and outside the scope of this thesis. More information about possible

relationships can be found in [8].
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3.4 Coupled Viscous-Inviscid Solution

Once a solution for the velocity distribution has been found via a panel method, the

velocity profile can be used to numerically solve the boundary layer equations. From that

solution, more accurate values of the drag forces on an airfoil can be found. This process

of linking the two sets of equations is called viscous-inviscid coupling. There are several

different methods of viscous-inviscid coupling that will be discussed below.

3.4.1 Direct Coupling

Direct coupling is the oldest and simplest method of coupling viscous-inviscid solu-

tions. Once the potential flow has been solved for, the velocity profile is used to determine

the solution to the boundary layer equations. This is a one-way coupling since the results

from the potential solver flow in one direction only. A more advanced version of the di-

rect coupling method involves adjusting the potential flow solver based on the results of the

boundary layer solution. This two-way coupling can be accomplished by translating each

panel in the direction normal to it’s original orientation by specified fraction of the boundary

layer height at that location. The solution process is then repeated until the amount the

panel is translated such that it falls outside the viscous boundary layer region. This iterative

process can have convergence issues and requires discretizing the domain during each itera-

tion. The preferred method of coupling information from the boundary layer region with the

inviscid region is through the use of a transpiration velocity. The concept of a transpiration

velocity, first proposed by Lighthill is that the boundary layer effects can be simulated by

imposing a non-zero normal velocity boundary condition on the inviscid solver [16]. The

value of the transpiration velocity is determined from:
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u2,trans =
d

dx1
(u1|x2=δδ∗) (3.49)

For laminar attached flow, the size of the boundary layer grows in thickness along

the x2 direction. The interaction between the boundary layer and inviscid region is weak.

However, as the flow approaches separation, directly coupled boundary layer solutions fail as

the skin friction vanishes, leading to a singularity (termed the Goldstein singularity after the

person who first described this issue)[5]. To get around this issue, a two equation boundary

layer solution paired with one of the following methods can be used.

3.4.2 Quasi-Simultaneous

The quasi-simultaneous method, proposed by Veldman uses an interaction law to

couple the solution from the boundary layer equations and the inviscid solution. The inter-

action law chosen is based off of thin airfoil theory and is used to approximate the inviscid

region for the boundary layer solution. The quasi-simultaneous solution method can reach

convergence very quickly and yields predictions within 1% of experimental results [22].

3.4.3 Simultaneous

The simultaneous method, like its name indicates, solves the boundary layer equa-

tions simultaneously with the inviscid flow field. Usually a global Newton method is used to

solve the discretized set of equations. This method was popularized by Mark Drela and is

used in XFOIL (created by Drela) [7]. It presents a robust and fast method for analysis of

a coupled viscous-inviscid arbitrary airfoil.
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3.5 XFOIL

XFOIL, an existing VII code was chosen to perform the analysis. This code was

developed by Mark Drela, and uses the simultaneous method to couple the inviscid region

with that of the boundary layer. In addition, it also has some other features that make it

attractive for an optimization problem that might have inputs that span several different

flow regimes. XFOIL can handle flows that are treated as solely inviscid, or a coupled

viscous-inviscid region, laminar and turbulent flows including transition, separation, and

reattachment bubbles, as well as both incompressible and compressible flows [7]. XFOIL

provides accurate results well into the high-subsonic flow regime at a low computational

cost. This efficiency paired with it’s simple problem specification structure make it an ideal

choice for automating the analysis process and coupling with a genetic algorithm optimization

method.

3.6 Genetic Algorithm Settings

The various controls over the implementation of a genetic algorithm can greatly

influence the quality and speed to convergence. From the No Free Lunch theorem, we know

that there is no one optimal search method for all classes of problems. By extension, there

is no one set of algorithm parameters that yield the best results (in both speed and solution

quality) [6]. Therefore optimization parameters (given as functions of n, the number of

parameters for a given airfoil family) were chosen based on rule of thumb estimates from

literature [10] [13].
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Parameter Value
Population Size 10n
Elite Population 0.05n
Mutation Rate 0.03
Crossover Rate 0.75

Table 3.1: Genetic Algorithm Solver Input Parameters
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Chapter 4

Results and Discussion

4.1 Introduction

A genetic algorithm optimization method was used to evaluate thousands of differ-

ent possible parametric airfoil configurations for three main airfoil families with the goal of

minimizing the objective (fitness) function (Equation 2.10) such that aircraft performance

parameters were maximized per their weighted importance.

This approach differs from traditional optimal airfoil candidate searches in that it

searches over a larger design space, evaluates each candidate airfoil over a range of conditions

that have been weighted by their respective importance’s, and that it searches for the best

candidate that meets both its maximal range and endurance objectives. The results for each

individual airfoil family are presented below.
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4.1.1 NACA 4 Digit

The NACA 4 digit airfoil family converged the fastest to an optimal solution, finish-

ing in 83 generations. The fitness score convergence for the NACA 4 digit series can be seen

in Figure 4.1. This speed of convergence is most likely due to its limited design space which

can be attributed to the fact that its governing parametric equations can only represent a

limited amount of shapes when compared to the more general CST and PARSEC methods.

Additionally, the NACA 4 digit airfoil series only needs three parameters to fully define its

shape which is much fewer than the six and ten variables needed for the CST and PARSEC

methods respectively.

Figure 4.1: NACA 4 Series Fitness Function Score Convergence

The general evolution of the NACA 4 digit series can be seen in Figure 4.2. The

airfoil shape adopts a heavily cambered shape, but after a few generations evolves to an

airfoil that has a more subtle camber. This can be seen by how the upper surface of the
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airfoil in generation 4 becomes higher in later generations before falling back to just below

it’s original location. The lower surface also goes through a similar refinement process by

which a large amount of camber is added and then slowly removed until an optimal solution

is found.

Figure 4.2: Evolution of Optimal NACA 4 Series Airfoil

From Figure 4.3 the shape of the airfoil can be seen. It’s high level of camber is

noticeable as the leading edge appears to be drooped. Additionally, the high camber of the

lower surface near the trailing edge is noticeable. When compared to commonly used NACA

4 digit series airfoil configurations such as the NACA 2412 one can see that the L/D ratio for

the optimized airfoil is several times larger indicating a better performance than a regular

”off the shelf” configuration. The performance parameters for each condition of the optimal

airfoil can be found in Tables 4.1-4.2.
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Figure 4.3: Final Optimized NACA 4 Series Airfoil

ID cl cd cl/cd CL CD CL/CD C
3
2
L/CD

1 0.65 0.004 148 0.64 0.02 39 31
2 0.65 0.005 136 0.64 0.02 38 30
3 0.64 0.006 103 0.63 0.02 35 28

Table 4.1: Optimized NACA 4 Series Endurance Mission Performance

ID cl cd cl/cd CL CD CL/CD C
3
2
L/CD

1 0.70 0.004 162 0.69 0.02 38 31
2 0.71 0.005 150 0.69 0.02 37 31

Table 4.2: Optimized NACA 4 Series Range Mission Performance

4.1.2 CST

The CST airfoil optimization took 113 generations before it converged on an optimal

solution. This is slightly longer than the NACA 4 series, again due to it’s larger available
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design space. A chart of the CST airfoil’s fitness function convergence can be seen in Figure

4.4.

Figure 4.4: CST Fitness Function Score Convergence

The evolution of the CST airfoil followed a similar pattern to that of the NACA

one in that it started out with a high degree of camber and high thickness and the gradually

refined those values until it reached convergence. The evolution of the CST airfoil can be

seen in Figure 4.5.
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Figure 4.5: Evolution of Optimal CST Airfoil

The final optimal CST airfoil can be seen in Figure 4.6. It is an asymmetric airfoil

with a relatively high amount of camber with it’s peak located about 50% of the chord. It

differs from the NACA airfoil it that is has a much flatter lower surface with a just barely

noticeable amount of camber.
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Figure 4.6: Final Optimized CST Airfoil

The performance parameters for each condition of the optimal airfoil can be found

in Tables 4.3-4.4. One can see that the performance of the optimized CST airfoil is slightly

better than that of the NACA one when comparing L/D and C
3
2
L/CD, which is due to the

significantly lower amount of induced drag that the NACA airfoil has from the higher amount

of lift it generates.

ID cl cd cl/cd CL CD L/D C
3
2
L/CD

1 0.53 0.004 138 0.52 0.01 44 32
2 0.52 0.004 129 0.51 0.01 43 31
3 0.59 0.006 97 0.58 0.01 36 27

Table 4.3: Optimized CST Endurance Mission Performance

ID cl cd cl/cd CL CD L/D C
3
2
L/CD

1 0.55 0.004 143 0.55 0.01 43 32
2 0.55 0.004 131 0.54 0.01 42 31

Table 4.4: Optimized CST Range Mission Performance
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4.1.3 PARSEC

The PARSEC airfoil optimization took the highest amount of generations to con-

verge at 216 generations. It’s fitness function convergence as a function of generation can

be seen Figure 4.7. This is unsurprising since the PARSEC airfoil had the most amount of

variables needed to define the airfoil geometry (10 total variables since the the airfoil was

assumed to have a sharp trailing edge).

Figure 4.7: PARSEC Fitness Function Score Convergence

The shape of the PARSEC airfoil was quite different than either the NACA or CST

as can be seen by its evolution in Figure 4.8. It starts off as a highly cambered airfoil with

near constant thickness and eventually evolves into a thin tadpole shaped airfoil.
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Figure 4.8: Evolution of Optimal PARSEC Airfoil

The final PARSEC airfoil can be seen in Figure 4.9. It is unique in that that

its trailing edge thins out significantly for an extended portion of the chord length. This

extended portion makes it visually interesting but most likely unfeasible for an actual load

bearing aero-structure. The performance parameters for each condition of the optimal airfoil

can be found in Tables 4.5-4.6.
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Figure 4.9: Final Optimized PARSEC Airfoil

ID cl cd cl/cd CL CD CL/CD C
3
2
L/CD

1 0.69 0.005 139 0.67 0.02 37 30
2 0.69 0.006 120 0.68 0.02 35 29
3 0.70 0.008 83 0.68 0.02 31 25

Table 4.5: Optimized PARSEC Endurance Mission Performance

ID cl cd cl/cd CL CD CL/CD C
3
2
L/CD

1 0.75 0.005 161 0.73 0.02 36 31
2 0.76 0.005 139 0.74 0.02 34 29

Table 4.6: Optimized PARSEC Range Mission Performance

4.2 Comparison

All three final airfoils have relatively similar performance scores (Table 4.7) despite

their differences in geometry (see Figure 4.10). In general, all three airfoils feature an asym-
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metric design that is heavily cambered with the maximum camber located about 0.4c-0.5C.

However, one airfoil had the smallest objective score, making it the best suited airfoil when

evaluated by the established rubric. This airfoil is the final iteration of the CST geometry.

The other two airfoil candidates produced enough lift that the amount of induced drag was

significantly increased which subsequently decreased their overall performance. The CST on

the other hand, had a lower sectional drag coefficient across all conditions leading to a better

set of scores. This makes the CST airfoil the best choice for the nominal HALE UAV that

is being designed.

Airfoil Score
NACA 0.033193
CST 0.032511

PARSEC 0.034791

Table 4.7: Final Airfoil Scores

Figure 4.10: Final Airfoil Shapes
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Conclusion

The goal of this thesis was to find the best possible airfoil design for a HALE type

UAV. The best, or optimal airfoil choice was defined as the one that maximized both the

endurance and range over the nominal set of operational conditions, which meant maxi-

mizing the L/D and L
3
2/D ratios. To find the value of these ratios, the aerodynamics of

the airfoil needed to be analyzed. Each airfoil configuration was analyzed using a coupled

viscous-inviscid method that blended potential theory and the panel method with a numeri-

cal solution to Prandtl’s viscous boundary layer to produce good engineering solutions for the

pressure and velocity fields. From this solution method, the lift and drag forces for a given

airfoil and flight condition could be found and from there, the L/D and L
3
2/D ratios could be

found. The fitness score of the airfoil candidate was then computed using Equation 2.10. A

single parameter fitness function was used to simplify the approach. To reduce the multiple

objectives into one objective function, a weighted approach was used. Characteristic weights

based on their importance were assigned to each objective, from which a weighted fitness

function score could be computed. A genetic algorithm then used this weighted score as the

parameter to be minimized by finding the vector of parameters that govern the shape of the

airfoil. To accomplish this minimization goal, a MATLAB script was used to couple the VI
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solver with the genetic algorithm. This process resulted in finding an airfoil that provides

the best blend of performance characteristics when evaluated against the mission condition

matrix. This approach was used for three separate parametric airfoil families. These three

airfoil families were chosen since together, they provide for sufficient coverage of the possible

design configurations.

The approach used was original in that it evaluated each candidate airfoil with

a holistic method that attempted to balance multiple objectives across multiple conditions

each with their own level of importance in a simplified and efficient manner. This difference

is important because it searches for the airfoil configuration that is best suited for a typical

mission rather than any one single segment of that mission. Additionally, it searched over a

wider, more comprehensive design space than other optimizations had searched. By sweeping

over a larger design space, it can be assumed that all reasonable airfoil configurations were

included in the optimization. In addition, since the analysis portion of the solution used a

VI method, it was able to find an optimal solution in a computationally efficient method.

This is a huge advantage over more traditional CFD based approaches.

Any kind of aerodynamicist, hydro-dynamicist or large program manager can ben-

efit from the analysis and optimization method presented in this thesis to help make large

configuration decisions at the beginning of the engineering process. The efficiency of the

method allows for many thousands of options to be evaluated quickly and accurately. In

addition, the method can be expanded to include more objectives, constraints, or physi-

cal phenomena. This flexibility makes it very effective in performing initial scoping and

trade studies, which in turn accelerates the detail design and analysis process such that new

products can be brought to market more easily.
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5.1 Further Work

This research presented a high level method to find an optimal airfoil for a nom-

inal UAV design. There are several refinements and changes outlined below that can be

implemented to improve the solution and find a better design:

1. Present more robust justification for the mission weights used in Tables 2.2-2.3 and in

Equation 2.10.

2. Fine tune genetic algorithm parameters.

3. Use a multi-objective genetic algorithm instead of weighted single parameter optimiza-

tion.

4. Expand the optimization problem such that the optimal finite wing, rather than airfoil

is the goal. Do this by including parameters such as:

(a) Wingspan.

(b) Chord length.

(c) Leading and trailing edge sweep angle.

(d) Wing twist.

(e) Airfoil blending between root and wingtip.

5. Add more objectives (ex maximize flight envelope, minimize wing volume).

6. Expand the VI calculation to include the full aircraft.
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