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Abstract

Newtonian viscous flows under laminar regime across tubes of arbitrary varying cross

sections were analyzed. The simple form of this problem for constant circular cross

section is a well known result from the early years of Fluid Mechanics.[1] Nowadays,

many modern applications such as nanotubes manufacturing, MEMS, Biomechan-

ics and medical procedures, require to determine pressure losses for Newtonian and

non Newtonian fluids in tubes with varying geometries. These applications have re-

newed the interest in this classical problem and the search for accurate solutions

based on numerical, analytic and experimental methods.[2]

In the present work, several methods were explored as means to determine pressure

gradients for arbitrary shapes and varying cross sections. In all cases, non dimen-

sional forms of momentum equation were employed. The motivation to work with

non dimensional expressions was clearly justified by the fact that in laminar regime,

velocity distributions are basically the same for any cross section as long as its shape

remains constant. Thus, once the numerical solution is found for a typical section,

solution for any other section can be obtained by a re scaling process of by an appro-

priate characteristic length. This approach enabled to determine not only pressure

gradients, but also Fanning’s friction factor for any shape.

Lubrication approximation and perturbation of axial convective acceleration term

viii



were first addressed. Non dimensional numerical solutions by finite element method

were implemented in a computer code developed for this purpose as part of the work.

Results were compared to analytic solutions [2,3,4] for elliptical cross sections ex-

hibiting good correlation for small aspect ratios (characteristic length / axial length)

along the tube. Furthermore, an alternative regular perturbation approach applied to

viscous and axial convective acceleration was tested. A computer code was also de-

veloped to implement finite element solution for this approach. Results were in good

correlation with analytic results based on lubrication and perturbations methods

previously detailed. Finally, a different approach identified as convective acceleration

correction was defined. In this case, the effect that transverse acceleration compo-

nents have on axial velocity throughout the tube were considered. Once again, a non

dimensional form of the momentum equation was developed and solved by means

of finite element procedure. In all cases, convective acceleration correction exhib-

ited less deviation in pressure gradient estimation than any other method however

of which, further tests must be conducted and compared to physical experimental

data in future research.Detailed analysis of uncertainties for all methods were de-

veloped for two elliptical cross sections with different aspect ratios. CFD solutions

obtained from commercial software were accepted as experimental values for com-

parison purposes.

ix



Chapter 1

Viscous Flows Through Bounded

Regions

1.1 Viscous Flow Basics

Fluids are materials that experience continuous deformations under the action of

shear forces. Despite its complexity, fluids motion is the result of this deformation

process over time. Depending on its molecular structure, fluids will exhibit some

kind of resistance to deformation that eventually, will take them to rest if the action of

applied external forces ceases. This behavior is explained by the presence of internal

forces exerted by molecules (collisions, electric forces) . The macroscopic manifes-

tation of such molecular activity determines an inherent physical property of fluids

known as Dynamic Viscosity (µ).

Thus fluids motion will be governed by the form in which applied forces, deforma-

tions and dynamic viscosity are related to each other. Experiments enable to obtain

mathematical correlations between these variables known as constitutive equations
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which in general, describe linear and non linear behaviors. The simplest form of con-

stitutive equation is the one defined by the so called (Newton viscous law) , which

describes a linear behavior in which viscosity is a constant independent of defor-

mations rates. This kind of fluids are also known as Newtonian fluids. For more

complex fluids or Non Newtonian fluids, viscosity (strictly apparent viscosity) will be

influenced by rate of deformation at each point of space leading to non linear mod-

els. Substances like water, air and simple oil derivatives are to some extend good

examples of linear fluids, while blood, ink, mud or honey are common examples of

non Newtonian fluids.1

1.2 Mathematical Description of Newtonian Fluids Motion

From a macroscopic point of view, fluids can be considered as a collection of mate-

rial particles several orders of magnitude larger than molecules free path. This ap-

proach known as Continuum Hypothesis enables to describe mechanical and ther-

modynamic magnitudes in terms of continuous functions. The mathematical de-

scription of fluids motion is entirely defined when the velocity and two thermody-

namic variables, usually pressure and density, are known [1]. Furthermore, macro-

scopic description of fluids motion requires that conservation laws of mass, momen-

tum and energy would be satisfied according to the principles of Continuum Me-

chanics. This approach even though simplifies physical understanding leads to com-

plex systems of partial differential equations. To describe Newtonian fluids that will

be the subject of study in the present work, several relations must be defined.

1Constitutive equations are the field of research of Rheology
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Constitutive Equation for Newtonian Fluids

As it was mentioned before, Newtonian fluids exhibit a linear relationship between

external forces and deformations through time while dynamic viscosity remains con-

stant. In order to address this constitutive equation for a Newtonian fluid, lets con-

sider the one dimensional situation presented in figure (1.1). In this case the upper

plate moves at a constant velocity along the x- direction while the bottom plate re-

mains at rest. Space between the two plates is filled with a Newtonian fluid which

exhibit a linear velocity distribution while deformation takes place (linear behavior).

Both plates have constant area (A) in contact with the fluid through which external

force is applied. Dynamic viscosity makes fluids layers to have the same velocity of

the surfaces in contact. (This is a boundary condition known as non slip).

Figure 1.1: Schematic Diagram of Viscous Experiment

A measure of the angular deformation can be defined as follows:

θ = ∆x

∆y
(1.1)
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or more conveniently,

θ = ∆uδt

∆y
(1.2)

Noting that angular deformation increases with time, and is proportional to external

forces δF , distribution over plates area δA enables to determine a relationship

between variables as follows: (
δF

δA

)
∝ ∆x

∆yδt
(1.3)

Then an equation is obtained by replacing the proportionality for a constant which

turns out to be the dynamic viscosity. Then a constitutive equation for Newtonian

fluids is expressed as:

τy x =µ∂u

∂y
(1.4)

where ∂u
∂y represents the velocity gradient perpendicular to velocity direction known

as rate of strain, and τy x is the shear stress in the direction of the flow.

An extension of previous results for multidimensional flows is given by Stokes vis-

cous law [2], in which Cauchy stress tensor is related to strain tensor by means of a

constant viscosity. In Cartesian coordinates stress tensor components are related to

the rate of strain and viscosity as follows:

τx x =−p +2µ
∂u

∂x
τy y =−p +2µ

∂v

∂y
τz z =−p +2µ

∂w

∂z
(1.5)

τy x =µ
(
∂u

∂y
+ ∂v

∂x

)
τz x =µ

(
∂u

∂z
+ ∂w

∂x

)
τy z =µ

(
∂v

∂z
+ ∂w

∂y

)
(1.6)

where shear stresses are symmetric so τx y = τy x , τx z = τz x , τy z = τz y and thermo-

dynamic pressure (which for incompressible fluids is represented by hydrostatic pres-

sure),accounts for a spherical component of the stress state. A general expression in

tensor form of constitutive equation for Newtonian incompressible fluids is:

τi j =−pδi j +µ
(
∂Vi

∂x j
+ ∂V j

∂xi

)
(1.7)
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Conservation Principle for Newtonian Fluids

Fluids motion is governed by conservation principles for mass, linear and angular

momentum and energy . The Continuum Mechanics approach requires for conser-

vation principle to be develop in such a form, that continuous changes in variables

can be tracked through space and time. This approach leads to the following partial

differential equations:

For conservation of mass,

∇· (ρV
)+ ∂ρ

∂t
= 0 (1.8)

where ∇ Nabla operator is expressed in the appropriate coordinate system, V is fluid

velocity field and ρ is the density of the fluid.

On the other hand, linear momentum equation requires a relation between applied

forces on continuum boundaries and particles acceleration.

∇·τ+ fb = ρDV

Dt
(1.9)

Here DV
Dt represents the material or Lagrangian description of acceleration, fb are

the body forces and τ the stress tensor field. On the hand, in the spatial or Eulerian

description motion, each velocity component is represented by a scalar function of

space and time,

~V = u(x, y, z, t )~i + v(x, y, z, t )~j +w(x, y, z, t )~k

and acceleration is described by the following expression.

~a = ∂~V

∂t
+~V ·∇~V (1.10)

5



Then replacing equation (1.2) and (1.5) onto (1.4), the final form of momentum equa-

tion for Newtonian fluids known as (Navier Stokes equation) is obtained.2

−∇p +µ∇2V + fb = ρ
(
∂V

∂t
+V ·∇V

)
(1.11)

Expressions (1.7) and (1.11) constitute a consistent system of four non linear par-

tial differential equations, for which in the case of incompressible flows, pressure p

and velocity components u,v,w are the unknown variables, while density ρ and dy-

namic viscosity µ are known constant a priori. Analytic solutions for this system of

equations does not exist for the general case. However, many solutions have been

developed for special cases of interest under appropriate assumptions. Analysis of

confined fluids flow through ducts of different shapes is to some extend part of these

special family of solutions. [4]

1.3 Laminar Viscous Flow Through Tubes of Elliptic Cross

Section

One of the first applications of viscous flow model through confined or bounded re-

gions, is the one related to pressure driven flows throughout tubes. To determine ve-

locity profile and pressure changes throughout a tube of given section, Navier Stokes

equation must be solved and proper boundary conditions must be applied. For two

dimensional fully developed, steady state flow throughout an straight tube, Navier

Stokes equation simplifies to the following form:

2This equation was first derived by Claude Louis Navier and George Gabriel Stokes independently

and to the present day, remains as one of the most famous, elegant and also intriguing equations of

Physics.

6



∇2u = 1

µ

∂p

∂x
(1.12)

where u(z, y) is the velocity component in the x-direction, accelerations are not present

and body forces are neglected. On the other hand, continuity equation must be sat-

isfied to assure mass conservation, which in this case is satisfied by means of a trivial

form of the equation,

∇u = 0 (1.13)

Solutions for Elliptic Cross Section

In order to present a general methodology for the analysis of confined viscous flows

throughout tubes of different geometries, a first example is developed over a con-

stant elliptic cross section. This first analysis which can also be applied to cylindrical

cross sections, has the purpose to establish the methodology for further more com-

plex analysis in duct with varying cross section as will be developed later on.

The analysis is carried out by means of coordinates transformations of mapping(z,y)

coordinates onto (η,ξ) space as follows:

η= y

a
, ξ= z

b
(1.14)

where a and b are the length of ellipses semi axis as shown in figure 1.2
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Figure 1.2: Elliptical cross section mapped onto cylindrical space

Considering that the mapping process transforms an elliptic domain into a circular

one, solution of Poisson equation is developed by another transformation into cylin-

drical coordinates as follows:

η= r cosθ, ξ= r sinθ (1.15)

where 0 < r < R.

Then the final form of the equation is:

1

r

∂

∂r

(
r
∂u

∂r

)
= 1

µ

∂p

∂x
(1.16)

Noting that pressure gradient ∇p is not a function of radial coordinate, equation

(1.12) can be integrated in a straightforward manner and adequate boundary con-

ditions can be evaluated as follows:

u(r ) = 1

4µ

∂p

∂x
(r 2)+C1ln(r )+C2 (1.17)

∂u

∂r

∣∣∣∣
r=0

= 0 −→C1 = 0

u(R) = 0 −→C2 =− 1

4µ

∂p

∂x
(R2)

8



The final form of the solution for the velocity distribution considering R = 1 is:

u(r ) = 1

4µ

∂p

∂x
(1− r 2) (1.18)

Which is the solution for a cylindrical cross section. Moreover, for a tube of elliptical

cross section in which the boundary is defined as

y2

a2
+ z2

b2
= 1 (1.19)

the momentum equation is satisfied by the following expression.

u(y, z) = 1

2µ

∂p

∂x

(ab)2

a2 +b2

(
1−

(
y

a

)2

−
(

z

b

)2)
(1.20)

in which velocity vanishes at every point on the tubes wall. Moreover since

∂2u

∂y2
= 2

a2

[
1

2µ

∂p

∂x

(ab)2

a2 +b2

]
(1.21)

and

∂2u

∂z2
= 2

b2

[
1

2µ

∂p

∂x

(ab)2

a2 +b2

]
(1.22)

it is clear that

∂2u

∂y2
+ ∂2u

∂z2
= 1

µ

∂p

∂x
(1.23)

satisfies the momentum equation. Extension of the present method to more general

cross sections can be achieved by means of Complex Variable methods. Some results

are presented in figure 1.3

9



Figure 1.3: Analytic solutions for some cross section. Ref.[4]

From velocity distribution three important parameters can be determined for all prob-

lems which are: flow rate, pressure variation and shear stress at the wall as follows:

Flow Rate

Flow rate defined as the amount of volume moving through section is defined as,

q =
∫

un̂dS (1.24)

where n̂ is the unit vector normal to the flow surface S. Integration of equation (1.15)

over an elliptic cross section defines the flow rate as follows.

10



q = 4
∫ a

0

∫ b
p

a2−y2

a

0

[
1

2µ

∂p

∂x

(ab)2

a2 +b2

(
1−

(
y

a

)2

−
(

z

b

)2)]
d zd y (1.25)

Here integration has been developed over a quarter of the cross section, leading to

the following expression,

q = 1

4µ

∂p

∂x

(ab)3

a2 +b2
(1.26)

Pressure Variation

Equation (1.26) can be rearranged in terms of pressure drop for a tube of a given

length (L),

∆p =
4qµL

(
a2 +b2

)
(ab)3

(1.27)

which is the elliptic version of the well known Hagen and Poiseuille equation for pres-

sure variation of laminar flow across ducts

Shear Stress

Shear stress exerted on the tube wall by the fluid can be determine by equation (1.6).

Considering the case of an elliptic cross section, the resulting shear is as follows:

τy x =µ∂u

∂y
, τzx =µ∂u

∂z
(1.28)

and by the fact that

τn̂x = µ

d s

(
∂u

∂y
d y + ∂u

∂z
d z

)
(1.29)

11



where s is the arc length of the elliptical boundary. From equation (1.20) and (1.26)

we can write.

µ
∂u

∂y
=−∂p

∂x

b2

a2 +b2
y =−4µq

y

a3b
(1.30)

µ
∂u

∂z
=−∂p

∂x

a2

a2 +b2
z =−4µq

z

ab3
(1.31)

Also from (1.19) and the definition of arc length we have,

d y

d s
= a2z(

a4z2 +b4 y2

)1/2
,

d z

d s
= b2 y(

a4z2 +b4 y2

)1/2
(1.32)

Finally, from equations (1.29),(1.30), (1.31) and (1.32), the following expression for

shear stress is obtained,

τn̂x =− 4µq(
a4z2 +b4 y2

)1/2

2y z

ab
(1.33)

Poiseuille Number

To extend the analytic results to more general shapes, solutions for laminar viscous

flow can be expressed as a function of the friction factor and Reynolds number. Lets

consider Darcy-Weisbach equation obtained by means of dimensional analysis,

∆p = f .
ρL

Lc

U 2

2
(1.34)

equating (127) and (1.30) and re arranging terms, a new parameter known as Poiseuille

number can be obtained.

f .Re = 8L2
c (π1/2)(a2 +b2)

(ab)2
(1.35)

This non dimensional number is usually expressed in terms of the Fanning’s friction

factor C f , and an alternative characteristic length Lc . [3].

12



Noting that equation (1.35) expresses Poiseuille number in term of geometric pa-

rameters and pressure gradient which can be determined by numerical procedures,

a general method can be applied to arbitrary shapes by means of numerical solutions

of equation (1.12). The following chapter is devoted to explore numerical solutions

to the laminar viscous flow problem.
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Chapter 2

Numerical Solution for Laminar

Viscous Flow Through Tubes of Varying

Cross Section

Numerical methods are powerful tools for research and design purposes in modern

Fluid Dynamics. The fundamental idea behind these methods is to transform partial

differential equations PDE onto some equivalent discrete system of algebraic equa-

tions, in which unknown variables are determined for a finite number of point inside

the domain. The process of transforming PDE equations onto its discrete equiva-

lents in Fluid Dynamics, is usually carried out by means Finite Differences or Finite

Volumes methods. However, noting that the problem is defined by an elliptic PDE

with boundary conditions well defined at every point on the contour, implementa-

tion of finite element method is to some extend straightforward. 1

1A problem in which boundary conditions are defined on a complete contour enclosing the region

is known as boundary value problem. Finite Element Method is particularly well posed to address such

a PDE problems.[6]

14



It is important to emphasize that numerical solutions for the elliptic PDE that arises

in the context of fluids flow throughout a tube, are valid for any cross section regard-

less its shape. The main reason for this lies on the fact that the model is intended for

arbitrary constant cross sections. However, for the case of flows throughout varying

cross sections, a different approach considering inertial effects is required.

2.1 Numerical Solution for Laminar Viscous Flow Through

Tubes of Arbitrary Constant Cross Section

Numerical solutions for laminar flows across tubes of arbitrary constant cross sec-

tion, are developed by means of a non dimensional form of equation (1.12) as fol-

lows:

∇̂2û =−1 (2.1)

in which non dimensional transformations for pressure, velocity and geometry are

defined as [1].

p̂ = p

ρU 2
, ŷ = y

Ly
ẑ = z

Lz
, û =−µ u

R2∇p
, v̂ = v

U
, ŵ = w

U
(2.2)

Here U is the average velocity in the flow direction x and Ly = Lz = R, in which R is the

characteristic length of the cross section generally represented by the i.e. Hydraulic

Diameter, or also defined as the square root of area [3]. 2 Equation (2.1) is an elliptic

PDE which numerical solutions may be obtained for any cross section by means of

Finite Element Method.
2The use of a single parameter Lc to scale all dimensions, is based on the assumption of fully de-

veloped flow regime.
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For the case of arbitrary varying cross sections, numerical methods must be adjusted

to take into account the effect of acceleration throughout the tube as it is done in the

context of lubrication approximation and perturbation theory, as shown in chapter 3.

All the mentioned strategies have similar limitations when steep variations of cross

sections are present. Nevertheless, taking advantage of the versatility of numerical

methods, an approach to the solution of laminar flows across arbitrary varying cross

section is explored in section (2.3). In what follows, general derivation of the finite

element method applied to the problem in question is presented.

2.2 Numerical Solutions by Finite Element Method

The fundamental idea behind finite element method is to construct an approxima-

tion to the solution of a partial differential equation, by means of piece wise interpo-

lation functions for the unknown variables.

Figure 2.1: Interpolation surface in finite element solution

Such interpolation functions will be in general polynomials of appropriate order un-

der the rules of interpolation. These functions known as shape functions hi , will be

16



defined on a local coordinate system [r,s] in the domain[0,1].

Figure 2.2: Coordinates mapping

On the other hand, in order to find the best approximation to the solution function,

a minimization criteria for residual values errors for the approximation must be de-

fined. In this case the weighted residual approximation or Galerkin approximation

which carries on the process by means of the same shape functions will be applied.

Isoparametric formulation.

Lets consider an approximation function for the velocity field defined in terms of

û =
N∑

i=1
hi ûi (2.3)

and the mapping functions between global and local set of coordinates (y,z) and

r(y,z), s(y,z) as,

ŷ =
N∑

i=1
hi ŷi , ẑ =

N∑
i=1

hi ẑi (2.4)

in which hi are the shape functions intended for interpolation of unknown variables.

17



Considering a linear triangular finite element, shape functions are defined as,

h1 = r h2 = s h3 = 1− r − s (2.5)

Moreover, replacing the approximation function (2.3) onto (2.1) a residual is gen-

erated. Furthermore, taking into account the relative weight of every local residual

generated by means of the shape functions, the following general expression can be

determined.

∫
Ω

[(
∇̂2û +1

)
hi dΩ

]
= 0 (2.6)

which integrated by parts leads to the following expression:

∫
Ω
∇̂

(
hi ∇̂ûi

)
dΩ −

∫
Ω
∇̂ĥi ∇̂ĥ j û j dΩ −

∫
Ω

hi dΩ= 0 (2.7)

First integral on equation (2.7) can be expressed in terms of a line integral by means

of Gauss theorem which leads to the following expression,

∫
Γ

(
hi ∇̂ĥ j û j

)
n̂dS −

∫
Ω
∇̂ĥi ∇̂ĥ j û j dΩ −

∫
Ω

hi dΩ= 0 (2.8)

Then, considering that velocity is zero at tube’s wall non slip boundary condition,

surface integral in (2.7) vanishes leading to a linear system of equations of the form

Ki j û j = fi (2.9)

in which,

Ki j =
Ne∑

n=1

(∫
Ω
∇̂ĥi ∇̂ĥ j dΩ

)
, fi =

Ne∑
n=1

(∫
Ω

hi dΩ

)
(2.10)

are the coefficients matrix Ki j and the solution vector fi respectively.
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Solution of system (2.9) enables to determine the velocity at every point of the mesh

approximating the cross section of the tube. Proper velocity values for each node of

the mesh can be determined re scaling the numerical solution. Moreover, flow rate

and pressure variations along the tube can be determined by the same procedures

described in section (1.3). Unit velocity distribution for different cross sections and

the correspondent maximum velocities are presented in figure (2.3) and table (2.1)

respectively.

umax= 0.25 umax=0.50 ε

umax=0.140 umax=0.213

umax=0.053 umax=0.2949

Figure 2.1: Unit velocity distribution for different cross sections and maximum unit

value where u obtained by numerical analysis. ε= b2/(a2 +b2)
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Numerical solutions enable to calculate important hydrodynamic parameters such

as pressure gradients and Poiseuille numbers for more general sections. Deduction

of these relation are presented in the following section in the context of numerical

perturbation approximations. In table 2.1 hydrodynamic parameters for simple cross

sections are presented.

Cross Section Analytic Numerical Analytic Numerical

umax fRepA umax fRepA τmean τmean

Ellipse (b/a)

1 0.2500 14.179 0.2500 14.196 0.5000 0.4915

3/4 0.1800 14.931 0.1799 14.580 0.4252 0.4222

1/2 0.1000 16.246 0.1000 15.332 0.3285 0.3312

1/4 0.0294 22.273 0.02939 22.495 0.1883 0.1959

Quadrilateral (b/a)

1 0.2916 14.132 0.2949 13.964 0.5564 0.5011

3/4 0.2100 14.568 0.2110 14.540 0.4003 0.4245

1/2 0.1140 16.457 0.113 16.753 0.3153 0.3439

1/4 0.0314 22.77 0.031 28.35 0.1737 0.2000

Equilateral Triangle 0.0277 15.197 0.0279 17.505 0.1407 0.1487

Table 2.1: Analytic and numerical results for some known cross sections
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2.3 Flow Through Arbitrary Varying Cross Section - Nu-

merical Solutions

The procedure described in what follows takes advantage of numerical methods to

determine the pressure gradient of a flow across tubes of arbitrary varying cross sec-

tion. In this case, the influence inertia (convective acceleration) can not be neglected

and different approaches are developed to address this condition. For slow variations

of cross section shapes along tube length ( where definition of smooth variation is not

always straightforward), axial convective acceleration component may be included

in classical models by means of perturbation approximations, which are extensively

applied in the field of Fluid Mechanics.

Analytic solutions by means of perturbation approximations are known for simple

shapes and are presented in detail for an elliptic section in chapter 3. As it will be

shown, correction of pressure gradients obtained by means of numerical perturba-

tions will be independent of section shapes but dependent on axial changes of it.

Therefore, once numerical solutions as presented in section 2.2 are obtained for an

specific section, and adequate perturbation function is determined from the accel-

eration term, solutions for different cross sections are to some extend straightfor-

ward. Considering the convective acceleration component in the flow direction and

changes in size of cross section along the tube, perturbation can be expressed as fol-

lows,

ερu
∂u

∂x
= ερ q2

A3
(x)

d A(x)

d x
(2.11)

where perturbation ε is given by the quotient between characteristic length of cross
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section and total length along the tube.

In what follows, two approaches are explored to address the effect of convective ac-

celeration from a different perspective. This approaches exhibit satisfactory results

considering their simplicity compared to analytic procedures explained in chapter 3.

2.4 Alternative Numerical Perturbation

The procedures detailed in this section have the purpose to explore alternative solu-

tion strategies to address the convective acceleration components in a more general

way. The advantage of the proposed approaches lies on the fact that cross section

changes and their effect on velocity components, can be included in the mathemati-

cal structure of numerical method enabling the solution of a broader range of cases.

The first approach which will be identified as alternative perturbation, operates over

axial velocity component in the viscous as well as in the convective term, and as-

suming that transverse components of convective acceleration are negligible. This

approach is closely related to the analytic perturbation procedure explained in chap-

ter 3. The second approach identified as Convective Transverse Correction, includes

the effect of transverse acceleration component on axial velocity.
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Alternative Perturbation

Consider again equation (1.7) but in this case with the acceleration component con-

vective acceleration in the flow direction as follows,

∇2u = 1

µ

∂p

∂x
+ ρ

µ
u
∂u

∂x
(2.12)

Transforming equation (2.1) into a non dimensional form by means of equations (2.2)

and expressing velocity in terms of flow rate and cross area function, equation (2.10)

turns into the following form:

∇̂2û =−1+ ρ∇pL2
c q

µ∇p
û
∂A(x)

∂x
(2.13)

in which û is a non dimensional velocity, Lc a characteristic length. Then, calculating

the derivative of area function leads to the following expression,

ρL2
c qû

µ

∂A(x)

∂x
=−

(ρU Lc

µ

)(Lc A′(x)

A1/2
(x)

)
û (2.14)

in which A′
(x) is the derivative of the area function with respect to x- coordinate which

is the axial axis. After some arrangements a final form of the flow equation as a func-

tion of Reynolds number, section area function and characteristic length is obtained.

∇̂2û =−1−
(ρU Lc

µ

)(Lc A′(x)

A(x)

)
û (2.15)

In equation (2.14) characteristic length is defined as the square root of section area

Lc =
p

A(x) or alternatively, the hydraulic radius, which are applied as reference mag-

nitudes for hydrodynamic calculations. Then considering the values that the prod-

uct of Reynolds number times local cross section area can take, enables to address
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the relative weight that acceleration has in the momentum equation. In this way,

perturbation parameter is defined as ε= Lc A′(x)/(A(x)).

Regular perturbations are defined by series expansion of the variable of interest with

power increments of ε. For the present case, axial component of non dimensional

velocity is developed in a series expansion with an small increment ε leading to a

non dimensional perturbed form of Navier Stokes equation.

∇̂2
(
ûo +εû1

)
=−1−Re

(Lc A′
(x)

A(x)

)(
ûo +εû1

)
(2.16)

By expanding and arranging terms with the same perturbation order, a system of

partial differential equations is obtained.

∇̂2
(
ûo

)
=−1 (2.17)

ε∇̂2
(
û1

)
=−εRûo

ε2 Aû1 = 0

where R = Re

(
Lc A′

(x)
A(x)

)
.

Noting that equations for uo and u1 are elliptic Poisson equations, numerical solu-

tions are possible for many section shapes. Moreover, considering that perturbed

values of velocity must be calculated at the same nodal point in the finite element

mesh, a common stiffness matrix will be obtained for both systems. Solution vectors

will differ between each other in a constant value of the form Rûo . This observation

enables to solve in a numerical form, one system of equation with multiple solution

vectors.
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Considering the procedure developed in section (2.2), velocity can be solved as fol-

lows:

ûo = K −1
i j fi (2.18)

and

û1 = K −1
i j Rûo (2.19)

in which solution vector f in the perturbed equation has been scaled by Rûo .

Finally, velocity distribution at each point of each cross section is expressed as a se-

ries of the form:

û = K −1
i j fi +εK −1

i j Rûo (2.20)

From numerical solution expressed in (2.19) flow rate and pressure gradient can be

determined for any given section by means of integration. It is important to notice

that the integration process is carried out over each finite element area Ae , which is re

scaled by a characteristic length Lc , leading to the following relation: d A(x) = L2
c d Ae

Details of the procedure are presented in what follows. First, flow rate is expressed in

terms of dimensionless velocity (2.18) and transformation (2.2).

q =∑
e

∫
L4

c (−∇p)

µ

[∑
e

K −1
i j fi +ε

∑
e

K −1
i j Rûo i

]
d Ae (2.21)

Then, replacing equation (2.17) and (2.18) in (2.19), pressure gradient is expressed as,

∇p =− qµ

L4
c
∫ [∑

e K −1
i j fi +ε∑e K −1

i j Reûo

]
d Ae

(2.22)
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Equation (2.22) represents the local pressure gradient for each section of the tube

from which pressure function can be determined. Results for this procedure are pre-

sented in chapter 4. Moreover, equation (2.22) can be compared to Darcy Weisbach

equation in terms of Fanning skin coefficient C f , to obtain the Poiseuille number as

follows,

∆p =−
∫ [

qµ

(L4
c )

[∑
e K −1

i j fi +ε∑e K −1
i j Rûo i

]
d Ae

]
d x (2.23)

∆p

γ
=

∫ [
qµ

L4
c
+ 1

γβ

]
d x = f.

d x

Lc

1

2g
U 2 (2.24)

where U is the mean velocity and a new variable β defined as

β= ∫ [∑
e K −1

i j fi +ε∑e K −1
i j Reûo

]
.

Considering Reynolds number, expressing mean velocity in terms of flow rate and re

arranging terms in (2.24), leads to

qµ

βL4
c
= f.

ρLc

L2
c

q2

2A2
(x)

(2.25)

and an expression for numerical Poiseuille number is defined as follows,

f .Re = 2A(x)

βL2
c

(2.26)

Expression (2.25) combined with Darcy Weisbach equation, enables to calculate pres-

sure drop for any arbitrary cross section as long as Reynolds number and hydraulic

radius are known. On the other hand, by adding the numerical lubrication part of

(2.23) to results from analytic perturbations as presented in chapter 3, classical per-

turbations solutions can be developed. Differences between these two approaches

are presented in the examples developed in chapter 4.
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Convective Acceleration Correction

Lets consider Navier Stokes equation in the flow direction with the entire acceleration

term as follows:

µ∇2u =∇p +ρ
(
u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z

)
(2.27)

Considering that transverse component of velocity are not strictly null for varying

cross sections, an strategy is developed to take into account their effect. For this

purpose the basic assumptions established for lubrication approximations are again

valid,

U

Lcx̂
∼ V

L ŷ
∼ W

L ẑ
(2.28)

where U,V,W are mean values of velocity components in the x,y,z direction respec-

tively and

V

U
¿ 1 ,

W

U
¿ 1 (2.29)

Transforming equation (2.27) into a non dimensional form by means of equation

(2.2) leads to the following result.

∇̂2û =−1+
(
Re.ε

A′
(x)

A(x)
û +ρV

Lc2
x

µLc

∂û

∂ŷ
+ρW

Lc2
x

µLc

∂û

∂ẑ

)
(2.30)

Then replacing V and W in terms of U using (2.27) leads to the following relations for

Reynolds numbers involved.

ρV Lcx

µ
∼ ρU Ly

µ
,

ρW Lz

µ
∼ ρU Lcx

µ
(2.31)

Finally replacing (2.29) in (2.28) leads to the final form of the equation.

∇̂2û =−1+Re

(
ε

A′
(x)

A(x)
û + Ly

Lcx

∂û

∂ŷ
+ Ly

Lcx

∂û

∂ẑ

)
(2.32)
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Equation (2.32) includes the effect that transverse velocity components have over

axial velocity, which enable corrections on pressure gradient. Solution of (2.32) by

means of finite element method is presented in what follows. The procedure previ-

ously applied to (2.15) is again applicable to (2.32).

Additional matrix which will be called convective matrix H, is developed in what fol-

lows and included in the final form of finite element solution.

Considering Galerkin approximation for transverse velocity components, integral form

of convective matrix is,

H ŷ =
∫
Ω

(
hi
∂h j

∂ŷ
û j

)
d Ae (2.33)

Hẑ =
∫
Ω

(
hi
∂h j

∂ẑ
û j

)
d Ae (2.34)

and

(
Ki j −H ŷ i j −Hẑ i j

)
ûo =−1 (2.35)

ε

(
Ki j −H ŷ i j −Hẑ i j

)
û1 =−εReûo (2.36)
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Chapter 3

Laminar Flow Through Arbitrary

Varying Cross Section

Analytic solutions for laminar flows through tubes of arbitrary varying cross sections

can be developed based on the hypothesis that smooth variation of shape throughout

tubes length are present. Solution strategies to this problem can be developed by

means of lubrication approximation and asymptotic perturbations.

3.1 Perturbation Approximation

As previously seen, lubrication approximation fails in the prediction of pressure vari-

ations for those cases in which changes in geometry are not sufficiently smooth for

viscous forces to prevail over inertia. A correction of that procedure can be achieved

by mean of the so called perturbation theory in which a perturbation parameter (ε)

is defined as a correction factor on a power series.

V = ∑
i=0

(
uiε

i , viε
i , wiε

i
)

(3.1)
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p = ∑
i=0

(
piε

i
)

(3.2)

The definition of the perturbation parameter is based on the relation between some

characteristic length (ao) for the cross section and the length (L) of the entire tube.

Comparing the inertial and viscous terms in Navier Stokes equation a relation for

perturbation parameter can be obtained as explained in (2.1). Therefore perturba-

tion parameter takes the following form:

ε = ao

L
(3.3)

The analysis of flow problem by perturbation method implies the search for solutions

of the Navier Stokes equation and mass conservation for a three dimensional flow in

which, two velocity components are assumed to be small compared with axial veloc-

ity. A set of non dimensional variables for coordinates mapping, velocity components

and pressure are defined considering the perturbation parameter.[4]

(x̂, ŷ , ẑ) = 1

L
(xL, ao y, ao z) (3.4)

V̂ (û, v̂ , ŵ) = 1

U

(
u,εv,εw

)
(3.5)

p̂ =
(
εRe

ρU 2

)
p (3.6)

In these expressions U is the axial velocity and Re is the Reynolds number defined as

the relation of Inertial forces to viscous forces expressed as:

Re = ρUao

µ
(3.7)

Solution for elliptic section follows to some extend what has been developed for a

straight tube. Thus, coordinates mapping in expression (1.14) are applied consider-

ing that in this case the ellipsis semi axis (a,b) are functions of length, therefore a =

a(x) and b = b(x).
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Then transformation of mass conservation equation is as follows:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (3.8)

From this point on, mapping transformation are redefined as follows,

η= y

a
, ζ= z

b
(3.9)

where u, v, w are functions of (x, η ,ζ). Then, mapping process leads to the following

dependencies:

Du = ∂u

∂x
+ ∂u

∂η

∂η

∂x
+ ∂u

∂ζ

∂ζ

∂x
(3.10)

∂η

∂x
=− y

a2

∂a

∂x
(3.11)

∂ζ

∂x
=− z

b2

∂b

∂x
(3.12)

Therefore equation (3.7) has the following form:

D = ∂

∂x
− ηa′

a

∂

∂η
− ζb′

b

∂

∂ζ
(3.13)

in which D, a’ b’ are derivatives with respect to the x- component. Similar transfor-

mations enable the conversion of velocity components v and w as well:

∂v

∂y
= ∂v

∂η

∂η

∂y
= 1

a

∂v

∂η
(3.14)

∂w

∂z
= ∂w

∂ζ

∂ζ

∂z
= 1

b

∂w

∂ζ
(3.15)

Then, final form of mass conservation equation mapped onto the new coordinates

is:

Du + 1

a

∂v

∂η
+ 1

b

∂w

∂ζ
= 0 (3.16)
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By means of similar procedure each term in the momentum equation (Navier Stokes

equation) is transformed. For the sake of clarity the equation is presented in an ex-

panded shape using the original Cartesian coordinates: 1

− ∂p

∂x
+µ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
= ρ

(
u
∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z

)
(3.17)

− ∂p

∂y
+µ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
= ρ

(
u
∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z

)
(3.18)

− ∂p

∂z
+µ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
= ρ

(
u
∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z

)
(3.19)

Transformations are implemented as follows:

∂p

∂x
= Dp (3.20)

∂p

∂y
= 1

a

∂p

∂η
(3.21)

∂p

∂z
= 1

b

∂p

∂ζ

where D is the operator as in equation (3.12). Then for inertial terms (convective

acceleration components) a new operator I is defined as follows:

I = uD + v

a

∂

∂η
+ w

b

∂

∂ζ
(3.22)

Viscous terms are developed over the u - component noting that have the same shape

for v and w components as well.

∂2u

∂x2
= ∂

∂x
(Du)− ηa′

a

∂

∂η
(Du)− ζb′

b

∂

∂ζ
(Du) (3.23)

∂2u

∂y2
= ∂

∂η

(
∂u

∂η

∂η

∂y

)
∂η

∂y
= 1

a2

∂2u

∂η2
(3.24)

∂2u

∂z2
= ∂

∂ζ

(
∂u

∂ζ

∂ζ

∂z

)
∂ζ

∂z
= 1

b2

∂2u

∂ζ2
(3.25)

1Body forces are neglected. Also local acceleration is neglected due to the fact that analysis is de-

veloped under steady state conditions.
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where a new operator for viscous term can be defined as,

ψ= D2 + 1

a2

∂2

∂η2
+ 1

b2

∂2

∂ζ2
(3.26)

Then replacing the non dimensional forms of coordinates, velocity and pressure onto

equation (3.4), (3.5) and (3.6) leads to:

Γ̂=−
(
ρU 2

εRe

)(
D + 1

a

∂

∂η
+ 1

b

∂

∂ζ

)
p̂ (3.27)

Î = U

L

(
ûD̂ + v̂

a

∂

∂η
+ ŵ

b

∂

∂ζ

)
(3.28)

ψ̂= 1

L2
D̂2 + 1

(ao a)2

∂2

∂η2
+ 1

(aob)2

∂2

∂ζ2
(3.29)

and in a more compact form:

ψ̂= 1

(ao)2

(
ε2D̂2 + 1

a2

∂2

∂η2
+ 1

b2

∂2

∂ζ2

)
(3.30)

Therefore, the compact form of the mapped Navier Stokes equation and mass con-

servation are as follows,

Γ̂p̂ +µψ̂V̂ = ρ Î V̂ (3.31)

ψ̂= 1

(ao)2

(
ε2D̂2 + 1

a2

∂2

∂η2
+ 1

b2

∂2

∂ζ2

)
(3.32)

Then, expanding the equation for all components leads to the following expressions,

εRe

(
ûD̂û + v̂

∂û

∂η
+ ŵ

∂û

∂ζ

)
=−D̂ p̂ +

(
ε2D̂2û + 1

a2

∂2û

∂η2
+ 1

b2

∂2û

∂ζ2

)
(3.33)

ε

(
ûD̂ v̂ + v̂

∂v̂

∂η
+ ŵ

∂v̂

∂ζ

)
=− 1

aε2Re

∂p̂

∂η
+ 1

Re

(
ε2D̂2v̂ + 1

a2

∂2v̂

∂η2
+ 1

b2

∂2v̂

∂ζ2

)
(3.34)

ε

(
ûD̂ŵ + v̂

∂ŵ

∂η
+ ŵ

∂ŵ

∂ζ

)
=− 1

bε2Re

∂p̂

∂ζ
+ 1

Re

(
ε2D̂2ŵ + 1

a2

∂2ŵ

∂η2
+ 1

b2

∂2ŵ

∂ζ2

)
(3.35)
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3.2 Solution by Perturbation Approximation

The perturbation analysis for the elliptical varying cross section follows the results

presented by Wiley, Pedley and Reily [3] and is developed in detail in what follows.

Lets consider equations (3.4), (3.5) and (3.6) in which perturbation parameter ε is

several orders of magnitude smaller than the initial values in the series. Then a first

group of differential equations can be obtained, which solutions lead to the first ap-

proach for the description of the pressure and velocity fields. Thus, the axial compo-

nent of velocity is determined by the equation,

− ∂p̂

∂x
+ 1

a2

∂2ûo

∂η̂2
+ 1

b2

∂2ûo

∂ζ̂2
= 0 (3.36)

in which pressure is a function of the axial coordinate -x. The result is a Poisson equa-

tion for which a solution can be obtained through a mapping process based on the

transformations (1.14). The mapping process of the ellipse onto a cylindrical domain

enables to consider a(x) and b(x) equal. Then applying the solution process devel-

oped in (1.3), the solution for the initial value of the axial velocity component is,

ûo = 1

2

a2b2

a2 +b2

∂p̂o

∂x

(
1−η2 −ζ2

)
(3.37)

or in a non dimensional form:

ûo = 2

ab

(
1−η2 −ζ2

)
(3.38)

where pressure gradient has been expressed as:

Go(x) =−∂p̂o

∂x
=−4(a2 +b2)

a3b3
(3.39)

In order to define the initial values of the velocity components vo and wo , scalar

equations in (3.34) and (3.35) are cross partially derived to eliminate pressure term.

34



This process requires the following relations to be satisfy.

− 1

ε2

∂2p̂o

∂ζ∂η
+ ∂

∂ζ

(
1

a

∂2v̂o

∂η2
+ a

b2

∂2v̂o

∂ζ2

)
= 0 (3.40)

− 1

ε2

∂2p̂o

∂ζ∂η
+ ∂

∂η

(
b

a2

∂2ŵo

∂η2
+ 1

b

∂2ŵo

∂ζ2

)
= 0 (3.41)

∂

∂ζ

(
1

a

∂2v̂o

∂η2
+ a

b2

∂2v̂o

∂ζ2

)
= ∂

∂η

(
b

a2

∂2ŵo

∂η2
+ 1

b

∂2ŵo

∂ζ2

)
(3.42)

Then by integration process of the equation over the mapped section area expressed

in terms of coordinates
(
η,ζ

)
, leads the following set of equations,

∫ ∫ (
∂

∂ζ

(
1

a

∂2v̂o

∂η2
+ a

b2

∂2v̂o

∂ζ2

)
− ∂

∂η

(
b

a2

∂2ŵo

∂η2
+ 1

b

∂2ŵo

∂ζ2

))
dηdζ= 0 (3.43)

∫ (
1

a

∂2v̂o

∂η2
+ a

b2

∂2v̂o

∂ζ2

)
dη=

∫ (
b

a2

∂2ŵo

∂η2
+ 1

b

∂2ŵo

∂ζ2

)
dζ=−A(η,ζ) (3.44)

The integration process gives rise to an arbitrary function A(η,ζ) that must be evalu-

ated according to boundary conditions. Then expressing the equations in differential

form leads to,

(
1

a

∂2v̂o

∂η2
+ a

b2

∂2v̂o

∂ζ2

)
=−∂A(η,ζ)

∂η
(3.45)(

b

a2

∂2ŵo

∂η2
+ 1

b

∂2ŵo

∂ζ2

)
=−∂A(η,ζ)

∂ζ
(3.46)

Considering that derivatives of the arbitrary function A with respect to coordinate

variables are constant, two Poisson equations are obtained. Therefore a mapping

process onto a cylindrical coordinates as in (1.14) can again be applied as follows.

v0 =−1

4

∂A

∂η

(
1−η2 −ζ2

)
(3.47)

w0 =−1

4

∂A

∂ζ

(
1−η2 −ζ2

)
(3.48)
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Then evaluating continuity equation by mean of velocity components in expressions

(3.47) and (3.48) leads to,

1

a

∂v̂o

∂η
− 1

b

∂ŵo

∂ζ
= 2(ab)′

a2b2

(
1−η2 −ζ2

)
− 4

ab

(
a′

a
η2 + b′

b
ζ2

)
(3.49)

1

2a

∂A

∂η
− 1

2b

∂A

∂ζ
= 2(ab)′

a2b2

(
1−η2 −ζ2

)
− 4

ab

(
a′

a
η2 + b′

b
ζ2

)
(3.50)

The relation between η,ζ is determined by,

η2 +ζ2 = 1 (3.51)

in which the range of variables is (0,1). Hence the arbitrary functions are determined

as,

∂A

∂η
=− 8

ab

(
a′η

)
(3.52)

∂A

∂ζ
= 8

ab

(
b′ζ

)

and finally the velocity field for the initial values is entirely defined.

v0 = 2a′η
ab

(
1−η2 −ζ2

)
(3.53)

v0 = 2b′ζ
ab

(
1−η2 −ζ2

)
(3.54)

After the initial values for the velocity components are known, the first perturbation

can be determined. Considering the scalar component in the x- direction of equation

(3.33), the first perturbation of axial velocity u1 and pressure p1 can be determined.

Writing the equation in terms of the known initial values ûo , v̂o , ŵo and the ones cor-

responding to the first perturbation, the Navier Stokes equation takes the following

form.

εRe

(
ûoD̂ûo + v̂o

∂ûo

∂η
+ ŵo

∂ûo

∂ζ

)
=−ε∂p̂1

∂x
+ε

(
1

a2

∂2û1

∂η2
+ 1

b2

∂2û1

∂ζ2

)
(3.55)
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Considering each term of the convective acceleration individually for clarity and eval-

uating (3.53) and (3.54), the form of the Navier Stokes equation is:

ûoD̂û =
2
(
1−η2 −ζ2

)
(ab)

(
−

2(ab)′
(
1−η2 −ζ2

)
(ab)2

+ 2a′η2

a
+ 2b′ζ2

b

)
(3.56)

v̂o
∂ûo

∂η
=−

2a′
(
1−η2 −ζ2

)
(ab)

(
4η2

ab

)
(3.57)

ŵo
∂ûo

∂ζ
=−

2b′
(
1−η2 −ζ2

)
(ab)

(
4ζ2

ab

)
(3.58)

(
1

a2

∂2û1

∂η2
+ 1

b2

∂2û1

∂ζ2

)
=−∂p̂1

∂x
−Re

4(ab)′
(
1−η2 −ζ2

)2

(ab)3
(3.59)

where pressure gradient for the first perturbation is also a function of the x- coordi-

nate. Solution of equation (3.59) is developed applying a new mapping process onto

a cylindrical coordinates system. The complete procedure towards the solution is

presented in what follows:

First new variables are defined in order to simplify expressions in equation (3.59).

G1 =−∂p̂1

∂x
K = 4(ab)′

(ab)3
(3.60)

then equation (3.58) is expressed in terms of cylindrical coordinates as follows.

1

r

∂

∂r

(
r
∂û1

∂r

)
=G1 −K Re

(
1− r 2

)2
(3.61)

Integration of equation (3.60) is straightforward and the boundary condition of zero

velocity at the tube wall persists. Thus, solution of the first perturbation for velocity

is:

û1 = G1

4

(
R2 − r 2

)
−K Re

[
R2 − r 2

4
− R4 − r 4

8
+ R6 − r 6

36

]
(3.62)
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Flow Rate

Considering the η,ζ domain in which 0 < R < 1, the integration process to determine

an expression for flow is straightforward.

q1 =
∫ 1

0

[
G1

4

(
R2 − r 2

)
−K Re

[
R2 − r 2

4
− R4 − r 4

8
+ R6 − r 6

36

]]
2πr dr (3.63)

Considering q1 = 0 , which means that no flow is due to the perturbed velocity, the

following result is obtained,

q1 = 0 =
[

G1

16
+ K Re

32

]
(3.64)

Pressure Gradient

From equation (3.65) the first perturbation for pressure gradient is determined as,

G1(x) =−2(ab)′Re

(a3b3)
(3.65)

which is a function of cross section area variation along the tube length and indepen-

dent of its shape.

Then considering equations (3.39) and (3.64) the final form of the pressure gradient

including the perturbation can be determined as follows:

∂p̂

∂x
= 4(a2 +b2)

a3b3
−

(
2(ab)′Re

(a3b3)

)
(3.66)

where p̂ is defined by p̂o +εp̂1.

Equation (3.65) represents the non dimensional form of pressure gradient for a vary-

ing cross section corrected by perturbation.
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Axial Velocity

Considering equation (3.38) and (3.61) the first perturbation that corresponds to the

axial component of velocity can be expressed in the scaled coordinate system η,ζ.

u1 = G1

4

(
1− r 2

)
+K Re

(
1− r 2

)[1

4
− 1+ r 2

8
+

(
1+ r 2 + r 4

)
36

]
(3.67)

u1 =

(
1− r 2

)
4

(
G1 +K Re

[
1− 1+ r 2

2
− (1+ r 2 + r 4)

9

])
(3.68)

u1 =

(
1−η2 −ζ2

)
2

Re(ab)′

a3b3

(
1+2

[
1−

1+
(
η2 +ζ2

)
2

−

(
1+ (η2 +ζ2)+

(
η2 +ζ2

)2)
9

])
(3.69)

and the final expression for the axial velocity component is,

û = 2

ab

(
1−η2−ζ2

)
+ε

((
1−η2 −ζ2

)
2

Re(ab)′

a3b3

(
1+2

[
1−

1+
(
η2 +ζ2

)
2

−

(
1+ (η2 +ζ2)+

(
η2 +ζ2

)2)
9

]))
(3.70)

which constitutes the solution by a first order perturbation. It is important to estab-

lish the range for which lubrication approximation and asymptotic perturbation are

valid. This will depend upon geometry of cross section as well as changes in steep-

ness along the tube length.
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Chapter 4

Implementation of Numerical

Solutions on Practical Cases

Theoretical aspects of analytic and numerical methods that enable solution of lami-

nar flow across tubes of arbitrary varying cross section, have been explored so far. In

this chapter numerical solutions are implemented for some specific cases. To estab-

lish the range of validity of the methods, results are compared against data obtained

from a commercial CFD software.

Numerical solutions for constant cross section have been discussed in detail in

chapter 2, verifying that unit velocity distributions are in accordance to analytic re-

sults. Numerical experiments that are developed in what follows, are intended to ad-

dress the capability of numerical methods to predict pressure distribution for varying

cross sections. Elliptical cross sections are employed due to the fact that some ana-

lytic results are available for comparison purposes.
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4.1 Design of Numerical Experiments Procedure

Numerical experiments developed in what follows apply numerical lubrication,numerical

perturbations alternative perturbation and perturbation with convective acceleration

correction, to two elliptical sections with different aspect ratio defined by the quo-

tient between semi-axis (a) and total length L. Furthermore, an square section with

the same aspect ratio of the ellipsis and also linear variation of cross section, is tested

as a more general case.

Several flow rates scaled by velocity are tested, which values are based on a reference

flow rate corresponding to a mean velocity of 1 (mm/sec) . To avoid unstable behav-

iors, all flow rates impose Reynolds numbers below 250.

Then, pressure gradients are calculated applying equation (2.21), and pressure distri-

bution along the tube length is calculated by numerical integration using trapezoidal

rule as follows.

px+∆x = px +
(
∆px+∆x

∆x
+ ∆px

∆x

)
∆x

2
(4.1)

Uncertainties are determined comparing results from numerical methods, against

data generated using a commercial CFD computational fluid dynamics software. Con-

sidering that CFD software enables Navier Stokes solution in three-dimensional space,

results are considered more accurate than those obtained with the numerical proce-

dures.

Experiment Definition

Two tests performed on elliptical cross section for different aspect ratios are pre-

sented and eccentricity of 0.5. Details of elliptical tube and experimental parameters
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are shown in figure and table 4.1 respectively.

Figure 4.1: Elliptical section with eccentricity b/a

Variable Symbol Unit Value

Dynamic Viscosity µ [Pa.sec] 1.002x10−3

Density ρ [Kg/m3] 998

Major Axis a [mm] 10

Eccentricity b/a [mm/mm] 0.50

Section Variation m [mm/mm] 1/200

2/200

Reference Flow Rate qr e f [m3/sec] 1.5708x10−7

Flow Rate Range qi q i = (1,3,5,7,9,11,13).qr e f

Table 4.1: Flow properties and geometry description
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4.2 Results of Numerical Experiments

4.2.1 Influence of Aspect Ratio on Pressure Distribution

Pressure distribution along the tube and the effect of aspect ratio (1/200) and (2/200)

is presented for qi = 5qr e f , which approximately represents the center of the flow

rate span analyzed for all cases.

Figure 4.2: Pressure Distribution (m=2/200)
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Figure 4.3: Pressure Distribution (m=2/200)

Results shows that prediction of pressure distribution is more accurate for smooth

variations of sections, which implies smaller values for local pressure gradients.

Deviation of pressure values from the CFD results, is caused by the progressive effect

that convective acceleration has on the velocity field. This is probably the reason

why convective correction exhibits better approach to CFD than the other numerical

methods.To demonstrate this observation, pressure distributions for extreme values

of flow rates are presented for both aspect ratios.
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Figure 4.4: Pressure Distribution: Flow rate q1,ellipse (b/a=1/2,m=1/200)

Figure 4.5: Pressure Distribution: Flow rate q13,ellipse (b/a=1/2,m=1/200)
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Figure 4.6: Pressure Distribution: Flow rate q1,ellipse (b/a=1/2,m=2/200)

Figure 4.7: Pressure Distribution: Flow rate q13,ellipse (b/a=1/2,m=2/200)
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4.2.2 Uncertainty Analysis for Ellipse

To address uncertainty in pressure distribution along tube length, relative errors are

calculated for each ellipse and numerical method. Results are presented in what fol-

lows.

Figure 4.8: Pressure Relative Error (b/a=1/2,m=1/200)
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Figure 4.9: Pressure Relative Error (b/a=1/2,m=2/200)

Figure 4.10: Pressure Relative Error Flow Rate q1 (b/a=1/2,m=1/200)
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Figure 4.11: Pressure Relative Error Flow Rate q3 (b/a=1/2,m=1/200)

Figure 4.12: Pressure Relative Error Flow Rate q5 (b/a=1/2,m=1/200)
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Figure 4.13: Pressure Relative Error Flow Rate q7 (b/a=1/2,m=1/200)

Figure 4.14: Pressure Relative Error Flow Rate q9 (b/a=1/2,m=1/200)

Analysis of a Rectangular Section

As an extension of previous methods, a rectangular cross section is studied for the

maximum flow rate. Results are presented in what follows,
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Figure 4.15: Pressure Distribution Rectangle (b/a=1/2,m=2/200)

Figure 4.16: Relative Error Rectangle Flow Rate q13 (b/a=1/2,m=1/200)

In this example, Reynolds number is at a higher limit of 200. At this flow regime, all

the methods developed for pressure estimation exhibit large error values, and con-

vective acceleration correction has the smaller relative error.

Response of the different analysis methods for pressure estimation follow the same

tendency. Results show that perturbation methods including the convective accel-

eration correction, exhibit less uncertainty with respect to the CFD solution used as
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reference. For the case of the large flow rates, all perturbations exhibit higher relative

errors. Moreover, relative errors have the smaller values for flow rates between 5qr e f

and 7qr e f , which correspond to Reynolds number between 50 < Re < 150.
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Chapter 5

Conclusions

Analytic and numerical procedures that enable to obtain velocity distributions and

pressure gradients, for Newtonian viscous flows across arbitrary varying cross sec-

tion have been developed. Solutions by numerical lubrication method leads to the

same results as its analytic counterpart. The use of non dimensional models com-

bined with finite element procedures and appropriate scaling factors, probed to be

effective means to predict velocity distributions and pressure gradients for a broader

range of arbitrary cross sections. Furthermore, estimation of Poiseuille numbers ex-

tracted from numerical solutions in a non dimensional form, enables to explore Fan-

ning friction factors for complex shapes in laminar regime, which on the other hand,

is the first step to explore turbulent friction factors.

Beyond the classical methods, two perturbation procedures have been explored. An

alternative perturbation applied directly to velocity in viscous and axial convective

acceleration terms, probed to be effective in estimation of pressure gradients for sec-

tions with sharper aspect ratios. Perturbation parameter following definition of non

dimensional velocity and flow rate was derived in terms of characteristic length, area
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derivative and area cross section. This regular perturbation method represents a gen-

eralization of classical procedure extensively employed in Fluid Mechanics, which

combined with numerical method enables solution of a broader range of cases.

Finally, the use of perturbation approximation applied to the entire convective accel-

eration term in Navier Stokes equation has been tested. In this case, a new perturba-

tion parameter based on aspect ratio and Reynolds number was defined and added to

the regular perturbation previously defined. Pressure gradients calculated by means

of this correction, exhibited less average relative error than any other tested method

when results were compared to CFD solutions. However, estimations obtained by

this method require an in deep exploration to address a broader range of applicabil-

ity.

In all methods explored, results demonstrated to be highly sensitive to definition of

characteristic length. Parameters recommended in literature, like hydraulic diame-

ter, square root of area cross section or perimeter, may not be the best option as scal-

ing factor for non dimensional solutions. Instead, radius for circular cases, semi axis

for ellipsis and rectangles or polar radius functions employed to generate the closed

shape , proven to be appropriate parameters leading to more accurate solutions.
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